In #6032, we attempted to fix routing loops for Windows and did so successfully for UDP packets. For TCP sockets, we believed that binding the socket to an interface is enough to prevent routing loops. This assumptions is wrong. > On Windows, a call to bind() affects card selection only incoming traffic, not outgoing traffic. > > Thus, on a client running in a multi-homed system (i.e., more than one interface card), it's the network stack that selects the card to use, and it makes its selection based solely on the destination IP, which in turn is based on the routing table. A call to bind() will not affect the choice of the card in any way. On most of our testing machines, this problem didn't surface but it turns out that on some machines, especially with WiFi cards there is a conflict between the routes added on the system. In particular, with the Internet resource active, we also add a catch-all route that we _want_ to have the most priority, i.e. Windows SHOULD send all traffic to our TUN device. Except for traffic that we generate, like TCP connections to the portal or UDP packets sent to gateways, relays or DNS servers. It appears that on some systems, mostly with Ethernet adapters, Windows picks the "correct" interface for our socket and sends traffic via that but on other systems, it doesn't. TCP sockets are only used for the WebSocket connection to the portal. Without that one, Firezone completely stops working because we can't send any control messages. To reliably fix this issue, we need to add a dedicated route for the target IP of each TCP socket that is more specific than the Internet resource route (`0.0.0.0/0`) but otherwise identical. We do this as part of creating a new TCP socket. This route is for the _default_ interface and thus, doesn't get automatically removed when Firezone exits. We implement a RAII guard that attempts to drop the route on a best-effort basis. Despite this RAII guard, this route can linger around in case Firezone is being forced to exit or exits in otherwise unclean ways. To avoid lingering routes, we always delete all routing table entries matching the IP of the portal just before we are about to add one. Fixes: #6591. [0]: https://forums.codeguru.com/showthread.php?487139-Socket-binding-with-routing-table&s=a31637836c1bf7f0bc71c1955e47bdf9&p=1891235#post1891235 --------- Signed-off-by: Thomas Eizinger <thomas@eizinger.io> Co-authored-by: Thomas Eizinger <thomas@eizinger.io> Co-authored-by: Foo Bar <foo@bar.com> Co-authored-by: conectado <gabrielalejandro7@gmail.com>
app-ipv6.firezone.dev for IPv6 app to prevent websocket / http from using different stacks (#6522)
A modern alternative to legacy VPNs.
Overview
Firezone is an open source platform to securely manage remote access for any-sized organization. Unlike most VPNs, Firezone takes a granular, least-privileged approach to access management with group-based policies that control access to individual applications, entire subnets, and everything in between.
Features
Firezone is:
- Fast: Built on WireGuard® to be 3-4 times faster than OpenVPN.
- Scalable: Deploy two or more gateways for automatic load balancing and failover.
- Private: Peer-to-peer, end-to-end encrypted tunnels prevent packets from routing through our infrastructure.
- Secure: Zero attack surface thanks to Firezone's holepunching tech which establishes tunnels on-the-fly at the time of access.
- Open: Our entire product is open-source, allowing anyone to audit the codebase.
- Flexible: Authenticate users via email, Google Workspace, Okta, Entra ID, or OIDC and sync users and groups automatically.
- Simple: Deploy gateways and configure access in minutes with a snappy admin UI.
Firezone is not:
- A tool for creating bi-directional mesh networks
- A full-featured router or firewall
- An IPSec or OpenVPN server
Contents of this repository
This is a monorepo containing the full Firezone product, marketing website, and product documentation, organized as follows:
- elixir: Control plane and internal Elixir libraries:
- elixir/apps/web: Admin UI
- elixir/apps/api: API for Clients, Relays and Gateways.
- rust/: Data plane and internal Rust libraries:
- rust/gateway: Gateway - Tunnel server based on WireGuard and deployed to your infrastructure.
- rust/relay: Relay - STUN/TURN server to facilitate holepunching.
- rust/headless-client: Cross-platform CLI client.
- rust/gui-client: Cross-platform GUI client.
- swift/: macOS / iOS clients.
- kotlin/: Android / ChromeOS clients.
- website/: Marketing website and product documentation.
- terraform/: Terraform files for various example deployments.
- terraform/examples/google-cloud/nat-gateway: Example Terraform configuration for deploying a cluster of Firezone Gateways behind a NAT gateway on GCP with a single egress IP.
- terraform/modules/google-cloud/apps/gateway-region-instance-group: Production-ready Terraform module for deploying regional Firezone Gateways to Google Cloud Compute using Regional Instance Groups.
Quickstart
The quickest way to get started with Firezone is to sign up for an account at https://app.firezone.dev/sign_up.
Once you've signed up, follow the instructions in the welcome email to get started.
Frequently asked questions (FAQ)
Can I self-host Firezone?
Our license won't stop you from self-hosting the entire Firezone product top to bottom, but our internal APIs are changing rapidly so we can't meaningfully support self-hosting Firezone in production at this time.
If you're feeling especially adventurous and want to self-host Firezone for educational or hobby purposes, follow the instructions to spin up a local development environment in CONTRIBUTING.md.
The latest published clients (on App Stores and on
releases) are only guaranteed
to work with the managed version of Firezone and may not work with a self-hosted
portal built from this repository. This is because Apple and Google can
sometimes delay updates to their app stores, and so the latest published version
may not be compatible with the tip of main from this repository.
Therefore, if you're experimenting with self-hosting Firezone, you will probably want to use clients you build and distribute yourself as well.
See the READMEs in the following directories for more information on building each client:
- macOS / iOS: swift/apple
- Android / ChromeOS: kotlin/android
- Windows / Linux: rust/gui-client
How long will 0.7 be supported until?
Firezone 0.7 is currently end-of-life and has stopped receiving updates as of
January 31st, 2024. It will continue to be available indefinitely from the
legacy branch of this repo under the Apache 2.0 license.
How much does it cost?
We offer flexible per-seat monthly and annual plans for the cloud-managed version of Firezone, with optional invoicing for larger organizations. See our pricing page for more details.
Those experimenting with self-hosting can use Firezone for free without feature or seat limitations, but we can't provide support for self-hosted installations at this time.
Documentation
Additional documentation on general usage, troubleshooting, and configuration can be found at https://www.firezone.dev/kb.
Get Help
If you're looking for help installing, configuring, or using Firezone, check our community support options:
- Discussion Forums: Ask questions, report bugs, and suggest features.
- Join our Discord Server: Join live discussions, meet other users, and chat with the Firezone team.
- Open a PR: Contribute a bugfix or make a contribution to Firezone.
If you need help deploying or maintaining Firezone for your business, consider contacting our sales team to speak with a Firezone expert.
Star History
Developing and Contributing
See CONTRIBUTING.md.
Security
See SECURITY.md.
License
Portions of this software are licensed as follows:
- All content residing under the "elixir/" directory of this repository, if that directory exists, is licensed under the "Elastic License 2.0" license defined in "elixir/LICENSE".
- All third party components incorporated into the Firezone Software are licensed under the original license provided by the owner of the applicable component.
- Content outside of the above mentioned directories or restrictions above is available under the "Apache 2.0 License" license as defined in "LICENSE".
WireGuard® is a registered trademark of Jason A. Donenfeld.
