mirror of
				https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
				synced 2025-11-02 19:58:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			717 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			717 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
import importlib
 | 
						|
from time import sleep
 | 
						|
# import pandas as pd
 | 
						|
import sys
 | 
						|
import os
 | 
						|
from pprint import pprint
 | 
						|
 | 
						|
sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../")))
 | 
						|
 | 
						|
lfcli_base = importlib.import_module("py-json.LANforge.lfcli_base")
 | 
						|
LFCliBase = lfcli_base.LFCliBase
 | 
						|
 | 
						|
 | 
						|
# Probe data can change frequently. It is recommended to update
 | 
						|
 | 
						|
class ProbePort(LFCliBase):
 | 
						|
    def __init__(self,
 | 
						|
                 lfhost=None,
 | 
						|
                 lfport='8080',
 | 
						|
                 debug=False,
 | 
						|
                 eid_str=None):
 | 
						|
        super().__init__(_lfjson_host=lfhost,
 | 
						|
                         _lfjson_port=lfport,
 | 
						|
                         _debug=debug)
 | 
						|
        hunks = eid_str.split(".")
 | 
						|
        self.eid_str = eid_str
 | 
						|
        self.probepath = "/probe/1/%s/%s" % (hunks[-2], hunks[-1])
 | 
						|
        self.response = None
 | 
						|
        self.signals = None
 | 
						|
        self.he = None
 | 
						|
 | 
						|
        self.he = False
 | 
						|
        self.ofdma = False
 | 
						|
 | 
						|
        self.tx_bitrate = None
 | 
						|
        self.tx_mcs = None
 | 
						|
        self.tx_nss = None
 | 
						|
        self.tx_mbit = None
 | 
						|
        self.tx_mhz = None
 | 
						|
        self.tx_gi = None
 | 
						|
        self.tx_duration = None
 | 
						|
        self.tx_mbit_calc = None
 | 
						|
        self.tx_data_rate_gi_short_Mbps = None
 | 
						|
        self.tx_data_rate_gi_long_Mbps = None
 | 
						|
 | 
						|
        self.rx_bitrate = None
 | 
						|
        self.rx_mcs = None
 | 
						|
        self.rx_nss = None
 | 
						|
        self.rx_mbit = None
 | 
						|
        self.rx_mhz = None
 | 
						|
        self.rx_gi = None
 | 
						|
        self.rx_duration = None
 | 
						|
        self.rx_mbit_calc = None
 | 
						|
        self.rx_data_rate_gi_short_Mbps = None
 | 
						|
        self.rx_data_rate_gi_long_Mbps = None
 | 
						|
 | 
						|
        self.data_rate = None
 | 
						|
        # folder = os.path.dirname(__file__)
 | 
						|
 | 
						|
    def refreshProbe(self):
 | 
						|
        self.json_post(self.probepath, {})
 | 
						|
        sleep(0.2)
 | 
						|
        response = self.json_get(self.probepath)
 | 
						|
        self.response = response
 | 
						|
        if self.debug:
 | 
						|
            print("probepath (eid): {probepath}".format(probepath=self.probepath))
 | 
						|
            pprint("Probe response: {response}".format(response=self.response))
 | 
						|
        text = self.response['probe-results'][0][self.eid_str]['probe results'].split('\n')
 | 
						|
        signals = [x.strip('\t').split('\t') for x in text if 'signal' in x]
 | 
						|
        keys = [x[0].strip(' ').strip(':') for x in signals]
 | 
						|
        values = [x[1].strip('dBm').strip(' ') for x in signals]
 | 
						|
        # if self.debug:
 | 
						|
        print("signals keys: {keys}".format(keys=keys))
 | 
						|
        print("signals values: {values}".format(values=values))
 | 
						|
        self.signals = dict(zip(keys, values))
 | 
						|
 | 
						|
        tx_bitrate = [x for x in text if 'tx bitrate' in x][0].replace('\t', ' ')
 | 
						|
        if 'HE' in tx_bitrate:
 | 
						|
            print("HE not supported ")
 | 
						|
        print("tx_bitrate {tx_bitrate}".format(tx_bitrate=tx_bitrate))
 | 
						|
        self.tx_bitrate = tx_bitrate.split(':')[-1].strip(' ')
 | 
						|
        if 'MHz' in tx_bitrate:
 | 
						|
            self.tx_mhz = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(
 | 
						|
                ' ')
 | 
						|
            print("tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz))
 | 
						|
        else:
 | 
						|
            self.tx_mhz = 20
 | 
						|
            print("HT: tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz))
 | 
						|
 | 
						|
        try:
 | 
						|
            tx_mcs = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split(':')[1].strip('\t')
 | 
						|
            self.tx_mcs = int(tx_mcs.split('MCS')[1].strip(' ').split(' ')[0])
 | 
						|
            print("self.tx_mcs {tx_mcs}".format(tx_mcs=self.tx_mcs))
 | 
						|
            try:
 | 
						|
                self.tx_nss = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('NSS')[1].strip(' ')
 | 
						|
            except BaseException:
 | 
						|
                # nss is not present need to derive from MCS for HT
 | 
						|
                if 0 <= self.tx_mcs <= 7:
 | 
						|
                    self.tx_nss = 1
 | 
						|
                elif 8 <= self.tx_mcs <= 15:
 | 
						|
                    self.tx_nss = 2
 | 
						|
                elif 16 <= self.tx_mcs <= 23:
 | 
						|
                    self.tx_nss = 3
 | 
						|
                elif 24 <= self.tx_mcs <= 31:
 | 
						|
                    self.tx_nss = 4
