mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-12 19:04:59 +00:00
Cr50: Added Pinweaver base implementation.
This adds some of the ground work for hardware backed brute force resistance on Cr50. The feature is called Pinweaver. It will initially be used to enable PIN authentication on CrOS devices without reducing the security of the platform. A Merkle tree is used to validate encrypted metadata used to track login attempts. The metadata tracks counts of failed attempts, a timestamp of the last failed attempt, the secrets, and any associated parameters. Instead of storing the metadata on Cr50 an AES-CTR is used with an HMAC to encrypt the data so it can be stored off-chip and loaded when needed. The Merkle tree is used to track the current state of all the metadata to prevent replay attacks of previously exported copies. It is a tree of hashes whose root hash is stored on Cr50, and whose leaves are the HMACs of the encrypted metadata. BRANCH=none BUG=chromium:809730, chromium:809741, chromium:809743, chromium:809747 TEST=cd ~/src/platform/ec && V=1 make run-pinweaver -j Change-Id: Id10bb49d8ebc5a487dd90c6093bc0f51dadbd124 Signed-off-by: Allen Webb <allenwebb@google.com> Reviewed-on: https://chromium-review.googlesource.com/895395 Reviewed-by: Vadim Bendebury <vbendeb@chromium.org>
This commit is contained in:
@@ -358,4 +358,7 @@ enum nvmem_users {
|
||||
|
||||
#define CONFIG_ENABLE_H1_ALERTS
|
||||
|
||||
/* Enable hardware backed brute force resistance feature */
|
||||
#define CONFIG_PINWEAVER
|
||||
|
||||
#endif /* __CROS_EC_BOARD_H */
|
||||
|
||||
@@ -99,3 +99,5 @@ $(out)/tpm2/libtpm2.a:
|
||||
$(MAKE) obj=$(realpath $(out))/tpm2 EMBEDDED_MODE=1 OBJ_PREFIX=Tpm2_ -C $(EXTLIB)
|
||||
|
||||
endif # BOARD_MK_INCLUDED_ONCE is nonempty
|
||||
|
||||
board-$(CONFIG_PINWEAVER)+=pinweaver_tpm_imports.o
|
||||
|
||||
20
board/cr50/pinweaver_tpm_imports.c
Normal file
20
board/cr50/pinweaver_tpm_imports.c
Normal file
@@ -0,0 +1,20 @@
|
||||
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#include <pinweaver_tpm_imports.h>
|
||||
|
||||
#include <Global.h>
|
||||
#include <util.h>
|
||||
|
||||
uint32_t get_restart_count(void)
|
||||
{
|
||||
return gp.resetCount;
|
||||
}
|
||||
|
||||
void get_storage_seed(void *buf, size_t *len)
|
||||
{
|
||||
*len = MIN(*len, sizeof(gp.SPSeed));
|
||||
memcpy(buf, &gp.SPSeed, *len);
|
||||
}
|
||||
61
board/host/dcrypto.h
Normal file
61
board/host/dcrypto.h
Normal file
@@ -0,0 +1,61 @@
|
||||
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
/* Provides the minimal declarations needed by pinweaver to build on
|
||||
* CHIP_HOST.
|
||||
*/
|
||||
|
||||
#ifndef __CROS_EC_DCRYPTO_HOST_H
|
||||
#define __CROS_EC_DCRYPTO_HOST_H
|
||||
|
||||
#include <sha256.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#define AES256_BLOCK_CIPHER_KEY_SIZE 32
|
||||
#define SHA256_DIGEST_SIZE 32
|
||||
|
||||
#define HASH_CTX sha256_ctx
|
||||
|
||||
enum dcrypto_appid {
|
||||
RESERVED = 0,
|
||||
NVMEM = 1,
|
||||
U2F_ATTEST = 2,
|
||||
U2F_ORIGIN = 3,
|
||||
U2F_WRAP = 4,
|
||||
PERSO_AUTH = 5,
|
||||
PINWEAVER = 6,
|
||||
/* This enum value should not exceed 7. */
|
||||
};
|
||||
|
||||
struct dcrypto_mock_ctx_t {
|
||||
struct HASH_CTX hash;
|
||||
};
|
||||
#define LITE_HMAC_CTX struct dcrypto_mock_ctx_t
|
||||
#define LITE_SHA256_CTX struct HASH_CTX
|
||||
|
||||
void HASH_update(struct HASH_CTX *ctx, const void *data, size_t len);
|
||||
|
||||
uint8_t *HASH_final(struct HASH_CTX *ctx);
|
||||
|
||||
void DCRYPTO_SHA256_init(LITE_SHA256_CTX *ctx, uint32_t sw_required);
|
||||
|
||||
void DCRYPTO_HMAC_SHA256_init(LITE_HMAC_CTX *ctx, const void *key,
|
||||
unsigned int len);
|
||||
const uint8_t *DCRYPTO_HMAC_final(LITE_HMAC_CTX *ctx);
|
||||
|
||||
int DCRYPTO_aes_ctr(uint8_t *out, const uint8_t *key, uint32_t key_bits,
|
||||
const uint8_t *iv, const uint8_t *in, size_t in_len);
|
||||
|
||||
struct APPKEY_CTX {};
|
||||
|
||||
int DCRYPTO_appkey_init(enum dcrypto_appid appid, struct APPKEY_CTX *ctx);
|
||||
|
||||
void DCRYPTO_appkey_finish(struct APPKEY_CTX *ctx);
|
||||
|
||||
int DCRYPTO_appkey_derive(enum dcrypto_appid appid, const uint32_t input[8],
|
||||
uint32_t output[8]);
|
||||
|
||||
#endif /* __CROS_EC_HOST_DCRYPTO_H */
|
||||
@@ -49,7 +49,6 @@ const struct {
|
||||
0xcd375bcd, 0x8065e8cc, 0xc892ed69, 0x72436c7d
|
||||
}
|
||||
},
|
||||
#ifdef CONFIG_STREAM_SIGNATURE
|
||||
{
|
||||
/* This key signs data from H1's configured by mn50/scribe. */
|
||||
"PERSO_AUTH",
|
||||
@@ -58,7 +57,13 @@ const struct {
|
||||
0x5ecb7690, 0x09f732c9, 0xe540bf14, 0xcc46799a
|
||||
}
|
||||
},
|
||||
#endif
|
||||
{
|
||||
"PINWEAVER",
|
||||
{
|
||||
0x51cd9166, 0x911a7460, 0x96aeaf06, 0xa9d0371c,
|
||||
0xfa08a500, 0xfe4e04a1, 0xe0a36b57, 0x0418c429
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
int DCRYPTO_appkey_init(enum dcrypto_appid appid, struct APPKEY_CTX *ctx)
|
||||
|
||||
@@ -274,6 +274,7 @@ enum dcrypto_appid {
|
||||
U2F_ORIGIN = 3,
|
||||
U2F_WRAP = 4,
|
||||
PERSO_AUTH = 5,
|
||||
PINWEAVER = 6,
|
||||
/* This enum value should not exceed 7. */
|
||||
};
|
||||
|
||||
|
||||
@@ -81,6 +81,7 @@ common-$(CONFIG_MAG_CALIBRATE)+= mag_cal.o math_util.o vec3.o mat33.o mat44.o
|
||||
common-$(CONFIG_MKBP_EVENT)+=mkbp_event.o
|
||||
common-$(CONFIG_ONEWIRE)+=onewire.o
|
||||
common-$(CONFIG_PHYSICAL_PRESENCE)+=physical_presence.o
|
||||
common-$(CONFIG_PINWEAVER)+=pinweaver.o
|
||||
common-$(CONFIG_POWER_BUTTON)+=power_button.o
|
||||
common-$(CONFIG_POWER_BUTTON_X86)+=power_button_x86.o
|
||||
common-$(CONFIG_PSTORE)+=pstore_commands.o
|
||||
|
||||
894
common/pinweaver.c
Normal file
894
common/pinweaver.c
Normal file
@@ -0,0 +1,894 @@
|
||||
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#include <common.h>
|
||||
#include <console.h>
|
||||
#include <dcrypto.h>
|
||||
#include <pinweaver.h>
|
||||
#include <pinweaver_tpm_imports.h>
|
||||
#include <pinweaver_types.h>
|
||||
#include <timer.h>
|
||||
#include <trng.h>
|
||||
#include <tpm_registers.h>
|
||||
#include <util.h>
|
||||
|
||||
/* Compile time sanity checks. */
|
||||
/* Make sure the hash size is consistent with dcrypto. */
|
||||
BUILD_ASSERT(PW_HASH_SIZE >= SHA256_DIGEST_SIZE);
|
||||
|
||||
/* sizeof(struct leaf_data_t) % 16 should be zero */
|
||||
BUILD_ASSERT(sizeof(struct leaf_sensitive_data_t) % PW_WRAP_BLOCK_SIZE == 0);
|
||||
|
||||
BUILD_ASSERT(sizeof(((struct merkle_tree_t *)0)->wrap_key) ==
|
||||
AES256_BLOCK_CIPHER_KEY_SIZE);
|
||||
|
||||
/* Verify that the request structs will fit into the message. */
|
||||
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE >=
|
||||
sizeof(struct pw_request_header_t) +
|
||||
sizeof(union {struct pw_request_insert_leaf_t insert_leaf;
|
||||
struct pw_request_remove_leaf_t remove_leaf;
|
||||
struct pw_request_try_auth_t try_auth;
|
||||
struct pw_request_reset_auth_t reset_auth; }) +
|
||||
sizeof(struct leaf_public_data_t) +
|
||||
sizeof(struct leaf_sensitive_data_t) +
|
||||
PW_MAX_PATH_SIZE);
|
||||
|
||||
/* Verify that the request structs will fit into the message. */
|
||||
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE >=
|
||||
sizeof(struct pw_response_header_t) +
|
||||
sizeof(union {struct pw_response_insert_leaf_t insert_leaf;
|
||||
struct pw_response_try_auth_t try_auth;
|
||||
struct pw_response_reset_auth_t reset_auth; }) +
|
||||
PW_LEAF_PAYLOAD_SIZE);
|
||||
/* Make sure the largest possible message would fit in
|
||||
* (struct tpm_register_file).data_fifo.
