mirror of
https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
synced 2025-11-04 20:57:53 +00:00
150 lines
3.3 KiB
Python
Executable File
150 lines
3.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import os
|
|
|
|
import argparse
|
|
import time
|
|
import datetime
|
|
import subprocess
|
|
import re
|
|
import csv
|
|
import time
|
|
import operator
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
#https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
|
|
#https://queirozf.com/entries/pandas-dataframe-plot-examples-with-matplotlib-pyplot
|
|
|
|
|
|
if sys.version_info[0] != 3:
|
|
print("This script requires Python 3")
|
|
exit(1)
|
|
|
|
if 'py-json' not in sys.path:
|
|
sys.path.append(os.path.join(os.path.abspath('..'), 'py-json'))
|
|
|
|
class L3CSVParcer():
|
|
def __init__(self,csv_file):
|
|
|
|
|
|
# left this in
|
|
'''csv_obj = open(csv_file, 'r')
|
|
csv_reader = csv.reader(csv_obj)
|
|
print(csv_reader)
|
|
|
|
for row in csv_reader:
|
|
if row[1] == 'rx':
|
|
print(row)'''
|
|
|
|
include = ['Time','LT','MLT']
|
|
self.csv_file = csv_file
|
|
df = pd.read_csv(self.csv_file,header = 0, usecols = lambda column : any(substr in column for substr in include))
|
|
|
|
total_cols = len(df.axes[1])
|
|
|
|
#print(total_cols)
|
|
#self.df = pd.read_csv('longevity_results_08_12_2020_10_19.csv')
|
|
#print("df:{}".format(df))
|
|
|
|
#print(df.columns)
|
|
|
|
#print(df.loc[df['Monitor'] == 'rx_delta'])
|
|
#print(df.loc[df['Monitor'] == 'rx'])
|
|
|
|
df_rx_delta = df.loc[df['Monitor'] == 'rx_delta']
|
|
|
|
print(df_rx_delta.describe())
|
|
|
|
df_rx_delta.plot(x='Time epoch', y='average_rx_data')
|
|
plt.show()
|
|
|
|
df_rx_drop_pct = df.loc[df['Monitor'] == 'rx_drop_percent']
|
|
df_rx_delta.plot(x='Time epoch', y='average_rx_data')
|
|
plt.show()
|
|
|
|
|
|
df2 = df.filter(regex='LT-s')
|
|
print(df2)
|
|
#plt.plot(df2[0], df2[1]
|
|
#plt.show()
|
|
|
|
df2_mean = df2.mean().sort_values(ascending=False)
|
|
|
|
print(df2_mean)
|
|
|
|
df2_mean_no_outliers = df2_mean[df2_mean(df2_mean.quantile(.10), df2_mean.quantile(.90))]
|
|
|
|
print("no outliers")
|
|
print(df2_mean_no_outliers)
|
|
|
|
print("Top 10")
|
|
print(df2_mean.head(10))
|
|
print("Bottom 10")
|
|
print(df2_mean.tail(10))
|
|
|
|
print("mean others")
|
|
|
|
|
|
|
|
# set display format otherwise get scientific notation
|
|
pd.set_option('display.float_format', lambda x: '%.3f' % x)
|
|
|
|
df_mean = df_rx_delta.mean().sort_values()
|
|
|
|
#print(df_mean)
|
|
|
|
print(df_mean[0])
|
|
|
|
|
|
|
|
|
|
#df_uni_cast = [col for col in df_rx_delta if 'LT' in col]
|
|
#df_LT_rx_delta_mean = df_uni_cast.mean().sort_values()
|
|
|
|
#print(df_LT_rx_delta_mean)
|
|
x = np.linspace(0, 20, 100)
|
|
plt.plot(x, np.sin(x))
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
debug_on = False
|
|
parser = argparse.ArgumentParser(
|
|
prog='quick_test.py',
|
|
formatter_class=argparse.RawTextHelpFormatter,
|
|
epilog='''\
|
|
Useful Information:
|
|
''',
|
|
|
|
description='''quick_test.py:
|
|
|
|
''')
|
|
|
|
|
|
parser.add_argument('-i','--infile', help="file of csv data", default='longevity_results_08_14_2020_14_37.csv')
|
|
parser.add_argument('--debug', help='--debug: Enable debugging',default=True)
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
debug_on = args.debug
|
|
|
|
if args.infile:
|
|
csv_file_name = args.infile
|
|
|
|
l3_csv_analysis = L3CSVParcer(csv_file_name)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|