Files
OpenCellular/common/usb_pd_policy.c
Todd Broch c0f64b13e9 pd: vdm: Add VDM related timeouts and busy response handling.
Initial VDM implementation had a very conservative 500msec timeout period.  This
CL adds the timeouts defined in the USB-PD specification for various commands.

Additionally it adds a state to the vdm state machine to allow proper busy
response handling.

Signed-off-by: Todd Broch <tbroch@chromium.org>

BRANCH=samus
BUG=chrome-os-partner:30645
TEST=manual,
Alternate mode and flashing still work.  Creating a VDM responder which returns
busy shows retries from initiator after at least 100msec.

Change-Id: I79f5da557ca9faf63d2299bb77009f6d98a782bd
Reviewed-on: https://chromium-review.googlesource.com/235682
Reviewed-by: Alec Berg <alecaberg@chromium.org>
Tested-by: Todd Broch <tbroch@chromium.org>
Commit-Queue: Todd Broch <tbroch@chromium.org>
2015-01-07 08:45:34 +00:00

707 lines
17 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "adc.h"
#include "atomic.h"
#include "charge_manager.h"
#include "common.h"
#include "console.h"
#include "flash.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "registers.h"
#include "rsa.h"
#include "sha256.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "usb_api.h"
#include "usb_pd.h"
#include "usb_pd_config.h"
#include "version.h"
#ifdef CONFIG_COMMON_RUNTIME
#define CPRINTS(format, args...) cprints(CC_USBPD, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_USBPD, format, ## args)
#else
#define CPRINTS(format, args...)
#define CPRINTF(format, args...)
#endif
static int rw_flash_changed = 1;
#ifdef CONFIG_USB_PD_DUAL_ROLE
/* Cap on the max voltage requested as a sink (in millivolts) */
static unsigned max_request_mv = -1; /* no cap */
/**
* Find PDO index that offers the most amount of power and stays within
* max_mv voltage.
*
* @param cnt the number of Power Data Objects.
* @param src_caps Power Data Objects representing the source capabilities.
* @param max_mv maximum voltage (or -1 if no limit)
* @return index of PDO within source cap packet
*/
static int pd_find_pdo_index(int cnt, uint32_t *src_caps, int max_mv)
{
int i, uw, max_uw = 0, mv, ma;
int ret = -1;
/* max_mv of -1 represents max limit */
if (max_mv == -1)
max_mv = PD_MAX_VOLTAGE_MV;
/* max voltage is always limited by this boards max request */
max_mv = MIN(max_mv, PD_MAX_VOLTAGE_MV);
/* Get max power that is under our max voltage input */
for (i = 0; i < cnt; i++) {
mv = ((src_caps[i] >> 10) & 0x3FF) * 50;
if ((src_caps[i] & PDO_TYPE_MASK) == PDO_TYPE_BATTERY) {
uw = 250000 * (src_caps[i] & 0x3FF);
} else {
ma = (src_caps[i] & 0x3FF) * 10;
uw = ma * mv;
}
if ((uw > max_uw) && (mv <= max_mv)) {
ret = i;
max_uw = uw;
}
}
return ret;
}
/**
* Extract power information out of a Power Data Object (PDO)
*
* @pdo Power data object
* @ma Current we can request from that PDO
* @mv Voltage of the PDO
*/
static void pd_extract_pdo_power(uint32_t pdo, uint32_t *ma, uint32_t *mv)
{
int max_ma, uw;
*mv = ((pdo >> 10) & 0x3FF) * 50;
if ((pdo & PDO_TYPE_MASK) == PDO_TYPE_BATTERY) {
uw = 250000 * (pdo & 0x3FF);
max_ma = 1000 * MIN(1000 * uw, PD_MAX_POWER_MW) / *mv;
} else {
max_ma = 10 * (pdo & 0x3FF);
max_ma = MIN(max_ma, PD_MAX_CURRENT_MA);
}
*ma = max_ma;
}
int pd_build_request(int cnt, uint32_t *src_caps, uint32_t *rdo,
uint32_t *ma, uint32_t *mv, enum pd_request_type req_type)
{
int pdo_index, flags = 0;
int uw;
if (req_type == PD_REQUEST_VSAFE5V)