|
||||
*/
|
||||
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE + sizeof(struct tpm_cmd_header) <= 2048);
|
||||
|
||||
/* PW_MAX_PATH_SIZE should not change unless PW_LEAF_MAJOR_VERSION changes too.
|
||||
* Update these statements whenever these constants are changed to remind future
|
||||
* maintainers about this requirement.
|
||||
*
|
||||
* This requirement helps guarantee that forward compatibility across the same
|
||||
* PW_LEAF_MAJOR_VERSION doesn't break because of a path length becoming too
|
||||
* long after new fields are added to struct wrapped_leaf_data_t or its sub
|
||||
* fields.
|
||||
*/
|
||||
BUILD_ASSERT(PW_LEAF_MAJOR_VERSION == 0);
|
||||
BUILD_ASSERT(PW_MAX_PATH_SIZE == 1536);
|
||||
|
||||
/* If fields are appended to struct leaf_sensitive_data_t, an encryption
|
||||
* operation should be performed on them reusing the same IV since the prefix
|
||||
* won't change.
|
||||
*
|
||||
* If any data in the original struct leaf_sensitive_data_t changes, a new IV
|
||||
* should be generated and stored as part of the log for a replay to be
|
||||
* possible.
|
||||
*/
|
||||
BUILD_ASSERT(sizeof(struct leaf_sensitive_data_t) == 3 * PW_SECRET_SIZE);
|
||||
|
||||
/******************************************************************************/
|
||||
/* Struct helper functions.
|
||||
*/
|
||||
|
||||
void import_leaf(const struct unimported_leaf_data_t *unimported,
|
||||
struct imported_leaf_data_t *imported)
|
||||
{
|
||||
imported->head = &unimported->head;
|
||||
imported->hmac = unimported->hmac;
|
||||
imported->iv = unimported->iv;
|
||||
imported->pub = (const struct leaf_public_data_t *)unimported->payload;
|
||||
imported->cipher_text = unimported->payload + unimported->head.pub_len;
|
||||
imported->hashes = (const uint8_t (*)[PW_HASH_SIZE])(
|
||||
imported->cipher_text + unimported->head.sec_len);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/* Basic operations required by the Merkle tree.
|
||||
*/
|
||||
|
||||
static int derive_keys(struct merkle_tree_t *merkle_tree)
|
||||
{
|
||||
struct APPKEY_CTX ctx;
|
||||
int ret = EC_SUCCESS;
|
||||
const uint32_t KEY_TYPE_AES = 0x0;
|
||||
const uint32_t KEY_TYPE_HMAC = 0xffffffff;
|
||||
union {
|
||||
uint32_t v[8];
|
||||
uint8_t bytes[sizeof(uint32_t) * 8];
|
||||
} input;
|
||||
uint32_t type_field;
|
||||
size_t seed_size = sizeof(input);
|
||||
size_t x;
|
||||
|
||||
get_storage_seed(input.v, &seed_size);
|
||||
for (x = 0; x < ARRAY_SIZE(input.bytes) &&
|
||||
x < ARRAY_SIZE(merkle_tree->key_derivation_nonce); ++x)
|
||||
input.bytes[x] ^= merkle_tree->key_derivation_nonce[x];
|
||||
type_field = input.v[6];
|
||||
|
||||
if (!DCRYPTO_appkey_init(PINWEAVER, &ctx))
|
||||
return PW_ERR_CRYPTO_FAILURE;
|
||||
|
||||
input.v[6] = type_field ^ KEY_TYPE_AES;
|
||||
if (!DCRYPTO_appkey_derive(PINWEAVER, input.v,
|
||||
(uint32_t *)merkle_tree->wrap_key)) {
|
||||
ret = PW_ERR_CRYPTO_FAILURE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
input.v[6] = type_field ^ KEY_TYPE_HMAC;
|
||||
if (!DCRYPTO_appkey_derive(PINWEAVER, input.v,
|
||||
(uint32_t *)merkle_tree->hmac_key)) {
|
||||
ret = PW_ERR_CRYPTO_FAILURE;
|
||||
}
|
||||
cleanup:
|
||||
DCRYPTO_appkey_finish(&ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Creates an empty merkle_tree with the given parameters. */
|
||||
static int create_merkle_tree(struct bits_per_level_t bits_per_level,
|
||||
struct height_t height,
|
||||
struct merkle_tree_t *merkle_tree)
|
||||
{
|
||||
uint16_t fan_out = 1 << bits_per_level.v;
|
||||
uint8_t temp_hash[PW_HASH_SIZE] = {};
|
||||
uint8_t hx;
|
||||
uint16_t kx;
|
||||
LITE_SHA256_CTX ctx;
|
||||
|
||||
merkle_tree->bits_per_level = bits_per_level;
|
||||
merkle_tree->height = height;
|
||||
|
||||
/* Initialize the root hash. */
|
||||
for (hx = 0; hx < height.v; ++hx) {
|
||||
DCRYPTO_SHA256_init(&ctx, 0);
|
||||
for (kx = 0; kx < fan_out; ++kx)
|
||||
HASH_update(&ctx, temp_hash, PW_HASH_SIZE);
|
||||
memcpy(temp_hash, HASH_final(&ctx), PW_HASH_SIZE);
|
||||
}
|
||||
memcpy(merkle_tree->root, temp_hash, PW_HASH_SIZE);
|
||||
|
||||
rand_bytes(merkle_tree->key_derivation_nonce,
|
||||
sizeof(merkle_tree->key_derivation_nonce));
|
||||
return derive_keys(merkle_tree);
|
||||
}
|
||||
|
||||
/* Computes the HMAC for an encrypted leaf using the key in the merkle_tree. */
|
||||
static void compute_hmac(
|
||||
const struct merkle_tree_t *merkle_tree,
|
||||
const struct imported_leaf_data_t *imported_leaf_data,
|
||||
uint8_t result[PW_HASH_SIZE])
|
||||
{
|
||||
LITE_HMAC_CTX hmac;
|
||||
|
||||
DCRYPTO_HMAC_SHA256_init(&hmac, merkle_tree->hmac_key,
|
||||
sizeof(merkle_tree->hmac_key));
|
||||
HASH_update(&hmac.hash, imported_leaf_data->head,
|
||||
sizeof(*imported_leaf_data->head));
|
||||
HASH_update(&hmac.hash, imported_leaf_data->iv,
|
||||
sizeof(PW_WRAP_BLOCK_SIZE));
|
||||
HASH_update(&hmac.hash, imported_leaf_data->pub,
|
||||
imported_leaf_data->head->pub_len);
|
||||
HASH_update(&hmac.hash, imported_leaf_data->cipher_text,
|
||||
imported_leaf_data->head->sec_len);
|
||||
memcpy(result, DCRYPTO_HMAC_final(&hmac), PW_HASH_SIZE);
|
||||
}
|
||||
|
||||
/* Computes the root hash for the specified path and child hash. */
|
||||
static void compute_root_hash(const struct merkle_tree_t *merkle_tree,
|
||||
struct label_t path,
|
||||
const uint8_t hashes[][PW_HASH_SIZE],
|
||||
const uint8_t child_hash[PW_HASH_SIZE],
|
||||
uint8_t new_root[PW_HASH_SIZE])
|
||||
{
|
||||
/* This is one less than the fan out, the number of sibling hashes. */
|
||||
const uint16_t num_aux = (1 << merkle_tree->bits_per_level.v) - 1;
|
||||
const uint16_t path_suffix_mask = num_aux;
|
||||
uint8_t temp_hash[PW_HASH_SIZE];
|
||||
uint8_t hx = 0;
|
||||
uint64_t index = path.v;
|
||||
|
||||
compute_hash(hashes, num_aux,
|
||||
(struct index_t){index & path_suffix_mask},
|
||||
child_hash, temp_hash);
|
||||
for (hx = 1; hx < merkle_tree->height.v; ++hx) {
|
||||
hashes += num_aux;
|
||||
index = index >> merkle_tree->bits_per_level.v;
|
||||
compute_hash(hashes, num_aux,
|
||||
(struct index_t){index & path_suffix_mask},
|
||||
temp_hash, temp_hash);
|
||||
}
|
||||
memcpy(new_root, temp_hash, sizeof(temp_hash));
|
||||
}
|
||||
|
||||
/* Checks to see the specified path is valid. The length of the path should be
|
||||
* validated prior to calling this function.
