Files
wlan-lanforge-scripts/py-scripts/tools/lf_dash.py
2021-08-06 09:23:36 -06:00

249 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
'''
File: read kpi.csv place in sql database, create png of historical kpi and present graph on dashboard
Usage: lf_dash.py --store --png --show --path <path to directories to traverse> --database <name of database>
Example: lf_dash.py --show (show dashboard generated from database)
Example: lf_dash.py --store --png --show --path <path to read kpi.csv> (read kpi.csv store to database, write png, show dashboard )
'''
# visit http://127.0.0.1:8050/ in your web browser.
import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px
import pandas as pd
import sqlite3
import argparse
from pathlib import Path
# Any style components can be used
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
class csv_sqlite_dash():
def __init__(self,
_path = '.',
_file = 'kpi.csv',
_database = 'qa_db',
_table = 'qa_table',
_png = False):
self.path = _path
self.file = _file
self.database = _database
self.table = _table
self.png = _png
self.png_generated = False
self.kpi_list = []
self.html_list = []
self.conn = None
self.df = pd.DataFrame()
self.plot_figure = []
self.children_div = []
self.server_html_reports = 'http://192.168.95.6/html-reports/' #TODO pass in server
self.server = 'http://192.168.95.6/' #TODO pass in server
self.server_started = False
self.app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
# https://community.plotly.com/t/putting-a-dash-instance-inside-a-class/6097/3
#https://dash.plotly.com/dash-html-components/button
self.app.callback(dash.dependencies.Output('container-button-basic', 'children'),
[dash.dependencies.Input(component_id ='submit-val', component_property ='n_clicks')])(self.show)
# information on sqlite database
# https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_sql.html
def store(self):
print("reading kpi and storing in db {}".format(self.database))
path = Path(self.path)
self.kpi_list = list(path.glob('**/kpi.csv')) # Hard code for now
if not self.kpi_list:
print("WARNING: used --store , no new kpi.csv found, check input path or remove --store from command line")
for kpi in self.kpi_list: #TODO note empty kpi.csv failed test
df_kpi_tmp = pd.read_csv(kpi, sep='\t')
df_kpi_tmp['kpi_path'] = str(kpi).replace('kpi.csv','') # only store the path to the kpi.csv file
df_kpi_tmp = df_kpi_tmp.append(df_kpi_tmp, ignore_index=True)
self.df = self.df.append(df_kpi_tmp, ignore_index=True)
self.conn = sqlite3.connect(self.database)
try:
self.df.to_sql(self.table,self.conn,if_exists='append')
except:
print("attempt to append to database with different column layout, casused exception, input new name --database <new name>")
exit(1)
self.conn.close()
def generate_graph_png(self):
print("generating graphs to display")
#https://datacarpentry.org/python-ecology-lesson/09-working-with-sql/index.html-
self.conn = sqlite3.connect(self.database)
df3 = pd.read_sql_query("SELECT * from {}".format(self.table) ,self.conn) #current connection is sqlite3 /TODO move to SQLAlchemy
# sort by date column
try:
df3 = df3.sort_values(by='Date')
except:
print("Database empty: KeyError(key) when sorting by Date, check Database name, path to kpi, typo in path, exiting")
exit(1)
self.conn.close()
# graph group and test-tag are used for detemining the graphs, can use any columns
# the following list manipulation removes the duplicates
graph_group_list = list(df3['Graph-Group'])
graph_group_list = list(set(graph_group_list))
test_tag_list = list(df3['test-tag'])
test_tag_list = list(set(test_tag_list))
test_rig_list = list(df3['test-rig'])
test_rig_list = list(set(test_rig_list))
for test_rig in test_rig_list:
for test_tag in test_tag_list:
for group in graph_group_list:
df_tmp = df3.loc[(df3['test-rig'] == test_rig) & (df3['Graph-Group'] == str(group)) & (df3['test-tag'] == str(test_tag))]
if df_tmp.empty == False:
kpi_fig = (px.scatter(df_tmp, x="Date", y="numeric-score",
color="short-description", hover_name="short-description",
size_max=60)).update_traces(mode='lines+markers')
df_tmp = df_tmp.sort_values(by='Date')
test_id_list = list(df_tmp['test-id'])
kpi_path_list = list(df_tmp['kpi_path'])
units_list = list(df_tmp['Units'])
kpi_fig.update_layout(
title="{} : {} : {} : {}".format(test_id_list[-1], group, test_tag, test_rig),
xaxis_title="Time",
yaxis_title="{}".format(units_list[-1]),
xaxis = {'type' : 'date'}
)
# save the figure - figures will be over written png
if self.png:
if self.png_generated:
pass
else:
self.png_generated = True
print("generating png files")
print("kpi_path:{}".format(df_tmp['kpi_path']))
png_path = os.path.join(kpi_path_list[-1],"{}_{}_{}_{}_kpi.png".format(test_id_list[-1], group, test_tag, test_rig))
print("png_path {}".format(png_path))
kpi_fig.write_image(png_path,scale=1,width=1200,height=350)
# use image from above to creat html display
self.children_div.append(dcc.Graph(figure=kpi_fig))
