pd: initial split of protocol code to create port controller

Initial split of the USB PD protocol code to create the new port
controller (TCPC) and port management (TCPM) blocks. The intention
is that the TCPC code will eventually reside on a different MCU,
along with the USB PD phy layer. The TCPM will stay with the protocol
and policy layers and provide a standard interface to TCPC (over
i2c).

As a first step, this CL merely splits up the files and directly
calls functions to reach across between TCPM and TCPC.

BUG=none
BRANCH=none
TEST=tested on samus using zinger, hoho, another samus, donette,
and a third party PD charger. Tested the following:
- dual-role toggling
- forming a connection as a source and as a sink
- power negotiation at different voltages
- charging
- sourcing power to USB stick
- soft reset
- hard reset
- power swap
- data swap
- bist mode 2
- zinger remote firmware updates

Change-Id: I70bd68a003c81e075310913f10351b792f76d7e0
Signed-off-by: Alec Berg <alecaberg@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/266923
Reviewed-by: Vincent Palatin <vpalatin@chromium.org>
This commit is contained in:
Alec Berg
2015-04-22 17:51:09 -07:00
committed by ChromeOS Commit Bot
parent 349aaa43da
commit 7c1231c55f
6 changed files with 1352 additions and 742 deletions

View File

@@ -81,7 +81,7 @@ common-$(CONFIG_SW_CRC)+=crc.o
common-$(CONFIG_TEMP_SENSOR)+=temp_sensor.o thermal.o throttle_ap.o
common-$(CONFIG_USB_PORT_POWER_DUMB)+=usb_port_power_dumb.o
common-$(CONFIG_USB_PORT_POWER_SMART)+=usb_port_power_smart.o
common-$(CONFIG_USB_POWER_DELIVERY)+=usb_pd_protocol.o usb_pd_policy.o
common-$(CONFIG_USB_POWER_DELIVERY)+=usb_pd_protocol.o usb_pd_policy.o usb_pd_tcpm_stub.o usb_pd_tcpc.o
common-$(CONFIG_USB_PD_LOGGING)+=pd_log.o
common-$(CONFIG_VBOOT_HASH)+=sha256.o vboot_hash.o
common-$(CONFIG_WIRELESS)+=wireless.o