|
||||
*
|
||||
* Returns 0 on success or an error code otherwise.
|
||||
*/
|
||||
static int authenticate_path(const struct merkle_tree_t *merkle_tree,
|
||||
struct label_t path,
|
||||
const uint8_t hashes[][PW_HASH_SIZE],
|
||||
const uint8_t child_hash[PW_HASH_SIZE])
|
||||
{
|
||||
uint8_t parent[PW_HASH_SIZE];
|
||||
|
||||
compute_root_hash(merkle_tree, path, hashes, child_hash, parent);
|
||||
if (memcmp(parent, merkle_tree->root, sizeof(parent)) != 0)
|
||||
return PW_ERR_PATH_AUTH_FAILED;
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
static void init_wrapped_leaf_data(
|
||||
struct wrapped_leaf_data_t *wrapped_leaf_data)
|
||||
{
|
||||
wrapped_leaf_data->head.leaf_version.major = PW_LEAF_MAJOR_VERSION;
|
||||
wrapped_leaf_data->head.leaf_version.minor = PW_LEAF_MINOR_VERSION;
|
||||
wrapped_leaf_data->head.pub_len = sizeof(wrapped_leaf_data->pub);
|
||||
wrapped_leaf_data->head.sec_len =
|
||||
sizeof(wrapped_leaf_data->cipher_text);
|
||||
}
|
||||
|
||||
/* Encrypts the leaf meta data. */
|
||||
static int encrypt_leaf_data(const struct merkle_tree_t *merkle_tree,
|
||||
const struct leaf_data_t *leaf_data,
|
||||
struct wrapped_leaf_data_t *wrapped_leaf_data)
|
||||
{
|
||||
/* Generate a random IV.
|
||||
*
|
||||
* If fields are appended to struct leaf_sensitive_data_t, an encryption
|
||||
* operation should be performed on them reusing the same IV since the
|
||||
* prefix won't change.
|
||||
*
|
||||
* If any data of in the original struct leaf_sensitive_data_t changes,
|
||||
* a new IV should be generated and stored as part of the log for a
|
||||
* replay to be possible.
|
||||
*/
|
||||
rand_bytes(wrapped_leaf_data->iv, sizeof(wrapped_leaf_data->iv));
|
||||
memcpy(&wrapped_leaf_data->pub, &leaf_data->pub,
|
||||
sizeof(leaf_data->pub));
|
||||
if (!DCRYPTO_aes_ctr(wrapped_leaf_data->cipher_text,
|
||||
merkle_tree->wrap_key,
|
||||
sizeof(merkle_tree->wrap_key) << 3,
|
||||
wrapped_leaf_data->iv, (uint8_t *)&leaf_data->sec,
|
||||
sizeof(leaf_data->sec))) {
|
||||
return PW_ERR_CRYPTO_FAILURE;
|
||||
}
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
/* Decrypts the leaf meta data. */
|
||||
static int decrypt_leaf_data(
|
||||
const struct merkle_tree_t *merkle_tree,
|
||||
const struct imported_leaf_data_t *imported_leaf_data,
|
||||
struct leaf_data_t *leaf_data)
|
||||
{
|
||||
memcpy(&leaf_data->pub, imported_leaf_data->pub,
|
||||
sizeof(leaf_data->pub));
|
||||
if (!DCRYPTO_aes_ctr((uint8_t *)&leaf_data->sec, merkle_tree->wrap_key,
|
||||
sizeof(merkle_tree->wrap_key) << 3,
|
||||
imported_leaf_data->iv,
|
||||
imported_leaf_data->cipher_text,
|
||||
sizeof(leaf_data->sec))) {
|
||||
return PW_ERR_CRYPTO_FAILURE;
|
||||
}
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
static int handle_leaf_update(
|
||||
const struct merkle_tree_t *merkle_tree,
|
||||
const struct leaf_data_t *leaf_data,
|
||||
const uint8_t hashes[][PW_HASH_SIZE],
|
||||
struct wrapped_leaf_data_t *wrapped_leaf_data,
|
||||
uint8_t new_root[PW_HASH_SIZE],
|
||||
const struct imported_leaf_data_t *optional_old_wrapped_data)
|
||||
{
|
||||
int ret;
|
||||
struct imported_leaf_data_t ptrs;
|
||||
|
||||
init_wrapped_leaf_data(wrapped_leaf_data);
|
||||
if (optional_old_wrapped_data == NULL) {
|
||||
ret = encrypt_leaf_data(merkle_tree, leaf_data,
|
||||
wrapped_leaf_data);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
} else {
|
||||
memcpy(wrapped_leaf_data->iv, optional_old_wrapped_data->iv,
|
||||
sizeof(wrapped_leaf_data->iv));
|
||||
memcpy(&wrapped_leaf_data->pub, &leaf_data->pub,
|
||||
sizeof(leaf_data->pub));
|
||||
memcpy(wrapped_leaf_data->cipher_text,
|
||||
optional_old_wrapped_data->cipher_text,
|
||||
sizeof(wrapped_leaf_data->cipher_text));
|
||||
}
|
||||
|
||||
import_leaf((const struct unimported_leaf_data_t *)wrapped_leaf_data,
|
||||
&ptrs);
|
||||
compute_hmac(merkle_tree, &ptrs, wrapped_leaf_data->hmac);
|
||||
|
||||
compute_root_hash(merkle_tree, leaf_data->pub.label,
|
||||
hashes, wrapped_leaf_data->hmac,
|
||||
new_root);
|
||||
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/* Parameter and state validation functions.
|
||||
*/
|
||||
|
||||
static int validate_tree_parameters(struct bits_per_level_t bits_per_level,
|
||||
struct height_t height)
|
||||
{
|
||||
uint8_t fan_out = 1 << bits_per_level.v;
|
||||
|
||||
if (bits_per_level.v < BITS_PER_LEVEL_MIN ||
|
||||
bits_per_level.v > BITS_PER_LEVEL_MAX)
|
||||
return PW_ERR_BITS_PER_LEVEL_INVALID;
|
||||
|
||||
if (height.v < HEIGHT_MIN ||
|
||||
height.v > HEIGHT_MAX(bits_per_level.v) ||
|
||||
((fan_out - 1) * height.v) * PW_HASH_SIZE > PW_MAX_PATH_SIZE)
|
||||
return PW_ERR_HEIGHT_INVALID;
|
||||
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
/* Verifies that merkle_tree has been initialized. */
|
||||
static int validate_tree(const struct merkle_tree_t *merkle_tree)
|
||||
{
|
||||
if (validate_tree_parameters(merkle_tree->bits_per_level,
|
||||
merkle_tree->height) != EC_SUCCESS)
|
||||
return PW_ERR_TREE_INVALID;
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
/* Checks the following conditions:
|
||||
* Extra index fields should be all zero.
|
||||
*/
|
||||
static int validate_label(const struct merkle_tree_t *merkle_tree,
|
||||
struct label_t path)
|
||||
{
|
||||
uint8_t shift_by = merkle_tree->bits_per_level.v *
|
||||
merkle_tree->height.v;
|
||||
|
||||
if ((path.v >> shift_by) == 0)
|
||||
return EC_SUCCESS;
|
||||
return PW_ERR_LABEL_INVALID;
|
||||
}
|
||||
|
||||
/* Checks the following conditions:
|
||||
* Columns should be strictly increasing.
|
||||
* Zeroes for filler at the end of the delay_schedule are permitted.
