Files
OpenCellular/tests/vboot_kernel_tests.c
Sam Hurst d6f52a05a3 cgpt: Remove hard coded 512 block size.
Remove 512 sector block size restriction so that UFS, with sector block size 4096
or greater, can be used. The sector block size is queried from the kernel with
ioctl(BLKSSZGET) or queried from depthcharge with VbExDiskGetInfo().

BUG=b:77540192
BRANCH=none
TEST=manual
make runtests passed.
Tested firmware on Kevin and boot to kernel from disk.
Executed cgpt show /dev/mmcblk0 on eve device and verified output was correct.
Should be tested on device with sector block size greater than 512.

Change-Id: I8165c8ee4da68180eecc8d12b3fb501cc5c60a5d
Reviewed-on: https://chromium-review.googlesource.com/1007498
Commit-Ready: Sam Hurst <shurst@google.com>
Tested-by: Sam Hurst <shurst@google.com>
Reviewed-by: Julius Werner <jwerner@chromium.org>
2018-04-12 23:11:01 -07:00

818 lines
24 KiB
C

/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Tests for vboot_kernel.c
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "2sysincludes.h"
#include "2api.h"
#include "2common.h"
#include "2misc.h"
#include "2nvstorage.h"
#include "2sha.h"
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "gbb_header.h"
#include "gpt.h"
#include "host_common.h"
#include "load_kernel_fw.h"
#include "rollback_index.h"
#include "test_common.h"
#include "vb2_struct.h"
#include "vboot_api.h"
#include "vboot_common.h"
#include "vboot_kernel.h"
#define LOGCALL(fmt, args...) sprintf(call_log + strlen(call_log), fmt, ##args)
#define TEST_CALLS(expect_log) TEST_STR_EQ(call_log, expect_log, " calls")
#define MOCK_SECTOR_SIZE 512
#define MOCK_SECTOR_COUNT 1024
/* Mock kernel partition */
struct mock_part {
uint32_t start;
uint32_t size;
};
/* Partition list; ends with a 0-size partition. */
#define MOCK_PART_COUNT 8
static struct mock_part mock_parts[MOCK_PART_COUNT];
static int mock_part_next;
/* Mock data */
static char call_log[4096];
static uint8_t kernel_buffer[80000];
static int disk_read_to_fail;
static int disk_write_to_fail;
static int gpt_init_fail;
static int key_block_verify_fail; /* 0=ok, 1=sig, 2=hash */
static int preamble_verify_fail;
static int verify_data_fail;
static int unpack_key_fail;
static int gpt_flag_external;
static uint8_t gbb_data[sizeof(GoogleBinaryBlockHeader) + 2048];
static GoogleBinaryBlockHeader *gbb = (GoogleBinaryBlockHeader*)gbb_data;
static VbExDiskHandle_t handle;
static uint8_t shared_data[VB_SHARED_DATA_MIN_SIZE];
static VbSharedDataHeader *shared = (VbSharedDataHeader *)shared_data;
static LoadKernelParams lkp;
static VbKeyBlockHeader kbh;
static VbKernelPreambleHeader kph;
static struct RollbackSpaceFwmp fwmp;
static uint8_t mock_disk[MOCK_SECTOR_SIZE * MOCK_SECTOR_COUNT];
static GptHeader *mock_gpt_primary =
(GptHeader*)&mock_disk[MOCK_SECTOR_SIZE * 1];
static GptHeader *mock_gpt_secondary =
(GptHeader*)&mock_disk[MOCK_SECTOR_SIZE * (MOCK_SECTOR_COUNT - 1)];
static uint8_t mock_digest[VB2_SHA256_DIGEST_SIZE] = {12, 34, 56, 78};