File diff suppressed because it is too large Load Diff

963
common/usb_pd_tcpc.c Normal file
View File

@@ -0,0 +1,963 @@
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "adc.h"
#include "common.h"
#include "config.h"
#include "console.h"
#include "crc.h"
#include "ec_commands.h"
#include "gpio.h"
#include "host_command.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "usb_pd.h"
#include "usb_pd_config.h"
#include "usb_pd_tcpm.h"
#ifdef CONFIG_COMMON_RUNTIME
#define CPRINTF(format, args...) cprintf(CC_USBPD, format, ## args)
#define CPRINTS(format, args...) cprints(CC_USBPD, format, ## args)
/*
* Debug log level - higher number == more log
* Level 0: Log state transitions
* Level 1: Level 0, plus packet info
* Level 2: Level 1, plus ping packet and packet dump on error
*
* Note that higher log level causes timing changes and thus may affect
* performance.
*/
static int debug_level;
/*
* TODO: disable in RO? can we remove enable var from protocol layer?
* do we need to send a hard reset when we transition to enabled because
* source could have given up sending source cap and may need hard reset
* in order to establish a contract.
*/
static uint8_t pd_comm_enabled = 1;
static struct mutex pd_crc_lock;
#else
#define CPRINTF(format, args...)
static const int debug_level;
static const int pd_comm_enabled = 1;
#endif
/* Encode 5 bits using Biphase Mark Coding */
#define BMC(x) ((x & 1 ? 0x001 : 0x3FF) \
^ (x & 2 ? 0x004 : 0x3FC) \
^ (x & 4 ? 0x010 : 0x3F0) \
^ (x & 8 ? 0x040 : 0x3C0) \
^ (x & 16 ? 0x100 : 0x300))
/* 4b/5b + Bimark Phase encoding */
static const uint16_t bmc4b5b[] = {
/* 0 = 0000 */ BMC(0x1E) /* 11110 */,
/* 1 = 0001 */ BMC(0x09) /* 01001 */,
/* 2 = 0010 */ BMC(0x14) /* 10100 */,
/* 3 = 0011 */ BMC(0x15) /* 10101 */,
/* 4 = 0100 */ BMC(0x0A) /* 01010 */,
/* 5 = 0101 */ BMC(0x0B) /* 01011 */,
/* 6 = 0110 */ BMC(0x0E) /* 01110 */,
/* 7 = 0111 */ BMC(0x0F) /* 01111 */,
/* 8 = 1000 */ BMC(0x12) /* 10010 */,
/* 9 = 1001 */ BMC(0x13) /* 10011 */,
/* A = 1010 */ BMC(0x16) /* 10110 */,
/* B = 1011 */ BMC(0x17) /* 10111 */,
/* C = 1100 */ BMC(0x1A) /* 11010 */,
/* D = 1101 */ BMC(0x1B) /* 11011 */,
/* E = 1110 */ BMC(0x1C) /* 11100 */,
/* F = 1111 */ BMC(0x1D) /* 11101 */,
/* Sync-1 K-code 11000 Startsynch #1 */
/* Sync-2 K-code 10001 Startsynch #2 */
/* RST-1 K-code 00111 Hard Reset #1 */
/* RST-2 K-code 11001 Hard Reset #2 */
/* EOP K-code 01101 EOP End Of Packet */
/* Reserved Error 00000 */
/* Reserved Error 00001 */
/* Reserved Error 00010 */
/* Reserved Error 00011 */
/* Reserved Error 00100 */
/* Reserved Error 00101 */
/* Reserved Error 00110 */
/* Reserved Error 01000 */
/* Reserved Error 01100 */
/* Reserved Error 10000 */
/* Reserved Error 11111 */
};
static const uint8_t dec4b5b[] = {
/* Error */ 0x10 /* 00000 */,
/* Error */ 0x10 /* 00001 */,
/* Error */ 0x10 /* 00010 */,
/* Error */ 0x10 /* 00011 */,
/* Error */ 0x10 /* 00100 */,
/* Error */ 0x10 /* 00101 */,
/* Error */ 0x10 /* 00110 */,
/* RST-1 */ 0x13 /* 00111 K-code: Hard Reset #1 */,
/* Error */ 0x10 /* 01000 */,
/* 1 = 0001 */ 0x01 /* 01001 */,
/* 4 = 0100 */ 0x04 /* 01010 */,
/* 5 = 0101 */ 0x05 /* 01011 */,
/* Error */ 0x10 /* 01100 */,
/* EOP */ 0x15 /* 01101 K-code: EOP End Of Packet */,
/* 6 = 0110 */ 0x06 /* 01110 */,
/* 7 = 0111 */ 0x07 /* 01111 */,
/* Error */ 0x10 /* 10000 */,
/* Sync-2 */ 0x12 /* 10001 K-code: Startsynch #2 */,
/* 8 = 1000 */ 0x08 /* 10010 */,
/* 9 = 1001 */ 0x09 /* 10011 */,
/* 2 = 0010 */ 0x02 /* 10100 */,
/* 3 = 0011 */ 0x03 /* 10101 */,
/* A = 1010 */ 0x0A /* 10110 */,
/* B = 1011 */ 0x0B /* 10111 */,
/* Sync-1 */ 0x11 /* 11000 K-code: Startsynch #1 */,
/* RST-2 */ 0x14 /* 11001 K-code: Hard Reset #2 */,
/* C = 1100 */ 0x0C /* 11010 */,
/* D = 1101 */ 0x0D /* 11011 */,
/* E = 1110 */ 0x0E /* 11100 */,
/* F = 1111 */ 0x0F /* 11101 */,
/* 0 = 0000 */ 0x00 /* 11110 */,
/* Error */ 0x10 /* 11111 */,
};
/* Start of Packet sequence : three Sync-1 K-codes, then one Sync-2 K-code */
#define PD_SOP (PD_SYNC1 | (PD_SYNC1<<5) | (PD_SYNC1<<10) | (PD_SYNC2<<15))
#define PD_SOP_PRIME (PD_SYNC1 | (PD_SYNC1<<5) | \
(PD_SYNC3<<10) | (PD_SYNC3<<15))
#define PD_SOP_PRIME_PRIME (PD_SYNC1 | (PD_SYNC3<<5) | \
(PD_SYNC1<<10) | (PD_SYNC3<<15))
/* Hard Reset sequence : three RST-1 K-codes, then one RST-2 K-code */
#define PD_HARD_RESET (PD_RST1 | (PD_RST1 << 5) |\
(PD_RST1 << 10) | (PD_RST2 << 15))
/*
* Polarity based on 'DFP Perspective' (see table USB Type-C Cable and Connector
* Specification)
*
* CC1 CC2 STATE POSITION
* ----------------------------------------
* open open NC N/A
* Rd open UFP attached 1
* open Rd UFP attached 2
* open Ra pwr cable no UFP N/A
* Ra open pwr cable no UFP N/A
* Rd Ra pwr cable & UFP 1
* Ra Rd pwr cable & UFP 2
