318 Commits

Author SHA1 Message Date
EstherLerouzic
f195d5f496 fix: use ref power on transceiver to Roadm (or transceivers) links
The recent refactor removed a default pref in case of transceivers-OMS
(amplified links starting with a transceiver).
This resulted in a mismatch between input power during design
(default 0 forced in the function) and the design ref power using SI
power_dbm.

This change ensures that the same power is used for the input power
and for the design ref power, and avoid inconsistent gain computatiion.

The code has been using the same power input (SI power_dbm) to define the
power target out of a transceiver and the target out of amplifiers
(at the input of fibers). This will be changed in a future patch.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I610c8df19039bcf156a8ba77c79114b22913a538
2023-12-08 12:27:05 +01:00
Esther Le Rouzic
56569f866f Merge changes from topics "mixed-rate", "refactor_remove_pref"
* changes:
  Add a test on EOL
  add invocation test with the 3 equalization settings
  Add a test on out_voa optimisation function
  Clean a bit, add docstrings
  Remove Pref, and move ref_carrier definition
  Remove p_span0 from SI
  Remove p_spani from Pref
  Use design delta_p and gains instead of p_spani
  restore initial power sweep behaviour
  refactor cli to use a common design function
  Parametrize verbose in autodesign
  refactor build_network: create a separate function to add elements
  Computes reference input power in fiber during design
  Computes reference input power in ROADM during design
  Add a variable to hold delta_p even if gain mode is selected
  Add frequency range in default_edfa profile
  Add a test on gain mode behaviour
  Check element setting before and after propagation
  Correct design: apply saturation in all cases
  Add more tests on amp saturation
2023-12-04 16:09:37 +00:00
Esther Le Rouzic
bf1f293043 Merge "Add test in amplifier behaviour" 2023-12-04 16:08:14 +00:00
Esther Le Rouzic
28871c6f2d Merge pull request #480 from jktjkt/python-3.12
CI: Python 3.12 and extended platform coverage
2023-11-23 17:54:02 +01:00
EstherLerouzic
d7c1a6b75e Add a test on EOL
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iddce655a64623a42cdaeaa2e8c269e3a737dd935
2023-11-20 17:07:53 +01:00
EstherLerouzic
c69c2a3af2 add invocation test with the 3 equalization settings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0aee8da7bbf71991c68e163c7188efe1ddf29ff9
2023-11-20 17:07:53 +01:00
EstherLerouzic
fb29d72906 Add a test on out_voa optimisation function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I36d71d85e5837965f6d5ae47820506d06b3cb94e
2023-11-20 17:07:53 +01:00
EstherLerouzic
139c8cc1e7 Remove Pref, and move ref_carrier definition
Finally, ref_carrier is not meant to change after design since
it is the carrier used for design. So let's move its definition
to networks function. Only ROADM need the ref_carrier baud rate
so let's define a dedicated variable in ROADM to hold it.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida7e42dd534a04c8df8792b44980f3fd2165ecb6
2023-11-20 17:07:53 +01:00
EstherLerouzic
7034d4c686 Remove p_span0 from SI
reference channel is defined during design. No need to convey it
anymore during propagation.

move target_pch_out_db definition to the design phase and change
its name to be consistent with what it contains (dbm)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I350e4557e8488a614674042de26152ab89b2d245
2023-11-20 17:07:53 +01:00
EstherLerouzic
10164495b9 Remove p_spani from Pref
next step: remove Pref

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7cc17253a2d7ab3fb42e3d07c1665991cffa6222
2023-11-20 17:07:53 +01:00
EstherLerouzic
87211b35e9 Use design delta_p and gains instead of p_spani
Remove the visualisation of the effective_pch in amp because actual
and target are the relevant ones. effective_pch was artificially
related to a mix of reference channel and noisy channel (mixed between
on the fly redesign but using actual ROADM equalisation which includes noise
in its actual loss).

the change does no more rely on the target power (which is rounded)
but on the designed gain, which is not rounded.

Propagations are slightly changed for openroadm simulations because of that.
(I verified)

The gain of amp was estimated on the fly with p_spni also in case of
RamanFiber preceding elements. removing p_spani requies that an estimation
of Raman gain be done during design.

This commit also adds this estimation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I960b85e99f85a7d168ac5349e325c4928fa5673b
2023-11-20 17:07:46 +01:00
EstherLerouzic
e9f9ddb4d6 restore initial power sweep behaviour
if user define a delta_p that is reduced because of saturation,
then this initial setting is still kept for power sweep to be sure
that the full amplitude of sweep is used.

