Files
wlan-lanforge-scripts/py-scripts/scripts_deprecated/csv_processor.py
2021-12-11 07:09:04 -07:00

155 lines
3.9 KiB
Python
Executable File

#!/usr/bin/env python3
import sys
import os
import argparse
import pandas as pd
#https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
#https://queirozf.com/entries/pandas-dataframe-plot-examples-with-matplotlib-pyplot
if sys.version_info[0] != 3:
print("This script requires Python 3")
exit(1)
sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../")))
class L3CSVParcer():
def __init__(self,csv_file):
# left this in for testing
'''csv_obj = open(csv_file, 'r')
csv_reader = csv.reader(csv_obj)
print(csv_reader)
for row in csv_reader:
if row[1] == 'rx':
print(row)'''
include_summary = ['Time epoch','Time','Monitor','least','most','average']
self.csv_file = csv_file
df_s = pd.read_csv(self.csv_file,header = 0, usecols = lambda column : any(substr in column for substr in include_summary))
print('{}'.format(csv_file))
csv_file_summary = self.csv_file.replace('results_','results_summary_')
df_s.to_csv(csv_file_summary, index = False, header=True)
include_raw = ['Time epoch','Time','Monitor','LT','MT']
self.csv_file = csv_file
df_r = pd.read_csv(self.csv_file,header = 0, usecols = lambda column : any(substr in column for substr in include_raw))
csv_file_raw = self.csv_file.replace('results_','results_raw_')
df_r.to_csv(csv_file_raw, index = False, header=True)
'''df_rx_delta = df_r.loc[df['Monitor'] == 'rx_delta']
df_rx_delta.plot(x='Time epoch', y='average_rx_data')
plt.show()
total_cols = len(df.axes[0])
print(df.columns)
print(df.loc[df['Monitor'] == 'rx_delta'])
print(df.loc[df['Monitor'] == 'rx'])
print(df.loc[df['Monitor'] == 'rx_delta', df.columns != 'Time'])
df_rx_delta = df.loc[df['Monitor'] == 'rx_delta']
print(df_rx_delta.describe())
df_rx_delta.plot(x='Time epoch', y='average_rx_data')
plt.show()
df_rx_delta.plot(x='Time', y='average_rx_data')
plt.show()
df_rx_drop_pct = df.loc[df['Monitor'] == 'rx_drop_percent']
print(df_rx_drop_pct)
df_rx_delta.plot(x='Time epoch', y='rx_drop_percent')
plt.show()
df2 = df.filter(regex='LT-s')
print(df2)
#plt.plot(df2[0], df2[1]
#plt.show()
df2_mean = df2.mean().sort_values(ascending=False)
print(df2_mean)
df2_mean_no_outliers = df2_mean[df2_mean(df2_mean.quantile(.10), df2_mean.quantile(.90))]
print("no outliers")
print(df2_mean_no_outliers)
print("Top 10")
print(df2_mean.head(10))
print("Bottom 10")
print(df2_mean.tail(10))
print("mean others")
# set display format otherwise get scientific notation
pd.set_option('display.float_format', lambda x: '%.3f' % x)
df_mean = df_rx_delta.mean().sort_values()
#print(df_mean)
print(df_mean[0])
#df_uni_cast = [col for col in df_rx_delta if 'LT' in col]
#df_LT_rx_delta_mean = df_uni_cast.mean().sort_values()
#print(df_LT_rx_delta_mean)
x = np.linspace(0, 20, 100)
plt.plot(x, np.sin(x))
plt.show()'''
def main():
#debug_on = False
parser = argparse.ArgumentParser(
prog='csv_processor.py',
formatter_class=argparse.RawTextHelpFormatter,
epilog='''\
Useful Information:
''',
description='''quick_test.py:
''')
parser.add_argument('-i','--infile', help="file of csv data", default='longevity_results_08_14_2020_14_37.csv')
parser.add_argument('--debug', help='--debug: Enable debugging',default=True)
args = parser.parse_args()
#debug_on = args.debug
if args.infile:
csv_file_name = args.infile
L3CSVParcer(csv_file_name)
if __name__ == "__main__":
main()