mirror of
https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
synced 2025-11-03 12:18:00 +00:00
133 lines
6.1 KiB
Python
Executable File
133 lines
6.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import pandas as pd
|
|
import argparse
|
|
import plotly.express as px
|
|
import plotly.graph_objects as go
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
import datetime
|
|
|
|
|
|
class MineRegression:
|
|
def __init__(self,
|
|
system_information=None,
|
|
save_csv=False,
|
|
save_png=False,
|
|
ips=None):
|
|
self.df = None
|
|
self.ips = ips
|
|
self.system_info = system_information
|
|
self.save_csv = save_csv
|
|
self.save_png = save_png
|
|
|
|
def generate_csv(self):
|
|
results = [pd.read_html('http://%s/html-reports/latest.html' % url, attrs={'id': 'myTable2'})[0] for url in
|
|
self.ips]
|
|
systems = [pd.read_html('http://%s/html-reports/latest.html' % url, attrs={'id': 'SystemInformation'})[0] for
|
|
url in self.ips]
|
|
for df in range(0, len(self.ips)):
|
|
results[df]['IP'] = self.ips[df]
|
|
systems[df]['IP'] = self.ips[df]
|
|
dfs = [pd.merge(results[n], systems[n], on='IP') for n in range(len(self.ips))]
|
|
self.df = pd.concat(dfs)
|
|
self.df = self.df[self.df['STDOUT'] == 'STDOUT']
|
|
if self.save_csv:
|
|
self.df.to_csv('test_specific_results.csv')
|
|
|
|
def generate_report(self):
|
|
system_variations = self.df[
|
|
['IP', 'Python version', 'LANforge version', 'OS Version', 'Hostname',
|
|
'Python Environment']].drop_duplicates(
|
|
['IP', 'Python version', 'LANforge version', 'OS Version', 'Hostname', 'Python Environment']).reset_index(
|
|
drop=True)
|
|
errors = list()
|
|
lanforge_errors = list()
|
|
partial_failures = list()
|
|
major_errors = list()
|
|
successes = list()
|
|
for index in system_variations.index:
|
|
variation = system_variations.iloc[index]
|
|
system = self.df.loc[
|
|
self.df[['Python version', 'LANforge version', 'OS Version', 'Python Environment', 'IP']].isin(
|
|
dict(
|
|
variation).values()).all(axis=1), :]
|
|
result = system.dropna(subset=['STDERR']).shape[0]
|
|
errors.append(result)
|
|
|
|
lanforge_result = system.dropna(subset=['LANforge Error']).shape[0]
|
|
partial_failures.append(system[system['Status'] == 'Partial Failure'].shape[0])
|
|
major_errors.append(system[system['Status'] == 'ERROR'].shape[0])
|
|
lanforge_errors.append(lanforge_result)
|
|
successes.append(system[system['Status'] == 'Success'].shape[0])
|
|
system_variations['Successes'] = successes
|
|
system_variations['Errors'] = errors
|
|
system_variations['LANforge errors'] = lanforge_errors
|
|
system_variations['Python errors'] = system_variations['Errors'] - system_variations['LANforge errors']
|
|
system_variations['Partial Failures'] = partial_failures
|
|
system_variations['Major Errors'] = major_errors
|
|
if self.save_csv:
|
|
system_variations.to_csv('regression_suite_results.csv')
|
|
else:
|
|
print(system_variations.sort_values('Successes'))
|
|
|
|
if self.save_png:
|
|
now = datetime.datetime.now()
|
|
fail = pd.DataFrame(dict(self.df[self.df['Status'] != 'Success']['Command Name'].value_counts()).items())
|
|
success = pd.DataFrame(dict(self.df[self.df['Status'] == 'Success']['Command Name'].value_counts()).items())
|
|
success['status'] = True
|
|
fail['status'] = False
|
|
df = pd.concat([success, fail])
|
|
fig = px.bar(df, x=0, y=1, color='status', title="%s regression results" % now)
|
|
fig.write_image("script_statuses.png", width=1280, height=540)
|
|
print('Saved png')
|
|
|
|
heatmap = self.df
|
|
heatmap['Status'] = heatmap['Status'].replace('Success', 2).replace('Failure', -2).replace(
|
|
'Partial Failure', 0).replace('ERROR', -1)
|
|
heatmap['System'] = heatmap['Hostname'] + '\n' + heatmap['Python Environment']
|
|
pivot_df = heatmap.sort_values('Status').drop_duplicates(['Command Name', 'System'])
|
|
fig = go.Figure(go.Heatmap(x=pivot_df['Command Name'], z=pivot_df['Status'], y=pivot_df['Hostname']))
|
|
fig.update_layout(title="%s regression results" % now)
|
|
fig.write_image("script_device_heatmap.png", width=1280, height=540)
|
|
print('Created first heatmap')
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(18, 8))
|
|
my_colors = [(0.7, 0.3, 0.3), (0.7, 0.5, 0.8), (.9, .9, 0.4), (0.1, 0.6, 0)]
|
|
sns.heatmap(pd.pivot_table(pivot_df, values='Status',
|
|
index='Command Name', columns='Hostname'),
|
|
ax=ax,
|
|
cmap=my_colors,
|
|
linewidth=0.1,
|
|
linecolor=(0.1, 0.2, 0.2))
|
|
ax.title.set_text('%s regression results' % now)
|
|
colorbar = ax.collections[0].colorbar
|
|
colorbar.set_ticks([-1.5, -.5, 0.5, 1.5])
|
|
colorbar.set_ticklabels(['ERROR', 'Failure', 'Partial Failure', 'Success'])
|
|
plt.savefig('script_device_heatmap_2.png')
|
|
print('Created second heatmap')
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Compare regression results from different systems')
|
|
parser.add_argument('--system_info', help='location of system information csv', default=None)
|
|
parser.add_argument('--save_csv', help='save CSV of results', action='store_true')
|
|
parser.add_argument('--save_png', help='save PNG of results', action='store_true')
|
|
parser.add_argument('--ip', help='IP addresses of LANforge devices you want to probe', action='append')
|
|
args = parser.parse_args()
|
|
|
|
if args.ip is None:
|
|
args.ip = ['192.168.92.18', '192.168.92.12', '192.168.93.51', '192.168.92.15', '192.168.100.184',
|
|
'192.168.100.30']
|
|
Miner = MineRegression(system_information=args.system_info,
|
|
save_csv=args.save_csv,
|
|
save_png=args.save_png,
|
|
ips=args.ip)
|
|
|
|
Miner.generate_csv()
|
|
|
|
Miner.generate_report()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|