SI power = 0 dBm
max power amp1 = 20 dBm,
user_defined_delta_p set by user = 3
80 channels, so pch_max = 20 - 10log10(80) = 0.96 dBm
power_sweep -> power range [-3, 0] dBm

then for initial design,
   pref = 0 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref = 0.96

but for -3 power sweep
   pref = -3 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref =
      min(0.96,    -3 + 3) - (-3) = 3
   so the user defined delta_p is applied as much as possible

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8fd459c29aa9754ff9d4868af1d8be8642a31913
2023-11-20 11:10:07 +01:00
EstherLerouzic
6ac3a517cf refactor build_network: create a separate function to add elements
separate function that adds element, from function that configure them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ica332223bdf7fc599cb007d7513d7cd62d9c5f9c
2023-11-20 10:25:07 +01:00
EstherLerouzic
2f2920a716 Computes reference input power in fiber during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for reference channel fiber loss computation.
Note that this loss parameter is only used for visualisation purpose.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I16bd792bd6079ce521aafadcf5e21922aa3b4c81
2023-11-20 10:23:21 +01:00
EstherLerouzic
07fd89351b Computes reference input power in ROADM during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for ROADM reference channel loss computation.
Note that this loss parameter is only used for visualisation purpose.
No impact on propagation.

Since this loss is computed for the reference channel used for
design, we need to record input power based on input degrees,
and indicate this information within the call function.

Note that this will be also usefull later on to implement ROADM
parameters

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I64d510fc20df72f07158f400964d592d76dc0ce4
2023-11-20 10:23:21 +01:00
EstherLerouzic
537eb017b5 Add frequency range in default_edfa profile
This range is the property of amps and is independant from user propagation range.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib89f1987910aa3121a3b8c859a0a785f7d5e27eb
2023-11-20 10:23:21 +01:00
EstherLerouzic
9c514e8086 Add a test on gain mode behaviour
This test checks that setting in gain mode forces amp to the gain settings
and ignores any power requirements. Change in SI in eqpt config and change
in req power (eg power sweep) should have no effect on the propagation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iad826f30010fe3110d105b5206d99f502fbf98ff
2023-11-20 10:23:21 +01:00
EstherLerouzic
78efb6c650 Check element setting before and after propagation
In power mode, all elements design attributes should not change except
amplifiers' gain in case of power saturation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2fec00232c80dd395e4dec20ec531c9c2e127760
2023-11-20 10:23:18 +01:00
EstherLerouzic
3510d59250 Correct design: apply saturation in all cases
Previously saturation was not checked during design if amp type was set.
This commit also applies saturation for these amplifiers.

This changes some of the autodesign result (since range for selection
is changed). For example, this changes some of the gains, or type variety
of amplifier of test files.

The commit also removes one of the rounding in the design phase, and
applies rounding only for printing purpose.

It also adds minor refactor on a function

In order to keep power sweep behaviour in case of saturation, the saturation
check in amplifier element uses initial power targets set by user instead
of a possible autodesign delta_p result.

Note that gain_mode is unchanged: design in gain mode means that delta_p
is set to None during the build process, even if the user defined a value
in operational.delta_p.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idc5cfc8263cf678473acb6ec490207d9d6ba5c0a
2023-11-20 10:21:38 +01:00
EstherLerouzic
41d9d156a6 Add more tests on amp saturation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibba18bed646748d59cfe906b403a9b100c58bb7e
2023-11-20 10:21:35 +01:00
EstherLerouzic
e9d5e748e4 Add test in amplifier behaviour
Check that amp correctly applies saturation, when there is tilt.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e7623e9d5b28bdc12eae24766588645781c2827
2023-11-20 10:21:06 +01:00
EstherLerouzic
5a5bed56c2 Add test on _check_one_request function
Add the call to the function, and creates additional test cases to raise the
different situations related to spectrum slots:
- M value too small
- total nb of channels too small
- overlapping