/* src cap 0 should be vSafe5V */
pdo_index = 0;
else
/* find pdo index for max voltage we can request */
pdo_index = pd_find_pdo_index(cnt, src_caps, max_request_mv);
/* If could not find desired pdo_index, then return error */
if (pdo_index == -1)
return -EC_ERROR_UNKNOWN;
pd_extract_pdo_power(src_caps[pdo_index], ma, mv);
uw = *ma * *mv;
if (uw < (1000 * PD_OPERATING_POWER_MW))
flags |= RDO_CAP_MISMATCH;
if ((src_caps[pdo_index] & PDO_TYPE_MASK) == PDO_TYPE_BATTERY) {
int mw = uw / 1000;
*rdo = RDO_BATT(pdo_index + 1, mw, mw, flags);
CPRINTF("Request [%d] %dmV %dmW",
pdo_index, *mv, mw);
} else {
*rdo = RDO_FIXED(pdo_index + 1, *ma, *ma, flags);
CPRINTF("Request [%d] %dmV %dmA",
pdo_index, *mv, *ma);
}
/* Mismatch bit set if less power offered than the operating power */
if (flags & RDO_CAP_MISMATCH)
CPRINTF(" Mismatch");
CPRINTF("\n");
return EC_SUCCESS;
}
void pd_process_source_cap(int port, int cnt, uint32_t *src_caps)
{
#ifdef CONFIG_CHARGE_MANAGER
uint32_t ma, mv;
int pdo_index;
/* Get max power info that we could request */
pdo_index = pd_find_pdo_index(cnt, src_caps, -1);
if (pdo_index < 0)
pdo_index = 0;
pd_extract_pdo_power(src_caps[pdo_index], &ma, &mv);
/* Set max. limit, but apply 500mA ceiling */
charge_manager_set_ceil(port, PD_MIN_MA);
pd_set_input_current_limit(port, ma, mv);
#endif
}
void pd_set_max_voltage(unsigned mv)
{
max_request_mv = mv;
}
unsigned pd_get_max_voltage(void)
{
return max_request_mv;
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
#ifdef CONFIG_USB_PD_ALT_MODE
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
static struct pd_policy pe[PD_PORT_COUNT];
#define AMODE_VALID(port) (pe[port].amode.index != -1)
static void pe_init(int port)
{
memset(&pe[port], 0, sizeof(struct pd_policy));
pe[port].amode.index = -1;
}
static void dfp_consume_identity(int port, uint32_t *payload)
{
int ptype = PD_IDH_PTYPE(payload[VDO_I(IDH)]);
pe_init(port);
memcpy(&pe[port].identity, payload + 1, sizeof(pe[port].identity));
switch (ptype) {
case IDH_PTYPE_AMA:
/* TODO(tbroch) do I disable VBUS here if power contract
* requested it
*/
if (!PD_VDO_AMA_VBUS_REQ(payload[VDO_I(AMA)]))
pd_power_supply_reset(port);
break;
/* TODO(crosbug.com/p/30645) provide vconn support here */
default:
break;
}
}
static int dfp_discover_svids(int port, uint32_t *payload)
{
payload[0] = VDO(USB_SID_PD, 1, CMD_DISCOVER_SVID);
return 1;
}
static void dfp_consume_svids(int port, uint32_t *payload)
{
int i;
uint32_t *ptr = payload + 1;
uint16_t svid0, svid1;
for (i = pe[port].svid_cnt; i < pe[port].svid_cnt + 12; i += 2) {
if (i == SVID_DISCOVERY_MAX) {
CPRINTF("ERR: too many svids discovered\n");
break;
}
svid0 = PD_VDO_SVID_SVID0(*ptr);
if (!svid0)
break;
pe[port].svids[i].svid = svid0;
pe[port].svid_cnt++;
svid1 = PD_VDO_SVID_SVID1(*ptr);
if (!svid1)
break;
pe[port].svids[i + 1].svid = svid1;
pe[port].svid_cnt++;
ptr++;
}
/* TODO(tbroch) need to re-issue discover svids if > 12 */
if (i && ((i % 12) == 0))
CPRINTF("TODO: need to re-issue discover svids > 12\n");
}
static int dfp_discover_modes(int port, uint32_t *payload)
{
uint16_t svid = pe[port].svids[pe[port].svid_idx].svid;
if (pe[port].svid_idx >= pe[port].svid_cnt)
return 0;
payload[0] = VDO(svid, 1, CMD_DISCOVER_MODES);
return 1;
}
static void dfp_consume_modes(int port, int cnt, uint32_t *payload)
{
int idx = pe[port].svid_idx;
pe[port].svids[idx].mode_cnt = cnt - 1;