* Rd Rd dbg accessory N/A
* Ra Ra audio accessory N/A
*
* Note, V(Rd) > V(Ra)
*/
#ifndef PD_SRC_RD_THRESHOLD
#define PD_SRC_RD_THRESHOLD 200 /* mV */
#endif
#define CC_RA(cc) (cc < PD_SRC_RD_THRESHOLD)
#define CC_RD(cc) ((cc >= PD_SRC_RD_THRESHOLD) && (cc < PD_SRC_VNC))
#define CC_NC(cc) (cc >= PD_SRC_VNC)
/*
* Polarity based on 'UFP Perspective'.
*
* CC1 CC2 STATE POSITION
* ----------------------------------------
* open open NC N/A
* Rp open DFP attached 1
* open Rp DFP attached 2
* Rp Rp Accessory attached N/A
*/
#define CC_RP(cc) (cc >= PD_SNK_VA)
/*
* Type C power source charge current limits are identified by their cc
* voltage (set by selecting the proper Rd resistor). Any voltage below
* TYPE_C_SRC_500_THRESHOLD will not be identified as a type C charger.
*/
#define TYPE_C_SRC_500_THRESHOLD PD_SRC_RD_THRESHOLD
#define TYPE_C_SRC_1500_THRESHOLD 660 /* mV */
#define TYPE_C_SRC_3000_THRESHOLD 1230 /* mV */
/* PD transmit errors */
enum pd_tx_errors {
PD_TX_ERR_GOODCRC = -1, /* Failed to receive goodCRC */
PD_TX_ERR_DISABLED = -2, /* Attempted transmit even though disabled */
PD_TX_ERR_INV_ACK = -4, /* Received different packet instead of gCRC */
PD_TX_ERR_COLLISION = -5 /* Collision detected during transmit */
};
static struct pd_port_controller {
/* current port power role (SOURCE or SINK) */
uint8_t power_role;
/* current port data role (DFP or UFP) */
uint8_t data_role;
/* Port polarity : 0 => CC1 is CC line, 1 => CC2 is CC line */
uint8_t polarity;
/* Our CC pull resistor setting */
uint8_t cc_pull;
/* CC status */
uint8_t cc_status[2];
/* TCPC alert status */
uint8_t alert[2];
/* Last received */
int rx_head;
uint32_t rx_payload[7];
/* Next transmit */
enum tcpm_transmit_type tx_type;
uint16_t tx_head;
const uint32_t *tx_data;
} pd[PD_PORT_COUNT];
static inline int encode_short(int port, int off, uint16_t val16)
{
off = pd_write_sym(port, off, bmc4b5b[(val16 >> 0) & 0xF]);
off = pd_write_sym(port, off, bmc4b5b[(val16 >> 4) & 0xF]);
off = pd_write_sym(port, off, bmc4b5b[(val16 >> 8) & 0xF]);
return pd_write_sym(port, off, bmc4b5b[(val16 >> 12) & 0xF]);
}
int encode_word(int port, int off, uint32_t val32)
{
off = encode_short(port, off, (val32 >> 0) & 0xFFFF);
return encode_short(port, off, (val32 >> 16) & 0xFFFF);
}
/* prepare a 4b/5b-encoded PD message to send */
int prepare_message(int port, uint16_t header, uint8_t cnt,
const uint32_t *data)
{
int off, i;
/* 64-bit preamble */
off = pd_write_preamble(port);
/* Start Of Packet: 3x Sync-1 + 1x Sync-2 */
off = pd_write_sym(port, off, BMC(PD_SYNC1));
off = pd_write_sym(port, off, BMC(PD_SYNC1));
off = pd_write_sym(port, off, BMC(PD_SYNC1));
off = pd_write_sym(port, off, BMC(PD_SYNC2));
/* header */
off = encode_short(port, off, header);
#ifdef CONFIG_COMMON_RUNTIME
mutex_lock(&pd_crc_lock);
#endif
crc32_init();
crc32_hash16(header);
/* data payload */
for (i = 0; i < cnt; i++) {
off = encode_word(port, off, data[i]);
crc32_hash32(data[i]);
}
/* CRC */
off = encode_word(port, off, crc32_result());
#ifdef CONFIG_COMMON_RUNTIME
mutex_unlock(&pd_crc_lock);
#endif
/* End Of Packet */
off = pd_write_sym(port, off, BMC(PD_EOP));
/* Ensure that we have a final edge */
return pd_write_last_edge(port, off);
}
static int send_hard_reset(int port)
{
int off;
if (debug_level >= 1)
CPRINTF("C%d Send hard reset\n", port);
/* 64-bit preamble */
off = pd_write_preamble(port);
/* Hard-Reset: 3x RST-1 + 1x RST-2 */
off = pd_write_sym(port, off, BMC(PD_RST1));
off = pd_write_sym(port, off, BMC(PD_RST1));
off = pd_write_sym(port, off, BMC(PD_RST1));
off = pd_write_sym(port, off, BMC(PD_RST2));
/* Ensure that we have a final edge */
off = pd_write_last_edge(port, off);
/* Transmit the packet */
if (pd_start_tx(port, pd[port].polarity, off) < 0)
return PD_TX_ERR_COLLISION;
pd_tx_done(port, pd[port].polarity);
/* Keep RX monitoring on */
pd_rx_enable_monitoring(port);
return 0;
}
static int send_validate_message(int port, uint16_t header,
const uint32_t *data)
{
int r;
static uint32_t payload[7];
uint8_t expected_msg_id = PD_HEADER_ID(header);
uint8_t cnt = PD_HEADER_CNT(header);
/* retry 3 times if we are not getting a valid answer */
for (r = 0; r <= PD_RETRY_COUNT; r++) {
int bit_len, head;
/* write the encoded packet in the transmission buffer */
bit_len = prepare_message(port, header, cnt, data);
/* Transmit the packet */
if (pd_start_tx(port, pd[port].polarity, bit_len) < 0) {
/*
* Collision detected, return immediately so we can
* respond to what we have received.
*/
return PD_TX_ERR_COLLISION;
}
pd_tx_done(port, pd[port].polarity);
/*
* If this is the first attempt, leave RX monitoring off,
* and do a blocking read of the channel until timeout or
* packet received. If we failed the first try, enable