#TODO the link must be to a server to display html
# WARNING: DO NOT USE os.path.join will use the path for where the script is RUN which can be container.
# need to construct path to server manually.
#TODO need to work out the reporting paths - pass in path adjust
index_html_path = self.server + kpi_path_list[-1] + "index.html"
index_html_path = index_html_path.replace('/home/lanforge/','')
self.children_div.append(html.A('{}_{}_{}_{}_index.html'.format(test_id_list[-1], group, test_tag, test_rig),
href=index_html_path, target='_blank'))
self.children_div.append(html.Br())
self.children_div.append(html.A('html_reports', href=self.server_html_reports, target='_blank'))
self.children_div.append(html.Br())
self.children_div.append(html.Br())
# access from server
# https://stackoverflow.com/questions/61678129/how-to-access-a-plotly-dash-app-server-via-lan
def show(self,n_clicks):
print("refreshes: {}".format(n_clicks))
self.generate_graph_png()
if not self.children_div:
print("NOTE: test-tag may not be present in the kpi thus no results generated")
self.app.layout = html.Div([
html.Div(id='my-output'),
html.H1(children= "LANforge Testing",className="lanforge",
style={'color':'green','text-align':'center'}),
html.Button('Submit Recalculate',id='submit-val', n_clicks=0),
html.Div(id='container-button-basic', children='to recalculate hit submit'),
html.H2(children= "Results",className="ts1",
style={'color':'#00361c','text-align':'left'}),
# images_div is already a list, children = a list of html components
html.Div(children= self.children_div, style={"maxHeight": "540px", "overflow": "scroll"} ),
html.A('www.candelatech.com',href='http://www.candelatech.com', target='_blank',
style={'color':'#00361c','text-align':'left'}),
])
if self.server_started:
print("refresh complete")
pass
else:
print("self.server_started {}".format(self.server_started))
#NOTE: the server_started flag needs to be set prior to run_server (or you get to debug an infinite loop)
self.server_started = True
self.app.run_server(host= '0.0.0.0', debug=True)
# host = '0.0.0.0' allows for remote access, local debug host = '127.0.0.1'
# app.run_server(host= '0.0.0.0', debug=True)
def main():
parser = argparse.ArgumentParser(
prog='lf_dash.py',
formatter_class=argparse.RawTextHelpFormatter,
epilog='''\
read kpi.csv into sqlite database , save png of history and preset on dashboard
''',
description='''\
File: read kpi.csv place in sql database, create png of historical kpi and present graph on dashboard
Usage: lf_dash.py --store --png --show --path <path to directories to traverse> --database <name of database>
Example: lf_dash.py --show (show dashboard generated from database)
Example: lf_dash.py --store --png --show --path <path to read kpi.csv> (read kpi.csv store to database, write png, show dashboard )
''')
parser.add_argument('--path', help='--path top directory path to kpi if regererating database or png files',default='')
parser.add_argument('--file', help='--file kpi.csv default: kpi.csv',default='kpi.csv') #TODO is this needed
parser.add_argument('--database', help='--database qa_test_db default: qa_test_db',default='qa_test_db')
parser.add_argument('--table', help='--table qa_table default: qa_table',default='qa_table')
parser.add_argument('--store', help='--store , store kpi to db, action store_true',action='store_true')
parser.add_argument('--png', help='--png, generate png for kpi in path, generate display, action store_true',action='store_true')
parser.add_argument('--show', help='--show generate display and show dashboard, action store_true',action='store_true')
args = parser.parse_args()
__path = args.path
__file = args.file
__database = args.database
__table = args.table
__png = args.png
# needed for refresh button
n_clicks = 0
print("config: path:{} file:{} database:{} table:{} store:{} png:{} show:{} "
.format(__path,__file,__database,__table,args.store, args.png,args.show))
if(__path == '' and args.store == True):
print("--path <path of kpi.csv> must be entered if --store , exiting")
exit(1)
if(args.png == True and args.store == False):
print("if --png set to create png files then --store must also be set, exiting")
exit(1)
if(args.png == True and args.show == True):
print("WARNING: generating png files will effect initial display performance")
csv_dash = csv_sqlite_dash(
_path = __path,
_file = __file,
_database = __database,
_table = __table,
_png = __png)
if args.store:
csv_dash.store()
if args.png:
csv_dash.generate_graph_png()
if args.show:
csv_dash.show(n_clicks)
if args.store == False and args.png == False and args.show == False:
print("Need to enter an action of --store --png --show ")
if __name__ == '__main__':
main()