if (pe[port].svids[idx].mode_cnt < 0) {
CPRINTF("PE ERR: no modes provided for SVID\n");
} else {
memcpy(pe[port].svids[pe[port].svid_idx].mode_vdo, &payload[1],
sizeof(uint32_t) * pe[port].svids[idx].mode_cnt);
}
pe[port].svid_idx++;
}
int pd_alt_mode(int port)
{
if (!AMODE_VALID(port))
/* zero is reserved */
return 0;
return pe[port].amode.index + 1;
}
/* TODO(tbroch) this function likely needs to move up the stack to where system
* policy decisions are made. */
static int dfp_enter_mode(int port, uint32_t *payload)
{
int i, j, done;
struct svdm_amode_data *modep = &pe[port].amode;
for (i = 0, done = 0; !done && (i < supported_modes_cnt); i++) {
for (j = 0; j < pe[port].svid_cnt; j++) {
if (pe[port].svids[j].svid != supported_modes[i].svid)
continue;
pe[port].amode.fx = &supported_modes[i];
pe[port].amode.mode_caps =
pe[port].svids[j].mode_vdo[0];
pe[port].amode.index = 0;
done = 1;
break;
}
}
if (!AMODE_VALID(port))
return 0;
if (modep->fx->enter(port, modep->mode_caps) == -1)
return 0;
payload[0] = VDO(modep->fx->svid, 1,
CMD_ENTER_MODE | VDO_OPOS(pd_alt_mode(port)));
return 1;
}
static void dfp_consume_attention(int port, uint32_t *payload)
{
int svid = PD_VDO_VID(payload[0]);
int opos = PD_VDO_OPOS(payload[0]);
if (!AMODE_VALID(port))
return;
if (svid != pe[port].amode.fx->svid) {
CPRINTF("PE ERR: svid s:0x%04x != m:0x%04x\n",
svid, pe[port].amode.fx->svid);
return;
}
if (opos != pd_alt_mode(port)) {
CPRINTF("PE ERR: opos s:%d != m:%d\n",
opos, pd_alt_mode(port));
return;
}
if (pe[port].amode.fx->attention)
pe[port].amode.fx->attention(port, payload);
}
int pd_exit_mode(int port, uint32_t *payload)
{
struct svdm_amode_data *modep = &pe[port].amode;
if (!modep->fx)
return 0;
modep->fx->exit(port);
if (payload)
payload[0] = VDO(modep->fx->svid, 1,
CMD_EXIT_MODE | VDO_OPOS(pd_alt_mode(port)));
modep->index = -1;
return 1;
}
#ifdef CONFIG_CMD_USB_PD_PE
static void dump_pe(int port)
{
const char * const idh_ptype_names[] = {
"UNDEF", "Hub", "Periph", "PCable", "ACable", "AMA",
"RSV6", "RSV7"};
int i, j, idh_ptype;
if (pe[port].identity[0] == 0) {
ccprintf("No identity discovered yet.\n");
return;
}
idh_ptype = PD_IDH_PTYPE(pe[port].identity[0]);
ccprintf("IDENT:\n");
ccprintf("\t[ID Header] %08x :: %s, VID:%04x\n", pe[port].identity[0],
idh_ptype_names[idh_ptype], PD_IDH_VID(pe[port].identity[0]));
ccprintf("\t[Cert Stat] %08x\n", pe[port].identity[1]);
for (i = 2; i < ARRAY_SIZE(pe[port].identity); i++) {
ccprintf("\t");
if (pe[port].identity[i])
ccprintf("[%d] %08x ", i, pe[port].identity[i]);
}
ccprintf("\n");
if (pe[port].svid_cnt < 1) {
ccprintf("No SVIDS discovered yet.\n");
return;
}
for (i = 0; i < pe[port].svid_cnt; i++) {
ccprintf("SVID[%d]: %04x MODES:", i, pe[port].svids[i].svid);
for (j = 0; j < pe[port].svids[j].mode_cnt; j++)
ccprintf(" [%d] %08x", j + 1,
pe[port].svids[i].mode_vdo[j]);
ccprintf("\n");
}
if (!AMODE_VALID(port)) {
ccprintf("No mode chosen yet.\n");
return;
}
ccprintf("MODE[%d]: svid:%04x caps:%08x\n", pd_alt_mode(port),
pe[port].amode.fx->svid, pe[port].amode.mode_caps);
}
static int command_pe(int argc, char **argv)
{
int port;
char *e;
if (argc < 3)
return EC_ERROR_PARAM_COUNT;
/* command: pe <port> <subcmd> <args> */
port = strtoi(argv[1], &e, 10);
if (*e || port >= PD_PORT_COUNT)
return EC_ERROR_PARAM2;
if (!strncasecmp(argv[2], "dump", 4))
dump_pe(port);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(pe, command_pe,
"<port> dump",