static uint8_t workbuf[VB2_KERNEL_WORKBUF_RECOMMENDED_SIZE];
static struct vb2_context ctx;
/**
* Prepare a valid GPT header that will pass CheckHeader() tests
*/
static void SetupGptHeader(GptHeader *h, int is_secondary)
{
memset(h, '\0', MOCK_SECTOR_SIZE);
/* "EFI PART" */
memcpy(h->signature, GPT_HEADER_SIGNATURE, GPT_HEADER_SIGNATURE_SIZE);
h->revision = GPT_HEADER_REVISION;
h->size = MIN_SIZE_OF_HEADER;
/* 16KB: 128 entries of 128 bytes */
h->size_of_entry = sizeof(GptEntry);
h->number_of_entries = MAX_NUMBER_OF_ENTRIES;
/* Set LBA pointers for primary or secondary header */
if (is_secondary) {
h->my_lba = MOCK_SECTOR_COUNT - GPT_HEADER_SECTORS;
h->entries_lba = h->my_lba - CalculateEntriesSectors(h,
MOCK_SECTOR_SIZE);
} else {
h->my_lba = GPT_PMBR_SECTORS;
h->entries_lba = h->my_lba + 1;
}
h->first_usable_lba = 2 + CalculateEntriesSectors(h, MOCK_SECTOR_SIZE);
h->last_usable_lba = MOCK_SECTOR_COUNT - 2 - CalculateEntriesSectors(h,
MOCK_SECTOR_SIZE);
h->header_crc32 = HeaderCrc(h);
}
static void ResetCallLog(void)
{
*call_log = 0;
}
/**
* Reset mock data (for use before each test)
*/
static void ResetMocks(void)
{
ResetCallLog();
memset(&mock_disk, 0, sizeof(mock_disk));
SetupGptHeader(mock_gpt_primary, 0);
SetupGptHeader(mock_gpt_secondary, 1);
disk_read_to_fail = -1;
disk_write_to_fail = -1;
gpt_init_fail = 0;
key_block_verify_fail = 0;
preamble_verify_fail = 0;
verify_data_fail = 0;
unpack_key_fail = 0;
gpt_flag_external = 0;
memset(gbb, 0, sizeof(*gbb));
gbb->major_version = GBB_MAJOR_VER;
gbb->minor_version = GBB_MINOR_VER;
gbb->flags = 0;
memset(&shared_data, 0, sizeof(shared_data));
VbSharedDataInit(shared, sizeof(shared_data));
shared->kernel_version_tpm = 0x20001;
memset(&lkp, 0, sizeof(lkp));
lkp.bytes_per_lba = 512;
lkp.streaming_lba_count = 1024;
lkp.gpt_lba_count = 1024;
lkp.kernel_buffer = kernel_buffer;
lkp.kernel_buffer_size = sizeof(kernel_buffer);
lkp.disk_handle = (VbExDiskHandle_t)1;
memset(&kbh, 0, sizeof(kbh));
kbh.data_key.key_version = 2;
kbh.key_block_flags = -1;
kbh.key_block_size = sizeof(kbh);
memset(&kph, 0, sizeof(kph));
kph.kernel_version = 1;
kph.preamble_size = 4096 - kbh.key_block_size;
kph.body_signature.data_size = 70144;
kph.bootloader_address = 0xbeadd008;
kph.bootloader_size = 0x1234;
memset(&fwmp, 0, sizeof(fwmp));
memcpy(fwmp.dev_key_hash, mock_digest, sizeof(fwmp.dev_key_hash));
memset(mock_parts, 0, sizeof(mock_parts));
mock_parts[0].start = 100;
mock_parts[0].size = 150; /* 75 KB */
mock_part_next = 0;
memset(&ctx, 0, sizeof(ctx));
ctx.workbuf = workbuf;
ctx.workbuf_size = sizeof(workbuf);
vb2_nv_init(&ctx);
struct vb2_shared_data *sd = vb2_get_sd(&ctx);
sd->vbsd = shared;
sd->gbb = (struct vb2_gbb_header *)gbb_data;
sd->gbb_size = sizeof(gbb_data);
// TODO: more workbuf fields - flags, secdata, secdatak
}
/* Mocks */
VbError_t VbExDiskRead(VbExDiskHandle_t handle, uint64_t lba_start,
uint64_t lba_count, void *buffer)
{
LOGCALL("VbExDiskRead(h, %d, %d)\n", (int)lba_start, (int)lba_count);
if ((int)lba_start == disk_read_to_fail)
