cgpt supports GptNextKernelEntry() and GptUpdateKernelEntry()

Review URL: http://codereview.chromium.org/1922004
This commit is contained in:
Louis Yung-Chieh Lo
2010-05-05 11:21:08 -07:00
parent 49fa8e51ad
commit b17db3c4b9
4 changed files with 527 additions and 35 deletions

View File

@@ -465,6 +465,14 @@ void UpdateCrc(GptData *gpt) {
primary_header = (GptHeader*)gpt->primary_header;
secondary_header = (GptHeader*)gpt->secondary_header;
if (gpt->modified & GPT_MODIFIED_ENTRIES1) {
primary_header->entries_crc32 =
Crc32(gpt->primary_entries, TOTAL_ENTRIES_SIZE);
}
if (gpt->modified & GPT_MODIFIED_ENTRIES2) {
secondary_header->entries_crc32 =
Crc32(gpt->secondary_entries, TOTAL_ENTRIES_SIZE);
}
if (gpt->modified & GPT_MODIFIED_HEADER1) {
primary_header->header_crc32 = 0;
primary_header->header_crc32 = Crc32(
@@ -475,14 +483,6 @@ void UpdateCrc(GptData *gpt) {
secondary_header->header_crc32 = Crc32(
(const uint8_t *)secondary_header, secondary_header->size);
}
if (gpt->modified & GPT_MODIFIED_ENTRIES1) {
primary_header->entries_crc32 =
Crc32(gpt->primary_entries, TOTAL_ENTRIES_SIZE);
}
if (gpt->modified & GPT_MODIFIED_ENTRIES2) {
secondary_header->entries_crc32 =
Crc32(gpt->secondary_entries, TOTAL_ENTRIES_SIZE);
}
}
/* Does every sanity check, and returns if any header/entries needs to be
@@ -528,25 +528,219 @@ int GptInit(GptData *gpt) {
UpdateCrc(gpt);
/* FIXME: will remove the next line soon. */
gpt->current_kernel = 1;
gpt->current_kernel = CGPT_KERNEL_ENTRY_NOT_FOUND;
return GPT_SUCCESS;
}
/* stub code */
static int start[] = { 34, 10034 };
/* Helper function to get a pointer to the partition entry.
* 'secondary' is either PRIMARY or SECONDARY.
* 'entry_index' is the partition index: [0, number_of_entries).
*/
GptEntry *GetEntry(GptData *gpt, int secondary, int entry_index) {
GptHeader *header;
uint8_t *entries;
if (secondary == PRIMARY) {
header = (GptHeader*)gpt->primary_header;
entries = gpt->primary_entries;
} else {
header = (GptHeader*)gpt->secondary_header;
entries = gpt->secondary_entries;
}
return (GptEntry*)(&entries[header->size_of_entry * entry_index]);
}
/* The following functions are helpers to access attributes bit more easily.
* 'secondary' is either PRIMARY or SECONDARY.
* 'entry_index' is the partition index: [0, number_of_entries).
*
* Get*() return the exact value (shifted and masked).
