Randall Spangler f2b56fcb9f Clean up configuring GPIO alternate functions
GPIO alternate functions used to be configured throughout the code,
which made it hard to tell which ones you needed to configure yourself
in board.c.  It also sometimes (chip/lm4/i2c.c) led to GPIOs being
configured as alternate functions even if they weren't used on a given
board.

With this change, every board has a table in board.c which lists ALL
GPIOs which have alternate functions.  This is now the only place
where alternate functions are configured.  Each module then calls
gpio_init_module() to set up its GPIOs.

This also fixes a bug where gpio_set_flags() ignored most of the flags
passed to it (only direction and level were actually used).

On stm32f, gpio_set_alternate() does not exist, and pins are
configured via direct register writes from board.c.  Rather than
attempt to change that in the same CL, I've stubbed out
gpio_set_alternate() for stm32f, and will fix the register writes in a
follow-up CL.

BUG=chrome-os-partner:21618
BRANCH=peppy (fixes I2C1 being initialized even though those pins are used
       for other things)
TEST=boot link, falco, pit, spring

Change-Id: I40f47025d8f767e0723c6b40c80413af9ba8deba
Signed-off-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/64400
2013-08-07 12:43:35 -07:00
2013-04-29 23:31:28 -07:00
2012-05-11 09:11:52 -07:00
2011-12-08 19:18:06 +00:00

In the most general case, the flash layout looks something like this:

  +---------------------+
  | Reserved for EC use |
  +---------------------+

  +---------------------+
  |     Vblock B        |
  +---------------------+
  |  RW firmware B      |
  +---------------------+

  +---------------------+
  |     Vblock A        |
  +---------------------+
  |  RW firmware A      |
  +---------------------+

  +---------------------+
  |       FMAP          |
  +---------------------+
  |   Public root key   |
  +---------------------+
  |  Read-only firmware |
  +---------------------+


BIOS firmware (and kernel) put the vblock info at the start of each image
where it's easy to find. The Blizzard EC expects the firmware vector table
to come first, so we have to put the vblock at the end. This means we have
to know where to look for it, but that's built into the FMAP and the RO
firmware anyway, so that's not an issue.

The RO firmware doesn't need a vblock of course, but it does need some
reserved space for vboot-related things.

Using SHA256/RSA4096, the vblock is 2468 bytes (0x9a4), while the public
root key is 1064 bytes (0x428) and the current FMAP is 644 bytes (0x284). If
we reserve 4K at the top of each FW image, that should give us plenty of
room for vboot-related stuff.
Description
No description provided
Readme 1.4 GiB
Languages
C 64.7%
Lasso 20.7%
ASL 3.6%
JavaScript 3.2%
C# 2.9%
Other 4.6%