mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-11-01 18:47:48 +00:00
Compare commits
510 Commits
experiment
...
v2.11.1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4ef01d54a5 | ||
|
|
4b50ee0c2d | ||
|
|
33a289e22b | ||
|
|
e593b8c9ec | ||
|
|
94a6f922cd | ||
|
|
fbe387915b | ||
|
|
fce9d1d293 | ||
|
|
a59db8fd12 | ||
|
|
de509139b3 | ||
|
|
bb77b3f4a8 | ||
|
|
34c7fd1b60 | ||
|
|
89a962ffaf | ||
|
|
1722fbec13 | ||
|
|
e48aa57c35 | ||
|
|
e3e37b1986 | ||
|
|
abf42afaf8 | ||
|
|
310995045e | ||
|
|
c840bb1a44 | ||
|
|
4b6f4af3a5 | ||
|
|
dc68d38293 | ||
|
|
defe3bee5c | ||
|
|
32adc0fc53 | ||
|
|
4796266657 | ||
|
|
c35104c184 | ||
|
|
7b1354ee24 | ||
|
|
39d3f0f483 | ||
|
|
bbe9ef7356 | ||
|
|
42a8f018cd | ||
|
|
29f5dd1dc4 | ||
|
|
03da959724 | ||
|
|
f621ca6fe7 | ||
|
|
24f4503020 | ||
|
|
520c3615e4 | ||
|
|
548626a9f2 | ||
|
|
7a26833a5a | ||
|
|
c2f6f9c6a0 | ||
|
|
64a91256fc | ||
|
|
bdcffc2a5e | ||
|
|
c384af8062 | ||
|
|
0813332adc | ||
|
|
22fe9ead55 | ||
|
|
920ac30aa5 | ||
|
|
ac8fd770ab | ||
|
|
5277ae2005 | ||
|
|
30ead40e76 | ||
|
|
ae858b911a | ||
|
|
0d236fd31e | ||
|
|
9a84e29433 | ||
|
|
143f63170e | ||
|
|
b2d7f883a1 | ||
|
|
73dbdf3042 | ||
|
|
4a071c53d7 | ||
|
|
dcde64a8db | ||
|
|
38cc0e3cc5 | ||
|
|
fb70413784 | ||
|
|
87e10c240e | ||
|
|
43c1085be6 | ||
|
|
4ace60bea2 | ||
|
|
f950a6aee8 | ||
|
|
fb4195c775 | ||
|
|
29f42666e5 | ||
|
|
9bf7f336e3 | ||
|
|
eed6564f11 | ||
|
|
fbb2f2c587 | ||
|
|
44040c4d06 | ||
|
|
ee9af69558 | ||
|
|
ce21609fec | ||
|
|
a1289e6a9b | ||
|
|
138115e1d7 | ||
|
|
ed41305f55 | ||
|
|
9736f7c032 | ||
|
|
be7ae35db3 | ||
|
|
2b4a4ab72c | ||
|
|
426c88432d | ||
|
|
2a800b781f | ||
|
|
8d1d3677ed | ||
|
|
5b6f8c60cf | ||
|
|
3a733b1fd5 | ||
|
|
2d68b94a46 | ||
|
|
bc71823bd0 | ||
|
|
5481b93728 | ||
|
|
05e301182d | ||
|
|
47c89626e3 | ||
|
|
7a032a63b5 | ||
|
|
f195d5f496 | ||
|
|
56569f866f | ||
|
|
bf1f293043 | ||
|
|
28871c6f2d | ||
|
|
d7c1a6b75e | ||
|
|
c69c2a3af2 | ||
|
|
fb29d72906 | ||
|
|
30a06da6b1 | ||
|
|
139c8cc1e7 | ||
|
|
7034d4c686 | ||
|
|
10164495b9 | ||
|
|
87211b35e9 | ||
|
|
e9f9ddb4d6 | ||
|
|
8ea13bb4d6 | ||
|
|
b45829d2df | ||
|
|
6ac3a517cf | ||
|
|
2f2920a716 | ||
|
|
07fd89351b | ||
|
|
7c60b000b5 | ||
|
|
537eb017b5 | ||
|
|
9c514e8086 | ||
|
|
78efb6c650 | ||
|
|
3510d59250 | ||
|
|
41d9d156a6 | ||
|
|
e9d5e748e4 | ||
|
|
5a5bed56c2 | ||
|
|
22de1b1281 | ||
|
|
73e1485b47 | ||
|
|
22ee05ea6f | ||
|
|
31824f318d | ||
|
|
b0cb604e91 | ||
|
|
79102e283a | ||
|
|
db5e63d51b | ||
|
|
af42699133 | ||
|
|
4ba77d0a0a | ||
|
|
064d3af8e0 | ||
|
|
4ab5bac45f | ||
|
|
bbe5fb7821 | ||
|
|
edf1eec072 | ||
|
|
88ac41f721 | ||
|
|
c20e6fb320 | ||
|
|
05500c7047 | ||
|
|
86a39f4b5e | ||
|
|
2b25609255 | ||
|
|
7e0b95bcfd | ||
|
|
f0a52dcc8a | ||
|
|
3bea4b3c9f | ||
|
|
f2cc9f7225 | ||
|
|
e79f9f51b6 | ||
|
|
7fd7f94efe | ||
|
|
0acdf9d9f6 | ||
|
|
a3edb20142 | ||
|
|
33cc11b85c | ||
|
|
5d079ab261 | ||
|
|
a3b1157e38 | ||
|
|
70731b64d6 | ||
|
|
4ea0180caf | ||
|
|
eb2363a3d4 | ||
|
|
41b94cc888 | ||
|
|
1eeb6a0583 | ||
|
|
215c20e245 | ||
|
|
76e9146043 | ||
|
|
2a07eec966 | ||
|
|
cc994bf118 | ||
|
|
37e70e622c | ||
|
|
7d9a508955 | ||
|
|
185adabd77 | ||
|
|
8f9cf8ccc7 | ||
|
|
0c797a254c | ||
|
|
2cdeeabfa6 | ||
|
|
5e874798cb | ||
|
|
ff8f044064 | ||
|
|
d84ee4e76c | ||
|
|
521d27ffac | ||
|
|
35e759212e | ||
|
|
f6dede2b5f | ||
|
|
0d0019f627 | ||
|
|
06fe1c2f63 | ||
|
|
092316a9d7 | ||
|
|
48e3f96967 | ||
|
|
e9e8956caf | ||
|
|
0ae341c2a5 | ||
|
|
0c2f6372f8 | ||
|
|
97e80b4445 | ||
|
|
5e4c9b7d73 | ||
|
|
e96f821cce | ||
|
|
5f7e61e255 | ||
|
|
682b5c5691 | ||
|
|
11e5117505 | ||
|
|
50603420fc | ||
|
|
125264f265 | ||
|
|
b1067a6266 | ||
|
|
50d4ecd700 | ||
|
|
9f37e0371e | ||
|
|
9bd303db05 | ||
|
|
1bcb3ce25c | ||
|
|
e381138320 | ||
|
|
b450677709 | ||
|
|
54a3725e17 | ||
|
|
8889c2437a | ||
|
|
8bf8b2947b | ||
|
|
cb85b8fe2b | ||
|
|
18610fb7a9 | ||
|
|
bd6b278dd1 | ||
|
|
e143d25339 | ||
|
|
ffc7dbc241 | ||
|
|
b842898baf | ||
|
|
7ea9e3b341 | ||
|
|
fcf168b361 | ||
|
|
a7ec7e2ed6 | ||
|
|
00ee102b3a | ||
|
|
ce11524ad9 | ||
|
|
74be14562a | ||
|
|
16694d0a09 | ||
|
|
33c6038921 | ||
|
|
119c9eda90 | ||
|
|
b63e146bf4 | ||
|
|
09dba8a166 | ||
|
|
7f5043622b | ||
|
|
6ad4593f41 | ||
|
|
706661d801 | ||
|
|
a408d28911 | ||
|
|
b86fe96032 | ||
|
|
43926518ad | ||
|
|
128a6e816b | ||
|
|
44db951261 | ||
|
|
3c3d919b77 | ||
|
|
2079d2bc5b | ||
|
|
062e2076ed | ||
|
|
1dd1bad273 | ||
|
|
5b104af296 | ||
|
|
f170574abf | ||
|
|
a68e8ff8d2 | ||
|
|
d5a52d1b2b | ||
|
|
7ac6e058ec | ||
|
|
74ab3c1bcd | ||
|
|
1a2ff2d215 | ||
|
|
aaf0480e9c | ||
|
|
5e50ffbbf6 | ||
|
|
243b701391 | ||
|
|
bdbfe76aed | ||
|
|
541ec04444 | ||
|
|
bf1522b047 | ||
|
|
3f4188a0fd | ||
|
|
8b387ef722 | ||
|
|
cad9a0f18e | ||
|
|
ab84c77363 | ||
|
|
62fa9ab0b0 | ||
|
|
14591c7a11 | ||
|
|
587932290d | ||
|
|
82b148eb87 | ||
|
|
8393daf67d | ||
|
|
be61dfd094 | ||
|
|
77925b218e | ||
|
|
4621ac12bf | ||
|
|
09920c0af2 | ||
|
|
e6a3d9ce5b | ||
|
|
b9645702c8 | ||
|
|
9c2095b138 | ||
|
|
cb42115230 | ||
|
|
5909da4bbf | ||
|
|
2ba1e86b28 | ||
|
|
3358c5eeb5 | ||
|
|
13e4c29bc1 | ||
|
|
4becc9060c | ||
|
|
32d8b2a4d8 | ||
|
|
399eb9700f | ||
|
|
82f83e1462 | ||
|
|
171450fa54 | ||
|
|
9f9f4c78fc | ||
|
|
c469a8d9ba | ||
|
|
99b2a554dc | ||
|
|
57e98d7173 | ||
|
|
78b45a3958 | ||
|
|
64b6b486a9 | ||
|
|
65cb46f479 | ||
|
|
f94d06f124 | ||
|
|
e1f2c55942 | ||
|
|
d28c67143e | ||
|
|
6bb9ae8336 | ||
|
|
0dc7d853ef | ||
|
|
dec9388416 | ||
|
|
017b35fa33 | ||
|
|
cb0a410418 | ||
|
|
f250990a49 | ||
|
|
280443f17f | ||
|
|
6f62251cb4 | ||
|
|
5ad54879b1 | ||
|
|
825d37c05c | ||
|
|
3ac9f90914 | ||
|
|
dbfbf115ff | ||
|
|
ad2590962b | ||
|
|
a9d530c776 | ||
|
|
f255c31f1f | ||
|
|
80ec05f84c | ||
|
|
22541d65e4 | ||
|
|
26fcf0ff6e | ||
|
|
1c32e437a2 | ||
|
|
718007b3de | ||
|
|
4d6c06340f | ||
|
|
bad893bf86 | ||
|
|
75e7fca8e4 | ||
|
|
4e38ba98ab | ||
|
|
fdcdfca589 | ||
|
|
299ca10a47 | ||
|
|
c0b7bf714e | ||
|
|
7f7c568160 | ||
|
|
9bf6ed953a | ||
|
|
e68dc39ddd | ||
|
|
f8007b41d1 | ||
|
|
228125029e | ||
|
|
d185e0c241 | ||
|
|
357bbec257 | ||
|
|
d25e98c567 | ||
|
|
397411690e | ||
|
|
4ab6f8cb1b | ||
|
|
44aff147db | ||
|
|
a36b139065 | ||
|
|
141fc66d47 | ||
|
|
53f29957fd | ||
|
|
9f3995ee20 | ||
|
|
0cf45bd102 | ||
|
|
55932ee3e9 | ||
|
|
797a0856ec | ||
|
|
3fa53adc4d | ||
|
|
bcb5e6bb60 | ||
|
|
6380f8f37a | ||
|
|
93869d6cb5 | ||
|
|
ce51a4d160 | ||
|
|
601e228bb6 | ||
|
|
3f58cbd559 | ||
|
|
2e3274ac78 | ||
|
|
e33144f8cc | ||
|
|
fd1e3f0f61 | ||
|
|
80c41264cf | ||
|
|
a051a5723b | ||
|
|
72f300ab94 | ||
|
|
2c3b0d8c82 | ||
|
|
11dab614a9 | ||
|
|
11d88bf09a | ||
|
|
af3cc4736e | ||
|
|
50cb82ee18 | ||
|
|
c80aca6696 | ||
|
|
dfca35d4ae | ||
|
|
1fbdaef58a | ||
|
|
bd025f3af4 | ||
|
|
c3e546abe3 | ||
|
|
9427d0b139 | ||
|
|
89f5b12f7e | ||
|
|
9d2c10e267 | ||
|
|
305620e5dd | ||
|
|
c91c5d622f | ||
|
|
24e7f4a5a1 | ||
|
|
225cafa8b7 | ||
|
|
ad9cbb8a93 | ||
|
|
581b4a726f | ||
|
|
ce92d4e1b8 | ||
|
|
eb17b74ea4 | ||
|
|
051359ad77 | ||
|
|
912eb712c3 | ||
|
|
ce4ea9d6e3 | ||
|
|
39c894bb6a | ||
|
|
be95496f85 | ||
|
|
d38dabc824 | ||
|
|
5ad6336fda | ||
|
|
8ec9aca559 | ||
|
|
9abec6c9b7 | ||
|
|
e3b904fb06 | ||
|
|
5d13b9bfb6 | ||
|
|
0c26fd24b5 | ||
|
|
08c922a5e5 | ||
|
|
1b2eb9a5a8 | ||
|
|
219204e320 | ||
|
|
38fc1fdc6d | ||
|
|
e25e1fbe50 | ||
|
|
8a96ff563e | ||
|
|
27d4fb0811 | ||
|
|
b5a8ae3f06 | ||
|
|
e45a54c2b5 | ||
|
|
172697a2aa | ||
|
|
9762b6e610 | ||
|
|
4675a74e02 | ||
|
|
a268c219ed | ||
|
|
a47f069d97 | ||
|
|
8fcead4294 | ||
|
|
b6daa15356 | ||
|
|
469c0f5218 | ||
|
|
830ed22690 | ||
|
|
a386262bfd | ||
|
|
ede3c1a943 | ||
|
|
af767dd38a | ||
|
|
6dcc5a8524 | ||
|
|
7b5878e2f2 | ||
|
|
8c0eac1bdc | ||
|
|
d09938c1b8 | ||
|
|
dba4da0169 | ||
|
|
998249be61 | ||
|
|
ebdba47660 | ||
|
|
6072203afb | ||
|
|
b867c57bee | ||
|
|
4396a4efe9 | ||
|
|
afe686c666 | ||
|
|
e0faf6107d | ||
|
|
441f566964 | ||
|
|
2ca92f1aaa | ||
|
|
c4235fa61c | ||
|
|
41c53fbc5a | ||
|
|
44f8cdbf20 | ||
|
|
07ef8e4e10 | ||
|
|
bf0e435542 | ||
|
|
b688493e98 | ||
|
|
1ad01963c8 | ||
|
|
493de58e65 | ||
|
|
7e97547774 | ||
|
|
0f73a8f810 | ||
|
|
fa834338ab | ||
|
|
fc82f43b89 | ||
|
|
3d9d5d7a8d | ||
|
|
eef2cdc81c | ||
|
|
487ca8c2d6 | ||
|
|
ec66d628f0 | ||
|
|
924c56850d | ||
|
|
21385cbf03 | ||
|
|
87c617b602 | ||
|
|
4fce4ea7d8 | ||
|
|
2ddbd961ff | ||
|
|
05a044dc2c | ||
|
|
340840840f | ||
|
|
3ac08f59e2 | ||
|
|
3bcafc2345 | ||
|
|
b58c089945 | ||
|
|
a211e305c3 | ||
|
|
3a72ce84d0 | ||
|
|
de09b4f8ce | ||
|
|
be5519455f | ||
|
|
f98eb2c10c | ||
|
|
60b9256f22 | ||
|
|
94b9c16d67 | ||
|
|
eaccd63739 | ||
|
|
8fcb61f12c | ||
|
|
efd7468d42 | ||
|
|
8e62955bb0 | ||
|
|
561fd76a20 | ||
|
|
ccb6653f50 | ||
|
|
902cfa11a7 | ||
|
|
24c6acc027 | ||
|
|
3a31d458ee | ||
|
|
22d55ae881 | ||
|
|
3324645f78 | ||
|
|
3014a881f5 | ||
|
|
35877022ec | ||
|
|
9b985d1fc5 | ||
|
|
cd95c83bbf | ||
|
|
f9dbf7d132 | ||
|
|
b37248077c | ||
|
|
d2a8d8e887 | ||
|
|
35c4073292 | ||
|
|
b8e72511de | ||
|
|
120c326e77 | ||
|
|
01115f9852 | ||
|
|
b91ea1828f | ||
|
|
d2a294ac5a | ||
|
|
f41acf31f6 | ||
|
|
8cef09158f | ||
|
|
549e04e925 | ||
|
|
918c19b1bc | ||
|
|
6820a3fc36 | ||
|
|
7e8ed590eb | ||
|
|
4218b7ef44 | ||
|
|
87af343b38 | ||
|
|
26cd33b4dc | ||
|
|
861724ef4f | ||
|
|
86492cff60 | ||
|
|
27fd5cdad6 | ||
|
|
2fc444be4b | ||
|
|
d3490ae30c | ||
|
|
59c3895a51 | ||
|
|
11bc41b941 | ||
|
|
9a7f94a391 | ||
|
|
6487b98136 | ||
|
|
15df99510f | ||
|
|
3d5b1fcf64 | ||
|
|
928bc42cb9 | ||
|
|
643680ec47 | ||
|
|
a4a144a319 | ||
|
|
093085fba8 | ||
|
|
c56ea898a6 | ||
|
|
a5398a5c57 | ||
|
|
6dd40935b7 | ||
|
|
e6ee512001 | ||
|
|
e13d27c1f5 | ||
|
|
bb552fbdd6 | ||
|
|
ed8a3dd933 | ||
|
|
3204077a6c | ||
|
|
85d1bf4e1e | ||
|
|
42edb2e6b9 | ||
|
|
21174a4190 | ||
|
|
f6c2da24cd | ||
|
|
9f16aaac61 | ||
|
|
29fc9d7dac | ||
|
|
be3af5c2e5 | ||
|
|
e0e9ebde28 | ||
|
|
5dc16a39c5 | ||
|
|
416da5c60b | ||
|
|
f8047f9afe | ||
|
|
9e91933106 | ||
|
|
7407e6809b | ||
|
|
56f66779f9 | ||
|
|
2704c56e50 | ||
|
|
ba4cc1ceef | ||
|
|
8396cea652 | ||
|
|
2b1029f3b6 | ||
|
|
8e2709490f | ||
|
|
ebf8249154 | ||
|
|
aaddffcb2e | ||
|
|
29d1f8c666 | ||
|
|
0126645c4d | ||
|
|
1d657d6819 | ||
|
|
0b965d931c | ||
|
|
d3eaa4d7ba | ||
|
|
1dbbc6273b | ||
|
|
efa8b83249 | ||
|
|
30599bf63a | ||
|
|
7c14fe02ab | ||
|
|
cd0415e523 | ||
|
|
33dcdde422 |
@@ -1 +1,9 @@
|
||||
comment: off
|
||||
coverage:
|
||||
status:
|
||||
project:
|
||||
default:
|
||||
threshold: 5%
|
||||
patch:
|
||||
default:
|
||||
only_pulls: true
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
#!/bin/bash
|
||||
cp -nr /opt/application/oopt-gnpy/gnpy/example-data /shared
|
||||
cp -nr /oopt-gnpy/gnpy/example-data /shared
|
||||
exec "$@"
|
||||
|
||||
@@ -1,47 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
IMAGE_NAME=telecominfraproject/oopt-gnpy
|
||||
IMAGE_TAG=$(git describe --tags)
|
||||
|
||||
ALREADY_FOUND=0
|
||||
docker pull ${IMAGE_NAME}:${IMAGE_TAG} && ALREADY_FOUND=1
|
||||
|
||||
if [[ $ALREADY_FOUND == 0 ]]; then
|
||||
docker build . -t ${IMAGE_NAME}
|
||||
docker tag ${IMAGE_NAME} ${IMAGE_NAME}:${IMAGE_TAG}
|
||||
|
||||
# shared directory setup: do not clobber the real data
|
||||
mkdir trash
|
||||
cd trash
|
||||
docker run -it --rm --volume $(pwd):/shared ${IMAGE_NAME} gnpy-transmission-example
|
||||
else
|
||||
echo "Image ${IMAGE_NAME}:${IMAGE_TAG} already available, will just update the other tags"
|
||||
fi
|
||||
|
||||
docker images
|
||||
|
||||
do_docker_login() {
|
||||
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
|
||||
}
|
||||
|
||||
if [[ "${TRAVIS_PULL_REQUEST}" == "false" ]]; then
|
||||
if [[ "${TRAVIS_BRANCH}" == "develop" || "${TRAVIS_BRANCH}" == "docker" ]]; then
|
||||
echo "Publishing latest"
|
||||
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:latest
|
||||
do_docker_login
|
||||
if [[ $ALREADY_FOUND == 0 ]]; then
|
||||
docker push ${IMAGE_NAME}:${IMAGE_TAG}
|
||||
fi
|
||||
docker push ${IMAGE_NAME}:latest
|
||||
elif [[ "${TRAVIS_BRANCH}" == "master" ]]; then
|
||||
echo "Publishing stable"
|
||||
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:stable
|
||||
do_docker_login
|
||||
if [[ $ALREADY_FOUND == 0 ]]; then
|
||||
docker push ${IMAGE_NAME}:${IMAGE_TAG}
|
||||
fi
|
||||
docker push ${IMAGE_NAME}:stable
|
||||
fi
|
||||
fi
|
||||
@@ -1 +0,0 @@
|
||||
venv/
|
||||
7
.github/pull_request_template.md
vendored
Normal file
7
.github/pull_request_template.md
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
# Thanks for contributing to GNPy
|
||||
|
||||
If it isn't much trouble, please send your contribution as patches to our Gerrit.
|
||||
Here's [how to submit patches](https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html), and here's a [list of stuff we are currently working on](https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+status:open).
|
||||
Just sign in via your existing GitHub account.
|
||||
|
||||
However, if you feel more comfortable with filing GitHub PRs, we can work with that too.
|
||||
145
.github/workflows/main.yml
vendored
Normal file
145
.github/workflows/main.yml
vendored
Normal file
@@ -0,0 +1,145 @@
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
|
||||
name: CI
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Tox test
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- uses: fedora-python/tox-github-action@v37.0
|
||||
with:
|
||||
tox_env: ${{ matrix.tox_env }}
|
||||
dnf_install: ${{ matrix.dnf_install }}
|
||||
- uses: codecov/codecov-action@v3.1.1
|
||||
if: ${{ endswith(matrix.tox_env, '-cover') }}
|
||||
with:
|
||||
files: ${{ github.workspace }}/cover/coverage.xml
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
tox_env:
|
||||
- py38
|
||||
- py39
|
||||
- py310
|
||||
- py311
|
||||
- py312-cover
|
||||
include:
|
||||
- tox_env: docs
|
||||
dnf_install: graphviz
|
||||
|
||||
pypi:
|
||||
needs: build
|
||||
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && github.repository_owner == 'Telecominfraproject' }}
|
||||
name: PyPI packaging
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- uses: actions/setup-python@v4
|
||||
name: Install Python
|
||||
with:
|
||||
python-version: '3.12'
|
||||
- uses: casperdcl/deploy-pypi@bb869aafd89f657ceaafe9561d3b5584766c0f95
|
||||
with:
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
pip: wheel -w dist/ --no-deps .
|
||||
upload: true
|
||||
|
||||
docker:
|
||||
needs: build
|
||||
if: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/master' || startsWith(github.ref, 'refs/tags/v')) && github.repository_owner == 'Telecominfraproject' }}
|
||||
name: Docker image
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Log in to Docker Hub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: jktjkt
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Extract tag name
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
|
||||
id: extract_pretty_git
|
||||
run: echo ::set-output name=GIT_DESC::$(git describe --tags)
|
||||
- name: Build and push a container
|
||||
uses: docker/build-push-action@v2
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
tags: |
|
||||
telecominfraproject/oopt-gnpy:${{ steps.extract_pretty_git.outputs.GIT_DESC }}
|
||||
telecominfraproject/oopt-gnpy:master
|
||||
- name: Extract tag name
|
||||
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') }}
|
||||
id: extract_tag_name
|
||||
run: echo ::set-output name=GIT_DESC::${GITHUB_REF/refs\/tags\//}
|
||||
- name: Build and push a container
|
||||
uses: docker/build-push-action@v2
|
||||
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') }}
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
tags: |
|
||||
telecominfraproject/oopt-gnpy:${{ steps.extract_tag_name.outputs.GIT_DESC }}
|
||||
telecominfraproject/oopt-gnpy:latest
|
||||
|
||||
other-platforms:
|
||||
name: Tests on other platforms
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- run: |
|
||||
pip install --editable .[tests]
|
||||
pytest -vv
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- os: windows-2019
|
||||
python_version: "3.10"
|
||||
- os: windows-2022
|
||||
python_version: "3.11"
|
||||
- os: windows-2022
|
||||
python_version: "3.12"
|
||||
- os: macos-13
|
||||
python_version: "3.12"
|
||||
- os: macos-14
|
||||
python_version: "3.12"
|
||||
|
||||
paywalled-platforms:
|
||||
name: Tests on paywalled platforms
|
||||
if: github.repository_owner == 'Telecominfraproject'
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- run: |
|
||||
pip install --editable .[tests]
|
||||
pytest -vv
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- os: macos-13-xlarge # Apple M1 CPU
|
||||
python_version: "3.12"
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -65,5 +65,3 @@ target/
|
||||
|
||||
# MacOS DS_store
|
||||
.DS_Store
|
||||
|
||||
venv/
|
||||
|
||||
@@ -2,4 +2,3 @@
|
||||
host=review.gerrithub.io
|
||||
project=Telecominfraproject/oopt-gnpy
|
||||
defaultrebase=0
|
||||
defaultbranch=develop
|
||||
|
||||
3
.lgtm.yml
Normal file
3
.lgtm.yml
Normal file
@@ -0,0 +1,3 @@
|
||||
queries:
|
||||
- exclude: py/clear-text-logging-sensitive-data
|
||||
- exclude: py/clear-text-storage-sensitive-data
|
||||
@@ -1,4 +1,17 @@
|
||||
version: 2
|
||||
build:
|
||||
image: latest
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.12"
|
||||
apt_packages:
|
||||
- graphviz
|
||||
|
||||
python:
|
||||
version: 3.6
|
||||
install:
|
||||
- method: pip
|
||||
path: .
|
||||
extra_requirements:
|
||||
- docs
|
||||
|
||||
sphinx:
|
||||
configuration: docs/conf.py
|
||||
|
||||
24
.travis.yml
24
.travis.yml
@@ -1,24 +0,0 @@
|
||||
dist: xenial
|
||||
sudo: false
|
||||
language: python
|
||||
services: docker
|
||||
python:
|
||||
- "3.6"
|
||||
- "3.7"
|
||||
install: skip
|
||||
script:
|
||||
- python setup.py develop
|
||||
- pip install pytest-cov rstcheck
|
||||
- pytest --cov-report=xml --cov=gnpy -v
|
||||
- rstcheck --ignore-roles cite *.rst
|
||||
- sphinx-build -W --keep-going docs/ x-throwaway-location
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
jobs:
|
||||
include:
|
||||
- stage: test
|
||||
name: Docker image
|
||||
script:
|
||||
- git fetch --unshallow
|
||||
- ./.docker-travis.sh
|
||||
- docker images
|
||||
34
.zuul.yaml
34
.zuul.yaml
@@ -2,23 +2,33 @@
|
||||
- project:
|
||||
check:
|
||||
jobs:
|
||||
- tox-py36-cover
|
||||
- tox-py38:
|
||||
vars:
|
||||
ensure_tox_version: '<4'
|
||||
- tox-py39:
|
||||
vars:
|
||||
ensure_tox_version: '<4'
|
||||
- tox-py310-cover:
|
||||
vars:
|
||||
ensure_tox_version: '<4'
|
||||
- tox-docs-f36:
|
||||
vars:
|
||||
ensure_tox_version: '<4'
|
||||
- coverage-diff:
|
||||
voting: false
|
||||
dependencies:
|
||||
- tox-py36-cover-previous
|
||||
- tox-py36-cover
|
||||
- tox-py310-cover-previous
|
||||
- tox-py310-cover
|
||||
vars:
|
||||
coverage_job_name_previous: tox-py36-cover-previous
|
||||
coverage_job_name_current: tox-py36-cover
|
||||
- tox-linters-diff:
|
||||
coverage_job_name_previous: tox-py310-cover-previous
|
||||
coverage_job_name_current: tox-py310-cover
|
||||
- tox-linters-diff-n-report:
|
||||
voting: false
|
||||
- tox-docs-el8
|
||||
- tox-py36-cover-previous
|
||||
gate:
|
||||
jobs:
|
||||
- tox-py36-el8
|
||||
- tox-docs-el8
|
||||
vars:
|
||||
ensure_tox_version: '<4'
|
||||
- tox-py310-cover-previous:
|
||||
vars:
|
||||
ensure_tox_version: '<4'
|
||||
tag:
|
||||
jobs:
|
||||
- oopt-release-python:
|
||||
|
||||
@@ -11,18 +11,21 @@ To learn how to contribute, please see CONTRIBUTING.md
|
||||
- Brian Taylor (Facebook) <briantaylor@fb.com>
|
||||
- David Boertjes (Ciena) <dboertje@ciena.com>
|
||||
- Diego Landa (Facebook) <dlanda@fb.com>
|
||||
- Emmanuelle Delfour (Orange) <WEDE7391@orange.com>
|
||||
- Esther Le Rouzic (Orange) <esther.lerouzic@orange.com>
|
||||
- Gabriele Galimberti (Cisco) <ggalimbe@cisco.com>
|
||||
- Gert Grammel (Juniper Networks) <ggrammel@juniper.net>
|
||||
- Giacomo Borraccini (Politecnico di Torino) <giacomo.borraccini@polito.it>
|
||||
- Gilad Goldfarb (Facebook) <giladg@fb.com>
|
||||
- James Powell (Telecom Infra Project) <james.powell@telecominfraproject.com>
|
||||
- Jan Kundrát (Telecom Infra Project) <jan.kundrat@telecominfraproject.com>
|
||||
- Jan Kundrát (Telecom Infra Project) <jkt@jankundrat.com>
|
||||
- Jeanluc Augé (Orange) <jeanluc.auge@orange.com>
|
||||
- Jonas Mårtensson (RISE) <jonas.martensson@ri.se>
|
||||
- Mattia Cantono (Politecnico di Torino) <mattia.cantono@polito.it>
|
||||
- Miguel Garrich (University Catalunya) <miquel.garrich@upct.es>
|
||||
- Raj Nagarajan (Lumentum) <raj.nagarajan@lumentum.com>
|
||||
- Roberts Miculens (Lattelecom) <roberts.miculens@lattelecom.lv>
|
||||
- Sami Alavi (NUST) <sami.mansooralavi1999@gmail.com>
|
||||
- Shengxiang Zhu (University of Arizona) <szhu@email.arizona.edu>
|
||||
- Stefan Melin (Telia Company) <Stefan.Melin@teliacompany.com>
|
||||
- Vittorio Curri (Politecnico di Torino) <vittorio.curri@polito.it>
|
||||
|
||||
24
Dockerfile
24
Dockerfile
@@ -1,18 +1,8 @@
|
||||
FROM python:3.7-slim
|
||||
WORKDIR /opt/application/oopt-gnpy
|
||||
RUN mkdir -p /shared/example-data \
|
||||
&& groupadd gnpy \
|
||||
&& useradd -u 1000 -g gnpy -m gnpy \
|
||||
&& apt-get update \
|
||||
&& apt-get install git -y \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
COPY . /opt/application/oopt-gnpy
|
||||
WORKDIR /opt/application/oopt-gnpy
|
||||
RUN mkdir topology \
|
||||
&& mkdir equipment \
|
||||
&& mkdir autodesign \
|
||||
&& pip install . \
|
||||
&& chown -Rc gnpy:gnpy /opt/application/oopt-gnpy /shared/example-data
|
||||
USER gnpy
|
||||
ENTRYPOINT ["/opt/application/oopt-gnpy/.docker-entry.sh"]
|
||||
FROM python:3.9-slim
|
||||
COPY . /oopt-gnpy
|
||||
WORKDIR /oopt-gnpy
|
||||
RUN apt update; apt install -y git
|
||||
RUN pip install .
|
||||
WORKDIR /shared/example-data
|
||||
ENTRYPOINT ["/oopt-gnpy/.docker-entry.sh"]
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
31
README.md
Normal file
31
README.md
Normal file
@@ -0,0 +1,31 @@
|
||||
# GNPy: Optical Route Planning and DWDM Network Optimization
|
||||
|
||||
[](https://pypi.org/project/gnpy/)
|
||||
[](https://pypi.org/project/gnpy/)
|
||||
[](http://gnpy.readthedocs.io/en/master/?badge=master)
|
||||
[](https://github.com/Telecominfraproject/oopt-gnpy/actions/workflows/main.yml)
|
||||
[](https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+is:open)
|
||||
[](https://github.com/Telecominfraproject/oopt-gnpy/graphs/contributors)
|
||||
[](https://codecov.io/gh/Telecominfraproject/oopt-gnpy)
|
||||
[](https://doi.org/10.5281/zenodo.3458319)
|
||||
[](https://matrix.to/#/%23oopt-gnpy%3Amatrix.org?via=matrix.org)
|
||||
|
||||
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks.
|
||||
We are a consortium of operators, vendors, and academic researchers sponsored via the [Telecom Infra Project](http://telecominfraproject.com)'s [OOPT/PSE](https://telecominfraproject.com/open-optical-packet-transport) working group.
|
||||
Together, we are building this tool for rapid development of production-grade route planning tools which is easily extensible to include custom network elements and performant to the scale of real-world mesh optical networks.
|
||||
|
||||

|
||||
|
||||
## Quick Start
|
||||
|
||||
Install either via [Docker](https://gnpy.readthedocs.io/en/master/install.html#using-prebuilt-docker-images), or as a [Python package](https://gnpy.readthedocs.io/en/master/install.html#using-python-on-your-computer).
|
||||
Read our [documentation](https://gnpy.readthedocs.io/), learn from the demos, and [get in touch with us](https://github.com/Telecominfraproject/oopt-gnpy/discussions).
|
||||
|
||||
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
|
||||
|
||||

|
||||
|
||||
GNPy can do much more, including acting as a Path Computation Engine, tracking bandwidth requests, or advising the SDN controller about a best possible path through a large DWDM network.
|
||||
Learn more about this [in the documentation](https://gnpy.readthedocs.io/), or give it a [try online at `gnpy.app`](https://gnpy.app/):
|
||||
|
||||
[](https://gnpy.app/)
|
||||
271
README.rst
271
README.rst
@@ -1,271 +0,0 @@
|
||||
.. image:: docs/images/GNPy-banner.png
|
||||
:width: 100%
|
||||
:align: left
|
||||
:alt: GNPy with an OLS system
|
||||
|
||||
====================================================================
|
||||
`gnpy`: mesh optical network route planning and optimization library
|
||||
====================================================================
|
||||
|
||||
|docs| |travis| |doi| |contributors| |codacy-quality| |codecov|
|
||||
|
||||
**`gnpy` is an open-source, community-developed library for building route
|
||||
planning and optimization tools in real-world mesh optical networks.**
|
||||
|
||||
`gnpy <http://github.com/telecominfraproject/oopt-gnpy>`__ is:
|
||||
--------------------------------------------------------------
|
||||
|
||||
- a sponsored project of the `OOPT/PSE <https://telecominfraproject.com/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_
|
||||
- fully community-driven, fully open source library
|
||||
- driven by a consortium of operators, vendors, and academic researchers
|
||||
- intended for rapid development of production-grade route planning tools
|
||||
- easily extensible to include custom network elements
|
||||
- performant to the scale of real-world mesh optical networks
|
||||
|
||||
Documentation: https://gnpy.readthedocs.io
|
||||
|
||||
Get In Touch
|
||||
~~~~~~~~~~~~
|
||||
|
||||
There are `weekly calls <https://telecominfraproject.workplace.com/events/702894886867547/>`__ about our progress.
|
||||
Newcomers, users and telecom operators are especially welcome there.
|
||||
We encourage all interested people outside the TIP to `join the project <https://telecominfraproject.com/apply-for-membership/>`__.
|
||||
|
||||
How to Install
|
||||
--------------
|
||||
|
||||
Install either via `Docker <docs/install.rst#install-docker>`__, or as a `Python package <docs/install.rst#install-pip>`__.
|
||||
|
||||
Instructions for First Use
|
||||
--------------------------
|
||||
|
||||
``gnpy`` is a library for building route planning and optimization tools.
|
||||
|
||||
It ships with a number of example programs. Release versions will ship with
|
||||
fully-functional programs.
|
||||
|
||||
**Note**: *If you are a network operator or involved in route planning and
|
||||
optimization for your organization, please contact project maintainer Jan
|
||||
Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking for users with
|
||||
specific, delineated use cases to drive requirements for future
|
||||
development.*
|
||||
|
||||
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
|
||||
|
||||
.. image:: https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg
|
||||
:width: 100%
|
||||
:align: left
|
||||
:alt: Running a simple simulation example
|
||||
:target: https://asciinema.org/a/252295
|
||||
|
||||
By default, this script operates on a single span network defined in
|
||||
`gnpy/example-data/edfa_example_network.json <gnpy/example-data/edfa_example_network.json>`_
|
||||
|
||||
You can specify a different network at the command line as follows. For
|
||||
example, to use the CORONET Global network defined in
|
||||
`gnpy/example-data/CORONET_Global_Topology.json <gnpy/example-data/CORONET_Global_Topology.json>`_:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-transmission-example $(gnpy-example-data)/CORONET_Global_Topology.json
|
||||
|
||||
It is also possible to use an Excel file input (for example
|
||||
`gnpy/example-data/CORONET_Global_Topology.xlsx <gnpy/example-data/CORONET_Global_Topology.xlsx>`_).
|
||||
The Excel file will be processed into a JSON file with the same prefix.
|
||||
Further details about the Excel data structure are available `in the documentation <docs/excel.rst>`__.
|
||||
|
||||
The main transmission example will calculate the average signal OSNR and SNR
|
||||
across network elements (transceiver, ROADMs, fibers, and amplifiers)
|
||||
between two transceivers selected by the user. Additional details are provided by doing ``gnpy-transmission-example -h``. (By default, for the CORONET Global
|
||||
network, it will show the transmission of spectral information between Abilene and Albany)
|
||||
|
||||
This script calculates the average signal OSNR = |OSNR| and SNR = |SNR|.
|
||||
|
||||
.. |OSNR| replace:: P\ :sub:`ch`\ /P\ :sub:`ase`
|
||||
.. |SNR| replace:: P\ :sub:`ch`\ /(P\ :sub:`nli`\ +\ P\ :sub:`ase`)
|
||||
|
||||
|Pase| is the amplified spontaneous emission noise, and |Pnli| the non-linear
|
||||
interference noise.
|
||||
|
||||
.. |Pase| replace:: P\ :sub:`ase`
|
||||
.. |Pnli| replace:: P\ :sub:`nli`
|
||||
|
||||
Further Instructions for Use
|
||||
----------------------------
|
||||
|
||||
Simulations are driven by a set of `JSON <docs/json.rst>`__ or `XLS <docs/excel.rst>`__ files.
|
||||
|
||||
The ``gnpy-transmission-example`` script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
|
||||
Launch power can be overridden by using the ``--power`` argument.
|
||||
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
|
||||
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
|
||||
|
||||
An experimental support for Raman amplification is available:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-transmission-example \
|
||||
$(gnpy-example-data)/raman_edfa_example_network.json \
|
||||
--sim $(gnpy-example-data)/sim_params.json --show-channels
|
||||
|
||||
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <gnpy/example-data/raman_edfa_example_network.json>`_.
|
||||
General numeric parameters for simulaiton control are provided in the `gnpy/example-data/sim_params.json <gnpy/example-data/sim_params.json>`_.
|
||||
|
||||
Use ``gnpy-path-request`` to request several paths at once:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ cd $(gnpy-example-data)
|
||||
$ gnpy-path-request -o output_file.json \
|
||||
meshTopologyExampleV2.xls meshTopologyExampleV2_services.json
|
||||
|
||||
This program operates on a network topology (`JSON <docs/json.rst>`__ or `Excel <docs/excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
|
||||
The service requests and reply formats are based on the `draft-ietf-teas-yang-path-computation-01 <https://tools.ietf.org/html/draft-ietf-teas-yang-path-computation-01>`__ with custom extensions (e.g., for transponder modes).
|
||||
An example of the JSON input is provided in file `service-template.json`, while results are shown in `path_result_template.json`.
|
||||
|
||||
Important note: ``gnpy-path-request`` is not a network dimensionning tool: each service does not reserve spectrum, or occupy ressources such as transponders. It only computes path feasibility assuming the spectrum (between defined frequencies) is loaded with "nb of channels" spaced by "spacing" values as specified in the system parameters input in the service file, each cannel having the same characteristics in terms of baudrate, format,... as the service transponder. The transceiver element acts as a "logical starting/stopping point" for the spectral information propagation. At that point it is not meant to represent the capacity of add drop ports.
|
||||
As a result transponder type is not part of the network info. it is related to the list of services requests.
|
||||
|
||||
The current version includes a spectrum assigment features that enables to compute a candidate spectrum assignment for each service based on a first fit policy. Spectrum is assigned based on service specified spacing value, path_bandwidth value and selected mode for the transceiver. This spectrum assignment includes a basic capacity planning capability so that the spectrum resource is limited by the frequency min and max values defined for the links. If the requested services reach the link spectrum capacity, additional services feasibility are computed but marked as blocked due to spectrum reason.
|
||||
|
||||
REST API (experimental)
|
||||
-----------------------
|
||||
``gnpy`` provides an experimental api for requesting several paths at once. It is based on Flask server.
|
||||
You can run it through command line or Docker.
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-rest
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ docker run -p 8080:8080 -it emmanuelledelfour/gnpy-experimental:candi-1.0 gnpy-rest
|
||||
|
||||
When starting the api server will aks for an encryption/decryption key. This key i used to encrypt equipment file when using /api/v1/equipments endpoint.
|
||||
This key is a Fernet key and can be generated this way:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from cryptography.fernet import Fernet
|
||||
Fernet.generate_key()
|
||||
|
||||
|
||||
After typing the key, you can detach the container by typing ^P^Q.
|
||||
After starting the api server, you can launch a request
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ curl -v -X POST -H "Content-Type: application/json" -d @<PATH_TO_JSON_REQUEST_FILE> https://localhost:8080/api/v1/path-computation -k
|
||||
|
||||
TODO: api documentation, unit tests, real WSGI server with trusted certificates
|
||||
|
||||
Contributing
|
||||
------------
|
||||
|
||||
``gnpy`` is looking for additional contributors, especially those with experience
|
||||
planning and maintaining large-scale, real-world mesh optical networks.
|
||||
|
||||
To get involved, please contact Jan Kundrát
|
||||
<jan.kundrat@telecominfraproject.com> or Gert Grammel <ggrammel@juniper.net>.
|
||||
|
||||
``gnpy`` contributions are currently limited to members of `TIP
|
||||
<http://telecominfraproject.com>`_. Membership is free and open to all.
|
||||
|
||||
See the `Onboarding Guide
|
||||
<https://github.com/Telecominfraproject/gnpy/wiki/Onboarding-Guide>`_ for
|
||||
specific details on code contributions.
|
||||
|
||||
See `AUTHORS.rst <AUTHORS.rst>`_ for past and present contributors.
|
||||
|
||||
Project Background
|
||||
------------------
|
||||
|
||||
Data Centers are built upon interchangeable, highly standardized node and
|
||||
network architectures rather than a sum of isolated solutions. This also
|
||||
translates to optical networking. It leads to a push in enabling multi-vendor
|
||||
optical network by disaggregating HW and SW functions and focusing on
|
||||
interoperability. In this paradigm, the burden of responsibility for ensuring
|
||||
the performance of such disaggregated open optical systems falls on the
|
||||
operators. Consequently, operators and vendors are collaborating in defining
|
||||
control models that can be readily used by off-the-shelf controllers. However,
|
||||
node and network models are only part of the answer. To take reasonable
|
||||
decisions, controllers need to incorporate logic to simulate and assess optical
|
||||
performance. Hence, a vendor-independent optical quality estimator is required.
|
||||
Given its vendor-agnostic nature, such an estimator needs to be driven by a
|
||||
consortium of operators, system and component suppliers.
|
||||
|
||||
Founded in February 2016, the Telecom Infra Project (TIP) is an
|
||||
engineering-focused initiative which is operator driven, but features
|
||||
collaboration across operators, suppliers, developers, integrators, and
|
||||
startups with the goal of disaggregating the traditional network deployment
|
||||
approach. The group’s ultimate goal is to help provide better connectivity for
|
||||
communities all over the world as more people come on-line and demand more
|
||||
bandwidth- intensive experiences like video, virtual reality and augmented
|
||||
reality.
|
||||
|
||||
Within TIP, the Open Optical Packet Transport (OOPT) project group is chartered
|
||||
with unbundling monolithic packet-optical network technologies in order to
|
||||
unlock innovation and support new, more flexible connectivity paradigms.
|
||||
|
||||
The key to unbundling is the ability to accurately plan and predict the
|
||||
performance of optical line systems based on an accurate simulation of optical
|
||||
parameters. Under that OOPT umbrella, the Physical Simulation Environment (PSE)
|
||||
working group set out to disrupt the planning landscape by providing an open
|
||||
source simulation model which can be used freely across multiple vendor
|
||||
implementations.
|
||||
|
||||
.. |docs| image:: https://readthedocs.org/projects/gnpy/badge/?version=master
|
||||
:target: http://gnpy.readthedocs.io/en/master/?badge=master
|
||||
:alt: Documentation Status
|
||||
:scale: 100%
|
||||
|
||||
.. |travis| image:: https://travis-ci.com/Telecominfraproject/oopt-gnpy.svg?branch=master
|
||||
:target: https://travis-ci.com/Telecominfraproject/oopt-gnpy
|
||||
:alt: Build Status via Travis CI
|
||||
:scale: 100%
|
||||
|
||||
.. |doi| image:: https://zenodo.org/badge/96894149.svg
|
||||
:target: https://zenodo.org/badge/latestdoi/96894149
|
||||
:alt: DOI
|
||||
:scale: 100%
|
||||
|
||||
.. |contributors| image:: https://img.shields.io/github/contributors-anon/Telecominfraproject/oopt-gnpy
|
||||
:target: https://github.com/Telecominfraproject/oopt-gnpy/graphs/contributors
|
||||
:alt: Code Contributors via GitHub
|
||||
:scale: 100%
|
||||
|
||||
.. |codacy-quality| image:: https://img.shields.io/lgtm/grade/python/github/Telecominfraproject/oopt-gnpy
|
||||
:target: https://lgtm.com/projects/g/Telecominfraproject/oopt-gnpy/
|
||||
:alt: Code Quality via LGTM.com
|
||||
:scale: 100%
|
||||
|
||||
.. |codecov| image:: https://img.shields.io/codecov/c/github/Telecominfraproject/oopt-gnpy
|
||||
:target: https://codecov.io/gh/Telecominfraproject/oopt-gnpy
|
||||
:alt: Code Coverage via codecov
|
||||
:scale: 100%
|
||||
|
||||
TIP OOPT/PSE & PSE WG Charter
|
||||
-----------------------------
|
||||
|
||||
We believe that openly sharing ideas, specifications, and other intellectual
|
||||
property is the key to maximizing innovation and reducing complexity
|
||||
|
||||
TIP OOPT/PSE's goal is to build an end-to-end simulation environment which
|
||||
defines the network models of the optical device transfer functions and their
|
||||
parameters. This environment will provide validation of the optical
|
||||
performance requirements for the TIP OLS building blocks.
|
||||
|
||||
- The model may be approximate or complete depending on the network complexity.
|
||||
Each model shall be validated against the proposed network scenario.
|
||||
- The environment must be able to process network models from multiple vendors,
|
||||
and also allow users to pick any implementation in an open source framework.
|
||||
- The PSE will influence and benefit from the innovation of the DTC, API, and
|
||||
OLS working groups.
|
||||
- The PSE represents a step along the journey towards multi-layer optimization.