*/
void SetPriority(GptData *gpt, int secondary, int entry_index, int priority) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
assert(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY);
entry->attributes &= ~CGPT_ATTRIBUTE_PRIORITY_MASK;
entry->attributes |= (uint64_t)priority << CGPT_ATTRIBUTE_PRIORITY_OFFSET;
}
int GetPriority(GptData *gpt, int secondary, int entry_index) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
return (entry->attributes & CGPT_ATTRIBUTE_PRIORITY_MASK) >>
CGPT_ATTRIBUTE_PRIORITY_OFFSET;
}
void SetBad(GptData *gpt, int secondary, int entry_index, int bad) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
assert(bad >= 0 && bad <= CGPT_ATTRIBUTE_MAX_BAD);
entry->attributes &= ~CGPT_ATTRIBUTE_BAD_MASK;
entry->attributes |= (uint64_t)bad << CGPT_ATTRIBUTE_BAD_OFFSET;
}
int GetBad(GptData *gpt, int secondary, int entry_index) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
return (entry->attributes & CGPT_ATTRIBUTE_BAD_MASK) >>
CGPT_ATTRIBUTE_BAD_OFFSET;
}
void SetTries(GptData *gpt, int secondary, int entry_index, int tries) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
assert(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES);
entry->attributes &= ~CGPT_ATTRIBUTE_TRIES_MASK;
entry->attributes |= (uint64_t)tries << CGPT_ATTRIBUTE_TRIES_OFFSET;
}
int GetTries(GptData *gpt, int secondary, int entry_index) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
return (entry->attributes & CGPT_ATTRIBUTE_TRIES_MASK) >>
CGPT_ATTRIBUTE_TRIES_OFFSET;
}
void SetSuccess(GptData *gpt, int secondary, int entry_index, int success) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
assert(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESS);
entry->attributes &= ~CGPT_ATTRIBUTE_SUCCESS_MASK;
entry->attributes |= (uint64_t)success << CGPT_ATTRIBUTE_SUCCESS_OFFSET;
}
int GetSuccess(GptData *gpt, int secondary, int entry_index) {
GptEntry *entry;
entry = GetEntry(gpt, secondary, entry_index);
return (entry->attributes & CGPT_ATTRIBUTE_SUCCESS_MASK) >>
CGPT_ATTRIBUTE_SUCCESS_OFFSET;
}
/* Compare two priority values. Actually it is a circular priority, which is:
* 3 > 2 > 1 > 0, but 0 > 3. (-1 means very low, and anyone is higher than -1)
*
* Return 1 if 'a' has higher priority than 'b'.
*/
int IsHigherPriority(int a, int b) {
if ((a == 0) && (b == CGPT_ATTRIBUTE_MAX_PRIORITY))
return 1;
else if ((a == CGPT_ATTRIBUTE_MAX_PRIORITY) && (b == 0))
return 0;
else
return (a > b) ? 1 : 0;
}
/* This function walks through the whole partition table (see note below),
* and pick up the active and valid (not marked as bad) kernel entry with
* *highest* priority (except gpt->current_kernel itself).
*
* Returns start_sector and its size if a candidate kernel is found.
*
* Note: in the first walk (gpt->current_kernel==CGPT_KERNEL_ENTRY_NOT_FOUND),
* the scan range is whole table. But in later scans, we only scan
* (header->number_of_entries - 1) entries because we are looking for
* next kernel with lower priority (consider the case that highest
* priority kernel is still active and valid).
*/
int GptNextKernelEntry(GptData *gpt, uint64_t *start_sector, uint64_t *size) {
/* FIXME: the following code is not really code, just returns anything */
gpt->current_kernel ^= 1;
if (start_sector) *start_sector = start[gpt->current_kernel];
if (size) *size = 10000;
GptHeader *header;
GptEntry *entry;
int scan, current_priority;
int begin, end; /* [begin, end], which end is included. */
Guid chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
header = (GptHeader*)gpt->primary_header;
current_priority = -1; /* pretty low priority */
if (gpt->current_kernel == CGPT_KERNEL_ENTRY_NOT_FOUND) {
begin = 0;
end = header->number_of_entries - 1;
} else {
begin = (gpt->current_kernel + 1) % header->number_of_entries;
end = (gpt->current_kernel - 1 + header->number_of_entries) %
header->number_of_entries;
}
scan = begin;
do {
entry = GetEntry(gpt, PRIMARY, scan);
if (!Memcmp(&entry->type, &chromeos_kernel, sizeof(Guid)) &&
!GetBad(gpt, PRIMARY, scan) &&
((gpt->current_kernel == CGPT_KERNEL_ENTRY_NOT_FOUND) ||
(IsHigherPriority(GetPriority(gpt, PRIMARY, scan),
current_priority)))) {
gpt->current_kernel = scan;
current_priority = GetPriority(gpt, PRIMARY, gpt->current_kernel);
}
if (scan == end) break;
scan = (scan + 1) % header->number_of_entries;
} while (1);
if (gpt->current_kernel == CGPT_KERNEL_ENTRY_NOT_FOUND)
return GPT_ERROR_NO_VALID_KERNEL;
entry = GetEntry(gpt, PRIMARY, gpt->current_kernel);
assert(entry->starting_lba <= entry->ending_lba);
if (start_sector) *start_sector = entry->starting_lba;
if (size) *size = entry->ending_lba - entry->starting_lba + 1;
return GPT_SUCCESS;
}
/* Given a update_type, this function updates the corresponding bits in GptData.