|
||||
*/
|
||||
static int validate_delay_schedule(const struct delay_schedule_entry_t
|
||||
delay_schedule[PW_SCHED_COUNT])
|
||||
{
|
||||
size_t x;
|
||||
|
||||
/* The first entry should not be useless. */
|
||||
if (delay_schedule[0].time_diff.v == 0)
|
||||
return PW_ERR_DELAY_SCHEDULE_INVALID;
|
||||
|
||||
for (x = PW_SCHED_COUNT - 1; x > 0; --x) {
|
||||
if (delay_schedule[x].attempt_count.v == 0) {
|
||||
if (delay_schedule[x].time_diff.v != 0)
|
||||
return PW_ERR_DELAY_SCHEDULE_INVALID;
|
||||
} else if (delay_schedule[x].attempt_count.v <=
|
||||
delay_schedule[x - 1].attempt_count.v ||
|
||||
delay_schedule[x].time_diff.v <=
|
||||
delay_schedule[x - 1].time_diff.v) {
|
||||
return PW_ERR_DELAY_SCHEDULE_INVALID;
|
||||
}
|
||||
}
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
static int validate_leaf_header(const struct leaf_header_t *head,
|
||||
uint16_t payload_len, uint16_t aux_hash_len)
|
||||
{
|
||||
uint32_t leaf_payload_len = head->pub_len + head->sec_len;
|
||||
|
||||
if (head->leaf_version.major != PW_LEAF_MAJOR_VERSION)
|
||||
return PW_ERR_LEAF_VERSION_MISMATCH;
|
||||
|
||||
if (head->leaf_version.minor == PW_LEAF_MINOR_VERSION) {
|
||||
if (leaf_payload_len != PW_LEAF_PAYLOAD_SIZE)
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
} else if (leaf_payload_len < PW_LEAF_PAYLOAD_SIZE)
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
|
||||
if (payload_len != leaf_payload_len + aux_hash_len * PW_HASH_SIZE)
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
/* Common validation for requests that include a path to authenticate. */
|
||||
static int validate_request_with_path(const struct merkle_tree_t *merkle_tree,
|
||||
struct label_t path,
|
||||
const uint8_t hashes[][PW_HASH_SIZE],
|
||||
const uint8_t hmac[PW_HASH_SIZE])
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = validate_tree(merkle_tree);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
ret = validate_label(merkle_tree, path);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
return authenticate_path(merkle_tree, path, hashes, hmac);
|
||||
}
|
||||
|
||||
/* Common validation for requests that import a leaf. */
|
||||
static int validate_request_with_wrapped_leaf(
|
||||
const struct merkle_tree_t *merkle_tree,
|
||||
uint16_t payload_len,
|
||||
const struct unimported_leaf_data_t *unimported_leaf_data,
|
||||
struct imported_leaf_data_t *imported_leaf_data,
|
||||
struct leaf_data_t *leaf_data)
|
||||
{
|
||||
int ret;
|
||||
uint8_t hmac[PW_HASH_SIZE];
|
||||
|
||||
ret = validate_leaf_header(&unimported_leaf_data->head, payload_len,
|
||||
get_path_auxiliary_hash_count(merkle_tree));
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
import_leaf(unimported_leaf_data, imported_leaf_data);
|
||||
ret = validate_request_with_path(merkle_tree,
|
||||
imported_leaf_data->pub->label,
|
||||
imported_leaf_data->hashes,
|
||||
imported_leaf_data->hmac);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
compute_hmac(merkle_tree, imported_leaf_data, hmac);
|
||||
/* Safe memcmp is used here to prevent an attacker from being able to
|
||||
* brute force a valid HMAC for a crafted wrapped_leaf_data.
|
||||
* memcmp provides an attacker a timing side-channel they can use to
|
||||
* determine how much of a prefix is correct.
|
||||
*/
|
||||
if (safe_memcmp(hmac, unimported_leaf_data->hmac, sizeof(hmac)))
|
||||
return PW_ERR_HMAC_AUTH_FAILED;
|
||||
|
||||
return decrypt_leaf_data(merkle_tree, imported_leaf_data, leaf_data);
|
||||
}
|
||||
|
||||
/* Sets the value of ts to the current notion of time. */
|
||||
static void update_timestamp(struct pw_timestamp_t *ts)
|
||||
{
|
||||
ts->timer_value = get_time().val / SECOND;
|
||||
ts->boot_count = get_restart_count();
|
||||
}
|
||||
|
||||
/* Checks if an auth attempt can be made or not based on the delay schedule.
|
||||
* EC_SUCCESS is returned when a new attempt can be made otherwise
|
||||
* seconds_to_wait will be updated with the remaining wait time required.
|
||||
*/
|
||||
static int test_rate_limit(struct leaf_data_t *leaf_data,
|
||||
struct time_diff_t *seconds_to_wait)
|
||||
{
|
||||
uint64_t ready_time;
|
||||
uint8_t x;
|
||||
struct pw_timestamp_t current_time;
|
||||
struct time_diff_t delay = {0};
|
||||
|
||||
/* This loop ends when x is one greater than the index that applies. */
|
||||
for (x = 0; x < ARRAY_SIZE(leaf_data->pub.delay_schedule); ++x) {
|
||||
/* Stop if a null entry is reached. The first part of the delay
|
||||
* schedule has a list of increasing (attempt_count, time_diff)
|
||||
* pairs with any unused entries zeroed out at the end.
|
||||
*/
|
||||
if (leaf_data->pub.delay_schedule[x].attempt_count.v == 0)
|
||||
break;
|
||||
|
||||
/* Stop once a delay schedule entry is reached whose
|
||||
* threshold is greater than the current number of
|
||||
* attempts.
|
||||
*/
|
||||
if (leaf_data->pub.attempt_count.v <
|
||||
leaf_data->pub.delay_schedule[x].attempt_count.v)
|
||||
break;
|
||||
}
|
||||
|
||||
/* If the first threshold was greater than the current number of
|
||||
* attempts, there is no delay. Otherwise, grab the delay from the
|
||||
* entry prior to the one that was too big.
|
||||
*/
|
||||
if (x > 0)
|
||||
delay = leaf_data->pub.delay_schedule[x - 1].time_diff;
|
||||
|
||||
if (delay.v == 0)
|
||||
return EC_SUCCESS;
|
||||
|
||||
if (delay.v == PW_BLOCK_ATTEMPTS) {
|
||||
seconds_to_wait->v = PW_BLOCK_ATTEMPTS;
|
||||
return PW_ERR_RATE_LIMIT_REACHED;
|
||||
}
|
||||
|
||||
update_timestamp(¤t_time);
|
||||
|
||||
if (leaf_data->pub.timestamp.boot_count == current_time.boot_count)
|
||||
ready_time = delay.v + leaf_data->pub.timestamp.timer_value;
|
||||
else
|
||||
ready_time = delay.v;
|
||||
|
||||
if (current_time.timer_value >= ready_time)
|
||||
return EC_SUCCESS;
|
||||
|
||||
seconds_to_wait->v = ready_time - current_time.timer_value;
|
||||
return PW_ERR_RATE_LIMIT_REACHED;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/* Per-request-type handler implementations.
|
||||
*/
|
||||
|
||||
static int pw_handle_reset_tree(struct merkle_tree_t *merkle_tree,
|
||||
const struct pw_request_reset_tree_t *request,
|
||||
uint16_t req_size)
|
||||
{
|
||||
struct merkle_tree_t new_tree = {};
|
||||
int ret;
|
||||
|
||||
if (req_size != sizeof(*request))
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
|
||||
ret = validate_tree_parameters(request->bits_per_level,
|
||||
request->height);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
ret = create_merkle_tree(request->bits_per_level, request->height,
|
||||
&new_tree);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
memcpy(merkle_tree, &new_tree, sizeof(new_tree));
|
||||
return EC_SUCCESS;
|
||||
}
|
||||
|
||||
static int pw_handle_insert_leaf(struct merkle_tree_t *merkle_tree,
|
||||
const struct pw_request_insert_leaf_t *request,
|
||||
uint16_t req_size,
|
||||
struct pw_response_insert_leaf_t *response,
|
||||
uint16_t *response_size)
|
||||
{
|
||||
int ret = EC_SUCCESS;
|
||||
struct leaf_data_t leaf_data = {};
|
||||
struct wrapped_leaf_data_t wrapped_leaf_data;
|
||||
const uint8_t empty_hash[PW_HASH_SIZE] = {};
|
||||
uint8_t new_root[PW_HASH_SIZE];
|
||||
|
||||
if (req_size != sizeof(*request) +
|
||||
get_path_auxiliary_hash_count(merkle_tree) *
|
||||
PW_HASH_SIZE)
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
|
||||
ret = validate_request_with_path(merkle_tree, request->label,
|
||||
request->path_hashes, empty_hash);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
ret = validate_delay_schedule(request->delay_schedule);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
memset(&leaf_data, 0, sizeof(leaf_data));
|
||||
leaf_data.pub.label.v = request->label.v;
|
||||
memcpy(&leaf_data.pub.delay_schedule, &request->delay_schedule,
|
||||
sizeof(request->delay_schedule));
|
||||
memcpy(&leaf_data.sec.low_entropy_secret, &request->low_entropy_secret,
|
||||
sizeof(request->low_entropy_secret));
|
||||
memcpy(&leaf_data.sec.high_entropy_secret,
|
||||
&request->high_entropy_secret,
|
||||
sizeof(request->high_entropy_secret));
|
||||
memcpy(&leaf_data.sec.reset_secret, &request->reset_secret,
|
||||
sizeof(request->reset_secret));
|
||||
|
||||
ret = handle_leaf_update(merkle_tree, &leaf_data, request->path_hashes,
|
||||
&wrapped_leaf_data, new_root, NULL);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
memcpy(merkle_tree->root, new_root, sizeof(new_root));
|
||||
|
||||
memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
|
||||
sizeof(wrapped_leaf_data));
|
||||
|
||||
*response_size = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int pw_handle_remove_leaf(struct merkle_tree_t *merkle_tree,
|
||||
const struct pw_request_remove_leaf_t *request,
|
||||
uint16_t req_size)
|
||||
{
|
||||
int ret = EC_SUCCESS;
|
||||
const uint8_t empty_hash[PW_HASH_SIZE] = {};
|
||||
uint8_t new_root[PW_HASH_SIZE];
|
||||
|
||||
if (req_size != sizeof(*request) +
|
||||
get_path_auxiliary_hash_count(merkle_tree) *
|
||||
PW_HASH_SIZE)
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
|
||||
ret = validate_request_with_path(merkle_tree, request->leaf_location,
|
||||
request->path_hashes,
|
||||
request->leaf_hmac);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
compute_root_hash(merkle_tree, request->leaf_location,
|
||||
request->path_hashes, empty_hash, new_root);
|
||||
|
||||
memcpy(merkle_tree->root, new_root, sizeof(new_root));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Processes a try_auth request.