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7ab3923deef2ff154ee1be21dcaeb3d9e4b84375
2023-11-17 16:26:12 +01:00
EstherLerouzic
22de1b1281 Add tests on aggregation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5409d847657fbe14f7963ff56546d0bedbf6c941
2023-11-17 16:26:12 +01:00
EstherLerouzic
22ee05ea6f Add more tests for multiple slots spectrum assignment
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id773f0f14cfe80b7ebcf07370170ad425faf0919
2023-11-17 16:23:48 +01:00
EstherLerouzic
79102e283a Refactor function to simplify the process
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I362d23a969c338ccd70caecc4e59e991d2a8d8a2
2023-11-17 16:23:48 +01:00
EstherLerouzic
db5e63d51b Refactor spectrum selection function
Cut some functions into smaller pieces to be easily re-used afterwards.
This step to prepare multiple slots assignment.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0fa2df7f6174e54405f92a57d60289d560c1166
2023-11-17 16:23:48 +01:00
EstherLerouzic
4ba77d0a0a Change rq.N and rq.M from scalar to list
Prepare for the next step, to be able to handle lists of candidate assignment

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2bd78606ce4502f68efb60f85892df5f76d52bb5
2023-11-17 16:23:48 +01:00
EstherLerouzic
064d3af8e0 Remove line number from invocation logs
line numbers are useful for debugging, but the benefit does not
compensate for the painful update of lines in files at each commit
that changes line numbers.
So I have removed those lines only for the test_invocation logs case.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic1f628d80b204a9a098f3902ebdfd10b480c7613
2023-11-17 11:56:06 +01:00
AndreaDAmico
4ab5bac45f EDFA Parameters restructuring
The parameters of the EDFA are explicitely retrieved in the EDFAParams class.
All the defaults are set instead in the gnpy.tool.json_io.AMP class.
Where required, the AMP.default_values are used instead of an empty dictionary.

Change-Id: Iba80a6a56bc89feb7e959b54b9bd424ec9b0bf06
Co-authored-by: Vittorio Gatto <vittoriogatto98@gmail.com>
2023-11-17 09:08:00 +01:00
AndreaDAmico
edf1eec072 Nonlinear coefficient scaling along frequency
The nonlinear coefficient can be expressed at the reference frequency and will be scaled in frequency using the scaling rule of the effective area

Change-Id: Id103b227472702776bda17ab0a2a120ecfbf7473
2023-11-17 08:53:58 +01:00
AndreaDAmico
c20e6fb320 Effective Area and Raman Gain Coefficient Scaling
1. Effective area scaling along frequency is implemented by means of a technological model.
2. Raman gain coefficient is extended coherently, including the scaling due to the pump frequency.

Change-Id: I4e8b79697500ef0f73ba2f969713d9bdb3e9949c
Co-authored-by: Giacomo Borraccini <giacomo.borraccini@polito.it>
2023-11-17 08:51:26 +01:00
Jan Kundrát
7e0b95bcfd Bump all dependencies
Change-Id: Id08b7722880b992b1bb70f53ad243d4f40ffe387
2023-11-15 20:06:54 +01:00
Jan Kundrát
f0a52dcc8a tests: upgrade pandas
There are no binary wheels for Python 3.12 prior to pandas v2.1.1. Our
previous pin requested the 1.x branch, and that resulted in building
Pandas from source, which takes time. We cannot pin to 2.1.1 because
they removed support of Python 3.8 in 2.1, so 2.0.3 it is.

Change-Id: Ia9a567e54f4dda19a0a6b67d0c295a9a079892de
2023-11-15 20:05:54 +01:00
EstherLerouzic
3bea4b3c9f Feat: improve sanity check for eqpt sheet
add cases of wrong sheets that were not captured and
generate errors later in propagation:
- if the eqpt line is duplicated
- if the eqpt contains a link that is not present in Links sheet,
  but Nodes are OK
- if the same link is defined but with opposite directions
- if the ila is defined twice with opposite directions
- if the service type or mode are not in the library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4715886e19f07380bf02ed0e664559972bb39b71
2023-11-02 10:14:03 +01:00
EstherLerouzic
f2cc9f7225 Add more logs
and test them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I05ffc3a75354fa8d8f3a668973ab7f4cbcfa1a98
2023-11-02 10:01:38 +01:00
EstherLerouzic
a3edb20142 Feat: add offset power option for transceivers
Offset power is used for equalization purpose to correct for the
generic equalization target set in ROADM for this particular transceiver.
This is usefull to handle exception to the general equalization rule.
For example in the case of constant power equalization, the user might
want to apply particular power offsets unrelated to slot width or baudrate.
or in constant PSW, the user might want to have a given mode equalized for
a different value than the one computed based on the request bandwidth.