*
* Returns GPT_SUCCESS if no error. gpt->modified is set if any header and
* entries needs to be updated to hard drive.
* GPT_ERROR_INVALID_UPDATE_TYPE if given an invalid update_type.
*/
int GptUpdateKernelEntry(GptData *gpt, uint32_t update_type) {
/* FIXME: the following code is not really code, just return anything */
gpt->modified |= (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1) <<
gpt->current_kernel;
Guid chromeos_type = GPT_ENT_TYPE_CHROMEOS_KERNEL;
int primary_is_modified = 0;
assert(gpt->current_kernel != CGPT_KERNEL_ENTRY_NOT_FOUND);
assert(!Memcmp(&(GetEntry(gpt, PRIMARY, gpt->current_kernel)->type),
&chromeos_type, sizeof(Guid)));
/* Modify primary entries first, then copy to secondary later. */
switch (update_type) {
case GPT_UPDATE_ENTRY_TRY: {
/* Increase tries value until CGPT_ATTRIBUTE_MAX_TRIES. */
int tries;
tries = GetTries(gpt, PRIMARY, gpt->current_kernel);
if (tries < CGPT_ATTRIBUTE_MAX_TRIES) {
++tries;
SetTries(gpt, PRIMARY, gpt->current_kernel, tries);
primary_is_modified = 1;
}
break;
}
case GPT_UPDATE_ENTRY_BAD: {
GetEntry(gpt, PRIMARY, gpt->current_kernel)->attributes |=
CGPT_ATTRIBUTE_BAD_MASK;
primary_is_modified = 1;
break;
}
default: {
return GPT_ERROR_INVALID_UPDATE_TYPE;
}
}
if (primary_is_modified) {
/* Claim only primary is valid so that secondary is overwritten. */
RepairEntries(gpt, MASK_PRIMARY);
/* Actually two entries are dirty now.
* Also two headers are dirty because entries_crc32 has been updated. */
gpt->modified |= (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 |
GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2);
UpdateCrc(gpt);
}
return GPT_SUCCESS;
}

View File

@@ -16,6 +16,7 @@ enum {
GPT_ERROR_INVALID_ENTRIES,
GPT_ERROR_INVALID_SECTOR_SIZE,
GPT_ERROR_INVALID_SECTOR_NUMBER,
GPT_ERROR_INVALID_UPDATE_TYPE,
};
/* Bit masks for GptData.modified field. */
@@ -24,12 +25,18 @@ enum {
#define GPT_MODIFIED_ENTRIES1 0x04
#define GPT_MODIFIED_ENTRIES2 0x08
#define GPT_UPDATE_ENTRY_TRY 1
/* The 'update_type' of GptUpdateKernelEntry()
* We expose TRY and BAD only because those are what verified boot needs.
* For more precise control on GPT attribute bits, please refer to
* gpt_internal.h */
enum {
GPT_UPDATE_ENTRY_TRY = 1,
/* System will be trying to boot the currently selected kernel partition.
* Update its try count if necessary. */
#define GPT_UPDATE_ENTRY_BAD 2
GPT_UPDATE_ENTRY_BAD = 2,
/* The currently selected kernel partition failed validation. Mark entry as
* invalid. */
};
/* Defines ChromeOS-specific limitation on GPT */
#define MIN_SIZE_OF_HEADER 92
@@ -79,17 +86,25 @@ typedef struct {
* 0x08 = table2 */
/* Internal state */
uint8_t current_kernel; /* the current kernel index */
int current_kernel; /* the current chromeos kernel index in partition table.
* -1 means not found on drive. */
} GptData;
int GptInit(GptData *gpt);
/* Initializes the GPT data structure's internal state. The header1, header2,
* table1, table2, and drive_size fields should be filled in first.