"USB PE",
NULL);
#endif /* CONFIG_CMD_USB_PD_PE */
#endif /* CONFIG_USB_PD_ALT_MODE_DFP */
int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload)
{
int cmd = PD_VDO_CMD(payload[0]);
int cmd_type = PD_VDO_CMDT(payload[0]);
int (*func)(int port, uint32_t *payload) = NULL;
int rsize = 1; /* VDM header at a minimum */
payload[0] &= ~VDO_CMDT_MASK;
*rpayload = payload;
if (cmd_type == CMDT_INIT) {
switch (cmd) {
case CMD_DISCOVER_IDENT:
func = svdm_rsp.identity;
break;
case CMD_DISCOVER_SVID:
func = svdm_rsp.svids;
break;
case CMD_DISCOVER_MODES:
func = svdm_rsp.modes;
break;
case CMD_ENTER_MODE:
func = svdm_rsp.enter_mode;
break;
case CMD_DP_STATUS:
func = svdm_rsp.amode->status;
break;
case CMD_DP_CONFIG:
func = svdm_rsp.amode->config;
break;
case CMD_EXIT_MODE:
func = svdm_rsp.exit_mode;
break;
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
case CMD_ATTENTION:
/*
* attention is only SVDM with no response
* (just goodCRC) return zero here.
*/
dfp_consume_attention(port, payload);
return 0;
#endif
default:
CPRINTF("PE ERR: unknown command %d\n", cmd);
rsize = 0;
}
if (func)
rsize = func(port, payload);
else /* not supported : NACK it */
rsize = 0;
if (rsize >= 1)
payload[0] |= VDO_CMDT(CMDT_RSP_ACK);
else if (!rsize) {
payload[0] |= VDO_CMDT(CMDT_RSP_NAK);
rsize = 1;
} else {
payload[0] |= VDO_CMDT(CMDT_RSP_BUSY);
rsize = 1;
}
} else if (cmd_type == CMDT_RSP_ACK) {
switch (cmd) {
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
case CMD_DISCOVER_IDENT:
dfp_consume_identity(port, payload);
rsize = dfp_discover_svids(port, payload);
break;
case CMD_DISCOVER_SVID:
dfp_consume_svids(port, payload);
rsize = dfp_discover_modes(port, payload);
break;
case CMD_DISCOVER_MODES:
dfp_consume_modes(port, cnt, payload);
rsize = dfp_discover_modes(port, payload);
if (!rsize)
rsize = dfp_enter_mode(port, payload);
break;
case CMD_ENTER_MODE:
if (AMODE_VALID(port)) {
rsize = pe[port].amode.fx->status(port,
payload);
payload[0] |=
VDO_OPOS(pd_alt_mode(port));
} else {
rsize = 0;
}
break;
case CMD_DP_STATUS:
/* DP status response & UFP's DP attention have same
payload */
dfp_consume_attention(port, payload);
if (AMODE_VALID(port))
rsize = pe[port].amode.fx->config(port,
payload);
else
rsize = 0;
break;
case CMD_DP_CONFIG:
/* no response after DFPs ack */
rsize = 0;
break;
case CMD_EXIT_MODE:
/* no response after DFPs ack */
rsize = 0;
break;
#endif
case CMD_ATTENTION:
/* no response after DFPs ack */
rsize = 0;
break;
default:
CPRINTF("PE ERR: unknown command %d\n", cmd);
rsize = 0;
}
payload[0] |= VDO_CMDT(CMDT_INIT);
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
} else if (cmd_type == CMDT_RSP_BUSY) {
switch (cmd) {
case CMD_DISCOVER_IDENT:
case CMD_DISCOVER_SVID:
case CMD_DISCOVER_MODES:
/* resend if its discovery */
rsize = 1;
break;
case CMD_ENTER_MODE:
/* Error */
CPRINTF("PE ERR: received BUSY for Enter mode\n");
rsize = 0;
break;
case CMD_EXIT_MODE:
rsize = 0;
break;
default:
rsize = 0;
}
} else if (cmd_type == CMDT_RSP_NAK) {
/* nothing to do */
rsize = 0;
#endif /* CONFIG_USB_PD_ALT_MODE_DFP */
} else {
CPRINTF("PE ERR: unknown cmd type %d\n", cmd);
}
return rsize;
}
#else
int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload)
{
return 0;
}
#endif /* CONFIG_USB_PD_ALT_MODE */
#ifndef CONFIG_USB_PD_CUSTOM_VDM
int pd_vdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload)
{
return 0;
}
#endif /* !CONFIG_USB_PD_CUSTOM_VDM */
