Files
OpenCellular/common/charge_state.c
Bill Richardson 74f5aaaa50 Use battery's precharge_current value for deep discharge recovery.
We've been providing the battery's max voltage and the charger's minimum
current to try to awaken a deep-discharged battery. For some batteries, that
doesn't appear to be enough. This change will use the battery's
preconfigured precharge_current value instead.

BUG=chrome-os-partner:20142
BRANCH=none
TEST=manual

I don't have a deep-discharged battery to try it on. I've been using these
values manually in order to get the battery away. With no battery connected,
you can run the "charger" command on the EC console to see what values it's
using. They should match what the battery wants.

Change-Id: I16d06011103ba70682397859d9844a37938d3e90
Signed-off-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/58575
2013-06-13 15:52:16 -07:00

921 lines
24 KiB
C

/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Battery charging task and state machine.
*/
#include "battery.h"
#include "battery_pack.h"
#include "charge_state.h"
#include "charger.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "extpower.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "printf.h"
#include "smart_battery.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_CHARGER, outstr)
#define CPRINTF(format, args...) cprintf(CC_CHARGER, format, ## args)
/* Voltage debounce time */
#define DEBOUNCE_TIME (10 * SECOND)
/* Timeout after AP battery shutdown warning before we kill the AP */
#define LOW_BATTERY_SHUTDOWN_TIMEOUT_US (30 * SECOND)
static const char * const state_name[] = POWER_STATE_NAME_TABLE;
static int state_machine_force_idle = 0;
static unsigned user_current_limit = -1U;
static int fake_state_of_charge = -1;
/* Current power state context */
static struct power_state_context task_ctx;
static inline int is_charger_expired(
struct power_state_context *ctx, timestamp_t now)
{
return now.val - ctx->charger_update_time.val > CHARGER_UPDATE_PERIOD;
}
static inline void update_charger_time(
struct power_state_context *ctx, timestamp_t now)
{
ctx->charger_update_time.val = now.val;
}
/**
* Update memory-mapped battery information, used by ACPI _BIF and/or _BIX.
*/
static void update_battery_info(void)
{
char *batt_str;
int batt_serial;
/* Design Capacity of Full */
battery_design_capacity((int *)host_get_memmap(EC_MEMMAP_BATT_DCAP));
/* Design Voltage */
battery_design_voltage((int *)host_get_memmap(EC_MEMMAP_BATT_DVLT));
/* Last Full Charge Capacity */
battery_full_charge_capacity(
(int *)host_get_memmap(EC_MEMMAP_BATT_LFCC));
/* Cycle Count */
battery_cycle_count((int *)host_get_memmap(EC_MEMMAP_BATT_CCNT));
/* Battery Manufacturer string */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_MFGR);
memset(batt_str, 0, EC_MEMMAP_TEXT_MAX);
battery_manufacturer_name(batt_str, EC_MEMMAP_TEXT_MAX);
/* Battery Model string */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_MODEL);
memset(batt_str, 0, EC_MEMMAP_TEXT_MAX);
battery_device_name(batt_str, EC_MEMMAP_TEXT_MAX);
/* Battery Type string */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_TYPE);
battery_device_chemistry(batt_str, EC_MEMMAP_TEXT_MAX);
/* Smart battery serial number is 16 bits */
batt_str = (char *)host_get_memmap(EC_MEMMAP_BATT_SERIAL);
memset(batt_str, 0, EC_MEMMAP_TEXT_MAX);
if (battery_serial_number(&batt_serial) == 0)
snprintf(batt_str, EC_MEMMAP_TEXT_MAX, "%04X", batt_serial);
/* Battery data is now present */
*host_get_memmap(EC_MEMMAP_BATTERY_VERSION) = 1;
}
/**
* Prevent battery from going into deep discharge state
*/
static void low_battery_shutdown(struct power_state_context *ctx)
{
if (chipset_in_state(CHIPSET_STATE_ANY_OFF)) {
/* AP is off, so shut down the EC now */
CPRINTF("[%T charge force EC hibernate due to low battery]\n");
system_hibernate(0, 0);
} else if (!ctx->shutdown_warning_time.val) {
/* Warn AP battery level is so low we'll shut down */
CPRINTF("[%T charge warn shutdown due to low battery]\n");
ctx->shutdown_warning_time = get_time();
host_set_single_event(EC_HOST_EVENT_BATTERY_SHUTDOWN);
} else if (get_time().val > ctx->shutdown_warning_time.val +
LOW_BATTERY_SHUTDOWN_TIMEOUT_US) {
/* Timeout waiting for AP to shut down, so kill it */
CPRINTF("[%T charge force shutdown due to low battery]\n");
chipset_force_shutdown();
}
}
/**
* Common handler for charging states.
