Correctly uses the oms band and spacing for computing the nb of channel
and total power for design per band.
In order to keep the SI values as reference, introduce a new parameter
in SI to indicate wether to use this feature or not.
If "use_si_channel_count_for_design": true, then the f_min, f_max and spacing
from SI are used for all OMSes
else, the f_min, f_max, spacing defined per OMS (design_bands) is used.
This impacts tests where the artificial C-band boudaries were hardcoded, and
it also has an impact on performances when SI's defined nb of channels is larger
than the one defined per OMS. In this case the design was considering a larger
total power than the one finally propagated which resulted in reduced performance.
This feature now corrects this case (if "use_si_channel_count_for_design": false
which is the default setting). Overall autodesign are thus improved.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I471a2c45200894ca354c90b46b662f42414b48ad
tous les test marche et les jeu de tests aussi.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If25b47aa10f97301fde7f17daa2a9478aed46db2
gnpy currently uses the same parameter for tx output power and span
input power: this prevents from modelling low tx power effect.
This patch introduces a new tx-cannel-power and uses it to
propagate in ROADM.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id3ac75e2cb617b513bdb38b51a52e05d15af46f5
- wrong parameter was used in parameter
- error message could not read 0-dimensional arrey for 0 and -1 element
- add a test that makes use of the feature
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id7f6d6766d5b91a4b9410ad23aaa5e472b8ebb6f
Finally, ref_carrier is not meant to change after design since
it is the carrier used for design. So let's move its definition
to networks function. Only ROADM need the ref_carrier baud rate
so let's define a dedicated variable in ROADM to hold it.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida7e42dd534a04c8df8792b44980f3fd2165ecb6
Remove the visualisation of the effective_pch in amp because actual
and target are the relevant ones. effective_pch was artificially
related to a mix of reference channel and noisy channel (mixed between
on the fly redesign but using actual ROADM equalisation which includes noise
in its actual loss).
the change does no more rely on the target power (which is rounded)
but on the designed gain, which is not rounded.
Propagations are slightly changed for openroadm simulations because of that.
(I verified)
The gain of amp was estimated on the fly with p_spni also in case of
RamanFiber preceding elements. removing p_spani requies that an estimation
of Raman gain be done during design.
This commit also adds this estimation.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I960b85e99f85a7d168ac5349e325c4928fa5673b
Constant power per slot_width uses the slot width instead of
baud rate compared to PSD.
This is the equalization used in OpenROADM
add tests for constant power per slot width equalization
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie350e4c15cb6b54c15e418556fe33e72486cb134
This change enables to use a different tx_osnr per carrier.
If tx_osnr is defined via spectrum then use it to define a tx_osnr per
carrier in si else use the tx_osnr of request to set tx_osnr of si.
Then, the propagate function for requests is changed to update OSNR with
tx_OSNR per carrier defined in si.
TODO: The tx_osnr defined in spectrum is not yet taken into account for
the propagate_and_optimize function, because the loop that optimizes
the choice for the mode only loops on baudrate.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0fcdf559d4f1f8f0047faa257076084ec7adcc77
We agreed that `gnpy.core` should only contain stuff for propagating
wavelengths. Conceptually, JSON parsing and even instantiating these
network elements from data obtained through JSON is *not* something that
is on the same level -- and this will become more important when we move
into YANG format in future.
Also, instead of former `gnpy.core.equipment.common`, use
`gnpy.tools.json_io._JsonThing`. It is not really an awesome name :),
but I think it sucks less than a thing called "common" which would be no
really longer any "common" in that new file.
Change-Id: Ifd85ea4423d418c14c8fae3d5054c5cb5638d283
This feature is intended to support designs such as OpenROADM where the
line degree integrates a specific preamp/booster pair. In that case, it
does not make sense for our autodesign to "pick an amplifier". The
restrictions can be activated by:
- Listing them in `eqpt_config.json`, so that they are effective for all
ROADM instances.
- On a per-ROADM basis within the Excel sheet or the JSON definitions.
Restrictions apply to an entire ROADM as a whole, not to the individual
degrees.
If a per-degree exception is needed, the amplifier of this degree can be
defined in the equipment sheet or in the network definition.
If no booster amplifier should be placed on a degree, use the `Fused`
node in place of an amplifier.
Signed-off-by: Esther Le Rouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
read fiber spans default values from eqpt_config.json[Spans]
=>if con_in/con_out is None or not defined in params
Rename connector_loss_in/out to con_in/out for consistency
update parser tests to accept the new con_in/out syntax and the new default
values
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>