* interrupt and yield to other tasks, so that we don't
* starve them.
*/
if (r) {
pd_rx_enable_monitoring(port);
/* Wait for message receive timeout */
if (task_wait_event(USB_PD_RX_TMOUT_US) ==
TASK_EVENT_TIMER)
continue;
/*
* Make sure we woke up due to rx recd, otherwise
* we need to manually start
*/
if (!pd_rx_started(port)) {
pd_rx_disable_monitoring(port);
pd_rx_start(port);
}
} else {
/* starting waiting for GoodCrc */
pd_rx_start(port);
}
/* read the incoming packet if any */
head = pd_analyze_rx(port, payload);
pd_rx_complete(port);
/* keep RX monitoring on to avoid collisions */
pd_rx_enable_monitoring(port);
if (head > 0) { /* we got a good packet, analyze it */
int type = PD_HEADER_TYPE(head);
int nb = PD_HEADER_CNT(head);
uint8_t id = PD_HEADER_ID(head);
if (type == PD_CTRL_GOOD_CRC && nb == 0 &&
id == expected_msg_id) {
/* got the GoodCRC we were expecting */
/* do not catch last edges as a new packet */
udelay(20);
return bit_len;
} else {
/*
* we have received a good packet
* but not the expected GoodCRC,
* the other side is trying to contact us,
* bail out immediatly so we can get the retry.
*/
return PD_TX_ERR_INV_ACK;
}
}
}
/* we failed all the re-transmissions */
if (debug_level >= 1)
CPRINTF("TX NOACK%d %04x/%d\n", port, header, cnt);
return PD_TX_ERR_GOODCRC;
}
static void send_goodcrc(int port, int id)
{
uint16_t header = PD_HEADER(PD_CTRL_GOOD_CRC, pd[port].power_role,
pd[port].data_role, id, 0);
int bit_len = prepare_message(port, header, 0, NULL);
if (pd_start_tx(port, pd[port].polarity, bit_len) < 0)
/* another packet recvd before we could send goodCRC */
return;
pd_tx_done(port, pd[port].polarity);
/* Keep RX monitoring on */
pd_rx_enable_monitoring(port);
}
#if 0
/* TODO: when/how do we trigger this ? */
static int analyze_rx_bist(int port);
void bist_mode_2_rx(int port)
{
int analyze_bist = 0;
int num_bits;
timestamp_t start_time;
/* monitor for incoming packet */
pd_rx_enable_monitoring(port);
/* loop until we start receiving data */
start_time.val = get_time().val;
while ((get_time().val - start_time.val) < (500*MSEC)) {
task_wait_event(10*MSEC);
/* incoming packet ? */
if (pd_rx_started(port)) {
analyze_bist = 1;
break;
}
}
if (analyze_bist) {
/*
* once we start receiving bist data, analyze 40 bytes
* every 10 msec. Continue analyzing until BIST data
* is no longer received. The standard limits the max
* BIST length to 60 msec.
*/
start_time.val = get_time().val;
while ((get_time().val - start_time.val)
< (PD_T_BIST_RECEIVE)) {
num_bits = analyze_rx_bist(port);
pd_rx_complete(port);
/*
* If no data was received, then analyze_rx_bist()
* will return a -1 and there is no need to stay
* in this mode
*/
if (num_bits == -1)
break;
msleep(10);
pd_rx_enable_monitoring(port);
}
} else {
CPRINTF("BIST RX TO\n");
}
}
#endif
static void bist_mode_2_tx(int port)
{
int bit;
CPRINTF("BIST 2: p%d\n", port);
/*
* build context buffer with 5 bytes, where the data is
* alternating 1's and 0's.
*/
bit = pd_write_sym(port, 0, BMC(0x15));
bit = pd_write_sym(port, bit, BMC(0x0a));
bit = pd_write_sym(port, bit, BMC(0x15));
bit = pd_write_sym(port, bit, BMC(0x0a));
/* start a circular DMA transfer */
pd_tx_set_circular_mode(port);
pd_start_tx(port, pd[port].polarity, bit);
task_wait_event(PD_T_BIST_TRANSMIT);
/* clear dma circular mode, will also stop dma */
pd_tx_clear_circular_mode(port);
/* finish and cleanup transmit */
pd_tx_done(port, pd[port].polarity);
}
static inline int decode_short(int port, int off, uint16_t *val16)
{
uint32_t w;
int end;
end = pd_dequeue_bits(port, off, 20, &w);
#if 0 /* DEBUG */
CPRINTS("%d-%d: %05x %x:%x:%x:%x\n",
off, end, w,
dec4b5b[(w >> 15) & 0x1f], dec4b5b[(w >> 10) & 0x1f],
dec4b5b[(w >> 5) & 0x1f], dec4b5b[(w >> 0) & 0x1f]);
#endif
*val16 = dec4b5b[w & 0x1f] |
(dec4b5b[(w >> 5) & 0x1f] << 4) |
(dec4b5b[(w >> 10) & 0x1f] << 8) |
(dec4b5b[(w >> 15) & 0x1f] << 12);
return end;
}
static inline int decode_word(int port, int off, uint32_t *val32)
{
off = decode_short(port, off, (uint16_t *)val32);
return decode_short(port, off, ((uint16_t *)val32 + 1));
}
#ifdef CONFIG_COMMON_RUNTIME
#if 0
/*
* TODO: when/how do we trigger this ? Could add custom vendor command
* to TCPCI to enter bist verification? Is there an easier way?
*/
static int count_set_bits(int n)
{
int count = 0;
while (n) {
n &= (n - 1);
count++;
}
return count;
}
static int analyze_rx_bist(int port)
{
int i = 0, bit = -1;
uint32_t w, match;
int invalid_bits = 0;
int bits_analyzed = 0;
static int total_invalid_bits;
/* dequeue bits until we see a full byte of alternating 1's and 0's */
while (i < 10 && (bit < 0 || (w != 0xaa && w != 0x55)))
bit = pd_dequeue_bits(port, i++, 8, &w);