*
* This handler gets battery charging parameters, charger state, ac state, and
* timestamp. It also fills memory map and issues power events on state change.
*/
static int state_common(struct power_state_context *ctx)
{
int rv, d;
struct power_state_data *curr = &ctx->curr;
struct power_state_data *prev = &ctx->prev;
struct batt_params *batt = &ctx->curr.batt;
uint8_t *batt_flags = ctx->memmap_batt_flags;
/* Copy previous state and init new state */
ctx->prev = ctx->curr;
curr->ts = get_time();
curr->error = 0;
/* Detect AC change */
curr->ac = charge_get_flags() & CHARGE_FLAG_EXTERNAL_POWER;
if (curr->ac != prev->ac) {
if (curr->ac) {
/* AC on
* Initialize charger to power on reset mode
*/
rv = charger_post_init();
if (rv)
curr->error |= F_CHARGER_INIT;
}
}
if (curr->ac) {
*batt_flags |= EC_BATT_FLAG_AC_PRESENT;
if (charger_get_voltage(&curr->charging_voltage)) {
charger_set_voltage(0);
charger_set_current(0);
curr->error |= F_CHARGER_VOLTAGE;
}
if (charger_get_current(&curr->charging_current)) {
charger_set_voltage(0);
charger_set_current(0);
curr->error |= F_CHARGER_CURRENT;
}
} else {
*batt_flags &= ~EC_BATT_FLAG_AC_PRESENT;
/* AC disconnected should get us out of force idle mode. */
state_machine_force_idle = 0;
}
rv = battery_temperature(&batt->temperature);
if (rv) {
/* Check low battery condition and retry */
if (curr->ac && ctx->battery_present == 1 &&
!(curr->error & F_CHARGER_MASK)) {
ctx->battery_present = 0;
/*
* Try to revive ultra low voltage pack. Charge
* battery pack with minimum current and maximum
* voltage for 30 seconds.
*/
charger_set_voltage(ctx->battery->voltage_max);
charger_set_current(ctx->battery->precharge_current);
for (d = 0; d < 30; d++) {
sleep(1);
rv = battery_temperature(&batt->temperature);
if (rv == 0) {
ctx->battery_present = 1;
break;
}
}
}
/* Set error if battery is still unresponsive */
if (rv)
curr->error |= F_BATTERY_TEMPERATURE;
} else {
ctx->battery_present = 1;
}
if (battery_voltage(&batt->voltage))
curr->error |= F_BATTERY_VOLTAGE;
*ctx->memmap_batt_volt = batt->voltage;
if (battery_current(&batt->current))
curr->error |= F_BATTERY_CURRENT;
/* Memory mapped value: discharge rate */
*ctx->memmap_batt_rate = batt->current < 0 ?