return VBERROR_SIMULATED;
memcpy(buffer, &mock_disk[lba_start * MOCK_SECTOR_SIZE],
lba_count * MOCK_SECTOR_SIZE);
return VBERROR_SUCCESS;
}
VbError_t VbExDiskWrite(VbExDiskHandle_t handle, uint64_t lba_start,
uint64_t lba_count, const void *buffer)
{
LOGCALL("VbExDiskWrite(h, %d, %d)\n", (int)lba_start, (int)lba_count);
if ((int)lba_start == disk_write_to_fail)
return VBERROR_SIMULATED;
memcpy(&mock_disk[lba_start * MOCK_SECTOR_SIZE], buffer,
lba_count * MOCK_SECTOR_SIZE);
return VBERROR_SUCCESS;
}
int GptInit(GptData *gpt)
{
return gpt_init_fail;
}
int GptNextKernelEntry(GptData *gpt, uint64_t *start_sector, uint64_t *size)
{
struct mock_part *p = mock_parts + mock_part_next;
if (!p->size)
return GPT_ERROR_NO_VALID_KERNEL;
if (gpt->flags & GPT_FLAG_EXTERNAL)
gpt_flag_external++;
gpt->current_kernel = mock_part_next;
*start_sector = p->start;
*size = p->size;
mock_part_next++;
return GPT_SUCCESS;
}
void GetCurrentKernelUniqueGuid(GptData *gpt, void *dest)
{
static char fake_guid[] = "FakeGuid";
memcpy(dest, fake_guid, sizeof(fake_guid));
}
int vb2_unpack_key_buffer(struct vb2_public_key *key,
const uint8_t *buf,
uint32_t size)
{
if (--unpack_key_fail == 0)
return VB2_ERROR_MOCK;
return VB2_SUCCESS;
}
int vb2_verify_keyblock(struct vb2_keyblock *block,
uint32_t size,
const struct vb2_public_key *key,
const struct vb2_workbuf *wb)
{
if (key_block_verify_fail >= 1)
return VB2_ERROR_MOCK;
/* Use this as an opportunity to override the key block */
memcpy((void *)block, &kbh, sizeof(kbh));
return VB2_SUCCESS;
}
int vb2_verify_keyblock_hash(const struct vb2_keyblock *block,
uint32_t size,
const struct vb2_workbuf *wb)
{
if (key_block_verify_fail >= 2)
return VB2_ERROR_MOCK;
/* Use this as an opportunity to override the key block */
memcpy((void *)block, &kbh, sizeof(kbh));
return VB2_SUCCESS;
}
int vb2_verify_kernel_preamble(struct vb2_kernel_preamble *preamble,
uint32_t size,
const struct vb2_public_key *key,
const struct vb2_workbuf *wb)
{
if (preamble_verify_fail)
return VB2_ERROR_MOCK;
/* Use this as an opportunity to override the preamble */
memcpy((void *)preamble, &kph, sizeof(kph));
return VB2_SUCCESS;
}
int vb2_verify_data(const uint8_t *data,
uint32_t size,
struct vb2_signature *sig,
const struct vb2_public_key *key,
const struct vb2_workbuf *wb)
{
if (verify_data_fail)
return VB2_ERROR_MOCK;
return VB2_SUCCESS;
}
int vb2_digest_buffer(const uint8_t *buf,
uint32_t size,
enum vb2_hash_algorithm hash_alg,
uint8_t *digest,
uint32_t digest_size)
{
memcpy(digest, mock_digest, sizeof(mock_digest));
return VB2_SUCCESS;
}
/**
* Test reading/writing GPT
*/
static void ReadWriteGptTest(void)
{
GptData g;
GptHeader *h;
g.sector_bytes = MOCK_SECTOR_SIZE;
g.streaming_drive_sectors = g.gpt_drive_sectors = MOCK_SECTOR_COUNT;
g.valid_headers = g.valid_entries = MASK_BOTH;
ResetMocks();
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n");
ResetCallLog();
/*
* Valgrind complains about access to uninitialized memory here, so
* zero the primary header before each test.
