Files
OpenCellular/include/accelgyro.h
Gwendal Grignou 59138ad097 motion_sense: Allow multiple IRQ based sensors
Add a mask of custom events reserved for IRQ based sensors.
Copy data from raw_xzy to xyz while filling the FIFO
when FIFO is enabled.

BRANCH=smaug
TEST=Test with si1141 driver, check irq works for both driver.
BUG=chrome-os-partner:32829

Change-Id: I5e106df0c121e3bf1385f635195717395235ccc3
Signed-off-by: Gwendal Grignou <gwendal@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/291334
Reviewed-by: Sheng-liang Song <ssl@chromium.org>
2015-08-22 09:31:45 +00:00

127 lines
4.1 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __CROS_EC_ACCELGYRO_H
#define __CROS_EC_ACCELGYRO_H
#include "motion_sense.h"
/* Header file for accelerometer / gyro drivers. */
/* Number of counts from accelerometer that represents 1G acceleration. */
#define ACCEL_G 1024
struct accelgyro_drv {
/**
* Initialize accelerometers.
* @s Pointer to sensor data pointer. Sensor data will be
* allocated on success.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*init)(const struct motion_sensor_t *s);
/**
* Read all three accelerations of an accelerometer. Note that all
* three accelerations come back in counts, where ACCEL_G can be used
* to convert counts to engineering units.
* @s Pointer to sensor data.
* @v Vector to store acceleration (in units of counts).
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*read)(const struct motion_sensor_t *s, vector_3_t v);
/**
* Setter and getter methods for the sensor range. The sensor range
* defines the maximum value that can be returned from read(). As the
* range increases, the resolution gets worse.
* @s Pointer to sensor data.
* @range Range (Units are +/- G's for accel, +/- deg/s for gyro)
* @rnd Rounding flag. If true, it rounds up to nearest valid
* value. Otherwise, it rounds down.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_range)(const struct motion_sensor_t *s,
int range,
int rnd);
int (*get_range)(const struct motion_sensor_t *s,
int *range);
/**
* Setter and getter methods for the sensor resolution.
* @s Pointer to sensor data.
* @range Resolution (Units are number of bits)
* param rnd Rounding flag. If true, it rounds up to nearest valid
* value. Otherwise, it rounds down.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_resolution)(const struct motion_sensor_t *s,
int res,
int rnd);
int (*get_resolution)(const struct motion_sensor_t *s,
int *res);
/**
* Setter and getter methods for the sensor output data range. As the
* ODR increases, the LPF roll-off frequency also increases.
* @s Pointer to sensor data.
* @rate Output data rate (units are milli-Hz)
* @rnd Rounding flag. If true, it rounds up to nearest valid
* value. Otherwise, it rounds down.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_data_rate)(const struct motion_sensor_t *s,
int rate,
int rnd);
int (*get_data_rate)(const struct motion_sensor_t *s,
int *rate);
/**
* Setter and getter methods for the sensor offset.
* @s Pointer to sensor data.
* @offset: offset to apply to raw data.
* @temp: temperature when calibration was done.
* @return EC_SUCCESS if successful, non-zero if error.
*/
int (*set_offset)(const struct motion_sensor_t *s,
const int16_t *offset,
int16_t temp);
int (*get_offset)(const struct motion_sensor_t *s,
int16_t *offset,
int16_t *temp);
int (*perform_calib)(const struct motion_sensor_t *s);
#ifdef CONFIG_ACCEL_INTERRUPTS
/**
* Setup a one-time accel interrupt. If the threshold is low enough, the
* interrupt may trigger due simply to noise and not any real motion.
* If the threshold is 0, the interrupt will fire immediately.
* @s Pointer to sensor data.
* @threshold Threshold for interrupt in units of counts.
*/
int (*set_interrupt)(const struct motion_sensor_t *s,
unsigned int threshold);
/**
* handler for interrupts triggered by the sensor: it runs in task and
* process the events that triggered an interrupt.
* @s Pointer to sensor data.
* @event Event to process.
*/
int (*irq_handler)(struct motion_sensor_t *s, uint32_t event);
#endif
#ifdef CONFIG_ACCEL_FIFO
/**
* Retrieve hardware FIFO from sensor,
* - put data in Sensor Hub fifo.
* - update sensor raw_xyz vector with the last information.
* We put raw data in hub fifo and process data from theres.
* @s Pointer to sensor data.
*/
int (*load_fifo)(struct motion_sensor_t *s);
#endif
};
#endif /* __CROS_EC_ACCELGYRO_H */