For example consider that a transceiver mode is meant to be equalized with
75 GHz whatever the spacing specified in request. then the user may specify
2 flavours depending on used spacing:

  service 1 : mode 3, spacing 75GHz
  service 2 : mode 4, spacing 87.5Ghz
avec
  {
    "format": "mode 3",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 75e9,
    "cost": 1
  }

  {
    "format": "mode 4",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 87.5e9,
    "equalization_offset_db": -0.67,
    "cost": 1
  }

then the same target power would be considered for mode3 and mode4
despite using a different slot width

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I437f75c42f257b88b24207260ef9ec9b1ab7066e
2023-10-24 13:20:00 +02:00
AndreaDAmico
a3b1157e38 Fiber latency calculation
Fiber latency evaluated during propagation. The speed of ligth in fiber is evaluated as the vacuum speed of ligth  divided by the core reflective index n1.
The latency in the transceiver is evaluated in ms.

Change-Id: I7a3638c49f346aecaf1d4897cecf96d345fdb26c
2023-08-07 18:29:03 +02:00
AndreaDAmico
70731b64d6 fix: include position of lumped losses in Raman profile
In the previous version, the position of the lumped losses were not
included in the result Raman profile. As the latter is then used to
evaluate the NLI, including the lumped loss positions is required for
accurate estimations.

Change-Id: I683f48ceb7139d1a8be03d2e7ca7e3abffecbe85
2023-07-24 17:13:15 +02:00
AndreaDAmico
4ea0180caf tests: prefer pandas.read_csv over numpy.genfromtext
Change-Id: Icc9618afc4cad0c7a07f3a785c99b6b438e0c6cc
2023-07-24 17:12:25 +02:00
EstherLerouzic
41b94cc888 fix: don't crash if PMD, PDL or CD penalties are missing in transceivers
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iafc248af3ecfcd4da4c1135fd3a37da796cdfb5f
2023-05-09 10:11:26 +02:00
Jan Kundrát
76e9146043 docs: docstring formatting
Let's use the pythonic indenting, quoting and structure in general as
specified in PEP 0257.

Change-Id: Icd0b4fbd94dabd9a163ae3f6887b236e76c486ab
2023-04-18 01:34:19 +02:00
Jan Kundrát
2a07eec966 SimParams: less boilerplate
The code look as if it was trying to prevent direct instantiation of the
SimParams class. However, instance *creation* in Python is actually
handled via `__new__` which was not overridden. In addition, the
`get()` accessor was invoking `SimParams.__new__()` directly, which
meant that this class was instantiated each time it was needed.

Let's cut the boilerplate by getting rid of the extra step and just use
the regular constructor.

This patch doesn't change anything in actual observable behavior. I
still do not like this implicit singleton design pattern, but nuking
that will have to wait until some other time.

Change-Id: I3ca81bcd0042e91b4f6b7581879922611f18febe
2023-04-17 23:06:31 +02:00
EstherLerouzic
06fe1c2f63 complete tests with the --power option tests
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia7be6b86b82cc0317a5ba48086ef63f67d490990
2023-01-30 18:05:41 +01:00
EstherLerouzic
48e3f96967 add equalization per constant ratio power/slot_width
Constant power per slot_width uses the slot width instead of
baud rate compared to PSD.

This is the equalization used in OpenROADM

add tests for constant power per slot width equalization

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie350e4c15cb6b54c15e418556fe33e72486cb134
2023-01-30 18:03:58 +01:00
Jan Kundrát
0ae341c2a5 tests: update to flake8 v5
flake8-html is now compatible with the v5 of this package, so let's use
it. Unfortunately, they killed the `--diff` option in v6, so we cannot
use it right now. I understand the reasoning as well as the fact that
it's easy to be broken, but I don't like broken CI that much.

Change-Id: I70dd686e097f411c39bfc53f83d519540687dd64
2023-01-18 22:25:48 +01:00
Jan Kundrát
0c2f6372f8 tests: switch to PEP517-compliant build process
...mainly to be in sync with oopt-gnpy-libyang that I've been working on
recently, and to allow us to modernize this infrastructure later on.