-batt->current : batt->current;
if (battery_desired_voltage(&batt->desired_voltage))
curr->error |= F_DESIRED_VOLTAGE;
if (battery_desired_current(&batt->desired_current))
curr->error |= F_DESIRED_CURRENT;
if (fake_state_of_charge >= 0)
batt->state_of_charge = fake_state_of_charge;
else if (battery_state_of_charge(&batt->state_of_charge))
curr->error |= F_BATTERY_STATE_OF_CHARGE;
if (batt->state_of_charge != prev->batt.state_of_charge) {
rv = battery_full_charge_capacity(&d);
if (!rv && d != *(int *)host_get_memmap(EC_MEMMAP_BATT_LFCC)) {
*(int *)host_get_memmap(EC_MEMMAP_BATT_LFCC) = d;
/* Notify host to re-read battery information */
host_set_single_event(EC_HOST_EVENT_BATTERY);
}
}
/* Prevent deep discharging */
if (!curr->ac) {
if ((batt->state_of_charge < BATTERY_LEVEL_SHUTDOWN &&
!(curr->error & F_BATTERY_STATE_OF_CHARGE)) ||
(batt->voltage <= ctx->battery->voltage_min &&
!(curr->error & F_BATTERY_VOLTAGE)))
low_battery_shutdown(ctx);
}
/* Check battery presence */
if (curr->error & F_BATTERY_MASK) {
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_BATT_PRESENT;
return curr->error;
}
*ctx->memmap_batt_flags |= EC_BATT_FLAG_BATT_PRESENT;
/* Battery charge level low */
if (batt->state_of_charge <= BATTERY_LEVEL_LOW &&
prev->batt.state_of_charge > BATTERY_LEVEL_LOW)
host_set_single_event(EC_HOST_EVENT_BATTERY_LOW);
/* Battery charge level critical */
if (batt->state_of_charge <= BATTERY_LEVEL_CRITICAL) {
*ctx->memmap_batt_flags |= EC_BATT_FLAG_LEVEL_CRITICAL;
/* Send battery critical host event */
if (prev->batt.state_of_charge > BATTERY_LEVEL_CRITICAL)
host_set_single_event(EC_HOST_EVENT_BATTERY_CRITICAL);
} else {
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_LEVEL_CRITICAL;
}
/* Apply battery pack vendor charging method */
battery_vendor_params(batt);
#ifdef CONFIG_CHARGING_CURRENT_LIMIT
if (batt->desired_current > CONFIG_CHARGING_CURRENT_LIMIT)
batt->desired_current = CONFIG_CHARGING_CURRENT_LIMIT;
#endif
if (batt->desired_current > user_current_limit)
batt->desired_current = user_current_limit;
if (battery_get_battery_mode(&d)) {
curr->error |= F_BATTERY_MODE;
} else if (d & MODE_CAPACITY) {
/* Battery capacity mode was set to mW; reset it back to mAh */
if (battery_set_battery_mode(d & ~MODE_CAPACITY))
ctx->curr.error |= F_BATTERY_MODE;
}
if (fake_state_of_charge >= 0)
*ctx->memmap_batt_cap =
fake_state_of_charge *
*(int *)host_get_memmap(EC_MEMMAP_BATT_LFCC) / 100;
else if (battery_remaining_capacity(&d))
ctx->curr.error |= F_BATTERY_CAPACITY;
else
*ctx->memmap_batt_cap = d;
return ctx->curr.error;
}
/**
* Init state handler
*
* - check ac, charger, battery and temperature
* - initialize charger
* - new states: DISCHARGE, IDLE
*/
static enum power_state state_init(struct power_state_context *ctx)
{
/* Stop charger, unconditionally */
charger_set_current(0);
charger_set_voltage(0);
/* Update static battery info */
update_battery_info();
/* Clear shutdown timer */
ctx->shutdown_warning_time.val = 0;
/* If AC is not present, switch to discharging state */
if (!ctx->curr.ac)
return PWR_STATE_DISCHARGE;
/* Check general error conditions */
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Send battery event to host */
host_set_single_event(EC_HOST_EVENT_BATTERY);
return PWR_STATE_IDLE0;
}
/**
* Idle state handler
*
* - both charger and battery are online
* - detect charger and battery status change
* - new states: CHARGE, INIT
*/
static enum power_state state_idle(struct power_state_context *ctx)