*/
memset(g.primary_header, '\0', g.sector_bytes);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree");
TEST_CALLS("");
/*
* Invalidate primary GPT header,
* check that AllocAndReadGptData still succeeds
*/
ResetMocks();
memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"AllocAndRead primary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
1, "Primary header is invalid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
0, "Secondary header is valid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate secondary GPT header,
* check that AllocAndReadGptData still succeeds
*/
ResetMocks();
memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"AllocAndRead secondary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
0, "Primary header is valid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
1, "Secondary header is invalid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate primary AND secondary GPT header,
* check that AllocAndReadGptData fails.
*/
ResetMocks();
memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 1,
"AllocAndRead primary and secondary invalid");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
1, "Primary header is invalid");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
1, "Secondary header is invalid");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n");
WriteAndFreeGptData(handle, &g);
/*
* Invalidate primary GPT header and check that it is
* repaired by GptRepair().
*
* This would normally be called by LoadKernel()->GptInit()
* but this callback is mocked in these tests.
*/
ResetMocks();
memset(mock_gpt_primary, '\0', sizeof(*mock_gpt_primary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"Fix Primary GPT: AllocAndRead");
/* Call GptRepair() with input indicating secondary GPT is valid */
g.valid_headers = g.valid_entries = MASK_SECONDARY;
GptRepair(&g);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0,
"Fix Primary GPT: WriteAndFreeGptData");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskRead(h, 991, 32)\n"
"VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
TEST_EQ(CheckHeader(mock_gpt_primary, 0, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
0, "Fix Primary GPT: Primary header is valid");
/*
* Invalidate secondary GPT header and check that it can be
* repaired by GptRepair().
*
* This would normally be called by LoadKernel()->GptInit()
* but this callback is mocked in these tests.
*/
ResetMocks();
memset(mock_gpt_secondary, '\0', sizeof(*mock_gpt_secondary));
TEST_EQ(AllocAndReadGptData(handle, &g), 0,
"Fix Secondary GPT: AllocAndRead");
/* Call GptRepair() with input indicating primary GPT is valid */
g.valid_headers = g.valid_entries = MASK_PRIMARY;
GptRepair(&g);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0,
"Fix Secondary GPT: WriteAndFreeGptData");
TEST_CALLS("VbExDiskRead(h, 1, 1)\n"
"VbExDiskRead(h, 2, 32)\n"
"VbExDiskRead(h, 1023, 1)\n"
"VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
TEST_EQ(CheckHeader(mock_gpt_secondary, 1, g.streaming_drive_sectors,
g.gpt_drive_sectors, 0, g.sector_bytes),
0, "Fix Secondary GPT: Secondary header is valid");
/* Data which is changed is written */
ResetMocks();
AllocAndReadGptData(handle, &g);
g.modified |= GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1;
ResetCallLog();
memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
h->number_of_entries = MAX_NUMBER_OF_ENTRIES;
h->size_of_entry = sizeof(GptEntry);
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 1");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
/* Data which is changed is written */
ResetMocks();
AllocAndReadGptData(handle, &g);
g.modified = -1;
ResetCallLog();
memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
h->number_of_entries = MAX_NUMBER_OF_ENTRIES;
h->size_of_entry = sizeof(GptEntry);
h = (GptHeader*)g.secondary_header;
h->entries_lba = 991;
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod all");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n"
"VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* If legacy signature, don't modify GPT header/entries 1 */
ResetMocks();
AllocAndReadGptData(handle, &g);
h = (GptHeader *)g.primary_header;
memcpy(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE);
g.modified = -1;
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod all");