/* Initializes the GPT data structure's internal state. The following fields
* must be filled before calling this function:
*
* primary_header
* secondary_header
* primary_entries
* secondary_entries
* sector_bytes
* drive_sectors
*
* On return the modified field may be set, if the GPT data has been modified
* and should be written to disk.
*
* Returns 0 if successful, non-zero if error:
* Returns GPT_SUCCESS if successful, non-zero if error:
* GPT_ERROR_INVALID_HEADERS, both partition table headers are invalid, enters
* recovery mode,
* GPT_ERROR_INVALID_ENTRIES, both partition table entries are invalid, enters
@@ -104,7 +119,7 @@ int GptNextKernelEntry(GptData *gpt, uint64_t *start_sector, uint64_t *size);
* for the start of the kernel partition, and the size parameter contains the
* size of the kernel partition in LBA sectors.
*
* Returns 0 if successful, else
* Returns GPT_SUCCESS if successful, else
* GPT_ERROR_NO_VALID_KERNEL, no avaliable kernel, enters recovery mode */
int GptUpdateKernelEntry(GptData *gpt, uint32_t update_type);
@@ -114,6 +129,8 @@ int GptUpdateKernelEntry(GptData *gpt, uint32_t update_type);
* On return the modified field may be set, if the GPT data has been modified
* and should be written to disk.
*
* Returns 0 if successful, 1 if error. */
* Returns GPT_SUCCESS if successful, else
* GPT_ERROR_INVALID_UPDATE_TYPE, invalid 'update_type' is given.
*/
#endif /* VBOOT_REFERENCE_CGPT_H_ */

View File

@@ -9,8 +9,6 @@
#include <stdint.h>
#include "cgpt.h"
/* Internal use only.
* Don't use them unless you know what you are doing. */
int CheckParameters(GptData *gpt);
uint32_t CheckHeaderSignature(GptData *gpt);
uint32_t CheckRevision(GptData *gpt);
@@ -33,4 +31,52 @@ typedef struct {
uint64_t ending;
} pair_t;
GptEntry *GetEntry(GptData *gpt, int secondary, int entry_index);
void SetPriority(GptData *gpt, int secondary, int entry_index, int priority);
int GetPriority(GptData *gpt, int secondary, int entry_index);
void SetBad(GptData *gpt, int secondary, int entry_index, int bad);
int GetBad(GptData *gpt, int secondary, int entry_index);
void SetTries(GptData *gpt, int secondary, int entry_index, int tries);
int GetTries(GptData *gpt, int secondary, int entry_index);
void SetSuccess(GptData *gpt, int secondary, int entry_index, int success);
int GetSuccess(GptData *gpt, int secondary, int entry_index);
/* If gpt->current_kernel is this value, means either:
* 1. an initial value before scanning GPT entries,
* 2. after scanning, no any valid kernel is found.
*/
#define CGPT_KERNEL_ENTRY_NOT_FOUND (-1)
/* Bit definitions and masks for GPT attributes.
