Files
wlan-lanforge-scripts/py-json/LANforge/pandas_extensions.py
Matthew Stidham 3a9a0b5de1 pandas_extensions: Remove invalid comparisons
Signed-off-by: Matthew Stidham <stidmatt@gmail.com>
2021-11-16 11:06:48 -08:00

119 lines
7.0 KiB
Python

#!/usr/bin/env pythonn3
import pandas as pd
class pandas_extensions:
# ================ Pandas Dataframe Functions ======================================
# takes any dataframe and returns the specified file extension of it
def df_to_file(self, output_f=None, dataframe=None, save_path=None):
if output_f.lower() == 'hdf':
dataframe.to_hdf(save_path.replace('csv', 'h5', 1), 'table', append=True)
if output_f.lower() == 'parquet':
dataframe.to_parquet(save_path.replace('csv', 'parquet', 1), engine='pyarrow')
if output_f.lower() == 'png':
fig = dataframe.plot().get_figure()
fig.savefig(save_path.replace('csv', 'png', 1))
if output_f.lower() == 'xlsx':
dataframe.to_excel(save_path.replace('csv', 'xlsx', 1))
if output_f.lower() == 'json':
dataframe.to_json(save_path.replace('csv', 'json', 1))
if output_f.lower() == 'stata':
dataframe.to_stata(save_path.replace('csv', 'dta', 1))
if output_f.lower() == 'pickle':
dataframe.to_pickle(save_path.replace('csv', 'pkl', 1))
if output_f.lower() == 'html':
dataframe.to_html(save_path.replace('csv', 'html', 1))
# takes any format of a file and returns a dataframe of it
def file_to_df(self, file_name):
if file_name.split('.')[-1] == 'csv':
return pd.read_csv(file_name)
# only works for test_ipv4_variable_time at the moment
def compare_two_df(self, dataframe_one=None, dataframe_two=None):
# df one = current report
# df two = compared report
pd.set_option("display.max_rows", None, "display.max_columns", None)
# get all of common columns besides Timestamp, Timestamp milliseconds
common_cols = list(set(dataframe_one.columns).intersection(set(dataframe_two.columns)))
cols_to_remove = ['Timestamp milliseconds epoch', 'Timestamp', 'LANforge GUI Build: 5.4.3']
com_cols = [i for i in common_cols if i not in cols_to_remove]
# check if dataframes have the same endpoints
if dataframe_one.name.unique().tolist().sort() == dataframe_two.name.unique().tolist().sort():
endpoint_names = dataframe_one.name.unique().tolist()
if com_cols is not None:
dataframe_one = dataframe_one[[c for c in dataframe_one.columns if c in com_cols]]
dataframe_two = dataframe_two[[c for c in dataframe_one.columns if c in com_cols]]
dataframe_one = dataframe_one.loc[:, ~dataframe_one.columns.str.startswith('Script Name:')]
dataframe_two = dataframe_two.loc[:, ~dataframe_two.columns.str.startswith('Script Name:')]
lowest_duration = min(dataframe_one['Duration elapsed'].max(), dataframe_two['Duration elapsed'].max())
print("The max duration in the new dataframe will be... " + str(lowest_duration))
compared_values_dataframe = pd.DataFrame(
columns=[col for col in com_cols if not col.startswith('Script Name:')])
cols = compared_values_dataframe.columns.tolist()
cols = sorted(cols, key=lambda L: (L.lower(), L))
compared_values_dataframe = compared_values_dataframe[cols]
print(compared_values_dataframe)
for duration_elapsed in range(lowest_duration):
for endpoint in endpoint_names:
# check if value has a space in it or is a str.
# if value as a space, only take value before space for calc, append that calculated value after space.
# if str. check if values match from 2 df's. if values do not match, write N/A
for_loop_df1 = dataframe_one.loc[(dataframe_one['name'] == endpoint) & (
dataframe_one['Duration elapsed'] == duration_elapsed)]
for_loop_df2 = dataframe_two.loc[(dataframe_one['name'] == endpoint) & (
dataframe_two['Duration elapsed'] == duration_elapsed)]
# print(for_loop_df1)
# print(for_loop_df2)
cols_to_loop = [i for i in com_cols if
i not in ['Duration elapsed', 'Name', 'Script Name: test_ipv4_variable_time']]
cols_to_loop = sorted(cols_to_loop, key=lambda L: (L.lower(), L))
print(cols_to_loop)
row_to_append = {}
row_to_append["Duration elapsed"] = duration_elapsed
for col in cols_to_loop:
print(col)
print(for_loop_df1)
# print(for_loop_df2)
print(for_loop_df1.at[0, col])
print(for_loop_df2.at[0, col])
if type(for_loop_df1.at[0, col]) == str and type(for_loop_df2.at[0, col]) == str:
if (' ' in for_loop_df1.at[0, col]):
# do subtraction
new_value = float(for_loop_df1.at[0, col].split(" ")[0]) - float(
for_loop_df2.at[0, col].split(" ")[0])
# add on last half of string
new_value = str(new_value) + for_loop_df2.at[0, col].split(" ")[1]
# print(new_value)
row_to_append[col] = new_value
else:
if for_loop_df1.at[0, col] != for_loop_df2.at[0, col]:
row_to_append[col] = 'NaN'
else:
row_to_append[col] = for_loop_df1.at[0, col]
elif type(for_loop_df1.at[0, col]) == int and type(for_loop_df2.at[0, col]) == int or type(
for_loop_df1.at[0, col]) == float and type(for_loop_df2.at[0, col]) == float:
new_value = for_loop_df1.at[0, col] - for_loop_df2.at[0, col]
row_to_append[col] = new_value
compared_values_dataframe = compared_values_dataframe.append(row_to_append, ignore_index=True, )
print(compared_values_dataframe)
# add col name to new df
print(dataframe_one)
print(dataframe_two)
print(compared_values_dataframe)
else:
ValueError("Unable to execute report comparison due to inadequate file commonalities. ")
exit(1)
else:
ValueError(
"Two files do not have the same endpoints. Please try file comparison with files that have the same endpoints.")
exit(1)
# take those columns and separate those columns from others in DF.
pass
# return compared_df