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
``gnpy`` is distributed under a standard BSD 3-Clause License.
|
||||
|
||||
See `LICENSE <LICENSE>`__ for more details.
|
||||
1
bindep.txt
Normal file
1
bindep.txt
Normal file
@@ -0,0 +1 @@
|
||||
graphviz
|
||||
59
docs/about-project.md
Normal file
59
docs/about-project.md
Normal file
@@ -0,0 +1,59 @@
|
||||
(about-gnpy)=
|
||||
# About the project
|
||||
|
||||
GNPy is a sponsored project of the [OOPT/PSE](https://telecominfraproject.com/open-optical-packet-transport/) working group of the [Telecom Infra Project](http://telecominfraproject.com).
|
||||
|
||||
There are weekly calls about our progress.
|
||||
Newcomers, users and telecom operators are especially welcome there.
|
||||
We encourage all interested people outside the TIP to [join the project](https://telecominfraproject.com/apply-for-membership/) and especially to [get in touch with us](https://github.com/Telecominfraproject/oopt-gnpy/discussions).
|
||||
|
||||
(contributing)=
|
||||
## Contributing
|
||||
|
||||
`gnpy` is looking for additional contributors, especially those with experience planning and maintaining large-scale, real-world mesh optical networks.
|
||||
|
||||
To get involved, please contact [Jan Kundrát](mailto:jkt@jankundrat.com) or [Gert Grammel](mailto:ggrammel@juniper.net).
|
||||
|
||||
`gnpy` contributions are currently limited to members of [TIP](http://telecominfraproject.com).
|
||||
Membership is free and open to all.
|
||||
|
||||
See the [Onboarding Guide](https://github.com/Telecominfraproject/gnpy/wiki/Onboarding-Guide) for specific details on code contributions, or just [upload patches to our Gerrit](https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html).
|
||||
Here is [what we are currently working on](https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+status:open).
|
||||
|
||||
## Project Background
|
||||
|
||||
Data Centers are built upon interchangeable, highly standardized node and network architectures rather than a sum of isolated solutions.
|
||||
This also translates to optical networking.
|
||||
It leads to a push in enabling multi-vendor optical network by disaggregating HW and SW functions and focusing on interoperability.
|
||||
In this paradigm, the burden of responsibility for ensuring the performance of such disaggregated open optical systems falls on the operators.
|
||||
Consequently, operators and vendors are collaborating in defining control models that can be readily used by off-the-shelf controllers.
|
||||
However, node and network models are only part of the answer.
|
||||
To take reasonable decisions, controllers need to incorporate logic to simulate and assess optical performance.
|
||||
Hence, a vendor-independent optical quality estimator is required.
|
||||
Given its vendor-agnostic nature, such an estimator needs to be driven by a consortium of operators, system and component suppliers.
|
||||
|
||||
Founded in February 2016, the Telecom Infra Project (TIP) is an engineering-focused initiative which is operator driven, but features collaboration across operators, suppliers, developers, integrators, and startups with the goal of disaggregating the traditional network deployment approach.
|
||||
The group’s ultimate goal is to help provide better connectivity for communities all over the world as more people come on-line and demand more bandwidth-intensive experiences like video, virtual reality and augmented reality.
|
||||
|
||||
Within TIP, the Open Optical Packet Transport (OOPT) project group is chartered with unbundling monolithic packet-optical network technologies in order to unlock innovation and support new, more flexible connectivity paradigms.
|
||||
|
||||
The key to unbundling is the ability to accurately plan and predict the performance of optical line systems based on an accurate simulation of optical parameters.
|
||||
Under that OOPT umbrella, the Physical Simulation Environment (PSE) working group set out to disrupt the planning landscape by providing an open source simulation model which can be used freely across multiple vendor implementations.
|
||||
|
||||
## TIP OOPT/PSE & PSE WG Charter
|
||||
|
||||
We believe that openly sharing ideas, specifications, and other intellectual property is the key to maximizing innovation and reducing complexity
|
||||
|
||||
TIP OOPT/PSE's goal is to build an end-to-end simulation environment which defines the network models of the optical device transfer functions and their parameters.
|
||||
This environment will provide validation of the optical performance requirements for the TIP OLS building blocks.
|
||||
|
||||
- The model may be approximate or complete depending on the network complexity.
|
||||
Each model shall be validated against the proposed network scenario.
|
||||
- The environment must be able to process network models from multiple vendors, and also allow users to pick any implementation in an open source framework.
|
||||
- The PSE will influence and benefit from the innovation of the DTC, API, and OLS working groups.
|
||||
- The PSE represents a step along the journey towards multi-layer optimization.
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
GNPy is distributed under a standard BSD 3-Clause License.
|
||||
@@ -1848,3 +1848,15 @@ month={Sept},}
|
||||
title = {Telecom Infra Project},
|
||||
url = {https://www.telecominfraproject.com},
|
||||
}
|
||||
|
||||
@ARTICLE{DAmicoJLT2022,
|
||||
author={D’Amico, Andrea and Correia, Bruno and London, Elliot and Virgillito,
|
||||
Emanuele and Borraccini, Giacomo and Napoli, Antonio and Curri, Vittorio},
|
||||
journal={Journal of Lightwave Technology},
|
||||
title={Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network},
|
||||
year={2022},
|
||||
volume={40},
|
||||
number={11},
|
||||
pages={3499-3511},
|
||||
doi={10.1109/JLT.2022.3162134}
|
||||
}
|
||||
|
||||
270
docs/concepts.rst
Normal file
270
docs/concepts.rst
Normal file
@@ -0,0 +1,270 @@
|
||||
.. _concepts:
|
||||
|
||||
Simulating networks with GNPy
|
||||
=============================
|
||||
|
||||
Running simulations with GNPy requires three pieces of information:
|
||||
|
||||
- the :ref:`network topology<concepts-topology>`, which describes how the network looks like, what are the fiber lengths, what amplifiers are used, etc.,
|
||||
- the :ref:`equipment library<concepts-equipment>`, which holds machine-readable datasheets of the equipment used in the network,
|
||||
- the :ref:`simulation options<concepts-simulation>` holding instructions about what to simulate, and under which conditions.
|
||||
|
||||
.. _concepts-topology:
|
||||
|
||||
Network Topology
|
||||
----------------
|
||||
|
||||
The *topology* acts as a "digital self" of the simulated network.
|
||||
When given a network topology, GNPy can either run a specific simulation as-is, or it can *optimize* the topology before performing the simulation.
|
||||
|
||||
A network topology for GNPy is often a generic, mesh network.
|
||||
This enables GNPy to take into consideration the current spectrum allocation as well as availability and resiliency considerations.
|
||||
When the time comes to run a particular *propagation* of a signal and its impairments are computed, though, a linear path through the network is used.
|
||||
For this purpose, the *path* through the network refers to an ordered, acyclic sequence of *nodes* that are processed.
|
||||
This path is directional, and all "GNPy elements" along the path match the unidirectional part of a real-world network equipment.
|
||||
|
||||
.. note::
|
||||
In practical terms, an amplifier in GNPy refers to an entity with a single input port and a single output port.
|
||||
A real-world inline EDFA enclosed in a single chassis will be therefore represented as two GNPy-level amplifiers.
|
||||
|
||||
The network topology contains not just the physical topology of the network, but also references to the :ref:`equipment library<concepts-equipment>` and a set of *operating parameters* for each entity.
|
||||
These parameters include the **fiber length** of each fiber, the connector **attenutation losses**, or an amplifier's specific **gain setting**.
|
||||
The topology is specified via :ref:`XLS files<excel>` or via :ref:`JSON<legacy-json>`.
|
||||
|
||||
.. _complete-vs-incomplete:
|
||||
|
||||
Fully Specified vs. Partially Designed Networks
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Let's consider a simple triangle topology with three :abbr:`PoPs (Points of Presence)` covering three cities:
|
||||
|
||||
.. graphviz::
|
||||
:layout: neato
|
||||
:align: center
|
||||
|
||||
graph "High-level topology with three PoPs" {
|
||||
A -- B
|
||||
B -- C
|
||||
C -- A
|
||||
}
|
||||
|
||||
In the real world, each city would probably host a ROADM and some transponders:
|
||||
|
||||
.. graphviz::
|
||||
:layout: neato
|
||||
:align: center
|
||||
|
||||
graph "Simplified topology with transponders" {
|
||||
"ROADM A" [pos="2,2!"]
|
||||
"ROADM B" [pos="4,2!"]
|
||||
"ROADM C" [pos="3,1!"]
|
||||
"Transponder A" [shape=box, pos="0,2!"]
|
||||
"Transponder B" [shape=box, pos="6,2!"]
|
||||
"Transponder C" [shape=box, pos="3,0!"]
|
||||
|
||||
"ROADM A" -- "ROADM B"
|
||||
"ROADM B" -- "ROADM C"
|
||||
"ROADM C" -- "ROADM A"
|
||||
|
||||
"Transponder A" -- "ROADM A"
|
||||
"Transponder B" -- "ROADM B"
|
||||
"Transponder C" -- "ROADM C"
|
||||
}
|
||||
|
||||
GNPy simulation works by propagating the optical signal over a sequence of elements, which means that one has to add some preamplifiers and boosters.
|
||||
The amplifiers are, by definition, unidirectional, so the graph becomes quite complex:
|
||||
|
||||
.. _topo-roadm-preamp-booster:
|
||||
|
||||
.. graphviz::
|
||||
:layout: neato
|
||||
:align: center
|
||||
|
||||
digraph "Preamps and boosters are explicitly modeled in GNPy" {
|
||||
"ROADM A" [pos="2,4!"]
|
||||
"ROADM B" [pos="6,4!"]
|
||||
"ROADM C" [pos="4,0!"]
|
||||
"Transponder A" [shape=box, pos="1,5!"]
|
||||
"Transponder B" [shape=box, pos="7,5!"]
|
||||
"Transponder C" [shape=box, pos="4,-1!"]
|
||||
|
||||
"Transponder A" -> "ROADM A"
|
||||
"Transponder B" -> "ROADM B"
|
||||
"Transponder C" -> "ROADM C"
|
||||
"ROADM A" -> "Transponder A"
|
||||
"ROADM B" -> "Transponder B"
|
||||
"ROADM C" -> "Transponder C"
|
||||
|
||||
"Booster A C" [shape=triangle, orientation=-150, fixedsize=true, width=0.5, height=0.5, pos="2.2,3.2!", color=red, label=""]
|
||||
"Preamp A C" [shape=triangle, orientation=0, fixedsize=true, width=0.5, height=0.5, pos="1.5,3.0!", color=red, label=""]
|
||||
"ROADM A" -> "Booster A C"
|
||||
"Preamp A C" -> "ROADM A"
|
||||
|
||||
"Booster A B" [shape=triangle, orientation=-90, fixedsize=true, width=0.5, height=0.5, pos="3,4.3!", color=red, fontcolor=red, labelloc=b, label="\N\n\n"]
|
||||
"Preamp A B" [shape=triangle, orientation=90, fixedsize=true, width=0.5, height=0.5, pos="3,3.6!", color=red, fontcolor=red, labelloc=t, label="\n \N"]
|
||||
"ROADM A" -> "Booster A B"
|
||||
"Preamp A B" -> "ROADM A"
|
||||
|
||||
"Booster C B" [shape=triangle, orientation=-30, fixedsize=true, width=0.5, height=0.5, pos="4.7,0.9!", color=red, label=""]
|
||||
"Preamp C B" [shape=triangle, orientation=120, fixedsize=true, width=0.5, height=0.5, pos="5.4,0.7!", color=red, label=""]
|
||||
"ROADM C" -> "Booster C B"
|
||||
"Preamp C B" -> "ROADM C"
|
||||
|
||||
"Booster C A" [shape=triangle, orientation=30, fixedsize=true, width=0.5, height=0.5, pos="2.6,0.7!", color=red, label=""]
|
||||
"Preamp C A" [shape=triangle, orientation=-30, fixedsize=true, width=0.5, height=0.5, pos="3.3,0.9!", color=red, label=""]
|
||||
"ROADM C" -> "Booster C A"
|
||||
"Preamp C A" -> "ROADM C"
|
||||
|
||||
"Booster B A" [shape=triangle, orientation=90, fixedsize=true, width=0.5, height=0.5, pos="5,3.6!", labelloc=t, color=red, fontcolor=red, label="\n\N "]
|
||||
"Preamp B A" [shape=triangle, orientation=-90, fixedsize=true, width=0.5, height=0.5, pos="5,4.3!", labelloc=b, color=red, fontcolor=red, label="\N\n\n"]
|
||||
"ROADM B" -> "Booster B A"
|
||||
"Preamp B A" -> "ROADM B"
|
||||
|
||||
"Booster B C" [shape=triangle, orientation=-180, fixedsize=true, width=0.5, height=0.5, pos="6.5,3.0!", color=red, label=""]
|
||||
"Preamp B C" [shape=triangle, orientation=-20, fixedsize=true, width=0.5, height=0.5, pos="5.8,3.2!", color=red, label=""]
|
||||
"ROADM B" -> "Booster B C"
|
||||
"Preamp B C" -> "ROADM B"
|
||||
|
||||
"Booster A C" -> "Preamp C A"
|
||||
"Booster A B" -> "Preamp B A"
|
||||
"Booster C A" -> "Preamp A C"
|
||||
"Booster C B" -> "Preamp B C"
|
||||
"Booster B C" -> "Preamp C B"
|
||||
"Booster B A" -> "Preamp A B"
|
||||
}
|
||||
|
||||
In many regions, the ROADMs are not placed physically close to each other, so the long-haul fiber links (:abbr:`OMS (Optical Multiplex Section)`) are split into individual spans (:abbr:`OTS (Optical Transport Section)`) by in-line amplifiers, resulting in an even more complicated topology graphs:
|
||||
|
||||
.. graphviz::
|
||||
:layout: neato
|
||||
:align: center
|
||||
|
||||
digraph "A subset of a real topology with inline amplifiers" {
|
||||
"ROADM A" [pos="2,4!"]
|
||||
"ROADM B" [pos="6,4!"]
|
||||
"ROADM C" [pos="4,-3!"]
|
||||
"Transponder A" [shape=box, pos="1,5!"]
|
||||
"Transponder B" [shape=box, pos="7,5!"]
|
||||
"Transponder C" [shape=box, pos="4,-4!"]
|
||||
|
||||
"Transponder A" -> "ROADM A"
|
||||
"Transponder B" -> "ROADM B"
|
||||
"Transponder C" -> "ROADM C"
|
||||
"ROADM A" -> "Transponder A"
|
||||
"ROADM B" -> "Transponder B"
|
||||
"ROADM C" -> "Transponder C"
|
||||
|
||||
"Booster A C" [shape=triangle, orientation=-166, fixedsize=true, width=0.5, height=0.5, pos="2.2,3.2!", label=""]
|
||||
"Preamp A C" [shape=triangle, orientation=0, fixedsize=true, width=0.5, height=0.5, pos="1.5,3.0!", label=""]
|
||||
"ROADM A" -> "Booster A C"
|
||||
"Preamp A C" -> "ROADM A"
|
||||
|
||||
"Booster A B" [shape=triangle, orientation=-90, fixedsize=true, width=0.5, height=0.5, pos="3,4.3!", label=""]
|
||||
"Preamp A B" [shape=triangle, orientation=90, fixedsize=true, width=0.5, height=0.5, pos="3,3.6!", label=""]
|
||||
"ROADM A" -> "Booster A B"
|
||||
"Preamp A B" -> "ROADM A"
|
||||
|
||||
"Booster C B" [shape=triangle, orientation=-30, fixedsize=true, width=0.5, height=0.5, pos="4.7,-2.1!", label=""]
|
||||
"Preamp C B" [shape=triangle, orientation=10, fixedsize=true, width=0.5, height=0.5, pos="5.4,-2.3!", label=""]
|
||||
"ROADM C" -> "Booster C B"
|
||||
"Preamp C B" -> "ROADM C"
|
||||
|
||||
"Booster C A" [shape=triangle, orientation=20, fixedsize=true, width=0.5, height=0.5, pos="2.6,-2.3!", label=""]
|
||||
"Preamp C A" [shape=triangle, orientation=-30, fixedsize=true, width=0.5, height=0.5, pos="3.3,-2.1!", label=""]
|
||||
"ROADM C" -> "Booster C A"
|
||||
"Preamp C A" -> "ROADM C"
|
||||
|
||||
"Booster B A" [shape=triangle, orientation=90, fixedsize=true, width=0.5, height=0.5, pos="5,3.6!", label=""]
|
||||
"Preamp B A" [shape=triangle, orientation=-90, fixedsize=true, width=0.5, height=0.5, pos="5,4.3!", label=""]
|
||||
"ROADM B" -> "Booster B A"
|
||||
"Preamp B A" -> "ROADM B"
|
||||
|
||||
"Booster B C" [shape=triangle, orientation=-180, fixedsize=true, width=0.5, height=0.5, pos="6.5,3.0!", label=""]
|
||||
"Preamp B C" [shape=triangle, orientation=-20, fixedsize=true, width=0.5, height=0.5, pos="5.8,3.2!", label=""]
|
||||
"ROADM B" -> "Booster B C"
|
||||
"Preamp B C" -> "ROADM B"
|
||||
|
||||
"Inline A C 1" [shape=triangle, orientation=-166, fixedsize=true, width=0.5, pos="2.4,2.2!", label=" \N", color=red, fontcolor=red]
|
||||
"Inline A C 2" [shape=triangle, orientation=-166, fixedsize=true, width=0.5, pos="2.6,1.2!", label=" \N", color=red, fontcolor=red]
|
||||
"Inline A C 3" [shape=triangle, orientation=-166, fixedsize=true, width=0.5, pos="2.8,0.2!", label=" \N", color=red, fontcolor=red]
|
||||
"Inline A C n" [shape=triangle, orientation=-166, fixedsize=true, width=0.5, pos="3.0,-1.1!", label=" \N", color=red, fontcolor=red]
|
||||
|
||||
"Booster A C" -> "Inline A C 1"
|
||||
"Inline A C 1" -> "Inline A C 2"
|
||||
"Inline A C 2" -> "Inline A C 3"
|
||||
"Inline A C 3" -> "Inline A C n" [style=dotted]
|
||||
"Inline A C n" -> "Preamp C A"
|
||||
"Booster A B" -> "Preamp B A" [style=dotted]
|
||||
"Booster C A" -> "Preamp A C" [style=dotted]
|
||||
"Booster C B" -> "Preamp B C" [style=dotted]
|
||||
"Booster B C" -> "Preamp C B" [style=dotted]
|
||||
"Booster B A" -> "Preamp A B" [style=dotted]
|
||||
}
|
||||
|
||||
In such networks, GNPy's autodesign features becomes very useful.
|
||||
It is possible to connect ROADMs via "tentative links" which will be replaced by a sequence of actual fibers and specific amplifiers.
|
||||
In other cases where the location of amplifier huts is already known, but the specific EDFA models have not yet been decided, one can put in amplifier placeholders and let GNPy assign the best amplifier.
|
||||
|
||||
.. _concepts-equipment:
|
||||
|
||||
The Equipment Library
|
||||
---------------------
|
||||
|
||||
In order to produce an accurate simulation, GNPy needs to know the physical properties of each entity which affects the optical signal.
|
||||
Entries in the equipment library correspond to actual real-world, tangible entities.
|
||||
Unlike a typical :abbr:`NMS (Network Management System)`, GNPy considers not just the active :abbr:`NEs (Network Elements)` such as amplifiers and :abbr:`ROADMs (Reconfigurable Optical Add/Drop Multiplexers)`, but also the passive ones, such as the optical fiber.
|
||||
|
||||
As the signal propagates through the network, the largest source of optical impairments is the noise introduced from amplifiers.
|
||||
An accurate description of the :abbr:`EDFA (Erbium-Doped Fiber Amplifier)` and especially its noise characteristics is required.
|
||||
GNPy describes this property in terms of the **Noise Figure (NF)** of an amplifier model as a function of its operating point.
|
||||
|
||||
The amplifiers compensate power losses induced on the signal in the optical fiber.
|
||||
The linear losses, however, are just one phenomenon of a multitude of effects that affect the signals in a long fiber run.
|
||||
While a more detailed description is available :ref:`in the literature<physical-model>`, for the purpose of the equipment library, the description of the *optical fiber* comprises its **linear attenutation coefficient**, a set of parameters for the **Raman effect**, optical **dispersion**, etc.
|
||||
|
||||
Signals are introduced into the network via *transponders*.
|
||||
The set of parameters that are required describe the physical properties of each supported *mode* of the transponder, including its **symbol rate**, spectral **width**, etc.
|
||||
|
||||
In the junctions of the network, *ROADMs* are used for spectrum routing.
|
||||
GNPy currently does not take into consideration the spectrum filtering penalties of the :abbr:`WSSes (Wavelength Selective Switches)`, but the equipment library nonetheless contains a list of required parameters, such as the attenuation options, so that the network can be properly simulated.
|
||||
|
||||
.. _concepts-nf-model:
|
||||
|
||||
Amplifier Noise Figure Models
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
One of the key parameters of an amplifier is the method to use for computing the Noise Figure (NF).
|
||||
GNPy supports several different noise models with varying level of accuracy.
|
||||
When in doubt, contact your vendor's technical support and ask them to :ref:`contribute their equipment descriptions<extending-edfa>` to GNPy.
|
||||
|
||||
The most accurate noise models describe the resulting NF of an EDFA as a third-degree polynomial.
|
||||
GNPy understands polynomials as a NF-yielding function of the :ref:`gain difference from the optimal gain<ext-nf-model-polynomial-NF>`, or as a function of the input power resulting in an incremental OSNR as used in :ref:`OpenROADM inline amplifiers<ext-nf-model-polynomial-OSNR-OpenROADM>` and :ref:`OpenROADM booster/preamps in the ROADMs<ext-nf-model-noise-mask-OpenROADM>`.
|
||||
For scenarios where the vendor has not yet contributed an accurate EDFA NF description to GNPy, it is possible to approximate the characteristics via an operator-focused, min-max NF model.
|
||||
|
||||
.. _nf-model-min-max-NF:
|
||||
|
||||
Min-max NF
|
||||
**********
|
||||
|
||||
This is an operator-focused model where performance is defined by the *minimal* and *maximal NF*.
|
||||
These are especially suited to model a dual-coil EDFA with a VOA in between.
|
||||
In these amplifiers, the minimal NF is achieved when the EDFA operates at its maximal (and usually optimal, in terms of flatness) gain.
|
||||
The worst (maximal) NF applies when the EDFA operates at its minimal gain.
|
||||
|
||||
This model is suitable for use when the vendor has not provided a more accurate performance description of the EDFA.
|
||||
|
||||
Raman Approximation
|
||||
*******************
|
||||
|
||||
While GNPy is fully Raman-aware, under certain scenarios it is useful to be able to run a simulation without an accurate Raman description.
|
||||
For these purposes the :ref:`polynomial NF<ext-nf-model-polynomial-NF>` model with :math:`\text{a} = \text{b} = \text{c} = 0`, and :math:`\text{d} = NF` can be used.
|
||||
|
||||
.. _concepts-simulation:
|
||||
|
||||
Simulation
|
||||
----------
|
||||
|
||||
When the network model has been instantiated and the physical properties and operational settings of the actual physical devices are known, GNPy can start simulating how the signal propagate through the optical fiber.
|
||||
|
||||
This set of input parameters include options such as the *spectrum allocation*, i.e., the number of channels and their spacing.
|
||||
Various strategies for network optimization can be provided as well.
|
||||
44
docs/conf.py
44
docs/conf.py
@@ -31,10 +31,17 @@ sys.path.insert(0, os.path.abspath('../'))
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = ['sphinx.ext.autodoc',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.githubpages',
|
||||
'sphinxcontrib.bibtex',
|
||||
'pbr.sphinxext',]
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.githubpages',
|
||||
'sphinxcontrib.bibtex',
|
||||
'sphinx.ext.graphviz',
|
||||
'myst_parser',
|
||||
]
|
||||
|
||||
myst_enable_extensions = [
|
||||
"deflist",
|
||||
"dollarmath",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
@@ -50,15 +57,15 @@ master_doc = 'index'
|
||||
|
||||
# General information about the project.
|
||||
project = 'gnpy'
|
||||
copyright = '2018, Telecom InfraProject - OOPT PSE Group'
|
||||
author = 'Telecom InfraProject - OOPT PSE Group'
|
||||
copyright = '2018 - 2021, Telecom Infra Project - OOPT PSE Group'
|
||||
author = 'Telecom Infra Project - OOPT PSE Group'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
#
|
||||
# This is also used if you do content translation via gettext catalogs.
|
||||
# Usually you set "language" from the command line for these cases.
|
||||
language = None
|
||||
language = 'en'
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
@@ -77,18 +84,11 @@ todo_include_todos = False
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
on_rtd = os.environ.get('READTHEDOCS') == 'True'
|
||||
if on_rtd:
|
||||
html_theme = 'default'
|
||||
html_theme_options = {
|
||||
'logo_only': True,
|
||||
}
|
||||
else:
|
||||
html_theme = 'alabaster'
|
||||
html_theme_options = {
|
||||
'logo': 'images/GNPy-logo.png',
|
||||
'logo_name': False,
|
||||
}
|
||||
html_theme = 'alabaster'
|
||||
html_theme_options = {
|
||||
'logo': 'images/GNPy-logo.png',
|
||||
'logo_name': False,
|
||||
}
|
||||
|
||||
html_logo = 'images/GNPy-logo.png'
|
||||
|
||||
@@ -150,7 +150,7 @@ latex_elements = {
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, 'gnpy.tex', 'gnpy Documentation',
|
||||
'Telecom InfraProject - OOPT PSE Group', 'manual'),
|
||||
'Telecom Infra Project - OOPT PSE Group', 'manual'),
|
||||
]
|
||||
|
||||
|
||||
@@ -181,3 +181,7 @@ autodoc_default_options = {
|
||||
'private-members': True,
|
||||
'show-inheritance': True,
|
||||
}
|
||||
|
||||
graphviz_output_format = 'svg'
|
||||
|
||||
bibtex_bibfiles = ['biblio.bib']
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
.. _excel:
|
||||
|
||||
Excel (XLS, XLSX) input files
|
||||
=============================
|
||||
|
||||
@@ -112,24 +114,22 @@ and a fiber span from node3 to node6::
|
||||
If filled they must contain strings with the same constraint as "City" names. Its value is used to differenate links having the same end points. In this case different Id should be used. Cable Ids are not meant to be unique in general.
|
||||
|
||||
|
||||
|
||||
|
||||
(in progress)
|
||||
|
||||
.. _excel-equipment-sheet:
|
||||
|
||||
Eqpt sheet
|
||||
----------
|
||||
|
||||
Eqt sheet is optional. It lists the amplifiers types and characteristics on each degree of the *Node A* line.
|
||||
Eqpt sheet must contain twelve columns::
|
||||
The equipment sheet (named "Eqpt") is optional.
|
||||
If provided, it specifies types of boosters and preamplifiers for all ROADM degrees of all ROADM nodes, and for all ILA nodes.
|
||||
|
||||
This sheet contains twelve columns::
|
||||
|
||||
<-- east cable from a to z --> <-- west from z to a -->
|
||||
Node A ; Node Z ; amp type ; att_in ; amp gain ; tilt ; att_out ; delta_p ; amp type ; att_in ; amp gain ; tilt ; att_out ; delta_p
|
||||
|
||||
If the sheet is present, it MUST have as many lines as egress directions of ROADMs defined in Links Sheet.
|
||||
If the sheet is present, it MUST have as many lines as there are egress directions of ROADMs defined in Links Sheet, and all ILAs.
|
||||
|
||||
For example, consider the following list of links (A,B and C being a ROADM and amp# ILAs)
|
||||
For example, consider the following list of links (A, B and C being a ROADM and amp# ILAs):
|
||||
|
||||
::
|
||||
|
||||
@@ -141,8 +141,8 @@ For example, consider the following list of links (A,B and C being a ROADM and a
|
||||
|
||||
then Eqpt sheet should contain:
|
||||
- one line for each ILAs: amp1, amp2, amp3
|
||||
- one line for each degree 1 ROADMs B and C
|
||||
- two lines for ROADM A which is a degree 2 ROADM
|
||||
- one line for each one-degree ROADM (B and C in this example)
|
||||
- two lines for each two-degree ROADM (just the ROADM A)
|
||||
|
||||
::
|
||||
|
||||
@@ -183,11 +183,47 @@ This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content ca
|
||||
- *att_in* and *att_out* are not mandatory and are not used yet. They are the value of the attenuator at input and output of amplifier (in dB).
|
||||
If filled they must contain positive numbers.
|
||||
|
||||
- *tilt* --TODO--
|
||||
- **tilt**, in dB, is not mandatory. It is the target gain tilt over the full amplfifier bandwidth and is defined with regard to wavelength, i.e. negative tilt means lower gain
|
||||
for higher wavelengths (lower frequencies). If not filled, the default value is 0.
|
||||
|
||||
- **delta_p**, in dBm, is not mandatory. If filled it is used to set the output target power per channel at the output of the amplifier, if power_mode is True. The output power is then set to power_dbm + delta_power.
|
||||
|
||||
# to be completed #
|
||||
|
||||
.. _excel-roadms-sheet:
|
||||
|
||||
Roadms sheet
|
||||
------------
|
||||
|
||||
The ROADM sheet (named "Roadms") is optional.
|
||||
If provided, it can be used to specify:
|
||||
|
||||
- per channel power target on a specific ROADM degree (*per_degree_pch_out_db*),
|
||||
- ROADM type variety,
|
||||
- impairment ID (identifier) on a particular ROADM path (from degree - to degree).
|
||||
|
||||
This sheet contains six columns:
|
||||
|
||||
Node A ; Node Z ; per degree target power (dBm) ; type_variety ; from degrees ; from degree to degree impairment id
|
||||
|
||||
- **Node A** is mandatory. Name of the ROADM node (as listed in Nodes sheet).
|
||||
Must be a 'ROADM' (Type attribute in Node sheet), its number of occurence may be equal to its degree.
|
||||
|
||||
- **Node Z** is mandatory. Egress direction from the *Node A* ROADM site. Multiple Links between the same Node A
|
||||
and NodeZ is not supported.
|
||||
|
||||
- **per degree target power (dBm)** (optional).
|
||||
If filled it must contain a value in dBm corresponding to :ref:`per_degree_pch_out_db<roadm_json_instance>` on the **Node Z** degree.
|
||||
Defaults to equipment library value if not filled.
|
||||
|
||||
- **type_variety** (optional). Must be the same for all ROADM entries if filled,
|
||||
and defined in the :ref:`equipment library<roadm>`. Defaults to 'default' if not filled.
|
||||
|
||||
- **from degrees** (optional): List of Node names separated by ' | '. Names must be present in Node sheet.
|
||||
Together with Node Z, they define a list of internal path in ROADM for which the impairment ID applies
|
||||
|
||||
- **from degree to degree impairment id** (optional):List of impairment IDs separated by ' | '. Must be filled
|
||||
if **from degrees** is defined.
|
||||
The impairment ID must be defined in the equipment library and be of "express" type.
|
||||
|
||||
(in progress)
|
||||
|
||||
@@ -196,7 +232,7 @@ This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content ca
|
||||
Service sheet
|
||||
-------------
|
||||
|
||||
Service sheet is optional. It lists the services for which path and feasibility must be computed with ``gnpy-path_request``.
|
||||
Service sheet is optional. It lists the services for which path and feasibility must be computed with ``gnpy-path-request``.
|
||||
|
||||
Service sheet must contain 11 columns::
|
||||
|
||||
|
||||
172
docs/extending.rst
Normal file
172
docs/extending.rst
Normal file
@@ -0,0 +1,172 @@
|
||||
.. _extending:
|
||||
|
||||
Extending GNPy with vendor-specific data
|
||||
========================================
|
||||
|
||||
GNPy ships with an :ref:`equipment library<concepts-equipment>` containing machine-readable datasheets of networking equipment.
|
||||
Vendors who are willing to contribute descriptions of their supported products are encouraged to `submit a patch <https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html>`__ -- or just :ref:`get in touch with us directly<contributing>`.
|
||||
|
||||
This chapter discusses option for modeling performance of :ref:`EDFA amplifiers<extending-edfa>`, :ref:`Raman amplifiers<extending-raman>`, :ref:`transponders<extending-transponder>` and :ref:`ROADMs<extending-roadm>`.
|
||||
|
||||
.. _extending-edfa:
|
||||
|
||||
EDFAs
|
||||
-----
|
||||
|
||||
An accurate description of the :abbr:`EDFA (Erbium-Doped Fiber Amplifier)` and especially its noise characteristics is required.
|
||||
GNPy describes this property in terms of the **Noise Figure (NF)** of an amplifier model as a function of its operating point.
|
||||
GNPy supports several different :ref:`noise models<concepts-nf-model>`, and vendors are encouraged to pick one which describes performance of their equipment most accurately.
|
||||
|
||||
.. _ext-nf-model-polynomial-NF:
|
||||
|
||||
Polynomial NF
|
||||
*************
|
||||
|
||||
This model computes the NF as a function of the difference between the optimal gain and the current gain.
|
||||
The NF is expressed as a third-degree polynomial:
|
||||
|
||||
.. math::
|
||||
|
||||
f(x) &= \text{a}x^3 + \text{b}x^2 + \text{c}x + \text{d}
|
||||
|
||||
\text{NF} &= f(G - G_\text{max})
|
||||
|
||||
This model can be also used for fixed-gain fixed-NF amplifiers.
|
||||
In that case, use:
|
||||
|
||||
.. math::
|
||||
|
||||
a = b = c &= 0
|
||||
|
||||
d &= \text{NF}
|
||||
|
||||
.. _ext-nf-model-polynomial-OSNR-OpenROADM:
|
||||
|
||||
Polynomial OSNR (OpenROADM-style for inline amplifier)
|
||||
******************************************************
|
||||
|
||||
This model is useful for amplifiers compliant to the OpenROADM specification for ILA (an in-line amplifier).
|
||||
The amplifier performance is evaluated via its incremental OSNR, which is a function of the input power.
|
||||
|
||||
.. math::
|
||||
|
||||
\text{OSNR}_\text{inc}(P_\text{in}) = \text{a}P_\text{in}^3 + \text{b}P_\text{in}^2 + \text{c}P_\text{in} + \text{d}
|
||||
|
||||
.. _ext-nf-model-noise-mask-OpenROADM:
|
||||
|
||||
Noise mask (OpenROADM-style for combined preamp and booster)
|
||||
************************************************************
|
||||
|
||||
Unlike GNPy which simluates the preamplifier and the booster separately as two amplifiers for best accuracy, the OpenROADM specification mandates a certain performance level for a combination of these two amplifiers.
|
||||
For the express path, the effective noise mask comprises the preamplifier and the booster.
|
||||
When terminating a channel, the same effective noise mask is mandated for a combination of the preamplifier and the drop stage.
|
||||
|
||||
GNPy emulates this specification via two special NF models:
|
||||
|
||||
- The ``openroadm_preamp`` NF model for preamplifiers.
|
||||
This NF model provides all of the linear impairments to the signal, including those which are incured by the booster in a real network.
|
||||
- The ``openroadm_booster`` NF model is a special "zero noise" faux amplifier in place of the booster.
|
||||
|
||||
.. _ext-nf-model-min-max-NF:
|
||||
|
||||
Min-max NF
|
||||
**********
|
||||
|
||||
When the vendor prefers not to share the amplifier description in full detail, GNPy also supports describing the NF characteristics via the *minimal* and *maximal NF*.
|
||||
This approximates a more accurate polynomial description reasonably well for some models of a dual-coil EDFA with a VOA in between.
|
||||
In these amplifiers, the minimal NF is achieved when the EDFA operates at its maximal (and usually optimal, in terms of flatness) gain.
|
||||
The worst (maximal) NF applies when the EDFA operates at the minimal gain.
|
||||
|
||||
.. _ext-nf-model-dual-stage-amplifier:
|
||||
|
||||
Dual-stage
|
||||
**********
|
||||
|
||||
Dual-stage amplifier combines two distinct amplifiers.
|
||||
Vendors which provide an accurate description of their preamp and booster stages separately can use the dual-stage model for an aggregate description of the whole amplifier.
|
||||
|
||||
.. _ext-nf-model-advanced:
|
||||
|
||||
Advanced Specification
|
||||
**********************
|
||||
|
||||
The amplifier performance can be further described in terms of gain ripple, NF ripple, and the dynamic gain tilt.
|
||||
When provided, the amplifier characteristic is fine-tuned as a function of carrier frequency. Note that in this advanced
|
||||
specification tilt is defined vs frequency while tilt_target specified in EDFA instances is defined vs wavelength.
|
||||
|
||||
.. _extending-raman:
|
||||
|
||||
Raman Amplifiers
|
||||
----------------
|
||||
|
||||
An accurate simulation of Raman amplification requires knowledge of:
|
||||
|
||||
* the *power* and *wavelength* of all Raman pumping lasers,
|
||||
* the *direction*, whether it is co-propagating or counter-propagating,
|
||||
* the Raman efficiency of the fiber,
|
||||
* the fiber temperature.
|
||||
|
||||
Under certain scenarios it is useful to be able to run a simulation without an accurate Raman description.
|
||||
For these purposes, it is possible to approximate a Raman amplifier via a fixed-gain EDFA with the :ref:`polynomial NF<ext-nf-model-polynomial-NF>` model using :math:`\text{a} = \text{b} = \text{c} = 0`, and a desired effective :math:`\text{d} = NF`.
|
||||
This is also useful to quickly approximate a hybrid EDFA+Raman amplifier.
|
||||
|
||||
.. _extending-transponder:
|
||||
|
||||
Transponders
|
||||
------------
|
||||
|
||||
Since transponders are usually capable of operating in a variety of modes, these are described separately.
|
||||
A *mode* usually refers to a particular performance point that is defined by a combination of the symbol rate, modulation format, and :abbr:`FEC (Forward Error Correction)`.
|
||||
|
||||
The following data are required for each mode:
|
||||
|
||||
``bit_rate``
|
||||
Data bit rate, in :math:`\text{bits}\times s^{-1}`.
|
||||
``baud_rate``
|
||||
Symbol modulation rate, in :math:`\text{baud}`.
|
||||
``OSNR``
|
||||
Minimal required OSNR for the receiver. In :math:`\text{dB}`
|
||||
``tx-osnr``
|
||||
Initial OSNR at the transmitter's output. In :math:`\text{dB}`
|
||||
``min-spacing``
|
||||
Minimal grid spacing, i.e., an effective channel spectral bandwidth.
|
||||
In :math:`\text{Hz}`.
|
||||
``roll-off``
|
||||
Roll-off parameter (:math:`\beta`) of the TX pulse shaping filter.
|
||||
This assumes a raised-cosine filter.
|
||||
``rx-power-min`` and ``rx-power-max``
|
||||
(work in progress) The allowed range of power at the receiver.
|
||||
In :math:`\text{dBm}`.
|
||||
``penalties``
|
||||
Impairments such as Chromatic Dispersion (CD), Polarization Mode Dispersion (PMD), and Polarization Dispersion Loss (PDL)
|
||||
result in penalties at the receiver. The receiver's ability to handle these impairments can be defined for each mode as
|
||||
a list of {impairment: in defined units, 'penalty_value' in dB} (see `transceiver section here <json.rst#_transceiver>`).
|
||||
Maximum allowed CD, maximum allowed PMD, and maximum allowed PDL should be listed there with corresponding penalties.
|
||||
Impairments experienced during propagation are linearly interpolated between given points to obtain the corresponding penalty.
|
||||
The accumulated penalties are subtracted from the path GSNR before comparing with the minimum required OSNR.
|
||||
Impairments: PMD in :math:`\text{ps}`, CD in :math:`\text{ps/nm}`, PDL in :math:`\text{dB}`, penalty_value in :math:`\text{dB}`
|
||||
|
||||
|
||||
GNPy does not directly track the FEC performance, so the type of chosen FEC is likely indicated in the *name* of the selected transponder mode alone.
|
||||
|
||||
.. _extending-roadm:
|
||||
|
||||
ROADMs
|
||||
------
|
||||
|
||||
In a :abbr:`ROADM (Reconfigurable Add/Drop Multiplexer)`, GNPy simulates the impairments of the preamplifiers and boosters of line degrees :ref:`separately<topo-roadm-preamp-booster>`.
|
||||
The set of parameters for each ROADM model therefore includes:
|
||||
|
||||
``add-drop-osnr``
|
||||
OSNR penalty introduced by the Add and Drop stages of this ROADM type.
|
||||
``target-channel-out-power``
|
||||
Per-channel target TX power towards the egress amplifier.
|
||||
Within GNPy, a ROADM is expected to attenuate any signal that enters the ROADM node to this level.
|
||||
This can be overridden on a per-link in the network topology.
|
||||
Targets can be set using power or power spectral density (see `roadm section here <json.rst#__roadm>`)
|
||||
``pmd``
|
||||
Polarization mode dispersion (PMD) penalty of the express path.
|
||||
In :math:`\text{ps}`.
|
||||
|
||||
Provisions are in place to define the list of all allowed booster and preamplifier types.
|
||||
This is useful for specifying constraints on what amplifier modules fit into ROADM chassis, and when using fully disaggregated ROADM topologies as well.
|
||||
BIN
docs/images/2022-04-12-gnpy-app.png
Normal file
BIN
docs/images/2022-04-12-gnpy-app.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 288 KiB |
1
docs/images/gnpy-transmission-example.svg
Normal file
1
docs/images/gnpy-transmission-example.svg
Normal file
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 478 KiB |
@@ -8,11 +8,16 @@ in real-world mesh optical networks. It is based on the Gaussian Noise Model.
|
||||
.. toctree::
|
||||
:maxdepth: 4
|
||||
|
||||
intro
|
||||
concepts
|
||||
install
|
||||
json
|
||||
excel
|
||||
extending
|
||||
about-project
|
||||
model
|
||||
gnpy-api
|
||||
release-notes
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
@@ -38,7 +38,7 @@ Using Python on your computer
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**Note**: `gnpy` supports Python 3 only. Python 2 is not supported.
|
||||
`gnpy` requires Python ≥3.6
|
||||
`gnpy` requires Python ≥3.8
|
||||
|
||||
**Note**: the `gnpy` maintainers strongly recommend the use of Anaconda for
|
||||
managing dependencies.
|
||||
@@ -84,7 +84,7 @@ exact version of Python you are using.
|
||||
$ which python # check which Python executable is used
|
||||
/path/to/anaconda/bin/python
|
||||
$ python -V # check your Python version
|
||||
Python 3.6.5 :: Anaconda, Inc.
|
||||
Python 3.8.0 :: Anaconda, Inc.
|
||||
|
||||
.. _install-pip:
|
||||
|
||||
@@ -98,7 +98,7 @@ of the `gnpy` repo and install it with:
|
||||
|
||||
$ git clone https://github.com/Telecominfraproject/oopt-gnpy # clone the repo
|
||||
$ cd oopt-gnpy
|
||||
$ python setup.py develop
|
||||
$ pip install --editable . # note the trailing dot
|
||||
|
||||
To test that `gnpy` was successfully installed, you can run this command. If it
|
||||
executes without a ``ModuleNotFoundError``, you have successfully installed
|
||||
|
||||
95
docs/intro.rst
Normal file
95
docs/intro.rst
Normal file
@@ -0,0 +1,95 @@
|
||||
.. _intro:
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
``gnpy`` is a library for building route planning and optimization tools.
|
||||
|
||||
It ships with a number of example programs. Release versions will ship with
|
||||
fully-functional programs.
|
||||
|
||||
**Note**: *If you are a network operator or involved in route planning and
|
||||
optimization for your organization, please contact project maintainer Jan
|
||||
Kundrát <jkt@jankundrat.com>. gnpy is looking for users with
|
||||
specific, delineated use cases to drive requirements for future
|
||||
development.*
|
||||
|
||||
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power,
|
||||
or to run a planning script to check SNR of several services:
|
||||
|
||||
.. image:: images/gnpy-transmission-example.svg
|
||||
:width: 100%
|
||||
:align: left
|
||||
:alt: Running a simple simulation example
|
||||
|
||||
By default, the gnpy-transmission-example script operates on a single span network defined in
|
||||
`gnpy/example-data/edfa_example_network.json <../gnpy/example-data/edfa_example_network.json>`_
|
||||
|
||||
You can specify a different network at the command line as follows. For
|
||||
example, to use the CORONET Global network defined in
|
||||
`gnpy/example-data/CORONET_Global_Topology.json <../gnpy/example-data/CORONET_Global_Topology.json>`_:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-transmission-example $(gnpy-example-data)/CORONET_Global_Topology.json
|
||||
|
||||
It is also possible to use an Excel file input (for example
|
||||
`gnpy/example-data/CORONET_Global_Topology.xls <../gnpy/example-data/CORONET_Global_Topology.xls>`_).
|
||||
The Excel file will be processed into a JSON file with the same prefix.
|
||||
Further details about the Excel data structure are available `in the documentation <excel.rst>`__.
|
||||
|
||||
The main transmission example will calculate the average signal OSNR and SNR
|
||||
across network elements (transceiver, ROADMs, fibers, and amplifiers)
|
||||
between two transceivers selected by the user. Additional details are provided by doing ``gnpy-transmission-example -h``. (By default, for the CORONET Global
|
||||
network, it will show the transmission of spectral information between Abilene and Albany)
|
||||
|
||||
This script calculates the average signal OSNR = |OSNR| and SNR = |SNR|.
|
||||
|
||||
.. |OSNR| replace:: P\ :sub:`ch`\ /P\ :sub:`ase`
|
||||
.. |SNR| replace:: P\ :sub:`ch`\ /(P\ :sub:`nli`\ +\ P\ :sub:`ase`)
|
||||
|
||||
|Pase| is the amplified spontaneous emission noise, and |Pnli| the non-linear
|
||||
interference noise.
|
||||
|
||||
.. |Pase| replace:: P\ :sub:`ase`
|
||||
.. |Pnli| replace:: P\ :sub:`nli`
|
||||
|
||||
Further Instructions for Use
|
||||
----------------------------
|
||||
|
||||
Simulations are driven by a set of `JSON <json.rst>`__ or `XLS <excel.rst>`__ files.
|
||||
|
||||
The ``gnpy-transmission-example`` script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
|
||||
Launch power in fiber spans can be overridden by using the ``--power`` argument.
|
||||
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
|
||||
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
|
||||
|
||||
An experimental support for Raman amplification is available:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-transmission-example \
|
||||
$(gnpy-example-data)/raman_edfa_example_network.json \
|
||||
--sim $(gnpy-example-data)/sim_params.json --show-channels
|
||||
|
||||
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <../gnpy/example-data/raman_edfa_example_network.json>`_.
|
||||
General numeric parameters for simulation control are provided in the `gnpy/example-data/sim_params.json <../gnpy/example-data/sim_params.json>`_.
|
||||
|
||||
Use ``gnpy-path-request`` to request several paths at once:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ cd $(gnpy-example-data)
|
||||
$ gnpy-path-request -o output_file.json \
|
||||
meshTopologyExampleV2.xls meshTopologyExampleV2_services.json
|
||||
|
||||
This program operates on a network topology (`JSON <json.rst>`__ or `Excel <excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
|
||||
The service requests and reply formats are based on the `draft-ietf-teas-yang-path-computation-01 <https://tools.ietf.org/html/draft-ietf-teas-yang-path-computation-01>`__ with custom extensions (e.g., for transponder modes).
|
||||
An example of the JSON input is provided in file `service-template.json`, while results are shown in `path_result_template.json`.
|
||||
|
||||
Important note: ``gnpy-path-request`` is not a network dimensionning tool: each service does not reserve spectrum, or occupy ressources such as transponders. It only computes path feasibility assuming the spectrum (between defined frequencies) is loaded with "nb of channels" spaced by "spacing" values as specified in the system parameters input in the service file, each cannel having the same characteristics in terms of baudrate, format,... as the service transponder. The transceiver element acts as a "logical starting/stopping point" for the spectral information propagation. At that point it is not meant to represent the capacity of add drop ports.
|
||||
As a result transponder type is not part of the network info. it is related to the list of services requests.
|
||||
|
||||
The current version includes a spectrum assigment features that enables to compute a candidate spectrum assignment for each service based on a first fit policy. Spectrum is assigned based on service specified spacing value, path_bandwidth value and selected mode for the transceiver. This spectrum assignment includes a basic capacity planning capability so that the spectrum resource is limited by the frequency min and max values defined for the links. If the requested services reach the link spectrum capacity, additional services feasibility are computed but marked as blocked due to spectrum reason.
|
||||
|
||||
OpenROADM networks can be simulated via ``gnpy/example-data/eqpt_config_openroadm_*.json`` -- see ``gnpy/example-data/Sweden_OpenROADM*_example_network.json`` as an example.
|
||||
1478
docs/json.rst
1478
docs/json.rst
File diff suppressed because it is too large
Load Diff
@@ -1,3 +1,5 @@
|
||||
.. _physical-model:
|
||||
|
||||
Physical Model used in GNPy
|
||||
===========================
|
||||
|
||||
@@ -124,9 +126,9 @@ that can be easily evaluated extending the FWM theory from a set of discrete
|
||||
tones - the standard FWM theory introduced back in the 90s by Inoue
|
||||
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
|
||||
Signals propagating in the fiber are not equivalent to Gaussian noise, but
|
||||
thanks to the absence of in-line compensation for choromatic dispersion, the
|
||||
thanks to the absence of in-line compensation for chromatic dispersion, the
|
||||
become so, over short distances. So, the Gaussian noise model with incoherent
|
||||
accumulation of NLI has estensively proved to be a quick yet accurate and
|
||||
accumulation of NLI has extensively proved to be a quick yet accurate and
|
||||
conservative tool to estimate propagation impairments of fiber propagation.
|
||||
Note that the GN-model has not been derived with the aim of an *exact*
|
||||
performance estimation, but to pursue a conservative performance prediction.
|
||||
@@ -143,4 +145,4 @@ Raman Scattering in order to give a proper estimation for all channels
|
||||
:cite:`cantono2018modeling`. This will be the main upgrade required within the
|
||||
PSE framework.
|
||||
|
||||
.. bibliography:: biblio.bib
|
||||
.. bibliography::
|
||||
|
||||
463
docs/release-notes.rst
Normal file
463
docs/release-notes.rst
Normal file
@@ -0,0 +1,463 @@
|
||||
.. _release-notes:
|
||||
|
||||
Release change log
|
||||
==================
|
||||
|
||||
Each release introduces some changes and new features.
|
||||
|
||||
(prepare text for next release)
|
||||
|
||||
v2.11
|
||||
-----
|
||||
|
||||
**New feature**
|
||||
|
||||
A new type_def for amplifiers has been introduced: multi_band. This allows the definition of a
|
||||
multiband amplifier site composed of several amplifiers per band (a typical application is C+L transmission). The
|
||||
release also includes autodesign for links (Optical Multiplex Section, OMS) composed of multi_band amplifiers.
|
||||
Multi_band autodesign includes basic tilt and tilt_target calculation when the Raman flag is enabled with the
|
||||
--sim-params option. The spectrum is demultiplexed before propagation in the amplifier and multiplexed in the output
|
||||
fiber at the amplifier output.
|
||||
|
||||
|
||||
In the library:
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"type_variety": "std_medium_gain_C",
|
||||
"f_min": 191.225e12,
|
||||
"f_max": 196.125e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain_L",
|
||||
"f_min": 186.5e12,
|
||||
"f_max": 190.1e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain_multiband",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_medium_gain_C",
|
||||
"std_medium_gain_L"
|
||||
],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
|
||||
In the network topology:
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"uid": "east edfa in Site_A to Site_B",
|
||||
"type": "Multiband_amplifier",
|
||||
"type_variety": "std_medium_gain_multiband",
|
||||
"amplifiers": [{
|
||||
"type_variety": "std_medium_gain_C",
|
||||
"operational": {
|
||||
"gain_target": 22.55,
|
||||
"delta_p": 0.9,
|
||||
"out_voa": 3.0,
|
||||
"tilt_target": 0.0
|
||||
}
|
||||
}, {
|
||||
"type_variety": "std_medium_gain_L",
|
||||
"operational": {
|
||||
"gain_target": 21,
|
||||
"delta_p": 3.0,
|
||||
"out_voa": 3.0,
|
||||
"tilt_target": 0.0
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
**Network design**
|
||||
|
||||
Optionally, users can define a design target per OMS (single or multi-band), with specific frequency ranges.
|
||||
Default design bands are defined in the SI.