|
||||
*
|
||||
* The valid fields in response based on return code are:
|
||||
* EC_SUCCESS -> unimported_leaf_data and high_entropy_secret
|
||||
* PW_ERR_RATE_LIMIT_REACHED -> seconds_to_wait
|
||||
* PW_ERR_LOWENT_AUTH_FAILED -> unimported_leaf_data
|
||||
*/
|
||||
static int pw_handle_try_auth(struct merkle_tree_t *merkle_tree,
|
||||
const struct pw_request_try_auth_t *request,
|
||||
uint16_t req_size,
|
||||
struct pw_response_try_auth_t *response,
|
||||
uint16_t *data_length)
|
||||
{
|
||||
int ret = EC_SUCCESS;
|
||||
struct leaf_data_t leaf_data = {};
|
||||
struct imported_leaf_data_t imported_leaf_data;
|
||||
struct wrapped_leaf_data_t wrapped_leaf_data;
|
||||
struct time_diff_t seconds_to_wait;
|
||||
uint8_t zeros[PW_SECRET_SIZE] = {};
|
||||
uint8_t new_root[PW_HASH_SIZE];
|
||||
|
||||
/* These variables help eliminate the possibility of a timing side
|
||||
* channel that would allow an attacker to prevent the log write.
|
||||
*/
|
||||
volatile int auth_result;
|
||||
|
||||
volatile struct {
|
||||
uint32_t attempts;
|
||||
int ret;
|
||||
uint8_t *secret;
|
||||
} results_table[2] = {
|
||||
{ 0, PW_ERR_LOWENT_AUTH_FAILED, zeros },
|
||||
{ 0, EC_SUCCESS, leaf_data.sec.high_entropy_secret },
|
||||
};
|
||||
|
||||
if (req_size < sizeof(*request))
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
|
||||
ret = validate_request_with_wrapped_leaf(
|
||||
merkle_tree, req_size - sizeof(*request),
|
||||
&request->unimported_leaf_data, &imported_leaf_data,
|
||||
&leaf_data);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
ret = test_rate_limit(&leaf_data, &seconds_to_wait);
|
||||
if (ret != EC_SUCCESS) {
|
||||
*data_length = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
|
||||
memset(response, 0, *data_length);
|
||||
memcpy(&response->seconds_to_wait, &seconds_to_wait,
|
||||
sizeof(seconds_to_wait));
|
||||
return ret;
|
||||
}
|
||||
|
||||
update_timestamp(&leaf_data.pub.timestamp);
|
||||
|
||||
/* Precompute the failed attempts. */
|
||||
results_table[0].attempts = leaf_data.pub.attempt_count.v;
|
||||
if (results_table[0].attempts != UINT32_MAX)
|
||||
++results_table[0].attempts;
|
||||
|
||||
/**********************************************************************/
|
||||
/* After this:
|
||||
* 1) results_table should not be changed;
|
||||
* 2) the runtime of the code paths for failed and successful
|
||||
* authentication attempts should not diverge.
|
||||
*/
|
||||
auth_result = safe_memcmp(request->low_entropy_secret,
|
||||
leaf_data.sec.low_entropy_secret,
|
||||
sizeof(request->low_entropy_secret)) == 0;
|
||||
leaf_data.pub.attempt_count.v = results_table[auth_result].attempts;
|
||||
|
||||
/* This has a non-constant time path, but it doesn't convey information
|
||||
* about whether a PW_ERR_LOWENT_AUTH_FAILED happened or not.
|
||||
*/
|
||||
ret = handle_leaf_update(merkle_tree, &leaf_data,
|
||||
imported_leaf_data.hashes, &wrapped_leaf_data,
|
||||
new_root, &imported_leaf_data);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
memcpy(merkle_tree->root, new_root, sizeof(new_root));
|
||||
|
||||
*data_length = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
|
||||
memset(response, 0, *data_length);
|
||||
|
||||
memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
|
||||
sizeof(wrapped_leaf_data));
|
||||
|
||||
memcpy(&response->high_entropy_secret,
|
||||
results_table[auth_result].secret,
|
||||
sizeof(response->high_entropy_secret));
|
||||
|
||||
return results_table[auth_result].ret;
|
||||
}
|
||||
|
||||
static int pw_handle_reset_auth(struct merkle_tree_t *merkle_tree,
|
||||
const struct pw_request_reset_auth_t *request,
|
||||
uint16_t req_size,
|
||||
struct pw_response_reset_auth_t *response,
|
||||
uint16_t *response_size)
|
||||
{
|
||||
int ret = EC_SUCCESS;
|
||||
struct leaf_data_t leaf_data = {};
|
||||
struct imported_leaf_data_t imported_leaf_data;
|
||||
struct wrapped_leaf_data_t wrapped_leaf_data;
|
||||
uint8_t new_root[PW_HASH_SIZE];
|
||||
|
||||
if (req_size < sizeof(*request))
|
||||
return PW_ERR_LENGTH_INVALID;
|
||||
|
||||
ret = validate_request_with_wrapped_leaf(
|
||||
merkle_tree, req_size - sizeof(*request),
|
||||
&request->unimported_leaf_data, &imported_leaf_data,
|
||||
&leaf_data);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
/* Safe memcmp is used here to prevent an attacker from being able to
|
||||
* brute force the reset secret and use it to unlock the leaf.
|
||||
* memcmp provides an attacker a timing side-channel they can use to
|
||||
* determine how much of a prefix is correct.
|
||||
*/
|
||||
if (safe_memcmp(request->reset_secret,
|
||||
leaf_data.sec.reset_secret,
|
||||
sizeof(request->reset_secret)) != 0)
|
||||
return PW_ERR_RESET_AUTH_FAILED;
|
||||
|
||||
leaf_data.pub.attempt_count.v = 0;
|
||||
|
||||
ret = handle_leaf_update(merkle_tree, &leaf_data,
|
||||
imported_leaf_data.hashes, &wrapped_leaf_data,
|
||||
new_root, &imported_leaf_data);
|
||||
if (ret != EC_SUCCESS)
|
||||
return ret;
|
||||
|
||||
memcpy(merkle_tree->root, new_root, sizeof(new_root));
|
||||
|
||||
memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
|
||||
sizeof(wrapped_leaf_data));
|
||||
|
||||
memcpy(response->high_entropy_secret,
|
||||
leaf_data.sec.high_entropy_secret,
|
||||
sizeof(response->high_entropy_secret));
|
||||
|
||||
*response_size = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/* Non-static functions.
|
||||
*/
|
||||
|
||||
int get_path_auxiliary_hash_count(const struct merkle_tree_t *merkle_tree)
|
||||
{
|
||||
return ((1 << merkle_tree->bits_per_level.v) - 1) *
|
||||
merkle_tree->height.v;
|
||||
}
|
||||
|
||||
/* Computes the SHA256 parent hash of a set of child hashes given num_hashes
|
||||
* sibling hashes in hashes[] and the index of child_hash.