TEST_CALLS("VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* Error reading */
ResetMocks();
disk_read_to_fail = 1;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = g.valid_entries = MASK_SECONDARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 1");
TEST_CALLS("VbExDiskWrite(h, 1, 1)\n"
"VbExDiskWrite(h, 2, 32)\n");
ResetMocks();
disk_read_to_fail = 2;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = MASK_BOTH;
g.valid_entries = MASK_SECONDARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 1");
TEST_CALLS("VbExDiskWrite(h, 2, 32)\n");
ResetMocks();
disk_read_to_fail = 991;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = MASK_BOTH;
g.valid_entries = MASK_PRIMARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 2");
TEST_CALLS("VbExDiskWrite(h, 991, 32)\n");
ResetMocks();
disk_read_to_fail = 1023;
TEST_EQ(AllocAndReadGptData(handle, &g), 0, "AllocAndRead disk fail");
g.valid_headers = g.valid_entries = MASK_PRIMARY;
GptRepair(&g);
ResetCallLog();
TEST_EQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree mod 2");
TEST_CALLS("VbExDiskWrite(h, 1023, 1)\n"
"VbExDiskWrite(h, 991, 32)\n");
/* Error writing */
ResetMocks();
disk_write_to_fail = 1;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 2;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
h = (GptHeader*)g.primary_header;
h->entries_lba = 2;
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 991;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
ResetMocks();
disk_write_to_fail = 1023;
AllocAndReadGptData(handle, &g);
g.modified = -1;
memset(g.primary_header, '\0', g.sector_bytes);
TEST_NEQ(WriteAndFreeGptData(handle, &g), 0, "WriteAndFree disk fail");
}
static void TestLoadKernel(int expect_retval, char *test_name)
{
TEST_EQ(LoadKernel(&ctx, &lkp), expect_retval, test_name);
}
/**
* Trivial invalid calls to LoadKernel()
*/
static void InvalidParamsTest(void)
{
ResetMocks();
gpt_init_fail = 1;
TestLoadKernel(VBERROR_NO_KERNEL_FOUND, "Bad GPT");
/* This causes the stream open call to fail */
ResetMocks();
lkp.disk_handle = NULL;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad disk handle");
}
static void LoadKernelTest(void)
{
ResetMocks();
TestLoadKernel(0, "First kernel good");
TEST_EQ(lkp.partition_number, 1, " part num");
TEST_EQ(lkp.bootloader_address, 0xbeadd008, " bootloader addr");
TEST_EQ(lkp.bootloader_size, 0x1234, " bootloader size");
TEST_STR_EQ((char *)lkp.partition_guid, "FakeGuid", " guid");
TEST_EQ(gpt_flag_external, 0, "GPT was internal");
TEST_EQ(vb2_nv_get(&ctx, VB2_NV_RECOVERY_REQUEST),
0, " recovery request");
ResetMocks();
mock_parts[1].start = 300;
mock_parts[1].size = 150;
TestLoadKernel(0, "Two good kernels");
TEST_EQ(lkp.partition_number, 1, " part num");
TEST_EQ(mock_part_next, 1, " didn't read second one");
/* Fail if no kernels found */
ResetMocks();
mock_parts[0].size = 0;
TestLoadKernel(VBERROR_NO_KERNEL_FOUND, "No kernels");
TEST_EQ(vb2_nv_get(&ctx, VB2_NV_RECOVERY_REQUEST),
VB2_RECOVERY_RW_NO_OS, " recovery request");
/* Skip kernels which are too small */
ResetMocks();
mock_parts[0].size = 10;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Too small");
TEST_EQ(vb2_nv_get(&ctx, VB2_NV_RECOVERY_REQUEST),
VB2_RECOVERY_RW_INVALID_OS, " recovery request");
ResetMocks();
disk_read_to_fail = 100;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail reading kernel start");
ResetMocks();
key_block_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Fail key block sig");
/* In dev mode, fail if hash is bad too */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
key_block_verify_fail = 2;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Fail key block dev hash");
/* But just bad sig is ok */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
key_block_verify_fail = 1;
TestLoadKernel(0, "Succeed key block dev sig");
/* In dev mode and requiring signed kernel, fail if sig is bad */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
vb2_nv_set(&ctx, VB2_NV_DEV_BOOT_SIGNED_ONLY, 1);
key_block_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Fail key block dev sig");
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
lkp.fwmp = &fwmp;
fwmp.flags |= FWMP_DEV_ENABLE_OFFICIAL_ONLY;
key_block_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail key block dev sig fwmp");
/* Check key block flag mismatches */