/* if we didn't find any bytes that match criteria, display error */
if (i == 10) {
CPRINTF("invalid pattern\n");
return -1;
}
/*
* now we know what matching byte we are looking for, dequeue a bunch
* more data and count how many bits differ from expectations.
*/
match = w;
bit = i - 1;
for (i = 0; i < 40; i++) {
bit = pd_dequeue_bits(port, bit, 8, &w);
if (i && (i % 20 == 0))
CPRINTF("\n");
CPRINTF("%02x ", w);
bits_analyzed += 8;
invalid_bits += count_set_bits(w ^ match);
}
total_invalid_bits += invalid_bits;
CPRINTF("\nInvalid: %d/%d\n",
invalid_bits, total_invalid_bits);
return bits_analyzed;
}
#endif
#endif
int pd_analyze_rx(int port, uint32_t *payload)
{
int bit;
char *msg = "---";
uint32_t val = 0;
uint16_t header;
uint32_t pcrc, ccrc;
int p, cnt;
uint32_t eop;
pd_init_dequeue(port);
/* Detect preamble */
bit = pd_find_preamble(port);
if (bit == PD_RX_ERR_HARD_RESET || bit == PD_RX_ERR_CABLE_RESET) {
/* Hard reset or cable reset */
return bit;
} else if (bit < 0) {
msg = "Preamble";
goto packet_err;
}
/* Find the Start Of Packet sequence */
while (bit > 0) {
bit = pd_dequeue_bits(port, bit, 20, &val);
if (val == PD_SOP) {
break;
} else if (val == PD_SOP_PRIME) {
CPRINTF("SOP'\n");
return PD_RX_ERR_UNSUPPORTED_SOP;
} else if (val == PD_SOP_PRIME_PRIME) {
CPRINTF("SOP''\n");
return PD_RX_ERR_UNSUPPORTED_SOP;
}
}
if (bit < 0) {
msg = "SOP";
goto packet_err;
}
/* read header */
bit = decode_short(port, bit, &header);
#ifdef CONFIG_COMMON_RUNTIME
mutex_lock(&pd_crc_lock);
#endif
crc32_init();
crc32_hash16(header);
cnt = PD_HEADER_CNT(header);
/* read payload data */
for (p = 0; p < cnt && bit > 0; p++) {
bit = decode_word(port, bit, payload+p);
crc32_hash32(payload[p]);
}
ccrc = crc32_result();
#ifdef CONFIG_COMMON_RUNTIME
mutex_unlock(&pd_crc_lock);
#endif
if (bit < 0) {
msg = "len";
goto packet_err;
}
/* check transmitted CRC */
bit = decode_word(port, bit, &pcrc);
if (bit < 0 || pcrc != ccrc) {
msg = "CRC";
if (pcrc != ccrc)
bit = PD_RX_ERR_CRC;
if (debug_level >= 1)
CPRINTF("CRC%d %08x <> %08x\n", port, pcrc, ccrc);
goto packet_err;
}
/*
* Check EOP. EOP is 5 bits, but last bit may not be able to
* be dequeued, depending on ending state of CC line, so stop
* at 4 bits (assumes last bit is 0).
*/
bit = pd_dequeue_bits(port, bit, 4, &eop);
if (bit < 0 || eop != PD_EOP) {
msg = "EOP";
goto packet_err;
}
return header;
packet_err:
if (debug_level >= 2)
pd_dump_packet(port, msg);
else
CPRINTF("RXERR%d %s\n", port, msg);
return bit;
}
static void handle_request(int port, uint16_t head,
uint32_t *payload)
{
int cnt = PD_HEADER_CNT(head);
if (PD_HEADER_TYPE(head) != PD_CTRL_GOOD_CRC || cnt)
send_goodcrc(port, PD_HEADER_ID(head));
else
/* keep RX monitoring on to avoid collisions */
pd_rx_enable_monitoring(port);
}
/* Convert CC voltage to CC status */
static int cc_voltage_to_status(int port, int cc_volt)
{
/* If we have a pull-up, then we are source, check for Rd. */
if (pd[port].cc_pull == TYPEC_CC_RP) {
if (CC_NC(cc_volt))
return TYPEC_CC_SRC_OPEN;
else if (CC_RA(cc_volt))
return TYPEC_CC_SRC_RA;
else
return TYPEC_CC_SRC_RD;
/* If we have a pull-down, then we are sink, check for Rp. */
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
else if (pd[port].cc_pull == TYPEC_CC_RD) {
if (cc_volt >= TYPE_C_SRC_3000_THRESHOLD)
return TYPEC_CC_SNK_PWR_3_0;
else if (cc_volt >= TYPE_C_SRC_1500_THRESHOLD)
return TYPEC_CC_SNK_PWR_1_5;
else if (CC_RP(cc_volt))
return TYPEC_CC_SNK_PWR_DEFAULT;
else
return TYPEC_CC_SNK_OPEN;
}
#endif
/* If we are open, then always return 0 */
else
return 0;
}
static void alert(int port, int reg, int mask)
{
pd[port].alert[reg] |= mask;
tcpc_alert();
}
void tcpc_init(int port)
{
/* Initialize physical layer */
pd_hw_init(port, PD_ROLE_DEFAULT);
/* make sure PD monitoring is enabled to wake on PD RX */
if (pd_comm_enabled)
pd_rx_enable_monitoring(port);
}
int tcpc_run(int port, int evt)
{
int cc, i, res;
/* incoming packet ? */
if (pd_rx_started(port) && pd_comm_enabled) {
pd[port].rx_head = pd_analyze_rx(port,
pd[port].rx_payload);
pd_rx_complete(port);
if (pd[port].rx_head > 0) {
handle_request(port,
pd[port].rx_head,
pd[port].rx_payload);
alert(port, TCPC_ALERT0, TCPC_ALERT0_RX_STATUS);
} else if (pd[port].rx_head == PD_RX_ERR_HARD_RESET) {
alert(port, TCPC_ALERT0,
TCPC_ALERT0_RX_HARD_RST);
}
}
/* outgoing packet ? */
if ((evt & PD_EVENT_TX) && pd_comm_enabled) {
switch (pd[port].tx_type) {
case TRANSMIT_SOP:
res = send_validate_message(port,
pd[port].tx_head,
pd[port].tx_data);
break;
case TRANSMIT_BIST_MODE_2:
bist_mode_2_tx(port);
res = 0;
break;
case TRANSMIT_HARD_RESET:
res = send_hard_reset(port);
break;
default:
break;
}
/* send appropriate alert for tx completion */
if (res >= 0)
alert(port, TCPC_ALERT0,