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"uid": "roadm Site_A",
|
||||
"type": "Roadm",
|
||||
"params": {
|
||||
"target_pch_out_db": -20,
|
||||
"design_bands": [{"f_min": 191.3e12, "f_max": 195.1e12}]
|
||||
}
|
||||
}
|
||||
|
||||
It is possible to define a set of bands in the SI block instead of a single Spectrum Information.
|
||||
In this case type_variety must be used.
|
||||
Each set defines a reference channel used for design functions and autodesign.
|
||||
|
||||
The default design settings for the path-request-run script have been modified.
|
||||
Now, design is performed once for the reference channel defined in the SI block of the eqpt_config,
|
||||
and requests are propagated based on this design.
|
||||
The --redesign-per-request option can be used to restore previous behaviour
|
||||
(design using request channel types).
|
||||
|
||||
The autodesign function has been updated to insert multiband booster, preamp or inline amplifiers based on the OMS
|
||||
nature. If nothing is stated (no amplifier defined in the OMS, no design_bands attribute in the ROADM), then
|
||||
it uses single band Edfas.
|
||||
|
||||
**Propagation**
|
||||
|
||||
Only carriers within the amplifier bandwidth are propagated, improving system coherence. This more rigorous checking
|
||||
of the spectrum to be propagated and the amplifier bandwidth may lead to changes in the total number of channels
|
||||
compared to previous releases. The range can be adjusted by changing the values of ``f_min`` and ``f_max``
|
||||
in the amplifier library.
|
||||
|
||||
|
||||
``f_min`` and ``f_max`` represent the boundary frequencies of the amplification bandwidth (the entire channel must fit
|
||||
within this range).
|
||||
In the example below, a signal center frequency of 190.05THz with a 50GHz width cannot fit within the amplifier band.
|
||||
Note that this has a different meaning in the SI or Transceiver blocks, where ``f_min`` and ``f_max`` refers to the
|
||||
minimum / maximum values of the carrier center frequency.
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"type_variety": "std_booster_L",
|
||||
"f_min": 186.55e12,
|
||||
"f_max": 190.05e12,
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5,
|
||||
"allowed_for_design": false
|
||||
}
|
||||
|
||||
|
||||
**Display**
|
||||
|
||||
The CLI output for the transmission_main_example now displays the channels used for design and simulation,
|
||||
as well as the tilt target of amplifiers.
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
Reference used for design: (Input optical power reference in span = 0.00dBm,
|
||||
spacing = 50.00GHz
|
||||
nb_channels = 76)
|
||||
|
||||
Channels propagating: (Input optical power deviation in span = 0.00dB,
|
||||
spacing = 50.00GHz,
|
||||
transceiver output power = 0.00dBm,
|
||||
nb_channels = 76)
|
||||
|
||||
The CLI output displays the settings of each amplifier:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
Multiband_amplifier east edfa in Site_A to Site_B
|
||||
type_variety: std_medium_gain_multiband
|
||||
type_variety: std_medium_gain_C type_variety: std_medium_gain_L
|
||||
effective gain(dB): 20.90 effective gain(dB): 22.19
|
||||
(before att_in and before output VOA) (before att_in and before output VOA)
|
||||
tilt-target(dB) 0.00 tilt-target(dB) 0.00
|
||||
noise figure (dB): 6.38 noise figure (dB): 6.19
|
||||
(including att_in) (including att_in)
|
||||
pad att_in (dB): 0.00 pad att_in (dB): 0.00
|
||||
Power In (dBm): -1.08 Power In (dBm): -1.49
|
||||
Power Out (dBm): 19.83 Power Out (dBm): 20.71
|
||||
Delta_P (dB): 0.90 Delta_P (dB): 2.19
|
||||
target pch (dBm): 0.90 target pch (dBm): 3.00
|
||||
actual pch out (dBm): -2.09 actual pch out (dBm): -0.80
|
||||
output VOA (dB): 3.00 output VOA (dB): 3.00
|
||||
|
||||
|
||||
**New feature**
|
||||
|
||||
The preturbative Raman and the approximated GGN models are introduced for a faster evaluation of the Raman and
|
||||
Kerr effects, respectively.
|
||||
These implementation are intended to reduce the computational effort required by multiband transmission scenarios.
|
||||
|
||||
Both the novel models have been validated with exstensive simulations
|
||||
(see `arXiv:2304.11756 <https://arxiv.org/abs/2304.11756>`_ for the new Raman model and
|
||||
`jlt:9741324 <https://eeexplore.ieee.org/document/9741324>`_ for the new NLI model).
|
||||
Additionally, they have been experimentally validated in a laboratory setup composed of commertial equipment
|
||||
(see `icton:10648172 <https://eeexplore.ieee.org/document/10648172>`_).
|
||||
|
||||
|
||||
v2.10
|
||||
-----
|
||||
|
||||
ROADM impairments can be defined per degree and roadm-path type (add, drop or express).
|
||||
Minimum loss when crossing a ROADM is no more 0 dB. It can be set per ROADM degree with roadm-path-impairments.
|
||||
|
||||
The transceiver output power, which was previously set using the same parameter as the input span power (power_dbm),
|
||||
can now be set using a different parameter. It can be set as:
|
||||
|
||||
- for all channels, with tx_power_dbm using SI similarly to tx_osnr (gnpy-transmission-example script)
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
"SI": [{
|
||||
"f_min": 191.35e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max": 196.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 3,
|
||||
"power_range_db": [0, 0, 1],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"tx_power_dbm": -10,
|
||||
"sys_margins": 2
|
||||
}
|
||||
]
|
||||
|
||||
- for certain channels, using -spectrum option and tx_channel_power_dbm option (gnpy-transmission-example script).
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"spectrum": [
|
||||
{
|
||||
"f_min": 191.35e12,
|
||||
"f_max":193.1e12,
|
||||
"baud_rate": 32e9,
|
||||
"slot_width": 50e9,
|
||||
"power_dbm": 0,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40
|
||||
},
|
||||
{
|
||||
"f_min": 193.15e12,
|
||||
"f_max":193.15e12,
|
||||
"baud_rate": 32e9,
|
||||
"slot_width": 50e9,
|
||||
"power_dbm": 0,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"tx_power_dbm": -10
|
||||
},
|
||||
{
|
||||
"f_min": 193.2e12,
|
||||
"f_max":195.1e12,
|
||||
"baud_rate": 32e9,
|
||||
"slot_width": 50e9,
|
||||
"power_dbm": 0,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
- per service using the additional parameter ``tx_power`` which similarly to ``power`` should be defined in Watt (gnpy-path-request script)
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"path-request": [
|
||||
{
|
||||
"request-id": "0",
|
||||
"source": "trx SITE1",
|
||||
"destination": "trx SITE2",
|
||||
"src-tp-id": "trx SITE1",
|
||||
"dst-tp-id": "trx SITE2",
|
||||
"bidirectional": false,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"trx_mode": "mode 1",
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "0 with tx_power",
|
||||
"source": "trx SITE1",
|
||||
"destination": "trx SITE2",
|
||||
"src-tp-id": "trx SITE1",
|
||||
"dst-tp-id": "trx SITE2",
|
||||
"bidirectional": false,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"trx_mode": "mode 1",
|
||||
"tx_power": 0.0001,
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
v2.9
|
||||
----
|
||||
|
||||
The revision introduces a major refactor that separates design and propagation. Most of these changes have no impact
|
||||
on the user experience, except the following ones:
|
||||
|
||||
**Network design - amplifiers**: amplifier saturation is checked during design in all cases, even if type_variety is
|
||||
set; amplifier gain is no more computed on the fly but only at design phase.
|
||||
|
||||
Before, the design did not consider amplifier power saturation during design if amplifier type_variety was stated.
|
||||
With this revision, the saturation is always applied:
|
||||
If design is made for a per channel power that leads to saturation, the target are properly reduced and the design
|
||||
is freezed. So that when a new simulation is performed on the same network for lower levels of power per channel
|
||||
the same gain target is applied. Before these were recomputed, changing the gain targets, so the simulation was
|
||||
not considering the exact same working points for amplifiers in case of saturation.
|
||||
|
||||
Note that this case (working with saturation settings) is not recommended.
|
||||
|
||||
The gain of amplifiers was estimated on the fly also in case of RamanFiber preceding elements. The refactor now
|
||||
requires that an estimation of Raman gain of the RamanFiber is done during design to properly compute a gain target.
|
||||
The Raman gain is estimated at design for every RamanFiber span and also during propagation instead of being only
|
||||
estimated at propagation stage for those Raman Fiber spans concerned with the transmission. The auto-design is more
|
||||
accurate for unpropagated spans, but this results in an increase overall computation time.
|
||||
This will be improved in the future.
|
||||
|
||||
**Network design - ROADMs**: ROADM target power settings are verified during design.
|
||||
|
||||
Design checks that expected power coming from every directions ingress from a ROADM are consistent with output power
|
||||
targets. The checks only considers the adjacent previous hop. If the expected power at the input of this ROADM is
|
||||
lower than the target power on the out-degree of the ROADM, a warning is displayed, and user is asked to review the
|
||||
input network to avoid this situation. This does not change the design or propagation behaviour.
|
||||
|
||||
**Propagation**: amplifier gain target is no more recomputed during propagation. It is now possible to freeze
|
||||
the design and propagate without automatic changes.
|
||||
|
||||
In previous release, gain was recomputed during propagation based on an hypothetical reference noiseless channel
|
||||
propagation. It was not possible to «freeze» the autodesign, and propagate without recomputing the gain target
|
||||
of amplifiers.
|
||||
With this new release, the design is freezed, so that it is possible to compare performances on same basis.
|
||||
|
||||
**Display**: "effective pch (dbm)" is removed. Display contains the target pch which is the target power per channel
|
||||
in dBm, computed based on reference channel used for design and the amplifier delta_p in dB (and before out VOA
|
||||
contribution). Note that "actual pch out (dBm)" is the actual propagated total power per channel averaged per spectrum
|
||||
band definition at the output of the amplifier element, including noises and out VOA contribution.
|
||||
|
||||
v2.8
|
||||
----
|
||||
|
||||
**Spectrum assignment**: requests can now support multiple slots.
|
||||
The definition in service file supports multiple assignments (unchanged syntax):
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
"effective-freq-slot": [
|
||||
{
|
||||
"N": 0,
|
||||
"M": 4
|
||||
}, {
|
||||
"N": 50,
|
||||
"M": 4
|
||||
}
|
||||
],
|
||||
|
||||
But in results, label-hop is now a list of slots and center frequency index:
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"path-route-object": {
|
||||
"index": 4,
|
||||
"label-hop": [
|
||||
{
|
||||
"N": 0,
|
||||
"M": 4
|
||||
}, {
|
||||
"N": 50,
|
||||
"M": 4
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
|
||||
instead of
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"path-route-object": {
|
||||
"index": 4,
|
||||
"label-hop": {
|
||||
"N": 0,
|
||||
"M": 4
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
|
||||
|
||||
**change in display**: only warnings are displayed ; information are disabled and needs the -v (verbose)
|
||||
option to be displayed on standard output.
|
||||
|
||||
**frequency scaling**: A more accurate description of fiber parameters is implemented, including frequency scaling of
|
||||
chromatic dispersion, effective area, Raman gain coefficient, and nonlinear coefficient.
|
||||
|
||||
In particular:
|
||||
|
||||
1. Chromatic dispersion can be defined with ``'dispersion'`` and ``'dispersion_slope'``, as in previous versions, or
|
||||
with ``'dispersion_per_frequency'``; the latter must be defined as a dictionary with two keys, ``'value'`` and
|
||||
``'frequency'`` and it has higher priority than the entries ``'dispersion'`` and ``'dispersion_slope'``.
|
||||
Essential change: In previous versions, when it was not provided the ``'dispersion_slope'`` was calculated in an
|
||||
involute manner to get a vanishing beta3 , and this was a mere artifact for NLI evaluation purposes (namely to evaluate
|
||||
beta2 and beta3, not for total dispersion accumulation). Now, the evaluation of beta2 and beta3 is performed explicitly
|
||||
in the element.py module.
|
||||
|
||||
2. The effective area is provided as a scalar value evaluated at the Fiber reference frequency and properly scaled
|
||||
considering the Fiber refractive indices n1 and n2, and the core radius. These quantities are assumed to be fixed and
|
||||
are hard coded in the parameters.py module. Essential change: The effective area is always scaled along the frequency.
|
||||
|
||||
3. The Raman gain coefficient is properly scaled considering the overlapping of fiber effective area values scaled at
|
||||
the interacting frequencies. Essential change: In previous version the Raman gain coefficient depends only on
|
||||
the frequency offset.
|
||||
|
||||
4. The nonlinear coefficient ``'gamma'`` is properly scaled considering the refractive index n2 and the scaling
|
||||
effective area. Essential change: As the effective area, the nonlinear coefficient is always scaled along the
|
||||
frequency.
|
||||
|
||||
**power offset**: Power equalization now enables defining a power offset in transceiver library to represent
|
||||
the deviation from the general equalisation strategy defined in ROADMs.
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
"mode": [{
|
||||
"format": "100G",
|
||||
"baud_rate": 32.0e9,
|
||||
"tx_osnr": 35.0,
|
||||
"min_spacing": 50.0e9,
|
||||
"cost": 1,
|
||||
"OSNR": 10.0,
|
||||
"bit_rate": 100.0e9,
|
||||
"roll_off": 0.2,
|
||||
"equalization_offset_db": 0.0
|
||||
}, {
|
||||
"format": "200G",
|
||||
"baud_rate": 64.0e9,
|
||||
"tx_osnr": 35.0,
|
||||
"min_spacing": 75.0e9,
|
||||
"cost": 1,
|
||||
"OSNR": 13.0,
|
||||
"bit_rate": 200.0e9,
|
||||
"roll_off": 0.2,
|
||||
"equalization_offset_db": 1.76
|
||||
}
|
||||
]
|
||||
|
||||
v2.7
|
||||
----
|
||||
@@ -1,8 +1,8 @@
|
||||
'''
|
||||
"""
|
||||
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks. It is based on the Gaussian Noise Model.
|
||||
|
||||
Signal propagation is implemented in :py:mod:`.core`.
|
||||
Path finding and spectrum assignment is in :py:mod:`.topology`.
|
||||
Various tools and auxiliary code, including the JSON I/O handling, is in
|
||||
:py:mod:`.tools`.
|
||||
'''
|
||||
"""
|
||||
|
||||
@@ -1,9 +0,0 @@
|
||||
# coding: utf-8
|
||||
from flask import Flask
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
import gnpy.api.route.path_request_route
|
||||
import gnpy.api.route.status_route
|
||||
import gnpy.api.route.topology_route
|
||||
import gnpy.api.route.equipments_route
|
||||
@@ -1 +0,0 @@
|
||||
# coding: utf-8
|
||||
@@ -1,14 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class ConfigError(Exception):
|
||||
""" Exception raise for configuration file error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
@@ -1,14 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class EquipmentError(Exception):
|
||||
""" Exception raise for equipment error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
@@ -1,33 +0,0 @@
|
||||
# coding: utf-8
|
||||
import json
|
||||
import re
|
||||
|
||||
import werkzeug
|
||||
|
||||
from gnpy.api.model.error import Error
|
||||
|
||||
_reaesc = re.compile(r'\x1b[^m]*m')
|
||||
|
||||
|
||||
def common_error_handler(exception):
|
||||
"""
|
||||
|
||||
:type exception: Exception
|
||||
|
||||
"""
|
||||
status_code = 500
|
||||
if not isinstance(exception, werkzeug.exceptions.HTTPException):
|
||||
exception = werkzeug.exceptions.InternalServerError()
|
||||
exception.description = "Something went wrong on our side."
|
||||
else:
|
||||
status_code = exception.code
|
||||
response = Error(message=exception.name, description=exception.description,
|
||||
code=status_code)
|
||||
|
||||
return werkzeug.Response(response=json.dumps(response.__dict__), status=status_code, mimetype='application/json')
|
||||
|
||||
|
||||
def bad_request_handler(exception):
|
||||
response = Error(message='bad request', description=_reaesc.sub('', str(exception)),
|
||||
code=400)
|
||||
return werkzeug.Response(response=json.dumps(response.__dict__), status=400, mimetype='application/json')
|
||||
@@ -1,14 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class PathComputationError(Exception):
|
||||
""" Exception raise for path computation error error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
@@ -1,14 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class TopologyError(Exception):
|
||||
""" Exception raise for topology error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
@@ -1 +0,0 @@
|
||||
# coding: utf-8
|
||||
@@ -1,17 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class Error:
|
||||
|
||||
def __init__(self, code: int = None, message: str = None, description: str = None):
|
||||
"""Error
|
||||
:param code: The code of this Error.
|
||||
:type code: int
|
||||
:param message: The message of this Error.
|
||||
:type message: str
|
||||
:param description: The description of this Error.
|
||||
:type description: str
|
||||
"""
|
||||
self.code = code
|
||||
self.message = message
|
||||
self.description = description
|
||||
@@ -1,8 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class Result:
|
||||
|
||||
def __init__(self, message: str = None, description: str = None):
|
||||
self.message = message
|
||||
self.description = description
|
||||
@@ -1,83 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.tools.rest_example
|
||||
=======================
|
||||
|
||||
GNPy as a rest API example
|
||||
'''
|
||||
|
||||
import logging
|
||||
from logging.handlers import RotatingFileHandler
|
||||
|
||||
import werkzeug
|
||||
from flask_injector import FlaskInjector
|
||||
from injector import singleton
|
||||
from werkzeug.exceptions import InternalServerError
|
||||
|
||||
import gnpy.core.exceptions as exceptions
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.exception_handler import bad_request_handler, common_error_handler
|
||||
from gnpy.api.exception.path_computation_error import PathComputationError
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.service import config_service
|
||||
from gnpy.api.service.encryption_service import EncryptionService
|
||||
from gnpy.api.service.equipment_service import EquipmentService
|
||||
from gnpy.api.service.path_request_service import PathRequestService
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _init_logger():
|
||||
handler = RotatingFileHandler('api.log', maxBytes=1024 * 1024, backupCount=5, encoding='utf-8')
|
||||
ch = logging.StreamHandler()
|
||||
logging.basicConfig(level=logging.INFO, handlers=[handler, ch],
|
||||
format="%(asctime)s %(levelname)s %(name)s(%(lineno)s) [%(threadName)s - %(thread)d] - %("
|
||||
"message)s")
|
||||
|
||||
|
||||
def _init_app(key):
|
||||
app.register_error_handler(KeyError, bad_request_handler)
|
||||
app.register_error_handler(TypeError, bad_request_handler)
|
||||
app.register_error_handler(ValueError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.ConfigurationError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.DisjunctionError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.EquipmentConfigError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.NetworkTopologyError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.ServiceError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.SpectrumError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.ParametersError, bad_request_handler)
|
||||
app.register_error_handler(AssertionError, bad_request_handler)
|
||||
app.register_error_handler(InternalServerError, common_error_handler)
|
||||
app.register_error_handler(TopologyError, bad_request_handler)
|
||||
app.register_error_handler(PathComputationError, bad_request_handler)
|
||||
for error_code in werkzeug.exceptions.default_exceptions:
|
||||
app.register_error_handler(error_code, common_error_handler)
|
||||
config = config_service.init_config()
|
||||
config.add_section('SECRET')
|
||||
config.set('SECRET', 'equipment', key)
|
||||
app.config['properties'] = config
|
||||
|
||||
|
||||
def _configure(binder):
|
||||
binder.bind(EquipmentService,
|
||||
to=EquipmentService(EncryptionService(app.config['properties'].get('SECRET', 'equipment'))),
|
||||
scope=singleton)
|
||||
binder.bind(PathRequestService,
|
||||
to=PathRequestService(EncryptionService(app.config['properties'].get('SECRET', 'equipment'))),
|
||||
scope=singleton)
|
||||
app.config['properties'].pop('SECRET', None)
|
||||
|
||||
|
||||
def main():
|
||||
key = input('Enter encryption/decryption key: ')
|
||||
_init_logger()
|
||||
_init_app(key)
|
||||
FlaskInjector(app=app, modules=[_configure])
|
||||
|
||||
app.run(host='0.0.0.0', port=8080, ssl_context='adhoc')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,2 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
# coding: utf-8
|
||||
import http
|
||||
import json
|
||||
|
||||
from flask import request
|
||||
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.equipment_error import EquipmentError
|
||||
from gnpy.api.model.result import Result
|
||||
from gnpy.api.service.equipment_service import EquipmentService
|
||||
|
||||
EQUIPMENT_BASE_PATH = '/api/v1/equipments'
|
||||
EQUIPMENT_ID_PATH = EQUIPMENT_BASE_PATH + '/<equipment_id>'
|
||||
|
||||
|
||||
@app.route(EQUIPMENT_BASE_PATH, methods=['POST'])
|
||||
def create_equipment(equipment_service: EquipmentService):
|
||||
if not request.is_json:
|
||||
raise EquipmentError('Request body is not json')
|
||||
equipment_identifier = equipment_service.save_equipment(request.json)
|
||||
response = Result(message='Equipment creation ok', description=equipment_identifier)
|
||||
return json.dumps(response.__dict__), 201, {'location': EQUIPMENT_BASE_PATH + '/' + equipment_identifier}
|
||||
|
||||
|
||||
@app.route(EQUIPMENT_ID_PATH, methods=['PUT'])
|
||||
def update_equipment(equipment_id, equipment_service: EquipmentService):
|
||||
if not request.is_json:
|
||||
raise EquipmentError('Request body is not json')
|
||||
equipment_identifier = equipment_service.update_equipment(request.json, equipment_id)
|
||||
response = Result(message='Equipment update ok', description=equipment_identifier)
|
||||
return json.dumps(response.__dict__), http.HTTPStatus.OK, {
|
||||
'location': EQUIPMENT_BASE_PATH + '/' + equipment_identifier}
|
||||
|
||||
|
||||
@app.route(EQUIPMENT_ID_PATH, methods=['DELETE'])
|
||||
def delete_equipment(equipment_id, equipment_service: EquipmentService):
|
||||
equipment_service.delete_equipment(equipment_id)
|
||||
return '', http.HTTPStatus.NO_CONTENT
|
||||
@@ -1,63 +0,0 @@
|
||||
# coding: utf-8
|
||||
import http
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from flask import request
|
||||
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.equipment_error import EquipmentError
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.service import topology_service
|
||||
from gnpy.api.service.equipment_service import EquipmentService
|
||||
from gnpy.api.service.path_request_service import PathRequestService
|
||||
from gnpy.tools.json_io import _equipment_from_json, network_from_json
|
||||
from gnpy.topology.request import ResultElement
|
||||
|
||||
PATH_COMPUTATION_BASE_PATH = '/api/v1/path-computation'
|
||||
AUTODESIGN_PATH = PATH_COMPUTATION_BASE_PATH + '/<path_computation_id>/autodesign'
|
||||
|
||||
_examples_dir = Path(__file__).parent.parent.parent / 'example-data'
|
||||
|
||||
|
||||
@app.route(PATH_COMPUTATION_BASE_PATH, methods=['POST'])
|
||||
def compute_path(equipment_service: EquipmentService, path_request_service: PathRequestService):
|
||||
data = request.json
|
||||
service = data['gnpy-api:service']
|
||||
if 'gnpy-api:topology' in data:
|
||||
topology = data['gnpy-api:topology']
|
||||
elif 'gnpy-api:topology_id' in data:
|
||||
topology = topology_service.get_topology(data['gnpy-api:topology_id'])
|
||||
else:
|
||||
raise TopologyError('No topology found in request')
|
||||
if 'gnpy-api:equipment' in data:
|
||||
equipment = data['gnpy-api:equipment']
|
||||
elif 'gnpy-api:equipment_id' in data:
|
||||
equipment = equipment_service.get_equipment(data['gnpy-api:equipment_id'])
|
||||
else:
|
||||
raise EquipmentError('No equipment found in request')
|
||||
equipment = _equipment_from_json(equipment,
|
||||
os.path.join(_examples_dir, 'std_medium_gain_advanced_config.json'))
|
||||
network = network_from_json(topology, equipment)
|
||||
|
||||
propagatedpths, reversed_propagatedpths, rqs, path_computation_id = path_request_service.path_requests_run(service,
|
||||
network,
|
||||
equipment)
|
||||
# Generate the output
|
||||
result = []
|
||||
# assumes that list of rqs and list of propgatedpths have same order
|
||||
for i, pth in enumerate(propagatedpths):
|
||||
result.append(ResultElement(rqs[i], pth, reversed_propagatedpths[i]))
|
||||
return {"result": {"response": [n.json for n in result]}}, 201, {
|
||||
'location': AUTODESIGN_PATH.replace('<path_computation_id>', path_computation_id)}
|
||||
|
||||
|
||||
@app.route(AUTODESIGN_PATH, methods=['GET'])
|
||||
def get_autodesign(path_computation_id, path_request_service: PathRequestService):
|
||||
return path_request_service.get_autodesign(path_computation_id), http.HTTPStatus.OK
|
||||
|
||||
|
||||
@app.route(AUTODESIGN_PATH, methods=['DELETE'])
|
||||
def delete_autodesign(path_computation_id, path_request_service: PathRequestService):
|
||||
path_request_service.delete_autodesign(path_computation_id)
|
||||
return '', http.HTTPStatus.NO_CONTENT
|
||||
@@ -1,7 +0,0 @@
|
||||
# coding: utf-8
|
||||
from gnpy.api import app
|
||||
|
||||
|
||||
@app.route('/api/v1/status', methods=['GET'])
|
||||
def api_status():
|
||||
return {"version": "v1", "status": "ok"}, 200
|
||||
@@ -1,43 +0,0 @@
|
||||
# coding: utf-8
|
||||
import http
|
||||
import json
|
||||
|
||||
from flask import request
|
||||
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.model.result import Result
|
||||
from gnpy.api.service import topology_service
|
||||
|
||||
TOPOLOGY_BASE_PATH = '/api/v1/topologies'
|
||||
TOPOLOGY_ID_PATH = TOPOLOGY_BASE_PATH + '/<topology_id>'
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_BASE_PATH, methods=['POST'])
|
||||
def create_topology():
|
||||
if not request.is_json:
|
||||
raise TopologyError('Request body is not json')
|
||||
topology_identifier = topology_service.save_topology(request.json)
|
||||
response = Result(message='Topology creation ok', description=topology_identifier)
|
||||
return json.dumps(response.__dict__), 201, {'location': TOPOLOGY_BASE_PATH + '/' + topology_identifier}
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_ID_PATH, methods=['PUT'])
|
||||
def update_topology(topology_id):
|
||||
if not request.is_json:
|
||||
raise TopologyError('Request body is not json')
|
||||
topology_identifier = topology_service.update_topology(request.json, topology_id)
|
||||
response = Result(message='Topology update ok', description=topology_identifier)
|
||||
return json.dumps(response.__dict__), http.HTTPStatus.OK, {
|
||||
'location': TOPOLOGY_BASE_PATH + '/' + topology_identifier}
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_ID_PATH, methods=['GET'])
|
||||
def get_topology(topology_id):
|
||||
return topology_service.get_topology(topology_id), http.HTTPStatus.OK
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_ID_PATH, methods=['DELETE'])
|
||||
def delete_topology(topology_id):
|
||||
topology_service.delete_topology(topology_id)
|
||||
return '', http.HTTPStatus.NO_CONTENT
|
||||
@@ -1 +0,0 @@
|
||||
# coding: utf-8
|
||||
@@ -1,45 +0,0 @@
|
||||
# coding: utf-8
|
||||
import configparser
|
||||
import os
|
||||
|
||||
from flask import current_app
|
||||
|
||||
from gnpy.api.exception.config_error import ConfigError
|
||||
|
||||
|
||||
def init_config(properties_file_path: str = os.path.join(os.path.dirname(__file__),
|
||||
'properties.ini')) -> configparser.ConfigParser:
|
||||
"""
|
||||
Read config from properties_file_path
|
||||
@param properties_file_path: the properties file to read
|
||||
@return: config parser
|
||||
"""
|
||||
if not os.path.exists(properties_file_path):
|
||||
raise ConfigError('Properties file does not exist ' + properties_file_path)
|
||||
config = configparser.ConfigParser()
|
||||
config.read(properties_file_path)
|
||||
return config
|
||||
|
||||
|
||||
def get_topology_dir() -> str:
|
||||
"""
|
||||
Get the base dir where topologies are saved
|
||||
@return: the directory of topologies
|
||||
"""
|
||||
return current_app.config['properties'].get('DIRECTORY', 'topology')
|
||||
|
||||
|
||||
def get_equipment_dir() -> str:
|
||||
"""
|
||||
Get the base dir where equipments are saved
|
||||
@return: the directory of equipments
|
||||
"""
|
||||
return current_app.config['properties'].get('DIRECTORY', 'equipment')
|
||||
|
||||
|
||||
def get_autodesign_dir() -> str:
|
||||
"""
|
||||
Get the base dir where autodesign are saved
|
||||
@return: the directory of equipments
|
||||
"""
|
||||
return current_app.config['properties'].get('DIRECTORY', 'autodesign')
|
||||
@@ -1,13 +0,0 @@
|
||||
# coding: utf-8
|
||||
from cryptography.fernet import Fernet
|
||||
|
||||
|
||||
class EncryptionService:
|
||||
def __init__(self, key):
|
||||
self._fernet = Fernet(key)
|
||||
|
||||
def encrypt(self, data):
|
||||
return self._fernet.encrypt(data)
|
||||
|
||||
def decrypt(self, data):
|
||||
return self._fernet.decrypt(data)
|
||||
@@ -1,66 +0,0 @@
|
||||
# coding: utf-
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from injector import Inject
|
||||
|
||||
from gnpy.api.exception.equipment_error import EquipmentError
|
||||
from gnpy.api.service import config_service
|
||||
from gnpy.api.service.encryption_service import EncryptionService
|
||||
|
||||
|
||||
class EquipmentService:
|
||||
|
||||
def __init__(self, encryption_service: EncryptionService):
|
||||
self.encryption = encryption_service
|
||||
|
||||
def save_equipment(self, equipment):
|
||||
"""
|
||||
Save equipment to file.
|
||||
@param equipment: json content
|
||||
@return: a UUID identifier to identify the equipment
|
||||
"""
|
||||
equipment_identifier = str(uuid.uuid4())
|
||||
# TODO: validate json content
|
||||
self._write_equipment(equipment, equipment_identifier)
|
||||
return equipment_identifier
|
||||
|
||||
def update_equipment(self, equipment, equipment_identifier):
|
||||
"""
|
||||
Update equipment with identifier equipment_identifier.
|
||||
@param equipment_identifier: the identifier of the equipment to be updated
|
||||
@param equipment: json content
|
||||
@return: a UUID identifier to identify the equipment
|
||||
"""
|
||||
# TODO: validate json content
|
||||
self._write_equipment(equipment, equipment_identifier)
|
||||
return equipment_identifier
|
||||
|
||||
def _write_equipment(self, equipment, equipment_identifier):
|
||||
equipment_dir = config_service.get_equipment_dir()
|
||||
with(open(os.path.join(equipment_dir, '.'.join([equipment_identifier, 'json'])), 'wb')) as file:
|
||||
file.write(self.encryption.encrypt(json.dumps(equipment).encode()))
|
||||
|
||||
def get_equipment(self, equipment_id: str) -> dict:
|
||||
"""
|
||||
Get the equipment with id equipment_id
|
||||
@param equipment_id:
|
||||
@return: the equipment in json format
|
||||
"""
|
||||
equipment_dir = config_service.get_equipment_dir()
|
||||
equipment_file = os.path.join(equipment_dir, '.'.join([equipment_id, 'json']))
|
||||
if not os.path.exists(equipment_file):
|
||||
raise EquipmentError('Equipment with id {} does not exist '.format(equipment_id))
|
||||
with(open(equipment_file, 'rb')) as file:
|
||||
return json.loads(self.encryption.decrypt(file.read()))
|
||||
|
||||
def delete_equipment(self, equipment_id: str):
|
||||
"""
|
||||
Delete equipment with id equipment_id
|
||||
@param equipment_id:
|
||||
"""
|
||||
equipment_dir = config_service.get_equipment_dir()
|
||||
equipment_file = os.path.join(equipment_dir, '.'.join([equipment_id, 'json']))
|
||||
if os.path.exists(equipment_file):
|
||||
os.remove(equipment_file)
|
||||
@@ -1,100 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
|
||||
import gnpy.core.ansi_escapes as ansi_escapes
|
||||
from gnpy.api.exception.path_computation_error import PathComputationError
|
||||
from gnpy.api.service import config_service
|
||||
from gnpy.api.service.encryption_service import EncryptionService
|
||||
from gnpy.core.network import build_network
|
||||
from gnpy.core.utils import lin2db, automatic_nch
|
||||
from gnpy.tools.json_io import requests_from_json, disjunctions_from_json, network_to_json
|
||||
from gnpy.topology.request import (compute_path_dsjctn, requests_aggregation,
|
||||
correct_json_route_list,
|
||||
deduplicate_disjunctions, compute_path_with_disjunction)
|
||||
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PathRequestService:
|
||||
|
||||
def __init__(self, encryption_service: EncryptionService):
|
||||
self.encryption = encryption_service
|
||||
|
||||
def path_requests_run(self, service, network, equipment):
|
||||
# Build the network once using the default power defined in SI in eqpt config
|
||||
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
|
||||
# spacing, f_min and f_max
|
||||
p_db = equipment['SI']['default'].power_dbm
|
||||
|
||||
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
|
||||
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
|
||||
build_network(network, equipment, p_db, p_total_db)
|
||||
path_computation_identifier = str(uuid.uuid4())
|
||||
autodesign_dir = config_service.get_autodesign_dir()
|
||||
with(open(os.path.join(autodesign_dir, '.'.join([path_computation_identifier, 'json'])), 'wb')) as file:
|
||||
file.write(self.encryption.encrypt(json.dumps(network_to_json(network)).encode()))
|
||||
oms_list = build_oms_list(network, equipment)
|
||||
rqs = requests_from_json(service, equipment)
|
||||
|
||||
# check that request ids are unique. Non unique ids, may
|
||||
# mess the computation: better to stop the computation
|
||||
all_ids = [r.request_id for r in rqs]
|
||||
if len(all_ids) != len(set(all_ids)):
|
||||
for item in list(set(all_ids)):
|
||||
all_ids.remove(item)
|
||||
msg = f'Requests id {all_ids} are not unique'
|
||||
_logger.critical(msg)
|
||||
raise ValueError('Requests id ' + all_ids + ' are not unique')
|
||||
rqs = correct_json_route_list(network, rqs)
|
||||
|
||||
# pths = compute_path(network, equipment, rqs)
|
||||
dsjn = disjunctions_from_json(service)
|
||||
|
||||
# need to warn or correct in case of wrong disjunction form
|
||||
# disjunction must not be repeated with same or different ids
|
||||
dsjn = deduplicate_disjunctions(dsjn)
|
||||
|
||||
rqs, dsjn = requests_aggregation(rqs, dsjn)
|
||||
# TODO export novel set of aggregated demands in a json file
|
||||
|
||||
_logger.info(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}' + str(rqs))
|
||||
|
||||
_logger.info(f'{ansi_escapes.blue}Computing all paths with constraints{ansi_escapes.reset}')
|
||||
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
|
||||
|
||||
_logger.info(f'{ansi_escapes.blue}Propagating on selected path{ansi_escapes.reset}')
|
||||
propagatedpths, reversed_pths, reversed_propagatedpths = compute_path_with_disjunction(network, equipment, rqs,
|
||||
pths)
|
||||
# Note that deepcopy used in compute_path_with_disjunction returns
|
||||
# a list of nodes which are not belonging to network (they are copies of the node objects).
|
||||
# so there can not be propagation on these nodes.
|
||||
|
||||
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
|
||||
return propagatedpths, reversed_propagatedpths, rqs, path_computation_identifier
|
||||
|
||||
def get_autodesign(self, path_computation_id):
|
||||
"""
|
||||
Get the autodesign with id topology_id
|
||||
@param path_computation_id:
|
||||
@return: the autodesign in json format
|
||||
"""
|
||||
autodesign_dir = config_service.get_autodesign_dir()
|
||||
autodesign_file = os.path.join(autodesign_dir, '.'.join([path_computation_id, 'json']))
|
||||
if not os.path.exists(autodesign_file):
|
||||
raise PathComputationError('Autodesign with id {} does not exist '.format(path_computation_id))
|
||||
with(open(autodesign_file, 'rb')) as file:
|
||||
return json.loads(self.encryption.decrypt(file.read()))
|
||||
|
||||
def delete_autodesign(self, path_computation_id: str):
|
||||
"""
|
||||
Delete autodesign with id equipment_id
|
||||
@param path_computation_id:
|
||||
"""
|
||||
autodesign_dir = config_service.get_autodesign_dir()
|
||||
autodesign_file = os.path.join(autodesign_dir, '.'.join([path_computation_id, 'json']))
|
||||
if os.path.exists(autodesign_file):
|
||||
os.remove(autodesign_file)
|
||||
@@ -1,4 +0,0 @@
|
||||
[DIRECTORY]
|
||||
topology: /opt/application/oopt-gnpy/topology
|
||||
equipment: /opt/application/oopt-gnpy/equipment
|
||||
autodesign: /opt/application/oopt-gnpy/autodesign
|
||||
@@ -1,62 +0,0 @@
|
||||
# coding: utf-
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.service import config_service
|
||||
|
||||
|
||||
def save_topology(topology):
|
||||
"""
|
||||
Save topology to file.
|
||||
@param topology: json content
|
||||
@return: a UUID identifier to identify the topology
|
||||
"""
|
||||
topology_identifier = str(uuid.uuid4())
|
||||
# TODO: validate json content
|
||||
_write_topology(topology, topology_identifier)
|
||||
return topology_identifier
|
||||
|
||||
|
||||
def update_topology(topology, topology_identifier):
|
||||
"""
|
||||
Update topology with identifier topology_identifier.
|
||||
@param topology_identifier: the identifier of the topology to be updated
|
||||
@param topology: json content
|
||||
@return: a UUID identifier to identify the topology
|
||||
"""
|
||||
# TODO: validate json content
|
||||
_write_topology(topology, topology_identifier)
|
||||
return topology_identifier
|
||||
|
||||
|
||||
def _write_topology(topology, topology_identifier):
|
||||
topology_dir = config_service.get_topology_dir()
|
||||
with(open(os.path.join(topology_dir, '.'.join([topology_identifier, 'json'])), 'w')) as file:
|
||||
json.dump(topology, file)
|
||||
|
||||
|
||||
def get_topology(topology_id: str) -> dict:
|
||||
"""
|
||||
Get the topology with id topology_id
|
||||
@param topology_id:
|
||||
@return: the topology in json format
|
||||
"""
|
||||
topology_dir = config_service.get_topology_dir()
|
||||
topology_file = os.path.join(topology_dir, '.'.join([topology_id, 'json']))
|
||||
if not os.path.exists(topology_file):
|
||||
raise TopologyError('Topology with id {} does not exist '.format(topology_id))
|
||||
with(open(topology_file, 'r')) as file:
|
||||
return json.load(file)
|
||||
|
||||
|
||||
def delete_topology(topology_id: str):
|
||||
"""
|
||||
Delete topology with id topology_id
|
||||
@param topology_id:
|
||||
"""
|
||||
topology_dir = config_service.get_topology_dir()
|
||||
topology_file = os.path.join(topology_dir, '.'.join([topology_id, 'json']))
|
||||
if os.path.exists(topology_file):
|
||||
os.remove(topology_file)
|
||||
@@ -1,4 +1,4 @@
|
||||
'''
|
||||
"""
|
||||
Simulation of signal propagation in the DWDM network
|
||||
|
||||
Optical signals, as defined via :class:`.info.SpectralInformation`, enter
|
||||
@@ -6,4 +6,4 @@ Optical signals, as defined via :class:`.info.SpectralInformation`, enter
|
||||
through the :py:mod:`.network`.
|
||||
The simulation is controlled via :py:mod:`.parameters` and implemented mainly
|
||||
via :py:mod:`.science_utils`.
|
||||
'''
|
||||
"""
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.core.ansi_escapes
|
||||
======================
|
||||
|
||||
A random subset of ANSI terminal escape codes for colored messages
|
||||
'''
|
||||
"""
|
||||
|
||||
red = '\x1b[1;31;40m'
|
||||
blue = '\x1b[1;34;40m'
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,73 +1,132 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.core.equipment
|
||||
===================
|
||||
|
||||
This module contains functionality for specifying equipment.
|
||||
'''
|
||||
"""
|
||||
from collections import defaultdict
|
||||
from functools import reduce
|
||||
from typing import List
|
||||
|
||||
from gnpy.core.utils import automatic_nch, db2lin
|
||||
from gnpy.core.exceptions import EquipmentConfigError
|
||||
from gnpy.core.exceptions import EquipmentConfigError, ConfigurationError
|
||||
|
||||
|
||||
def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=False):
|
||||
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)"""
|
||||
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)
|
||||
|
||||
if the type or mode do no match an existing transceiver in the library, then the function
|
||||
raises an error if error_message is True else returns a default mode based on equipment['SI']['default']
|
||||
If trx_mode is None (but type is valid), it returns an undetermined mode whatever the error message:
|
||||
this is a special case for automatic mode selection.
|
||||
"""
|
||||
trx_params = {}
|
||||
default_si_data = equipment['SI']['default']
|
||||
# default transponder characteristics
|
||||
# mainly used with transmission_main_example.py
|
||||
default_trx_params = {
|
||||
'f_min': default_si_data.f_min,
|
||||
'f_max': default_si_data.f_max,
|
||||
'baud_rate': default_si_data.baud_rate,
|
||||
'spacing': default_si_data.spacing,
|
||||
'OSNR': None,
|
||||
'penalties': {},
|
||||
'bit_rate': None,
|
||||
'cost': None,
|
||||
'roll_off': default_si_data.roll_off,
|
||||
'tx_osnr': default_si_data.tx_osnr,
|
||||
'min_spacing': None,
|
||||
'equalization_offset_db': 0
|
||||
}
|
||||
# Undetermined transponder characteristics
|
||||
# mainly used with path_request_run.py for the automatic mode computation case
|
||||
undetermined_trx_params = {
|
||||
"format": "undetermined",
|
||||
"baud_rate": None,
|
||||
"OSNR": None,
|
||||
"penalties": None,
|
||||
"bit_rate": None,
|
||||
"roll_off": None,
|
||||
"tx_osnr": None,
|
||||
"min_spacing": None,
|
||||
"cost": None,
|
||||
"equalization_offset_db": 0
|
||||
}
|
||||
|
||||
try:
|
||||
trxs = equipment['Transceiver']
|
||||
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
|
||||
# if called from transmission_main.py, trx_mode is ''
|
||||
if trx_mode is not None:
|
||||
mode_params = next(mode for trx in trxs
|
||||
if trx == trx_type_variety
|
||||
for mode in trxs[trx].mode
|
||||
if mode['format'] == trx_mode)
|
||||
trx_params = {**mode_params}
|
||||
# sanity check: spacing baudrate must be smaller than min spacing
|
||||
trxs = equipment['Transceiver']
|
||||
if trx_type_variety in trxs:
|
||||
modes = {mode['format']: mode for mode in trxs[trx_type_variety].mode}
|
||||
trx_frequencies = {'f_min': trxs[trx_type_variety].frequency['min'],
|
||||
'f_max': trxs[trx_type_variety].frequency['max']}
|
||||
if trx_mode in modes:
|
||||
# if called from transmission_main.py, trx_mode is ''
|
||||
trx_params = {**modes[trx_mode], **trx_frequencies}
|
||||
if trx_params['baud_rate'] > trx_params['min_spacing']:
|
||||
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" ' +
|
||||
f'has baud rate {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
|
||||
else:
|
||||
mode_params = {"format": "undetermined",
|
||||
"baud_rate": None,
|
||||
"OSNR": None,
|
||||
"bit_rate": None,
|
||||
"roll_off": None,
|
||||
"tx_osnr": None,
|
||||
"min_spacing": None,
|
||||
"cost": None}
|
||||
trx_params = {**mode_params}
|
||||
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
|
||||
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
|
||||
|
||||
# TODO: novel automatic feature maybe unwanted if spacing is specified
|
||||
# trx_params['spacing'] = _automatic_spacing(trx_params['baud_rate'])
|
||||
# temp = trx_params['spacing']
|
||||
# print(f'spacing {temp}')
|
||||
except StopIteration:
|
||||
if error_message:
|
||||
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" in equipment library')
|
||||
else:
|
||||
# default transponder charcteristics
|
||||
# mainly used with transmission_main_example.py
|
||||
trx_params['f_min'] = default_si_data.f_min
|
||||
trx_params['f_max'] = default_si_data.f_max
|
||||
trx_params['baud_rate'] = default_si_data.baud_rate
|
||||
trx_params['spacing'] = default_si_data.spacing
|
||||
trx_params['OSNR'] = None
|
||||
trx_params['bit_rate'] = None
|
||||
trx_params['cost'] = None
|
||||
trx_params['roll_off'] = default_si_data.roll_off
|
||||
trx_params['tx_osnr'] = default_si_data.tx_osnr
|
||||
trx_params['min_spacing'] = None
|
||||
nch = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
|
||||
trx_params['nb_channel'] = nch
|
||||
print(f'There are {nch} channels propagating')
|
||||
|
||||
trx_params['power'] = db2lin(default_si_data.power_dbm) * 1e-3
|
||||
# sanity check: baudrate must be smaller than min spacing
|
||||
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transponder "{trx_type_variety}" '
|
||||
+ f'mode "{trx_params["format"]}" has baud rate '
|
||||
+ f'{trx_params["baud_rate"] * 1e-9:.2f} GHz greater than min_spacing '
|
||||
+ f'{trx_params["min_spacing"] * 1e-9:.2f}.')
