Files
OpenCellular/common/tmp006.c
Bill Richardson bc50e0cabb Enable FPU support for Link EC
With this CL, if CONFIG_FPU is defined (only for Link, ATM), the EC task
switcher will enable CONTROL.FPCA and expect all stack contexts to include
floating point state as well as normal state (an additional 18 words).

To support this, we need to increase the allocated stack space for each
task. The stack sizes are already chosen empirically, so I'm just rounding
them up a bit.

BUG=chrome-os-partner:14766
BRANCH=Link
TEST=manual

There should be no noticeable change. If you run the EC command "taskinfo"
you'll see the increased size each thread's stack, but everything that was
working before should continue to work just fine.

The additional overhead required to load and store another 18 words on each
context switch is not really measurable (I tried).

Change-Id: Ibaca7d7a2565285f049fda6906f32761e83207af
Signed-off-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/34391
Reviewed-by: Vincent Palatin <vpalatin@chromium.org>
2012-10-02 10:52:54 -07:00

314 lines
7.6 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* TMP006 temperature sensor module for Chrome EC */
#include "board.h"
#include "config.h"
#include "console.h"
#include "gpio.h"
#include "hooks.h"
#include "i2c.h"
#include "math.h"
#include "task.h"
#include "temp_sensor.h"
#include "tmp006.h"
#include "util.h"
/* Defined in board_temp_sensor.c. */
extern const struct tmp006_t tmp006_sensors[TMP006_COUNT];
struct tmp006_data_t {
/* Object voltage */
int v;
/* The last four die temperature value. Used as a circular buffer. */
int t[4];
/* The index of the current value in the dir temperature array. */
int tidx;
/* Fail bit: 1 if last read fail. 0 if ok. */
int fail;
};
static struct tmp006_data_t tmp006_data[TMP006_COUNT];
static int tmp006_read_die_temp(int idx)
{
int pidx = (tmp006_data[idx].tidx - 1) & 0x3;
if (tmp006_data[idx].fail == 1)
return -1;
return tmp006_data[idx].t[pidx] / 100;
}
/* Calculate the remote object temperature.
* Parameters:
* Tdie: Die temperature in 1/100 K.
* Vobj: Voltage read from register 0. In nV.
* S0: Sensitivity factor in 1e-17.
* Return:
* Object temperature in 1/100 K.
*/
static int tmp006_calculate_object_temp(int Tdie_i, int Vobj_i, int S0_i)
{
#ifdef CONFIG_FPU
float Tdie, Vobj, S0;
float Tx, S, Vos, Vx, fv, Tobj, T4;
int Tobj_i;
Tdie = (float)Tdie_i * 1e-2f;
Vobj = (float)Vobj_i * 1e-9f;
S0 = (float)S0_i * 1e-17f;
/* Calculate according to TMP006 users guide. */
Tx = Tdie - 298.15f;
/* S is the sensitivity */
S = S0 * (1.0f + 1.75e-3f * Tx - 1.678e-5f * Tx * Tx);
/* Vos is the offset voltage */
Vos = -2.94e-5f - 5.7e-7f * Tx + 4.63e-9f * Tx * Tx;
Vx = Vobj - Vos;
/* fv is Seebeck coefficient f(Vobj) */
fv = Vx + 13.4f * Vx * Vx;
T4 = Tdie * Tdie * Tdie * Tdie + fv / S;
Tobj = sqrtf(sqrtf(T4));
Tobj_i = (int32_t)(Tobj * 100.0f);
return Tobj_i;
#else
/* This is the fixed-point version of object temperature calculation.
* Should be accurate but it is hard to prevent and debug
* overflow/underflow problem. Only use this version if there is no
* FPU support.
* Division is delayed when possible to preserve precision, but should
* not cause overflow.
* Assuming Tdie is between 200K and 400K, and S0 between 3e-14 and
* 9e-14, the maximum value during the calculation should be less than
* (1 << 30), which fits in int32_t.
*/
int32_t Tx, S19, Vos, Vx, fv9, ub, lb;
Tx = Tdie - 29815;
/* S19 is the sensitivity multipled by 1e19 */
S19 = S0 * (100000 + 175 * Tx / 100 -
1678 * Tx / 100 * Tx / 100000) / 1000;
/* Vos is the offset voltage in nV */
Vos = -29400 - 570 * Tx / 100 + 463 * Tx / 100 * Tx / 10000;
Vx = Vobj - Vos;
/* fv9 is Seebeck coefficient f(Vobj) multipled by 1e9 */
fv9 = Vx + 134 * Vx / 100000 * Vx / 100000;
/* The last step in the calculation involves square root, so we use
* binary search.
* Assuming the object temperature is between 200K and 400K, the search
* should take at most 14 iterations.
*/
ub = 40000;
lb = 20000;
while (lb != ub) {
int32_t t, rhs, lhs;
t = (ub + lb) / 2;
lhs = t / 100 * t / 10000 * t / 10000 * (S19/100) / 1000 * t;
