Thomas Eizinger ac5e44d5d0 feat(connlib): request larger buffers for UDP sockets (#8731)
Sufficiently large receive buffers are important to sustain
high-throughput as latency increases. If the receive buffer in the
kernel is too small, packets need to be dropped on arrival.

Firefox uses 1MB in its QUIC stack [0]. `quic-go` recommends to set send
and receive buffers to 7.5 MB [1]. Power users of Firezone are likely
receiving a lot more traffic than the average Firefox user (especially
with Internet Resource activated) so setting it to 10 MB seems
reasonable. Sending packets is likely not as critical because we have
back-pressure through our system such that we will stop reading IP
packets when we cannot write to our UDP socket. The UDP socket is
sitting in a separate thread and those threads are connected with
dedicated queues which act as another buffer. However, as the data below
shows, some systems have really small send buffers which are currently
likely a speed bottleneck because we need to suspend writing so
frequently.

Assuming a 50ms latency, the bandwidth-delay product tells us that we
can (in theory) saturate a 1.6 Gbps link with a 10MB receive buffer
(assuming the OS also has large enough buffer sizes in its TCP or QUIC
stack):

```
80 Mb / 0.05s = 1600Mbps
```

Experiments and research [2] show the following:

|OS|Receive buffer (default)|Receive buffer (this PR)|Send buffer
(default)|Send buffer (this PR)|
|---|---|---|---|---|
|Windows|65KB|10MB|65KB|1MB|
|MacOS|786KB|8MB|9KB|1MB|
|Linux|212KB|212KB|212KB|212KB|

With the exception of Linux, the OSes appear to be quite generous with
how big they allow receive buffers to be. On Linux, these limit can be
changed by setting the `core.net.rmem_max` and `core.net.wmem_max`
parameters using `sysctl`.

Most of our users are on Windows and MacOS, meaning they immediately
benefit from this without having to change any system settings. Larger
client-side UDP receive buffers are critical for any "download" scenario
which is likely the majority of usecases that Firezone is used for.

On Windows, increasing this receive buffer almost doubles the throughput
in an iperf3 download test.

[0]: https://github.com/mozilla/neqo/pull/2470
[1]: https://github.com/quic-go/quic-go/wiki/UDP-Buffer-Sizes
[2]: https://unix.stackexchange.com/a/424381

---------

Signed-off-by: Thomas Eizinger <thomas@eizinger.io>
Co-authored-by: Jamil <jamilbk@users.noreply.github.com>
2025-04-22 06:52:33 +00:00
2024-02-27 23:56:46 +00:00

firezone logo

A modern alternative to legacy VPNs.


firezone Discourse firezone Coverage Status GitHub commit activity GitHub closed issues Cloudsmith follow on Twitter


Overview

Firezone is an open source platform to securely manage remote access for any-sized organization. Unlike most VPNs, Firezone takes a granular, least-privileged approach to access management with group-based policies that control access to individual applications, entire subnets, and everything in between.

architecture

Features

Firezone is:

  • Fast: Built on WireGuard® to be 3-4 times faster than OpenVPN.
  • Scalable: Deploy two or more gateways for automatic load balancing and failover.
  • Private: Peer-to-peer, end-to-end encrypted tunnels prevent packets from routing through our infrastructure.
  • Secure: Zero attack surface thanks to Firezone's holepunching tech which establishes tunnels on-the-fly at the time of access.
  • Open: Our entire product is open-source, allowing anyone to audit the codebase.
  • Flexible: Authenticate users via email, Google Workspace, Okta, Entra ID, or OIDC and sync users and groups automatically.
  • Simple: Deploy gateways and configure access in minutes with a snappy admin UI.

Firezone is not:

  • A tool for creating bi-directional mesh networks
  • A full-featured router or firewall
  • An IPSec or OpenVPN server

Contents of this repository

This is a monorepo containing the full Firezone product, marketing website, and product documentation, organized as follows:

Quickstart

The quickest way to get started with Firezone is to sign up for an account at https://app.firezone.dev/sign_up.

Once you've signed up, follow the instructions in the welcome email to get started.

Frequently asked questions (FAQ)

Can I self-host Firezone?

Our license won't stop you from self-hosting the entire Firezone product top to bottom, but our internal APIs are changing rapidly so we can't meaningfully support self-hosting Firezone in production at this time.

If you're feeling especially adventurous and want to self-host Firezone for educational or hobby purposes, follow the instructions to spin up a local development environment in CONTRIBUTING.md.

The latest published clients (on App Stores and on releases) are only guaranteed to work with the managed version of Firezone and may not work with a self-hosted portal built from this repository. This is because Apple and Google can sometimes delay updates to their app stores, and so the latest published version may not be compatible with the tip of main from this repository.

Therefore, if you're experimenting with self-hosting Firezone, you will probably want to use clients you build and distribute yourself as well.

See the READMEs in the following directories for more information on building each client:

How long will 0.7 be supported until?

Firezone 0.7 is currently end-of-life and has stopped receiving updates as of January 31st, 2024. It will continue to be available indefinitely from the legacy branch of this repo under the Apache 2.0 license.

How much does it cost?

We offer flexible per-seat monthly and annual plans for the cloud-managed version of Firezone, with optional invoicing for larger organizations. See our pricing page for more details.

Those experimenting with self-hosting can use Firezone for free without feature or seat limitations, but we can't provide support for self-hosted installations at this time.

Documentation

Additional documentation on general usage, troubleshooting, and configuration can be found at https://www.firezone.dev/kb.

Get Help

If you're looking for help installing, configuring, or using Firezone, check our community support options:

  1. Discussion Forums: Ask questions, report bugs, and suggest features.
  2. Join our Discord Server: Join live discussions, meet other users, and chat with the Firezone team.
  3. Open a PR: Contribute a bugfix or make a contribution to Firezone.

If you need help deploying or maintaining Firezone for your business, consider contacting our sales team to speak with a Firezone expert.

See all support options on our main support page.

Star History

Star History Chart

Developing and Contributing

See CONTRIBUTING.md.

Security

See SECURITY.md.

License

Portions of this software are licensed as follows:

  • All content residing under the "elixir/" directory of this repository, if that directory exists, is licensed under the "Elastic License 2.0" license defined in "elixir/LICENSE".
  • All third party components incorporated into the Firezone Software are licensed under the original license provided by the owner of the applicable component.
  • Content outside of the above mentioned directories or restrictions above is available under the "Apache 2.0 License" license as defined in "LICENSE".

WireGuard® is a registered trademark of Jason A. Donenfeld.

Description
No description provided
Readme Apache-2.0 169 MiB
Languages
Elixir 57.1%
Rust 29.2%
TypeScript 5.9%
Swift 3.3%
Kotlin 1.8%
Other 2.5%