TCPC_ALERT0_TX_SUCCESS);
else if (res == PD_TX_ERR_GOODCRC)
alert(port, TCPC_ALERT0,
TCPC_ALERT0_TX_FAILED);
else
alert(port, TCPC_ALERT0,
TCPC_ALERT0_TX_DISCARDED);
}
/* CC pull changed, wait 1ms for CC voltage to stabilize */
if (evt & PD_EVENT_CC)
usleep(MSEC);
/* check CC lines */
for (i = 0; i < 2; i++) {
/* read CC voltage */
cc = pd_adc_read(port, i);
/* convert voltage to status, and check status change */
cc = cc_voltage_to_status(port, cc);
if (pd[port].cc_status[i] != cc) {
pd[port].cc_status[i] = cc;
alert(port, TCPC_ALERT0, TCPC_ALERT0_CC_STATUS);
}
}
/* make sure PD monitoring is enabled to wake on PD RX */
if (pd_comm_enabled)
pd_rx_enable_monitoring(port);
/* TODO: adjust timeout based on how often to sample CC */
return 10*MSEC;
}
#if 0
/* TODO: if we don't have TCPM on same CPU, we will need this task */
void pd_phy_task(void)
{
int port = TASK_ID_TO_PORT_PHY(task_get_current());
int timeout = 10*MSEC;
int evt;
/* initialize phy task */
tcpc_init(port);
while (1) {
/* wait for next event/packet or timeout expiration */
evt = task_wait_event(timeout);
/* run phy task once */
timeout = tcpc_run(port, evt);
}
}
#endif
void pd_rx_event(int port)
{
task_set_event(PORT_TO_TASK_ID(port), PD_EVENT_RX, 0);
}
int tcpc_alert_status(int port, int alert_reg)
{
int ret = pd[port].alert[alert_reg];
/* TODO: Alert register is read-clear for now, but shouldn't be */
pd[port].alert[alert_reg] = 0;
return ret;
}
void tcpc_set_cc(int port, int pull)
{
/* If CC pull resistor not changing, then nothing to do */
if (pd[port].cc_pull == pull)
return;
/* Change CC pull resistor */
pd[port].cc_pull = pull;
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_set_host_mode(port, pull == TYPEC_CC_RP);
#endif
/*
* Before CC pull can be changed and the task can read the new
* status, we should set the CC status to open, in case TCPM
* asks before it is known for sure.
*/
pd[port].cc_status[0] = pull == TYPEC_CC_RP ? TYPEC_CC_SRC_OPEN :
TYPEC_CC_SNK_OPEN;
pd[port].cc_status[1] = pd[port].cc_status[0];
/* Wake the PD phy task with special CC event mask */
/* TODO: use top case if no TCPM on same CPU */
#if 0
task_set_event(PORT_PHY_TO_TASK_ID(port), PD_EVENT_CC, 0);
#else
tcpc_run(port, PD_EVENT_CC);
#endif
}
int tcpc_get_cc(int port, int polarity)
{
return pd[port].cc_status[polarity];
}
void tcpc_set_polarity(int port, int polarity)
{
pd[port].polarity = polarity;
pd_select_polarity(port, pd[port].polarity);
}
void tcpc_set_vconn(int port, int enable)
{
#ifdef CONFIG_USBC_VCONN
pd_set_vconn(port, pd[port].polarity, enable);
#endif
}
void tcpc_transmit(int port, enum tcpm_transmit_type type, uint16_t header,
const uint32_t *data)
{
/* Store data to transmit and wake task to send it */
pd[port].tx_type = type;
pd[port].tx_head = header;
pd[port].tx_data = data;
/* TODO: use top case if no TCPM on same CPU */
#if 0
task_set_event(PORT_PHY_TO_TASK_ID(port), PD_EVENT_TX, 0);
#else
tcpc_run(port, PD_EVENT_TX);
#endif
}
void tcpc_set_msg_header(int port, int power_role, int data_role)
{
pd[port].power_role = power_role;
pd[port].data_role = data_role;
}
int tcpc_get_message(int port, uint32_t *payload)
{
memcpy(payload, pd[port].rx_payload, sizeof(pd[port].rx_payload));
return pd[port].rx_head;
}
#ifdef CONFIG_COMMON_RUNTIME
static int command_tcpc(int argc, char **argv)
{
int port;
char *e;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
if (!strcasecmp(argv[1], "dump")) {
int level;
if (argc < 3)
ccprintf("lvl: %d\n", debug_level);
else {
level = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
debug_level = level;
}
return EC_SUCCESS;
} else if (!strcasecmp(argv[1], "enable")) {
int enable;
if (argc < 3)
return EC_ERROR_PARAM_COUNT;
enable = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM3;
pd_comm_enabled = enable;
ccprintf("Ports %s\n", enable ? "enabled" : "disabled");
return EC_SUCCESS;
}
/* command: pd <port> <subcmd> [args] */
port = strtoi(argv[1], &e, 10);
if (argc < 3)
return EC_ERROR_PARAM_COUNT;
if (*e || port >= PD_PORT_COUNT)
return EC_ERROR_PARAM2;
if (!strcasecmp(argv[2], "clock")) {
int freq;
if (argc < 4)
return EC_ERROR_PARAM2;
freq = strtoi(argv[3], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
pd_set_clock(port, freq);
ccprintf("set TX frequency to %d Hz\n", freq);
return EC_SUCCESS;
} else if (!strncasecmp(argv[2], "state", 5)) {
ccprintf("Port C%d, %s - CC:%d, CC0:%d, CC1:%d, "
"Alert: 0x%02x 0x%02x\n", port,
pd_comm_enabled ? "Ena" : "Dis",
pd[port].cc_pull,
pd[port].cc_status[0], pd[port].cc_status[1],
pd[port].alert[0], pd[port].alert[1]);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(tcpc, command_tcpc,
"dump|enable [0|1]\n\t<port> [clock|state]",
"Type-C Port Controller",
NULL);
#endif