rhs = Tdie / 100 * Tdie / 10000 * Tdie / 10000 * (S19/100) /
1000 * Tdie + fv9 * 1000;
if (lhs > rhs)
ub = t;
else
lb = t + 1;
}
return ub;
#endif /* CONFIG_FPU */
}
/* Temporal Correction
* Parameters:
* T1-T4: Four die temperature readings separated by 1s in 1/100K.
* v: Voltage read from register 0. In nV.
* Return:
* Corrected object voltage in 1/100K.
*/
static int tmp006_correct_object_voltage(int T1,
int T2,
int T3,
int T4,
int Vobj)
{
int Tslope = 3 * T1 + T2 - T3 - 3 * T4;
return Vobj + 296 * Tslope;
}
static int tmp006_read_object_temp(int idx)
{
int pidx = (tmp006_data[idx].tidx - 1) & 0x3;
int t = tmp006_data[idx].t[pidx];
int v = tmp006_data[idx].v;
if (tmp006_data[idx].fail)
return -1;
v = tmp006_correct_object_voltage(
t,
tmp006_data[idx].t[(pidx + 3) & 3],
tmp006_data[idx].t[(pidx + 2) & 3],
tmp006_data[idx].t[(pidx + 1) & 3],
v);
/* TODO: Calibrate the sensitivity factor. */
return tmp006_calculate_object_temp(t, v,
tmp006_sensors[idx].sens) / 100;
}
static int tmp006_poll_sensor(int sensor_id)
{
int traw, t;
int vraw, v;
int rv;
int addr = tmp006_sensors[sensor_id].addr;
int idx;
/* TODO: For now, all TMP006 sensors are powered by VS. Modify this
* if we have different design.
*/
if (gpio_get_level(GPIO_PGOOD_1_8VS) == 0) {
tmp006_data[sensor_id].fail = 1;
return EC_ERROR_UNKNOWN;
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
if (rv) {
tmp006_data[sensor_id].fail = 1;
return EC_ERROR_UNKNOWN;
}
t = ((int)(int16_t)traw * 100) / 128 + 27300;
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
if (rv) {
tmp006_data[sensor_id].fail = 1;
return EC_ERROR_UNKNOWN;
}
v = ((int)(int16_t)vraw * 15625) / 100;
idx = tmp006_data[sensor_id].tidx;
tmp006_data[sensor_id].t[idx] = t;
tmp006_data[sensor_id].v = v;
tmp006_data[sensor_id].tidx = (idx + 1) & 3;
tmp006_data[sensor_id].fail = 0;
return EC_SUCCESS;
}
/* Print temperature info for a sensor; used by console command. */
static int tmp006_print(int idx)
{
int vraw, v;
int traw, t;
int rv;
int d;
int addr = tmp006_sensors[idx].addr;
ccprintf("Debug data from %s:\n", tmp006_sensors[idx].name);
/* TODO: For now, all TMP006 sensors are powered by VS. Modify this
* if we have different design.
*/
if (gpio_get_level(GPIO_PGOOD_1_8VS) == 0) {
ccputs("Sensor powered off.\n");
return EC_ERROR_UNKNOWN;
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xfe, &d);
if (rv)
return rv;
ccprintf(" Manufacturer ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xff, &d);
ccprintf(" Device ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x02, &d);
ccprintf(" Config: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
v = ((int)(int16_t)vraw * 15625) / 100;
ccprintf(" Voltage: 0x%04x = %d nV\n", vraw, v);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
t = ((int)(int16_t)traw * 100) / 128;
ccprintf(" Temperature: 0x%04x = %d.%02d C\n",
traw, t / 100, t > 0 ? t % 100 : 100 - (t % 100));
return EC_SUCCESS;
}
int tmp006_get_val(int idx)
{
/* Check the low bit to determine which temperature to read. */
if ((idx & 0x1) == 0)
return tmp006_read_die_temp(idx >> 1);
else
return tmp006_read_object_temp(idx >> 1);
}
int tmp006_poll(void)
{
int i;
int rv;
int rv1 = EC_SUCCESS;
for (i = 0; i < TMP006_COUNT; ++i) {
rv = tmp006_poll_sensor(i);
if (rv != EC_SUCCESS)
rv1 = rv;
}
return rv1;
}
static int tmp006_init(void)
{
int i, j;
/*
* Set temperature value to 27 C and we will update it later when
* polled by temperature sensor module.
*/
for (i = 0; i < TMP006_COUNT; ++i) {
for (j = 0; j < 4; ++j)
tmp006_data[i].t[j] = 30000; /* 27 C */
tmp006_data[i].tidx = 0;
/* TODO(victoryang): Default value for V? */
}
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_INIT, tmp006_init, HOOK_PRIO_DEFAULT);
/*****************************************************************************/
/* Console commands */
static int command_sensor_info(int argc, char **argv)
{
int i;
int rv, rv1;
rv1 = EC_SUCCESS;
for (i = 0; i < TMP006_COUNT; ++i) {
rv = tmp006_print(i);
if (rv != EC_SUCCESS)
rv1 = rv;
cflush();
}
return rv1;
}
DECLARE_CONSOLE_COMMAND(tmp006, command_sensor_info,
NULL,
"Print TMP006 sensors",
NULL);