#!/usr/bin/env python3 ''' File: read kpi.csv place in sql database, create png of historical kpi and present graph on dashboard Usage: kpi_csv_sq.py --store --png --show --path --database Example: kpi_csv_sq.py --show (show dashboard generated from database) Example: kpi_csv_sq.py --store --png --show --path (read kpi.csv store to database, write png, show dashboard ) ''' # visit http://127.0.0.1:8050/ in your web browser. import os import dash import dash_core_components as dcc import dash_html_components as html import plotly.express as px import pandas as pd import sqlite3 import argparse from pathlib import Path import time # Any style components can be used external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] class csv_sqlite_dash(): def __init__(self, _path = '.', _file = 'kpi.csv', _database = 'qa_db', _table = 'qa_table', _png = False): self.path = _path self.file = _file self.database = _database self.table = _table self.png = _png self.png_generated = False self.kpi_list = [] self.html_list = [] self.conn = None self.df = pd.DataFrame() self.plot_figure = [] self.children_div = [] self.server_html_reports = 'http://192.168.95.6/html-reports/' #TODO pass in server self.server = 'http://192.168.95.6/' #TODO pass in server self.server_started = False self.app = dash.Dash(__name__, external_stylesheets=external_stylesheets) # https://community.plotly.com/t/putting-a-dash-instance-inside-a-class/6097/3 #https://dash.plotly.com/dash-html-components/button #self.app.callback(dash.dependencies.Output('container-button-basic', 'children'), # [dash.dependencies.Input(component_id ='submit-val', component_property ='n_clicks')])(self.show) # information on sqlite database # https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_sql.html def store(self): print("reading kpi and storing in db {}".format(self.database)) path = Path(self.path) self.kpi_list = list(path.glob('**/kpi.csv')) # Hard code for now if not self.kpi_list: print("WARNING: used --store , no new kpi.csv found, check input path or remove --store from command line") for kpi in self.kpi_list: #TODO note empty kpi.csv failed test df_kpi_tmp = pd.read_csv(kpi, sep='\t') df_kpi_tmp['kpi_path'] = str(kpi).replace('kpi.csv','') # only store the path to the kpi.csv file df_kpi_tmp = df_kpi_tmp.append(df_kpi_tmp, ignore_index=True) self.df = self.df.append(df_kpi_tmp, ignore_index=True) self.conn = sqlite3.connect(self.database) try: self.df.to_sql(self.table,self.conn,if_exists='append') except: print("attempt to append to database with different column layout, casused exception, input new name --database ") exit(1) self.conn.close() def generate_graph_png(self): print("generating graphs to display") print("generate_graph_png: {}".format(time.time())) #https://datacarpentry.org/python-ecology-lesson/09-working-with-sql/index.html- self.conn = sqlite3.connect(self.database) df3 = pd.read_sql_query("SELECT * from {}".format(self.table) ,self.conn) #current connection is sqlite3 /TODO move to SQLAlchemy # sort by date column try: df3 = df3.sort_values(by='Date') except: print("Database empty: KeyError(key) when sorting by Date, check Database name, path to kpi, typo in path, exiting") exit(1) self.conn.close() # graph group and test-tag are used for detemining the graphs, can use any columns # the following list manipulation removes the duplicates graph_group_list = list(df3['Graph-Group']) graph_group_list = list(set(graph_group_list)) test_tag_list = list(df3['test-tag']) test_tag_list = list(set(test_tag_list)) test_rig_list = list(df3['test-rig']) test_rig_list = list(set(test_rig_list)) self.children_div.append(html.A('html_reports', href=self.server_html_reports, target='_blank')) for test_rig in test_rig_list: for test_tag in test_tag_list: for group in graph_group_list: df_tmp = df3.loc[(df3['test-rig'] == test_rig) & (df3['Graph-Group'] == str(group)) & (df3['test-tag'] == str(test_tag))] if df_tmp.empty == False: kpi_fig = (px.scatter(df_tmp, x="Date", y="numeric-score", color="short-description", hover_name="short-description", size_max=60)).update_traces(mode='lines+markers') df_tmp = df_tmp.sort_values(by='Date') test_id_list = list(df_tmp['test-id']) kpi_path_list = list(df_tmp['kpi_path']) units_list = list(df_tmp['Units']) kpi_fig.update_layout( title="{} : {} : {} : {}".format(test_id_list[-1], group, test_tag, test_rig), xaxis_title="Time", yaxis_title="{}".format(units_list[-1]), xaxis = {'type' : 'date'} ) # save the figure - figures will be over written png # for testing png_server_img = '' if self.png: if self.png_generated: pass else: print("generating png files") print("kpi_path:{}".format(df_tmp['kpi_path'])) png_path = os.path.join(kpi_path_list[-1],"kpi.png") # use simple names {}_{}_{}_{}_kpi.png".format(test_id_list[-1], group, test_tag, test_rig)) html_path = os.path.join(kpi_path_list[-1],"kpi.html") # use simple names {}_{}_{}_{}_kpi.html".format(test_id_list[-1], group, test_tag, test_rig)) print("png_path {}".format(png_path)) png_server_img = self.server + png_path.replace('/home/lanforge','') print("png_server_img {}".format(png_server_img)) kpi_fig.write_image(png_path,scale=1,width=1200,height=350) #https://plotly.com/python/interactive-html-export/ kpi_fig.write_html(html_path) # png of graph data to display self.children_div.append(html.Img(src=png_server_img)) # use