Dalton Hubble 924beb4b0c Enable Kubelet TLS bootstrap and NodeRestriction
* Enable bootstrap token authentication on kube-apiserver
* Generate the bootstrap.kubernetes.io/token Secret that
may be used as a bootstrap token
* Generate a bootstrap kubeconfig (with a bootstrap token)
to be securely distributed to nodes. Each Kubelet will use
the bootstrap kubeconfig to authenticate to kube-apiserver
as `system:bootstrappers` and send a node-unique CSR for
kube-controller-manager to automatically approve to issue
a Kubelet certificate and kubeconfig (expires in 72 hours)
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the `system:node-bootstrapper`
ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr nodeclient ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr selfnodeclient ClusterRole
* Enable NodeRestriction admission controller to limit the
scope of Node or Pod objects a Kubelet can modify to those of
the node itself
* Ability for a Kubelet to delete its Node object is retained
as preemptible nodes or those in auto-scaling instance groups
need to be able to remove themselves on shutdown. This need
continues to have precedence over any risk of a node deleting
itself maliciously

Security notes:

1. Issued Kubelet certificates authenticate as user `system:node:NAME`
and group `system:nodes` and are limited in their authorization
to perform API operations by Node authorization and NodeRestriction
admission. Previously, a Kubelet's authorization was broader. This
is the primary security motivation.

2. The bootstrap kubeconfig credential has the same sensitivity
as the previous generated TLS client-certificate kubeconfig.
It must be distributed securely to nodes. Its compromise still
allows an attacker to obtain a Kubelet kubeconfig

3. Bootstrapping Kubelet kubeconfig's with a limited lifetime offers
a slight security improvement.
  * An attacker who obtains the kubeconfig can likely obtain the
  bootstrap kubeconfig as well, to obtain the ability to renew
  their access
  * A compromised bootstrap kubeconfig could plausibly be handled
  by replacing the bootstrap token Secret, distributing the token
  to new nodes, and expiration. Whereas a compromised TLS-client
  certificate kubeconfig can't be revoked (no CRL). However,
  replacing a bootstrap token can be impractical in real cluster
  environments, so the limited lifetime is mostly a theoretical
  benefit.
  * Cluster CSR objects are visible via kubectl which is nice

4. Bootstrapping node-unique Kubelet kubeconfigs means Kubelet
clients have more identity information, which can improve the
utility of audits and future features

Rel: https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/
2020-04-25 19:38:56 -07:00
2017-09-01 10:27:43 -07:00
2017-08-02 00:05:04 -07:00
2019-12-05 01:02:01 -08:00
2019-12-05 01:02:01 -08:00

terraform-render-bootstrap

terraform-render-bootstrap is a Terraform module that renders TLS certificates, static pods, and manifests for bootstrapping a Kubernetes cluster.

Audience

terraform-render-bootstrap is a low-level component of the Typhoon Kubernetes distribution. Use Typhoon modules to create and manage Kubernetes clusters across supported platforms. Use the bootstrap module if you'd like to customize a Kubernetes control plane or build your own distribution.

Usage

Use the module to declare bootstrap assets. Check variables.tf for options and terraform.tfvars.example for examples.

module "bootstrap" {
  source = "git::https://github.com/poseidon/terraform-render-bootstrap.git?ref=SHA"

  cluster_name = "example"
  api_servers = ["node1.example.com"]
  etcd_servers = ["node1.example.com"]
}

Generate the assets.

terraform init
terraform plan
terraform apply

Find bootstrap assets rendered to the asset_dir path. That's it.

Description
No description provided
Readme MIT 667 KiB
Languages
HCL 100%