 | 
						|
            print("tx_nss {tx_nss}".format(tx_nss=self.tx_nss))
 | 
						|
            self.tx_mbit = float(self.tx_bitrate.split(' ')[0])
 | 
						|
            print("tx_mbit {tx_mbit}".format(tx_mbit=self.tx_mbit))
 | 
						|
            self.calculated_data_rate_tx_HT()
 | 
						|
 | 
						|
        except IndexError as error:
 | 
						|
            print(error)
 | 
						|
 | 
						|
        rx_bitrate = [x for x in text if 'rx bitrate' in x][0].replace('\t', ' ')
 | 
						|
        print("rx_bitrate {rx_bitrate}".format(rx_bitrate=rx_bitrate))
 | 
						|
        self.rx_bitrate = rx_bitrate.split(':')[-1].strip(' ')
 | 
						|
        print("self.rx_bitrate {rx_bitrate}".format(rx_bitrate=self.rx_bitrate))
 | 
						|
        # rx will received : 6Mbps encoding is legacy frame
 | 
						|
        # for 24g - MHz is 20
 | 
						|
        # try:
 | 
						|
        if 'MHz' in rx_bitrate:
 | 
						|
            self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[
 | 
						|
                -1].strip(' ')
 | 
						|
            print("rx_mhz {rx_mhz}".format(rx_mhz=self.rx_mhz))
 | 
						|
        else:
 | 
						|
            self.rx_mhz = 20
 | 
						|
 | 
						|
        try:
 | 
						|
            rx_mcs = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split(':')[1].strip('\t')
 | 
						|
            self.rx_mcs = int(rx_mcs.split('MCS')[1].strip(' ').split(' ')[0])
 | 
						|
            print("self.rx_mcs {rx_mcs}".format(rx_mcs=self.rx_mcs))
 | 
						|
            try:
 | 
						|
                self.rx_nss = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('NSS')[1].strip(' ')
 | 
						|
            except BaseException:
 | 
						|
                # nss is not present need to derive from MCS for HT
 | 
						|
                if 0 <= self.rx_mcs <= 7:
 | 
						|
                    self.rx_nss = 1
 | 
						|
                elif 8 <= self.rx_mcs <= 15:
 | 
						|
                    self.rx_nss = 2
 | 
						|
                elif 16 <= self.rx_mcs <= 23:
 | 
						|
                    self.rx_nss = 3
 | 
						|
                elif 24 <= self.rx_mcs <= 31:
 | 
						|
                    self.rx_nss = 4
 | 
						|
 | 
						|
            self.rx_mbit = self.rx_bitrate.split(' ')[0]
 | 
						|
            print("rx_nss {rx_nss}".format(rx_nss=self.rx_nss))
 | 
						|
            self.rx_mbit = float(self.rx_bitrate.split(' ')[0])
 | 
						|
            print("rx_mbit {rx_mbit}".format(rx_mbit=self.rx_mbit))
 | 
						|
            self.calculated_data_rate_rx_HT()
 | 
						|
            if 'HE not supported' in [x.strip('\t') for x in text if 'HE' in x]:
 | 
						|
                self.he = False
 | 
						|
            else:
 | 
						|
                self.he = True
 | 
						|
        except IndexError as error:
 | 
						|
            print(error)
 | 
						|
 | 
						|
    def getSignalAvgCombined(self):
 | 
						|
        return self.signals['signal avg'].split(' ')[0]
 | 
						|
 | 
						|
    def getSignalAvgPerChain(self):
 | 
						|
        return ' '.join(self.signals['signal avg'].split(' ')[1:])
 | 
						|
 | 
						|
    def getSignalCombined(self):
 | 
						|
        return self.signals['signal'].split(' ')[0]
 | 
						|
 | 
						|
    def getSignalPerChain(self):
 | 
						|
        return ' '.join(self.signals['signal'].split(' ')[1:])
 | 
						|
 | 
						|
    def getBeaconSignalAvg(self):
 | 
						|
        return ' '.join(self.signals['beacon signal avg']).replace(' ', '')
 | 
						|
 | 
						|
    def calculated_data_rate_tx_HT(self):
 | 
						|
        # TODO compare with standard for 40 MHz if values change
 | 
						|
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
						|
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
						|
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
						|
        N_ss = 0  # Number of Spatial Streams
 | 
						|
        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
						|
        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
						|
        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
						|
        bw = 20
 | 
						|
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
						|
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
						|
        # try:
 | 
						|
        bw = int(self.tx_mhz)
 | 
						|
        # except BaseException:
 | 
						|
        #    print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
 | 
						|
 | 
						|
        print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
 | 
						|
        if bw == 20:
 | 
						|
            N_sd = 52
 | 
						|
        elif bw == 40:
 | 
						|
            N_sd = 108
 | 
						|
        elif bw == 80:
 | 
						|
            N_sd = 234
 | 
						|
        elif bw == 160:
 | 
						|
            N_sd = 468
 | 
						|
        else:
 | 
						|
            print("For HT if cannot be read bw is assumed to be 20")
 | 
						|
            N_sd = 52
 | 
						|
            self.tx_mhz = 20
 | 
						|
 | 
						|
        # NSS
 | 
						|
        N_ss = self.tx_nss
 | 
						|
        # MCS (Modulation Coding Scheme) determines the constands
 | 
						|
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
						|
        # Only for HT configuration
 | 
						|
        if self.tx_mcs == 0 or self.tx_mcs == 8 or self.tx_mcs == 16 or self.tx_mcs == 24:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 1