|
||||
trx_params['equalization_offset_db'] = trx_params.get('equalization_offset_db', 0)
|
||||
return trx_params
|
||||
if trx_mode is None:
|
||||
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
|
||||
trx_params = {**undetermined_trx_params, **trx_frequencies}
|
||||
return trx_params
|
||||
if trx_type_variety in trxs and error_message:
|
||||
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" '
|
||||
+ 'in equipment library')
|
||||
if error_message:
|
||||
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" in equipment library')
|
||||
|
||||
trx_params = {**default_trx_params}
|
||||
return trx_params
|
||||
|
||||
|
||||
def find_type_variety(amps: List[str], equipment: dict) -> List[str]:
|
||||
"""Returns the multiband type_variety associated with a list of single band type_varieties
|
||||
Args:
|
||||
amps (List[str]): A list of single band type_varieties.
|
||||
equipment (dict): A dictionary containing equipment information.
|
||||
|
||||
Returns:
|
||||
str: an amplifier type variety
|
||||
"""
|
||||
listes = find_type_varieties(amps, equipment)
|
||||
|
||||
_found_type = list(reduce(lambda x, y: set(x) & set(y), listes))
|
||||
# Given a list of single band amplifiers, find the multiband amplifier whose multi_band group
|
||||
# matches. For example, if amps list contains ["a1_LBAND", "a2_CBAND"], with a1.multi_band = [a1_LBAND, a1_CBAND]
|
||||
# and a2.multi_band = [a1_LBAND, a2_CBAND], then:
|
||||
# possible_type_varieties = {"a1_LBAND": ["a1", "a2"], "a2_CBAND": ["a2"]}
|
||||
# listes = [["a1", "a2"], ["a2"]]
|
||||
# and _found_type = [a2]
|
||||
if not _found_type:
|
||||
msg = f'{amps} amps do not belong to the same amp type {listes}'
|
||||
raise ConfigurationError(msg)
|
||||
return _found_type
|
||||
|
||||
|
||||
def find_type_varieties(amps: List[str], equipment: dict) -> List[List[str]]:
|
||||
"""Returns the multiband list of type_varieties associated with a list of single band type_varieties
|
||||
Args:
|
||||
amps (List[str]): A list of single band type_varieties.
|
||||
equipment (dict): A dictionary containing equipment information.
|
||||
|
||||
Returns:
|
||||
List[List[str]]: A list of lists containing the multiband type_varieties
|
||||
associated with each single band type_variety.
|
||||
"""
|
||||
possible_type_varieties = defaultdict(list)
|
||||
for amp_name, amp in equipment['Edfa'].items():
|
||||
if amp.multi_band is not None:
|
||||
for elem in amp.multi_band:
|
||||
# possible_type_varieties stores the list of multiband amp names that list this elem as
|
||||
# a possible amplifier of the multiband group. For example, if "std_medium_gain_multiband"
|
||||
# and "std_medium_gain_multiband_new" contain "std_medium_gain_C" in their "multi_band" list, then:
|
||||
# possible_type_varieties["std_medium_gain_C"] =
|
||||
# ["std_medium_gain_multiband", "std_medium_gain_multiband_new"]
|
||||
possible_type_varieties[elem].append(amp_name)
|
||||
return [possible_type_varieties[a] for a in amps]
|
||||
|
||||
@@ -1,37 +1,37 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.core.exceptions
|
||||
====================
|
||||
|
||||
Exceptions thrown by other gnpy modules
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
class ConfigurationError(Exception):
|
||||
'''User-provided configuration contains an error'''
|
||||
"""User-provided configuration contains an error"""
|
||||
|
||||
|
||||
class EquipmentConfigError(ConfigurationError):
|
||||
'''Incomplete or wrong configuration within the equipment library'''
|
||||
"""Incomplete or wrong configuration within the equipment library"""
|
||||
|
||||
|
||||
class NetworkTopologyError(ConfigurationError):
|
||||
'''Topology of user-provided network is wrong'''
|
||||
"""Topology of user-provided network is wrong"""
|
||||
|
||||
|
||||
class ServiceError(Exception):
|
||||
'''Service of user-provided request is wrong'''
|
||||
"""Service of user-provided request is wrong"""
|
||||
|
||||
|
||||
class DisjunctionError(ServiceError):
|
||||
'''Disjunction of user-provided request can not be satisfied'''
|
||||
"""Disjunction of user-provided request can not be satisfied"""
|
||||
|
||||
|
||||
class SpectrumError(Exception):
|
||||
'''Spectrum errors of the program'''
|
||||
"""Spectrum errors of the program"""
|
||||
|
||||
|
||||
class ParametersError(ConfigurationError):
|
||||
'''Incomplete or wrong configurations within parameters json'''
|
||||
"""Incomplete or wrong configurations within parameters json"""
|
||||
|
||||
@@ -1,57 +1,428 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.core.info
|
||||
==============
|
||||
|
||||
This module contains classes for modelling :class:`SpectralInformation`.
|
||||
'''
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
from collections import namedtuple
|
||||
from gnpy.core.utils import automatic_nch, lin2db
|
||||
from collections.abc import Iterable
|
||||
from typing import Union, List, Optional
|
||||
from dataclasses import dataclass
|
||||
from numpy import argsort, mean, array, append, ones, ceil, any, zeros, outer, full, ndarray, asarray
|
||||
|
||||
from gnpy.core.utils import automatic_nch, db2lin, watt2dbm
|
||||
from gnpy.core.exceptions import SpectrumError
|
||||
|
||||
DEFAULT_SLOT_WIDTH_STEP = 12.5e9 # Hz
|
||||
"""Channels with unspecified slot width will have their slot width evaluated as the baud rate rounded up to the minimum
|
||||
multiple of the DEFAULT_SLOT_WIDTH_STEP (the baud rate is extended including the roll off in this evaluation)"""
|
||||
|
||||
|
||||
class Power(namedtuple('Power', 'signal nli ase')):
|
||||
"""carriers power in W"""
|
||||
|
||||
|
||||
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power chromatic_dispersion pmd')):
|
||||
""" Class containing the parameters of a WDM signal.
|
||||
class Channel(
|
||||
namedtuple('Channel',
|
||||
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl latency')):
|
||||
"""Class containing the parameters of a WDM signal.
|
||||
|
||||
:param channel_number: channel number in the WDM grid
|
||||
:param frequency: central frequency of the signal (Hz)
|
||||
:param baud_rate: the symbol rate of the signal (Baud)
|
||||
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
|
||||
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
|
||||
:param chromatic_dispersion: chromatic dispersion (s/m)
|
||||
:param pmd: polarization mode dispersion (s)
|
||||
:param channel_number: channel number in the WDM grid
|
||||
:param frequency: central frequency of the signal (Hz)
|
||||
:param baud_rate: the symbol rate of the signal (Baud)
|
||||
:param slot_width: the slot width (Hz)
|
||||
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
|
||||
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
|
||||
:param chromatic_dispersion: chromatic dispersion (s/m)
|
||||
:param pmd: polarization mode dispersion (s)
|
||||
:param pdl: polarization dependent loss (dB)
|
||||
:param latency: propagation latency (s)
|
||||
"""
|
||||
|
||||
|
||||
class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
|
||||
"""noiseless reference power in dBm:
|
||||
p_span0: inital target carrier power
|
||||
p_spani: carrier power after element i
|
||||
neq_ch: equivalent channel count in dB"""
|
||||
class SpectralInformation(object):
|
||||
"""Class containing the parameters of the entire WDM comb.
|
||||
|
||||
delta_pdb_per_channel: (per frequency) per channel delta power in dbm for the actual mix of channels"""
|
||||
|
||||
def __init__(self, frequency: array, baud_rate: array, slot_width: array, signal: array, nli: array, ase: array,
|
||||
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array, latency: array,
|
||||
delta_pdb_per_channel: array, tx_osnr: array, tx_power: array, label: array):
|
||||
indices = argsort(frequency)
|
||||
self._frequency = frequency[indices]
|
||||
self._df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
|
||||
self._number_of_channels = len(self._frequency)
|
||||
self._channel_number = [*range(1, self._number_of_channels + 1)]
|
||||
self._slot_width = slot_width[indices]
|
||||
self._baud_rate = baud_rate[indices]
|
||||
overlap = self._frequency[:-1] + self._slot_width[:-1] / 2 > self._frequency[1:] - self._slot_width[1:] / 2
|
||||
if any(overlap):
|
||||
overlap = [pair for pair in zip(overlap * self._channel_number[:-1], overlap * self._channel_number[1:])
|
||||
if pair != (0, 0)]
|
||||
raise SpectrumError(f'Spectrum required slot widths larger than the frequency spectral distances '
|
||||
f'between channels: {overlap}.')
|
||||
exceed = self._baud_rate > self._slot_width
|
||||
if any(exceed):
|
||||
raise SpectrumError(f'Spectrum baud rate, including the roll off, larger than the slot width for channels: '
|
||||
f'{[ch for ch in exceed * self._channel_number if ch]}.')
|
||||
self._signal = signal[indices]
|
||||
self._nli = nli[indices]
|
||||
self._ase = ase[indices]
|
||||
self._roll_off = roll_off[indices]
|
||||
self._chromatic_dispersion = chromatic_dispersion[indices]
|
||||
self._pmd = pmd[indices]
|
||||
self._pdl = pdl[indices]
|
||||
self._latency = latency[indices]
|
||||
self._delta_pdb_per_channel = delta_pdb_per_channel[indices]
|
||||
self._tx_osnr = tx_osnr[indices]
|
||||
self._tx_power = tx_power[indices]
|
||||
self._label = label[indices]
|
||||
|
||||
@property
|
||||
def frequency(self):
|
||||
return self._frequency
|
||||
|
||||
@property
|
||||
def df(self):
|
||||
"""Matrix of relative frequency distances between all channels. Positive elements in the upper right side."""
|
||||
return self._df
|
||||
|
||||
@property
|
||||
def slot_width(self):
|
||||
return self._slot_width
|
||||
|
||||
@property
|
||||
def baud_rate(self):
|
||||
return self._baud_rate
|
||||
|
||||
@property
|
||||
def number_of_channels(self):
|
||||
return self._number_of_channels
|
||||
|
||||
@property
|
||||
def powers(self):
|
||||
powers = zip(self.signal, self.nli, self.ase)
|
||||
return [Power(*p) for p in powers]
|
||||
|
||||
@property
|
||||
def signal(self):
|
||||
return self._signal
|
||||
|
||||
@signal.setter
|
||||
def signal(self, signal):
|
||||
self._signal = signal
|
||||
|
||||
@property
|
||||
def nli(self):
|
||||
return self._nli
|
||||
|
||||
@nli.setter
|
||||
def nli(self, nli):
|
||||
self._nli = nli
|
||||
|
||||
@property
|
||||
def ase(self):
|
||||
return self._ase
|
||||
|
||||
@ase.setter
|
||||
def ase(self, ase):
|
||||
self._ase = ase
|
||||
|
||||
@property
|
||||
def roll_off(self):
|
||||
return self._roll_off
|
||||
|
||||
@property
|
||||
def chromatic_dispersion(self):
|
||||
return self._chromatic_dispersion
|
||||
|
||||
@chromatic_dispersion.setter
|
||||
def chromatic_dispersion(self, chromatic_dispersion):
|
||||
self._chromatic_dispersion = chromatic_dispersion
|
||||
|
||||
@property
|
||||
def pmd(self):
|
||||
return self._pmd
|
||||
|
||||
@property
|
||||
def label(self):
|
||||
return self._label
|
||||
|
||||
@pmd.setter
|
||||
def pmd(self, pmd):
|
||||
self._pmd = pmd
|
||||
|
||||
@property
|
||||
def pdl(self):
|
||||
return self._pdl
|
||||
|
||||
@pdl.setter
|
||||
def pdl(self, pdl):
|
||||
self._pdl = pdl
|
||||
|
||||
@property
|
||||
def latency(self):
|
||||
return self._latency
|
||||
|
||||
@latency.setter
|
||||
def latency(self, latency):
|
||||
self._latency = latency
|
||||
|
||||
@property
|
||||
def delta_pdb_per_channel(self):
|
||||
return self._delta_pdb_per_channel
|
||||
|
||||
@delta_pdb_per_channel.setter
|
||||
def delta_pdb_per_channel(self, delta_pdb_per_channel):
|
||||
self._delta_pdb_per_channel = delta_pdb_per_channel
|
||||
|
||||
@property
|
||||
def tx_osnr(self):
|
||||
return self._tx_osnr
|
||||
|
||||
@tx_osnr.setter
|
||||
def tx_osnr(self, tx_osnr):
|
||||
self._tx_osnr = tx_osnr
|
||||
|
||||
@property
|
||||
def tx_power(self):
|
||||
return self._tx_power
|
||||
|
||||
@tx_power.setter
|
||||
def tx_power(self, tx_power):
|
||||
self._tx_power = tx_power
|
||||
|
||||
@property
|
||||
def channel_number(self):
|
||||
return self._channel_number
|
||||
|
||||
@property
|
||||
def carriers(self):
|
||||
entries = zip(self.channel_number, self.frequency, self.baud_rate, self.slot_width,
|
||||
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl, self.latency)
|
||||
return [Channel(*entry) for entry in entries]
|
||||
|
||||
def apply_attenuation_lin(self, attenuation_lin):
|
||||
self.signal *= attenuation_lin
|
||||
self.nli *= attenuation_lin
|
||||
self.ase *= attenuation_lin
|
||||
|
||||
def apply_attenuation_db(self, attenuation_db):
|
||||
attenuation_lin = 1 / db2lin(attenuation_db)
|
||||
self.apply_attenuation_lin(attenuation_lin)
|
||||
|
||||
def apply_gain_lin(self, gain_lin):
|
||||
self.signal *= gain_lin
|
||||
self.nli *= gain_lin
|
||||
self.ase *= gain_lin
|
||||
|
||||
def apply_gain_db(self, gain_db):
|
||||
gain_lin = db2lin(gain_db)
|
||||
self.apply_gain_lin(gain_lin)
|
||||
|
||||
def __add__(self, other: SpectralInformation):
|
||||
try:
|
||||
return SpectralInformation(frequency=append(self.frequency, other.frequency),
|
||||
slot_width=append(self.slot_width, other.slot_width),
|
||||
signal=append(self.signal, other.signal), nli=append(self.nli, other.nli),
|
||||
ase=append(self.ase, other.ase),
|
||||
baud_rate=append(self.baud_rate, other.baud_rate),
|
||||
roll_off=append(self.roll_off, other.roll_off),
|
||||
chromatic_dispersion=append(self.chromatic_dispersion,
|
||||
other.chromatic_dispersion),
|
||||
pmd=append(self.pmd, other.pmd),
|
||||
pdl=append(self.pdl, other.pdl),
|
||||
latency=append(self.latency, other.latency),
|
||||
delta_pdb_per_channel=append(self.delta_pdb_per_channel,
|
||||
other.delta_pdb_per_channel),
|
||||
tx_osnr=append(self.tx_osnr, other.tx_osnr),
|
||||
tx_power=append(self.tx_power, other.tx_power),
|
||||
label=append(self.label, other.label))
|
||||
except SpectrumError:
|
||||
raise SpectrumError('Spectra cannot be summed: channels overlapping.')
|
||||
|
||||
def _replace(self, carriers):
|
||||
self.chromatic_dispersion = array([c.chromatic_dispersion for c in carriers])
|
||||
self.pmd = array([c.pmd for c in carriers])
|
||||
self.pdl = array([c.pdl for c in carriers])
|
||||
self.latency = array([c.latency for c in carriers])
|
||||
self.signal = array([c.power.signal for c in carriers])
|
||||
self.nli = array([c.power.nli for c in carriers])
|
||||
self.ase = array([c.power.ase for c in carriers])
|
||||
return self
|
||||
|
||||
|
||||
class SpectralInformation(namedtuple('SpectralInformation', 'pref carriers')):
|
||||
|
||||
def __new__(cls, pref, carriers):
|
||||
return super().__new__(cls, pref, carriers)
|
||||
def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, float],
|
||||
signal: Union[float, ndarray, Iterable],
|
||||
baud_rate: Union[float, ndarray, Iterable],
|
||||
tx_osnr: Union[float, ndarray, Iterable],
|
||||
tx_power: Union[float, ndarray, Iterable] = None,
|
||||
delta_pdb_per_channel: Union[float, ndarray, Iterable] = 0.,
|
||||
slot_width: Union[float, ndarray, Iterable] = None,
|
||||
roll_off: Union[float, ndarray, Iterable] = 0.,
|
||||
chromatic_dispersion: Union[float, ndarray, Iterable] = 0.,
|
||||
pmd: Union[float, ndarray, Iterable] = 0.,
|
||||
pdl: Union[float, ndarray, Iterable] = 0.,
|
||||
latency: Union[float, ndarray, Iterable] = 0.,
|
||||
label: Union[str, ndarray, Iterable] = None):
|
||||
"""This is just a wrapper around the SpectralInformation.__init__() that simplifies the creation of
|
||||
a non-uniform spectral information with NLI and ASE powers set to zero."""
|
||||
frequency = asarray(frequency)
|
||||
number_of_channels = frequency.size
|
||||
try:
|
||||
signal = full(number_of_channels, signal)
|
||||
baud_rate = full(number_of_channels, baud_rate)
|
||||
roll_off = full(number_of_channels, roll_off)
|
||||
slot_width = full(number_of_channels, slot_width) if slot_width is not None else \
|
||||
ceil((1 + roll_off) * baud_rate / DEFAULT_SLOT_WIDTH_STEP) * DEFAULT_SLOT_WIDTH_STEP
|
||||
chromatic_dispersion = full(number_of_channels, chromatic_dispersion)
|
||||
pmd = full(number_of_channels, pmd)
|
||||
pdl = full(number_of_channels, pdl)
|
||||
latency = full(number_of_channels, latency)
|
||||
nli = zeros(number_of_channels)
|
||||
ase = zeros(number_of_channels)
|
||||
delta_pdb_per_channel = full(number_of_channels, delta_pdb_per_channel)
|
||||
tx_osnr = full(number_of_channels, tx_osnr)
|
||||
tx_power = full(number_of_channels, tx_power)
|
||||
label = full(number_of_channels, label)
|
||||
return SpectralInformation(frequency=frequency, slot_width=slot_width,
|
||||
signal=signal, nli=nli, ase=ase,
|
||||
baud_rate=baud_rate, roll_off=roll_off,
|
||||
chromatic_dispersion=chromatic_dispersion,
|
||||
pmd=pmd, pdl=pdl, latency=latency,
|
||||
delta_pdb_per_channel=delta_pdb_per_channel,
|
||||
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
|
||||
except ValueError as e:
|
||||
if 'could not broadcast' in str(e):
|
||||
raise SpectrumError('Dimension mismatch in input fields.')
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
|
||||
# pref in dB : convert power lin into power in dB
|
||||
pref = lin2db(power * 1e3)
|
||||
nb_channel = automatic_nch(f_min, f_max, spacing)
|
||||
si = SpectralInformation(
|
||||
pref=Pref(pref, pref, lin2db(nb_channel)),
|
||||
carriers=[
|
||||
Channel(f, (f_min + spacing * f),
|
||||
baud_rate, roll_off, Power(power, 0, 0), 0, 0) for f in range(1, nb_channel + 1)
|
||||
]
|
||||
)
|
||||
return si
|
||||
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, spacing, tx_osnr, tx_power,
|
||||
delta_pdb=0):
|
||||
"""Creates a fixed slot width spectral information with flat power.
|
||||
all arguments are scalar values"""
|
||||
number_of_channels = automatic_nch(f_min, f_max, spacing)
|
||||
frequency = [(f_min + spacing * i) for i in range(1, number_of_channels + 1)]
|
||||
delta_pdb_per_channel = delta_pdb * ones(number_of_channels)
|
||||
label = [f'{baud_rate * 1e-9 :.2f}G' for i in range(number_of_channels)]
|
||||
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=tx_power, baud_rate=baud_rate,
|
||||
roll_off=roll_off, delta_pdb_per_channel=delta_pdb_per_channel,
|
||||
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
|
||||
|
||||
|
||||
def is_in_band(frequency: float, band: dict) -> bool:
|
||||
"""band has {"f_min": value, "f_max": value} format
|
||||
"""
|
||||
if frequency >= band['f_min'] and frequency <= band['f_max']:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def demuxed_spectral_information(input_si: SpectralInformation, band: dict) -> Optional[SpectralInformation]:
|
||||
"""extract a si based on band
|
||||
"""
|
||||
filtered_indices = [i for i, f in enumerate(input_si.frequency)
|
||||
if is_in_band(f - input_si.slot_width[i] / 2, band)
|
||||
and is_in_band(f + input_si.slot_width[i] / 2, band)]
|
||||
if filtered_indices:
|
||||
frequency = input_si.frequency[filtered_indices]
|
||||
baud_rate = input_si.baud_rate[filtered_indices]
|
||||
slot_width = input_si.slot_width[filtered_indices]
|
||||
signal = input_si.signal[filtered_indices]
|
||||
nli = input_si.nli[filtered_indices]
|
||||
ase = input_si.ase[filtered_indices]
|
||||
roll_off = input_si.roll_off[filtered_indices]
|
||||
chromatic_dispersion = input_si.chromatic_dispersion[filtered_indices]
|
||||
pmd = input_si.pmd[filtered_indices]
|
||||
pdl = input_si.pdl[filtered_indices]
|
||||
latency = input_si.latency[filtered_indices]
|
||||
delta_pdb_per_channel = input_si.delta_pdb_per_channel[filtered_indices]
|
||||
tx_osnr = input_si.tx_osnr[filtered_indices]
|
||||
tx_power = input_si.tx_power[filtered_indices]
|
||||
label = input_si.label[filtered_indices]
|
||||
|
||||
return SpectralInformation(frequency=frequency, baud_rate=baud_rate, slot_width=slot_width, signal=signal,
|
||||
nli=nli, ase=ase, roll_off=roll_off, chromatic_dispersion=chromatic_dispersion,
|
||||
pmd=pmd, pdl=pdl, latency=latency, delta_pdb_per_channel=delta_pdb_per_channel,
|
||||
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
|
||||
return None
|
||||
|
||||
|
||||
def muxed_spectral_information(input_si_list: List[SpectralInformation]) -> SpectralInformation:
|
||||
"""return the assembled spectrum
|
||||
"""
|
||||
if input_si_list and len(input_si_list) > 1:
|
||||
si = input_si_list[0] + muxed_spectral_information(input_si_list[1:])
|
||||
return si
|
||||
elif input_si_list and len(input_si_list) == 1:
|
||||
return input_si_list[0]
|
||||
else:
|
||||
raise ValueError('liste vide')
|
||||
|
||||
|
||||
def carriers_to_spectral_information(initial_spectrum: dict[float, Carrier],
|
||||
power: float) -> SpectralInformation:
|
||||
"""Initial spectrum is a dict with key = carrier frequency, and value a Carrier object.
|
||||
:param initial_spectrum: indexed by frequency in Hz, with power offset (delta_pdb), baudrate, slot width,
|
||||
tx_osnr, tx_power and roll off.
|
||||
:param power: power of the request
|
||||
"""
|
||||
frequency = list(initial_spectrum.keys())
|
||||
signal = [c.tx_power for c in initial_spectrum.values()]
|
||||
roll_off = [c.roll_off for c in initial_spectrum.values()]
|
||||
baud_rate = [c.baud_rate for c in initial_spectrum.values()]
|
||||
delta_pdb_per_channel = [c.delta_pdb for c in initial_spectrum.values()]
|
||||
slot_width = [c.slot_width for c in initial_spectrum.values()]
|
||||
tx_osnr = [c.tx_osnr for c in initial_spectrum.values()]
|
||||
tx_power = [c.tx_power for c in initial_spectrum.values()]
|
||||
label = [c.label for c in initial_spectrum.values()]
|
||||
return create_arbitrary_spectral_information(frequency=frequency, signal=signal, baud_rate=baud_rate,
|
||||
slot_width=slot_width, roll_off=roll_off,
|
||||
delta_pdb_per_channel=delta_pdb_per_channel, tx_osnr=tx_osnr,
|
||||
tx_power=tx_power, label=label)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Carrier:
|
||||
"""One channel in the initial mixed-type spectrum definition, each type being defined by
|
||||
its delta_pdb (power offset with respect to reference power), baud rate, slot_width, roll_off
|
||||
tx_power, and tx_osnr. delta_pdb offset is applied to target power out of Roadm.
|
||||
Label is used to group carriers which belong to the same partition when printing results.
|
||||
"""
|
||||
delta_pdb: float
|
||||
baud_rate: float
|
||||
slot_width: float
|
||||
roll_off: float
|
||||
tx_osnr: float
|
||||
tx_power: float
|
||||
label: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class ReferenceCarrier:
|
||||
"""Reference channel type is used to determine target power out of ROADM for the reference channel when
|
||||
constant power spectral density (PSD) equalization is set. Reference channel is the type that has been defined
|
||||
in SI block and used for the initial design of the network.
|
||||
Computing the power out of ROADM for the reference channel is required to correctly compute the loss
|
||||
experienced by reference channel in Roadm element.
|
||||
|
||||
Baud rate is required to find the target power in constant PSD: power = PSD_target * baud_rate.
|
||||
For example, if target PSD is 3.125e4mW/GHz and reference carrier type a 32 GBaud channel then
|
||||
output power should be -20 dBm and for a 64 GBaud channel power target would need 3 dB more: -17 dBm.
|
||||
|
||||
Slot width is required to find the target power in constant PSW (constant power per slot width equalization):
|
||||
power = PSW_target * slot_width.
|
||||
For example, if target PSW is 2e4mW/GHz and reference carrier type a 32 GBaud channel in a 50GHz slot width then
|
||||
output power should be -20 dBm and for a 64 GBaud channel in a 75 GHz slot width, power target would be -18.24 dBm.
|
||||
|
||||
Other attributes (like roll-off) may be added there for future equalization purpose.
|
||||
"""
|
||||
baud_rate: float
|
||||
slot_width: float
|
||||
|
||||
1656
gnpy/core/network.py
1656
gnpy/core/network.py
File diff suppressed because it is too large
Load Diff
@@ -6,14 +6,14 @@ gnpy.core.parameters
|
||||
====================
|
||||
|
||||
This module contains all parameters to configure standard network elements.
|
||||
|
||||
"""
|
||||
|
||||
from collections import namedtuple
|
||||
from copy import deepcopy
|
||||
from dataclasses import dataclass
|
||||
from scipy.constants import c, pi
|
||||
from numpy import squeeze, log10, exp
|
||||
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
|
||||
|
||||
|
||||
from gnpy.core.utils import db2lin, convert_length
|
||||
from gnpy.core.utils import convert_length
|
||||
from gnpy.core.exceptions import ParametersError
|
||||
|
||||
|
||||
@@ -30,110 +30,235 @@ class Parameters:
|
||||
|
||||
class PumpParams(Parameters):
|
||||
def __init__(self, power, frequency, propagation_direction):
|
||||
self._power = power
|
||||
self._frequency = frequency
|
||||
self._propagation_direction = propagation_direction
|
||||
|
||||
@property
|
||||
def power(self):
|
||||
return self._power
|
||||
|
||||
@property
|
||||
def frequency(self):
|
||||
return self._frequency
|
||||
|
||||
@property
|
||||
def propagation_direction(self):
|
||||
return self._propagation_direction
|
||||
self.power = power
|
||||
self.frequency = frequency
|
||||
self.propagation_direction = propagation_direction.lower()
|
||||
|
||||
|
||||
class RamanParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self._flag_raman = kwargs['flag_raman']
|
||||
self._space_resolution = kwargs['space_resolution'] if 'space_resolution' in kwargs else None
|
||||
self._tolerance = kwargs['tolerance'] if 'tolerance' in kwargs else None
|
||||
def __init__(self, flag=False, method='perturbative', order=2, result_spatial_resolution=10e3,
|
||||
solver_spatial_resolution=10e3):
|
||||
"""Simulation parameters used within the Raman Solver
|
||||
|
||||
@property
|
||||
def flag_raman(self):
|
||||
return self._flag_raman
|
||||
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
|
||||
:params method: Raman solver method
|
||||
:params order: solution order for perturbative method
|
||||
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
|
||||
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
|
||||
"""
|
||||
self.flag = flag
|
||||
self.method = method
|
||||
self.order = order
|
||||
self.result_spatial_resolution = result_spatial_resolution # [m]
|
||||
self.solver_spatial_resolution = solver_spatial_resolution # [m]
|
||||
|
||||
@property
|
||||
def space_resolution(self):
|
||||
return self._space_resolution
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
return self._tolerance
|
||||
def to_json(self):
|
||||
return {"flag": self.flag,
|
||||
"method": self.method,
|
||||
"order": self.order,
|
||||
"result_spatial_resolution": self.result_spatial_resolution,
|
||||
"solver_spatial_resolution": self.solver_spatial_resolution}
|
||||
|
||||
|
||||
class NLIParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self._nli_method_name = kwargs['nli_method_name']
|
||||
self._wdm_grid_size = kwargs['wdm_grid_size']
|
||||
self._dispersion_tolerance = kwargs['dispersion_tolerance']
|
||||
self._phase_shift_tolerance = kwargs['phase_shift_tolerance']
|
||||
self._f_cut_resolution = None
|
||||
self._f_pump_resolution = None
|
||||
self._computed_channels = kwargs['computed_channels'] if 'computed_channels' in kwargs else None
|
||||
def __init__(self, method='gn_model_analytic', dispersion_tolerance=4, phase_shift_tolerance=0.1,
|
||||
computed_channels=None, computed_number_of_channels=None):
|
||||
"""Simulation parameters used within the Nli Solver
|
||||
|
||||
@property
|
||||
def nli_method_name(self):
|
||||
return self._nli_method_name
|
||||
:params method: formula for NLI calculation
|
||||
:params dispersion_tolerance: tuning parameter for ggn model solution
|
||||
:params phase_shift_tolerance: tuning parameter for ggn model solution
|
||||
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
|
||||
:params computed_number_of_channels: the NLI is evaluated for this number of channels equally distributed
|
||||
in the spectrum and extrapolated for the others
|
||||
"""
|
||||
self.method = method.lower()
|
||||
self.dispersion_tolerance = dispersion_tolerance
|
||||
self.phase_shift_tolerance = phase_shift_tolerance
|
||||
self.computed_channels = computed_channels
|
||||
self.computed_number_of_channels = computed_number_of_channels
|
||||
|
||||
@property
|
||||
def wdm_grid_size(self):
|
||||
return self._wdm_grid_size
|
||||
|
||||
@property
|
||||
def dispersion_tolerance(self):
|
||||
return self._dispersion_tolerance
|
||||
|
||||
@property
|
||||
def phase_shift_tolerance(self):
|
||||
return self._phase_shift_tolerance
|
||||
|
||||
@property
|
||||
def f_cut_resolution(self):
|
||||
return self._f_cut_resolution
|
||||
|
||||
@f_cut_resolution.setter
|
||||
def f_cut_resolution(self, f_cut_resolution):
|
||||
self._f_cut_resolution = f_cut_resolution
|
||||
|
||||
@property
|
||||
def f_pump_resolution(self):
|
||||
return self._f_pump_resolution
|
||||
|
||||
@f_pump_resolution.setter
|
||||
def f_pump_resolution(self, f_pump_resolution):
|
||||
self._f_pump_resolution = f_pump_resolution
|
||||
|
||||
@property
|
||||
def computed_channels(self):
|
||||
return self._computed_channels
|
||||
def to_json(self):
|
||||
return {"method": self.method,
|
||||
"dispersion_tolerance": self.dispersion_tolerance,
|
||||
"phase_shift_tolerance": self.phase_shift_tolerance,
|
||||
"computed_channels": self.computed_channels,
|
||||
"computed_number_of_channels": self.computed_number_of_channels}
|
||||
|
||||
|
||||
class SimParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
try:
|
||||
if 'nli_parameters' in kwargs:
|
||||
self._nli_params = NLIParams(**kwargs['nli_parameters'])
|
||||
else:
|
||||
self._nli_params = None
|
||||
if 'raman_parameters' in kwargs:
|
||||
self._raman_params = RamanParams(**kwargs['raman_parameters'])
|
||||
else:
|
||||
self._raman_params = None
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Simulation parameters must include {e}. Configuration: {kwargs}')
|
||||
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
|
||||
|
||||
@classmethod
|
||||
def set_params(cls, sim_params):
|
||||
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
|
||||
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
|
||||
|
||||
@property
|
||||
def nli_params(self):
|
||||
return self._nli_params
|
||||
return self._shared_dict['nli_params']
|
||||
|
||||
@property
|
||||
def raman_params(self):
|
||||
return self._raman_params
|
||||
return self._shared_dict['raman_params']
|
||||
|
||||
|
||||
class RoadmParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self.target_pch_out_db = kwargs.get('target_pch_out_db')
|
||||
self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
|
||||
self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
|
||||
equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
|
||||
temp = [kwargs.get(k) is not None for k in equalisation_type]
|
||||
if sum(temp) > 1:
|
||||
raise ParametersError('ROADM config contains more than one equalisation type.'
|
||||
+ 'Please choose only one', kwargs)
|
||||
self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
|
||||
self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
|
||||
self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
|
||||
try:
|
||||
self.add_drop_osnr = kwargs['add_drop_osnr']
|
||||
self.pmd = kwargs['pmd']
|
||||
self.pdl = kwargs['pdl']
|
||||
self.restrictions = kwargs['restrictions']
|
||||
self.roadm_path_impairments = self.get_roadm_path_impairments(kwargs['roadm-path-impairments'])
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
|
||||
self.per_degree_impairments = kwargs.get('per_degree_impairments', [])
|
||||
self.design_bands = kwargs.get('design_bands', [])
|
||||
self.per_degree_design_bands = kwargs.get('per_degree_design_bands', {})
|
||||
|
||||
def get_roadm_path_impairments(self, path_impairments_list):
|
||||
"""Get the ROADM list of profiles for impairments definition
|
||||
|
||||
transform the ietf model into gnpy internal model: add a path-type in the attributes
|
||||
"""
|
||||
if not path_impairments_list:
|
||||
return {}
|
||||
authorized_path_types = {
|
||||
'roadm-express-path': 'express',
|
||||
'roadm-add-path': 'add',
|
||||
'roadm-drop-path': 'drop',
|
||||
}
|
||||
roadm_path_impairments = {}
|
||||
for path_impairment in path_impairments_list:
|
||||
index = path_impairment['roadm-path-impairments-id']
|
||||
path_type = next(key for key in path_impairment if key in authorized_path_types.keys())
|
||||
impairment_dict = {'path-type': authorized_path_types[path_type], 'impairment': path_impairment[path_type]}
|
||||
roadm_path_impairments[index] = RoadmImpairment(impairment_dict)
|
||||
return roadm_path_impairments
|
||||
|
||||
|
||||
class RoadmPath:
|
||||
def __init__(self, from_degree, to_degree, path_type, impairment_id=None, impairment=None):
|
||||
"""Records roadm internal paths, types and impairment
|
||||
|
||||
path_type must be in "express", "add", "drop"
|
||||
impairment_id must be one of the id detailed in equipement
|
||||
"""
|
||||
self.from_degree = from_degree
|
||||
self.to_degree = to_degree
|
||||
self.path_type = path_type
|
||||
self.impairment_id = impairment_id
|
||||
self.impairment = impairment
|
||||
|
||||
|
||||
class RoadmImpairment:
|
||||
"""Generic definition of impairments for express, add and drop"""
|
||||
default_values = {
|
||||
'roadm-pmd': None,
|
||||
'roadm-cd': None,
|
||||
'roadm-pdl': None,
|
||||
'roadm-inband-crosstalk': None,
|
||||
'roadm-maxloss': 0,
|
||||
'roadm-osnr': None,
|
||||
'roadm-pmax': None,
|
||||
'roadm-noise-figure': None,
|
||||
'minloss': None,
|
||||
'typloss': None,
|
||||
'pmin': None,
|
||||
'ptyp': None
|
||||
}
|
||||
|
||||
def __init__(self, params):
|
||||
self.path_type = params.get('path-type')
|
||||
self.impairments = params['impairment']
|
||||
|
||||
|
||||
class FusedParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
|
||||
|
||||
|
||||
DEFAULT_RAMAN_COEFFICIENT = {
|
||||
# SSMF Raman coefficient profile in terms of mode intensity (g0 * A_ff_overlap)
|
||||
'gamma_raman': array(
|
||||
[0.0, 8.524419934705497e-16, 2.643567866245371e-15, 4.410548410941305e-15, 6.153422961291078e-15,
|
||||
7.484924703044943e-15, 8.452060808349209e-15, 9.101549322698156e-15, 9.57837595158966e-15,
|
||||
1.0008642675474562e-14, 1.0865773569905647e-14, 1.1300776305865833e-14, 1.2143238647099625e-14,
|
||||
1.3231065750676068e-14, 1.4624900971525384e-14, 1.6013330554840492e-14, 1.7458119359310242e-14,
|
||||
1.9320241330434762e-14, 2.1720395392873534e-14, 2.4137337406734775e-14, 2.628163218460466e-14,
|
||||
2.8041019963285974e-14, 2.9723155447089933e-14, 3.129353531005888e-14, 3.251796163324624e-14,
|
||||
3.3198839487612773e-14, 3.329527690685666e-14, 3.313155691238456e-14, 3.289013852154548e-14,
|
||||
3.2458917188506916e-14, 3.060684277937575e-14, 3.2660349473783173e-14, 2.957419109657689e-14,
|
||||
2.518894321396672e-14, 1.734560485857344e-14, 9.902860761605233e-15, 7.219176385099358e-15,
|
||||
6.079565990401311e-15, 5.828373065963427e-15, 7.20580801091692e-15, 7.561924351387493e-15,
|
||||
7.621152352332206e-15, 6.8859886780643254e-15, 5.629181047471162e-15, 3.679727598966185e-15,
|
||||
2.7555869742500355e-15, 2.4810133942597675e-15, 2.2160080532403624e-15, 2.1440626024765557e-15,
|
||||
2.33873070799544e-15, 2.557317929858713e-15, 3.039839048226572e-15, 4.8337165515610065e-15,
|
||||
5.4647431818257436e-15, 5.229187813711269e-15, 4.510768525811313e-15, 3.3213473130607794e-15,
|
||||
2.2602577027996455e-15, 1.969576495866441e-15, 1.5179853954188527e-15, 1.2953988551200156e-15,
|
||||
1.1304672156251838e-15, 9.10004390675213e-16, 8.432919922183503e-16, 7.849224069008326e-16,
|
||||
7.827568196032024e-16, 9.000514440646232e-16, 1.3025926460013665e-15, 1.5444108938497558e-15,
|
||||
1.8795594063060786e-15, 1.7796130169921014e-15, 1.5938159865046653e-15, 1.1585522355108287e-15,
|
||||
8.507044444633358e-16, 7.625404663756823e-16, 8.14510750925789e-16, 9.047944693473188e-16,
|
||||
9.636431901702084e-16, 9.298633899602105e-16, 8.349739503637023e-16, 7.482901278066085e-16,
|
||||
6.240794767134268e-16, 5.00652535687506e-16, 3.553373263685851e-16, 2.0344217706119682e-16,
|
||||
1.4267522642294203e-16, 8.980016576743517e-17, 2.9829068181832594e-17, 1.4861959129014824e-17,
|
||||
7.404482113326137e-18]
|
||||
), # m/W
|
||||
# SSMF Raman coefficient profile
|
||||
'g0': array(
|
||||
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
|
||||
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
|
||||
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
|
||||
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
|
||||
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
|
||||
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
|
||||
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
|
||||
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
|
||||
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
|
||||
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
|
||||
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
|
||||
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
|
||||
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
|
||||
), # [1 / (W m)]
|
||||
|
||||
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
|
||||
'frequency_offset': array([
|
||||
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
|
||||
12., 12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75,
|
||||
19., 19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5,
|
||||
29., 29.5, 30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5,
|
||||
39., 39.5, 40., 40.5, 41., 41.5, 42.]) * 1e12, # [Hz]
|
||||
|
||||
# Raman profile reference frequency
|
||||
'reference_frequency': 206.184634112792e12, # [Hz] (1454 nm)
|
||||
|
||||
# Raman profile reference effective area
|
||||
'reference_effective_area': 75.74659443542413e-12 # [m^2] (@1454 nm)
|
||||
}
|
||||
|
||||
|
||||
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
|
||||
""" Raman Gain Coefficient Parameters
|
||||
|
||||
Based on:
|
||||
Andrea D’Amico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
|
||||
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
|
||||
J. Lightwave Technol. 40, 3499-3511 (2022)
|
||||
Section III.D
|
||||
"""
|
||||
|
||||
|
||||
class FiberParams(Parameters):
|
||||
@@ -141,45 +266,94 @@ class FiberParams(Parameters):
|
||||
try:
|
||||
self._length = convert_length(kwargs['length'], kwargs['length_units'])
|
||||
# fixed attenuator for padding
|
||||
self._att_in = kwargs['att_in'] if 'att_in' in kwargs else 0
|
||||
self._att_in = kwargs.get('att_in', 0)
|
||||
# if not defined in the network json connector loss in/out
|
||||
# the None value will be updated in network.py[build_network]
|
||||
# with default values from eqpt_config.json[Spans]
|
||||
self._con_in = kwargs['con_in'] if 'con_in' in kwargs else None
|
||||
self._con_out = kwargs['con_out'] if 'con_out' in kwargs else None
|
||||
self._con_in = kwargs.get('con_in')
|
||||
self._con_out = kwargs.get('con_out')
|
||||
|
||||
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
|
||||
if 'ref_wavelength' in kwargs:
|
||||
self._ref_wavelength = kwargs['ref_wavelength']
|
||||
self._ref_frequency = c / self.ref_wavelength
|
||||
self._ref_frequency = c / self._ref_wavelength
|
||||
elif 'ref_frequency' in kwargs:
|
||||
self._ref_frequency = kwargs['ref_frequency']
|
||||
self._ref_wavelength = c / self.ref_frequency
|
||||
self._ref_wavelength = c / self._ref_frequency
|
||||
else:
|
||||
self._ref_wavelength = 1550e-9
|
||||
self._ref_frequency = c / self.ref_wavelength
|
||||
self._dispersion = kwargs['dispersion'] # s/m/m
|
||||
self._dispersion_slope = kwargs['dispersion_slope'] if 'dispersion_slope' in kwargs else \
|
||||
-2 * self._dispersion/self.ref_wavelength # s/m/m/m
|
||||
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
|
||||
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
|
||||
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
|
||||
# (accessed on 25 March 2018) (2005).
|
||||
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
|
||||
(2*pi*c/self.ref_wavelength**2)**2)
|
||||
self._gamma = kwargs['gamma'] # 1/W/m
|
||||
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
|
||||
self._ref_frequency = c / self._ref_wavelength
|
||||
|
||||
# Chromatic Dispersion
|
||||
if 'dispersion_per_frequency' in kwargs:
|
||||
# Frequency-dependent dispersion
|
||||
self._dispersion = asarray(kwargs['dispersion_per_frequency']['value']) # s/m/m
|
||||
self._f_dispersion_ref = asarray(kwargs['dispersion_per_frequency']['frequency']) # Hz
|
||||
self._dispersion_slope = None
|
||||
elif 'dispersion' in kwargs:
|
||||
# Single value dispersion
|
||||
self._dispersion = asarray(kwargs['dispersion']) # s/m/m
|
||||
self._dispersion_slope = kwargs.get('dispersion_slope') # s/m/m/m
|
||||
self._f_dispersion_ref = asarray(self._ref_frequency) # Hz
|
||||
else:
|
||||
# Default single value dispersion
|
||||
self._dispersion = asarray(1.67e-05) # s/m/m
|
||||
self._dispersion_slope = None
|
||||
self._f_dispersion_ref = asarray(self.ref_frequency) # Hz
|
||||
|
||||
# Effective Area and Nonlinear Coefficient
|
||||
self._effective_area = kwargs.get('effective_area') # m^2
|
||||
self._n1 = 1.468
|
||||
self._core_radius = 4.2e-6 # m
|
||||
self._n2 = 2.6e-20 # m^2/W
|
||||
if self._effective_area is not None:
|
||||
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
|
||||
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
|
||||
elif 'gamma' in kwargs:
|
||||
self._gamma = kwargs['gamma'] # 1/W/m
|
||||
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
|
||||
else:
|
||||
self._effective_area = 83e-12 # m^2
|
||||
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
|
||||
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
|
||||
pi * self._core_radius ** 2 / self._effective_area)) ** 2
|
||||
|
||||
# Raman Gain Coefficient
|
||||
raman_coefficient = kwargs.get('raman_coefficient')
|
||||
if raman_coefficient is None:
|
||||
self._raman_reference_frequency = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
|
||||
frequency_offset = asarray(DEFAULT_RAMAN_COEFFICIENT['frequency_offset'])
|
||||
gamma_raman = asarray(DEFAULT_RAMAN_COEFFICIENT['gamma_raman'])
|
||||
stokes_wave = self._raman_reference_frequency - frequency_offset
|
||||
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
|
||||
self._g0 = gamma_raman / self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
|
||||
else:
|
||||
self._raman_reference_frequency = raman_coefficient['reference_frequency']
|
||||
frequency_offset = asarray(raman_coefficient['frequency_offset'])
|
||||
stokes_wave = self._raman_reference_frequency - frequency_offset
|
||||
self._g0 = asarray(raman_coefficient['g0'])
|
||||
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
|
||||
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
|
||||
|
||||
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
|
||||
# represent a positive power transfer from higher frequency and vice versa
|
||||
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
|
||||
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
|
||||
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
|
||||
|
||||
# Polarization Mode Dispersion
|
||||
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
|
||||
if type(kwargs['loss_coef']) == dict:
|
||||
self._loss_coef = squeeze(kwargs['loss_coef']['loss_coef_power']) * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = squeeze(kwargs['loss_coef']['frequency']) # Hz
|
||||
|
||||
# Loss Coefficient
|
||||
if isinstance(kwargs['loss_coef'], dict):
|
||||
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
|
||||
else:
|
||||
self._loss_coef = kwargs['loss_coef'] * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = 193.5e12 # Hz
|
||||
self._lin_attenuation = db2lin(self.length * self.loss_coef)
|
||||
self._lin_loss_exp = self.loss_coef / (10 * log10(exp(1))) # linear power exponent loss Neper/m
|
||||
self._effective_length = (1 - exp(- self.lin_loss_exp * self.length)) / self.lin_loss_exp
|
||||
self._asymptotic_length = 1 / self.lin_loss_exp
|
||||
# raman parameters (not compulsory)
|
||||
self._raman_efficiency = kwargs['raman_efficiency'] if 'raman_efficiency' in kwargs else None
|
||||
self._pumps_loss_coef = kwargs['pumps_loss_coef'] if 'pumps_loss_coef' in kwargs else None
|
||||
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = asarray(self._ref_frequency) # Hz
|
||||
# Lumped Losses
|
||||
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
|
||||
self._latency = self._length / (c / self._n1) # s
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
|
||||
|
||||
@@ -212,6 +386,10 @@ class FiberParams(Parameters):
|
||||
def con_out(self):
|
||||
return self._con_out
|
||||
|
||||
@property
|
||||
def lumped_losses(self):
|
||||
return self._lumped_losses
|
||||
|
||||
@con_out.setter
|
||||
def con_out(self, con_out):
|
||||
self._con_out = con_out
|
||||
@@ -220,6 +398,10 @@ class FiberParams(Parameters):
|
||||
def dispersion(self):
|
||||
return self._dispersion
|
||||
|
||||
@property
|
||||
def f_dispersion_ref(self):
|
||||
return self._f_dispersion_ref
|
||||
|
||||
@property
|
||||
def dispersion_slope(self):
|
||||
return self._dispersion_slope
|
||||
@@ -228,6 +410,20 @@ class FiberParams(Parameters):
|
||||
def gamma(self):
|
||||
return self._gamma
|
||||
|
||||
def effective_area_scaling(self, frequency):
|
||||
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
|
||||
w = self._core_radius / sqrt(log(V))
|
||||
return asarray(pi * w ** 2)
|
||||
|
||||
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
|
||||
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
|
||||
effective_area_pump = self.effective_area_scaling(frequency_pump)
|
||||
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
|
||||
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
|
||||
|
||||
def gamma_scaling(self, frequency):
|
||||
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
|
||||
|
||||
@property
|
||||
def pmd_coef(self):
|
||||
return self._pmd_coef
|
||||
@@ -240,14 +436,6 @@ class FiberParams(Parameters):
|
||||
def ref_frequency(self):
|
||||
return self._ref_frequency
|
||||
|
||||
@property
|
||||
def beta2(self):
|
||||
return self._beta2
|
||||
|
||||
@property
|
||||
def beta3(self):
|
||||
return self._beta3
|
||||
|
||||
@property
|
||||
def loss_coef(self):
|
||||
return self._loss_coef
|
||||
@@ -257,31 +445,241 @@ class FiberParams(Parameters):
|
||||
return self._f_loss_ref
|
||||
|
||||
@property
|
||||
def lin_loss_exp(self):
|
||||
return self._lin_loss_exp
|
||||
def raman_coefficient(self):
|
||||
return self._raman_coefficient
|
||||
|
||||
@property
|
||||
def lin_attenuation(self):
|
||||
return self._lin_attenuation
|
||||
|
||||
@property
|
||||
def effective_length(self):
|
||||
return self._effective_length
|
||||
|
||||
@property
|
||||
def asymptotic_length(self):
|
||||
return self._asymptotic_length
|
||||
|
||||
@property
|
||||
def raman_efficiency(self):
|
||||
return self._raman_efficiency
|
||||
|
||||
@property
|
||||
def pumps_loss_coef(self):
|
||||
return self._pumps_loss_coef
|
||||
def latency(self):
|
||||
return self._latency
|
||||
|
||||
def asdict(self):
|
||||
dictionary = super().asdict()
|
||||
dictionary['loss_coef'] = self.loss_coef * 1e3
|
||||
dictionary['length_units'] = 'm'
|
||||
if len(self.lumped_losses) == 0:
|
||||
dictionary.pop('lumped_losses')
|
||||
if not self.raman_coefficient:
|
||||
dictionary.pop('raman_coefficient')
|
||||
else:
|
||||
raman_frequency_offset = \
|
||||
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
|
||||
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
|
||||
'frequency_offset': raman_frequency_offset.tolist(),
|
||||
'reference_frequency': self._raman_reference_frequency}
|
||||
return dictionary
|
||||
|
||||
|
||||
class EdfaParams:
|
||||
default_values = {
|
||||
'f_min': None,
|
||||
'f_max': None,
|
||||
'multi_band': None,
|
||||
'bands': None,
|
||||
'type_variety': '',
|
||||
'type_def': '',
|
||||
'gain_flatmax': None,
|
||||
'gain_min': None,
|
||||
'p_max': None,
|
||||
'nf_model': None,
|
||||
'dual_stage_model': None,
|
||||
'preamp_variety': None,
|
||||
'booster_variety': None,
|
||||
'nf_min': None,
|
||||
'nf_max': None,
|
||||
'nf_coef': None,
|
||||
'nf0': None,
|
||||
'nf_fit_coeff': None,
|
||||
'nf_ripple': 0,
|
||||
'dgt': None,
|
||||
'gain_ripple': 0,
|
||||
'tilt_ripple': 0,
|
||||
'f_ripple_ref': None,
|
||||
'out_voa_auto': False,
|
||||
'allowed_for_design': False,
|
||||
'raman': False,
|
||||
'pmd': 0,
|
||||
'pdl': 0,
|
||||
'advance_configurations_from_json': None
|
||||
}
|
||||
|
||||
def __init__(self, **params):
|
||||
try:
|
||||
self.type_variety = params['type_variety']
|
||||
self.type_def = params['type_def']
|
||||
|
||||
# Bandwidth
|
||||
self.f_min = params['f_min']
|
||||
self.f_max = params['f_max']
|
||||
self.bandwidth = self.f_max - self.f_min if self.f_max and self.f_min else None
|
||||
self.f_cent = (self.f_max + self.f_min) / 2 if self.f_max and self.f_min else None
|
||||
self.f_ripple_ref = params['f_ripple_ref']
|
||||
self.bands = [{'f_min': params['f_min'],
|
||||
'f_max': params['f_max']}]
|
||||
|
||||
# Gain
|
||||
self.gain_flatmax = params['gain_flatmax']
|
||||
self.gain_min = params['gain_min']
|
||||
|
||||
gain_ripple = params['gain_ripple']
|
||||
if gain_ripple == 0:
|
||||
self.gain_ripple = asarray([0, 0])
|
||||
self.f_ripple_ref = asarray([self.f_min, self.f_max])
|
||||
else:
|
||||
self.gain_ripple = asarray(gain_ripple)
|
||||
if self.f_ripple_ref is not None:
|
||||
if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
|
||||
raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
|
||||
"with the EDFA frequency maximum and minimum.")
