mirror of
				https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
				synced 2025-10-31 02:38:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			119 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env pythonn3
 | |
| 
 | |
| import pandas as pd
 | |
| 
 | |
| class pandas_extensions:
 | |
| 
 | |
|     # ================ Pandas Dataframe Functions ======================================
 | |
| 
 | |
|     # takes any dataframe and returns the specified file extension of it
 | |
|     def df_to_file(self, output_f=None, dataframe=None, save_path=None):
 | |
|         if output_f.lower() == 'hdf':
 | |
|             dataframe.to_hdf(save_path.replace('csv', 'h5', 1), 'table', append=True)
 | |
|         if output_f.lower() == 'parquet':
 | |
|             dataframe.to_parquet(save_path.replace('csv', 'parquet', 1), engine='pyarrow')
 | |
|         if output_f.lower() == 'png':
 | |
|             fig = dataframe.plot().get_figure()
 | |
|             fig.savefig(save_path.replace('csv', 'png', 1))
 | |
|         if output_f.lower() == 'xlsx':
 | |
|             dataframe.to_excel(save_path.replace('csv', 'xlsx', 1))
 | |
|         if output_f.lower() == 'json':
 | |
|             dataframe.to_json(save_path.replace('csv', 'json', 1))
 | |
|         if output_f.lower() == 'stata':
 | |
|             dataframe.to_stata(save_path.replace('csv', 'dta', 1))
 | |
|         if output_f.lower() == 'pickle':
 | |
|             dataframe.to_pickle(save_path.replace('csv', 'pkl', 1))
 | |
|         if output_f.lower() == 'html':
 | |
|             dataframe.to_html(save_path.replace('csv', 'html', 1))
 | |
| 
 | |
|     # takes any format of a file and returns a dataframe of it
 | |
|     def file_to_df(self, file_name):
 | |
|         if file_name.split('.')[-1] == 'csv':
 | |
|             return pd.read_csv(file_name)
 | |
| 
 | |
|     # only works for test_ipv4_variable_time at the moment
 | |
|     def compare_two_df(self, dataframe_one=None, dataframe_two=None):
 | |
|         # df one = current report
 | |
|         # df two = compared report
 | |
|         pd.set_option("display.max_rows", None, "display.max_columns", None)
 | |
|         # get all of common columns besides Timestamp, Timestamp milliseconds
 | |
|         common_cols = list(set(dataframe_one.columns).intersection(set(dataframe_two.columns)))
 | |
|         cols_to_remove = ['Timestamp milliseconds epoch', 'Timestamp', 'LANforge GUI Build: 5.4.3']
 | |
|         com_cols = [i for i in common_cols if i not in cols_to_remove]
 | |
|         # check if dataframes have the same endpoints
 | |
|         if dataframe_one.name.unique().tolist().sort() == dataframe_two.name.unique().tolist().sort():
 | |
|             endpoint_names = dataframe_one.name.unique().tolist()
 | |
|             if com_cols is not None:
 | |
|                 dataframe_one = dataframe_one[[c for c in dataframe_one.columns if c in com_cols]]
 | |
|                 dataframe_two = dataframe_two[[c for c in dataframe_one.columns if c in com_cols]]
 | |
|                 dataframe_one = dataframe_one.loc[:, ~dataframe_one.columns.str.startswith('Script Name:')]
 | |
|                 dataframe_two = dataframe_two.loc[:, ~dataframe_two.columns.str.startswith('Script Name:')]
 | |
|                 lowest_duration = min(dataframe_one['Duration elapsed'].max(), dataframe_two['Duration elapsed'].max())
 | |
|                 print("The max duration in the new dataframe will be... " + str(lowest_duration))
 | |
| 
 | |
|                 compared_values_dataframe = pd.DataFrame(
 | |
|                     columns=[col for col in com_cols if not col.startswith('Script Name:')])
 | |
|                 cols = compared_values_dataframe.columns.tolist()
 | |
|                 cols = sorted(cols, key=lambda L: (L.lower(), L))
 | |
|                 compared_values_dataframe = compared_values_dataframe[cols]
 | |
|                 print(compared_values_dataframe)
 | |
|                 for duration_elapsed in range(lowest_duration):
 | |
|                     for endpoint in endpoint_names:
 | |
|                         # check if value has a space in it or is a str.