|
||||
*
|
||||
* Assumptions:
|
||||
* num_hashes == fan_out - 1
|
||||
* ARRAY_SIZE(hashes) == num_hashes
|
||||
* 0 <= location <= num_hashes
|
||||
*/
|
||||
void compute_hash(const uint8_t hashes[][PW_HASH_SIZE], uint16_t num_hashes,
|
||||
struct index_t location,
|
||||
const uint8_t child_hash[PW_HASH_SIZE],
|
||||
uint8_t result[PW_HASH_SIZE])
|
||||
{
|
||||
LITE_SHA256_CTX ctx;
|
||||
|
||||
DCRYPTO_SHA256_init(&ctx, 0);
|
||||
if (location.v > 0)
|
||||
HASH_update(&ctx, hashes[0], PW_HASH_SIZE * location.v);
|
||||
HASH_update(&ctx, child_hash, PW_HASH_SIZE);
|
||||
if (location.v < num_hashes)
|
||||
HASH_update(&ctx, hashes[location.v],
|
||||
PW_HASH_SIZE * (num_hashes - location.v));
|
||||
memcpy(result, HASH_final(&ctx), PW_HASH_SIZE);
|
||||
}
|
||||
|
||||
/* Handles the message in request using the context in merkle_tree and writes
|
||||
* the results to response. The return value captures any error conditions that
|
||||
* occurred or EC_SUCCESS if there were no errors.
|
||||
*
|
||||
* This implementation is written to handle the case where request and response
|
||||
* exist at the same memory location---are backed by the same buffer. This means
|
||||
* the implementation requires that no reads are made to request after response
|
||||
* has been written to.
|
||||
*/
|
||||
int pw_handle_request(struct merkle_tree_t *merkle_tree,
|
||||
const struct pw_request_t *request,
|
||||
struct pw_response_t *response)
|
||||
{
|
||||
int32_t ret;
|
||||
uint16_t resp_length;
|
||||
/* Store the message type of the request since it may be overwritten
|
||||
* inside the switch whenever response and request overlap in memory.
|
||||
*/
|
||||
struct pw_message_type_t type = request->header.type;
|
||||
|
||||
resp_length = 0;
|
||||
|
||||
if (request->header.version != PW_PROTOCOL_VERSION) {
|
||||
ret = PW_ERR_VERSION_MISMATCH;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
switch (type.v) {
|
||||
case PW_RESET_TREE:
|
||||
ret = pw_handle_reset_tree(merkle_tree,
|
||||
&request->data.reset_tree,
|
||||
request->header.data_length);
|
||||
break;
|
||||
case PW_INSERT_LEAF:
|
||||
ret = pw_handle_insert_leaf(merkle_tree,
|
||||
&request->data.insert_leaf,
|
||||
request->header.data_length,
|
||||
&response->data.insert_leaf,
|
||||
&resp_length);
|
||||
break;
|
||||
case PW_REMOVE_LEAF:
|
||||
ret = pw_handle_remove_leaf(merkle_tree,
|
||||
&request->data.remove_leaf,
|
||||
request->header.data_length);
|
||||
break;
|
||||
case PW_TRY_AUTH:
|
||||
ret = pw_handle_try_auth(merkle_tree, &request->data.try_auth,
|
||||
request->header.data_length,
|
||||
&response->data.try_auth,
|
||||
&resp_length);
|
||||
break;
|
||||
case PW_RESET_AUTH:
|
||||
ret = pw_handle_reset_auth(merkle_tree,
|
||||
&request->data.reset_auth,
|
||||
request->header.data_length,
|
||||
&response->data.reset_auth,
|
||||
&resp_length);
|
||||
break;
|
||||
default:
|
||||
ret = PW_ERR_TYPE_INVALID;
|
||||
break;
|
||||
}
|
||||
cleanup:
|
||||
response->header.version = PW_PROTOCOL_VERSION;
|
||||
response->header.data_length = resp_length;
|
||||
response->header.result_code = ret;
|
||||
memcpy(&response->header.root, merkle_tree->root,
|
||||
sizeof(merkle_tree->root));
|
||||
return ret;
|
||||
};
|
||||
@@ -2148,6 +2148,13 @@
|
||||
/* Enable (unsafe!) developer debug features for physical presence */
|
||||
#undef CONFIG_PHYSICAL_PRESENCE_DEBUG_UNSAFE
|
||||
|
||||
/*****************************************************************************/
|
||||
/* PinWeaver config
|
||||
* A feature which exchanges a low entropy secret with rate limits for a high
|
||||
* entropy secret. This enables a set of vendor specific commands for Cr50.
|
||||
*/
|
||||
#undef CONFIG_PINWEAVER
|
||||
|
||||
/*****************************************************************************/
|
||||
/* PMU config */
|
||||
|
||||
|
||||
142
include/pinweaver.h
Normal file
142
include/pinweaver.h
Normal file
@@ -0,0 +1,142 @@
|
||||
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#ifndef __CROS_EC_INCLUDE_PINWEAVER_H
|
||||
#define __CROS_EC_INCLUDE_PINWEAVER_H
|
||||
|
||||
/* This is required before pinweaver_types.h to provide __packed and __aligned
|
||||
* while preserving the ability of pinweaver_types.h to be used in code outside
|
||||
* of src/platform/ec.
|
||||
*/
|
||||
#include <common.h>
|
||||
#include <pinweaver_types.h>
|
||||
|
||||
#define PW_STORAGE_VERSION 0
|
||||
|
||||
#define BITS_PER_LEVEL_MIN 1
|
||||
#define BITS_PER_LEVEL_MAX 5
|
||||
#define HEIGHT_MIN 1
|
||||
/* This will crash for logk == 0 so that condition must not be allowed when
|
||||
* using this.
|
||||
*/
|
||||
#define HEIGHT_MAX(logk) ((sizeof(struct label_t) * 8) / logk)
|
||||
|
||||
/* Persistent information used by this feature. */
|
||||
struct merkle_tree_t {
|
||||
/* log2(Fan out). */
|
||||
struct bits_per_level_t bits_per_level;
|
||||
/* Height of the tree or param_l / bits_per_level. */
|
||||
struct height_t height;
|
||||
|
||||
/* Root hash of the Merkle tree. */
|
||||
uint8_t root[PW_HASH_SIZE];
|
||||
|
||||
/* Random bits used as part of the key derivation process. */
|
||||
uint8_t key_derivation_nonce[16];
|
||||
|
||||
/* Key used to compute the HMACs of the metadata of the leaves. */
|
||||
uint8_t PW_ALIGN_TO_WRD hmac_key[32];
|
||||
|
||||
/* Key used to encrypt and decrypt the metadata of the leaves. */
|
||||
uint8_t PW_ALIGN_TO_WRD wrap_key[32];
|
||||
};
|
||||
|
||||
/* Do not remove fields within the same PW_LEAF_MAJOR_VERSION. */
|
||||
/* Unencrypted part of the leaf data. */
|
||||
struct PW_PACKED leaf_public_data_t {
|
||||
struct label_t label;
|
||||
struct delay_schedule_entry_t delay_schedule[PW_SCHED_COUNT];
|
||||
|
||||
/* State used to rate limit. */
|
||||
struct pw_timestamp_t timestamp;
|
||||
struct attempt_count_t attempt_count;
|
||||
};
|
||||
|
||||
/* Do not remove fields within the same PW_LEAF_MAJOR_VERSION. */
|
||||
/* Encrypted part of the leaf data. */
|
||||
struct PW_PACKED PW_ALIGN_TO_BLK leaf_sensitive_data_t {
|
||||
uint8_t low_entropy_secret[PW_SECRET_SIZE];
|
||||
uint8_t high_entropy_secret[PW_SECRET_SIZE];
|
||||
uint8_t reset_secret[PW_SECRET_SIZE];
|
||||
};
|
||||
|
||||
/* Represents leaf data in a form that can be exported for storage. */
|
||||
struct PW_PACKED wrapped_leaf_data_t {
|
||||
/* This is first so that head.leaf_version will be the first field
|
||||
* in the struct to keep the meaning of the struct from becoming
|
||||
* ambiguous across versions.
|
||||
*/
|
||||
struct leaf_header_t head;
|
||||
/* Covers .head, .pub, and .cipher_text. */
|
||||
uint8_t hmac[PW_HASH_SIZE];
|
||||
uint8_t iv[PW_WRAP_BLOCK_SIZE];
|
||||
struct leaf_public_data_t pub;
|
||||
uint8_t cipher_text[sizeof(struct leaf_sensitive_data_t)];
|
||||
};
|
||||
|
||||
/* Represents encrypted leaf data after the lengths and version in the header
|
||||
* have been validated.
|
||||
*/
|
||||
struct imported_leaf_data_t {
|
||||
/* This is first so that head.leaf_version will be the first field
|
||||
* in the struct to keep the meaning of the struct from becoming
|
||||
* ambiguous across versions.
|
||||
*/
|
||||
const struct leaf_header_t *head;
|
||||
/* Covers .head, .pub, and .cipher_text. */
|
||||
const uint8_t *hmac;
|
||||
const uint8_t *iv;
|
||||
const struct leaf_public_data_t *pub;
|
||||
const uint8_t *cipher_text;
|
||||
const uint8_t (*hashes)[PW_HASH_SIZE];
|
||||
};
|
||||
|
||||
/* The leaf data in a clear text working format. */
|
||||
struct leaf_data_t {
|
||||
struct leaf_public_data_t pub;
|
||||
struct leaf_sensitive_data_t sec;
|
||||
};
|
||||
|
||||
/* Handler for incoming messages after they have been reconstructed.