|
||||
elif self.gain_ripple.size != self.f_ripple_ref.size:
|
||||
raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
|
||||
"size.")
|
||||
else:
|
||||
self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
|
||||
|
||||
tilt_ripple = params['tilt_ripple']
|
||||
|
||||
if tilt_ripple == 0:
|
||||
self.tilt_ripple = full(self.gain_ripple.size, 0)
|
||||
else:
|
||||
self.tilt_ripple = asarray(tilt_ripple)
|
||||
if self.tilt_ripple.size != self.gain_ripple.size:
|
||||
raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
|
||||
|
||||
# Power
|
||||
self.p_max = params['p_max']
|
||||
|
||||
# Noise Figure
|
||||
self.nf_model = params['nf_model']
|
||||
self.nf_min = params['nf_min']
|
||||
self.nf_max = params['nf_max']
|
||||
self.nf_coef = params['nf_coef']
|
||||
self.nf0 = params['nf0']
|
||||
self.nf_fit_coeff = params['nf_fit_coeff']
|
||||
|
||||
nf_ripple = params['nf_ripple']
|
||||
if nf_ripple == 0:
|
||||
self.nf_ripple = full(self.gain_ripple.size, 0)
|
||||
else:
|
||||
self.nf_ripple = asarray(nf_ripple)
|
||||
if self.nf_ripple.size != self.gain_ripple.size:
|
||||
raise ParametersError("The noise figure ripple and the gain ripple must have the same size.")
|
||||
|
||||
# VOA
|
||||
self.out_voa_auto = params['out_voa_auto']
|
||||
|
||||
# Dual Stage
|
||||
self.dual_stage_model = params['dual_stage_model']
|
||||
if self.dual_stage_model is not None:
|
||||
# Preamp
|
||||
self.preamp_variety = params['preamp_variety']
|
||||
self.preamp_type_def = params['preamp_type_def']
|
||||
self.preamp_nf_model = params['preamp_nf_model']
|
||||
self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
|
||||
self.preamp_gain_min = params['preamp_gain_min']
|
||||
self.preamp_gain_flatmax = params['preamp_gain_flatmax']
|
||||
|
||||
# Booster
|
||||
self.booster_variety = params['booster_variety']
|
||||
self.booster_type_def = params['booster_type_def']
|
||||
self.booster_nf_model = params['booster_nf_model']
|
||||
self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
|
||||
self.booster_gain_min = params['booster_gain_min']
|
||||
self.booster_gain_flatmax = params['booster_gain_flatmax']
|
||||
|
||||
# Others
|
||||
self.pmd = params['pmd']
|
||||
self.pdl = params['pdl']
|
||||
self.raman = params['raman']
|
||||
self.dgt = params['dgt']
|
||||
self.advance_configurations_from_json = params['advance_configurations_from_json']
|
||||
|
||||
# Design
|
||||
self.allowed_for_design = params['allowed_for_design']
|
||||
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
|
||||
|
||||
def update_params(self, kwargs):
|
||||
for k, v in kwargs.items():
|
||||
setattr(self, k, v)
|
||||
|
||||
|
||||
class EdfaOperational:
|
||||
default_values = {
|
||||
'gain_target': None,
|
||||
'delta_p': None,
|
||||
'out_voa': None,
|
||||
'tilt_target': None
|
||||
}
|
||||
|
||||
def __init__(self, **operational):
|
||||
self.update_attr(operational)
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||||
for k, v in self.default_values.items():
|
||||
setattr(self, k, clean_kwargs.get(k, v))
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{type(self).__name__}('
|
||||
f'gain_target={self.gain_target!r}, '
|
||||
f'tilt_target={self.tilt_target!r})')
|
||||
|
||||
|
||||
class MultiBandParams:
|
||||
default_values = {
|
||||
'bands': [],
|
||||
'type_variety': '',
|
||||
'type_def': None,
|
||||
'allowed_for_design': False
|
||||
}
|
||||
|
||||
def __init__(self, **params):
|
||||
try:
|
||||
self.update_attr(params)
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Multiband configurations json must include {e}. Configuration: {params}')
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||||
for k, v in self.default_values.items():
|
||||
# use deepcopy to avoid sharing same object amongst all instance when v is a list or a dict!
|
||||
if isinstance(v, (list, dict)):
|
||||
setattr(self, k, clean_kwargs.get(k, deepcopy(v)))
|
||||
else:
|
||||
setattr(self, k, clean_kwargs.get(k, v))
|
||||
|
||||
|
||||
class TransceiverParams:
|
||||
def __init__(self, **params):
|
||||
self.design_bands = params.get('design_bands', [])
|
||||
self.per_degree_design_bands = params.get('per_degree_design_bands', {})
|
||||
|
||||
|
||||
@dataclass
|
||||
class FrequencyBand:
|
||||
"""Frequency band
|
||||
"""
|
||||
f_min: float
|
||||
f_max: float
|
||||
|
||||
|
||||
DEFAULT_BANDS_DEFINITION = {
|
||||
"LBAND": FrequencyBand(f_min=187e12, f_max=189e12),
|
||||
"CBAND": FrequencyBand(f_min=191.3e12, f_max=196.0e12)
|
||||
}
|
||||
# use this definition to index amplifiers'element of a multiband amplifier.
|
||||
# this is not the design band
|
||||
|
||||
|
||||
def find_band_name(band: FrequencyBand) -> str:
|
||||
"""return the default band name (CBAND, LBAND, ...) that corresponds to the band frequency range
|
||||
Use the band center frequency: if center frequency is inside the band then returns CBAND.
|
||||
This is to flexibly encompass all kind of bands definitions.
|
||||
returns the first matching band name.
|
||||
"""
|
||||
for band_name, frequency_range in DEFAULT_BANDS_DEFINITION.items():
|
||||
center_frequency = (band.f_min + band.f_max) / 2
|
||||
if center_frequency >= frequency_range.f_min and center_frequency <= frequency_range.f_max:
|
||||
return band_name
|
||||
return 'unknown_band'
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,18 +1,19 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.core.utils
|
||||
===============
|
||||
|
||||
This module contains utility functions that are used with gnpy.
|
||||
'''
|
||||
|
||||
"""
|
||||
|
||||
from csv import writer
|
||||
import numpy as np
|
||||
from numpy import pi, cos, sqrt, log10
|
||||
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and, mean, array
|
||||
from scipy import constants
|
||||
from copy import deepcopy
|
||||
from typing import List, Union
|
||||
|
||||
from gnpy.core.exceptions import ConfigurationError
|
||||
|
||||
|
||||
@@ -70,7 +71,7 @@ def arrange_frequencies(length, start, stop):
|
||||
:return: an array of frequencies determined by the spacing parameter
|
||||
:rtype: numpy.ndarray
|
||||
"""
|
||||
return np.linspace(start, stop, length)
|
||||
return linspace(start, stop, length)
|
||||
|
||||
|
||||
def lin2db(value):
|
||||
@@ -107,7 +108,99 @@ def db2lin(value):
|
||||
return 10**(value / 10)
|
||||
|
||||
|
||||
def watt2dbm(value):
|
||||
"""Convert Watt units to dBm
|
||||
|
||||
>>> round(watt2dbm(0.001), 1)
|
||||
0.0
|
||||
>>> round(watt2dbm(0.02), 1)
|
||||
13.0
|
||||
"""
|
||||
return lin2db(value * 1e3)
|
||||
|
||||
|
||||
def dbm2watt(value):
|
||||
"""Convert dBm units to Watt
|
||||
|
||||
>>> round(dbm2watt(0), 4)
|
||||
0.001
|
||||
>>> round(dbm2watt(-3), 4)
|
||||
0.0005
|
||||
>>> round(dbm2watt(13), 4)
|
||||
0.02
|
||||
"""
|
||||
return db2lin(value) * 1e-3
|
||||
|
||||
|
||||
def psd2powerdbm(psd_mwperghz, baudrate_baud):
|
||||
"""computes power in dBm based on baudrate in bauds and psd in mW/GHz
|
||||
|
||||
>>> round(psd2powerdbm(0.031176, 64e9),3)
|
||||
3.0
|
||||
>>> round(psd2powerdbm(0.062352, 32e9),3)
|
||||
3.0
|
||||
>>> round(psd2powerdbm(0.015625, 64e9),3)
|
||||
0.0
|
||||
"""
|
||||
return lin2db(baudrate_baud * psd_mwperghz * 1e-9)
|
||||
|
||||
|
||||
def power_dbm_to_psd_mw_ghz(power_dbm, baudrate_baud):
|
||||
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in dBm
|
||||
|
||||
>>> power_dbm_to_psd_mw_ghz(0, 64e9)
|
||||
0.015625
|
||||
>>> round(power_dbm_to_psd_mw_ghz(3, 64e9), 6)
|
||||
0.031176
|
||||
>>> round(power_dbm_to_psd_mw_ghz(3, 32e9), 6)
|
||||
0.062352
|
||||
"""
|
||||
return db2lin(power_dbm) / (baudrate_baud * 1e-9)
|
||||
|
||||
|
||||
def psd_mw_per_ghz(power_watt, baudrate_baud):
|
||||
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in W
|
||||
|
||||
>>> psd_mw_per_ghz(2e-3, 32e9)
|
||||
0.0625
|
||||
>>> psd_mw_per_ghz(1e-3, 64e9)
|
||||
0.015625
|
||||
>>> psd_mw_per_ghz(0.5e-3, 32e9)
|
||||
0.015625
|
||||
"""
|
||||
return power_watt * 1e3 / (baudrate_baud * 1e-9)
|
||||
|
||||
|
||||
def round2float(number, step):
|
||||
"""Round a floating point number so that its "resolution" is not bigger than 'step'
|
||||
|
||||
The finest step is fixed at 0.01; smaller values are silently changed to 0.01.
|
||||
|
||||
>>> round2float(123.456, 1000)
|
||||
0.0
|
||||
>>> round2float(123.456, 100)
|
||||
100.0
|
||||
>>> round2float(123.456, 10)
|
||||
120.0
|
||||
>>> round2float(123.456, 1)
|
||||
123.0
|
||||
>>> round2float(123.456, 0.1)
|
||||
123.5
|
||||
>>> round2float(123.456, 0.01)
|
||||
123.46
|
||||
>>> round2float(123.456, 0.001)
|
||||
123.46
|
||||
>>> round2float(123.249, 0.5)
|
||||
123.0
|
||||
>>> round2float(123.250, 0.5)
|
||||
123.0
|
||||
>>> round2float(123.251, 0.5)
|
||||
123.5
|
||||
>>> round2float(123.300, 0.2)
|
||||
123.2
|
||||
>>> round2float(123.301, 0.2)
|
||||
123.4
|
||||
"""
|
||||
step = round(step, 1)
|
||||
if step >= 0.01:
|
||||
number = round(number / step, 0)
|
||||
@@ -121,25 +214,39 @@ wavelength2freq = constants.lambda2nu
|
||||
freq2wavelength = constants.nu2lambda
|
||||
|
||||
|
||||
def freq2wavelength(value):
|
||||
""" Converts frequency units to wavelength units.
|
||||
|
||||
>>> round(freq2wavelength(191.35e12) * 1e9, 3)
|
||||
1566.723
|
||||
>>> round(freq2wavelength(196.1e12) * 1e9, 3)
|
||||
1528.773
|
||||
"""
|
||||
return constants.c / value
|
||||
|
||||
|
||||
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
|
||||
snr_added = snr_added - lin2db(bw / bw_added)
|
||||
snr = -lin2db(db2lin(-snr) + db2lin(-snr_added))
|
||||
return snr
|
||||
|
||||
|
||||
def per_label_average(values, labels):
|
||||
"""computes the average per defined spectrum band, using labels
|
||||
|
||||
>>> labels = ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'D', 'D', 'D', 'D']
|
||||
>>> values = [28.51, 28.23, 28.15, 28.17, 28.36, 28.53, 28.64, 28.68, 28.7, 28.71, 28.72, 28.73, 28.74, 28.91, 27.96, 27.85, 27.87, 28.02]
|
||||
>>> per_label_average(values, labels)
|
||||
{'A': 28.28, 'B': 28.68, 'C': 28.91, 'D': 27.92}
|
||||
"""
|
||||
|
||||
label_set = sorted(set(labels))
|
||||
summary = {}
|
||||
for label in label_set:
|
||||
vals = [val for val, lab in zip(values, labels) if lab == label]
|
||||
summary[label] = round(mean(vals), 2)
|
||||
return summary
|
||||
|
||||
|
||||
def pretty_summary_print(summary):
|
||||
"""Build a prettty string that shows the summary dict values per label with 2 digits"""
|
||||
if len(summary) == 1:
|
||||
return f'{list(summary.values())[0]:.2f}'
|
||||
text = ', '.join([f'{label}: {value:.2f}' for label, value in summary.items()])
|
||||
return text
|
||||
|
||||
|
||||
def deltawl2deltaf(delta_wl, wavelength):
|
||||
""" deltawl2deltaf(delta_wl, wavelength):
|
||||
"""deltawl2deltaf(delta_wl, wavelength):
|
||||
delta_wl is BW in wavelength units
|
||||
wavelength is the center wl
|
||||
units for delta_wl and wavelength must be same
|
||||
@@ -157,9 +264,9 @@ def deltawl2deltaf(delta_wl, wavelength):
|
||||
|
||||
|
||||
def deltaf2deltawl(delta_f, frequency):
|
||||
""" deltawl2deltaf(delta_f, frequency):
|
||||
converts delta frequency to delta wavelength
|
||||
units for delta_wl and wavelength must be same
|
||||
"""convert delta frequency to delta wavelength
|
||||
|
||||
Units for delta_wl and wavelength must be same.
|
||||
|
||||
:param delta_f: delta frequency in same units as frequency
|
||||
:param frequency: frequency BW is relevant for
|
||||
@@ -174,8 +281,7 @@ def deltaf2deltawl(delta_f, frequency):
|
||||
|
||||
|
||||
def rrc(ffs, baud_rate, alpha):
|
||||
""" rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
|
||||
function.
|
||||
"""compute the root-raised cosine filter function
|
||||
|
||||
:param ffs: A numpy array of frequencies
|
||||
:param baud_rate: The Baud Rate of the System
|
||||
@@ -190,18 +296,18 @@ def rrc(ffs, baud_rate, alpha):
|
||||
Ts = 1 / baud_rate
|
||||
l_lim = (1 - alpha) / (2 * Ts)
|
||||
r_lim = (1 + alpha) / (2 * Ts)
|
||||
hf = np.zeros(np.shape(ffs))
|
||||
slope_inds = np.where(
|
||||
np.logical_and(np.abs(ffs) > l_lim, np.abs(ffs) < r_lim))
|
||||
hf = zeros(shape(ffs))
|
||||
slope_inds = where(
|
||||
logical_and(abs(ffs) > l_lim, abs(ffs) < r_lim))
|
||||
hf[slope_inds] = 0.5 * (1 + cos((pi * Ts / alpha) *
|
||||
(np.abs(ffs[slope_inds]) - l_lim)))
|
||||
p_inds = np.where(np.logical_and(np.abs(ffs) > 0, np.abs(ffs) < l_lim))
|
||||
(abs(ffs[slope_inds]) - l_lim)))
|
||||
p_inds = where(logical_and(abs(ffs) > 0, abs(ffs) < l_lim))
|
||||
hf[p_inds] = 1
|
||||
return sqrt(hf)
|
||||
|
||||
|
||||
def merge_amplifier_restrictions(dict1, dict2):
|
||||
"""Updates contents of dicts recursively
|
||||
"""Update contents of dicts recursively
|
||||
|
||||
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
|
||||
>>> d2 = {'params': {'target_pch_out_db': -20}}
|
||||
@@ -296,3 +402,159 @@ def convert_length(value, units):
|
||||
return value * 1e3
|
||||
else:
|
||||
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
|
||||
|
||||
|
||||
def replace_none(dictionary):
|
||||
""" Replaces None with inf values in a frequency slots dict
|
||||
|
||||
>>> replace_none({'N': 3, 'M': None})
|
||||
{'N': 3, 'M': inf}
|
||||
|
||||
"""
|
||||
for key, val in dictionary.items():
|
||||
if val is None:
|
||||
dictionary[key] = float('inf')
|
||||
if val == float('inf'):
|
||||
dictionary[key] = None
|
||||
return dictionary
|
||||
|
||||
|
||||
def order_slots(slots):
|
||||
""" Order frequency slots from larger slots to smaller ones up to None
|
||||
|
||||
>>> l = [{'N': 3, 'M': None}, {'N': 2, 'M': 1}, {'N': None, 'M': None},{'N': 7, 'M': 2},{'N': None, 'M': 1} , {'N': None, 'M': 0}]
|
||||
>>> order_slots(l)
|
||||
([7, 2, None, None, 3, None], [2, 1, 1, 0, None, None], [3, 1, 4, 5, 0, 2])
|
||||
"""
|
||||
slots_list = deepcopy(slots)
|
||||
slots_list = [replace_none(e) for e in slots_list]
|
||||
for i, e in enumerate(slots_list):
|
||||
e['i'] = i
|
||||
slots_list = sorted(slots_list, key=lambda x: (-x['M'], x['N']) if x['M'] != float('inf') else (x['M'], x['N']))
|
||||
slots_list = [replace_none(e) for e in slots_list]
|
||||
return [e['N'] for e in slots_list], [e['M'] for e in slots_list], [e['i'] for e in slots_list]
|
||||
|
||||
|
||||
def restore_order(elements, order):
|
||||
""" Use order to re-order the element of the list, and ignore None values
|
||||
|
||||
>>> restore_order([7, 2, None, None, 3, None], [3, 1, 4, 5, 0, 2])
|
||||
[3, 2, 7]
|
||||
"""
|
||||
return [elements[i[0]] for i in sorted(enumerate(order), key=lambda x:x[1]) if elements[i[0]] is not None]
|
||||
|
||||
|
||||
def unique_ordered(elements):
|
||||
"""
|
||||
"""
|
||||
unique_elements = []
|
||||
for element in elements:
|
||||
if element not in unique_elements:
|
||||
unique_elements.append(element)
|
||||
return unique_elements
|
||||
|
||||
|
||||
def calculate_absolute_min_or_zero(x: array) -> array:
|
||||
"""Calculates the element-wise absolute minimum between the x and zero.
|
||||
|
||||
Parameters:
|
||||
x (array): The first input array.
|
||||
|
||||
Returns:
|
||||
array: The element-wise absolute minimum between x and zero.
|
||||
|
||||
Example:
|
||||
>>> x = array([-1, 2, -3])
|
||||
>>> calculate_absolute_min_or_zero(x)
|
||||
array([1., 0., 3.])
|
||||
"""
|
||||
return (abs(x) - x) / 2
|
||||
|
||||
|
||||
def nice_column_str(data: List[List[str]], max_length: int = 30, padding: int = 1) -> str:
|
||||
"""data is a list of rows, creates strings with nice alignment per colum and padding with spaces
|
||||
letf justified
|
||||
|
||||
>>> table_data = [['aaa', 'b', 'c'], ['aaaaaaaa', 'bbb', 'c'], ['a', 'bbbbbbbbbb', 'c']]
|
||||
>>> print(nice_column_str(table_data))
|
||||
aaa b c
|
||||
aaaaaaaa bbb c
|
||||
a bbbbbbbbbb c
|
||||
"""
|
||||
# transpose data to determine size of columns
|
||||
transposed_data = list(map(list, zip(*data)))
|
||||
column_width = [max(len(word) for word in column) + padding for column in transposed_data]
|
||||
nice_str = []
|
||||
for row in data:
|
||||
column = ''.join(word[0:max_length].ljust(min(width, max_length)) for width, word in zip(column_width, row))
|
||||
nice_str.append(f'{column}')
|
||||
return '\n'.join(nice_str)
|
||||
|
||||
|
||||
def find_common_range(amp_bands: List[List[dict]], default_band_f_min: float, default_band_f_max: float) \
|
||||
-> List[dict]:
|
||||
"""Find the common frequency range of bands
|
||||
If there are no amplifiers in the path, then use default band
|
||||
|
||||
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
|
||||
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
|
||||
[{'f_min': 186e12, 'f_max': 193e12}]]
|
||||
>>> find_common_range(amp_bands, 190e12, 195e12)
|
||||
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}, {'f_min': 192000000000000.0, 'f_max': 193000000000000.0}]
|
||||
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
|
||||
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
|
||||
[{'f_min': 186e12, 'f_max': 192e12}]]
|
||||
>>> find_common_range(amp_bands, 190e12, 195e12)
|
||||
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}]
|
||||
|
||||
"""
|
||||
_amp_bands = [sorted(amp, key=lambda x: x['f_min']) for amp in amp_bands]
|
||||
_temp = []
|
||||
# remove None bands
|
||||
for amp in _amp_bands:
|
||||
is_band = True
|
||||
for band in amp:
|
||||
if not (is_band and band['f_min'] and band['f_max']):
|
||||
is_band = False
|
||||
if is_band:
|
||||
_temp.append(amp)
|
||||
|
||||
# remove duplicate
|
||||
unique_amp_bands = []
|
||||
for amp in _temp:
|
||||
if amp not in unique_amp_bands:
|
||||
unique_amp_bands.append(amp)
|
||||
if unique_amp_bands:
|
||||
common_range = unique_amp_bands[0]
|
||||
else:
|
||||
if default_band_f_min is None or default_band_f_max is None:
|
||||
return []
|
||||
common_range = [{'f_min': default_band_f_min, 'f_max': default_band_f_max}]
|
||||
for bands in unique_amp_bands:
|
||||
common_range = [{'f_min': max(first['f_min'], second['f_min']), 'f_max': min(first['f_max'], second['f_max'])}
|
||||
for first in common_range for second in bands
|
||||
if max(first['f_min'], second['f_min']) < min(first['f_max'], second['f_max'])]
|
||||
return sorted(common_range, key=lambda x: x['f_min'])
|
||||
|
||||
|
||||
def transform_data(data: str) -> Union[List[int], None]:
|
||||
"""Transforms a float into an list of one integer or a string separated by "|" into a list of integers.
|
||||
|
||||
Args:
|
||||
data (float or str): The data to transform.
|
||||
|
||||
Returns:
|
||||
list of int: The transformed data as a list of integers.
|
||||
|
||||
Examples:
|
||||
>>> transform_data(5.0)
|
||||
[5]
|
||||
|
||||
>>> transform_data('1 | 2 | 3')
|
||||
[1, 2, 3]
|
||||
"""
|
||||
if isinstance(data, float):
|
||||
return [int(data)]
|
||||
if isinstance(data, str):
|
||||
return [int(x) for x in data.split(' | ')]
|
||||
return None
|
||||
|
||||
@@ -1,160 +1,160 @@
|
||||
{
|
||||
"nf_fit_coeff": [
|
||||
0.0008,
|
||||
0.0272,
|
||||
-0.2249,
|
||||
6.4902
|
||||
],
|
||||
"f_min": 191.35e12,
|
||||
"f_max": 196.1e12,
|
||||
"nf_ripple": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"gain_ripple": [
|
||||
0.15017064489112,
|
||||
0.14157768006701,
|
||||
0.00223094639866,
|
||||
-0.06701528475711,
|
||||
-0.05982935510889,
|
||||
-0.01028161641541,
|
||||
0.02740682579566,
|
||||
0.02795958961474,
|
||||
0.00107516750419,
|
||||
-0.02199015912898,
|
||||
-0.00877407872698,
|
||||
0.0453465242881,
|
||||
0.1204721524288,
|
||||
0.18936662479061,
|
||||
0.23826109715241,
|
||||
0.26956762981574,
|
||||
0.27836159966498,
|
||||
0.26941687604691,
|
||||
0.23579878559464,
|
||||
0.18147717755444,
|
||||
0.1191656197655,
|
||||
0.05921587102177,
|
||||
0.01509526800668,
|
||||
-0.01053287269681,
|
||||
-0.02475397822447,
|
||||
-0.01847257118928,
|
||||
-0.00420121440538,
|
||||
0.01584903685091,
|
||||
0.0399193886097,
|
||||
0.04494451423784,
|
||||
0.04961788107202,
|
||||
0.03378873534338,
|
||||
0.01027114740367,
|
||||
-0.01319618927973,
|
||||
-0.04962835008375,
|
||||
-0.0765630234506,
|
||||
-0.10606051088777,
|
||||
-0.13550774706866,
|
||||
-0.15460322445561,
|
||||
-0.17113588777219,
|
||||
-0.18053287269681,
|
||||
-0.18324644053602,
|
||||
-0.19440221943049,
|
||||
-0.20897508375209,
|
||||
-0.23575900335007,
|
||||
-0.25188965661642,
|
||||
-0.22244242043552,
|
||||
-0.15656302345061
|
||||
],
|
||||
"dgt": [
|
||||
2.4553191172498,
|
||||
2.44342862248888,
|
||||
2.41879254989742,
|
||||
2.38192717604575,
|
||||
2.33147727493671,
|
||||
2.26678136721453,
|
||||
2.19013043016015,
|
||||
2.10336369905543,
|
||||
2.01414465424155,
|
||||
1.92915262384742,
|
||||
1.85543800978691,
|
||||
1.79748596476494,
|
||||
1.75428006928365,
|
||||
1.72461030013125,
|
||||
1.70379790088896,
|
||||
1.68845480656382,
|
||||
1.6761448370895,
|
||||
1.66286684904577,
|
||||
1.64799163036252,
|
||||
1.63068023161292,
|
||||
1.61073904908309,
|
||||
1.58973304612691,
|
||||
1.56750088631614,
|
||||
1.54578500307573,
|
||||
1.5242627235492,
|
||||
1.50335352244996,
|
||||
1.48420288841848,
|
||||
1.46637521309853,
|
||||
1.44977369463316,
|
||||
1.43476940680732,
|
||||
1.42089447397912,
|
||||
1.40864903907609,
|
||||
1.3966294751726,
|
||||
1.38430337205545,
|
||||
1.3710092503689,
|
||||
1.35690844654118,
|
||||
1.3405812000038,
|
||||
1.32210817897091,
|
||||
1.30069883494415,
|
||||
1.27657903892303,
|
||||
1.24931318255134,
|
||||
1.21911100318577,
|
||||
1.18632744096844,
|
||||
1.15209185089701,
|
||||
1.11575888725852,
|
||||
1.07773189112355,
|
||||
1.03941448941778,
|
||||
1.0
|
||||
]
|
||||
"nf_fit_coeff": [
|
||||
0.0008,
|
||||
0.0272,
|
||||
-0.2249,
|
||||
6.4902
|
||||
],
|
||||
"f_min": 191.4e12,
|
||||
"f_max": 196.1e12,
|
||||
"nf_ripple": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"gain_ripple": [
|
||||
-0.15656302345061,
|
||||
-0.22244242043552,
|
||||
-0.25188965661642,
|
||||
-0.23575900335007,
|
||||
-0.20897508375209,
|
||||
-0.19440221943049,
|
||||
-0.18324644053602,
|
||||
-0.18053287269681,
|
||||
-0.17113588777219,
|
||||
-0.15460322445561,
|
||||
-0.13550774706866,
|
||||
-0.10606051088777,
|
||||
-0.0765630234506,
|
||||
-0.04962835008375,
|
||||
-0.01319618927973,
|
||||
0.01027114740367,
|
||||
0.03378873534338,
|
||||
0.04961788107202,
|
||||
0.04494451423784,
|
||||
0.0399193886097,
|
||||
0.01584903685091,
|
||||
-0.00420121440538,
|
||||
-0.01847257118928,
|
||||
-0.02475397822447,
|
||||
-0.01053287269681,
|
||||
0.01509526800668,
|
||||
0.05921587102177,
|
||||
0.1191656197655,
|
||||
0.18147717755444,
|
||||
0.23579878559464,
|
||||
0.26941687604691,
|
||||
0.27836159966498,
|
||||
0.26956762981574,
|
||||
0.23826109715241,
|
||||
0.18936662479061,
|
||||
0.1204721524288,
|
||||
0.0453465242881,
|
||||
-0.00877407872698,
|
||||
-0.02199015912898,
|
||||
0.00107516750419,
|
||||
0.02795958961474,
|
||||
0.02740682579566,
|
||||
-0.01028161641541,
|
||||
-0.05982935510889,
|
||||
-0.06701528475711,
|
||||
0.00223094639866,
|
||||
0.14157768006701,
|
||||
0.15017064489112
|
||||
],
|
||||
"dgt": [
|
||||
1.0,
|
||||
1.03941448941778,
|
||||
1.07773189112355,
|
||||
1.11575888725852,
|
||||
1.15209185089701,
|
||||
1.18632744096844,
|
||||
1.21911100318577,
|
||||
1.24931318255134,
|
||||
1.27657903892303,
|
||||
1.30069883494415,
|
||||
1.32210817897091,
|
||||
1.3405812000038,
|
||||
1.35690844654118,
|
||||
1.3710092503689,
|
||||
1.38430337205545,
|
||||
1.3966294751726,
|
||||
1.40864903907609,
|
||||
1.42089447397912,
|
||||
1.43476940680732,
|
||||
1.44977369463316,
|
||||
1.46637521309853,
|
||||
1.48420288841848,
|
||||
1.50335352244996,
|
||||
1.5242627235492,
|
||||
1.54578500307573,
|
||||
1.56750088631614,
|
||||
1.58973304612691,
|
||||
1.61073904908309,
|
||||
1.63068023161292,
|
||||
1.64799163036252,
|
||||
1.66286684904577,
|
||||
1.6761448370895,
|
||||
1.68845480656382,
|
||||
1.70379790088896,
|
||||
1.72461030013125,
|
||||
1.75428006928365,
|
||||
1.79748596476494,
|
||||
1.85543800978691,
|
||||
1.92915262384742,
|
||||
2.01414465424155,
|
||||
2.10336369905543,
|
||||
2.19013043016015,
|
||||
2.26678136721453,
|
||||
2.33147727493671,
|
||||
2.38192717604575,
|
||||
2.41879254989742,
|
||||
2.44342862248888,
|
||||
2.4553191172498
|
||||
]
|
||||
}
|
||||
|
||||
6233
gnpy/example-data/Sweden_OpenROADMv4_example_network.json
Normal file
6233
gnpy/example-data/Sweden_OpenROADMv4_example_network.json
Normal file
File diff suppressed because it is too large
Load Diff
6233
gnpy/example-data/Sweden_OpenROADMv5_example_network.json
Normal file
6233
gnpy/example-data/Sweden_OpenROADMv5_example_network.json
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,106 +1,108 @@
|
||||
{
|
||||
"nf_ripple": [
|
||||
0.0
|
||||
],
|
||||
"gain_ripple": [
|
||||
0.0
|
||||
],
|
||||
"dgt": [
|
||||
2.714526681131686,
|
||||
2.705443819238505,
|
||||
2.6947834587664494,
|
||||
2.6841217449620203,
|
||||
2.6681935771243177,
|
||||
2.6521732021128046,
|
||||
2.630396440815385,
|
||||
2.602860350286428,
|
||||
2.5696460593920065,
|
||||
2.5364027376452056,
|
||||
2.499446286796604,
|
||||
2.4587748041127506,
|
||||
2.414398437185221,
|
||||
2.3699990328716107,
|
||||
2.322373696229342,
|
||||
2.271520771371253,
|
||||
2.2174389328192197,
|
||||
2.16337565384239,
|
||||
2.1183028432496016,
|
||||
2.082225099873648,
|
||||
2.055100772005235,
|
||||
2.0279625371819305,
|
||||
2.0008103857988204,
|
||||
1.9736443063300082,
|
||||
1.9482128147680253,
|
||||
1.9245345552113182,
|
||||
1.9026104247588487,
|
||||
1.8806927939516411,
|
||||
1.862235672444246,
|
||||
1.847275503201129,
|
||||
1.835814081380705,
|
||||
1.824381436842932,
|
||||
1.8139629377087627,
|
||||
1.8045606557581335,
|
||||
1.7961751115773796,
|
||||
1.7877868031023945,
|
||||
1.7793941781790852,
|
||||
1.7709972329654864,
|
||||
1.7625959636196327,
|
||||
1.7541903672600494,
|
||||
1.7459181197626403,
|
||||
1.737780757913635,
|
||||
1.7297783508684146,
|
||||
1.7217732861435076,
|
||||
1.7137640932265894,
|
||||
1.7057507692361864,
|
||||
1.6918150918099673,
|
||||
1.6719047669939942,
|
||||
1.6460167077689267,
|
||||
1.6201194134191075,
|
||||
1.5986915141218316,
|
||||
1.5817353179379183,
|
||||
1.569199764184379,
|
||||
1.5566577309558969,
|
||||
1.545374152761467,
|
||||
1.5353620432989845,
|
||||
1.5266220576235803,
|
||||
1.5178910621476225,
|
||||
1.5097346239790443,
|
||||
1.502153039909686,
|
||||
1.495145456062699,
|
||||
1.488134243479226,
|
||||
1.48111939735681,
|
||||
1.474100442252211,
|
||||
1.4670307626366115,
|
||||
1.4599103316162523,
|
||||
1.45273959485914,
|
||||
1.445565137158368,
|
||||
1.4340878115214444,
|
||||
1.418273806730323,
|
||||
1.3981208704326855,
|
||||
1.3779439775587023,
|
||||
1.3598972673004606,
|
||||
1.3439818461440451,
|
||||
1.3301807335621048,
|
||||
1.316383926863083,
|
||||
1.3040618749785347,
|
||||
1.2932153453410835,
|
||||
1.2838336236692311,
|
||||
1.2744470198196236,
|
||||
1.2650555289898042,
|
||||
1.2556591482982988,
|
||||
1.2428104897182262,
|
||||
1.2264996957264114,
|
||||
1.2067249615595257,
|
||||
1.1869318618366975,
|
||||
1.1672278304018044,
|
||||
1.1476135933863398,
|
||||
1.1280891949729075,
|
||||
1.108555289615659,
|
||||
1.0895983485572227,
|
||||
1.0712204022764056,
|
||||
1.0534217504465226,
|
||||
1.0356155337864215,
|
||||
1.017807767853702,
|
||||
1.0
|
||||
]
|
||||
"nf_ripple": [
|
||||
0.0
|
||||
],
|
||||
"gain_ripple": [
|
||||
0.0
|
||||
],
|
||||
"f_min": 191.275e12,
|
||||
"f_max": 196.125e12,
|
||||
"dgt": [
|
||||
1.0,
|
||||
1.017807767853702,
|
||||
1.0356155337864215,
|
||||
1.0534217504465226,
|
||||
1.0712204022764056,
|
||||
1.0895983485572227,
|
||||
1.108555289615659,
|
||||
1.1280891949729075,
|
||||
1.1476135933863398,
|
||||
1.1672278304018044,
|
||||
1.1869318618366975,
|
||||
1.2067249615595257,
|
||||
1.2264996957264114,
|
||||
1.2428104897182262,
|
||||
1.2556591482982988,
|
||||
1.2650555289898042,
|
||||
1.2744470198196236,
|
||||
1.2838336236692311,
|
||||
1.2932153453410835,
|
||||
1.3040618749785347,
|
||||
1.316383926863083,
|
||||
1.3301807335621048,
|
||||
1.3439818461440451,
|
||||
1.3598972673004606,
|
||||
1.3779439775587023,
|
||||
1.3981208704326855,
|
||||
1.418273806730323,
|
||||
1.4340878115214444,
|
||||
1.445565137158368,
|
||||
1.45273959485914,
|
||||
1.4599103316162523,
|
||||
1.4670307626366115,
|
||||
1.474100442252211,
|
||||
1.48111939735681,
|
||||
1.488134243479226,
|
||||
1.495145456062699,
|
||||
1.502153039909686,
|
||||
1.5097346239790443,
|
||||
1.5178910621476225,
|
||||
1.5266220576235803,
|
||||
1.5353620432989845,
|
||||
1.545374152761467,
|
||||
1.5566577309558969,
|
||||
1.569199764184379,
|
||||
1.5817353179379183,
|
||||
1.5986915141218316,
|
||||
1.6201194134191075,
|
||||
1.6460167077689267,
|
||||
1.6719047669939942,
|
||||
1.6918150918099673,
|
||||
1.7057507692361864,
|
||||
1.7137640932265894,
|
||||
1.7217732861435076,
|
||||
1.7297783508684146,
|
||||
1.737780757913635,
|
||||
1.7459181197626403,
|
||||
1.7541903672600494,
|
||||
1.7625959636196327,
|
||||
1.7709972329654864,
|
||||
1.7793941781790852,
|
||||
1.7877868031023945,
|
||||
1.7961751115773796,
|
||||
1.8045606557581335,
|
||||
1.8139629377087627,
|
||||
1.824381436842932,
|
||||
1.835814081380705,
|
||||
1.847275503201129,
|
||||
1.862235672444246,
|
||||
1.8806927939516411,
|
||||
1.9026104247588487,
|
||||
1.9245345552113182,
|
||||
1.9482128147680253,
|
||||
1.9736443063300082,
|
||||
2.0008103857988204,
|
||||
2.0279625371819305,
|
||||
2.055100772005235,
|
||||
2.082225099873648,
|
||||
2.1183028432496016,
|
||||
2.16337565384239,
|
||||
2.2174389328192197,
|
||||
2.271520771371253,
|
||||
2.322373696229342,
|
||||
2.3699990328716107,
|
||||
2.414398437185221,
|
||||
2.4587748041127506,
|
||||
2.499446286796604,
|
||||
2.5364027376452056,
|
||||
2.5696460593920065,
|
||||
2.602860350286428,
|
||||
2.630396440815385,
|
||||
2.6521732021128046,
|
||||
2.6681935771243177,
|
||||
2.6841217449620203,
|
||||
2.6947834587664494,
|
||||
2.705443819238505,
|
||||
2.714526681131686
|
||||
]
|
||||
}
|
||||
|
||||
@@ -1,80 +1,80 @@
|
||||
{
|
||||
"network_name": "EDFA Example Network - P2P",
|
||||
"elements": [{
|
||||
"uid": "Site_A",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Site A",
|
||||
"region": "",
|
||||
"latitude": 0,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Span1",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 80,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0,
|
||||
"con_in": 0.5,
|
||||
"con_out": 0.5
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"region": "",
|
||||
"latitude": 1,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Edfa1",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"operational": {
|
||||
"gain_target": 17,
|
||||
"tilt_target": 0,
|
||||
"out_voa": 0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"region": "",
|
||||
"latitude": 2,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Site_B",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Site B",
|
||||
"region": "",
|
||||
"latitude": 2,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
"network_name": "EDFA Example Network - P2P",
|
||||
"elements": [
|
||||
{
|
||||
"uid": "Site_A",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Site A",
|
||||
"region": "",
|
||||
"latitude": 0,
|
||||
"longitude": 0
|
||||
}
|
||||
|
||||
],
|
||||
"connections": [{
|
||||
"from_node": "Site_A",
|
||||
"to_node": "Span1"
|
||||
},
|
||||
{
|
||||
"from_node": "Span1",
|
||||
"to_node": "Edfa1"
|
||||
},
|
||||
{
|
||||
"from_node": "Edfa1",
|
||||
"to_node": "Site_B"
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Span1",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 80,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0,
|
||||
"con_in": 0.5,
|
||||
"con_out": 0.5
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"region": "",
|
||||
"latitude": 1,
|
||||
"longitude": 0
|
||||
}
|
||||
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Edfa1",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"operational": {
|
||||
"gain_target": 17,
|
||||
"tilt_target": 0,
|
||||
"out_voa": 0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"region": "",
|
||||
"latitude": 2,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Site_B",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Site B",
|
||||
"region": "",
|
||||
"latitude": 2,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"connections": [
|
||||
{
|
||||
"from_node": "Site_A",
|
||||
"to_node": "Span1"
|
||||
},
|
||||
{
|
||||
"from_node": "Span1",
|
||||
"to_node": "Edfa1"
|
||||
},
|
||||
{
|
||||
"from_node": "Edfa1",
|
||||
"to_node": "Site_B"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
@@ -227,7 +227,7 @@ In an opensource and multi-vendor environnement, it is needed to support differe
|
||||
.. code-block:: json-object
|
||||
|
||||
"Edfa":[{
|
||||
"type_variety": "low_noise",
|
||||
"type_variety": "openroadm_ila_low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 12,
|
||||
|
||||
@@ -1,312 +1,443 @@
|
||||
{ "Edfa":[{
|
||||
"type_variety": "high_detail_model_example",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
}, {
|
||||
"type_variety": "Juniper_BoosterHG",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 10,
|
||||
"p_max": 21,
|
||||
"advanced_config_from_json": "Juniper-BoosterHG.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "operator_model_example",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 12,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 12,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_high_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 35,
|
||||
"gain_min": 25,
|
||||
"p_max": 21,
|
||||
"nf_min": 5.5,
|
||||
"nf_max": 7,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 23,
|
||||
"nf_min": 6.5,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "high_power",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 25,
|
||||
"nf_min": 9,
|
||||
"nf_max": 15,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_fixed_gain",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5.5,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "4pumps_raman",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 12,
|
||||
"gain_min": 12,
|
||||
"p_max": 21,
|
||||
"nf0": -1,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_lowgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_mediumgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_medium_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+low_gain",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+high_power",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "high_power",
|
||||
"allowed_for_design": false
|
||||
}
|
||||
{
|
||||
"Edfa": [
|
||||
{
|
||||
"type_variety": "high_detail_model_example",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "Juniper_BoosterHG",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 10,
|
||||
"p_max": 21,
|
||||
"advanced_config_from_json": "Juniper-BoosterHG.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "operator_model_example",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_ila_low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-8.104e-4,
|
||||
-6.221e-2,
|
||||
-5.889e-1,
|
||||
37.62
|
||||
],
|
||||
"Fiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"gamma": 0.00146,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"gamma": 0.000843,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_ila_standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-5.952e-4,
|
||||
-6.250e-2,
|
||||
-1.071,
|
||||
28.99
|
||||
],
|
||||
"RamanFiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15,
|
||||
"raman_efficiency": {
|
||||
"cr":[
|
||||
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
|
||||
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
|
||||
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
|
||||
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
|
||||
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
|
||||
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
|
||||
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
|
||||
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
|
||||
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
|
||||
2E-07, 1E-07
|
||||
],
|
||||
"frequency_offset":[
|
||||
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
|
||||
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
|
||||
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
|
||||
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
|
||||
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
|
||||
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
|
||||
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
|
||||
41.5e12, 42e12
|
||||
]
|
||||
}
|
||||
}
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp",
|
||||
"type_def": "openroadm_preamp",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-5.952e-4,
|
||||
-6.250e-2,
|
||||
-1.071,
|
||||
28.99
|
||||
],
|
||||
"Span":[{
|
||||
"power_mode":true,
|
||||
"delta_power_range_db": [-2,3,0.5],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 2.5,
|
||||
"max_length": 150,
|
||||
"length_units": "km",
|
||||
"max_loss": 28,
|
||||
"padding": 10,
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-5.952e-4,
|
||||
-6.250e-2,
|
||||
-1.071,
|
||||
27.99
|
||||
],
|
||||
"Roadm":[{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 38,
|
||||
"pmd": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list":[],
|
||||
"booster_variety_list":[]
|
||||
}
|
||||
}],
|
||||
"SI":[{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max":195.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 0,
|
||||
"power_range_db": [0,0,1],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"sys_margins": 2
|
||||
}],
|
||||
"Transceiver":[
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_booster",
|
||||
"type_def": "openroadm_booster",
|
||||
"gain_flatmax": 32,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_high_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 35,
|
||||
"gain_min": 25,
|
||||
"p_max": 21,
|
||||
"nf_min": 5.5,
|
||||
"nf_max": 7,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 23,
|
||||
"nf_min": 6.5,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "high_power",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 25,
|
||||
"nf_min": 9,
|
||||
"nf_max": 15,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_fixed_gain",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5.5,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "4pumps_raman",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 12,
|
||||
"gain_min": 12,
|
||||
"p_max": 21,
|
||||
"nf0": -1,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_lowgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_mediumgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_medium_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+low_gain",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+high_power",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "high_power",
|
||||
"allowed_for_design": false
|
||||
}
|
||||
],
|
||||
"Fiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"effective_area": 72e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"effective_area": 125e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"Span": [
|
||||
{
|
||||
"power_mode": true,
|
||||
"delta_power_range_db": [
|
||||
-2,
|
||||
3,
|
||||
0.5
|
||||
],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 2.5,
|
||||
"max_length": 150,
|
||||
"length_units": "km",
|
||||
"max_loss": 28,
|
||||
"padding": 10,
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
],
|
||||
"Roadm": [
|
||||
{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 38,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"type_variety": "roadm_type_1",
|
||||
"target_pch_out_db": -18,
|
||||
"add_drop_osnr": 35,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
},
|
||||
"roadm-path-impairments": []
|
||||
},
|
||||
{
|
||||
"type_variety": "detailed_impairments",
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 38,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
},
|
||||
"roadm-path-impairments": [
|
||||
{
|
||||
"roadm-path-impairments-id": 0,
|
||||
"roadm-express-path": [
|
||||
{
|
||||
"type_variety": "vendorA_trx-type1",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode":[
|
||||
{
|
||||
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 11,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 15,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"type_variety": "Voyager",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode":[
|
||||
{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 3",
|
||||
"baud_rate": 44e9,
|
||||
"OSNR": 18,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 62.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 4",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 16,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1
|
||||
}
|
||||
]
|
||||
"frequency-range": {
|
||||
"lower-frequency": 191.3e12,
|
||||
"upper-frequency": 196.1e12
|
||||
},
|
||||
"roadm-pmd": 0,
|
||||
"roadm-cd": 0,
|
||||
"roadm-pdl": 0,
|
||||
"roadm-inband-crosstalk": 0,
|
||||
"roadm-maxloss": 16.5
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"roadm-path-impairments-id": 1,
|
||||
"roadm-add-path": [
|
||||
{
|
||||
"frequency-range": {
|
||||
"lower-frequency": 191.3e12,
|
||||
"upper-frequency": 196.1e12
|
||||
},
|
||||
"roadm-pmd": 0,
|
||||
"roadm-cd": 0,
|
||||
"roadm-pdl": 0,
|
||||
"roadm-inband-crosstalk": 0,
|
||||
"roadm-maxloss": 11.5,
|
||||
"roadm-pmax": 2.5,
|
||||
"roadm-osnr": 41,
|
||||
"roadm-noise-figure": 23
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"roadm-path-impairments-id": 2,
|
||||
"roadm-drop-path": [
|
||||
{
|
||||
"frequency-range": {
|
||||
"lower-frequency": 191.3e12,
|
||||
"upper-frequency": 196.1e12
|
||||
},
|
||||
"roadm-pmd": 0,
|
||||
"roadm-cd": 0,
|
||||
"roadm-pdl": 0,
|
||||
"roadm-inband-crosstalk": 0,
|
||||
"roadm-maxloss": 11.5,
|
||||
"roadm-minloss": 7.5,
|
||||
"roadm-typloss": 10,
|
||||
"roadm-pmin": -13.5,
|
||||
"roadm-pmax": -9.5,
|
||||
"roadm-ptyp": -12,
|
||||
"roadm-osnr": 41,
|
||||
"roadm-noise-figure": 15
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
}
|
||||
],
|
||||
"SI": [
|
||||
{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max": 195.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 0,
|
||||
"power_range_db": [
|
||||
0,
|
||||
0,
|
||||
1
|
||||
],
|
||||
"tx_power_dbm": 0,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"sys_margins": 2
|
||||
}
|
||||
],
|
||||
"Transceiver": [
|
||||
{
|