 | 
						|
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
						|
        elif self.tx_mcs == 1 or self.tx_mcs == 9 or self.tx_mcs == 17 or self.tx_mcs == 25:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
						|
        elif self.tx_mcs == 2 or self.tx_mcs == 10 or self.tx_mcs == 18 or self.tx_mcs == 26:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
						|
        elif self.tx_mcs == 3 or self.tx_mcs == 11 or self.tx_mcs == 19 or self.tx_mcs == 27:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
						|
        elif self.tx_mcs == 4 or self.tx_mcs == 12 or self.tx_mcs == 20 or self.tx_mcs == 28:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 5 or self.tx_mcs == 13 or self.tx_mcs == 21 or self.tx_mcs == 29:
 | 
						|
            R = 2 / 3
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 6 or self.tx_mcs == 14 or self.tx_mcs == 22 or self.tx_mcs == 30:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 7 or self.tx_mcs == 15 or self.tx_mcs == 23 or self.tx_mcs == 31:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 6
 | 
						|
 | 
						|
        print(
 | 
						|
            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
						|
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
						|
 | 
						|
        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
						|
        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
						|
 | 
						|
        print(
 | 
						|
            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
						|
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
						|
 | 
						|
        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
						|
        print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
 | 
						|
 | 
						|
        if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
 | 
						|
            self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
 | 
						|
            self.tx_gi = T_gi_short
 | 
						|
        else:
 | 
						|
            self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
 | 
						|
            self.tx_gi = T_gi_long
 | 
						|
 | 
						|
    def calculated_data_rate_rx_HT(self):
 | 
						|
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
						|
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
						|
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
						|
        N_ss = 0  # Number of Spatial Streams
 | 
						|
        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
						|
        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
						|
        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
						|
        bw = 20
 | 
						|
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
						|
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
						|
 | 
						|
        bw = int(self.rx_mhz)
 | 
						|
        print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
 | 
						|
        if bw == 20:
 | 
						|
            N_sd = 52
 | 
						|
        elif bw == 40:
 | 
						|
            N_sd = 108
 | 
						|
        elif bw == 80:
 | 
						|
            N_sd = 234
 | 
						|
        elif bw == 160:
 | 
						|
            N_sd = 468
 | 
						|
        else:
 | 
						|
            print("For HT if cannot be read bw is assumed to be 20")
 | 
						|
            N_sd = 52
 | 
						|
            self.rx_mhz = 20
 | 
						|
        # NSS
 | 
						|
        N_ss = self.rx_nss
 | 
						|
        # MCS (Modulation Coding Scheme) determines the constands
 | 
						|
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
						|
        # Only for HT configuration
 | 
						|
        if self.rx_mcs == 0 or self.rx_mcs == 8 or self.rx_mcs == 16 or self.rx_mcs == 24:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 1
 | 
						|
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
						|
        elif self.rx_mcs == 1 or self.rx_mcs == 9 or self.rx_mcs == 17 or self.rx_mcs == 25:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
						|
        elif self.rx_mcs == 2 or self.rx_mcs == 10 or self.rx_mcs == 18 or self.rx_mcs == 26:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
						|
        elif self.rx_mcs == 3 or self.rx_mcs == 11 or self.rx_mcs == 19 or self.rx_mcs == 27:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
						|
        elif self.rx_mcs == 4 or self.rx_mcs == 12 or self.rx_mcs == 20 or self.rx_mcs == 28:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 5 or self.rx_mcs == 13 or self.rx_mcs == 21 or self.rx_mcs == 29:
 | 
						|
            R = 2 / 3
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 6 or self.rx_mcs == 14 or self.rx_mcs == 22 or self.rx_mcs == 30:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 7 or self.rx_mcs == 15 or self.rx_mcs == 23 or self.rx_mcs == 31:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 6
 | 
						|
        print(
 | 
						|
            "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
						|
                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
						|
        self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
						|
        print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
						|
        print(
 | 
						|
            "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
						|
                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