59
common/usb_pd_tcpm_stub.c Normal file
View File

@@ -0,0 +1,59 @@
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "usb_pd.h"
#include "usb_pd_tcpm.h"
extern int tcpc_alert_status(int port, int alert_reg);
extern int tcpc_get_cc(int port, int polarity);
extern void tcpc_set_cc(int port, int pull);
extern void tcpc_set_polarity(int port, int polarity);
extern void tcpc_set_vconn(int port, int enable);
extern void tcpc_set_msg_header(int port, int power_role, int data_role);
extern int tcpc_get_message(int port, uint32_t *payload);
extern void tcpc_transmit(int port, enum tcpm_transmit_type type,
uint16_t header, const uint32_t *data);
int tcpm_get_cc(int port, int polarity)
{
return tcpc_get_cc(port, polarity);
}
void tcpm_set_cc(int port, int pull)
{
return tcpc_set_cc(port, pull);
}
void tcpm_set_polarity(int port, int polarity)
{
return tcpc_set_polarity(port, polarity);
}
void tcpm_set_vconn(int port, int enable)
{
return tcpc_set_vconn(port, enable);
}
void tcpm_set_msg_header(int port, int power_role, int data_role)
{
return tcpc_set_msg_header(port, power_role, data_role);
}
int tcpm_alert_status(int port, int alert_reg)
{
return tcpc_alert_status(port, alert_reg);
}
int tcpm_get_message(int port, uint32_t *payload)
{
return tcpc_get_message(port, payload);
}
void tcpm_transmit(int port, enum tcpm_transmit_type type, uint16_t header,
const uint32_t *data)
{
return tcpc_transmit(port, type, header, data);
}