 | |
|                         # if value as a space, only take value before space for calc, append that calculated value after space.
 | |
|                         # if str. check if values match from 2 df's. if values do not match, write N/A
 | |
|                         for_loop_df1 = dataframe_one.loc[(dataframe_one['name'] == endpoint) & (
 | |
|                                     dataframe_one['Duration elapsed'] == duration_elapsed)]
 | |
|                         for_loop_df2 = dataframe_two.loc[(dataframe_one['name'] == endpoint) & (
 | |
|                                     dataframe_two['Duration elapsed'] == duration_elapsed)]
 | |
|                         # print(for_loop_df1)
 | |
|                         # print(for_loop_df2)
 | |
|                         cols_to_loop = [i for i in com_cols if
 | |
|                                         i not in ['Duration elapsed', 'Name', 'Script Name: test_ipv4_variable_time']]
 | |
|                         cols_to_loop = sorted(cols_to_loop, key=lambda L: (L.lower(), L))
 | |
|                         print(cols_to_loop)
 | |
|                         row_to_append = {}
 | |
|                         row_to_append["Duration elapsed"] = duration_elapsed
 | |
|                         for col in cols_to_loop:
 | |
|                             print(col)
 | |
|                             print(for_loop_df1)
 | |
|                             # print(for_loop_df2)
 | |
|                             print(for_loop_df1.at[0, col])
 | |
|                             print(for_loop_df2.at[0, col])
 | |
|                             if type(for_loop_df1.at[0, col]) == str and type(for_loop_df2.at[0, col]) == str:
 | |
|                                 if (' ' in for_loop_df1.at[0, col]):
 | |
|                                     # do subtraction
 | |
|                                     new_value = float(for_loop_df1.at[0, col].split(" ")[0]) - float(
 | |
|                                         for_loop_df2.at[0, col].split(" ")[0])
 | |
|                                     # add on last half of string
 | |
|                                     new_value = str(new_value) + for_loop_df2.at[0, col].split(" ")[1]
 | |
|                                     # print(new_value)
 | |
|                                     row_to_append[col] = new_value
 | |
|                                 else:
 | |
|                                     if for_loop_df1.at[0, col] != for_loop_df2.at[0, col]:
 | |
|                                         row_to_append[col] = 'NaN'
 | |
|                                     else:
 | |
|                                         row_to_append[col] = for_loop_df1.at[0, col]
 | |
|                             elif type(for_loop_df1.at[0, col]) == int and type(for_loop_df2.at[0, col]) == int or type(
 | |
|                                     for_loop_df1.at[0, col]) == float and type(for_loop_df2.at[0, col]) == float:
 | |
|                                 new_value = for_loop_df1.at[0, col] - for_loop_df2.at[0, col]
 | |
|                                 row_to_append[col] = new_value
 | |
|                         compared_values_dataframe = compared_values_dataframe.append(row_to_append, ignore_index=True, )
 | |
|                         print(compared_values_dataframe)
 | |
|                     # add col name to new df
 | |
|                 print(dataframe_one)
 | |
|                 print(dataframe_two)
 | |
|                 print(compared_values_dataframe)
 | |
|             else:
 | |
|                 ValueError("Unable to execute report comparison due to inadequate file commonalities. ")
 | |
|                 exit(1)
 | |
|         else:
 | |
|             ValueError(
 | |
|                 "Two files do not have the same endpoints. Please try file comparison with files that have the same endpoints.")
 | |
|             exit(1)
 | |
| 
 | |
|         # take those columns and separate those columns from others in DF.
 | |
| 
 | |
|         pass
 | |
|         # return compared_df
 | 