						|
        self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
						|
        print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
						|
        if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | 
						|
                self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
						|
            self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
						|
            self.rx_gi = T_gi_short
 | 
						|
        else:
 | 
						|
            self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
						|
            self.rx_gi = T_gi_long
 | 
						|
 | 
						|
    def calculated_data_rate_tx_VHT(self):
 | 
						|
        # TODO compare with standard for 40 MHz if values change
 | 
						|
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
						|
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
						|
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
						|
        N_ss = 0  # Number of Spatial Streams
 | 
						|
        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
						|
        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
						|
        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
						|
        bw = 20
 | 
						|
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
						|
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
						|
        try:
 | 
						|
            bw = int(self.tx_mhz)
 | 
						|
        except BaseException:
 | 
						|
            print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
 | 
						|
 | 
						|
        print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
 | 
						|
        if bw == 20:
 | 
						|
            N_sd = 52
 | 
						|
        elif bw == 40:
 | 
						|
            N_sd = 108
 | 
						|
        elif bw == 80:
 | 
						|
            N_sd = 234
 | 
						|
        elif bw == 160:
 | 
						|
            N_sd = 468
 | 
						|
        else:
 | 
						|
            print("For HT if cannot be read bw is assumed to be 20")
 | 
						|
            N_sd = 52
 | 
						|
            self.tx_mhz = 20
 | 
						|
 | 
						|
        # NSS
 | 
						|
        N_ss = self.tx_nss
 | 
						|
        # MCS (Modulation Coding Scheme) determines the constands
 | 
						|
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
						|
        # Only for HT configuration
 | 
						|
        if self.tx_mcs == 0:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 1
 | 
						|
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
						|
        elif self.tx_mcs == 1:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
						|
        elif self.tx_mcs == 2:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
						|
        elif self.tx_mcs == 3:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
						|
        elif self.tx_mcs == 4:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 5:
 | 
						|
            R = 2 / 3
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 6:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 7:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
						|
        elif self.tx_mcs == 8:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 8
 | 
						|
        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
						|
        elif self.tx_mcs == 9:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 8
 | 
						|
 | 
						|
        print(
 | 
						|
            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
						|
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
						|
 | 
						|
        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
						|
        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
						|
 | 
						|
        print(
 | 
						|
            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
						|
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
						|
 | 
						|
        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
						|
        print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
 | 
						|
 | 
						|
        if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
 | 
						|
            self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
 | 
						|
            self.tx_gi = T_gi_short
 | 
						|
        else:
 | 
						|
            self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
 | 
						|
            self.tx_gi = T_gi_long
 | 
						|
 | 
						|
    def calculated_data_rate_rx_VHT(self):
 | 
						|
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
						|
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
						|
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
						|
        N_ss = 0  # Number of Spatial Streams
 | 
						|
        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
						|
        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
						|
        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
						|
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
						|
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
						|
        try:
 | 
						|
            bw = int(self.rx_mhz)
 | 
						|
        except BaseException:
 | 
						|
            print("port_probe.py:  {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
 | 
						|
        print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
 | 
						|
        if bw == 20:
 | 
						|
            N_sd = 52
 | 
						|
