Files
wlan-lanforge-scripts/py-scripts/tools/mine_regression_results.py
2022-07-12 15:44:27 +05:30

133 lines
6.1 KiB
Python
Executable File

#!/usr/bin/env python3
import pandas as pd
import argparse
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
class MineRegression:
def __init__(self,
system_information=None,
save_csv=False,
save_png=False,
ips=None):
self.df = None
self.ips = ips
self.system_info = system_information
self.save_csv = save_csv
self.save_png = save_png
def generate_csv(self):
results = [pd.read_html('http://%s/html-reports/latest.html' % url, attrs={'id': 'myTable2'})[0] for url in
self.ips]
systems = [pd.read_html('http://%s/html-reports/latest.html' % url, attrs={'id': 'SystemInformation'})[0] for
url in self.ips]
for df in range(0, len(self.ips)):
results[df]['IP'] = self.ips[df]
systems[df]['IP'] = self.ips[df]
dfs = [pd.merge(results[n], systems[n], on='IP') for n in range(len(self.ips))]
self.df = pd.concat(dfs)
self.df = self.df[self.df['STDOUT'] == 'STDOUT']
if self.save_csv:
self.df.to_csv('test_specific_results.csv')
def generate_report(self):
system_variations = self.df[
['IP', 'Python version', 'LANforge version', 'OS Version', 'Hostname',
'Python Environment']].drop_duplicates(
['IP', 'Python version', 'LANforge version', 'OS Version', 'Hostname', 'Python Environment']).reset_index(
drop=True)
errors = list()
lanforge_errors = list()
partial_failures = list()
major_errors = list()
successes = list()
for index in system_variations.index:
variation = system_variations.iloc[index]
system = self.df.loc[
self.df[['Python version', 'LANforge version', 'OS Version', 'Python Environment', 'IP']].isin(
dict(
variation).values()).all(axis=1), :]
result = system.dropna(subset=['STDERR']).shape[0]
errors.append(result)
lanforge_result = system.dropna(subset=['LANforge Error']).shape[0]
partial_failures.append(system[system['Status'] == 'Partial Failure'].shape[0])
major_errors.append(system[system['Status'] == 'ERROR'].shape[0])
lanforge_errors.append(lanforge_result)
successes.append(system[system['Status'] == 'Success'].shape[0])
system_variations['Successes'] = successes
system_variations['Errors'] = errors
system_variations['LANforge errors'] = lanforge_errors
system_variations['Python errors'] = system_variations['Errors'] - system_variations['LANforge errors']
system_variations['Partial Failures'] = partial_failures
system_variations['Major Errors'] = major_errors
if self.save_csv:
system_variations.to_csv('regression_suite_results.csv')
else:
print(system_variations.sort_values('Successes'))
if self.save_png:
now = datetime.datetime.now()
fail = pd.DataFrame(dict(self.df[self.df['Status'] != 'Success']['Command Name'].value_counts()).items())
success = pd.DataFrame(dict(self.df[self.df['Status'] == 'Success']['Command Name'].value_counts()).items())
success['status'] = True
fail['status'] = False
df = pd.concat([success, fail])
fig = px.bar(df, x=0, y=1, color='status', title="%s regression results" % now)
fig.write_image("script_statuses.png", width=1280, height=540)
print('Saved png')
heatmap = self.df
heatmap['Status'] = heatmap['Status'].replace('Success', 2).replace('Failure', -1).replace(
'Partial Failure', 0).replace('ERROR', -2)
heatmap['System'] = heatmap['Hostname'] + '\n' + heatmap['Python Environment']
pivot_df = heatmap.sort_values('Status').drop_duplicates(['Command Name', 'System'])
fig = go.Figure(go.Heatmap(x=pivot_df['Command Name'], z=pivot_df['Status'], y=pivot_df['Hostname']))
fig.update_layout(title="%s regression results" % now)
fig.write_image("script_device_heatmap.png", width=1280, height=540)
print('Created first heatmap')
fig, ax = plt.subplots(1, 1, figsize=(18, 8))
my_colors = [(0.7, 0.3, 0.3), (0.7, 0.5, 0.8), (.9, .9, 0.4), (0.1, 0.6, 0)]
sns.heatmap(pd.pivot_table(pivot_df, values='Status',
index='Command Name', columns='Hostname'),
ax=ax,
cmap=my_colors,
linewidth=0.1,
linecolor=(0.1, 0.2, 0.2))
ax.title.set_text('%s regression results' % now)
colorbar = ax.collections[0].colorbar
colorbar.set_ticks([-1.5, -.5, 0.5, 1.5])
colorbar.set_ticklabels(['ERROR', 'Failure', 'Partial Failure', 'Success'])
plt.savefig('script_device_heatmap_2.png')
print('Created second heatmap')
def main():
parser = argparse.ArgumentParser(description='Compare regression results from different systems')
parser.add_argument('--system_info', help='location of system information csv', default=None)
parser.add_argument('--save_csv', help='save CSV of results', action='store_true')
parser.add_argument('--save_png', help='save PNG of results', action='store_true')
parser.add_argument('--ip', help='IP addresses of LANforge devices you want to probe', action='append')
args = parser.parse_args()
if args.ip is None:
args.ip = ['192.168.92.18', '192.168.92.12', '192.168.93.51', '192.168.92.15', '192.168.100.184',
'192.168.100.30']
Miner = MineRegression(system_information=args.system_info,
save_csv=args.save_csv,
save_png=args.save_png,
ips=args.ip)
Miner.generate_csv()
Miner.generate_report()
if __name__ == '__main__':
main()