*
* 63 -- do not automounting
* 62 -- hidden
* 60 -- read-only
* :
* 57 -- bad kernel entry
* 56 -- success
* 55,52 -- tries
* 51,48 -- priority
* 0 -- system partition
*/
#define CGPT_ATTRIBUTE_BAD_OFFSET 57
#define CGPT_ATTRIBUTE_MAX_BAD (1ULL)
#define CGPT_ATTRIBUTE_BAD_MASK (CGPT_ATTRIBUTE_MAX_BAD << \
CGPT_ATTRIBUTE_BAD_OFFSET)
#define CGPT_ATTRIBUTE_SUCCESS_OFFSET 56
#define CGPT_ATTRIBUTE_MAX_SUCCESS (1ULL)
#define CGPT_ATTRIBUTE_SUCCESS_MASK (CGPT_ATTRIBUTE_MAX_SUCCESS << \
CGPT_ATTRIBUTE_SUCCESS_OFFSET)
#define CGPT_ATTRIBUTE_TRIES_OFFSET 52
#define CGPT_ATTRIBUTE_MAX_TRIES (15ULL)
#define CGPT_ATTRIBUTE_TRIES_MASK (CGPT_ATTRIBUTE_MAX_TRIES << \
CGPT_ATTRIBUTE_TRIES_OFFSET)
#define CGPT_ATTRIBUTE_PRIORITY_OFFSET 48
#define CGPT_ATTRIBUTE_MAX_PRIORITY (15ULL)
#define CGPT_ATTRIBUTE_PRIORITY_MASK (CGPT_ATTRIBUTE_MAX_PRIORITY << \
CGPT_ATTRIBUTE_PRIORITY_OFFSET)
#endif /* VBOOT_REFERENCE_CGPT_INTERNAL_H_ */

View File

@@ -15,17 +15,23 @@
/* Testing partition layout (sector_bytes=512)
*
* LBA Size Usage
* ---------------------------------------------------------
* 0 1 PMBR
* 1 1 primary partition header
* 2 32 primary partition entries (128B * 128)
* 34 100 kernel A
* 134 100 kernel B
* 234 100 root A
* 334 100 root B
* 34 100 kernel A (index: 0)
* 134 100 root A (index: 1)
* 234 100 root B (index: 2)
* 334 100 kernel B (index: 3)
* 434 32 secondary partition entries
* 466 1 secondary partition header
* 467
*/
#define KERNEL_A 0
#define ROOTFS_A 1
#define ROOTFS_B 2
#define KERNEL_B 3
#define DEFAULT_SECTOR_SIZE 512
#define MAX_SECTOR_SIZE 4096
#define DEFAULT_DRIVE_SECTORS 467
@@ -87,6 +93,9 @@ GptData* GetEmptyGptData() {
gpt.secondary_entries = secondary_entries;
ZeroHeadersEntries(&gpt);
/* Initialize GptData internal states. */
gpt.current_kernel = CGPT_KERNEL_ENTRY_NOT_FOUND;
return &gpt;
}
@@ -99,9 +108,11 @@ void BuildTestGptData(GptData *gpt) {
GptHeader *header, *header2;
GptEntry *entries, *entries2;
Guid chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
Guid chromeos_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS;
gpt->sector_bytes = DEFAULT_SECTOR_SIZE;
gpt->drive_sectors = DEFAULT_DRIVE_SECTORS;
gpt->current_kernel = CGPT_KERNEL_ENTRY_NOT_FOUND;
/* build primary */
header = (GptHeader*)gpt->primary_header;
@@ -119,10 +130,10 @@ void BuildTestGptData(GptData *gpt) {
Memcpy(&entries[0].type, &chromeos_kernel, sizeof(chromeos_kernel));
entries[0].starting_lba = 34;
entries[0].ending_lba = 133;
Memcpy(&entries[1].type, &chromeos_kernel, sizeof(chromeos_kernel));
Memcpy(&entries[1].type, &chromeos_rootfs, sizeof(chromeos_rootfs));
entries[1].starting_lba = 134;
entries[1].ending_lba = 233;
Memcpy(&entries[2].type, &chromeos_kernel, sizeof(chromeos_kernel));
Memcpy(&entries[2].type, &chromeos_rootfs, sizeof(chromeos_rootfs));
entries[2].starting_lba = 234;
entries[2].ending_lba = 333;
Memcpy(&entries[3].type, &chromeos_kernel, sizeof(chromeos_kernel));
@@ -888,6 +899,223 @@ int CorruptCombinationTest() {
return TEST_OK;
}
/* Invalidate all kernel entries and expect GptNextKernelEntry() cannot find
* any usable kernel entry.
