introcude NLI solver

This commit is contained in:
Alessio Ferrari
2019-06-11 13:38:39 +02:00
parent 471eab126e
commit f9bd6310f1

View File

@@ -340,3 +340,108 @@ class RamanSolver:
dpdz[f_ind][z_ind] = dpdz_element dpdz[f_ind][z_ind] = dpdz_element
return np.vstack(dpdz) return np.vstack(dpdz)
class NliSolver:
""" This class implements the NLI models.
Model and method can be specified in `self.nli_params.method`.
List of implemented methods:
'gn_model_analytic': brute force triple integral solution
'GGN_spectrally_separated_xpm_spm': XPM plus SPM
"""
def __init__(self, nli_params=None, fiber_params=None):
""" Initialize the fiber object with its physical parameters
"""
self.fiber_params = fiber_params
self.nli_params = nli_params
self.srs_profile = None
@property
def fiber_params(self):
return self.___fiber_params
@fiber_params.setter
def fiber_params(self, fiber_params):
self.___fiber_params = fiber_params
@property
def srs_profile(self):
return self.__srs_profile
@srs_profile.setter
def srs_profile(self, srs_profile):
self.__srs_profile = srs_profile
@property
def nli_params(self):
return self.__nli_params
@nli_params.setter
def nli_params(self, nli_params):
"""
:param model_params: namedtuple containing the parameters used to compute the NLI.
"""
self.__nli_params = nli_params
def alpha0(self, f_eval=193.5e12):
if not hasattr(self.fiber_params.loss_coef, 'alpha_power'):
alpha0 = self.fiber_params.loss_coef
else:
alpha_interp = interp1d(self.fiber_params.loss_coef['frequency'],
self.fiber_params.loss_coef['alpha_power'])
alpha0 = alpha_interp(f_eval)
return alpha0
def compute_nli(self, carrier, *carriers):
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
at the end of the fiber span.
"""
if 'gn_model_analytic' == self.nli_params.nli_method_name.lower():
carrier_nli = self._gn_analytic(carrier, *carriers)
else:
raise ValueError(f'Method {self.nli_params.method_nli} not implemented.')
return carrier_nli
# Methods for computing spectrally separated GN
def _gn_analytic(self, carrier, *carriers):
""" Computes the nonlinear interference power on a single carrier.
The method uses eq. 120 from arXiv:1209.0394.
:param carrier: the signal under analysis
:param carriers: the full WDM comb
:return: carrier_nli: the amount of nonlinear interference in W on the under analysis
"""
alpha = self.alpha0() / 2
beta2 = self.fiber_params.beta2
gamma = self.fiber_params.gamma
length = self.fiber_params.length
effective_length = (1 - np.exp(-2 * alpha * length)) / (2 * alpha)
asymptotic_length = 1 / (2 * alpha)
g_nli = 0
for interfering_carrier in carriers:
g_interfearing = interfering_carrier.power.signal / interfering_carrier.baud_rate
g_signal = carrier.power.signal / carrier.baud_rate
g_nli += g_interfearing**2 * g_signal * self._psi(carrier, interfering_carrier)
g_nli *= (16.0 / 27.0) * (gamma * effective_length)**2 /\
(2 * np.pi * abs(beta2) * asymptotic_length)
carrier_nli = carrier.baud_rate * g_nli
return carrier_nli
def _psi(self, carrier, interfering_carrier):
""" Calculates eq. 123 from arXiv:1209.0394.
"""
alpha = self.alpha0() / 2
beta2 = self.fiber_params.beta2
asymptotic_length = 1 / (2 * alpha)
if carrier.channel_number == interfering_carrier.channel_number: # SPM
psi = np.arcsinh(0.5 * np.pi**2 * asymptotic_length
* abs(beta2) * carrier.baud_rate**2)
else: # XPM
delta_f = carrier.frequency - interfering_carrier.frequency
psi = np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
psi -= np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
return psi