{
struct batt_params *batt = &ctx->curr.batt;
const struct charger_info *c_info = ctx->charger;
/* If we are forcing idle mode, then just stay in IDLE. */
if (state_machine_force_idle)
return PWR_STATE_UNCHANGE;
if (!ctx->curr.ac)
return PWR_STATE_REINIT;
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Prevent charging in idle mode */
if (ctx->curr.charging_voltage ||
ctx->curr.charging_current)
return PWR_STATE_REINIT;
if (batt->state_of_charge >= BATTERY_LEVEL_FULL)
return PWR_STATE_UNCHANGE;
/* Configure init charger state and switch to charge state */
if (batt->desired_voltage && batt->desired_current) {
/* Set charger output constraints */
if (batt->desired_current < ctx->charger->current_min &&
batt->state_of_charge < BATTERY_LEVEL_PRE_CHARGE) {
/* Trickle charging */
if (charger_set_current(c_info->current_min) ||
charger_set_voltage(batt->voltage))
return PWR_STATE_ERROR;
ctx->trickle_charging_time = get_time();
} else {
/* Normal charging */
int want_current =
charger_closest_current(batt->desired_current);
CPRINTF("[%T Charge start %dmV %dmA]\n",
batt->desired_voltage, want_current);
if (charger_set_voltage(batt->desired_voltage) ||
charger_set_current(want_current))
return PWR_STATE_ERROR;
}
update_charger_time(ctx, get_time());
if (ctx->curr.batt.state_of_charge < BATTERY_LEVEL_NEAR_FULL)
return PWR_STATE_CHARGE;
else
return PWR_STATE_CHARGE_NEAR_FULL;
}
return PWR_STATE_UNCHANGE;
}
/**
* Charge state handler
*
* - detect battery status change
* - new state: INIT
*/
static enum power_state state_charge(struct power_state_context *ctx)
{
struct power_state_data *curr = &ctx->curr;
struct batt_params *batt = &ctx->curr.batt;
const struct charger_info *c_info = ctx->charger;
int debounce = 0;
int want_current;
timestamp_t now;
if (curr->error)
return PWR_STATE_ERROR;
if (batt->desired_current < c_info->current_min &&
batt->desired_current > 0 &&
batt->state_of_charge < BATTERY_LEVEL_PRE_CHARGE)
return trickle_charge(ctx);
/* Check charger reset */
if (curr->charging_voltage == 0 ||
curr->charging_current == 0)
return PWR_STATE_REINIT;
if (!curr->ac)
return PWR_STATE_REINIT;
if (batt->state_of_charge >= BATTERY_LEVEL_FULL) {
if (charger_set_voltage(0) || charger_set_current(0))
return PWR_STATE_ERROR;
return PWR_STATE_IDLE;
}
now = get_time();
if (batt->desired_voltage != curr->charging_voltage) {
CPRINTF("[%T Charge voltage %dmV]\n", batt->desired_voltage);
if (charger_set_voltage(batt->desired_voltage))
return PWR_STATE_ERROR;
update_charger_time(ctx, now);
}
/*
* Adjust desired current to one the charger can actually supply before
* we do debouncing, or else we'll keep asking for a current the
* charger can't actually supply.
*/
want_current = charger_closest_current(batt->desired_current);
if (want_current == curr->charging_current) {
/* Tick charger watchdog */
if (!is_charger_expired(ctx, now))
return PWR_STATE_UNCHANGE;
} else if (want_current > curr->charging_current) {
if (!timestamp_expired(ctx->voltage_debounce_time, &now))
return PWR_STATE_UNCHANGE;
} else {
debounce = 1;
}
if (want_current != curr->charging_current) {
CPRINTF("[%T Charge current %dmA @ %dmV]\n",
want_current, batt->desired_voltage);
}
if (charger_set_current(want_current))
return PWR_STATE_ERROR;
/* Update charger watchdog timer and debounce timer */
update_charger_time(ctx, now);
if (debounce)
ctx->voltage_debounce_time.val = now.val + DEBOUNCE_TIME;
return PWR_STATE_UNCHANGE;
}
/**