*/
int NoValidKernelEntryTest() {
GptData *gpt;
GptEntry *entries, *entries2;
gpt = GetEmptyGptData();
entries = (GptEntry*)gpt->primary_entries;
entries2 = (GptEntry*)gpt->secondary_entries;
BuildTestGptData(gpt);
entries[KERNEL_A].attributes |= CGPT_ATTRIBUTE_BAD_MASK;
Memset(&entries[KERNEL_B].type, 0, sizeof(Guid));
RefreshCrc32(gpt);
EXPECT(GPT_ERROR_NO_VALID_KERNEL == GptNextKernelEntry(gpt, NULL, NULL));
return TEST_OK;
}
/* This is the combination test. Both kernel A and B could be either inactive
* or invalid. We expect GptNextKetnelEntry() returns good kernel or
* GPT_ERROR_NO_VALID_KERNEL if no kernel is available. */
enum FAILURE_MASK {
MASK_INACTIVE = 1,
MASK_BAD_ENTRY = 2,
MASK_FAILURE_BOTH = 3,
};
void BreakAnEntry(GptEntry *entry, enum FAILURE_MASK failure) {
if (failure & MASK_INACTIVE)
Memset(&entry->type, 0, sizeof(Guid));
if (failure & MASK_BAD_ENTRY)
entry->attributes |= CGPT_ATTRIBUTE_BAD_MASK;
}
int CombinationalNextKernelEntryTest() {
GptData *gpt;
enum {
MASK_KERNEL_A = 1,
MASK_KERNEL_B = 2,
MASK_KERNEL_BOTH = 3,
} kernel;
enum FAILURE_MASK failure;
uint64_t start_sector, size;
int retval;
for (kernel = MASK_KERNEL_A; kernel <= MASK_KERNEL_BOTH; ++kernel) {
for (failure = MASK_INACTIVE; failure < MASK_FAILURE_BOTH; ++failure) {
gpt = GetEmptyGptData();
BuildTestGptData(gpt);
if (kernel & MASK_KERNEL_A)
BreakAnEntry(GetEntry(gpt, PRIMARY, KERNEL_A), failure);
if (kernel & MASK_KERNEL_B)
BreakAnEntry(GetEntry(gpt, PRIMARY, KERNEL_B), failure);
retval = GptNextKernelEntry(gpt, &start_sector, &size);
if (kernel == MASK_KERNEL_A) {
EXPECT(retval == GPT_SUCCESS);
EXPECT(start_sector == 334);
} else if (kernel == MASK_KERNEL_B) {
EXPECT(retval == GPT_SUCCESS);
EXPECT(start_sector == 34);
} else { /* MASK_KERNEL_BOTH */
EXPECT(retval == GPT_ERROR_NO_VALID_KERNEL);
}
}
}
return TEST_OK;
}
/* Increase tries value from zero, expect it won't explode/overflow after
* CGPT_ATTRIBUTE_TRIES_MASK.
*/
/* Tries would not count up after CGPT_ATTRIBUTE_MAX_TRIES. */
#define EXPECTED_TRIES(tries) \
((tries >= CGPT_ATTRIBUTE_MAX_TRIES) ? CGPT_ATTRIBUTE_MAX_TRIES \
: tries)
int IncreaseTriesTest() {
GptData *gpt;
int kernel_index[] = {
KERNEL_B,
KERNEL_A,
};
int i, tries, j;
gpt = GetEmptyGptData();
for (i = 0; i < ARRAY_SIZE(kernel_index); ++i) {
GptEntry *entries[2] = {
(GptEntry*)gpt->primary_entries,
(GptEntry*)gpt->secondary_entries,
};
int current;
BuildTestGptData(gpt);
current = gpt->current_kernel = kernel_index[i];
for (tries = 0; tries < 2 * CGPT_ATTRIBUTE_MAX_TRIES; ++tries) {
for (j = 0; j < ARRAY_SIZE(entries); ++j) {
EXPECT(EXPECTED_TRIES(tries) ==
((entries[j][current].attributes & CGPT_ATTRIBUTE_TRIES_MASK) >>
CGPT_ATTRIBUTE_TRIES_OFFSET));
}
EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_TRY));
/* The expected tries value will be checked in next iteration. */
if (tries < CGPT_ATTRIBUTE_MAX_TRIES)
EXPECT((GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 |
GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2) == gpt->modified);
gpt->modified = 0; /* reset before next test */
EXPECT(0 ==
Memcmp(entries[PRIMARY], entries[SECONDARY], TOTAL_ENTRIES_SIZE));
}
}
return TEST_OK;
}
/* Mark a kernel as bad. Expect:
* 1. the both bad bits of kernel A in primary and secondary entries are set.
* 2. headers and entries are marked as modified.
* 3. primary and secondary entries are identical.