void pd_usb_billboard_deferred(void)
{
#if defined(CONFIG_USB_PD_ALT_MODE) && !defined(CONFIG_USB_PD_ALT_MODE_DFP) \
&& !defined(CONFIG_USB_PD_SIMPLE_DFP)
/* port always zero for these UFPs */
if (!pd_alt_mode(0))
usb_connect();
#endif
}
DECLARE_DEFERRED(pd_usb_billboard_deferred);
#ifndef CONFIG_USB_PD_ALT_MODE_DFP
int pd_exit_mode(int port, uint32_t *payload)
{
#ifdef CONFIG_USB_PD_ALT_MODE
svdm_rsp.exit_mode(port, payload);
#endif
return 0;
}
#endif /* !CONFIG_USB_PD_ALT_MODE_DFP */
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
static int hc_remote_pd_discovery(struct host_cmd_handler_args *args)
{
const uint8_t *port = args->params;
struct ec_params_usb_pd_discovery_entry *r = args->response;
if (*port >= PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
r->vid = PD_IDH_VID(pe[*port].identity[0]);
r->ptype = PD_IDH_PTYPE(pe[*port].identity[0]);
/* pid only included if vid is assigned */
if (r->vid)
r->pid = PD_PRODUCT_PID(pe[*port].identity[2]);
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_DISCOVERY,
hc_remote_pd_discovery,
EC_VER_MASK(0));
#endif
#define FW_RW_END (CONFIG_FW_RW_OFF + CONFIG_FW_RW_SIZE)
uint8_t *flash_hash_rw(void)
{
static struct sha256_ctx ctx;
/* re-calculate RW hash when changed as its time consuming */
if (rw_flash_changed) {
rw_flash_changed = 0;
SHA256_init(&ctx);
SHA256_update(&ctx, (void *)CONFIG_FLASH_BASE +
CONFIG_FW_RW_OFF,
CONFIG_FW_RW_SIZE - RSANUMBYTES);
return SHA256_final(&ctx);
} else {
return ctx.buf;
}
}
void pd_get_info(uint32_t *info_data)
{
void *rw_hash = flash_hash_rw();
/* copy first 20 bytes of RW hash */
memcpy(info_data, rw_hash, 5 * sizeof(uint32_t));
/* copy other info into data msg */
#if defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR) && \
defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR)
info_data[5] = VDO_INFO(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR,
CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR,
ver_get_numcommits(),
(system_get_image_copy() != SYSTEM_IMAGE_RO));
#else
info_data[5] = 0;
#endif
}
int pd_custom_flash_vdm(int port, int cnt, uint32_t *payload)
{
static int flash_offset;
int rsize = 1; /* default is just VDM header returned */
switch (PD_VDO_CMD(payload[0])) {
case VDO_CMD_VERSION:
memcpy(payload + 1, &version_data.version, 24);
rsize = 7;
break;
case VDO_CMD_REBOOT:
/* ensure the power supply is in a safe state */
pd_power_supply_reset(0);
system_reset(0);
break;
case VDO_CMD_READ_INFO:
/* copy info into response */
pd_get_info(payload + 1);
rsize = 7;
break;
case VDO_CMD_FLASH_ERASE:
/* do not kill the code under our feet */
if (system_get_image_copy() != SYSTEM_IMAGE_RO)
break;
flash_offset = CONFIG_FW_RW_OFF;
flash_physical_erase(CONFIG_FW_RW_OFF, CONFIG_FW_RW_SIZE);
rw_flash_changed = 1;
break;
case VDO_CMD_FLASH_WRITE:
/* do not kill the code under our feet */
if ((system_get_image_copy() != SYSTEM_IMAGE_RO) ||
(flash_offset < CONFIG_FW_RW_OFF))
break;
flash_physical_write(flash_offset, 4*(cnt - 1),
(const char *)(payload+1));
flash_offset += 4*(cnt - 1);
rw_flash_changed = 1;
break;
case VDO_CMD_ERASE_SIG:
/* this is not touching the code area */
{
uint32_t zero = 0;
int offset;
/* zeroes the area containing the RSA signature */
for (offset = FW_RW_END - RSANUMBYTES;
offset < FW_RW_END; offset += 4)
flash_physical_write(offset, 4,
(const char *)&zero);
}
break;
default:
/* Unknown : do not answer */
return 0;
}
return rsize;
}