image from above to creat html display - this uses dynamic graphing #self.children_div.append(dcc.Graph(figure=kpi_fig)) #TODO the link must be to a server to display html # WARNING: DO NOT USE os.path.join will use the path for where the script is RUN which can be container. # need to construct path to server manually. #TODO need to work out the reporting paths - pass in path adjust self.children_div.append(html.Br()) # link to interactive results kpi_html_path = self.server + kpi_path_list[-1] + "kpi.html" kpi_html_path = kpi_html_path.replace('/home/lanforge/','') self.children_div.append(html.Br()) self.children_div.append(html.A('{}_{}_{}_{}_kpi.html'.format(test_id_list[-1], group, test_tag, test_rig), href=kpi_html_path, target='_blank')) # link to full test results index_html_path = self.server + kpi_path_list[-1] + "index.html" index_html_path = index_html_path.replace('/home/lanforge/','') self.children_div.append(html.Br()) self.children_div.append(html.A('{}_{}_{}_{}_index.html'.format(test_id_list[-1], group, test_tag, test_rig), href=index_html_path, target='_blank')) self.children_div.append(html.Br()) self.children_div.append(html.Br()) self.children_div.append(html.Br()) # TODO see if this stops the regenration of the graphs each time self.png_generated = True # access from server # https://stackoverflow.com/questions/61678129/how-to-access-a-plotly-dash-app-server-via-lan #def show(self,n_clicks): def show(self): #print("refreshes: {}".format(n_clicks)) self.generate_graph_png() if not self.children_div: print("NOTE: test-tag may not be present in the kpi thus no results generated") print("show: {}".format(time.time())) self.app.layout = html.Div([ html.Div(id='my-output'), html.H1(children= "LANforge Testing",className="lanforge", style={'color':'green','text-align':'center'}), #html.Button('Submit Recalculate',id='submit-val', n_clicks=0), #html.Div(id='container-button-basic', children='to recalculate hit submit'), html.H2(children= "Results",className="ts1", style={'color':'#00361c','text-align':'left'}), # images_div is already a list, children = a list of html components # remove scrolling : html.Div(children= self.children_div, style={"maxHeight": "600px", "overflow": "scroll"} ), html.Div(children= self.children_div ), html.A('www.candelatech.com',href='http://www.candelatech.com', target='_blank', style={'color':'#00361c','text-align':'left'}), ]) # save as standalone files #https://plotly.com/python/static-image-export/ if self.server_started: print("refresh complete") pass else: self.server_started = True print("self.server_started {}".format(self.server_started)) #NOTE: the server_started flag needs to be set prior to run_server (or you get to debug an infinite loop) self.app.run_server(host= '0.0.0.0', debug=True) # host = '0.0.0.0' allows for remote access, local debug host = '127.0.0.1' # app.run_server(host= '0.0.0.0', debug=True) def main(): parser = argparse.ArgumentParser( prog='kpi_csv_sq.py', formatter_class=argparse.RawTextHelpFormatter, epilog='''\ read kpi.csv into sqlite database , save png of history and preset on dashboard ''', description='''\ File: read kpi.csv place in sql database, create png of historical kpi and present graph on dashboard Usage: kpi_csv_sq.py --store --png --show --path --database Example: kpi_csv_sq.py --show (show dashboard generated from database) Example: kpi_csv_sq.py --store --png --show --path (read kpi.csv store to database, write png, show dashboard ) ''') parser.add_argument('--path', help='--path top directory path to kpi if regererating database or png files',default='') parser.add_argument('--file', help='--file kpi.csv default: kpi.csv',default='kpi.csv') #TODO is this needed parser.add_argument('--database', help='--database qa_test_db default: qa_test_db',default='qa_test_db') parser.add_argument('--table', help='--table qa_table default: qa_table',default='qa_table') parser.add_argument('--store', help='--store , store kpi to db, action store_true',action='store_true') parser.add_argument('--png', help='--png, generate png for kpi in path, generate display, action store_true',action='store_true') parser.add_argument('--show', help='--show generate display and show dashboard, action store_true',action='store_true') args = parser.parse_args() __path = args.path __file = args.file __database = args.database __table = args.table __png = args.png # needed for refresh button # n_clicks = 0 print("config: path:{} file:{} database:{} table:{} store:{} png:{} show:{} " .format(__path,__file,__database,__table,args.store, args.png,args.show)) if(__path == '' and args.store == True): print("--path must be entered if --store , exiting") exit(1) if(args.png == True and args.store == False): print("if --png set to create png files then --store must also be set, exiting") exit(1) if(args.png == True and args.show == True): print("WARNING: generating png files will effect initial display performance") csv_dash = csv_sqlite_dash( _path = __path, _file = __file, _database = __database, _table = __table, _png = __png) if args.store: csv_dash.store() if args.png: csv_dash.generate_graph_png() if args.show: #csv_dash.show(n_clicks) csv_dash.show() if args.store == False and args.png == False and args.show == False: print("Need to enter an action of --store --png --show ") if __name__ == '__main__': main()