View File

@@ -22,8 +22,11 @@ enum pd_rx_errors {
PD_RX_ERR_CABLE_RESET = -6 /* Got a Cable-Reset packet */
};
/* incoming packet event (for the USB PD task) */
/* incoming/outgoing packet event (for the USB PD task) */
#define PD_EVENT_RX (1<<2)
#define PD_EVENT_TX (1<<3)
/* CC line change event */
#define PD_EVENT_CC (1<<4)
/* --- PD data message helpers --- */
#define PDO_MAX_OBJECTS 7
@@ -768,6 +771,13 @@ enum pd_data_msg_type {
#define PD_ROLE_VCONN_OFF 0
#define PD_ROLE_VCONN_ON 1
/* Port role at startup */
#ifdef CONFIG_USB_PD_DUAL_ROLE
#define PD_ROLE_DEFAULT PD_ROLE_SINK
#else
#define PD_ROLE_DEFAULT PD_ROLE_SOURCE
#endif
/* build message header */
#define PD_HEADER(type, prole, drole, id, cnt) \
((type) | (PD_REV20 << 6) | \

150
include/usb_pd_tcpm.h Normal file
View File

@@ -0,0 +1,150 @@
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* USB Power delivery port management */
#define TCPC_ALERT0 0
#define TCPC_ALERT0_I2C_WAKE (1<<7)
#define TCPC_ALERT0_POWER_STATUS (1<<6)
#define TCPC_ALERT0_CC_STATUS (1<<5)
#define TCPC_ALERT0_RX_STATUS (1<<4)
#define TCPC_ALERT0_RX_HARD_RST (1<<3)
#define TCPC_ALERT0_TX_SUCCESS (1<<2)
#define TCPC_ALERT0_TX_DISCARDED (1<<1)
#define TCPC_ALERT0_TX_FAILED (1<<0)
#define TCPC_ALERT0_TX_COMPLETE (TCPC_ALERT0_TX_SUCCESS | \
TCPC_ALERT0_TX_FAILED | \
TCPC_ALERT0_TX_FAILED)
#define TCPC_ALERT1 1
#define TCPC_ALERT1_GPIO_CHANGE (1<<3)
/* Default retry count for transmitting */
#define PD_RETRY_COUNT 3
/* Time to wait for TCPC to complete transmit */
#define PD_T_TCPC_TX_TIMEOUT (100*MSEC)
/**
* TCPC is asserting alert
*/
void tcpc_alert(void);
/**
* Initialize TCPC.
*
* @param port Type-C port number
*/
void tcpc_init(int port);
/**
* Run TCPC task once. This checks for incoming messages, processes
* any outgoing messages, and reads CC lines.
*
* @param port Type-C port number
* @param evt Event type that woke up this task
*/
int tcpc_run(int port, int evt);
/**
* Read TCPC alert status
*
* @param port Type-C port number
* @param alert_reg Alert register to read
*/
int tcpm_alert_status(int port, int alert_reg);
/**
* Read the CC line status.
*
* @param port Type-C port number
* @param polarity Polarity of the CC line to read
*
* @return CC status from enum tcpc_cc_status
*/
enum tcpc_cc_status {
/* CC status when we are a source (we expose Rp) */
TYPEC_CC_SRC_RA,
TYPEC_CC_SRC_RD,
TYPEC_CC_SRC_OPEN,
/* CC status when we are a sink (we expose Rd) */
TYPEC_CC_SNK_PWR_3_0,
TYPEC_CC_SNK_PWR_1_5,
TYPEC_CC_SNK_PWR_DEFAULT,
TYPEC_CC_SNK_OPEN
};
int tcpm_get_cc(int port, int polarity);
/**
* Set the CC pull resistor. This sets our role as either source or sink.
*
* @param port Type-C port number
* @param pull One of enum tcpc_cc_pull
*/
enum tcpc_cc_pull {
TYPEC_CC_RP,
TYPEC_CC_RD,
TYPEC_CC_OPEN
};
void tcpm_set_cc(int port, int pull);
/**
* Set polarity
*
* @param port Type-C port number
* @param polarity 0=> transmit on CC1, 1=> transmit on CC2
*/
void tcpm_set_polarity(int port, int polarity);
/**
* Set Vconn.
*
* @param port Type-C port number
* @param polarity Polarity of the CC line to read
*/
void tcpm_set_vconn(int port, int enable);
/**
* Set PD message header to use for goodCRC
*
* @param port Type-C port number
* @param power_role Power role to use in header
* @param data_role Data role to use in header
*/
void tcpm_set_msg_header(int port, int power_role, int data_role);
/**
* Read last received PD message.
*
* @param port Type-C port number
* @param payload Pointer to location to copy payload of message
*
* @return header of message
*/
int tcpm_get_message(int port, uint32_t *payload);
/**
* Transmit PD message
*
* @param port Type-C port number
* @param type Transmit type
* @param header Packet header
* @param cnt Number of bytes in payload
* @param data Payload
*/
enum tcpm_transmit_type {
TRANSMIT_SOP,
TRANSMIT_SOP_PRIME,
TRANSMIT_SOP_PRIME_PRIME,
TRANSMIT_SOP_DEBUG_PRIME,
TRANSMIT_SOP_DEBUG_PRIME_PRIME,
TRANSMIT_HARD_RESET,
TRANSMIT_CABLE_RESET,
TRANSMIT_BIST_MODE_2
};
void tcpm_transmit(int port, enum tcpm_transmit_type type, uint16_t header,
const uint32_t *data);