Change-Id: Id0ed1d7620762fc204300ebe8a190de8e42ae9df
2023-01-18 22:20:39 +01:00
Jan Kundrát
11e5117505 tests: do not compare floating point numbers for equality
GitHub CI started failing with the following error:

  assert (watt2dbm(si.signal) == target - correction).all()
  assert False
   +  where False = <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0>()
   +    where <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0> = array([-25.5, -24.5, -22.5, -25. , -27.5]) == array([-25.5, -24.5, -22.5, -25. , -27.5])
        +array([-25.5, -24.5, -22.5, -25. , -27.5])
        -array([-25.5, -24.5, -22.5, -25. , -27.5])
        Full diff:
          array([-25.5, -24.5, -22.5, -25. , -27.5]).all

This is with code which has passed in the Zuul/Vexxhost CI.

It looks very similar to a regression that hit numpy 1.24.0, but the
GitHub action log shows that this happens with numpy 1.24.1. Weird, and
I'm not getting these differences locally, and also not on an ARM64
cloud VM.

Anyway, comparing floating point numbers for strict equality is futile,
so let's use this opportunity to use a proper check for these.

Change-Id: I05683f3116cad78d067bddde2780fe25b5caf768
2023-01-18 00:27:53 +01:00
EstherLerouzic
50603420fc ROADM: rework equalization
On a ROADM, the code would previously set the same per-carrier power
regardless of the channel spectrum width. With this patch, carriers are
equalized either by their:

- absolute power (same as before),
- power spectral density (PSD).

Also, it's possible to apply a per-channel power offset (in dB) which
will be applied to a specified channel on top of the selected
power-level or PSD strategy. The same offset can be also selected
through the `--spectrum` option via the `default_pdb` parameter.

The equalization policy can be set via the ROADM model (in the equipment
config) as well as on a per-instance basis.

The PSD is defined as the absolute power over a spectral bandwidth,
where the spectral bandwidth corresponds to the actual spectrum
occupation (without any applicable guard bands), as approximated by the
symbol rate. PSD is specified in mW/GHz. As an example, for a 32 GBaud
signal at 0.01 mW, the PSD is 0.01/32 = 3.125e-4 mW/GHz.

This has some implications on the power sweep and ROADM behavior. Same
as previously (with absolute power targets), the ROADM design determines
the power set points. Target power is usually the best (highest) power
that can be supported by the ROADMs, especially the Add/Drop and express
stages' losses, with the goal to maximize the power at the booster's
input. As such, the `--power` option (or the power sweep) doesn't
manipulate with ROADM's target output power, but only with the output
power of the amplifiers. With PSD equalization, the `--power` option is
interpreted as the power of the reference channel defined in equipment
config's `SI` container, and its PSD is used for propagation. Power
sweep is interpreted in the same way, e.g.:

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": 0,
            "power_range_db": [-1,1,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

...and with the PSD equalization in a ROADM:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 3.125e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

then we use the power steps of the power_range_db to compute resulting
powers of each carrier out of the booster amp:

 power_db = psd2powerdbm(target_psd_out_mWperGHz, baud_rate)
 sweep = power_db + delta_power for delta_power in power_range_db

Assuming one 32Gbaud and one 64Gbaud carriers:

                   32 Gbaud        64 Gbaud
roadmA out power
(sig+ase+nli)      -20dBm         -17dBm

EDFA out power
range[
        -1          1dBm            4dBm
         0          2dBm            5dBm
         1          3dBm            6dBm
]

Design case:

Design is performed based on the reference channel set defined in SI
in equipment config (independantly of equalization process):

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": -1,
            "power_range_db": [0,0,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

`delta_p` values of amps refer to this reference channel, but are applicable
for any baudrate during propagation, e.g.:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 2.717e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

Then the output power for a 64 Gbaud carrier will be +4 =
= lin2db(db2lin(power_dbm + delta_p)/32e9 * 64e9)
= lin2db(db2lin(power_dbm + delta_p) * 2)
= powerdbm + delta + 3 = 4 dBm

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I28bcfeb72b0e74380b087762bb92ba5d39219eb3
2023-01-17 12:26:50 +01:00
EstherLerouzic
1bcb3ce25c JSON: ensure that node constraints use correct indexing
The program currently ignores the explicit `index` and reads the
constraints in the JSON order of the list. However in general, it is not
guaranteed that constraints are listed in order.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icefe271f5801cf9f7b43311c6666556564587c65
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2022-11-22 01:53:24 +01:00
Jan Kundrát
e381138320 move test-only dependencies from main requirements
Pandas is only used from the test suite.

Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/451
Change-Id: Iafd02c800e5b7772e180979d19b81a2eda0e588f
2022-11-15 10:01:31 +00:00