        elif bw == 40:
 | 
						|
            N_sd = 108
 | 
						|
        elif bw == 80:
 | 
						|
            N_sd = 234
 | 
						|
        elif bw == 160:
 | 
						|
            N_sd = 468
 | 
						|
        else:
 | 
						|
            print("For HT if cannot be read bw is assumed to be 20")
 | 
						|
            N_sd = 52
 | 
						|
            self.rx_mhz = 20
 | 
						|
        # NSS
 | 
						|
        N_ss = self.rx_nss
 | 
						|
        # MCS (Modulation Coding Scheme) determines the constands
 | 
						|
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
						|
        # Only for HT configuration
 | 
						|
        if self.rx_mcs == 0:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 1
 | 
						|
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
						|
        elif self.rx_mcs == 1:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
						|
        elif self.rx_mcs == 2:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
						|
        elif self.rx_mcs == 3:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
						|
        elif self.rx_mcs == 4:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 5:
 | 
						|
            R = 2 / 3
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 6:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 7:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
						|
        elif self.rx_mcs == 8:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 8
 | 
						|
        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
						|
        elif self.rx_mcs == 9:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 8
 | 
						|
        print(
 | 
						|
            "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
						|
                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
						|
        self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
						|
        print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
						|
        print(
 | 
						|
            "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
						|
                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
						|
        self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
						|
        print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
						|
        if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | 
						|
                self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
						|
            self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
						|
            self.rx_gi = T_gi_short
 | 
						|
        else:
 | 
						|
            self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
						|
            self.rx_gi = T_gi_long
 | 
						|
        ##########################################
 | 
						|
        #
 | 
						|
        # HE no OFDMA - changes the calculations
 | 
						|
        #
 | 
						|
        ###########################################
 | 
						|
 | 
						|
    def calculated_data_rate_tx_HE(self):
 | 
						|
        # TODO compare with standard for 40 MHz if values change
 | 
						|
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
						|
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
						|
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
						|
        N_ss = 0  # Number of Spatial Streams
 | 
						|
        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
						|
        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
						|
        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
						|
        bw = 20
 | 
						|
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
						|
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
						|
        try:
 | 
						|
            bw = int(self.tx_mhz)
 | 
						|
        except BaseException:
 | 
						|
            print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
 | 
						|
 | 
						|
        print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
 | 
						|
        if bw == 20:
 | 
						|
            N_sd = 52
 | 
						|
        elif bw == 40:
 | 
						|
            N_sd = 108
 | 
						|
        elif bw == 80:
 | 
						|
            N_sd = 234
 | 
						|
        elif bw == 160:
 | 
						|
            N_sd = 468
 | 
						|
        else:
 | 
						|
            print("For HT if cannot be read bw is assumed to be 20")
 | 
						|
            N_sd = 52
 | 
						|
            self.tx_mhz = 20
 | 
						|
 | 
						|
        # NSS
 | 
						|
        N_ss = self.tx_nss
 | 
						|
        # MCS (Modulation Coding Scheme) determines the constands
 | 
						|
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
						|
        # Only for HT configuration
 | 
						|
        if self.tx_mcs == 0:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 1
 | 
						|
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
						|
        elif self.tx_mcs == 1:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
						|
        elif self.tx_mcs == 2:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
						|
        elif self.tx_mcs == 3:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
						|
        elif self.tx_mcs == 4:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 5:
 | 
						|
            R = 2 / 3
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 6:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
						|