||||
"type_variety": "vendorA_trx-type1",
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 11,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 15,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"type_variety": "Voyager",
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 3",
|
||||
"baud_rate": 44e9,
|
||||
"OSNR": 18,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 62.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 4",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 16,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
479
gnpy/example-data/eqpt_config_multiband.json
Normal file
479
gnpy/example-data/eqpt_config_multiband.json
Normal file
@@ -0,0 +1,479 @@
|
||||
{
|
||||
"Edfa": [
|
||||
{
|
||||
"type_variety": "std_high_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 35,
|
||||
"gain_min": 25,
|
||||
"p_max": 21,
|
||||
"nf_min": 5.5,
|
||||
"nf_max": 7,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 23,
|
||||
"nf_min": 6.5,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "high_power",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 25,
|
||||
"nf_min": 9,
|
||||
"nf_max": 15,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_fixed_gain",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5.5,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "4pumps_raman",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 12,
|
||||
"gain_min": 12,
|
||||
"p_max": 21,
|
||||
"nf0": -1,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_lowgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_mediumgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_medium_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+low_gain",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+high_power",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "high_power",
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain_C",
|
||||
"f_min": 191.225e12,
|
||||
"f_max": 196.125e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain_L",
|
||||
"f_min": 186.5e12,
|
||||
"f_max": 190.1e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain",
|
||||
"f_min": 191.25e12,
|
||||
"f_max": 196.15e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 21,
|
||||
"nf_min": 7,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_reduced_band",
|
||||
"f_min": 192.25e12,
|
||||
"f_max": 196.15e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 21,
|
||||
"nf_min": 7,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_bis",
|
||||
"f_min": 191.25e12,
|
||||
"f_max": 196.15e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 21,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_L_ter",
|
||||
"f_min": 186.55e12,
|
||||
"f_max": 190.05e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 16,
|
||||
"nf_min": 7,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_L",
|
||||
"f_min": 186.55e12,
|
||||
"f_max": 190.05e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 21,
|
||||
"nf_min": 7,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_L_reduced_band",
|
||||
"f_min": 187.3e12,
|
||||
"f_max": 190.05e12,
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 21,
|
||||
"nf_min": 7,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "test",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"nf_min": 5.8,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "test_fixed_gain",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_booster",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_booster_L",
|
||||
"f_min": 186.55e12,
|
||||
"f_max": 190.05e12,
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_booster_multiband",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_booster",
|
||||
"std_booster_L"
|
||||
],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain_multiband",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_medium_gain_C",
|
||||
"std_medium_gain_L"
|
||||
],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_multiband",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_low_gain",
|
||||
"std_low_gain_L"
|
||||
],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_multiband_ter",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_low_gain",
|
||||
"std_low_gain_L_ter"
|
||||
],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_multiband_bis",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_low_gain_bis",
|
||||
"std_low_gain_L"
|
||||
],
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_multiband_reduced",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_low_gain_reduced",
|
||||
"std_low_gain_L"
|
||||
],
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain_multiband_reduced",
|
||||
"type_def": "multi_band",
|
||||
"amplifiers": [
|
||||
"std_low_gain_bis",
|
||||
"std_low_gain_L_reduced_band"
|
||||
],
|
||||
"allowed_for_design": true
|
||||
}
|
||||
],
|
||||
"Fiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"effective_area": 72e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"effective_area": 125e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"Span": [
|
||||
{
|
||||
"power_mode": true,
|
||||
"delta_power_range_db": [
|
||||
-2,
|
||||
3,
|
||||
0.5
|
||||
],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 2.5,
|
||||
"max_length": 150,
|
||||
"length_units": "km",
|
||||
"max_loss": 28,
|
||||
"padding": 10,
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
],
|
||||
"Roadm": [
|
||||
{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 38,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
}
|
||||
}
|
||||
],
|
||||
"SI": [
|
||||
{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max": 195.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 0,
|
||||
"power_range_db": [
|
||||
0,
|
||||
0,
|
||||
1
|
||||
],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"sys_margins": 2
|
||||
},
|
||||
{
|
||||
"type_variety": "lband",
|
||||
"f_min": 186.3e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max": 190.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 0,
|
||||
"power_range_db": [
|
||||
0,
|
||||
0,
|
||||
1
|
||||
],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"sys_margins": 2
|
||||
}
|
||||
],
|
||||
"Transceiver": [
|
||||
{
|
||||
"type_variety": "vendorA_trx-type1",
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 11,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 15,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"type_variety": "Voyager",
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 3",
|
||||
"baud_rate": 44e9,
|
||||
"OSNR": 18,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 62.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "mode 4",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 16,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
371
gnpy/example-data/eqpt_config_openroadm_ver4.json
Normal file
371
gnpy/example-data/eqpt_config_openroadm_ver4.json
Normal file
@@ -0,0 +1,371 @@
|
||||
{
|
||||
"Edfa": [
|
||||
{
|
||||
"type_variety": "openroadm_ila_low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-8.104e-4,
|
||||
-6.221e-2,
|
||||
-5.889e-1,
|
||||
37.62
|
||||
],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_ila_standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-5.952e-4,
|
||||
-6.250e-2,
|
||||
-1.071,
|
||||
28.99
|
||||
],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp",
|
||||
"type_def": "openroadm_preamp",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_booster",
|
||||
"type_def": "openroadm_booster",
|
||||
"gain_flatmax": 32,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
}
|
||||
],
|
||||
"Fiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"effective_area": 72e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"effective_area": 125e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"Span": [
|
||||
{
|
||||
"power_mode": true,
|
||||
"delta_power_range_db": [
|
||||
0,
|
||||
0,
|
||||
0
|
||||
],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 0,
|
||||
"max_length": 135,
|
||||
"length_units": "km",
|
||||
"max_loss": 28,
|
||||
"padding": 11,
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
],
|
||||
"Roadm": [
|
||||
{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 30,
|
||||
"pmd": 3e-12,
|
||||
"pdl": 1.5,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [
|
||||
"openroadm_mw_mw_preamp"
|
||||
],
|
||||
"booster_variety_list": [
|
||||
"openroadm_mw_mw_booster"
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"SI": [
|
||||
{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 31.57e9,
|
||||
"f_max": 196.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 2,
|
||||
"power_range_db": [
|
||||
0,
|
||||
0,
|
||||
1
|
||||
],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 35,
|
||||
"sys_margins": 2
|
||||
}
|
||||
],
|
||||
"Transceiver": [
|
||||
{
|
||||
"type_variety": "OpenROADM MSA ver. 4.0",
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
|
||||
"baud_rate": 27.95e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": null,
|
||||
"tx_osnr": 33,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 35,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 40e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, DP-QPSK",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 24e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "300 Gbit/s, DP-8QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "400 Gbit/s, DP-16QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 24,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 12e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 20,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
441
gnpy/example-data/eqpt_config_openroadm_ver5.json
Normal file
441
gnpy/example-data/eqpt_config_openroadm_ver5.json
Normal file
@@ -0,0 +1,441 @@
|
||||
{
|
||||
"Edfa": [
|
||||
{
|
||||
"type_variety": "openroadm_ila_low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-8.104e-4,
|
||||
-6.221e-2,
|
||||
-5.889e-1,
|
||||
37.62
|
||||
],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_ila_standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-5.952e-4,
|
||||
-6.250e-2,
|
||||
-1.071,
|
||||
28.99
|
||||
],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-5.952e-4,
|
||||
-6.250e-2,
|
||||
-1.071,
|
||||
28.99
|
||||
],
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [
|
||||
-5.952e-4,
|
||||
-6.250e-2,
|
||||
-1.071,
|
||||
27.99
|
||||
],
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_booster",
|
||||
"type_def": "openroadm_booster",
|
||||
"gain_flatmax": 32,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
}
|
||||
],
|
||||
"Fiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"effective_area": 72e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"effective_area": 125e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"Span": [
|
||||
{
|
||||
"power_mode": true,
|
||||
"delta_power_range_db": [
|
||||
0,
|
||||
0,
|
||||
0
|
||||
],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 0,
|
||||
"max_length": 135,
|
||||
"length_units": "km",
|
||||
"max_loss": 28,
|
||||
"padding": 11,
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
],
|
||||
"Roadm": [
|
||||
{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 33,
|
||||
"pmd": 3e-12,
|
||||
"pdl": 1.5,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [
|
||||
"openroadm_mw_mw_preamp_worstcase_ver5"
|
||||
],
|
||||
"booster_variety_list": [
|
||||
"openroadm_mw_mw_booster"
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"SI": [
|
||||
{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 31.57e9,
|
||||
"f_max": 196.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 2,
|
||||
"power_range_db": [
|
||||
0,
|
||||
0,
|
||||
1
|
||||
],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 35,
|
||||
"sys_margins": 2
|
||||
}
|
||||
],
|
||||
"Transceiver": [
|
||||
{
|
||||
"type_variety": "OpenROADM MSA ver. 5.0",
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
|
||||
"baud_rate": 27.95e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": null,
|
||||
"tx_osnr": 33,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 48e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 20.5,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 24e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, DP-QPSK",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 24e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "300 Gbit/s, DP-8QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "400 Gbit/s, DP-16QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 24,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 12e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 20,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
12
gnpy/example-data/initial_spectrum1.json
Normal file
12
gnpy/example-data/initial_spectrum1.json
Normal file
@@ -0,0 +1,12 @@
|
||||
{
|
||||
"spectrum": [
|
||||
{
|
||||
"f_min": 191.35e12,
|
||||
"f_max": 195.1e12,
|
||||
"baud_rate": 32e9,
|
||||
"slot_width": 50e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40
|
||||
}
|
||||
]
|
||||
}
|
||||
23
gnpy/example-data/initial_spectrum2.json
Normal file
23
gnpy/example-data/initial_spectrum2.json
Normal file
@@ -0,0 +1,23 @@
|
||||
{
|
||||
"spectrum": [
|
||||
{
|
||||
"f_min": 191.4e12,
|
||||
"f_max": 193.1e12,
|
||||
"baud_rate": 32e9,
|
||||
"slot_width": 50e9,
|
||||
"delta_pdb": 0,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"label": "mode_1"
|
||||
},
|
||||
{
|
||||
"f_min": 193.1625e12,
|
||||
"f_max": 195e12,
|
||||
"baud_rate": 64e9,
|
||||
"slot_width": 75e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"label": "mode_2"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -624,6 +624,70 @@
|
||||
"con_out": null
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Quimper",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Quimper",
|
||||
"region": "RLD",
|
||||
"latitude": 1.0,
|
||||
"longitude": 1.0
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"tilt_target": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Ploermel",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Ploermel",
|
||||
"region": "RLD",
|
||||
"latitude": 1.0,
|
||||
"longitude": 2.0
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"tilt_target": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Quimper",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Quimper",
|
||||
"region": "RLD",
|
||||
"latitude": 1.0,
|
||||
"longitude": 1.0
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"tilt_target": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Ploermel",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Ploermel",
|
||||
"region": "RLD",
|
||||
"latitude": 1.0,
|
||||
"longitude": 2.0
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"tilt_target": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Lannion_CAS to Corlay",
|
||||
"metadata": {
|
||||
@@ -635,7 +699,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -643,6 +707,21 @@
|
||||
"out_voa": null
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Lorient_KMA to Vannes_KBE",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Lorient_KMA",
|
||||
"region": "RLD",
|
||||
"latitude": 2.0,
|
||||
"longitude": 3.0
|
||||
}
|
||||
},
|
||||
"type": "Fused",
|
||||
"params": {
|
||||
"loss": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Lannion_CAS to Stbrieuc",
|
||||
"metadata": {
|
||||
@@ -654,7 +733,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -692,7 +771,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -711,7 +790,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -730,7 +809,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -749,7 +828,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -768,7 +847,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -787,7 +866,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_high_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -882,7 +961,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_high_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -901,7 +980,7 @@
|
||||
}
|
||||
},
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": null,
|
||||
"delta_p": 1.0,
|
||||
@@ -946,21 +1025,6 @@
|
||||
"tilt_target": 0,
|
||||
"out_voa": null
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Lorient_KMA to Vannes_KBE",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Lorient_KMA",
|
||||
"region": "RLD",
|
||||
"latitude": 2.0,
|
||||
"longitude": 3.0
|
||||
}
|
||||
},
|
||||
"type": "Fused",
|
||||
"params": {
|
||||
"loss": 0
|
||||
}
|
||||
}
|
||||
],
|
||||
"connections": [
|
||||
@@ -1190,18 +1254,34 @@
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Brest_KLA → Quimper)-",
|
||||
"to_node": "west edfa in Quimper"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Quimper",
|
||||
"to_node": "fiber (Quimper → Lorient_KMA)-"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Lorient_KMA → Quimper)-",
|
||||
"to_node": "east edfa in Quimper"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Quimper",
|
||||
"to_node": "fiber (Quimper → Brest_KLA)-"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Vannes_KBE → Ploermel)-",
|
||||
"to_node": "west edfa in Ploermel"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Ploermel",
|
||||
"to_node": "fiber (Ploermel → Rennes_STA)-"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Rennes_STA → Ploermel)-",
|
||||
"to_node": "east edfa in Ploermel"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Ploermel",
|
||||
"to_node": "fiber (Ploermel → Vannes_KBE)-"
|
||||
},
|
||||
{
|
||||
@@ -1245,4 +1325,4 @@
|
||||
"to_node": "trx Brest_KLA"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
Binary file not shown.
1894
gnpy/example-data/multiband_example_network.json
Normal file
1894
gnpy/example-data/multiband_example_network.json
Normal file
File diff suppressed because it is too large
Load Diff
24
gnpy/example-data/multiband_spectrum.json
Normal file
24
gnpy/example-data/multiband_spectrum.json
Normal file
@@ -0,0 +1,24 @@
|
||||
{
|
||||
"spectrum": [
|
||||
{
|
||||
"f_min": 191.25e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max": 195.1e12,
|
||||
"slot_width": 50e9,
|
||||
"delta_pdb": 0,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"label": "cband"
|
||||
},
|
||||
{
|
||||
"f_min": 186.3e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max": 190.1e12,
|
||||
"slot_width": 50e9,
|
||||
"delta_pdb": 0,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"label": "lband"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -20,12 +20,12 @@
|
||||
"temperature": 283,
|
||||
"raman_pumps": [
|
||||
{
|
||||
"power": 200e-3,
|
||||
"power": 224.403e-3,
|
||||
"frequency": 205e12,
|
||||
"propagation_direction": "counterprop"
|
||||
},
|
||||
{
|
||||
"power": 206e-3,
|
||||
"power": 231.135e-3,
|
||||
"frequency": 201e12,
|
||||
"propagation_direction": "counterprop"
|
||||
}
|
||||
@@ -49,6 +49,21 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Fused1",
|
||||
"type": "Fused",
|
||||
"params": {
|
||||
"loss": 0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 1.5,
|
||||
"longitude": 0,
|
||||
"city": null,
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Edfa1",
|
||||
"type": "Edfa",
|
||||
@@ -88,6 +103,10 @@
|
||||
},
|
||||
{
|
||||
"from_node": "Span1",
|
||||
"to_node": "Fused1"
|
||||
},
|
||||
{
|
||||
"from_node": "Fused1",
|
||||
"to_node": "Edfa1"
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,14 +1,19 @@
|
||||
{
|
||||
"raman_parameters": {
|
||||
"flag_raman": true,
|
||||
"space_resolution": 10e3,
|
||||
"tolerance": 1e-8
|
||||
"raman_params": {
|
||||
"flag": true,
|
||||
"result_spatial_resolution": 10e3,
|
||||
"solver_spatial_resolution": 50
|
||||
},
|
||||
"nli_parameters": {
|
||||
"nli_method_name": "ggn_spectrally_separated",
|
||||
"wdm_grid_size": 50e9,
|
||||
"dispersion_tolerance": 1,
|
||||
"phase_shift_tolerance": 0.1,
|
||||
"computed_channels": [1, 18, 37, 56, 75]
|
||||
"nli_params": {
|
||||
"method": "ggn_spectrally_separated",
|
||||
"dispersion_tolerance": 1,
|
||||
"phase_shift_tolerance": 0.1,
|
||||
"computed_channels": [
|
||||
1,
|
||||
18,
|
||||
37,
|
||||
56,
|
||||
75
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,303 +1,304 @@
|
||||
{ "nf_fit_coeff": [
|
||||
0.000168241,
|
||||
0.0469961,
|
||||
0.0359549,
|
||||
5.82851
|
||||
],
|
||||
"f_min": 191.35e12,
|
||||
"f_max": 196.1e12,
|
||||
"nf_ripple": [
|
||||
-0.3110761646066259,
|
||||
-0.3110761646066259,
|
||||
-0.31110274831665313,
|
||||
-0.31419329378173544,
|
||||
-0.3172854168606314,
|
||||
-0.32037911876162584,
|
||||
-0.3233255190215882,
|
||||
-0.31624321721895354,
|
||||
-0.30915729645781326,
|
||||
-0.30206775396360075,
|
||||
-0.2949045115165272,
|
||||
-0.26632156113294336,
|
||||
-0.23772399031437283,
|
||||
-0.20911178784023846,
|
||||
-0.18048410390821285,
|
||||
-0.14379944379052215,
|
||||
-0.10709599992470213,
|
||||
-0.07037375788020579,
|
||||
-0.03372858157230583,
|
||||
-0.015660302006048,
|
||||
0.0024172385953583004,
|
||||
0.020504047353947653,
|
||||
0.03860013139908377,
|
||||
0.05670549786742816,
|
||||
0.07482015390297145,
|
||||
0.0838762040768461,
|
||||
0.09284481475528361,
|
||||
0.1018180306253394,
|
||||
0.11079585523492333,
|
||||
0.1020395478432815,
|
||||
0.09310160456603413,
|
||||
0.08415906712621996,
|
||||
0.07521193198077789,
|
||||
0.0676340601339394,
|
||||
0.06005437964543287,
|
||||
0.052470799141237305,
|
||||
0.044883315610536455,
|
||||
0.037679759069084225,
|
||||
0.03047647598902483,
|
||||
0.02326948274513522,
|
||||
0.01605877647020772,
|
||||
0.021248462316134083,
|
||||
0.02657315875107553,
|
||||
0.03190060058247842,
|
||||
0.03723078993416436,
|
||||
0.04256372893215024,
|
||||
0.047899419704645264,
|
||||
0.03915515813685565,
|
||||
0.030289222542492025,
|
||||
0.021418708618354456,
|
||||
0.012573926129294415,
|
||||
0.006240488799898697,
|
||||
-9.622162373026585e-05,
|
||||
-0.006436207679519103,
|
||||
-0.012779471908040341,
|
||||
-0.02038153550619876,
|
||||
-0.027999803010447587,
|
||||
-0.035622012697103154,
|
||||
-0.043236398934156144,
|
||||
-0.04493583574805963,
|
||||
-0.04663615264317309,
|
||||
-0.048337350303318156,
|
||||
-0.050039429413028365,
|
||||
-0.051742390657545205,
|
||||
-0.05342028484370278,
|
||||
-0.05254242298580185,
|
||||
-0.05166410580536087,
|
||||
-0.05078533294804249,
|
||||
-0.04990610405914272,
|
||||
-0.05409792133358102,
|
||||
-0.05832916277634124,
|
||||
-0.06256260169582961,
|
||||
-0.06660356886269536,
|
||||
-0.04779792991567815,
|
||||
-0.028982516728038848,
|
||||
-0.010157321677553965,
|
||||
0.00861320615127981,
|
||||
0.01913736978785662,
|
||||
0.029667009055877668,
|
||||
0.04020212822983975,
|
||||
0.050742731588695494,
|
||||
0.061288823415841555,
|
||||
0.07184040799914815,
|
||||
0.1043252636301016,
|
||||
0.13687829834471027,
|
||||
0.1694483010211072,
|
||||
0.202035284929368,
|
||||
0.23624619427167134,
|
||||
0.27048596623174515,
|
||||
0.30474360397422756,
|
||||
0.3390191214858807,
|
||||
0.36358851509924695,
|
||||
0.38814205928193013,
|
||||
0.41270842850729195,
|
||||
0.4372876328262819,
|
||||
0.4372876328262819
|
||||
],
|
||||
"dgt": [
|
||||
2.714526681131686,
|
||||
2.705443819238505,
|
||||
2.6947834587664494,
|
||||
2.6841217449620203,
|
||||
2.6681935771243177,
|
||||
2.6521732021128046,
|
||||
2.630396440815385,
|
||||
2.602860350286428,
|
||||
2.5696460593920065,
|
||||
2.5364027376452056,
|
||||
2.499446286796604,
|
||||
2.4587748041127506,
|
||||
2.414398437185221,
|
||||
2.3699990328716107,
|
||||
2.322373696229342,
|
||||
2.271520771371253,
|
||||
2.2174389328192197,
|
||||
2.16337565384239,
|
||||
2.1183028432496016,
|
||||
2.082225099873648,
|
||||
2.055100772005235,
|
||||
2.0279625371819305,
|
||||
2.0008103857988204,
|
||||
1.9736443063300082,
|
||||
1.9482128147680253,
|
||||
1.9245345552113182,
|
||||
1.9026104247588487,
|
||||
1.8806927939516411,
|
||||
1.862235672444246,
|
||||
1.847275503201129,
|
||||
1.835814081380705,
|
||||
1.824381436842932,
|
||||
1.8139629377087627,
|
||||
1.8045606557581335,
|
||||
1.7961751115773796,
|
||||
1.7877868031023945,
|
||||
1.7793941781790852,
|
||||
1.7709972329654864,
|
||||
1.7625959636196327,
|
||||
1.7541903672600494,
|
||||
1.7459181197626403,
|
||||
1.737780757913635,
|
||||
1.7297783508684146,
|
||||
1.7217732861435076,
|
||||
1.7137640932265894,
|
||||
1.7057507692361864,
|
||||
1.6918150918099673,
|
||||
1.6719047669939942,
|
||||
1.6460167077689267,
|
||||
1.6201194134191075,
|
||||
1.5986915141218316,
|
||||
1.5817353179379183,
|
||||
1.569199764184379,
|
||||
1.5566577309558969,
|
||||
1.545374152761467,
|
||||
1.5353620432989845,
|
||||
1.5266220576235803,
|
||||
1.5178910621476225,
|
||||
1.5097346239790443,
|
||||
1.502153039909686,
|
||||
1.495145456062699,
|
||||
1.488134243479226,
|
||||
1.48111939735681,
|
||||
1.474100442252211,
|
||||
1.4670307626366115,
|
||||
1.4599103316162523,
|
||||
1.45273959485914,
|
||||
1.445565137158368,
|
||||
1.4340878115214444,
|
||||
1.418273806730323,
|
||||
1.3981208704326855,
|
||||
1.3779439775587023,
|
||||
1.3598972673004606,
|
||||
1.3439818461440451,
|
||||
1.3301807335621048,
|
||||
1.316383926863083,
|
||||
1.3040618749785347,
|
||||
1.2932153453410835,
|
||||
1.2838336236692311,
|
||||
1.2744470198196236,
|
||||
1.2650555289898042,
|
||||
1.2556591482982988,
|
||||
1.2428104897182262,
|
||||
1.2264996957264114,
|
||||
1.2067249615595257,
|
||||
1.1869318618366975,
|
||||
1.1672278304018044,
|
||||
1.1476135933863398,
|
||||
1.1280891949729075,
|
||||
1.108555289615659,
|
||||
1.0895983485572227,
|
||||
1.0712204022764056,
|
||||
1.0534217504465226,
|
||||
1.0356155337864215,
|
||||
1.017807767853702,
|
||||
1.0
|
||||
],
|
||||
"gain_ripple": [
|
||||
0.1359703369791596,
|
||||
0.11822862697916037,
|
||||
0.09542181697916163,
|
||||
0.06245819697916133,
|
||||
0.02602813697916062,
|
||||
-0.0036199830208403228,
|
||||
-0.018326963020840026,
|
||||
-0.0246928330208398,
|
||||
-0.016792253020838643,
|
||||
-0.0028138630208403015,
|
||||
0.017572956979162058,
|
||||
0.038328296979159404,
|
||||
0.054956336979159914,
|
||||
0.0670723869791594,
|
||||
0.07091459697916136,
|
||||
0.07094413697916124,
|
||||
0.07114372697916238,
|
||||
0.07533675697916209,
|
||||
0.08731066697916035,
|
||||
0.10313984697916112,
|
||||
0.12276252697916235,
|
||||
0.14239527697916188,
|
||||
0.15945681697916214,
|
||||
0.1739275269791598,
|
||||
0.1767381569791624,
|
||||
0.17037189697916233,
|
||||
0.15216302697916007,
|
||||
0.13114358697916018,
|
||||
0.10802383697916085,
|
||||
0.08548825697916129,
|
||||
0.06916723697916183,
|
||||
0.05848224697916038,
|
||||
0.05447361697916264,
|
||||
0.05154489697916276,
|
||||
0.04946107697915991,
|
||||
0.04717897697916129,
|
||||
0.04551704697916037,
|
||||
0.04467697697916151,
|
||||
0.04072968697916224,
|
||||
0.03285456697916089,
|
||||
0.023488786979161347,
|
||||
0.01659282697915998,
|
||||
0.013321846979160057,
|
||||
0.011234826979162449,
|
||||
0.01030063697916006,
|
||||
0.00936596697916059,
|
||||
0.00874012697916271,
|
||||
0.00842583697916055,
|
||||
0.006965146979162284,
|
||||
0.0040435869791615175,
|
||||
0.0007104669791608842,
|
||||
-0.0015763130208377163,
|
||||
-0.006936193020838033,
|
||||
-0.016475303020840215,
|
||||
-0.028748483020837767,
|
||||
-0.039618433020837784,
|
||||
-0.051112303020840244,
|
||||
-0.06468462302083822,
|
||||
-0.07868024302083754,
|
||||
-0.09101254302083817,
|
||||
-0.10103437302083762,
|
||||
-0.11041488302083735,
|
||||
-0.11916081302083725,
|
||||
-0.12789859302083784,
|
||||
-0.1353792530208402,
|
||||
-0.14160178302083892,
|
||||
-0.1455411330208385,
|
||||
-0.1484450830208388,
|
||||
-0.14823350302084037,
|
||||
-0.14591937302083835,
|
||||
-0.1409032730208395,
|
||||
-0.13525493302083902,
|
||||
-0.1279646530208396,
|
||||
-0.11963431302083904,
|
||||
-0.11089282302084058,
|
||||
-0.1027863830208382,
|
||||
-0.09717347302083823,
|
||||
-0.09343261302083761,
|
||||
-0.0913487130208388,
|
||||
-0.08906007302083907,
|
||||
-0.0865687230208394,
|
||||
-0.08407607302083875,
|
||||
-0.07844600302084004,
|
||||
-0.06968090302083851,
|
||||
-0.05947139302083926,
|
||||
-0.05095282302083959,
|
||||
-0.042428283020839785,
|
||||
-0.03218106302083967,
|
||||
-0.01819858302084043,
|
||||
-0.0021726530208390216,
|
||||
0.01393231697916164,
|
||||
0.028098946979159933,
|
||||
0.040326236979161934,
|
||||
0.05257029697916238,
|
||||
0.06479749697916048,
|
||||
0.07704745697916238
|
||||
]
|
||||
}
|
||||
{
|
||||
"nf_fit_coeff": [
|
||||
0.000168241,
|
||||
0.0469961,
|
||||
0.0359549,
|
||||
5.82851
|
||||
],
|
||||
"f_min": 191.275e12,
|
||||
"f_max": 196.125e12,
|
||||
"nf_ripple": [
|
||||
0.4372876328262819,
|
||||
0.4372876328262819,
|
||||
0.41270842850729195,
|
||||
0.38814205928193013,
|
||||
0.36358851509924695,
|
||||
0.3390191214858807,
|
||||
0.30474360397422756,
|
||||
0.27048596623174515,
|
||||
0.23624619427167134,
|
||||
0.202035284929368,
|
||||
0.1694483010211072,
|
||||
0.13687829834471027,
|
||||
0.1043252636301016,
|
||||
0.07184040799914815,
|
||||
0.061288823415841555,
|
||||
0.050742731588695494,
|
||||
0.04020212822983975,
|
||||
0.029667009055877668,
|
||||
0.01913736978785662,
|
||||
0.00861320615127981,
|
||||
-0.010157321677553965,
|
||||
-0.028982516728038848,
|
||||
-0.04779792991567815,
|
||||
-0.06660356886269536,
|
||||
-0.06256260169582961,
|
||||
-0.05832916277634124,
|
||||
-0.05409792133358102,
|
||||
-0.04990610405914272,
|
||||
-0.05078533294804249,
|
||||
-0.05166410580536087,
|
||||
-0.05254242298580185,
|
||||
-0.05342028484370278,
|
||||
-0.051742390657545205,
|
||||
-0.050039429413028365,
|
||||
-0.048337350303318156,
|
||||
-0.04663615264317309,
|
||||
-0.04493583574805963,
|
||||
-0.043236398934156144,
|
||||
-0.035622012697103154,
|
||||
-0.027999803010447587,
|
||||
-0.02038153550619876,
|
||||
-0.012779471908040341,
|
||||
-0.006436207679519103,
|
||||
-9.622162373026585e-05,
|
||||
0.006240488799898697,
|
||||
0.012573926129294415,
|
||||
0.021418708618354456,
|
||||
0.030289222542492025,
|
||||
0.03915515813685565,
|
||||
0.047899419704645264,
|
||||
0.04256372893215024,
|
||||
0.03723078993416436,
|
||||
0.03190060058247842,
|
||||
0.02657315875107553,
|
||||
0.021248462316134083,
|
||||
0.01605877647020772,
|
||||
0.02326948274513522,
|
||||
0.03047647598902483,
|
||||
0.037679759069084225,
|
||||
0.044883315610536455,
|
||||
0.052470799141237305,
|
||||
0.06005437964543287,
|
||||
0.0676340601339394,
|
||||
0.07521193198077789,
|
||||
0.08415906712621996,
|
||||
0.09310160456603413,
|
||||
0.1020395478432815,
|
||||
0.11079585523492333,
|
||||
0.1018180306253394,
|
||||
0.09284481475528361,
|
||||
0.0838762040768461,
|
||||
0.07482015390297145,
|
||||
0.05670549786742816,
|
||||
0.03860013139908377,
|
||||
0.020504047353947653,
|
||||
0.0024172385953583004,
|
||||
-0.015660302006048,
|
||||
-0.03372858157230583,
|
||||
-0.07037375788020579,
|
||||
-0.10709599992470213,
|
||||
-0.14379944379052215,
|
||||
-0.18048410390821285,
|
||||
-0.20911178784023846,
|
||||
-0.23772399031437283,
|
||||
-0.26632156113294336,
|
||||
-0.2949045115165272,
|
||||
-0.30206775396360075,
|
||||
-0.30915729645781326,
|
||||
-0.31624321721895354,
|
||||
-0.3233255190215882,
|
||||
-0.32037911876162584,
|
||||
-0.3172854168606314,
|
||||
-0.31419329378173544,
|
||||
-0.31110274831665313,
|
||||
-0.3110761646066259,
|
||||
-0.3110761646066259
|
||||
],
|
||||
"dgt": [
|
||||
1.0,
|
||||
1.017807767853702,
|
||||
1.0356155337864215,
|
||||
1.0534217504465226,
|
||||
1.0712204022764056,
|
||||
1.0895983485572227,
|
||||
1.108555289615659,
|
||||
1.1280891949729075,
|
||||
1.1476135933863398,
|
||||
1.1672278304018044,
|
||||
1.1869318618366975,
|
||||
1.2067249615595257,
|
||||
1.2264996957264114,
|
||||
1.2428104897182262,
|
||||
1.2556591482982988,
|
||||
1.2650555289898042,
|
||||
1.2744470198196236,
|
||||
1.2838336236692311,
|
||||
1.2932153453410835,
|
||||
1.3040618749785347,
|
||||
1.316383926863083,
|
||||
1.3301807335621048,
|
||||
1.3439818461440451,
|
||||
1.3598972673004606,
|
||||
1.3779439775587023,
|
||||
1.3981208704326855,
|
||||
1.418273806730323,
|
||||
1.4340878115214444,
|
||||
1.445565137158368,
|
||||
1.45273959485914,
|
||||
1.4599103316162523,
|
||||
1.4670307626366115,
|
||||
1.474100442252211,
|
||||
1.48111939735681,
|
||||
1.488134243479226,
|
||||
1.495145456062699,
|
||||
1.502153039909686,
|
||||
1.5097346239790443,
|
||||
1.5178910621476225,
|
||||
1.5266220576235803,
|
||||
1.5353620432989845,
|
||||
1.545374152761467,
|
||||
1.5566577309558969,
|
||||
1.569199764184379,
|
||||
1.5817353179379183,
|
||||
1.5986915141218316,
|
||||
1.6201194134191075,
|
||||
1.6460167077689267,
|
||||
1.6719047669939942,
|
||||
1.6918150918099673,
|
||||
1.7057507692361864,
|
||||
1.7137640932265894,
|
||||
1.7217732861435076,
|
||||
1.7297783508684146,
|
||||
1.737780757913635,
|
||||
1.7459181197626403,
|
||||
1.7541903672600494,
|
||||
1.7625959636196327,
|
||||
1.7709972329654864,
|
||||
1.7793941781790852,
|
||||
1.7877868031023945,
|
||||
1.7961751115773796,
|
||||
1.8045606557581335,
|
||||
1.8139629377087627,
|
||||
1.824381436842932,
|
||||
1.835814081380705,
|
||||
1.847275503201129,
|
||||
1.862235672444246,
|
||||
1.8806927939516411,
|
||||
1.9026104247588487,
|
||||
1.9245345552113182,
|
||||
1.9482128147680253,
|
||||
1.9736443063300082,
|
||||
2.0008103857988204,
|
||||
2.0279625371819305,
|
||||
2.055100772005235,
|
||||
2.082225099873648,
|
||||
2.1183028432496016,
|
||||
2.16337565384239,
|
||||
2.2174389328192197,
|
||||
2.271520771371253,
|
||||
2.322373696229342,
|
||||
2.3699990328716107,
|
||||
2.414398437185221,
|
||||
2.4587748041127506,
|
||||
2.499446286796604,
|
||||
2.5364027376452056,
|
||||
2.5696460593920065,
|
||||
2.602860350286428,
|
||||
2.630396440815385,
|
||||
2.6521732021128046,
|
||||
2.6681935771243177,
|
||||
2.6841217449620203,
|
||||
2.6947834587664494,
|
||||
2.705443819238505,
|
||||
2.714526681131686
|
||||
],
|
||||
"gain_ripple": [
|
||||
0.07704745697916238,
|
||||
0.06479749697916048,
|
||||
0.05257029697916238,
|
||||
0.040326236979161934,
|
||||
0.028098946979159933,
|
||||
0.01393231697916164,
|
||||
-0.0021726530208390216,
|
||||
-0.01819858302084043,
|
||||
-0.03218106302083967,
|
||||
-0.042428283020839785,
|
||||
-0.05095282302083959,
|
||||
-0.05947139302083926,
|
||||
-0.06968090302083851,
|
||||
-0.07844600302084004,
|
||||
-0.08407607302083875,
|
||||
-0.0865687230208394,
|
||||
-0.08906007302083907,
|
||||
-0.0913487130208388,
|
||||
-0.09343261302083761,
|
||||
-0.09717347302083823,
|
||||
-0.1027863830208382,
|
||||
-0.11089282302084058,
|
||||
-0.11963431302083904,
|
||||
-0.1279646530208396,
|
||||
-0.13525493302083902,
|
||||
-0.1409032730208395,
|
||||
-0.14591937302083835,
|
||||
-0.14823350302084037,
|
||||
-0.1484450830208388,
|
||||
-0.1455411330208385,
|
||||
-0.14160178302083892,
|
||||
-0.1353792530208402,
|
||||
-0.12789859302083784,
|
||||
-0.11916081302083725,
|
||||
-0.11041488302083735,
|
||||
-0.10103437302083762,
|
||||
-0.09101254302083817,
|
||||
-0.07868024302083754,
|
||||
-0.06468462302083822,
|
||||
-0.051112303020840244,
|
||||
-0.039618433020837784,
|
||||
-0.028748483020837767,
|
||||
-0.016475303020840215,
|
||||
-0.006936193020838033,
|
||||
-0.0015763130208377163,
|
||||
0.0007104669791608842,
|
||||
0.0040435869791615175,
|
||||
0.006965146979162284,
|
||||
0.00842583697916055,
|
||||
0.00874012697916271,
|
||||
0.00936596697916059,
|
||||
0.01030063697916006,
|
||||
0.011234826979162449,
|
||||
0.013321846979160057,
|
||||
0.01659282697915998,
|
||||
0.023488786979161347,
|
||||
0.03285456697916089,
|
||||
0.04072968697916224,
|
||||
0.04467697697916151,
|
||||
0.04551704697916037,
|
||||
0.04717897697916129,
|
||||
0.04946107697915991,
|
||||
0.05154489697916276,
|
||||
0.05447361697916264,
|
||||
0.05848224697916038,
|
||||
0.06916723697916183,
|
||||
0.08548825697916129,
|
||||
0.10802383697916085,
|
||||
0.13114358697916018,
|
||||
0.15216302697916007,
|
||||
0.17037189697916233,
|
||||
0.1767381569791624,
|
||||
0.1739275269791598,
|
||||
0.15945681697916214,
|
||||
0.14239527697916188,
|
||||
0.12276252697916235,
|
||||
0.10313984697916112,
|
||||
0.08731066697916035,
|
||||
0.07533675697916209,
|
||||
0.07114372697916238,
|
||||
0.07094413697916124,
|
||||
0.07091459697916136,
|
||||
0.0670723869791594,
|
||||
0.054956336979159914,
|
||||
0.038328296979159404,
|
||||
0.017572956979162058,
|
||||
-0.0028138630208403015,
|
||||
-0.016792253020838643,
|
||||
-0.0246928330208398,
|
||||
-0.018326963020840026,
|
||||
-0.0036199830208403228,
|
||||
0.02602813697916062,
|
||||
0.06245819697916133,
|
||||
0.09542181697916163,
|
||||
0.11822862697916037,
|
||||
0.1359703369791596
|
||||
]
|
||||
}
|
||||
|
||||
@@ -18,9 +18,9 @@ from gnpy.tools.json_io import load_equipment
|
||||
from gnpy.topology.request import jsontocsv
|
||||
|
||||
|
||||
parser = ArgumentParser(description='A function that writes json path results in an excel sheet.')
|
||||
parser.add_argument('filename', nargs='?', type=Path)
|
||||
parser.add_argument('output_filename', nargs='?', type=Path)
|
||||
parser = ArgumentParser(description='Converting JSON path results into a CSV')
|
||||
parser.add_argument('filename', type=Path)
|
||||
parser.add_argument('output_filename', type=Path)
|
||||
parser.add_argument('eqpt_filename', nargs='?', type=Path, default=Path(__file__).parent / 'eqpt_config.json')
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
'''
|
||||
"""
|
||||
Processing of data via :py:mod:`.json_io`.
|
||||
Utilities for Excel conversion in :py:mod:`.convert` and :py:mod:`.service_sheet`.
|
||||
Example code in :py:mod:`.cli_examples` and :py:mod:`.plots`.
|
||||
'''
|
||||
"""
|
||||
|
||||
@@ -1,37 +1,31 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.tools.cli_examples
|
||||
=======================
|
||||
|
||||
Common code for CLI examples
|
||||
'''
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from json import dumps
|
||||
import logging
|
||||
import os.path
|
||||
import sys
|
||||
from math import ceil
|
||||
from numpy import linspace, mean
|
||||
from pathlib import Path
|
||||
import gnpy.core.ansi_escapes as ansi_escapes
|
||||
from math import ceil
|
||||
from numpy import mean
|
||||
|
||||
from gnpy.core import ansi_escapes
|
||||
from gnpy.core.elements import Transceiver, Fiber, RamanFiber
|
||||
from gnpy.core.equipment import trx_mode_params
|
||||
import gnpy.core.exceptions as exceptions
|
||||
from gnpy.core.network import build_network
|
||||
from gnpy.core import exceptions
|
||||
from gnpy.core.parameters import SimParams
|
||||
from gnpy.core.science_utils import Simulation
|
||||
from gnpy.core.utils import db2lin, lin2db, automatic_nch
|
||||
from gnpy.topology.request import (ResultElement, jsontocsv, compute_path_dsjctn, requests_aggregation,
|
||||
BLOCKING_NOPATH, correct_json_route_list,
|
||||
deduplicate_disjunctions, compute_path_with_disjunction,
|
||||
PathRequest, compute_constrained_path, propagate2)
|
||||
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum
|
||||
from gnpy.tools.json_io import load_equipment, load_network, load_json, load_requests, save_network, \
|
||||
requests_from_json, disjunctions_from_json, save_json
|
||||
from gnpy.core.utils import lin2db, pretty_summary_print, per_label_average, watt2dbm
|
||||
from gnpy.topology.request import (ResultElement, jsontocsv, BLOCKING_NOPATH)
|
||||
from gnpy.tools.json_io import (load_equipment, load_network, load_json, load_requests, save_network,
|
||||
requests_from_json, save_json, load_initial_spectrum)
|
||||
from gnpy.tools.plots import plot_baseline, plot_results
|
||||
from gnpy.tools.worker_utils import designed_network, transmission_simulation, planning
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
_examples_dir = Path(__file__).parent.parent / 'example-data'
|
||||
@@ -50,7 +44,7 @@ def show_example_data_dir():
|
||||
|
||||
|
||||
def load_common_data(equipment_filename, topology_filename, simulation_filename, save_raw_network_filename):
|
||||
'''Load common configuration from JSON files'''
|
||||
"""Load common configuration from JSON files"""
|
||||
|
||||
try:
|
||||
equipment = load_equipment(equipment_filename)
|
||||
@@ -58,26 +52,27 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
|
||||
if save_raw_network_filename is not None:
|
||||
save_network(network, save_raw_network_filename)
|
||||
print(f'{ansi_escapes.blue}Raw network (no optimizations) saved to {save_raw_network_filename}{ansi_escapes.reset}')
|
||||
sim_params = SimParams(**load_json(simulation_filename)) if simulation_filename is not None else None
|
||||
if not sim_params:
|
||||
if not simulation_filename:
|
||||
sim_params = {}
|
||||
if next((node for node in network if isinstance(node, RamanFiber)), None) is not None:
|
||||
print(f'{ansi_escapes.red}Invocation error:{ansi_escapes.reset} '
|
||||
f'RamanFiber requires passing simulation params via --sim-params')
|
||||
sys.exit(1)
|
||||
else:
|
||||
Simulation.set_params(sim_params)
|
||||
sim_params = load_json(simulation_filename)
|
||||
SimParams.set_params(sim_params)
|
||||
except exceptions.EquipmentConfigError as e:
|
||||
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.NetworkTopologyError as e:
|
||||
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ConfigurationError as e:
|
||||
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ParametersError as e:
|
||||
print(f'{ansi_escapes.red}Simulation parameters error:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ConfigurationError as e:
|
||||
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ServiceError as e:
|
||||
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
@@ -86,7 +81,7 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
|
||||
|
||||
|
||||
def _setup_logging(args):
|
||||
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.CRITICAL}.get(args.verbose, logging.DEBUG))
|
||||
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.WARNING}.get(args.verbose, logging.DEBUG))
|
||||
|
||||
|
||||
def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
|
||||
@@ -104,19 +99,26 @@ def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
|
||||
help='Save the final network as a JSON file')
|
||||
parser.add_argument('--save-network-before-autodesign', type=Path, metavar=_help_fname_json,
|
||||
help='Dump the network into a JSON file prior to autodesign')
|
||||
parser.add_argument('--no-insert-edfas', action='store_true',
|
||||
help='Disable insertion of EDFAs after ROADMs and fibers '
|
||||
'as well as splitting of fibers by auto-design.')
