Thomas Eizinger fde8d08423 fix(connlib): maintain packet order across GSO batches (#8920)
Despite our efforts in #8912, the current implementation still does not
do enough to maintain packet ordering across GSO batches.

At present, we very aggressively batch packets of the same length
together. This however is too eager when we consider packet flows such
as the following:

```
9:03:49.585143 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [.], seq 1:1229, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 1228
09:03:49.585151 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [P.], seq 1229:2063, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 834
09:03:49.585157 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [P.], seq 2063:3094, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 1031
09:03:49.585187 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [.], seq 3094:4322, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 1228
09:03:49.585188 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [P.], seq 4322:5156, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 834
09:03:49.585227 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [.], seq 5156:6384, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 1228
09:03:49.585228 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [P.], seq 6384:7612, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 1228
09:03:49.585230 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [P.], seq 7612:8249, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 637
09:03:49.585846 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [.], seq 8249:9477, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 1228
09:03:49.585851 IP 10.128.15.241.3000 > 100.69.109.138.53474: Flags [P.], seq 9477:10705, ack 524, win 249, options [nop,nop,TS val 3862031964 ecr 1928356896], length 1228
```

As we can see here, the remote sends us packet batches of varying
lengths:

- 1228, 834
- 1031
- 1228, 834
- 1228, 1228, 637
- 1228, 1228

1228 represents a "full" TCP packet so any packet following a
full-packet SHOULD be grouped together into a GSO batch.

Currently, we are batching all the 1228 packets together and we ignore
the fact that there were actually smaller sized packets inbetween those
that belong together.

To mitigate this, we refactor the `GsoQueue` to remove the
`segment_size` from the binning key of our map and instead only group
batches by their source, destination and ECN information. Within such a
connection, we then create an ordered list of batches. A new batch is
started if the length differs or we have previously pushed a packet that
isn't of the length of the batch, therefore signalling the end of the
batch.

The result here looks very promising (this is loading
`blog.firezone.dev` via the `lynx` browser from within the
headless-client docker container, so going through a Gateway running
this PR):

|main|this PR|
|---|---|
|![Screenshot From 2025-04-29
10-32-00](https://github.com/user-attachments/assets/ba0535e4-1df9-4601-a2d7-ba099ba2313f)|![image](https://github.com/user-attachments/assets/ab2ccec7-ce96-4305-8514-2e43d82ecc7d)|

Related: #8899
2025-04-29 00:50:23 +00:00
2024-02-27 23:56:46 +00:00

firezone logo

A modern alternative to legacy VPNs.


firezone Discourse firezone Coverage Status GitHub commit activity GitHub closed issues Cloudsmith follow on Twitter


Overview

Firezone is an open source platform to securely manage remote access for any-sized organization. Unlike most VPNs, Firezone takes a granular, least-privileged approach to access management with group-based policies that control access to individual applications, entire subnets, and everything in between.

architecture

Features

Firezone is:

  • Fast: Built on WireGuard® to be 3-4 times faster than OpenVPN.
  • Scalable: Deploy two or more gateways for automatic load balancing and failover.
  • Private: Peer-to-peer, end-to-end encrypted tunnels prevent packets from routing through our infrastructure.
  • Secure: Zero attack surface thanks to Firezone's holepunching tech which establishes tunnels on-the-fly at the time of access.
  • Open: Our entire product is open-source, allowing anyone to audit the codebase.
  • Flexible: Authenticate users via email, Google Workspace, Okta, Entra ID, or OIDC and sync users and groups automatically.
  • Simple: Deploy gateways and configure access in minutes with a snappy admin UI.

Firezone is not:

  • A tool for creating bi-directional mesh networks
  • A full-featured router or firewall
  • An IPSec or OpenVPN server

Contents of this repository

This is a monorepo containing the full Firezone product, marketing website, and product documentation, organized as follows:

Quickstart

The quickest way to get started with Firezone is to sign up for an account at https://app.firezone.dev/sign_up.

Once you've signed up, follow the instructions in the welcome email to get started.

Frequently asked questions (FAQ)

Can I self-host Firezone?

Our license won't stop you from self-hosting the entire Firezone product top to bottom, but our internal APIs are changing rapidly so we can't meaningfully support self-hosting Firezone in production at this time.

If you're feeling especially adventurous and want to self-host Firezone for educational or hobby purposes, follow the instructions to spin up a local development environment in CONTRIBUTING.md.

The latest published clients (on App Stores and on releases) are only guaranteed to work with the managed version of Firezone and may not work with a self-hosted portal built from this repository. This is because Apple and Google can sometimes delay updates to their app stores, and so the latest published version may not be compatible with the tip of main from this repository.

Therefore, if you're experimenting with self-hosting Firezone, you will probably want to use clients you build and distribute yourself as well.

See the READMEs in the following directories for more information on building each client:

How long will 0.7 be supported until?

Firezone 0.7 is currently end-of-life and has stopped receiving updates as of January 31st, 2024. It will continue to be available indefinitely from the legacy branch of this repo under the Apache 2.0 license.

How much does it cost?

We offer flexible per-seat monthly and annual plans for the cloud-managed version of Firezone, with optional invoicing for larger organizations. See our pricing page for more details.

Those experimenting with self-hosting can use Firezone for free without feature or seat limitations, but we can't provide support for self-hosted installations at this time.

Documentation

Additional documentation on general usage, troubleshooting, and configuration can be found at https://www.firezone.dev/kb.

Get Help

If you're looking for help installing, configuring, or using Firezone, check our community support options:

  1. Discussion Forums: Ask questions, report bugs, and suggest features.
  2. Join our Discord Server: Join live discussions, meet other users, and chat with the Firezone team.
  3. Open a PR: Contribute a bugfix or make a contribution to Firezone.

If you need help deploying or maintaining Firezone for your business, consider contacting our sales team to speak with a Firezone expert.

See all support options on our main support page.

Star History

Star History Chart

Developing and Contributing

See CONTRIBUTING.md.

Security

See SECURITY.md.

License

Portions of this software are licensed as follows:

  • All content residing under the "elixir/" directory of this repository, if that directory exists, is licensed under the "Elastic License 2.0" license defined in "elixir/LICENSE".
  • All third party components incorporated into the Firezone Software are licensed under the original license provided by the owner of the applicable component.
  • Content outside of the above mentioned directories or restrictions above is available under the "Apache 2.0 License" license as defined in "LICENSE".

WireGuard® is a registered trademark of Jason A. Donenfeld.

Description
No description provided
Readme Apache-2.0 169 MiB
Languages
Elixir 57.1%
Rust 29.2%
TypeScript 5.9%
Swift 3.3%
Kotlin 1.8%
Other 2.5%