|
||||
*
|
||||
* merkle_tree->root needs to be updated with new_root outside of this function.
|
||||
*/
|
||||
int pw_handle_request(struct merkle_tree_t *merkle_tree,
|
||||
const struct pw_request_t *request,
|
||||
struct pw_response_t *response);
|
||||
|
||||
/******************************************************************************/
|
||||
/* Struct helper functions.
|
||||
*/
|
||||
|
||||
/* Sets up pointers to the relevant fields inside an wrapped leaf based on the
|
||||
* length fields in the header. These fields should be validated prior to
|
||||
* calling this function.
|
||||
*/
|
||||
void import_leaf(const struct unimported_leaf_data_t *unimported,
|
||||
struct imported_leaf_data_t *imported);
|
||||
|
||||
/* Calculate how much is needed to add to the size of structs containing
|
||||
* an struct unimported_leaf_data_t because the variable length fields at the
|
||||
* end of the struct are not included by sizeof().
|
||||
*/
|
||||
#define PW_LEAF_PAYLOAD_SIZE (sizeof(struct wrapped_leaf_data_t) - \
|
||||
sizeof(struct unimported_leaf_data_t))
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
/* Utility functions exported for better test coverage.
|
||||
*/
|
||||
|
||||
/* Computes the total number of the sibling hashes along a path. */
|
||||
int get_path_auxiliary_hash_count(const struct merkle_tree_t *merkle_tree);
|
||||
|
||||
/* Computes the parent hash for an array of child hashes. */
|
||||
void compute_hash(const uint8_t hashes[][PW_HASH_SIZE], uint16_t num_hashes,
|
||||
struct index_t location,
|
||||
const uint8_t child_hash[PW_HASH_SIZE],
|
||||
uint8_t result[PW_HASH_SIZE]);
|
||||
|
||||
#endif /* __CROS_EC_INCLUDE_PINWEAVER_H */
|
||||
27
include/pinweaver_tpm_imports.h
Normal file
27
include/pinweaver_tpm_imports.h
Normal file
@@ -0,0 +1,27 @@
|
||||
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
/* Compatibility layer between the TPM code and PinWeaver.
|
||||
*
|
||||
* This is needed because the headers for the TPM are not compatible with the
|
||||
* headers used by pinweaver.c. It also makes it easier to mock the
|
||||
* functionality derived from the TPM code.
|
||||
*/
|
||||
|
||||
#ifndef __CROS_EC_INCLUDE_PINWEAVER_TPM_IMPORTS_H
|
||||
#define __CROS_EC_INCLUDE_PINWEAVER_TPM_IMPORTS_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
uint32_t get_restart_count(void);
|
||||
|
||||
/* This is used to get the storage seed from the TPM implementation so
|
||||
* TPM_Clear() will break the keys used by PinWeaver so that any metadata
|
||||
* that persists on the machine storage is unusable by attackers.
|
||||
*/
|
||||
void get_storage_seed(void *buf, size_t *len);
|
||||
|
||||
#endif /* __CROS_EC_INCLUDE_PINWEAVER_TPM_IMPORTS_H */
|
||||
289
include/pinweaver_types.h
Normal file
289
include/pinweaver_types.h
Normal file
@@ -0,0 +1,289 @@
|
||||
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
/* Shared types between Cr50 and the AP side code. */
|
||||
|
||||
#ifndef __CROS_EC_INCLUDE_PINWEAVER_TYPES_H
|
||||
#define __CROS_EC_INCLUDE_PINWEAVER_TYPES_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PW_PACKED __packed
|
||||
|
||||
#define PW_PROTOCOL_VERSION 0
|
||||
#define PW_LEAF_MAJOR_VERSION 0
|
||||
#define PW_LEAF_MINOR_VERSION 0
|
||||
|
||||
#define PW_MAX_MESSAGE_SIZE (2048 - 12 /* sizeof(struct tpm_cmd_header) */)
|
||||
|
||||
/* The block size of encryption used for wrapped_leaf_data_t. */
|
||||
#define PW_WRAP_BLOCK_SIZE 16
|
||||
|
||||
#define PW_ALIGN_TO_WRD __aligned(4)
|
||||
|
||||
#define PW_ALIGN_TO_BLK __aligned(PW_WRAP_BLOCK_SIZE)
|
||||
|
||||
enum pw_error_codes_enum {
|
||||
PW_ERR_VERSION_MISMATCH = 0x10000, /* EC_ERROR_INTERNAL_FIRST */
|
||||
PW_ERR_TREE_INVALID,
|
||||
PW_ERR_LENGTH_INVALID,
|
||||
PW_ERR_TYPE_INVALID,
|
||||
PW_ERR_BITS_PER_LEVEL_INVALID,
|
||||
PW_ERR_HEIGHT_INVALID,
|
||||
PW_ERR_LABEL_INVALID,
|
||||
PW_ERR_DELAY_SCHEDULE_INVALID,
|
||||
PW_ERR_PATH_AUTH_FAILED,
|
||||
PW_ERR_LEAF_VERSION_MISMATCH,
|
||||
PW_ERR_HMAC_AUTH_FAILED,
|
||||
PW_ERR_LOWENT_AUTH_FAILED,
|
||||
PW_ERR_RESET_AUTH_FAILED,
|
||||
PW_ERR_CRYPTO_FAILURE,
|
||||
PW_ERR_RATE_LIMIT_REACHED,
|
||||
};
|
||||
|
||||
/* Represents the log2(fan out) of a tree. */
|
||||
struct PW_PACKED bits_per_level_t {
|
||||
uint8_t v;
|
||||
};
|
||||
|
||||
/* Represent the height of a tree. */
|
||||
struct PW_PACKED height_t {
|
||||
uint8_t v;
|
||||
};
|
||||
|
||||
/* Represents a child index of a node in a tree. */
|
||||
struct PW_PACKED index_t {
|
||||
uint8_t v;
|
||||
};
|
||||
|
||||
/* Represents the child index for each level of a tree along a path to a leaf.
|
||||
* It is a Little-endian unsigned integer with the following value (MSB->LSB)
|
||||
* | Zero padding | 1st level index | ... | leaf index |,
|
||||
* where each index is represented by bits_per_level bits.
|
||||
*/
|
||||
struct PW_PACKED label_t {
|
||||
uint64_t v;
|
||||
};
|
||||
|
||||
/* Represents a count of failed login attempts. This is capped at UINT32_MAX. */
|
||||
struct PW_PACKED attempt_count_t {
|
||||
uint32_t v;
|
||||
};
|
||||
|
||||
/* Represents a notion of time. */
|
||||
struct PW_PACKED pw_timestamp_t {
|
||||
/* Number of boots. This is used to track if Cr50 has rebooted since
|
||||
* timer_value was recorded.
|
||||
*/
|
||||
uint32_t boot_count;
|
||||
/* Seconds since boot. */
|
||||
uint64_t timer_value;
|
||||
};
|
||||
|
||||
/* Represents a time interval in seconds.
|
||||
*
|
||||
* This only needs to be sufficiently large to represent the longest time
|
||||
* between allowed attempts.
|
||||
*/
|
||||
struct PW_PACKED time_diff_t {
|
||||
uint32_t v;
|
||||
};
|
||||
#define PW_BLOCK_ATTEMPTS UINT32_MAX
|
||||
|
||||
/* Number of bytes required for a hash or hmac value in the merkle tree. */
|
||||
#define PW_HASH_SIZE 32
|
||||
|
||||
/* Represents a single entry in a delay schedule table. */
|
||||
struct PW_PACKED delay_schedule_entry_t {
|
||||
struct attempt_count_t attempt_count;
|
||||
struct time_diff_t time_diff;
|
||||
};
|
||||
|
||||
/* Represents the number of entries in the delay schedule table which can be
|
||||
* used to determine the next time an authentication attempt can be made.
|
||||
*/
|
||||
#define PW_SCHED_COUNT 16
|
||||
|
||||
/* Number of bytes required to store a secret.
|
||||
*/
|
||||
#define PW_SECRET_SIZE 32
|
||||
|
||||
struct PW_PACKED leaf_version_t {
|
||||
/* minor comes first so this struct will be compatibile with uint32_t
|
||||
* comparisons for little endian to make version comparisons easier.
|
||||
*
|
||||
* Changes to minor versions are allowed to add new fields, but not
|
||||
* remove existing fields, and they are allowed to be interpreted by
|
||||
* previous versions---any extra fields are truncated.
|
||||
*
|
||||
* Leafs will reject future major versions assuming they are
|
||||
* incompatible, so fields in struct leaf_public_data_t and
|
||||
* struct leaf_sensitive_data_t may be removed for new major versions.
|
||||
* Upgrades across major versions will require explicit logic to
|
||||
* map the old struct to the new struct or vice versa.