|
||||
|
||||
|
||||
def transmission_main_example(args=None):
|
||||
"""Main script running a single simulation. It returns the detailed power across crossed elements and
|
||||
average performance accross all channels.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Send a full spectrum load through the network from point A to point B',
|
||||
epilog=_help_footer,
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
)
|
||||
_add_common_options(parser, network_default=_examples_dir / 'edfa_example_network.json')
|
||||
parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR summary')
|
||||
parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR and GSNR summary')
|
||||
parser.add_argument('-pl', '--plot', action='store_true')
|
||||
parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes')
|
||||
parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm')
|
||||
parser.add_argument('--spectrum', type=Path, help='user defined mixed rate spectrum JSON file')
|
||||
parser.add_argument('source', nargs='?', help='source node')
|
||||
parser.add_argument('destination', nargs='?', help='destination node')
|
||||
|
||||
@@ -141,19 +143,17 @@ def transmission_main_example(args=None):
|
||||
sys.exit()
|
||||
|
||||
# First try to find exact match if source/destination provided
|
||||
source = None
|
||||
if args.source:
|
||||
source = transceivers.pop(args.source, None)
|
||||
valid_source = True if source else False
|
||||
else:
|
||||
source = None
|
||||
_logger.info('No source node specified: picking random transceiver')
|
||||
valid_source = bool(source)
|
||||
|
||||
destination = None
|
||||
nodes_list = []
|
||||
loose_list = []
|
||||
if args.destination:
|
||||
destination = transceivers.pop(args.destination, None)
|
||||
valid_destination = True if destination else False
|
||||
else:
|
||||
destination = None
|
||||
_logger.info('No destination node specified: picking random transceiver')
|
||||
valid_destination = bool(destination)
|
||||
|
||||
# If no exact match try to find partial match
|
||||
if args.source and not source:
|
||||
@@ -170,85 +170,84 @@ def transmission_main_example(args=None):
|
||||
if not source:
|
||||
source = list(transceivers.values())[0]
|
||||
del transceivers[source.uid]
|
||||
_logger.info('No source node specified: picking random transceiver')
|
||||
|
||||
if not destination:
|
||||
destination = list(transceivers.values())[0]
|
||||
nodes_list = [destination.uid]
|
||||
loose_list = ['STRICT']
|
||||
_logger.info('No destination node specified: picking random transceiver')
|
||||
|
||||
_logger.info(f'source = {args.source!r}')
|
||||
_logger.info(f'destination = {args.destination!r}')
|
||||
|
||||
params = {}
|
||||
params['request_id'] = 0
|
||||
params['trx_type'] = ''
|
||||
params['trx_mode'] = ''
|
||||
params['source'] = source.uid
|
||||
params['destination'] = destination.uid
|
||||
params['bidir'] = False
|
||||
params['nodes_list'] = [destination.uid]
|
||||
params['loose_list'] = ['strict']
|
||||
params['format'] = ''
|
||||
params['path_bandwidth'] = 0
|
||||
params['effective_freq_slot'] = None
|
||||
trx_params = trx_mode_params(equipment)
|
||||
if args.power:
|
||||
trx_params['power'] = db2lin(float(args.power)) * 1e-3
|
||||
params.update(trx_params)
|
||||
req = PathRequest(**params)
|
||||
_logger.info(f'source = {source.uid!r}')
|
||||
_logger.info(f'destination = {destination.uid!r}')
|
||||
|
||||
initial_spectrum = None
|
||||
if args.spectrum:
|
||||
# use the spectrum defined by user for the propagation.
|
||||
# the nb of channel for design remains the one of the reference channel
|
||||
initial_spectrum = load_initial_spectrum(args.spectrum)
|
||||
print('User input for spectrum used for propagation instead of SI')
|
||||
power_mode = equipment['Span']['default'].power_mode
|
||||
print('\n'.join([f'Power mode is set to {power_mode}',
|
||||
f'=> it can be modified in eqpt_config.json - Span']))
|
||||
'=> it can be modified in eqpt_config.json - Span']))
|
||||
|
||||
pref_ch_db = lin2db(req.power * 1e3) # reference channel power / span (SL=20dB)
|
||||
pref_total_db = pref_ch_db + lin2db(req.nb_channel) # reference total power / span (SL=20dB)
|
||||
build_network(network, equipment, pref_ch_db, pref_total_db)
|
||||
path = compute_constrained_path(network, req)
|
||||
|
||||
spans = [s.params.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
|
||||
print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} '
|
||||
# Simulate !
|
||||
try:
|
||||
network, req, ref_req = designed_network(equipment, network, source.uid, destination.uid,
|
||||
nodes_list=nodes_list, loose_list=loose_list,
|
||||
args_power=args.power,
|
||||
initial_spectrum=initial_spectrum,
|
||||
no_insert_edfas=args.no_insert_edfas)
|
||||
path, propagations_for_path, powers_dbm, infos = transmission_simulation(equipment, network, req, ref_req)
|
||||
except exceptions.NetworkTopologyError as e:
|
||||
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ConfigurationError as e:
|
||||
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ServiceError as e:
|
||||
print(f'Service error: {e}')
|
||||
sys.exit(1)
|
||||
except ValueError:
|
||||
sys.exit(1)
|
||||
# print or export results
|
||||
spans = [s.params.length for s in path if isinstance(s, (Fiber, RamanFiber))]
|
||||
print(f'\nThere are {len(spans)} fiber spans over {sum(spans) / 1000:.0f} km between {source.uid} '
|
||||
f'and {destination.uid}')
|
||||
print(f'\nNow propagating between {source.uid} and {destination.uid}:')
|
||||
|
||||
try:
|
||||
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
|
||||
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
|
||||
power_range = list(linspace(p_start, p_stop, p_num))
|
||||
except TypeError:
|
||||
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
|
||||
power_range = [0]
|
||||
|
||||
if not power_mode:
|
||||
# power cannot be changed in gain mode
|
||||
power_range = [0]
|
||||
for dp_db in power_range:
|
||||
req.power = db2lin(pref_ch_db + dp_db) * 1e-3
|
||||
print(f'Reference used for design: (Input optical power reference in span = {watt2dbm(ref_req.power):.2f}dBm,\n'
|
||||
+ f' spacing = {ref_req.spacing * 1e-9:.2f}GHz\n'
|
||||
+ f' nb_channels = {ref_req.nb_channel})')
|
||||
print('\nChannels propagating: (Input optical power deviation in span = '
|
||||
+ f'{pretty_summary_print(per_label_average(infos.delta_pdb_per_channel, infos.label))}dB,\n'
|
||||
+ ' spacing = '
|
||||
+ f'{pretty_summary_print(per_label_average(infos.slot_width * 1e-9, infos.label))}GHz,\n'
|
||||
+ ' transceiver output power = '
|
||||
+ f'{pretty_summary_print(per_label_average(watt2dbm(infos.tx_power), infos.label))}dBm,\n'
|
||||
+ f' nb_channels = {infos.number_of_channels})')
|
||||
for mypath, power_dbm in zip(propagations_for_path, powers_dbm):
|
||||
if power_mode:
|
||||
print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:')
|
||||
print(f'Input optical power reference in span = {ansi_escapes.cyan}{power_dbm:.2f} '
|
||||
+ f'dBm{ansi_escapes.reset}:')
|
||||
else:
|
||||
print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
|
||||
infos = propagate2(path, req, equipment)
|
||||
if len(power_range) == 1:
|
||||
for elem in path:
|
||||
print('\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
|
||||
if len(powers_dbm) == 1:
|
||||
for elem in mypath:
|
||||
print(elem)
|
||||
if power_mode:
|
||||
print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f} dBm:')
|
||||
print(f'\nTransmission result for input optical power reference in span = {power_dbm:.2f} dBm:')
|
||||
else:
|
||||
print(f'\nTransmission results:')
|
||||
print(f' Final SNR total (0.1 nm): {ansi_escapes.cyan}{mean(destination.snr_01nm):.02f} dB{ansi_escapes.reset}')
|
||||
print('\nTransmission results:')
|
||||
print(f' Final GSNR (0.1 nm): {ansi_escapes.cyan}{mean(destination.snr_01nm):.02f} dB{ansi_escapes.reset}')
|
||||
else:
|
||||
print(path[-1])
|
||||
|
||||
# print(f'\n !!!!!!!!!!!!!!!!! TEST POINT !!!!!!!!!!!!!!!!!!!!!')
|
||||
# print(f'carriers ase output of {path[1]} =\n {list(path[1].carriers("out", "nli"))}')
|
||||
# => use "in" or "out" parameter
|
||||
# => use "nli" or "ase" or "signal" or "total" parameter
|
||||
print(mypath[-1])
|
||||
|
||||
if args.save_network is not None:
|
||||
save_network(network, args.save_network)
|
||||
print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}')
|
||||
|
||||
if args.show_channels:
|
||||
print('\nThe total SNR per channel at the end of the line is:')
|
||||
print('\nThe GSNR per channel at the end of the line is:')
|
||||
print(
|
||||
'{:>5}{:>26}{:>26}{:>28}{:>28}{:>28}' .format(
|
||||
'Ch. #',
|
||||
@@ -256,15 +255,15 @@ def transmission_main_example(args=None):
|
||||
'Channel power (dBm)',
|
||||
'OSNR ASE (signal bw, dB)',
|
||||
'SNR NLI (signal bw, dB)',
|
||||
'SNR total (signal bw, dB)'))
|
||||
'GSNR (signal bw, dB)'))
|
||||
for final_carrier, ch_osnr, ch_snr_nl, ch_snr in zip(
|
||||
infos[path[-1]][1].carriers, path[-1].osnr_ase, path[-1].osnr_nli, path[-1].snr):
|
||||
infos.carriers, path[-1].osnr_ase, path[-1].osnr_nli, path[-1].snr):
|
||||
ch_freq = final_carrier.frequency * 1e-12
|
||||
ch_power = lin2db(final_carrier.power.signal * 1e3)
|
||||
print(
|
||||
'{:5}{:26.2f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
|
||||
'{:5}{:26.5f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
|
||||
final_carrier.channel_number, round(
|
||||
ch_freq, 2), round(
|
||||
ch_freq, 5), round(
|
||||
ch_power, 2), round(
|
||||
ch_osnr, 2), round(
|
||||
ch_snr_nl, 2), round(
|
||||
@@ -281,7 +280,7 @@ def transmission_main_example(args=None):
|
||||
print(f'\n(Invalid destination node {args.destination!r} replaced with {destination.uid})')
|
||||
|
||||
if args.plot:
|
||||
plot_results(network, path, source, destination, infos)
|
||||
plot_results(network, path, source, destination)
|
||||
|
||||
|
||||
def _path_result_json(pathresult):
|
||||
@@ -289,11 +288,14 @@ def _path_result_json(pathresult):
|
||||
|
||||
|
||||
def path_requests_run(args=None):
|
||||
"""Main script running several services simulations. It returns a summary of the average performance
|
||||
for each service.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Compute performance for a list of services provided in a json file or an excel sheet',
|
||||
epilog=_help_footer,
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
)
|
||||
_add_common_options(parser, network_default=_examples_dir / 'meshTopologyExampleV2.xls')
|
||||
parser.add_argument('service_filename', nargs='?', type=Path, metavar='SERVICES-REQUESTS.(json|xls|xlsx)',
|
||||
default=_examples_dir / 'meshTopologyExampleV2.xls',
|
||||
@@ -302,81 +304,51 @@ def path_requests_run(args=None):
|
||||
help='considers that all demands are bidir')
|
||||
parser.add_argument('-o', '--output', type=Path, metavar=_help_fname_json_csv,
|
||||
help='Store satisifed requests into a JSON or CSV file')
|
||||
parser.add_argument('--redesign-per-request', action='store_true', help='Redesign the network at each request'
|
||||
+ ' computation using the request as the reference channel')
|
||||
|
||||
args = parser.parse_args(args if args is not None else sys.argv[1:])
|
||||
_setup_logging(args)
|
||||
|
||||
_logger.info(f'Computing path requests {args.service_filename} into JSON format')
|
||||
print(f'{ansi_escapes.blue}Computing path requests {os.path.relpath(args.service_filename)} into JSON format{ansi_escapes.reset}')
|
||||
_logger.info(f'Computing path requests {args.service_filename.name} into JSON format')
|
||||
|
||||
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
|
||||
(equipment, network) = \
|
||||
load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
|
||||
|
||||
# Build the network once using the default power defined in SI in eqpt config
|
||||
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
|
||||
# spacing, f_min and f_max
|
||||
p_db = equipment['SI']['default'].power_dbm
|
||||
|
||||
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
|
||||
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
|
||||
build_network(network, equipment, p_db, p_total_db)
|
||||
if args.save_network is not None:
|
||||
save_network(network, args.save_network)
|
||||
print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}')
|
||||
oms_list = build_oms_list(network, equipment)
|
||||
|
||||
try:
|
||||
network, _, _ = designed_network(equipment, network, no_insert_edfas=args.no_insert_edfas)
|
||||
data = load_requests(args.service_filename, equipment, bidir=args.bidir,
|
||||
network=network, network_filename=args.topology)
|
||||
rqs = requests_from_json(data, equipment)
|
||||
except exceptions.ServiceError as e:
|
||||
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}')
|
||||
_data = requests_from_json(data, equipment)
|
||||
_, propagatedpths, reversed_propagatedpths, rqs, dsjn, result = \
|
||||
planning(network, equipment, data, redesign=args.redesign_per_request)
|
||||
except exceptions.NetworkTopologyError as e:
|
||||
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ConfigurationError as e:
|
||||
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
# check that request ids are unique. Non unique ids, may
|
||||
# mess the computation: better to stop the computation
|
||||
all_ids = [r.request_id for r in rqs]
|
||||
if len(all_ids) != len(set(all_ids)):
|
||||
for item in list(set(all_ids)):
|
||||
all_ids.remove(item)
|
||||
msg = f'Requests id {all_ids} are not unique'
|
||||
_logger.critical(msg)
|
||||
sys.exit()
|
||||
rqs = correct_json_route_list(network, rqs)
|
||||
|
||||
# pths = compute_path(network, equipment, rqs)
|
||||
dsjn = disjunctions_from_json(data)
|
||||
|
||||
print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}')
|
||||
print(dsjn)
|
||||
# need to warn or correct in case of wrong disjunction form
|
||||
# disjunction must not be repeated with same or different ids
|
||||
dsjn = deduplicate_disjunctions(dsjn)
|
||||
|
||||
# Aggregate demands with same exact constraints
|
||||
print(f'{ansi_escapes.blue}Aggregating similar requests{ansi_escapes.reset}')
|
||||
|
||||
rqs, dsjn = requests_aggregation(rqs, dsjn)
|
||||
# TODO export novel set of aggregated demands in a json file
|
||||
|
||||
print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}')
|
||||
print(rqs)
|
||||
|
||||
print(f'{ansi_escapes.blue}Computing all paths with constraints{ansi_escapes.reset}')
|
||||
try:
|
||||
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
|
||||
except exceptions.DisjunctionError as this_e:
|
||||
print(f'{ansi_escapes.red}Disjunction error:{ansi_escapes.reset} {this_e}')
|
||||
sys.exit(1)
|
||||
except exceptions.ServiceError as e:
|
||||
print(f'Service error: {e}')
|
||||
sys.exit(1)
|
||||
except ValueError:
|
||||
sys.exit(1)
|
||||
print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}')
|
||||
print(dsjn)
|
||||
print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}')
|
||||
print(_data)
|
||||
|
||||
print(f'{ansi_escapes.blue}Propagating on selected path{ansi_escapes.reset}')
|
||||
propagatedpths, reversed_pths, reversed_propagatedpths = compute_path_with_disjunction(network, equipment, rqs, pths)
|
||||
# Note that deepcopy used in compute_path_with_disjunction returns
|
||||
# a list of nodes which are not belonging to network (they are copies of the node objects).
|
||||
# so there can not be propagation on these nodes.
|
||||
|
||||
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
|
||||
if args.save_network is not None:
|
||||
save_network(network, args.save_network)
|
||||
print(f'Network (after autodesign) saved to {args.save_network}')
|
||||
|
||||
print(f'{ansi_escapes.blue}Result summary{ansi_escapes.reset}')
|
||||
header = ['req id', ' demand', ' snr@bandwidth A-Z (Z-A)', ' snr@0.1nm A-Z (Z-A)',
|
||||
header = ['req id', ' demand', ' GSNR@bandwidth A-Z (Z-A)', ' GSNR@0.1nm A-Z (Z-A)',
|
||||
' Receiver minOSNR', ' mode', ' Gbit/s', ' nb of tsp pairs',
|
||||
'N,M or blocking reason']
|
||||
data = []
|
||||
@@ -384,26 +356,27 @@ def path_requests_run(args=None):
|
||||
for i, this_p in enumerate(propagatedpths):
|
||||
rev_pth = reversed_propagatedpths[i]
|
||||
if rev_pth and this_p:
|
||||
psnrb = f'{round(mean(this_p[-1].snr),2)} ({round(mean(rev_pth[-1].snr),2)})'
|
||||
psnrb = f'{round(mean(this_p[-1].snr), 2)} ({round(mean(rev_pth[-1].snr), 2)})'
|
||||
psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}' +\
|
||||
f' ({round(mean(rev_pth[-1].snr_01nm),2)})'
|
||||
f' ({round(mean(rev_pth[-1].snr_01nm), 2)})'
|
||||
elif this_p:
|
||||
psnrb = f'{round(mean(this_p[-1].snr),2)}'
|
||||
psnr = f'{round(mean(this_p[-1].snr_01nm),2)}'
|
||||
psnrb = f'{round(mean(this_p[-1].snr), 2)}'
|
||||
psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}'
|
||||
|
||||
try:
|
||||
if rqs[i].blocking_reason in BLOCKING_NOPATH:
|
||||
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} :',
|
||||
f'-', f'-', f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
|
||||
f'-', f'{rqs[i].blocking_reason}']
|
||||
'-', '-', '-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
|
||||
'-', '{rqs[i].blocking_reason}']
|
||||
else:
|
||||
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
|
||||
psnr, f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
|
||||
f'-', f'{rqs[i].blocking_reason}']
|
||||
psnr, '-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
|
||||
'-', f'{rqs[i].blocking_reason}']
|
||||
except AttributeError:
|
||||
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
|
||||
psnr, f'{rqs[i].OSNR}', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
|
||||
f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate) }', f'({rqs[i].N},{rqs[i].M})']
|
||||
psnr, f'{rqs[i].OSNR + equipment["SI"]["default"].sys_margins}',
|
||||
f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
|
||||
f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate)}', f'({rqs[i].N},{rqs[i].M})']
|
||||
data.append(line)
|
||||
|
||||
col_width = max(len(word) for row in data for word in row[2:]) # padding
|
||||
@@ -414,7 +387,7 @@ def path_requests_run(args=None):
|
||||
secondcol = ''.join(row[1].ljust(secondcol_width))
|
||||
remainingcols = ''.join(word.center(col_width, ' ') for word in row[2:])
|
||||
print(f'{firstcol} {secondcol} {remainingcols}')
|
||||
print(f'{ansi_escapes.yellow}Result summary shows mean SNR and OSNR (average over all channels){ansi_escapes.reset}')
|
||||
print(f'{ansi_escapes.yellow}Result summary shows mean GSNR and OSNR (average over all channels){ansi_escapes.reset}')
|
||||
|
||||
if args.output:
|
||||
result = []
|
||||
|
||||
@@ -20,27 +20,37 @@ In the "Links" sheet, only the first three columns ("Node A", "Node Z" and
|
||||
the "east" information so that it is possible to input undirected data.
|
||||
"""
|
||||
|
||||
from sys import exit
|
||||
from xlrd import open_workbook
|
||||
from logging import getLogger
|
||||
from argparse import ArgumentParser
|
||||
from collections import namedtuple, Counter, defaultdict
|
||||
from itertools import chain
|
||||
from json import dumps
|
||||
from pathlib import Path
|
||||
from copy import copy
|
||||
from gnpy.core import ansi_escapes
|
||||
from gnpy.core.utils import silent_remove
|
||||
from typing import Dict, List, Tuple, DefaultDict
|
||||
from xlrd import open_workbook
|
||||
from xlrd.biffh import XLRDError
|
||||
from networkx import DiGraph
|
||||
|
||||
from gnpy.core.utils import silent_remove, transform_data
|
||||
from gnpy.core.exceptions import NetworkTopologyError
|
||||
from gnpy.core.elements import Edfa, Fused, Fiber
|
||||
|
||||
|
||||
_logger = getLogger(__name__)
|
||||
|
||||
|
||||
def all_rows(sh, start=0):
|
||||
"""Returns all rows of the xls(x) sheet starting from start row
|
||||
"""
|
||||
return (sh.row(x) for x in range(start, sh.nrows))
|
||||
|
||||
|
||||
class Node(object):
|
||||
class Node:
|
||||
"""Node data class
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super(Node, self).__init__()
|
||||
super().__init__()
|
||||
self.update_attr(kwargs)
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
@@ -62,13 +72,13 @@ class Node(object):
|
||||
}
|
||||
|
||||
|
||||
class Link(object):
|
||||
class Link:
|
||||
"""attribtes from west parse_ept_headers dict
|
||||
+node_a, node_z, west_fiber_con_in, east_fiber_con_in
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(Link, self).__init__()
|
||||
super().__init__()
|
||||
self.update_attr(kwargs)
|
||||
self.distance_units = 'km'
|
||||
|
||||
@@ -77,7 +87,7 @@ class Link(object):
|
||||
for k, v in self.default_values.items():
|
||||
v = clean_kwargs.get(k, v)
|
||||
setattr(self, k, v)
|
||||
k = 'west' + k.split('east')[-1]
|
||||
k = 'west' + k.rsplit('east', maxsplit=1)[-1]
|
||||
v = clean_kwargs.get(k, v)
|
||||
setattr(self, k, v)
|
||||
|
||||
@@ -98,9 +108,11 @@ class Link(object):
|
||||
}
|
||||
|
||||
|
||||
class Eqpt(object):
|
||||
class Eqpt:
|
||||
"""
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super(Eqpt, self).__init__()
|
||||
super().__init__()
|
||||
self.update_attr(kwargs)
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
@@ -108,7 +120,7 @@ class Eqpt(object):
|
||||
for k, v in self.default_values.items():
|
||||
v_east = clean_kwargs.get(k, v)
|
||||
setattr(self, k, v_east)
|
||||
k = 'west' + k.split('east')[-1]
|
||||
k = 'west' + k.rsplit('east', maxsplit=1)[-1]
|
||||
v_west = clean_kwargs.get(k, v)
|
||||
setattr(self, k, v_west)
|
||||
|
||||
@@ -116,14 +128,35 @@ class Eqpt(object):
|
||||
'from_city': '',
|
||||
'to_city': '',
|
||||
'east_amp_type': '',
|
||||
'east_att_in': 0,
|
||||
'east_amp_gain': None,
|
||||
'east_amp_dp': None,
|
||||
'east_tilt': 0,
|
||||
'east_tilt_vs_wavelength': None,
|
||||
'east_att_out': None
|
||||
}
|
||||
|
||||
|
||||
class Roadm:
|
||||
"""
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__()
|
||||
self.update_attr(kwargs)
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||||
for k, v in self.default_values.items():
|
||||
v = clean_kwargs.get(k, v)
|
||||
setattr(self, k, v)
|
||||
|
||||
default_values = {'from_node': '',
|
||||
'to_node': '',
|
||||
'target_pch_out_db': None,
|
||||
'type_variety': None,
|
||||
'from_degrees': None,
|
||||
'impairment_ids': None
|
||||
}
|
||||
|
||||
|
||||
def read_header(my_sheet, line, slice_):
|
||||
""" return the list of headers !:= ''
|
||||
header_i = [(header, header_column_index), ...]
|
||||
@@ -133,7 +166,7 @@ def read_header(my_sheet, line, slice_):
|
||||
try:
|
||||
header = [x.value.strip() for x in my_sheet.row_slice(line, slice_[0], slice_[1])]
|
||||
header_i = [Param_header(header, i + slice_[0]) for i, header in enumerate(header) if header != '']
|
||||
except Exception:
|
||||
except (AttributeError, IndexError):
|
||||
header_i = []
|
||||
if header_i != [] and header_i[-1].colindex != slice_[1]:
|
||||
header_i.append(Param_header('', slice_[1]))
|
||||
@@ -149,7 +182,7 @@ def read_slice(my_sheet, line, slice_, header):
|
||||
try:
|
||||
slice_range = next((h.colindex, header_i[i + 1].colindex)
|
||||
for i, h in enumerate(header_i) if header in h.header)
|
||||
except Exception:
|
||||
except StopIteration:
|
||||
pass
|
||||
return slice_range
|
||||
|
||||
@@ -167,66 +200,123 @@ def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
|
||||
slice_out = read_slice(my_sheet, start_line + iteration, slice_in, h0)
|
||||
iteration += 1
|
||||
if slice_out == (-1, -1):
|
||||
msg = f'missing header {h0}'
|
||||
if h0 in ('east', 'Node A', 'Node Z', 'City'):
|
||||
print(f'{ansi_escapes.red}CRITICAL{ansi_escapes.reset}: missing _{h0}_ header: EXECUTION ENDS')
|
||||
exit()
|
||||
else:
|
||||
print(f'missing header {h0}')
|
||||
raise NetworkTopologyError(msg)
|
||||
_logger.warning(msg)
|
||||
elif not isinstance(input_headers_dict[h0], dict):
|
||||
headers[slice_out[0]] = input_headers_dict[h0]
|
||||
else:
|
||||
headers = parse_headers(my_sheet, input_headers_dict[h0], headers, start_line + 1, slice_out)
|
||||
if headers == {}:
|
||||
print(f'{ansi_escapes.red}CRITICAL ERROR{ansi_escapes.reset}: could not find any header to read _ ABORT')
|
||||
exit()
|
||||
msg = 'CRITICAL ERROR: could not find any header to read _ ABORT'
|
||||
raise NetworkTopologyError(msg)
|
||||
return headers
|
||||
|
||||
|
||||
def parse_row(row, headers):
|
||||
"""
|
||||
"""
|
||||
return {f: r.value for f, r in
|
||||
zip([label for label in headers.values()], [row[i] for i in headers])}
|
||||
zip(list(headers.values()), [row[i] for i in headers])}
|
||||
|
||||
|
||||
def parse_sheet(my_sheet, input_headers_dict, header_line, start_line, column):
|
||||
"""
|
||||
"""
|
||||
headers = parse_headers(my_sheet, input_headers_dict, {}, header_line, (0, column))
|
||||
for row in all_rows(my_sheet, start=start_line):
|
||||
yield parse_row(row[0: column], headers)
|
||||
|
||||
|
||||
def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
|
||||
def _format_items(items: List[str]):
|
||||
"""formating utils
|
||||
"""
|
||||
return '\n'.join(f' - {item}' for item in items)
|
||||
|
||||
|
||||
def sanity_check(nodes: List[Node], links: List[Link],
|
||||
nodes_by_city: Dict[str, Node], links_by_city: DefaultDict[str, List[Link]],
|
||||
eqpts_by_city: DefaultDict[str, List[Eqpt]]) -> Tuple[List[Node], List[Link]]:
|
||||
"""Raise correct issues if xls(x) is not correct, Correct type to ROADM if more tha 2-degrees
|
||||
checks duplicate links, unreferenced nodes in links, in eqpts, unreferenced link in eqpts,
|
||||
duplicate items
|
||||
"""
|
||||
duplicate_links = []
|
||||
for l1 in links:
|
||||
for l2 in links:
|
||||
if l1 is not l2 and l1 == l2 and l2 not in duplicate_links:
|
||||
print(f'\nWARNING\n \
|
||||
_logger.warning(f'\nWARNING\n \
|
||||
link {l1.from_city}-{l1.to_city} is duplicate \
|
||||
\nthe 1st duplicate link will be removed but you should check Links sheet input')
|
||||
duplicate_links.append(l1)
|
||||
for l in duplicate_links:
|
||||
links.remove(l)
|
||||
|
||||
try:
|
||||
test_nodes = [n for n in nodes_by_city if n not in links_by_city]
|
||||
test_links = [n for n in links_by_city if n not in nodes_by_city]
|
||||
test_eqpts = [n for n in eqpts_by_city if n not in nodes_by_city]
|
||||
assert (test_nodes == [] or test_nodes == [''])\
|
||||
and (test_links == [] or test_links == [''])\
|
||||
and (test_eqpts == [] or test_eqpts == [''])
|
||||
except AssertionError:
|
||||
msg = f'CRITICAL error in excel input: Names in Nodes and Links sheets do no match, check:\
|
||||
\n{test_nodes} in Nodes sheet\
|
||||
\n{test_links} in Links sheet\
|
||||
\n{test_eqpts} in Eqpt sheet'
|
||||
if duplicate_links:
|
||||
msg = 'XLS error: ' \
|
||||
+ f'links {_format_items([(d.from_city, d.to_city) for d in duplicate_links])} are duplicate'
|
||||
raise NetworkTopologyError(msg)
|
||||
unreferenced_nodes = [n for n in nodes_by_city if n not in links_by_city]
|
||||
if unreferenced_nodes:
|
||||
msg = 'XLS error: The following nodes are not ' \
|
||||
+ 'referenced from the Links sheet. ' \
|
||||
+ 'If unused, remove them from the Nodes sheet:\n' \
|
||||
+ _format_items(unreferenced_nodes)
|
||||
raise NetworkTopologyError(msg)
|
||||
# no need to check "Links" for invalid nodes because that's already in parse_excel()
|
||||
wrong_eqpt_from = [n for n in eqpts_by_city if n not in nodes_by_city]
|
||||
wrong_eqpt_to = [n.to_city for destinations in eqpts_by_city.values()
|
||||
for n in destinations if n.to_city not in nodes_by_city]
|
||||
wrong_eqpt = wrong_eqpt_from + wrong_eqpt_to
|
||||
if wrong_eqpt:
|
||||
msg = 'XLS error: ' \
|
||||
+ 'The Eqpt sheet refers to nodes that ' \
|
||||
+ 'are not defined in the Nodes sheet:\n'\
|
||||
+ _format_items(wrong_eqpt)
|
||||
raise NetworkTopologyError(msg)
|
||||
# Now check links that are not listed in Links sheet, and duplicates
|
||||
bad_eqpt = []
|
||||
possible_links = [f'{e.from_city}|{e.to_city}' for e in links] + [f'{e.to_city}|{e.from_city}' for e in links]
|
||||
possible_eqpt = []
|
||||
duplicate_eqpt = []
|
||||
duplicate_ila = []
|
||||
for city, eqpts in eqpts_by_city.items():
|
||||
for eqpt in eqpts:
|
||||
# Check that each node_A-node_Z exists in links
|
||||
nodea_nodez = f'{eqpt.from_city}|{eqpt.to_city}'
|
||||
nodez_nodea = f'{eqpt.to_city}|{eqpt.from_city}'
|
||||
if nodea_nodez not in possible_links \
|
||||
or nodez_nodea not in possible_links:
|
||||
bad_eqpt.append([eqpt.from_city, eqpt.to_city])
|
||||
else:
|
||||
# Check that there are no duplicate lines in the Eqpt sheet
|
||||
if nodea_nodez in possible_eqpt:
|
||||
duplicate_eqpt.append([eqpt.from_city, eqpt.to_city])
|
||||
else:
|
||||
possible_eqpt.append(nodea_nodez)
|
||||
# check that there are no two lines defining an ILA with different directions
|
||||
if nodes_by_city[city].node_type == 'ILA' and len(eqpts) > 1:
|
||||
duplicate_ila.append(city)
|
||||
if bad_eqpt:
|
||||
msg = 'XLS error: ' \
|
||||
+ 'The Eqpt sheet references links that ' \
|
||||
+ 'are not defined in the Links sheet:\n' \
|
||||
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_eqpt)
|
||||
raise NetworkTopologyError(msg)
|
||||
if duplicate_eqpt:
|
||||
msg = 'XLS error: Duplicate lines in Eqpt sheet:' \
|
||||
+ _format_items(f'{item[0]} -> {item[1]}' for item in duplicate_eqpt)
|
||||
raise NetworkTopologyError(msg)
|
||||
if duplicate_ila:
|
||||
msg = 'XLS error: Duplicate ILA eqpt definition in Eqpt sheet:' \
|
||||
+ _format_items(duplicate_ila)
|
||||
raise NetworkTopologyError(msg)
|
||||
|
||||
for city, link in links_by_city.items():
|
||||
if nodes_by_city[city].node_type.lower() == 'ila' and len(link) != 2:
|
||||
# wrong input: ILA sites can only be Degree 2
|
||||
# => correct to make it a ROADM and remove entry in links_by_city
|
||||
# TODO: put in log rather than print
|
||||
print(f'invalid node type ({nodes_by_city[city].node_type})\
|
||||
specified in {city}, replaced by ROADM')
|
||||
_logger.warning(f'invalid node type ({nodes_by_city[city].node_type}) '
|
||||
+ f'specified in {city}, replaced by ROADM')
|
||||
nodes_by_city[city].node_type = 'ROADM'
|
||||
for n in nodes:
|
||||
if n.city == city:
|
||||
@@ -234,8 +324,120 @@ def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
|
||||
return nodes, links
|
||||
|
||||
|
||||
def xls_to_json_data(input_filename, filter_region=[]):
|
||||
nodes, links, eqpts = parse_excel(input_filename)
|
||||
def create_roadm_element(node, roadms_by_city):
|
||||
""" create the json element for a roadm node, including the different cases:
|
||||
- if there are restrictions
|
||||
- if there are per degree target power defined on a direction
|
||||
direction is defined by the booster name, so that booster must also be created in eqpt sheet
|
||||
if the direction is defined in roadm
|
||||
"""
|
||||
roadm = {'uid': f'roadm {node.city}'}
|
||||
if node.preamp_restriction != '' or node.booster_restriction != '':
|
||||
roadm['params'] = {
|
||||
'restrictions': {
|
||||
'preamp_variety_list': silent_remove(node.preamp_restriction.split(' | '), ''),
|
||||
'booster_variety_list': silent_remove(node.booster_restriction.split(' | '), '')}
|
||||
}
|
||||
if node.city in roadms_by_city.keys():
|
||||
if 'params' not in roadm:
|
||||
roadm['params'] = {}
|
||||
roadm['params']['per_degree_pch_out_db'] = {}
|
||||
for elem in roadms_by_city[node.city]:
|
||||
to_node = f'east edfa in {node.city} to {elem.to_node}'
|
||||
if elem.target_pch_out_db is not None:
|
||||
roadm['params']['per_degree_pch_out_db'][to_node] = elem.target_pch_out_db
|
||||
if elem.from_degrees is not None and elem.impairment_ids is not None:
|
||||
# only set per degree impairment if there is an entry (reduce verbose)
|
||||
if roadm['params'].get('per_degree_impairments') is None:
|
||||
roadm['params']['per_degree_impairments'] = []
|
||||
fromdegrees = elem.from_degrees.split(' | ')
|
||||
impairment_ids = transform_data(elem.impairment_ids)
|
||||
if len(fromdegrees) != len(impairment_ids):
|
||||
msg = f'Roadm {node.city} per degree impairment id do not match with from degree definition'
|
||||
raise NetworkTopologyError(msg)
|
||||
for from_degree, impairment_id in zip(fromdegrees, impairment_ids):
|
||||
from_node = f'west edfa in {node.city} to {from_degree}'
|
||||
roadm['params']['per_degree_impairments'].append({'from_degree': from_node,
|
||||
'to_degree': to_node,
|
||||
'impairment_id': impairment_id})
|
||||
if elem.type_variety is not None:
|
||||
roadm['type_variety'] = elem.type_variety
|
||||
roadm['metadata'] = {'location': {'city': node.city,
|
||||
'region': node.region,
|
||||
'latitude': node.latitude,
|
||||
'longitude': node.longitude}}
|
||||
roadm['type'] = 'Roadm'
|
||||
return roadm
|
||||
|
||||
|
||||
def create_east_eqpt_element(node: Node, nodes_by_city: Dict[str, Node]) -> dict:
|
||||
""" create amplifiers json elements for the east direction.
|
||||
this includes the case where the case of a fused element defined instead of an
|
||||
ILA in eqpt sheet
|
||||
"""
|
||||
eqpt = {'uid': f'east edfa in {node.from_city} to {node.to_city}',
|
||||
'metadata': {'location': {'city': nodes_by_city[node.from_city].city,
|
||||
'region': nodes_by_city[node.from_city].region,
|
||||
'latitude': nodes_by_city[node.from_city].latitude,
|
||||
'longitude': nodes_by_city[node.from_city].longitude}}}
|
||||
if node.east_amp_type.lower() != '' and node.east_amp_type.lower() != 'fused':
|
||||
eqpt['type'] = 'Edfa'
|
||||
eqpt['type_variety'] = f'{node.east_amp_type}'
|
||||
eqpt['operational'] = {'gain_target': node.east_amp_gain,
|
||||
'delta_p': node.east_amp_dp,
|
||||
'tilt_target': node.east_tilt_vs_wavelength,
|
||||
'out_voa': node.east_att_out}
|
||||
elif node.east_amp_type.lower() == '':
|
||||
eqpt['type'] = 'Edfa'
|
||||
eqpt['operational'] = {'gain_target': node.east_amp_gain,
|
||||
'delta_p': node.east_amp_dp,
|
||||
'tilt_target': node.east_tilt_vs_wavelength,
|
||||
'out_voa': node.east_att_out}
|
||||
elif node.east_amp_type.lower() == 'fused':
|
||||
# fused edfa variety is a hack to indicate that there should not be
|
||||
# booster amplifier out the roadm.
|
||||
# If user specifies ILA in Nodes sheet and fused in Eqpt sheet, then assumes that
|
||||
# this is a fused nodes.
|
||||
eqpt['type'] = 'Fused'
|
||||
eqpt['params'] = {'loss': 0}
|
||||
return eqpt
|
||||
|
||||
|
||||
def create_west_eqpt_element(node: Node, nodes_by_city: Dict[str, Node]) -> dict:
|
||||
""" create amplifiers json elements for the west direction.
|
||||
this includes the case where the case of a fused element defined instead of an
|
||||
ILA in eqpt sheet
|
||||
"""
|
||||
eqpt = {'uid': f'west edfa in {node.from_city} to {node.to_city}',
|
||||
'metadata': {'location': {'city': nodes_by_city[node.from_city].city,
|
||||
'region': nodes_by_city[node.from_city].region,
|
||||
'latitude': nodes_by_city[node.from_city].latitude,
|
||||
'longitude': nodes_by_city[node.from_city].longitude}},
|
||||
'type': 'Edfa'}
|
||||
if node.west_amp_type.lower() != '' and node.west_amp_type.lower() != 'fused':
|
||||
eqpt['type_variety'] = f'{node.west_amp_type}'
|
||||
eqpt['operational'] = {'gain_target': node.west_amp_gain,
|
||||
'delta_p': node.west_amp_dp,
|
||||
'tilt_target': node.west_tilt_vs_wavelength,
|
||||
'out_voa': node.west_att_out}
|
||||
elif node.west_amp_type.lower() == '':
|
||||
eqpt['operational'] = {'gain_target': node.west_amp_gain,
|
||||
'delta_p': node.west_amp_dp,
|
||||
'tilt_target': node.west_tilt_vs_wavelength,
|
||||
'out_voa': node.west_att_out}
|
||||
elif node.west_amp_type.lower() == 'fused':
|
||||
eqpt['type'] = 'Fused'
|
||||
eqpt['params'] = {'loss': 0}
|
||||
return eqpt
|
||||
|
||||
|
||||
def xls_to_json_data(input_filename: Path, filter_region: List[str] = None) -> Dict:
|
||||
"""Read the excel sheets and produces the json dict in GNPy format (legacy)
|
||||
returns json dict
|
||||
"""
|
||||
if filter_region is None:
|
||||
filter_region = []
|
||||
nodes, links, eqpts, roadms = parse_excel(input_filename)
|
||||
if filter_region:
|
||||
nodes = [n for n in nodes if n.region.lower() in filter_region]
|
||||
cities = {n.city for n in nodes}
|
||||
@@ -244,20 +446,21 @@ def xls_to_json_data(input_filename, filter_region=[]):
|
||||
cities = {lnk.from_city for lnk in links} | {lnk.to_city for lnk in links}
|
||||
nodes = [n for n in nodes if n.city in cities]
|
||||
|
||||
global nodes_by_city
|
||||
nodes_by_city = {n.city: n for n in nodes}
|
||||
|
||||
global links_by_city
|
||||
links_by_city = defaultdict(list)
|
||||
for link in links:
|
||||
links_by_city[link.from_city].append(link)
|
||||
links_by_city[link.to_city].append(link)
|
||||
|
||||
global eqpts_by_city
|
||||
eqpts_by_city = defaultdict(list)
|
||||
for eqpt in eqpts:
|
||||
eqpts_by_city[eqpt.from_city].append(eqpt)
|
||||
|
||||
roadms_by_city = defaultdict(list)
|
||||
for roadm in roadms:
|
||||
roadms_by_city[roadm.from_node].append(roadm)
|
||||
|
||||
nodes, links = sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city)
|
||||
|
||||
return {
|
||||
@@ -269,28 +472,8 @@ def xls_to_json_data(input_filename, filter_region=[]):
|
||||
'longitude': x.longitude}},
|
||||
'type': 'Transceiver'}
|
||||
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'] +
|
||||
[{'uid': f'roadm {x.city}',
|
||||
'metadata': {'location': {'city': x.city,
|
||||
'region': x.region,
|
||||
'latitude': x.latitude,
|
||||
'longitude': x.longitude}},
|
||||
'type': 'Roadm'}
|
||||
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'
|
||||
and x.booster_restriction == '' and x.preamp_restriction == ''] +
|
||||
[{'uid': f'roadm {x.city}',
|
||||
'params': {
|
||||
'restrictions': {
|
||||
'preamp_variety_list': silent_remove(x.preamp_restriction.split(' | '), ''),
|
||||
'booster_variety_list': silent_remove(x.booster_restriction.split(' | '), '')
|
||||
}
|
||||
},
|
||||
'metadata': {'location': {'city': x.city,
|
||||
'region': x.region,
|
||||
'latitude': x.latitude,
|
||||
'longitude': x.longitude}},
|
||||
'type': 'Roadm'}
|
||||
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm' and
|
||||
(x.booster_restriction != '' or x.preamp_restriction != '')] +
|
||||
[create_roadm_element(x, roadms_by_city)
|
||||
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'] +
|
||||
[{'uid': f'west fused spans in {x.city}',
|
||||
'metadata': {'location': {'city': x.city,
|
||||
'region': x.region,
|
||||
@@ -327,157 +510,123 @@ def xls_to_json_data(input_filename, filter_region=[]):
|
||||
'loss_coef': x.west_lineic,
|
||||
'con_in': x.west_con_in,
|
||||
'con_out': x.west_con_out}
|
||||
} # missing ILA construction
|
||||
for x in links] +
|
||||
[{'uid': f'east edfa in {e.from_city} to {e.to_city}',
|
||||
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
|
||||
'region': nodes_by_city[e.from_city].region,
|
||||
'latitude': nodes_by_city[e.from_city].latitude,
|
||||
'longitude': nodes_by_city[e.from_city].longitude}},
|
||||
} for x in links] +
|
||||
[{'uid': f'west edfa in {x.city}',
|
||||
'metadata': {'location': {'city': x.city,
|
||||
'region': x.region,
|
||||
'latitude': x.latitude,
|
||||
'longitude': x.longitude}},
|
||||
'type': 'Edfa',
|
||||
'type_variety': e.east_amp_type,
|
||||
'operational': {'gain_target': e.east_amp_gain,
|
||||
'delta_p': e.east_amp_dp,
|
||||
'tilt_target': e.east_tilt,
|
||||
'out_voa': e.east_att_out}
|
||||
}
|
||||
for e in eqpts if (e.east_amp_type.lower() != '' and \
|
||||
e.east_amp_type.lower() != 'fused')] +
|
||||
[{'uid': f'west edfa in {e.from_city} to {e.to_city}',
|
||||
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
|
||||
'region': nodes_by_city[e.from_city].region,
|
||||
'latitude': nodes_by_city[e.from_city].latitude,
|
||||
'longitude': nodes_by_city[e.from_city].longitude}},
|
||||
'operational': {'gain_target': None,
|
||||
'tilt_target': None}
|
||||
} for x in nodes_by_city.values() if x.node_type.lower() == 'ila' and x.city not in eqpts_by_city] +
|
||||
[{'uid': f'east edfa in {x.city}',
|
||||
'metadata': {'location': {'city': x.city,
|
||||
'region': x.region,
|
||||
'latitude': x.latitude,
|
||||
'longitude': x.longitude}},
|
||||
'type': 'Edfa',
|
||||
'type_variety': e.west_amp_type,
|
||||
'operational': {'gain_target': e.west_amp_gain,
|
||||
'delta_p': e.west_amp_dp,
|
||||
'tilt_target': e.west_tilt,
|
||||
'out_voa': e.west_att_out}
|
||||
}
|
||||
for e in eqpts if (e.west_amp_type.lower() != '' and \
|
||||
e.west_amp_type.lower() != 'fused')] +
|
||||
# fused edfa variety is a hack to indicate that there should not be
|
||||
# booster amplifier out the roadm.
|
||||
# If user specifies ILA in Nodes sheet and fused in Eqpt sheet, then assumes that
|
||||
# this is a fused nodes.
|
||||
[{'uid': f'east edfa in {e.from_city} to {e.to_city}',
|
||||
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
|
||||
'region': nodes_by_city[e.from_city].region,
|
||||
'latitude': nodes_by_city[e.from_city].latitude,
|
||||
'longitude': nodes_by_city[e.from_city].longitude}},
|
||||
'type': 'Fused',
|
||||
'params': {'loss': 0}
|
||||
}
|
||||
for e in eqpts if e.east_amp_type.lower() == 'fused'] +
|
||||
[{'uid': f'west edfa in {e.from_city} to {e.to_city}',
|
||||
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
|
||||
'region': nodes_by_city[e.from_city].region,
|
||||
'latitude': nodes_by_city[e.from_city].latitude,
|
||||
'longitude': nodes_by_city[e.from_city].longitude}},
|
||||
'type': 'Fused',
|
||||
'params': {'loss': 0}
|
||||
}
|
||||
for e in eqpts if e.west_amp_type.lower() == 'fused'],
|
||||
'operational': {'gain_target': None,
|
||||
'tilt_target': None}
|
||||
} for x in nodes_by_city.values() if x.node_type.lower() == 'ila' and x.city not in eqpts_by_city]
|
||||
+ [create_east_eqpt_element(e, nodes_by_city) for e in eqpts]
|
||||
+ [create_west_eqpt_element(e, nodes_by_city) for e in eqpts],
|
||||
'connections':
|
||||
list(chain.from_iterable([eqpt_connection_by_city(n.city)
|
||||
list(chain.from_iterable([eqpt_connection_by_city(n.city, eqpts_by_city, links_by_city, nodes_by_city)
|
||||
for n in nodes]))
|
||||
+
|
||||
list(chain.from_iterable(zip(
|
||||
[{'from_node': f'trx {x.city}',
|
||||
'to_node': f'roadm {x.city}'}
|
||||
+ list(chain.from_iterable(zip(
|
||||
[{'from_node': f'trx {x.city}', 'to_node': f'roadm {x.city}'}
|
||||
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'],
|
||||
[{'from_node': f'roadm {x.city}',
|
||||
'to_node': f'trx {x.city}'}
|
||||
[{'from_node': f'roadm {x.city}', 'to_node': f'trx {x.city}'}
|
||||
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'])))
|
||||
}
|
||||
|
||||
|
||||
def convert_file(input_filename, filter_region=[], output_json_file_name=None):
|
||||
def convert_file(input_filename: Path, filter_region: List[str] = None, output_json_file_name: Path = None):
|
||||
"""Save the conversion into
|
||||
"""
|
||||
if filter_region is None:
|
||||
filter_region = []
|
||||
data = xls_to_json_data(input_filename, filter_region)
|
||||
if output_json_file_name is None:
|
||||
output_json_file_name = input_filename.with_suffix('.json')
|
||||
with open(output_json_file_name, 'w', encoding='utf-8') as edfa_json_file:
|
||||
edfa_json_file.write(dumps(data, indent=2, ensure_ascii=False))
|
||||
edfa_json_file.write('\n') # add end of file newline because json dumps does not.
|
||||
return output_json_file_name
|
||||
|
||||
|
||||
def corresp_names(input_filename, network):
|
||||
def corresp_names(input_filename: Path, network: DiGraph):
|
||||
""" a function that builds the correspondance between names given in the excel,
|
||||
and names used in the json, and created by the autodesign.
