#!/usr/bin/env python3 import pandas as pd import argparse class MineRegression: def __init__(self, system_information=None, save_csv=False): self.df = None self.system_info = system_information self.save_csv = save_csv def generate_csv(self): ips = ['192.168.92.18', '192.168.92.12', '192.168.93.51', '192.168.92.15'] results = [pd.read_html('http://%s/html-reports/latest.html' % url, attrs={'id': 'myTable2'})[0] for url in ips] systems = [pd.read_html('http://%s/html-reports/latest.html' % url, attrs={'id': 'SystemInformation'})[0] for url in ips] for df in range(0, len(ips)): results[df]['IP'] = ips[df] systems[df]['IP'] = ips[df] dfs = [pd.merge(results[n], systems[n], on='IP') for n in range(len(ips))] self.df = pd.concat(dfs) self.df = self.df[self.df['STDOUT'] == 'STDOUT'] print(self.df['IP'].value_counts()) def generate_report(self): system_variations = self.df[ ['IP', 'Python version', 'LANforge version', 'OS Version', 'Hostname']].drop_duplicates( ['Python version', 'LANforge version', 'OS Version']).reset_index(drop=True) errors = list() for index in system_variations.index: variation = system_variations.iloc[index] result = self.df.loc[self.df[['Python version', 'LANforge version', 'OS Version']].isin(dict( variation).values()).all(axis=1), :].dropna(subset=['STDERR']).shape[0] errors.append(result) system_variations['errors'] = errors if self.save_csv: system_variations.to_csv('regression_suite_results.csv') else: print(system_variations.sort_values('errors')) def main(): parser = argparse.ArgumentParser(description='Compare regression results from different systems') parser.add_argument('--system_info', help='location of system information csv', default=None) parser.add_argument('--save_csv', help='save CSV of results', default=False) args = parser.parse_args() Miner = MineRegression(system_information=args.system_info, save_csv=args.save_csv) Miner.generate_csv() Miner.generate_report() if __name__ == '__main__': main()