        elif self.tx_mcs == 7:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
						|
        elif self.tx_mcs == 8:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 8
 | 
						|
        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
						|
        elif self.tx_mcs == 9:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 8
 | 
						|
 | 
						|
        print(
 | 
						|
            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
						|
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
						|
 | 
						|
        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
						|
        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
						|
 | 
						|
        print(
 | 
						|
            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
						|
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
						|
 | 
						|
        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
						|
        print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
 | 
						|
 | 
						|
        if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
 | 
						|
            self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
 | 
						|
            self.tx_gi = T_gi_short
 | 
						|
        else:
 | 
						|
            self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
 | 
						|
            self.tx_gi = T_gi_long
 | 
						|
 | 
						|
    def calculated_data_rate_rx_HE(self):
 | 
						|
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
						|
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
						|
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
						|
        N_ss = 0  # Number of Spatial Streams
 | 
						|
        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
						|
        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
						|
        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
						|
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
						|
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
						|
        try:
 | 
						|
            bw = int(self.rx_mhz)
 | 
						|
        except BaseException:
 | 
						|
            print("port_probe.py:  {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
 | 
						|
        print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
 | 
						|
        if bw == 20:
 | 
						|
            N_sd = 52
 | 
						|
        elif bw == 40:
 | 
						|
            N_sd = 108
 | 
						|
        elif bw == 80:
 | 
						|
            N_sd = 234
 | 
						|
        elif bw == 160:
 | 
						|
            N_sd = 468
 | 
						|
        else:
 | 
						|
            print("For HT if cannot be read bw is assumed to be 20")
 | 
						|
            N_sd = 52
 | 
						|
            self.rx_mhz = 20
 | 
						|
        # NSS
 | 
						|
        N_ss = self.rx_nss
 | 
						|
        # MCS (Modulation Coding Scheme) determines the constands
 | 
						|
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
						|
        # Only for HT configuration
 | 
						|
        if self.rx_mcs == 0:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 1
 | 
						|
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
						|
        elif self.rx_mcs == 1:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
						|
        elif self.rx_mcs == 2:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 2
 | 
						|
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
						|
        elif self.rx_mcs == 3:
 | 
						|
            R = 1 / 2
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
						|
        elif self.rx_mcs == 4:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 4
 | 
						|
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 5:
 | 
						|
            R = 2 / 3
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 6:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
						|
        elif self.rx_mcs == 7:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 6
 | 
						|
        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
						|
        elif self.rx_mcs == 8:
 | 
						|
            R = 3 / 4
 | 
						|
            N_bpscs = 8
 | 
						|
        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
						|
        elif self.rx_mcs == 9:
 | 
						|
            R = 5 / 6
 | 
						|
            N_bpscs = 8
 | 
						|
        print(
 | 
						|
            "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
						|
                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
						|
        self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
						|
        print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
						|
        print(
 | 
						|
            "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
						|
                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
						|
        self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
						|
        print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
						|
        if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | 
						|
                self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
						|
            self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
						|
            self.rx_gi = T_gi_short
 | 
						|
        else:
 | 
						|
            self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
						|
            self.rx_gi = T_gi_long |