* Discharge state handler
*
* - detect ac status
* - new state: INIT
*/
static enum power_state state_discharge(struct power_state_context *ctx)
{
struct batt_params *batt = &ctx->curr.batt;
if (ctx->curr.ac)
return PWR_STATE_REINIT;
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Handle overtemp in discharging state by powering off host */
if ((batt->temperature > ctx->battery->temp_discharge_max ||
batt->temperature < ctx->battery->temp_discharge_min) &&
chipset_in_state(CHIPSET_STATE_ON)) {
CPRINTF("[%T charge force shutdown due to battery temp]\n");
chipset_force_shutdown();
host_set_single_event(EC_HOST_EVENT_BATTERY_SHUTDOWN);
}
return PWR_STATE_UNCHANGE;
}
/**
* Error state handler
*
* - check charger and battery communication
* - log error
* - new state: INIT
*/
static enum power_state state_error(struct power_state_context *ctx)
{
static int logged_error;
if (!ctx->curr.error) {
logged_error = 0;
return PWR_STATE_REINIT;
}
/* Debug output */
if (ctx->curr.error != logged_error) {
CPRINTF("[%T Charge error: flag[%08b -> %08b], ac %d, "
" charger %s, battery %s\n",
logged_error, ctx->curr.error, ctx->curr.ac,
(ctx->curr.error & F_CHARGER_MASK) ? "(err)" : "ok",
(ctx->curr.error & F_BATTERY_MASK) ? "(err)" : "ok");
logged_error = ctx->curr.error;
}
return PWR_STATE_UNCHANGE;
}
/**
* Print charging progress
*/
static void charging_progress(struct power_state_context *ctx)
{
int seconds, minutes;
if (ctx->curr.batt.state_of_charge != ctx->prev.batt.state_of_charge) {
if (ctx->curr.ac)
battery_time_to_full(&minutes);
else
battery_time_to_empty(&minutes);
CPRINTF("[%T Battery %3d%% / %dh:%d]\n",
ctx->curr.batt.state_of_charge,
minutes / 60, minutes % 60);
return;
}
if (ctx->curr.charging_voltage != ctx->prev.charging_voltage &&
ctx->trickle_charging_time.val) {
/* Calculate minutes by dividing usec by 60 million. GNU
* toolchain generates architecture dependent calls instead of
* machine code when the divisor is large, so break the
* calculation into 2 lines.
*/
seconds = (int)(get_time().val -
ctx->trickle_charging_time.val) / (int)SECOND;
minutes = seconds / 60;
CPRINTF("[%T Precharge CHG(%dmV) BATT(%dmV %dmA) "
"%dh:%d]\n", ctx->curr.charging_voltage,
ctx->curr.batt.voltage, ctx->curr.batt.current,
minutes / 60, minutes % 60);
}
}
enum power_state charge_get_state(void)
{
return task_ctx.curr.state;
}
uint32_t charge_get_flags(void)
{
uint32_t flags = 0;
if (state_machine_force_idle)
flags |= CHARGE_FLAG_FORCE_IDLE;
if (extpower_is_present())
flags |= CHARGE_FLAG_EXTERNAL_POWER;
return flags;
}
int charge_get_percent(void)
{
return task_ctx.curr.batt.state_of_charge;
}
int charge_want_shutdown(void)
{
return (charge_get_state() == PWR_STATE_DISCHARGE) &&
charge_get_percent() < BATTERY_LEVEL_SHUTDOWN;
}
static int enter_force_idle_mode(void)
{
/*
* Force-idle state is only meaningful if external power is present.
* If it's not present we can't charge anyway...
*/
if (!(charge_get_flags() & CHARGE_FLAG_EXTERNAL_POWER))
return EC_ERROR_UNKNOWN;
state_machine_force_idle = 1;
charger_post_init();
return EC_SUCCESS;
}
static int exit_force_idle_mode(void)
{
state_machine_force_idle = 0;
return EC_SUCCESS;
}
/**
* Battery charging task
*/
void charger_task(void)
{
struct power_state_context *ctx = &task_ctx;
timestamp_t ts;
int sleep_usec = POLL_PERIOD_SHORT, diff_usec, sleep_next;
enum power_state new_state;
uint8_t batt_flags;
while (1) {
state_common(ctx);
switch (ctx->prev.state) {
case PWR_STATE_INIT:
