mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 01:32:21 +00:00
Minor typo changes in README
This commit is contained in:
38
README.rst
38
README.rst
@@ -9,7 +9,7 @@ planning and optimization tools in real-world mesh optical networks.**
|
||||
|
||||
`gnpy <http://github.com/telecominfraproject/oopt-gnpy>`__ is:
|
||||
|
||||
- a sponsored project of the `OOPT/PSE <https://telecominfraproject.com/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_.
|
||||
- a sponsored project of the `OOPT/PSE <https://telecominfraproject.com/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_
|
||||
- fully community-driven, fully open source library
|
||||
- driven by a consortium of operators, vendors, and academic researchers
|
||||
- intended for rapid development of production-grade route planning tools
|
||||
@@ -135,8 +135,8 @@ By default, this script operates on a single span network defined in
|
||||
`examples/edfa_example_network.json <examples/edfa_example_network.json>`_
|
||||
|
||||
You can specify a different network at the command line as follows. For
|
||||
example, to use the CORONET Continental US (CONUS) network defined in
|
||||
`examples/coronet_conus_example.json <examples/coronet_conus_example.json>`_:
|
||||
example, to use the CORONET Global network defined in
|
||||
`examples/CORONET_Global_Topology.json <examples/CORONET_Global_Topology.json>`_:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
@@ -150,10 +150,9 @@ further instructions on how to prepare the Excel input file, see
|
||||
`Excel_userguide.rst <Excel_userguide.rst>`_.
|
||||
|
||||
The main transmission example will calculate the average signal OSNR and SNR
|
||||
across 93 network elements (transceiver, ROADMs, fibers, and amplifiers)
|
||||
between two transceivers selected by the user. (By default, for the CORONET US
|
||||
network, it will show the transmission of spectral information between Abilene,
|
||||
Texas and Albany, New York.)
|
||||
across network elements (transceiver, ROADMs, fibers, and amplifiers)
|
||||
between two transceivers selected by the user. (By default, for the CORONET Global
|
||||
network, it will show the transmission of spectral information between Abilene, Texas and Albany, New York.)
|
||||
|
||||
This script calculates the average signal OSNR = |OSNR| and SNR = |SNR|.
|
||||
|
||||
@@ -182,7 +181,7 @@ can be added and existing ones removed. Three different noise models are availab
|
||||
|
||||
1. `'type_def': 'variable_gain'` is a simplified model simulating a 2-coil EDFA with internal, input and output VOAs. The NF vs gain response is calculated accordingly based on the input parameters: `nf_min`, `nf_max`, and `gain_flatmax`. It is not a simple interpolation but a 2-stage NF calculation.
|
||||
2. `'type_def': 'fixed_gain'` is a fixed gain model. `NF == Cte == nf0` if `gain_min < gain < gain_flatmax`
|
||||
3. `'type_def': None` is an advanced model. A detailed json configuration file is required (by default `examples/advanced_config_from.json <examples/advanced_config_from.json>`_.) It uses a 3rd order polynomial where NF = f(gain), NF_ripple = f(frequency), gain_ripple = f(frequency), N-array dgt = f(frequency). Compared to the previous models, NF ripple and gain ripple are modelled.
|
||||
3. `'type_def': None` is an advanced model. A detailed json configuration file is required (by default `examples/std_medium_gain_advanced_config.json <examples/std_medium_gain_advanced_config.json>`_.) It uses a 3rd order polynomial where NF = f(gain), NF_ripple = f(frequency), gain_ripple = f(frequency), N-array dgt = f(frequency). Compared to the previous models, NF ripple and gain ripple are modelled.
|
||||
|
||||
For all amplifier models:
|
||||
|
||||
@@ -204,12 +203,12 @@ For all amplifier models:
|
||||
| | | Excel template topology files.) |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
|
||||
The fiber library currently describes SSMF but additional fiber types can be entered by the user following the same model:
|
||||
The fiber library currently describes SSMF and NZDF but additional fiber types can be entered by the user following the same model:
|
||||
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| field | type | description |
|
||||
+======================+===========+=========================================+
|
||||
| `type_variety` | (string) | a unique name to ID the amplifier in the|
|
||||
| `type_variety` | (string) | a unique name to ID the fiber in the |
|
||||
| | | JSON or Excel template topology input |
|
||||
| | | file |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
@@ -226,7 +225,7 @@ path_request_run.py routine.
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| field | type | description |
|
||||
+======================+===========+=========================================+
|
||||
| `type_variety` | (string) | a unique name to ID the amplifier in |
|
||||
| `type_variety` | (string) | a unique name to ID the transceiver in |
|
||||
| | | the JSON or Excel template topology |
|
||||
| | | input file |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
@@ -252,7 +251,7 @@ The modes are defined as follows:
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| `bit_rate` | (number) | in bit/s |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| `roll_off` | (number) | |
|
||||
| `roll_off` | (number) | Not used. |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
|
||||
Simulation parameters are defined as follows.
|
||||
@@ -269,8 +268,8 @@ For amplifiers defined in the topology JSON input but whose gain = 0
|
||||
(placeholder), auto-design will set its gain automatically: see `power_mode` in
|
||||
the `Spans` library to find out how the gain is calculated.
|
||||
|
||||
Span configuration is performed as followws. It is not a list (which may change
|
||||
in later releases,) and the user can only modify the value of existing
|
||||
Span configuration is performed as follows. It is not a list (which may change
|
||||
in later releases) and the user can only modify the value of existing
|
||||
parameters:
|
||||
|
||||
+------------------------+-----------+---------------------------------------------+
|
||||
@@ -470,11 +469,6 @@ dBm/channel. These are not yet parametrized but can be modified directly in the
|
||||
script (via the SpectralInformation structure) to accomodate any baud rate,
|
||||
spacing, power or channel count demand.
|
||||
|
||||
The amplifier's gain is set to exactly compensate for the loss in each network
|
||||
element. The amplifier is currently defined with gain range of 15 dB to 25 dB
|
||||
and 21 dBm max output power. Ripple and NF models are defined in
|
||||
`examples/std_medium_gain_advanced_config.json <examples/std_medium_gain_advanced_config.json>`_
|
||||
|
||||
Use `examples/path_requests_run.py <examples/path_requests_run.py>`_ to run multiple optimizations as follows:
|
||||
|
||||
.. code-block:: shell
|
||||
@@ -496,8 +490,8 @@ library. The program computes performances for the list of services (accepts
|
||||
json or excel format) using the same spectrum propagation modules as
|
||||
transmission_main_example.py. Explanation on the Excel template is provided in
|
||||
the `Excel_userguide.rst <Excel_userguide.rst#service-sheet>`_. Template for
|
||||
the json format can be found here: `service_template.json
|
||||
<service_template.json>`_.
|
||||
the json format can be found here: `service-template.json
|
||||
<service-template.json>`_.
|
||||
|
||||
Contributing
|
||||
------------
|
||||
@@ -588,4 +582,4 @@ License
|
||||
|
||||
``gnpy`` is distributed under a standard BSD 3-Clause License.
|
||||
|
||||
See `LICENSE <LICENSE>`__ for more details.
|
||||
See `LICENSE <LICENSE>`__ for more details.
|
||||
Reference in New Issue
Block a user