*/
int MarkBadKernelEntryTest() {
GptData *gpt;
GptEntry *entries, *entries2;
gpt = GetEmptyGptData();
entries = (GptEntry*)gpt->primary_entries;
entries2 = (GptEntry*)gpt->secondary_entries;
BuildTestGptData(gpt);
gpt->current_kernel = KERNEL_A;
EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_BAD));
EXPECT((GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 |
GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2) == gpt->modified);
EXPECT(entries[KERNEL_A].attributes & CGPT_ATTRIBUTE_BAD_MASK);
EXPECT(entries2[KERNEL_A].attributes & CGPT_ATTRIBUTE_BAD_MASK);
EXPECT(0 == Memcmp(entries, entries2, TOTAL_ENTRIES_SIZE));
return TEST_OK;
}
/* Given an invalid kernel type, and expect GptUpdateKernelEntry() returns
* GPT_ERROR_INVALID_UPDATE_TYPE. */
int UpdateInvalidKernelTypeTest() {
GptData *gpt;
gpt = GetEmptyGptData();
BuildTestGptData(gpt);
gpt->current_kernel = 0; /* anything, but not CGPT_KERNEL_ENTRY_NOT_FOUND */
EXPECT(GPT_ERROR_INVALID_UPDATE_TYPE ==
GptUpdateKernelEntry(gpt, 99)); /* any invalid update_type value */
return TEST_OK;
}
/* A normal boot case:
* GptInit()
* GptNextKernelEntry()
* GptUpdateKernelEntry()
*/
int NormalBootCase() {
GptData *gpt;
GptEntry *entries;
uint64_t start_sector, size;
gpt = GetEmptyGptData();
entries = (GptEntry*)gpt->primary_entries;
BuildTestGptData(gpt);
EXPECT(GPT_SUCCESS == GptInit(gpt));
EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start_sector, &size));
EXPECT(start_sector == 34); /* Kernel A, see top of this file. */
EXPECT(size == 100);
EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_TRY));
EXPECT(((entries[KERNEL_A].attributes & CGPT_ATTRIBUTE_TRIES_MASK) >>
CGPT_ATTRIBUTE_TRIES_OFFSET) == 1);
return TEST_OK;
}
/* Higher priority kernel should boot first.
* KERNEL_A is low priority
* KERNEL_B is high priority.
* We expect KERNEL_B is selected in first run, and then KERNEL_A.
* We also expect the GptNextKernelEntry() wraps back to KERNEL_B if it's called
* after twice.
*/
int HigherPriorityTest() {
GptData *gpt;
GptEntry *entries;
gpt = GetEmptyGptData();
entries = (GptEntry*)gpt->primary_entries;
BuildTestGptData(gpt);
SetPriority(gpt, PRIMARY, KERNEL_A, 0);
SetPriority(gpt, PRIMARY, KERNEL_B, 1);
RefreshCrc32(gpt);
EXPECT(GPT_SUCCESS == GptInit(gpt));
EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, NULL, NULL));
EXPECT(KERNEL_B == gpt->current_kernel);
EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, NULL, NULL));
EXPECT(KERNEL_A == gpt->current_kernel);
EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, NULL, NULL));
EXPECT(KERNEL_B == gpt->current_kernel);
return TEST_OK;
}
int main(int argc, char *argv[]) {
int i;
int error_count = 0;
@@ -916,6 +1144,13 @@ int main(int argc, char *argv[]) {
{ TEST_CASE(CorruptCombinationTest), },
{ TEST_CASE(TestQuickSortFixed), },
{ TEST_CASE(TestQuickSortRandom), },
{ TEST_CASE(NoValidKernelEntryTest), },
{ TEST_CASE(CombinationalNextKernelEntryTest), },
{ TEST_CASE(IncreaseTriesTest), },
{ TEST_CASE(MarkBadKernelEntryTest), },
{ TEST_CASE(UpdateInvalidKernelTypeTest), },
{ TEST_CASE(NormalBootCase), },
{ TEST_CASE(HigherPriorityTest), },
};
for (i = 0; i < sizeof(test_cases)/sizeof(test_cases[0]); ++i) {