case PWR_STATE_REINIT:
new_state = state_init(ctx);
break;
case PWR_STATE_IDLE0:
new_state = state_idle(ctx);
/* If still idling, move from IDLE0 to IDLE */
if (new_state == PWR_STATE_UNCHANGE)
new_state = PWR_STATE_IDLE;
break;
case PWR_STATE_IDLE:
new_state = state_idle(ctx);
break;
case PWR_STATE_DISCHARGE:
new_state = state_discharge(ctx);
break;
case PWR_STATE_CHARGE:
new_state = state_charge(ctx);
if (new_state == PWR_STATE_UNCHANGE &&
(ctx->curr.batt.state_of_charge >=
BATTERY_LEVEL_NEAR_FULL)) {
/* Almost done charging */
new_state = PWR_STATE_CHARGE_NEAR_FULL;
}
break;
case PWR_STATE_CHARGE_NEAR_FULL:
new_state = state_charge(ctx);
if (new_state == PWR_STATE_UNCHANGE &&
(ctx->curr.batt.state_of_charge <
BATTERY_LEVEL_NEAR_FULL)) {
/* Battery below almost-full threshold. */
new_state = PWR_STATE_CHARGE;
}
break;
case PWR_STATE_ERROR:
new_state = state_error(ctx);
break;
default:
CPRINTF("[%T Charge state %d undefined]\n",
ctx->curr.state);
ctx->curr.state = PWR_STATE_ERROR;
new_state = PWR_STATE_ERROR;
}
if (state_machine_force_idle &&
ctx->prev.state != PWR_STATE_IDLE0 &&
ctx->prev.state != PWR_STATE_IDLE &&
ctx->prev.state != PWR_STATE_INIT &&
ctx->prev.state != PWR_STATE_REINIT)
new_state = PWR_STATE_REINIT;
if (new_state) {
ctx->curr.state = new_state;
CPRINTF("[%T Charge state %s -> %s]\n",
state_name[ctx->prev.state],
state_name[new_state]);
}
/*
* After first init, wake the switch task so it can
* power on the AP if necessary.
*/
if (ctx->prev.state == PWR_STATE_INIT &&
new_state != PWR_STATE_INIT)
task_wake(TASK_ID_SWITCH);
switch (new_state) {
case PWR_STATE_IDLE0:
/*
* First time transitioning from init -> idle. Don't
* set the flags or LED yet because we may transition
* to charging on the next call and we don't want to
* blink the LED green.
*/
sleep_usec = POLL_PERIOD_SHORT;
break;
case PWR_STATE_CHARGE_NEAR_FULL:
/*
* Battery is almost charged. The last few percent
* take a loooong time, so fall through and look like
* we're charged. This mirrors similar hacks at the
* ACPI/kernel/UI level.
*/
case PWR_STATE_IDLE:
batt_flags = *ctx->memmap_batt_flags;
batt_flags &= ~EC_BATT_FLAG_CHARGING;
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
*ctx->memmap_batt_flags = batt_flags;
/* Charge done */
sleep_usec = (new_state == PWR_STATE_IDLE ?
POLL_PERIOD_LONG : POLL_PERIOD_CHARGE);
break;
case PWR_STATE_DISCHARGE:
batt_flags = *ctx->memmap_batt_flags;
batt_flags &= ~EC_BATT_FLAG_CHARGING;
batt_flags |= EC_BATT_FLAG_DISCHARGING;
*ctx->memmap_batt_flags = batt_flags;
sleep_usec = POLL_PERIOD_LONG;
break;
case PWR_STATE_CHARGE:
batt_flags = *ctx->memmap_batt_flags;
batt_flags |= EC_BATT_FLAG_CHARGING;
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
*ctx->memmap_batt_flags = batt_flags;
/* Charging */
sleep_usec = POLL_PERIOD_CHARGE;
break;
case PWR_STATE_ERROR:
/* Error */
sleep_usec = POLL_PERIOD_CHARGE;
break;
case PWR_STATE_UNCHANGE:
/* Don't change sleep duration */
break;
default:
/* Other state; poll quickly and hope it goes away */
sleep_usec = POLL_PERIOD_SHORT;
}
/* Show charging progress in console */
charging_progress(ctx);
ts = get_time();
diff_usec = (int)(ts.val - ctx->curr.ts.val);
sleep_next = sleep_usec - diff_usec;
if (ctx->curr.state == PWR_STATE_DISCHARGE &&
chipset_in_state(CHIPSET_STATE_ANY_OFF |
CHIPSET_STATE_SUSPEND)) {
/*
* Discharging and system is off or suspended, so no
* need to poll frequently. charge_hook() will wake us
* up if anything important changes.