ResetMocks();
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_0 | KEY_BLOCK_FLAG_DEVELOPER_1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block dev flag mismatch");
ResetMocks();
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_0;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block rec flag mismatch");
ResetMocks();
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE;
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block recdev flag mismatch");
ResetMocks();
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE | VB2_CONTEXT_DEVELOPER_MODE;
kbh.key_block_flags =
KEY_BLOCK_FLAG_RECOVERY_1 | KEY_BLOCK_FLAG_DEVELOPER_0;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block rec!dev flag mismatch");
ResetMocks();
kbh.data_key.key_version = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block kernel key rollback");
ResetMocks();
kbh.data_key.key_version = 0x10000;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Key block kernel key version too big");
ResetMocks();
kbh.data_key.key_version = 3;
TestLoadKernel(0, "Key block version roll forward");
TEST_EQ(shared->kernel_version_tpm, 0x30001, " shared version");
ResetMocks();
kbh.data_key.key_version = 3;
mock_parts[1].start = 300;
mock_parts[1].size = 150;
TestLoadKernel(0, "Two kernels roll forward");
TEST_EQ(mock_part_next, 2, " read both");
TEST_EQ(shared->kernel_version_tpm, 0x30001, " shared version");
ResetMocks();
kbh.data_key.key_version = 1;
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
TestLoadKernel(0, "Key version ignored in dev mode");
ResetMocks();
kbh.data_key.key_version = 1;
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE;
TestLoadKernel(0, "Key version ignored in rec mode");
ResetMocks();
unpack_key_fail = 2;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad data key");
ResetMocks();
preamble_verify_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad preamble");
ResetMocks();
kph.kernel_version = 0;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Kernel version rollback");
ResetMocks();
kph.kernel_version = 0;
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
TestLoadKernel(0, "Kernel version ignored in dev mode");
ResetMocks();
kph.kernel_version = 0;
ctx.flags |= VB2_CONTEXT_RECOVERY_MODE;
TestLoadKernel(0, "Kernel version ignored in rec mode");
/* Check developer key hash - bad */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
lkp.fwmp = &fwmp;
fwmp.flags |= FWMP_DEV_USE_KEY_HASH;
fwmp.dev_key_hash[0]++;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail key block dev fwmp hash");
/* Check developer key hash - good */
ResetMocks();
ctx.flags |= VB2_CONTEXT_DEVELOPER_MODE;
lkp.fwmp = &fwmp;
fwmp.flags |= FWMP_DEV_USE_KEY_HASH;
TestLoadKernel(0, "Good key block dev fwmp hash");
ResetMocks();
kph.preamble_size |= 0x07;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Kernel body offset");
ResetMocks();
kph.preamble_size += 65536;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Kernel body offset huge");
/* Check getting kernel load address from header */
ResetMocks();
kph.body_load_address = (size_t)kernel_buffer;
lkp.kernel_buffer = NULL;
TestLoadKernel(0, "Get load address from preamble");
TEST_PTR_EQ(lkp.kernel_buffer, kernel_buffer, " address");
/* Size is rounded up to nearest sector */
TEST_EQ(lkp.kernel_buffer_size, 70144, " size");
ResetMocks();
lkp.kernel_buffer_size = 8192;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Kernel too big for buffer");
ResetMocks();
mock_parts[0].size = 130;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Kernel too big for partition");
ResetMocks();
kph.body_signature.data_size = 8192;
TestLoadKernel(0, "Kernel tiny");
ResetMocks();
disk_read_to_fail = 228;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND,
"Fail reading kernel data");
ResetMocks();
verify_data_fail = 1;
TestLoadKernel(VBERROR_INVALID_KERNEL_FOUND, "Bad data");
/* Check that EXTERNAL_GPT flag makes it down */
ResetMocks();
lkp.boot_flags |= BOOT_FLAG_EXTERNAL_GPT;
TestLoadKernel(0, "Succeed external GPT");
TEST_EQ(gpt_flag_external, 1, "GPT was external");
/* Check recovery from unreadble primary GPT */
ResetMocks();
disk_read_to_fail = 1;
TestLoadKernel(0, "Can't read disk");
}
int main(void)
{
ReadWriteGptTest();
InvalidParamsTest();
LoadKernelTest();
return gTestSuccess ? 0 : 255;
}