port_probe.py : removed support for rx management frame. may have to add back in

Signed-off-by: Chuck SmileyRekiere <chuck.smileyrekiere@candelatech.com>
This commit is contained in:
Chuck SmileyRekiere
2021-12-08 11:59:51 -07:00
parent a2e2f87350
commit da7edc98e1

View File

@@ -29,7 +29,6 @@ class ProbePort(LFCliBase):
self.response = None
self.signals = None
self.he = None
self.rx_mgt_6Mb_frame = None
self.he = False
self.ofdma = False
@@ -89,7 +88,6 @@ class ProbePort(LFCliBase):
self.tx_mhz = 20
print("HT: tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz))
try:
tx_mcs = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split(':')[1].strip('\t')
self.tx_mcs = int(tx_mcs.split('MCS')[1].strip(' ').split(' ')[0])
@@ -125,14 +123,8 @@ class ProbePort(LFCliBase):
self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[
-1].strip(' ')
print("rx_mhz {rx_mhz}".format(rx_mhz=self.rx_mhz))
self.rx_mgt_6Mb_frame = False
else:
self.rx_mhz = 20
self.rx_mgt_6Mb_frame = True
# except BaseException:
# self.rx_mgt_6Mb_frame = True
# print("received rx_mgt_6Mb_frame")
try:
rx_mcs = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split(':')[1].strip('\t')
@@ -275,89 +267,77 @@ class ProbePort(LFCliBase):
T_dft = 3.2 * 10 ** -6 # Constant for HT
T_gi_short = .4 * 10 ** -6 # Guard index.
T_gi_long = .8 * 10 ** -6 # Guard index.
bw = 20
bw = 20
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
if self.rx_mgt_6Mb_frame:
self.rx_mgt_6Mg_frame = False
self.rx_data_rate_gi_short_Mbps = None
self.rx_data_rate_gi_long_Mbps = None
bw = int(self.rx_mhz)
bw = int(self.rx_mhz)
print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
bw = int(self.rx_mhz)
print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.rx_mhz = 20
# NSS
N_ss = self.rx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0 or self.rx_mcs == 8 or self.rx_mcs == 16 or self.rx_mcs == 24:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1 or self.rx_mcs == 9 or self.rx_mcs == 17 or self.rx_mcs == 25:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2 or self.rx_mcs == 10 or self.rx_mcs == 18 or self.rx_mcs == 26:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3 or self.rx_mcs == 11 or self.rx_mcs == 19 or self.rx_mcs == 27:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4 or self.rx_mcs == 12 or self.rx_mcs == 20 or self.rx_mcs == 28:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5 or self.rx_mcs == 13 or self.rx_mcs == 21 or self.rx_mcs == 29:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6 or self.rx_mcs == 14 or self.rx_mcs == 22 or self.rx_mcs == 30:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7 or self.rx_mcs == 15 or self.rx_mcs == 23 or self.rx_mcs == 31:
R = 5 / 6
N_bpscs = 6
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.rx_mhz = 20
# NSS
N_ss = self.rx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0 or self.rx_mcs == 8 or self.rx_mcs == 16 or self.rx_mcs == 24:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1 or self.rx_mcs == 9 or self.rx_mcs == 17 or self.rx_mcs == 25:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2 or self.rx_mcs == 10 or self.rx_mcs == 18 or self.rx_mcs == 26:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3 or self.rx_mcs == 11 or self.rx_mcs == 19 or self.rx_mcs == 27:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4 or self.rx_mcs == 12 or self.rx_mcs == 20 or self.rx_mcs == 28:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5 or self.rx_mcs == 13 or self.rx_mcs == 21 or self.rx_mcs == 29:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6 or self.rx_mcs == 14 or self.rx_mcs == 22 or self.rx_mcs == 30:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7 or self.rx_mcs == 15 or self.rx_mcs == 23 or self.rx_mcs == 31:
R = 5 / 6
N_bpscs = 6
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long
def calculated_data_rate_tx_VHT(self):
# TODO compare with standard for 40 MHz if values change
@@ -466,98 +446,85 @@ class ProbePort(LFCliBase):
T_gi_long = .8 * 10 ** -6 # Guard index.
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
if self.rx_mgt_6Mb_frame is True:
self.rx_mgt_6Mg_frame = False
self.rx_data_rate_gi_short_Mbps = None
self.rx_data_rate_gi_long_Mbps = None
try:
bw = int(self.rx_mhz)
except BaseException:
print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
try:
bw = int(self.rx_mhz)
except BaseException:
print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.rx_mhz = 20
# NSS
N_ss = self.rx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.rx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.rx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long
###########################################
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.rx_mhz = 20
# NSS
N_ss = self.rx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.rx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.rx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long
##########################################
#
# HE no OFDMA - changes the calculations
#
@@ -670,93 +637,81 @@ class ProbePort(LFCliBase):
T_gi_long = .8 * 10 ** -6 # Guard index.
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
if self.rx_mgt_6Mb_frame is True:
self.rx_mgt_6Mg_frame = False
self.rx_data_rate_gi_short_Mbps = None
self.rx_data_rate_gi_long_Mbps = None
try:
bw = int(self.rx_mhz)
except BaseException:
print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
try:
bw = int(self.rx_mhz)
except BaseException:
print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.rx_mhz = 20
# NSS
N_ss = self.rx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.rx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.rx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.rx_mhz = 20
# NSS
N_ss = self.rx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.rx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.rx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long