*/
sleep_next = POLL_PERIOD_VERY_LONG - diff_usec;
} else if (sleep_next < MIN_SLEEP_USEC) {
sleep_next = MIN_SLEEP_USEC;
} else if (sleep_next > MAX_SLEEP_USEC) {
sleep_next = MAX_SLEEP_USEC;
}
task_wait_event(sleep_next);
}
}
/*****************************************************************************/
/* Hooks */
/**
* Charge notification hook.
*
* This is triggered when the AC state changes or the system boots, so that
* we can update our charging state.
*/
static void charge_hook(void)
{
/* Wake up the task now */
task_wake(TASK_ID_CHARGER);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, charge_hook, HOOK_PRIO_DEFAULT);
DECLARE_HOOK(HOOK_AC_CHANGE, charge_hook, HOOK_PRIO_DEFAULT);
static void charge_init(void)
{
struct power_state_context *ctx = &task_ctx;
ctx->prev.state = PWR_STATE_INIT;
ctx->curr.state = PWR_STATE_INIT;
ctx->trickle_charging_time.val = 0;
ctx->battery = battery_get_info();
ctx->charger = charger_get_info();
ctx->battery_present = 1;
/* Set up LPC direct memmap */
ctx->memmap_batt_volt =
(uint32_t *)host_get_memmap(EC_MEMMAP_BATT_VOLT);
ctx->memmap_batt_rate =
(uint32_t *)host_get_memmap(EC_MEMMAP_BATT_RATE);
ctx->memmap_batt_cap =
(uint32_t *)host_get_memmap(EC_MEMMAP_BATT_CAP);
ctx->memmap_batt_flags = host_get_memmap(EC_MEMMAP_BATT_FLAG);
}
DECLARE_HOOK(HOOK_INIT, charge_init, HOOK_PRIO_DEFAULT);
static void charge_shutdown(void)
{
/* Hibernate immediately if battery level is too low */
if (charge_want_shutdown()) {
CPRINTF("[%T charge force EC hibernate after"
" shutdown due to low battery]\n");
system_hibernate(0, 0);
}
}
/*
* Run the charge shutdown hook last, since when it hibernates no subsequent
* hooks would be run.
*/
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, charge_shutdown, HOOK_PRIO_LAST);
/*****************************************************************************/
/* Host commands */
static int charge_command_force_idle(struct host_cmd_handler_args *args)
{
const struct ec_params_force_idle *p = args->params;
int rv;
if (system_is_locked())
return EC_RES_ACCESS_DENIED;
if (p->enabled)
rv = enter_force_idle_mode();
else
rv = exit_force_idle_mode();
if (rv != EC_SUCCESS)
return EC_RES_ERROR;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CHARGE_FORCE_IDLE, charge_command_force_idle,
EC_VER_MASK(0));
static int charge_command_dump(struct host_cmd_handler_args *args)
{
char *dest = (char *)args->response;
if (system_is_locked())
return EC_RES_ACCESS_DENIED;
ASSERT(sizeof(task_ctx) <= args->response_max);
memcpy(dest, &task_ctx, sizeof(task_ctx));
args->response_size = sizeof(task_ctx);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CHARGE_DUMP, charge_command_dump,
EC_VER_MASK(0));
static void reset_current_limit(void)
{
user_current_limit = -1;
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, reset_current_limit, HOOK_PRIO_DEFAULT);
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, reset_current_limit, HOOK_PRIO_DEFAULT);
static int charge_command_current_limit(struct host_cmd_handler_args *args)
{
const struct ec_params_current_limit *p = args->params;
user_current_limit = p->limit;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CHARGE_CURRENT_LIMIT, charge_command_current_limit,
EC_VER_MASK(0));
/*****************************************************************************/
/* Console commands */
static int command_battfake(int argc, char **argv)
{
char *e;
int v;
if (argc == 2) {
v = strtoi(argv[1], &e, 0);
if (*e || v < -1 || v > 100)
return EC_ERROR_PARAM1;
fake_state_of_charge = v;
}
if (fake_state_of_charge < 0)
ccprintf("Reporting real battery level\n");
else
ccprintf("Reporting fake battery level %d%%\n",
fake_state_of_charge);
/* Wake charger task immediately to see new level */
task_wake(TASK_ID_CHARGER);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(battfake, command_battfake,
"percent (-1 = use real level)",
"Set fake battery level",
NULL);