mirror of
				https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
				synced 2025-11-04 04:38:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			155 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
import sys
 | 
						|
import os
 | 
						|
import argparse
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
#https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
 | 
						|
#https://queirozf.com/entries/pandas-dataframe-plot-examples-with-matplotlib-pyplot
 | 
						|
 | 
						|
 | 
						|
if sys.version_info[0] != 3:
 | 
						|
    print("This script requires Python 3")
 | 
						|
    exit(1)
 | 
						|
 | 
						|
 
 | 
						|
sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../")))
 | 
						|
 | 
						|
class L3CSVParcer():
 | 
						|
    def __init__(self,csv_file):
 | 
						|
 | 
						|
 | 
						|
        # left this in for testing
 | 
						|
        '''csv_obj = open(csv_file, 'r')
 | 
						|
        csv_reader = csv.reader(csv_obj)
 | 
						|
        print(csv_reader)
 | 
						|
 | 
						|
        for row in csv_reader:
 | 
						|
            if row[1] == 'rx':
 | 
						|
                print(row)'''
 | 
						|
 | 
						|
        include_summary = ['Time epoch','Time','Monitor','least','most','average']
 | 
						|
        self.csv_file = csv_file
 | 
						|
        df_s = pd.read_csv(self.csv_file,header = 0, usecols = lambda column : any(substr in column for substr in include_summary))
 | 
						|
 | 
						|
        print('{}'.format(csv_file))
 | 
						|
        csv_file_summary = self.csv_file.replace('results_','results_summary_')
 | 
						|
 | 
						|
        df_s.to_csv(csv_file_summary, index = False, header=True)
 | 
						|
 | 
						|
        include_raw = ['Time epoch','Time','Monitor','LT','MT']
 | 
						|
        self.csv_file = csv_file
 | 
						|
        df_r = pd.read_csv(self.csv_file,header = 0, usecols = lambda column : any(substr in column for substr in include_raw))
 | 
						|
 | 
						|
        csv_file_raw = self.csv_file.replace('results_','results_raw_')
 | 
						|
        df_r.to_csv(csv_file_raw, index = False, header=True)
 | 
						|
 | 
						|
        '''df_rx_delta = df_r.loc[df['Monitor'] == 'rx_delta']
 | 
						|
 | 
						|
        df_rx_delta.plot(x='Time epoch', y='average_rx_data')
 | 
						|
        plt.show()
 | 
						|
 | 
						|
        total_cols = len(df.axes[0])
 | 
						|
 | 
						|
 | 
						|
        print(df.columns)
 | 
						|
 | 
						|
        print(df.loc[df['Monitor'] == 'rx_delta'])
 | 
						|
        print(df.loc[df['Monitor'] == 'rx'])
 | 
						|
 | 
						|
        print(df.loc[df['Monitor'] == 'rx_delta', df.columns != 'Time'])
 | 
						|
 | 
						|
 | 
						|
        df_rx_delta = df.loc[df['Monitor'] == 'rx_delta']
 | 
						|
 | 
						|
        print(df_rx_delta.describe())
 | 
						|
 | 
						|
        df_rx_delta.plot(x='Time epoch', y='average_rx_data')
 | 
						|
        plt.show()
 | 
						|
 | 
						|
        df_rx_delta.plot(x='Time', y='average_rx_data')
 | 
						|
        plt.show()
 | 
						|
 | 
						|
        df_rx_drop_pct = df.loc[df['Monitor'] == 'rx_drop_percent']
 | 
						|
        print(df_rx_drop_pct)
 | 
						|
        df_rx_delta.plot(x='Time epoch', y='rx_drop_percent')
 | 
						|
        plt.show()
 | 
						|
 | 
						|
 | 
						|
        df2 = df.filter(regex='LT-s')
 | 
						|
        print(df2)
 | 
						|
        #plt.plot(df2[0], df2[1]
 | 
						|
        #plt.show()
 | 
						|
 | 
						|
        df2_mean = df2.mean().sort_values(ascending=False)
 | 
						|
 | 
						|
        print(df2_mean)
 | 
						|
 | 
						|
        df2_mean_no_outliers = df2_mean[df2_mean(df2_mean.quantile(.10), df2_mean.quantile(.90))]
 | 
						|
 | 
						|
        print("no outliers")
 | 
						|
        print(df2_mean_no_outliers)
 | 
						|
 | 
						|
        print("Top 10")
 | 
						|
        print(df2_mean.head(10))
 | 
						|
        print("Bottom 10")
 | 
						|
        print(df2_mean.tail(10))
 | 
						|
 | 
						|
        print("mean others")
 | 
						|
 | 
						|
 | 
						|
 | 
						|
        # set display format otherwise get scientific notation
 | 
						|
        pd.set_option('display.float_format', lambda x: '%.3f' % x)
 | 
						|
 | 
						|
        df_mean = df_rx_delta.mean().sort_values()
 | 
						|
 | 
						|
        #print(df_mean)
 | 
						|
 | 
						|
        print(df_mean[0])
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
        #df_uni_cast = [col for col in df_rx_delta if 'LT' in col]
 | 
						|
        #df_LT_rx_delta_mean = df_uni_cast.mean().sort_values()
 | 
						|
 | 
						|
        #print(df_LT_rx_delta_mean)
 | 
						|
        x = np.linspace(0, 20, 100)
 | 
						|
        plt.plot(x, np.sin(x))
 | 
						|
        plt.show()'''
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
 | 
						|
    #debug_on = False
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        prog='csv_processor.py',
 | 
						|
        formatter_class=argparse.RawTextHelpFormatter,
 | 
						|
        epilog='''\
 | 
						|
 Useful Information:
 | 
						|
            ''',
 | 
						|
        
 | 
						|
        description='''quick_test.py:
 | 
						|
 | 
						|
        ''')
 | 
						|
 | 
						|
 | 
						|
    parser.add_argument('-i','--infile', help="file of csv data", default='longevity_results_08_14_2020_14_37.csv')
 | 
						|
    parser.add_argument('--debug', help='--debug:  Enable debugging',default=True)
 | 
						|
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    #debug_on = args.debug
 | 
						|
 | 
						|
    if args.infile:
 | 
						|
        csv_file_name = args.infile
 | 
						|
 | 
						|
    L3CSVParcer(csv_file_name)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |