mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 01:32:21 +00:00
introcude NLI solver
This commit is contained in:
@@ -340,3 +340,108 @@ class RamanSolver:
|
||||
dpdz[f_ind][z_ind] = dpdz_element
|
||||
|
||||
return np.vstack(dpdz)
|
||||
|
||||
class NliSolver:
|
||||
""" This class implements the NLI models.
|
||||
Model and method can be specified in `self.nli_params.method`.
|
||||
List of implemented methods:
|
||||
'gn_model_analytic': brute force triple integral solution
|
||||
'GGN_spectrally_separated_xpm_spm': XPM plus SPM
|
||||
"""
|
||||
|
||||
def __init__(self, nli_params=None, fiber_params=None):
|
||||
""" Initialize the fiber object with its physical parameters
|
||||
"""
|
||||
self.fiber_params = fiber_params
|
||||
self.nli_params = nli_params
|
||||
self.srs_profile = None
|
||||
|
||||
@property
|
||||
def fiber_params(self):
|
||||
return self.___fiber_params
|
||||
|
||||
@fiber_params.setter
|
||||
def fiber_params(self, fiber_params):
|
||||
self.___fiber_params = fiber_params
|
||||
|
||||
@property
|
||||
def srs_profile(self):
|
||||
return self.__srs_profile
|
||||
|
||||
@srs_profile.setter
|
||||
def srs_profile(self, srs_profile):
|
||||
self.__srs_profile = srs_profile
|
||||
|
||||
@property
|
||||
def nli_params(self):
|
||||
return self.__nli_params
|
||||
|
||||
@nli_params.setter
|
||||
def nli_params(self, nli_params):
|
||||
"""
|
||||
:param model_params: namedtuple containing the parameters used to compute the NLI.
|
||||
"""
|
||||
self.__nli_params = nli_params
|
||||
|
||||
def alpha0(self, f_eval=193.5e12):
|
||||
if not hasattr(self.fiber_params.loss_coef, 'alpha_power'):
|
||||
alpha0 = self.fiber_params.loss_coef
|
||||
else:
|
||||
alpha_interp = interp1d(self.fiber_params.loss_coef['frequency'],
|
||||
self.fiber_params.loss_coef['alpha_power'])
|
||||
alpha0 = alpha_interp(f_eval)
|
||||
return alpha0
|
||||
|
||||
def compute_nli(self, carrier, *carriers):
|
||||
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
|
||||
at the end of the fiber span.
|
||||
"""
|
||||
if 'gn_model_analytic' == self.nli_params.nli_method_name.lower():
|
||||
carrier_nli = self._gn_analytic(carrier, *carriers)
|
||||
else:
|
||||
raise ValueError(f'Method {self.nli_params.method_nli} not implemented.')
|
||||
|
||||
return carrier_nli
|
||||
|
||||
# Methods for computing spectrally separated GN
|
||||
def _gn_analytic(self, carrier, *carriers):
|
||||
""" Computes the nonlinear interference power on a single carrier.
|
||||
The method uses eq. 120 from arXiv:1209.0394.
|
||||
:param carrier: the signal under analysis
|
||||
:param carriers: the full WDM comb
|
||||
:return: carrier_nli: the amount of nonlinear interference in W on the under analysis
|
||||
"""
|
||||
alpha = self.alpha0() / 2
|
||||
beta2 = self.fiber_params.beta2
|
||||
gamma = self.fiber_params.gamma
|
||||
length = self.fiber_params.length
|
||||
effective_length = (1 - np.exp(-2 * alpha * length)) / (2 * alpha)
|
||||
asymptotic_length = 1 / (2 * alpha)
|
||||
|
||||
g_nli = 0
|
||||
for interfering_carrier in carriers:
|
||||
g_interfearing = interfering_carrier.power.signal / interfering_carrier.baud_rate
|
||||
g_signal = carrier.power.signal / carrier.baud_rate
|
||||
g_nli += g_interfearing**2 * g_signal * self._psi(carrier, interfering_carrier)
|
||||
g_nli *= (16.0 / 27.0) * (gamma * effective_length)**2 /\
|
||||
(2 * np.pi * abs(beta2) * asymptotic_length)
|
||||
carrier_nli = carrier.baud_rate * g_nli
|
||||
return carrier_nli
|
||||
|
||||
def _psi(self, carrier, interfering_carrier):
|
||||
""" Calculates eq. 123 from arXiv:1209.0394.
|
||||
"""
|
||||
alpha = self.alpha0() / 2
|
||||
beta2 = self.fiber_params.beta2
|
||||
asymptotic_length = 1 / (2 * alpha)
|
||||
|
||||
if carrier.channel_number == interfering_carrier.channel_number: # SPM
|
||||
psi = np.arcsinh(0.5 * np.pi**2 * asymptotic_length
|
||||
* abs(beta2) * carrier.baud_rate**2)
|
||||
else: # XPM
|
||||
delta_f = carrier.frequency - interfering_carrier.frequency
|
||||
psi = np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
|
||||
carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
|
||||
psi -= np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
|
||||
carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
|
||||
return psi
|
||||
|
||||
Reference in New Issue
Block a user