|
||||
*/
|
||||
uint16_t minor;
|
||||
uint16_t major;
|
||||
};
|
||||
|
||||
/* Do not change this within the same PW_LEAF_MAJOR_VERSION. */
|
||||
struct PW_PACKED leaf_header_t {
|
||||
/* Always have leaf_version at the beginning of
|
||||
* struct wrapped_leaf_data_t to maintain preditable behavior across
|
||||
* versions.
|
||||
*/
|
||||
struct leaf_version_t leaf_version;
|
||||
uint16_t pub_len;
|
||||
uint16_t sec_len;
|
||||
};
|
||||
|
||||
/* Represents a struct of unknown length to be imported to process a request. */
|
||||
struct PW_PACKED unimported_leaf_data_t {
|
||||
/* This is first so that head.leaf_version will be the first field
|
||||
* in the struct to make handling different struct versions easier.
|
||||
*/
|
||||
struct leaf_header_t head;
|
||||
/* Covers .head, .iv, and .payload (excluding path_hashes) */
|
||||
uint8_t hmac[PW_HASH_SIZE];
|
||||
uint8_t iv[PW_WRAP_BLOCK_SIZE];
|
||||
/* This field is treated as having a zero size by the compiler so the
|
||||
* actual size needs to be added to the size of this struct. This allows
|
||||
* for forward compatibility using the pub_len and sec_len fields in the
|
||||
* header.
|
||||
*
|
||||
* Has following layout:
|
||||
* Required:
|
||||
* uint8_t pub_data[head.pub_len];
|
||||
* uint8_t ciphter_text[head.sec_len];
|
||||
*
|
||||
* For Requests only:
|
||||
* uint8_t path_hashes[get_path_auxiliary_hash_count(.)][PW_HASH_SIZE];
|
||||
*/
|
||||
uint8_t payload[];
|
||||
};
|
||||
|
||||
/******************************************************************************/
|
||||
/* Message structs
|
||||
*
|
||||
* The message format is a pw_request_header_t followed by the data
|
||||
*/
|
||||
|
||||
enum pw_message_type_enum {
|
||||
PW_MT_INVALID = 0,
|
||||
|
||||
/* Request / "Question" types. */
|
||||
PW_RESET_TREE = 1,
|
||||
PW_INSERT_LEAF,
|
||||
PW_REMOVE_LEAF,
|
||||
PW_TRY_AUTH,
|
||||
PW_RESET_AUTH,
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_message_type_t {
|
||||
uint8_t v;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_request_header_t {
|
||||
uint8_t version;
|
||||
struct pw_message_type_t type;
|
||||
uint16_t data_length;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_response_header_t {
|
||||
uint8_t version;
|
||||
uint16_t data_length; /* Does not include the header. */
|
||||
uint32_t result_code;
|
||||
uint8_t root[PW_HASH_SIZE];
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_request_reset_tree_t {
|
||||
struct bits_per_level_t bits_per_level;
|
||||
struct height_t height;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_request_insert_leaf_t {
|
||||
struct label_t label;
|
||||
struct delay_schedule_entry_t delay_schedule[PW_SCHED_COUNT];
|
||||
uint8_t low_entropy_secret[PW_SECRET_SIZE];
|
||||
uint8_t high_entropy_secret[PW_SECRET_SIZE];
|
||||
uint8_t reset_secret[PW_SECRET_SIZE];
|
||||
/* This is a variable length field because it size is determined at
|
||||
* runtime based on the chosen tree parameters. Its size is treated as
|
||||
* zero by the compiler so the computed size needs to be added to the
|
||||
* size of this struct in order to determine the actual size. This field
|
||||
* has the form:
|
||||
* uint8_t path_hashes[get_path_auxiliary_hash_count(.)][PW_HASH_SIZE];
|
||||
*/
|
||||
uint8_t path_hashes[][PW_HASH_SIZE];
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_response_insert_leaf_t {
|
||||
struct unimported_leaf_data_t unimported_leaf_data;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_request_remove_leaf_t {
|
||||
struct label_t leaf_location;
|
||||
uint8_t leaf_hmac[PW_HASH_SIZE];
|
||||
/* See (struct pw_request_insert_leaf_t).path_hashes. */
|
||||
uint8_t path_hashes[][PW_HASH_SIZE];
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_request_try_auth_t {
|
||||
uint8_t low_entropy_secret[PW_SECRET_SIZE];
|
||||
struct unimported_leaf_data_t unimported_leaf_data;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_response_try_auth_t {
|
||||
/* Valid for the PW_ERR_RATE_LIMIT_REACHED return code only. */
|
||||
struct time_diff_t seconds_to_wait;
|
||||
/* Valid for the EC_SUCCESS return code only. */
|
||||
uint8_t high_entropy_secret[PW_SECRET_SIZE];
|
||||
/* Valid for the PW_ERR_LOWENT_AUTH_FAILED and EC_SUCCESS return codes.
|
||||
*/
|
||||
struct unimported_leaf_data_t unimported_leaf_data;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_request_reset_auth_t {
|
||||
uint8_t reset_secret[PW_SECRET_SIZE];
|
||||
struct unimported_leaf_data_t unimported_leaf_data;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_response_reset_auth_t {
|
||||
uint8_t high_entropy_secret[PW_SECRET_SIZE];
|
||||
struct unimported_leaf_data_t unimported_leaf_data;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_request_t {
|
||||
struct pw_request_header_t header;
|
||||
union {
|
||||
struct pw_request_reset_tree_t reset_tree;
|
||||
struct pw_request_insert_leaf_t insert_leaf;
|
||||
struct pw_request_remove_leaf_t remove_leaf;
|
||||
struct pw_request_try_auth_t try_auth;
|
||||
struct pw_request_reset_auth_t reset_auth;
|
||||
} data;
|
||||
};
|
||||
|
||||
struct PW_PACKED pw_response_t {
|
||||
struct pw_response_header_t header;
|
||||
union {
|
||||
|
||||
struct pw_response_insert_leaf_t insert_leaf;
|
||||
struct pw_response_try_auth_t try_auth;
|
||||
struct pw_response_reset_auth_t reset_auth;
|
||||
} data;
|
||||
};
|
||||
|
||||
/* An explicit limit is set because struct unimported_leaf_data_t can have more
|
||||
* than one variable length field so the max length for these fields needs to be
|
||||
* defined so that meaningful parameter limits can be set to validate the tree
|
||||
* parameters.
|
||||
*
|
||||
* 1536 was chosen because it is 3/4 of 2048 and allows for a maximum tree
|
||||
* height of 16 for the default fan-out of 4.
|
||||
*/
|
||||
#define PW_MAX_PATH_SIZE 1536
|
||||
|
||||
#endif /* __CROS_EC_INCLUDE_PINWEAVER_TYPES_H */
|
||||
@@ -59,6 +59,7 @@ test-list-host += mutex
|
||||
test-list-host += nvmem
|
||||
test-list-host += nvmem_vars
|
||||
test-list-host += pingpong
|
||||
test-list-host += pinweaver
|
||||
test-list-host += power_button
|
||||
test-list-host += queue
|
||||
test-list-host += rma_auth
|
||||
@@ -111,6 +112,7 @@ mutex-y=mutex.o
|
||||
nvmem-y=nvmem.o
|
||||
nvmem_vars-y=nvmem_vars.o
|
||||
pingpong-y=pingpong.o
|
||||
pinweaver-y=pinweaver.o
|
||||
power_button-y=power_button.o
|
||||
powerdemo-y=powerdemo.o
|
||||
queue-y=queue.o
|
||||
|
||||
1739
test/pinweaver.c
Normal file
1739
test/pinweaver.c
Normal file
File diff suppressed because it is too large
Load Diff
17
test/pinweaver.tasklist
Normal file
17
test/pinweaver.tasklist
Normal file
@@ -0,0 +1,17 @@
|
||||
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
/**
|
||||
* List of enabled tasks in the priority order
|
||||
*
|
||||
* The first one has the lowest priority.
|
||||
*
|
||||
* For each task, use the macro TASK_TEST(n, r, d, s) where :
|
||||
* 'n' in the name of the task
|
||||
* 'r' in the main routine of the task
|
||||
* 'd' in an opaque parameter passed to the routine at startup
|
||||
* 's' is the stack size in bytes; must be a multiple of 8
|
||||
*/
|
||||
#define CONFIG_TEST_TASK_LIST
|
||||
@@ -259,6 +259,11 @@ enum nvmem_vars {
|
||||
#define CONFIG_FLASH_NVMEM_VARS_USER_SIZE 600
|
||||
#endif /* TEST_NVMEM_VARS */
|
||||
|
||||
#ifdef TEST_PINWEAVER
|
||||
#define CONFIG_PINWEAVER
|
||||
#define CONFIG_SHA256
|
||||
#endif
|
||||
|
||||
#ifdef TEST_RTC
|
||||
#define CONFIG_HOSTCMD_RTC
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user