|
||||
All names are listed
|
||||
"""
|
||||
nodes, links, eqpts = parse_excel(input_filename)
|
||||
nodes, links, eqpts, _ = parse_excel(input_filename)
|
||||
fused = [n.uid for n in network.nodes() if isinstance(n, Fused)]
|
||||
ila = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
|
||||
|
||||
corresp_roadm = {x.city: [f'roadm {x.city}'] for x in nodes
|
||||
if x.node_type.lower() == 'roadm'}
|
||||
corresp_fused = {x.city: [f'west fused spans in {x.city}', f'east fused spans in {x.city}']
|
||||
for x in nodes if x.node_type.lower() == 'fused' and
|
||||
f'west fused spans in {x.city}' in fused and
|
||||
f'east fused spans in {x.city}' in fused}
|
||||
|
||||
for x in nodes if x.node_type.lower() == 'fused'
|
||||
and f'west fused spans in {x.city}' in fused
|
||||
and f'east fused spans in {x.city}' in fused}
|
||||
corresp_ila = defaultdict(list)
|
||||
# add the special cases when an ila is changed into a fused
|
||||
for my_e in eqpts:
|
||||
name = f'east edfa in {my_e.from_city} to {my_e.to_city}'
|
||||
if my_e.east_amp_type.lower() == 'fused' and name in fused:
|
||||
if my_e.from_city in corresp_fused.keys():
|
||||
corresp_fused[my_e.from_city].append(name)
|
||||
else:
|
||||
corresp_fused[my_e.from_city] = [name]
|
||||
corresp_fused.get(my_e.from_city, []).append(name)
|
||||
name = f'west edfa in {my_e.from_city} to {my_e.to_city}'
|
||||
if my_e.west_amp_type.lower() == 'fused' and name in fused:
|
||||
if my_e.from_city in corresp_fused.keys():
|
||||
corresp_fused[my_e.from_city].append(name)
|
||||
else:
|
||||
corresp_fused[my_e.from_city] = [name]
|
||||
corresp_fused.get(my_e.from_city, []).append(name)
|
||||
# build corresp ila based on eqpt sheet
|
||||
# start with east direction
|
||||
corresp_ila = {e.from_city: [f'east edfa in {e.from_city} to {e.to_city}']
|
||||
for e in eqpts if e.east_amp_type.lower() != '' and
|
||||
f'east edfa in {e.from_city} to {e.to_city}' in ila}
|
||||
# west direction, append name or create a new item in dict
|
||||
for my_e in eqpts:
|
||||
if my_e.west_amp_type.lower() != '':
|
||||
name = f'west edfa in {my_e.from_city} to {my_e.to_city}'
|
||||
for name in [f'east edfa in {my_e.from_city} to {my_e.to_city}',
|
||||
f'west edfa in {my_e.from_city} to {my_e.to_city}']:
|
||||
if name in ila:
|
||||
if my_e.from_city in corresp_ila.keys():
|
||||
corresp_ila[my_e.from_city].append(name)
|
||||
else:
|
||||
corresp_ila[my_e.from_city] = [name]
|
||||
corresp_ila[my_e.from_city].append(name)
|
||||
# complete with potential autodesign names: amplifiers
|
||||
for my_l in links:
|
||||
name = f'Edfa0_fiber ({my_l.to_city} \u2192 {my_l.from_city})-{my_l.west_cable}'
|
||||
if name in ila:
|
||||
if my_l.from_city in corresp_ila.keys():
|
||||
# create names whatever the type and filter them out
|
||||
# from-to direction
|
||||
names = [f'Edfa_preamp_roadm {my_l.from_city}_from_fiber ({my_l.to_city} \u2192 {my_l.from_city})-{my_l.west_cable}',
|
||||
f'Edfa_booster_roadm {my_l.from_city}_to_fiber ({my_l.from_city} \u2192 {my_l.to_city})-{my_l.east_cable}']
|
||||
for name in names:
|
||||
if name in ila:
|
||||
# "east edfa in Stbrieuc to Rennes_STA" is equivalent name as
|
||||
# "Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056"
|
||||
# "Edfa_booster_roadm Stbrieuc_to_fiber (Lannion_CAS → Stbrieuc)-F056"
|
||||
# "west edfa in Stbrieuc to Rennes_STA" is equivalent name as
|
||||
# "Edfa0_fiber (Rennes_STA → Stbrieuc)-F057"
|
||||
# does not filter names: all types (except boosters) are created.
|
||||
# in case fibers are splitted the name here is a prefix
|
||||
# "Edfa_preamp_roadm Stbrieuc_to_fiber (Rennes_STA → Stbrieuc)-F057"
|
||||
# in case fibers are splitted the name here is a
|
||||
corresp_ila[my_l.from_city].append(name)
|
||||
else:
|
||||
corresp_ila[my_l.from_city] = [name]
|
||||
name = f'Edfa0_fiber ({my_l.from_city} \u2192 {my_l.to_city})-{my_l.east_cable}'
|
||||
if name in ila:
|
||||
if my_l.to_city in corresp_ila.keys():
|
||||
# to-from direction
|
||||
names = [f'Edfa_preamp_roadm {my_l.to_city}_from_fiber ({my_l.from_city} \u2192 {my_l.to_city})-{my_l.east_cable}',
|
||||
f'Edfa_booster_roadm {my_l.to_city}_to_fiber ({my_l.to_city} \u2192 {my_l.from_city})-{my_l.west_cable}']
|
||||
for name in names:
|
||||
if name in ila:
|
||||
corresp_ila[my_l.to_city].append(name)
|
||||
else:
|
||||
corresp_ila[my_l.to_city] = [name]
|
||||
for node in nodes:
|
||||
names = [f'east edfa in {node.city}', f'west edfa in {node.city}']
|
||||
for name in names:
|
||||
if name in ila:
|
||||
# "east edfa in Stbrieuc to Rennes_STA" (created with Eqpt) is equivalent name as
|
||||
# "east edfa in Stbrieuc" or "west edfa in Stbrieuc" (created with Links sheet)
|
||||
# depending on link node order
|
||||
corresp_ila[node.city].append(name)
|
||||
|
||||
# merge fused with ila:
|
||||
for key, val in corresp_fused.items():
|
||||
if key in corresp_ila.keys():
|
||||
corresp_ila[key].extend(val)
|
||||
else:
|
||||
corresp_ila[key] = val
|
||||
corresp_ila[key].extend(val)
|
||||
# no need of roadm booster
|
||||
return corresp_roadm, corresp_fused, corresp_ila
|
||||
|
||||
|
||||
def parse_excel(input_filename):
|
||||
def parse_excel(input_filename: Path) -> Tuple[List[Node], List[Link], List[Eqpt], List[Roadm]]:
|
||||
"""reads xls(x) sheets among Nodes, Eqpts, Links, Roadms and parse the data in the sheets
|
||||
into internal data structure Node, Link, Eqpt, Roadm, classes
|
||||
"""
|
||||
link_headers = {
|
||||
'Node A': 'from_city',
|
||||
'Node Z': 'to_city',
|
||||
@@ -516,7 +665,6 @@ def parse_excel(input_filename):
|
||||
'Node Z': 'to_city',
|
||||
'east': {
|
||||
'amp type': 'east_amp_type',
|
||||
'att_in': 'east_att_in',
|
||||
'amp gain': 'east_amp_gain',
|
||||
'delta p': 'east_amp_dp',
|
||||
'tilt': 'east_tilt',
|
||||
@@ -524,80 +672,103 @@ def parse_excel(input_filename):
|
||||
},
|
||||
'west': {
|
||||
'amp type': 'west_amp_type',
|
||||
'att_in': 'west_att_in',
|
||||
'amp gain': 'west_amp_gain',
|
||||
'delta p': 'west_amp_dp',
|
||||
'tilt': 'west_tilt',
|
||||
'att_out': 'west_att_out'
|
||||
}
|
||||
}
|
||||
roadm_headers = {'Node A': 'from_node',
|
||||
'Node Z': 'to_node',
|
||||
'per degree target power (dBm)': 'target_pch_out_db',
|
||||
'type_variety': 'type_variety',
|
||||
'from degrees': 'from_degrees',
|
||||
'from degree to degree impairment id': 'impairment_ids'
|
||||
}
|
||||
|
||||
with open_workbook(input_filename) as wb:
|
||||
nodes_sheet = wb.sheet_by_name('Nodes')
|
||||
links_sheet = wb.sheet_by_name('Links')
|
||||
try:
|
||||
eqpt_sheet = wb.sheet_by_name('Eqpt')
|
||||
except Exception:
|
||||
except XLRDError:
|
||||
# eqpt_sheet is optional
|
||||
eqpt_sheet = None
|
||||
try:
|
||||
roadm_sheet = wb.sheet_by_name('Roadms')
|
||||
except XLRDError:
|
||||
# roadm_sheet is optional
|
||||
roadm_sheet = None
|
||||
|
||||
nodes = []
|
||||
for node in parse_sheet(nodes_sheet, node_headers, NODES_LINE, NODES_LINE + 1, NODES_COLUMN):
|
||||
nodes.append(Node(**node))
|
||||
nodes = [Node(**node) for node in parse_sheet(nodes_sheet, node_headers,
|
||||
NODES_LINE, NODES_LINE + 1, NODES_COLUMN)]
|
||||
expected_node_types = {'ROADM', 'ILA', 'FUSED'}
|
||||
for n in nodes:
|
||||
if n.node_type not in expected_node_types:
|
||||
n.node_type = 'ILA'
|
||||
|
||||
links = []
|
||||
for link in parse_sheet(links_sheet, link_headers, LINKS_LINE, LINKS_LINE + 2, LINKS_COLUMN):
|
||||
links.append(Link(**link))
|
||||
|
||||
links = [Link(**link) for link in parse_sheet(links_sheet, link_headers,
|
||||
LINKS_LINE, LINKS_LINE + 2, LINKS_COLUMN)]
|
||||
eqpts = []
|
||||
if eqpt_sheet is not None:
|
||||
for eqpt in parse_sheet(eqpt_sheet, eqpt_headers, EQPTS_LINE, EQPTS_LINE + 2, EQPTS_COLUMN):
|
||||
eqpts.append(Eqpt(**eqpt))
|
||||
eqpts = [Eqpt(**eqpt) for eqpt in parse_sheet(eqpt_sheet, eqpt_headers,
|
||||
EQPTS_LINE, EQPTS_LINE + 2, EQPTS_COLUMN)]
|
||||
roadms = []
|
||||
if roadm_sheet is not None:
|
||||
roadms = [Roadm(**roadm) for roadm in parse_sheet(roadm_sheet, roadm_headers,
|
||||
ROADMS_LINE, ROADMS_LINE + 2, ROADMS_COLUMN)]
|
||||
|
||||
# sanity check
|
||||
all_cities = Counter(n.city for n in nodes)
|
||||
if len(all_cities) != len(nodes):
|
||||
raise ValueError(f'Duplicate city: {all_cities}')
|
||||
msg = f'Duplicate city: {all_cities}'
|
||||
raise NetworkTopologyError(msg)
|
||||
bad_links = []
|
||||
for lnk in links:
|
||||
if lnk.from_city not in all_cities or lnk.to_city not in all_cities:
|
||||
bad_links.append([lnk.from_city, lnk.to_city])
|
||||
|
||||
if bad_links:
|
||||
raise NetworkTopologyError(f'Bad link(s): {bad_links}.')
|
||||
msg = 'XLS error: ' \
|
||||
+ 'The Links sheet references nodes that ' \
|
||||
+ 'are not defined in the Nodes sheet:\n' \
|
||||
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_links)
|
||||
raise NetworkTopologyError(msg)
|
||||
|
||||
return nodes, links, eqpts
|
||||
return nodes, links, eqpts, roadms
|
||||
|
||||
|
||||
def eqpt_connection_by_city(city_name):
|
||||
other_cities = fiber_dest_from_source(city_name)
|
||||
def eqpt_connection_by_city(city_name: str, eqpts_by_city: DefaultDict[str, List[Eqpt]],
|
||||
links_by_city: DefaultDict[str, List[Link]], nodes_by_city: Dict[str, Node]) -> list:
|
||||
"""
|
||||
"""
|
||||
other_cities = fiber_dest_from_source(city_name, links_by_city)
|
||||
subdata = []
|
||||
if nodes_by_city[city_name].node_type.lower() in {'ila', 'fused'}:
|
||||
# Then len(other_cities) == 2
|
||||
direction = ['west', 'east']
|
||||
for i in range(2):
|
||||
from_ = fiber_link(other_cities[i], city_name)
|
||||
in_ = eqpt_in_city_to_city(city_name, other_cities[0], direction[i])
|
||||
to_ = fiber_link(city_name, other_cities[1 - i])
|
||||
from_ = fiber_link(other_cities[i], city_name, links_by_city)
|
||||
in_ = eqpt_in_city_to_city(city_name, other_cities[0], eqpts_by_city, nodes_by_city, direction[i])
|
||||
to_ = fiber_link(city_name, other_cities[1 - i], links_by_city)
|
||||
subdata += connect_eqpt(from_, in_, to_)
|
||||
elif nodes_by_city[city_name].node_type.lower() == 'roadm':
|
||||
for other_city in other_cities:
|
||||
from_ = f'roadm {city_name}'
|
||||
in_ = eqpt_in_city_to_city(city_name, other_city)
|
||||
to_ = fiber_link(city_name, other_city)
|
||||
in_ = eqpt_in_city_to_city(city_name, other_city, eqpts_by_city, nodes_by_city)
|
||||
to_ = fiber_link(city_name, other_city, links_by_city)
|
||||
subdata += connect_eqpt(from_, in_, to_)
|
||||
|
||||
from_ = fiber_link(other_city, city_name)
|
||||
in_ = eqpt_in_city_to_city(city_name, other_city, "west")
|
||||
from_ = fiber_link(other_city, city_name, links_by_city)
|
||||
in_ = eqpt_in_city_to_city(city_name, other_city, eqpts_by_city, nodes_by_city, "west")
|
||||
to_ = f'roadm {city_name}'
|
||||
subdata += connect_eqpt(from_, in_, to_)
|
||||
return subdata
|
||||
|
||||
|
||||
def connect_eqpt(from_, in_, to_):
|
||||
def connect_eqpt(from_: str, in_: str, to_: str) -> List[dict]:
|
||||
"""Utils: create the topology connection json dict between in and to
|
||||
"""
|
||||
connections = []
|
||||
if in_ != '':
|
||||
connections = [{'from_node': from_, 'to_node': in_},
|
||||
@@ -607,43 +778,48 @@ def connect_eqpt(from_, in_, to_):
|
||||
return connections
|
||||
|
||||
|
||||
def eqpt_in_city_to_city(in_city, to_city, direction='east'):
|
||||
def eqpt_in_city_to_city(in_city: str, to_city: str,
|
||||
eqpts_by_city: DefaultDict[str, List[Eqpt]], nodes_by_city: Dict[str, Node],
|
||||
direction: str = 'east') -> str:
|
||||
"""Utils: returns the formatted dtring corresponding to in_city types and direction
|
||||
"""
|
||||
rev_direction = 'west' if direction == 'east' else 'east'
|
||||
amp_direction = f'{direction}_amp_type'
|
||||
amp_rev_direction = f'{rev_direction}_amp_type'
|
||||
return_eqpt = ''
|
||||
if in_city in eqpts_by_city:
|
||||
for e in eqpts_by_city[in_city]:
|
||||
if nodes_by_city[in_city].node_type.lower() == 'roadm':
|
||||
if e.to_city == to_city and getattr(e, amp_direction) != '':
|
||||
if e.to_city == to_city:
|
||||
return_eqpt = f'{direction} edfa in {e.from_city} to {e.to_city}'
|
||||
elif nodes_by_city[in_city].node_type.lower() == 'ila':
|
||||
if e.to_city != to_city:
|
||||
direction = rev_direction
|
||||
amp_direction = amp_rev_direction
|
||||
if getattr(e, amp_direction) != '':
|
||||
return_eqpt = f'{direction} edfa in {e.from_city} to {e.to_city}'
|
||||
return_eqpt = f'{direction} edfa in {e.from_city} to {e.to_city}'
|
||||
elif nodes_by_city[in_city].node_type.lower() == 'ila':
|
||||
return_eqpt = f'{direction} edfa in {in_city}'
|
||||
if nodes_by_city[in_city].node_type.lower() == 'fused':
|
||||
return_eqpt = f'{direction} fused spans in {in_city}'
|
||||
return return_eqpt
|
||||
|
||||
|
||||
def corresp_next_node(network, corresp_ila, corresp_roadm):
|
||||
def corresp_next_node(network: DiGraph, corresp_ila: dict, corresp_roadm: dict) -> Tuple[dict, dict]:
|
||||
""" for each name in corresp dictionnaries find the next node in network and its name
|
||||
given by user in excel. for meshTopology_exampleV2.xls:
|
||||
user ILA name Stbrieuc covers the two direction. convert.py creates 2 different ILA
|
||||
with possible names (depending on the direction and if the eqpt was defined in eqpt
|
||||
sheet)
|
||||
for an ILA and if it is defined in eqpt:
|
||||
- east edfa in Stbrieuc to Rennes_STA
|
||||
- west edfa in Stbrieuc to Rennes_STA
|
||||
- Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056
|
||||
- Edfa0_fiber (Rennes_STA → Stbrieuc)-F057
|
||||
for an ILA and if it is not defined in eqpt:
|
||||
- east edfa in Stbrieuc
|
||||
- west edfa in Stbrieuc
|
||||
for a roadm
|
||||
"Edfa_preamp_roadm node1_from_fiber (siteE → node1)-CABLES#19"
|
||||
"Edfa_booster_roadm node1_to_fiber (node1 → siteE)-CABLES#19"
|
||||
next_nodes finds the user defined name of next node to be able to map the path constraints
|
||||
- east edfa in Stbrieuc to Rennes_STA next node = Rennes_STA
|
||||
- west edfa in Stbrieuc to Rennes_STA next node Lannion_CAS
|
||||
|
||||
Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056 and Edfa0_fiber (Rennes_STA → Stbrieuc)-F057
|
||||
do not exist
|
||||
the function supports fiber splitting, fused nodes and shall only be called if
|
||||
excel format is used for both network and service
|
||||
"""
|
||||
@@ -654,8 +830,8 @@ def corresp_next_node(network, corresp_ila, corresp_roadm):
|
||||
for ila_elem in ila_list:
|
||||
# find the node with ila_elem string _in_ the node uid. 'in' is used instead of
|
||||
# '==' to find composed nodes due to fiber splitting in autodesign.
|
||||
# eg if elem_ila is 'Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056',
|
||||
# node uid 'Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056_(1/2)' is possible
|
||||
# eg if elem_ila is 'east edfa in Stbrieuc to Rennes_STA',
|
||||
# node uid 'east edfa in Stbrieuc to Rennes_STA-_(1/2)' is possible
|
||||
correct_ila_name = next(n.uid for n in network.nodes() if ila_elem in n.uid)
|
||||
temp.remove(ila_elem)
|
||||
temp.append(correct_ila_name)
|
||||
@@ -672,7 +848,7 @@ def corresp_next_node(network, corresp_ila, corresp_roadm):
|
||||
break
|
||||
# if next_nd was not already added in the dict with the previous loop,
|
||||
# add the first found correspondance in ila names
|
||||
if correct_ila_name not in next_node.keys():
|
||||
if correct_ila_name not in next_node:
|
||||
for key, val in corresp_ila.items():
|
||||
# in case of splitted fibers the ila name might not be exact match
|
||||
if [e for e in val if e in next_nd.uid]:
|
||||
@@ -683,7 +859,9 @@ def corresp_next_node(network, corresp_ila, corresp_roadm):
|
||||
return corresp_ila, next_node
|
||||
|
||||
|
||||
def fiber_dest_from_source(city_name):
|
||||
def fiber_dest_from_source(city_name: str, links_by_city: DefaultDict[str, List[Link]]) -> List[str]:
|
||||
"""Returns the list of cities city_name is connected to
|
||||
"""
|
||||
destinations = []
|
||||
links_from_city = links_by_city[city_name]
|
||||
for l in links_from_city:
|
||||
@@ -694,7 +872,9 @@ def fiber_dest_from_source(city_name):
|
||||
return destinations
|
||||
|
||||
|
||||
def fiber_link(from_city, to_city):
|
||||
def fiber_link(from_city: str, to_city: str, links_by_city: DefaultDict[str, List[Link]]) -> str:
|
||||
"""utils: returns formatted uid for fibers between from_city and to_city
|
||||
"""
|
||||
source_dest = (from_city, to_city)
|
||||
links = links_by_city[from_city]
|
||||
link = next(l for l in links if l.from_city in source_dest and l.to_city in source_dest)
|
||||
@@ -705,7 +885,9 @@ def fiber_link(from_city, to_city):
|
||||
return fiber
|
||||
|
||||
|
||||
def midpoint(city_a, city_b):
|
||||
def midpoint(city_a: Node, city_b:Node) -> dict:
|
||||
"""Computes mipoint coordinates
|
||||
"""
|
||||
lats = city_a.latitude, city_b.latitude
|
||||
longs = city_a.longitude, city_b.longitude
|
||||
try:
|
||||
@@ -729,9 +911,13 @@ LINKS_COLUMN = 16
|
||||
LINKS_LINE = 3
|
||||
EQPTS_LINE = 3
|
||||
EQPTS_COLUMN = 14
|
||||
ROADMS_LINE = 3
|
||||
ROADMS_COLUMN = 6
|
||||
|
||||
|
||||
def _do_convert():
|
||||
"""Main function for xls(x) topology conversion to JSON format
|
||||
"""
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('workbook', type=Path)
|
||||
parser.add_argument('-f', '--filter-region', action='append', default=[])
|
||||
|
||||
@@ -1,53 +1,75 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.tools.json_io
|
||||
==================
|
||||
|
||||
Loading and saving data from JSON files in GNPy's internal data format
|
||||
'''
|
||||
"""
|
||||
|
||||
from networkx import DiGraph
|
||||
from logging import getLogger
|
||||
from pathlib import Path
|
||||
import json
|
||||
from collections import namedtuple
|
||||
from gnpy.core import ansi_escapes, elements
|
||||
from gnpy.core.equipment import trx_mode_params
|
||||
from copy import deepcopy
|
||||
from typing import Union, Dict, List
|
||||
from networkx import DiGraph
|
||||
from numpy import arange
|
||||
|
||||
|
||||
from gnpy.core import elements
|
||||
from gnpy.core.equipment import trx_mode_params, find_type_variety
|
||||
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError, ServiceError
|
||||
from gnpy.core.science_utils import estimate_nf_model
|
||||
from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions
|
||||
from gnpy.topology.request import PathRequest, Disjunction
|
||||
from gnpy.core.info import Carrier
|
||||
from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions, dbm2watt
|
||||
from gnpy.core.parameters import DEFAULT_RAMAN_COEFFICIENT, EdfaParams, MultiBandParams
|
||||
from gnpy.topology.request import PathRequest, Disjunction, compute_spectrum_slot_vs_bandwidth
|
||||
from gnpy.topology.spectrum_assignment import mvalue_to_slots
|
||||
from gnpy.tools.convert import xls_to_json_data
|
||||
from gnpy.tools.service_sheet import read_service_sheet
|
||||
import time
|
||||
|
||||
|
||||
_logger = getLogger(__name__)
|
||||
|
||||
|
||||
Model_vg = namedtuple('Model_vg', 'nf1 nf2 delta_p')
|
||||
Model_vg = namedtuple('Model_vg', 'nf1 nf2 delta_p orig_nf_min orig_nf_max')
|
||||
Model_fg = namedtuple('Model_fg', 'nf0')
|
||||
Model_openroadm = namedtuple('Model_openroadm', 'nf_coef')
|
||||
Model_openroadm_ila = namedtuple('Model_openroadm_ila', 'nf_coef')
|
||||
Model_hybrid = namedtuple('Model_hybrid', 'nf_ram gain_ram edfa_variety')
|
||||
Model_dual_stage = namedtuple('Model_dual_stage', 'preamp_variety booster_variety')
|
||||
|
||||
|
||||
class Model_openroadm_preamp:
|
||||
"""class to hold nf model specific to OpenROADM preamp
|
||||
"""
|
||||
|
||||
|
||||
class Model_openroadm_booster:
|
||||
"""class to hold nf model specific to OpenROADM booster
|
||||
"""
|
||||
|
||||
|
||||
class _JsonThing:
|
||||
"""Base class for json equipment
|
||||
"""
|
||||
def update_attr(self, default_values, kwargs, name):
|
||||
"""Build the attributes based on kwargs dict
|
||||
"""
|
||||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||||
for k, v in default_values.items():
|
||||
setattr(self, k, clean_kwargs.get(k, v))
|
||||
if k not in clean_kwargs and name != 'Amp':
|
||||
print(ansi_escapes.red +
|
||||
f'\n WARNING missing {k} attribute in eqpt_config.json[{name}]' +
|
||||
f'\n default value is {k} = {v}' +
|
||||
ansi_escapes.reset)
|
||||
time.sleep(1)
|
||||
if k not in clean_kwargs and name != 'Amp' and v is not None and v != []:
|
||||
# do not show this warning if the default value is None
|
||||
msg = f'\n\tWARNING missing {k} attribute in eqpt_config.json[{name}]' \
|
||||
+ f'\n\tdefault value is {k} = {v}\n'
|
||||
_logger.warning(msg)
|
||||
|
||||
|
||||
class SI(_JsonThing):
|
||||
"""Spectrum Information
|
||||
"""
|
||||
default_values = {
|
||||
"f_min": 191.35e12,
|
||||
"f_max": 196.1e12,
|
||||
@@ -57,7 +79,8 @@ class SI(_JsonThing):
|
||||
"power_range_db": [0, 0, 0.5],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 45,
|
||||
"sys_margins": 0
|
||||
"sys_margins": 0,
|
||||
"tx_power_dbm": None # optional value in SI
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
@@ -65,6 +88,8 @@ class SI(_JsonThing):
|
||||
|
||||
|
||||
class Span(_JsonThing):
|
||||
"""Span simulations definition
|
||||
"""
|
||||
default_values = {
|
||||
'power_mode': True,
|
||||
'delta_power_range_db': None,
|
||||
@@ -84,21 +109,42 @@ class Span(_JsonThing):
|
||||
|
||||
|
||||
class Roadm(_JsonThing):
|
||||
"""List of ROADM and their specs
|
||||
"""
|
||||
default_values = {
|
||||
'target_pch_out_db': -17,
|
||||
'type_variety': 'default',
|
||||
'add_drop_osnr': 100,
|
||||
'pmd': 0,
|
||||
'pdl': 0,
|
||||
'restrictions': {
|
||||
'preamp_variety_list': [],
|
||||
'booster_variety_list': []
|
||||
}
|
||||
},
|
||||
'roadm-path-impairments': []
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
# If equalization is not defined in equipment, then raise an error.
|
||||
# Only one type of equalization must be defined.
|
||||
allowed_equalisations = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
|
||||
requested_eq_mask = [eq in kwargs for eq in allowed_equalisations]
|
||||
if sum(requested_eq_mask) > 1:
|
||||
msg = 'Only one equalization type should be set in ROADM, found: ' \
|
||||
+ ', '.join(eq for eq in allowed_equalisations if eq in kwargs)
|
||||
raise EquipmentConfigError(msg)
|
||||
if not any(requested_eq_mask):
|
||||
msg = 'No equalization type set in ROADM'
|
||||
raise EquipmentConfigError(msg)
|
||||
for key in allowed_equalisations:
|
||||
if key in kwargs:
|
||||
setattr(self, key, kwargs[key])
|
||||
break
|
||||
self.update_attr(self.default_values, kwargs, 'Roadm')
|
||||
|
||||
|
||||
class Transceiver(_JsonThing):
|
||||
"""List of transceivers and their modes
|
||||
"""
|
||||
default_values = {
|
||||
'type_variety': None,
|
||||
'frequency': None,
|
||||
@@ -107,75 +153,82 @@ class Transceiver(_JsonThing):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.update_attr(self.default_values, kwargs, 'Transceiver')
|
||||
for mode_params in self.mode:
|
||||
penalties = mode_params.get('penalties')
|
||||
mode_params['penalties'] = {}
|
||||
mode_params['equalization_offset_db'] = mode_params.get('equalization_offset_db', 0)
|
||||
if not penalties:
|
||||
continue
|
||||
for impairment in ('chromatic_dispersion', 'pmd', 'pdl'):
|
||||
imp_penalties = [p for p in penalties if impairment in p]
|
||||
if not imp_penalties:
|
||||
continue
|
||||
if all(p[impairment] > 0 for p in imp_penalties):
|
||||
# make sure the list of penalty values include a proper lower boundary
|
||||
# (we assume 0 penalty for 0 impairment)
|
||||
imp_penalties.insert(0, {impairment: 0, 'penalty_value': 0})
|
||||
# make sure the list of penalty values are sorted by impairment value
|
||||
imp_penalties.sort(key=lambda i: i[impairment])
|
||||
# rearrange as dict of lists instead of list of dicts
|
||||
mode_params['penalties'][impairment] = {
|
||||
'up_to_boundary': [p[impairment] for p in imp_penalties],
|
||||
'penalty_value': [p['penalty_value'] for p in imp_penalties]
|
||||
}
|
||||
|
||||
|
||||
class Fiber(_JsonThing):
|
||||
"""Fiber default settings
|
||||
"""
|
||||
default_values = {
|
||||
'type_variety': '',
|
||||
'dispersion': None,
|
||||
'gamma': 0,
|
||||
'effective_area': None,
|
||||
'pmd_coef': 0
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.update_attr(self.default_values, kwargs, 'Fiber')
|
||||
self.update_attr(self.default_values, kwargs, self.__class__.__name__)
|
||||
if 'gamma' in kwargs:
|
||||
setattr(self, 'gamma', kwargs['gamma'])
|
||||
if 'raman_efficiency' in kwargs:
|
||||
raman_coefficient = kwargs['raman_efficiency']
|
||||
cr = raman_coefficient.pop('cr')
|
||||
raman_coefficient['g0'] = cr
|
||||
raman_coefficient['reference_frequency'] = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
|
||||
setattr(self, 'raman_coefficient', raman_coefficient)
|
||||
|
||||
|
||||
class RamanFiber(_JsonThing):
|
||||
default_values = {
|
||||
'type_variety': '',
|
||||
'dispersion': None,
|
||||
'gamma': 0,
|
||||
'pmd_coef': 0,
|
||||
'raman_efficiency': None
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.update_attr(self.default_values, kwargs, 'RamanFiber')
|
||||
for param in ('cr', 'frequency_offset'):
|
||||
if param not in self.raman_efficiency:
|
||||
raise EquipmentConfigError(f'RamanFiber.raman_efficiency: missing "{param}" parameter')
|
||||
if self.raman_efficiency['frequency_offset'] != sorted(self.raman_efficiency['frequency_offset']):
|
||||
raise EquipmentConfigError(f'RamanFiber.raman_efficiency.frequency_offset is not sorted')
|
||||
class RamanFiber(Fiber):
|
||||
"""Raman Fiber default settings
|
||||
"""
|
||||
|
||||
|
||||
class Amp(_JsonThing):
|
||||
default_values = {
|
||||
'f_min': 191.35e12,
|
||||
'f_max': 196.1e12,
|
||||
'type_variety': '',
|
||||
'type_def': '',
|
||||
'gain_flatmax': None,
|
||||
'gain_min': None,
|
||||
'p_max': None,
|
||||
'nf_model': None,
|
||||
'dual_stage_model': None,
|
||||
'nf_fit_coeff': None,
|
||||
'nf_ripple': None,
|
||||
'dgt': None,
|
||||
'gain_ripple': None,
|
||||
'out_voa_auto': False,
|
||||
'allowed_for_design': False,
|
||||
'raman': False
|
||||
}
|
||||
"""List of amplifiers with their specs
|
||||
"""
|
||||
default_values = EdfaParams.default_values
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.update_attr(self.default_values, kwargs, 'Amp')
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, filename, **kwargs):
|
||||
"""
|
||||
"""
|
||||
config = Path(filename).parent / 'default_edfa_config.json'
|
||||
|
||||
# default_edfa_config.json assumes a DGT profile independantly from fmin/fmax, that's a generic profile
|
||||
type_variety = kwargs['type_variety']
|
||||
type_def = kwargs.get('type_def', 'variable_gain') # default compatibility with older json eqpt files
|
||||
nf_def = None
|
||||
dual_stage_def = None
|
||||
amplifiers = None
|
||||
|
||||
if type_def == 'fixed_gain':
|
||||
try:
|
||||
nf0 = kwargs.pop('nf0')
|
||||
except KeyError: # nf0 is expected for a fixed gain amp
|
||||
raise EquipmentConfigError(f'missing nf0 value input for amplifier: {type_variety} in equipment config')
|
||||
except KeyError as exc: # nf0 is expected for a fixed gain amp
|
||||
msg = f'missing nf0 value input for amplifier: {type_variety} in equipment config'
|
||||
raise EquipmentConfigError(msg) from exc
|
||||
for k in ('nf_min', 'nf_max'):
|
||||
try:
|
||||
del kwargs[k]
|
||||
@@ -189,56 +242,145 @@ class Amp(_JsonThing):
|
||||
try: # nf_min and nf_max are expected for a variable gain amp
|
||||
nf_min = kwargs.pop('nf_min')
|
||||
nf_max = kwargs.pop('nf_max')
|
||||
except KeyError:
|
||||
raise EquipmentConfigError(f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config')
|
||||
except KeyError as exc:
|
||||
msg = f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config'
|
||||
raise EquipmentConfigError(msg) from exc
|
||||
try: # remove all remaining nf inputs
|
||||
del kwargs['nf0']
|
||||
except KeyError:
|
||||
pass # nf0 is not needed for variable gain amp
|
||||
nf1, nf2, delta_p = estimate_nf_model(type_variety, gain_min, gain_max, nf_min, nf_max)
|
||||
nf_def = Model_vg(nf1, nf2, delta_p)
|
||||
nf_def = Model_vg(nf1, nf2, delta_p, nf_min, nf_max)
|
||||
elif type_def == 'openroadm':
|
||||
try:
|
||||
nf_coef = kwargs.pop('nf_coef')
|
||||
except KeyError: # nf_coef is expected for openroadm amp
|
||||
raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config')
|
||||
nf_def = Model_openroadm(nf_coef)
|
||||
except KeyError as exc: # nf_coef is expected for openroadm amp
|
||||
raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config') from exc
|
||||
nf_def = Model_openroadm_ila(nf_coef)
|
||||
elif type_def == 'openroadm_preamp':
|
||||
nf_def = Model_openroadm_preamp()
|
||||
elif type_def == 'openroadm_booster':
|
||||
nf_def = Model_openroadm_booster()
|
||||
elif type_def == 'dual_stage':
|
||||
try: # nf_ram and gain_ram are expected for a hybrid amp
|
||||
preamp_variety = kwargs.pop('preamp_variety')
|
||||
booster_variety = kwargs.pop('booster_variety')
|
||||
except KeyError:
|
||||
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config')
|
||||
except KeyError as exc:
|
||||
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety}'
|
||||
+ ' in equipment config') from exc
|
||||
dual_stage_def = Model_dual_stage(preamp_variety, booster_variety)
|
||||
elif type_def == 'multi_band':
|
||||
amplifiers = kwargs['amplifiers']
|
||||
else:
|
||||
raise EquipmentConfigError(f'Edfa type_def {type_def} does not exist')
|
||||
|
||||
json_data = load_json(config)
|
||||
|
||||
# raise an error if config does not contain f_min, f_max
|
||||
if 'f_min' not in json_data or 'f_max' not in json_data:
|
||||
raise EquipmentConfigError('default Edfa config does not contain f_min and f_max values.'
|
||||
+ ' Please correct file.')
|
||||
# use f_min, f_max from kwargs
|
||||
if 'f_min' in kwargs:
|
||||
json_data.pop('f_min', None)
|
||||
json_data.pop('f_max', None)
|
||||
return cls(**{**kwargs, **json_data,
|
||||
'nf_model': nf_def, 'dual_stage_model': dual_stage_def})
|
||||
'nf_model': nf_def, 'dual_stage_model': dual_stage_def, 'multi_band': amplifiers})
|
||||
|
||||
|
||||
def _automatic_spacing(baud_rate):
|
||||
"""return the min possible channel spacing for a given baud rate"""
|
||||
# TODO : this should parametrized in a cfg file
|
||||
# list of possible tuples [(max_baud_rate, spacing_for_this_baud_rate)]
|
||||
spacing_list = [(33e9, 37.5e9), (38e9, 50e9), (50e9, 62.5e9), (67e9, 75e9), (92e9, 100e9)]
|
||||
return min((s[1] for s in spacing_list if s[0] > baud_rate), default=baud_rate * 1.2)
|
||||
def _spectrum_from_json(json_data: dict):
|
||||
"""JSON_data is a list of spectrum partitions each with
|
||||
{f_min, f_max, baud_rate, roll_off, delta_pdb, slot_width, tx_osnr, label}
|
||||
Creates the per freq Carrier's dict.
|
||||
f_min, f_max, baud_rate, slot_width and roll_off are mandatory
|
||||
label, tx_osnr and delta_pdb are created if not present
|
||||
label should be different for each partition
|
||||
>>> json_data = {'spectrum': \
|
||||
[{'f_min': 193.2e12, 'f_max': 193.4e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15, \
|
||||
'delta_pdb': 1, 'tx_osnr': 45, 'tx_power_dbm': -7},\
|
||||
{'f_min': 193.4625e12, 'f_max': 193.9875e12, 'slot_width': 75e9, 'baud_rate': 64e9, 'roll_off': 0.15},\
|
||||
{'f_min': 194.075e12, 'f_max': 194.075e12, 'slot_width': 100e9, 'baud_rate': 90e9, 'roll_off': 0.15},\
|
||||
{'f_min': 194.2e12, 'f_max': 194.35e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15}]}
|
||||
>>> spectrum = _spectrum_from_json(json_data['spectrum'])
|
||||
>>> for k, v in spectrum.items():
|
||||
... print(f'{k}: {v}')
|
||||
...
|
||||
193200000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
|
||||
193250000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
|
||||
193300000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
|
||||
193350000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
|
||||
193400000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
|
||||
193462500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
193537500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
193612500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
193687500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
193762500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
193837500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
193912500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
193987500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
|
||||
194075000000000.0: Carrier(delta_pdb=0, baud_rate=90000000000.0, slot_width=100000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='2-90.00G')
|
||||
194200000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
|
||||
194250000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
|
||||
194300000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
|
||||
194350000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
|
||||
"""
|
||||
spectrum = {}
|
||||
json_data = sorted(json_data, key=lambda x: x['f_min'])
|
||||
# min freq of occupation is f_min - slot_width/2 (numbering starts at 0)
|
||||
previous_part_max_freq = 0.0
|
||||
for index, part in enumerate(json_data):
|
||||
# default delta_pdb is 0 dB
|
||||
part.setdefault('delta_pdb', 0)
|
||||
# add a label to the partition for the printings
|
||||
part.setdefault('label', f'{index}-{part["baud_rate"] * 1e-9:.2f}G')
|
||||
# default tx_osnr is set to 40 dB
|
||||
part.setdefault('tx_osnr', 40)
|
||||
# default tx_power_dbm is set to 0 dBn
|
||||
part.setdefault('tx_power_dbm', 0)
|
||||
# starting freq is exactly f_min to be consistent with utils.automatic_nch
|
||||
# first partition min occupation is f_min - slot_width / 2 (central_frequency is f_min)
|
||||
# supposes that carriers are centered on frequency
|
||||
if previous_part_max_freq > (part['f_min'] - part['slot_width'] / 2):
|
||||
# check that previous part last channel does not overlap on next part first channel
|
||||
# max center of the part should be below part['f_max'] and aligned on the slot_width
|
||||
msg = 'Not a valid initial spectrum definition:\nprevious spectrum last carrier max occupation ' +\
|
||||
f'{previous_part_max_freq * 1e-12:.5f}GHz ' +\
|
||||
'overlaps on next spectrum first carrier occupation ' +\
|
||||
f'{(part["f_min"] - part["slot_width"] / 2) * 1e-12:.5f}GHz'
|
||||
raise ValueError(msg)
|
||||
|
||||
max_range = ((part['f_max'] - part['f_min']) // part['slot_width'] + 1) * part['slot_width']
|
||||
previous_part_max_freq = None
|
||||
for current_freq in arange(part['f_min'],
|
||||
part['f_min'] + max_range,
|
||||
part['slot_width']):
|
||||
spectrum[current_freq] = Carrier(delta_pdb=part['delta_pdb'], baud_rate=part['baud_rate'],
|
||||
slot_width=part['slot_width'], roll_off=part['roll_off'],
|
||||
tx_osnr=part['tx_osnr'], tx_power=dbm2watt(part['tx_power_dbm']),
|
||||
label=part['label'])
|
||||
previous_part_max_freq = current_freq + part['slot_width'] / 2
|
||||
return spectrum
|
||||
|
||||
|
||||
def load_equipment(filename):
|
||||
def load_equipment(filename: Path) -> dict:
|
||||
"""Load equipment, returns equipment dict
|
||||
"""
|
||||
json_data = load_json(filename)
|
||||
return _equipment_from_json(json_data, filename)
|
||||
|
||||
|
||||
def _update_trx_osnr(equipment):
|
||||
"""add sys_margins to all Transceivers OSNR values"""
|
||||
for trx in equipment['Transceiver'].values():
|
||||
for m in trx.mode:
|
||||
m['OSNR'] = m['OSNR'] + equipment['SI']['default'].sys_margins
|
||||
return equipment
|
||||
def load_initial_spectrum(filename: Path) -> dict:
|
||||
"""Load spectrum to propagate, returns spectrum dict
|
||||
"""
|
||||
json_data = load_json(filename)
|
||||
return _spectrum_from_json(json_data['spectrum'])
|
||||
|
||||
|
||||
def _update_dual_stage(equipment):
|
||||
def _update_dual_stage(equipment: dict) -> dict:
|
||||
"""Update attributes of all dual stage amps with the preamp and booster attributes
|
||||
(defined in the equipment dictionary)
|
||||
|
||||
Returns the updated equiment dictionary
|
||||
"""
|
||||
edfa_dict = equipment['Edfa']
|
||||
for edfa in edfa_dict.values():
|
||||
if edfa.type_def == 'dual_stage':
|
||||
@@ -257,18 +399,58 @@ def _update_dual_stage(equipment):
|
||||
return equipment
|
||||
|
||||
|
||||
def _roadm_restrictions_sanity_check(equipment):
|
||||
""" verifies that booster and preamp restrictions specified in roadm equipment are listed
|
||||
in the edfa.
|
||||
def _update_band(equipment: dict) -> dict:
|
||||
"""Creates a list of bands for this amplifier, and remove other parameters which are not applicable
|
||||
"""
|
||||
restrictions = equipment['Roadm']['default'].restrictions['booster_variety_list'] + \
|
||||
equipment['Roadm']['default'].restrictions['preamp_variety_list']
|
||||
for amp_name in restrictions:
|
||||
if amp_name not in equipment['Edfa']:
|
||||
raise EquipmentConfigError(f'ROADM restriction {amp_name} does not refer to a defined EDFA name')
|
||||
amp_dict = equipment['Edfa']
|
||||
for amplifier in amp_dict.values():
|
||||
if amplifier.type_def != 'multi_band':
|
||||
amplifier.bands = [{'f_min': amplifier.f_min,
|
||||
'f_max': amplifier.f_max}]
|
||||
# updates band parameter
|
||||
else:
|
||||
_bands = [{'f_min': amp_dict[a].f_min,
|
||||
'f_max': amp_dict[a].f_max} for a in amp_dict[amplifier.type_variety].multi_band]
|
||||
# remove duplicates
|
||||
amplifier.bands = []
|
||||
for b in _bands:
|
||||
if b not in amplifier.bands:
|
||||
amplifier.bands.append(b)
|
||||
# remove non applicable parameters
|
||||
for key in ['f_min', 'f_max', 'gain_flatmax', 'gain_min', 'p_max', 'nf_model', 'dual_stage_model',
|
||||
'nf_fit_coeff', 'nf_ripple', 'dgt', 'gain_ripple']:
|
||||
delattr(amplifier, key)
|
||||
|
||||
return equipment
|
||||
|
||||
|
||||
def _equipment_from_json(json_data, filename):
|
||||
def _roadm_restrictions_sanity_check(equipment: dict):
|
||||
"""verifies that booster and preamp restrictions specified in roadm equipment are listed in the edfa."""
|
||||
for roadm_type, roadm_eqpt in equipment['Roadm'].items():
|
||||
restrictions = roadm_eqpt.restrictions['booster_variety_list'] + \
|
||||
roadm_eqpt.restrictions['preamp_variety_list']
|
||||
for amp_name in restrictions:
|
||||
if amp_name not in equipment['Edfa']:
|
||||
raise EquipmentConfigError(f'ROADM {roadm_type} restriction {amp_name} does not refer to a '
|
||||
+ 'defined EDFA name')
|
||||
|
||||
|
||||
def _check_fiber_vs_raman_fiber(equipment: dict):
|
||||
"""Ensure that Fiber and RamanFiber with the same name define common properties equally"""
|
||||
if 'RamanFiber' not in equipment:
|
||||
return
|
||||
for fiber_type in set(equipment['Fiber'].keys()) & set(equipment['RamanFiber'].keys()):
|
||||
for attr in ('dispersion', 'dispersion-slope', 'effective_area', 'gamma', 'pmd-coefficient'):
|
||||
fiber = equipment['Fiber'][fiber_type]
|
||||
raman = equipment['RamanFiber'][fiber_type]
|
||||
a = getattr(fiber, attr, None)
|
||||
b = getattr(raman, attr, None)
|
||||
if a != b:
|
||||
raise EquipmentConfigError(f'WARNING: Fiber and RamanFiber definition of "{fiber_type}" '
|
||||
f'disagrees for "{attr}": {a} != {b}')
|
||||
|
||||
|
||||
def _equipment_from_json(json_data: dict, filename: Path) -> dict:
|
||||
"""build global dictionnary eqpt_library that stores all eqpt characteristics:
|
||||
edfa type type_variety, fiber type_variety
|
||||
from the eqpt_config.json (filename parameter)
|
||||
@@ -291,6 +473,9 @@ def _equipment_from_json(json_data, filename):
|
||||
elif key == 'Roadm':
|
||||
equipment[key][subkey] = Roadm(**entry)
|
||||
elif key == 'SI':
|
||||
# use power_dbm value for tx_power_dbm if the key is not in 'SI'
|
||||
# if 'tx_power_dbm' not in entry.keys():
|
||||
# entry['tx_power_dbm'] = entry['power_dbm']
|
||||
equipment[key][subkey] = SI(**entry)
|
||||
elif key == 'Transceiver':
|
||||
equipment[key][subkey] = Transceiver(**entry)
|
||||
@@ -298,13 +483,24 @@ def _equipment_from_json(json_data, filename):
|
||||
equipment[key][subkey] = RamanFiber(**entry)
|
||||
else:
|
||||
raise EquipmentConfigError(f'Unrecognized network element type "{key}"')
|
||||
equipment = _update_trx_osnr(equipment)
|
||||
_check_fiber_vs_raman_fiber(equipment)
|
||||
equipment = _update_dual_stage(equipment)
|
||||
equipment = _update_band(equipment)
|
||||
_roadm_restrictions_sanity_check(equipment)
|
||||
possible_SI = list(equipment['SI'].keys())
|
||||
if 'default' not in possible_SI:
|
||||
# Use "default" key in the equipment, using the first listed keys
|
||||
equipment['SI']['default'] = equipment['SI'][possible_SI[0]]
|
||||
del equipment['SI'][possible_SI[0]]
|
||||
return equipment
|
||||
|
||||
|
||||
def load_network(filename, equipment):
|
||||
def load_network(filename: Path, equipment: dict) -> DiGraph:
|
||||
"""load network json or excel
|
||||
|
||||
:param filename: input file to read from
|
||||
:param equipment: equipment library
|
||||
"""
|
||||
if filename.suffix.lower() in ('.xls', '.xlsx'):
|
||||
json_data = xls_to_json_data(filename)
|
||||
elif filename.suffix.lower() == '.json':
|
||||
@@ -315,11 +511,11 @@ def load_network(filename, equipment):
|
||||
|
||||
|
||||
def save_network(network: DiGraph, filename: str):
|
||||
'''Dump the network into a JSON file
|
||||
"""Dump the network into a JSON file
|
||||
|
||||
:param network: network to work on
|
||||
:param filename: file to write to
|
||||
'''
|
||||
"""
|
||||
save_json(network_to_json(network), filename)
|
||||
|
||||
|
||||
@@ -328,19 +524,22 @@ def _cls_for(equipment_type):
|
||||
return elements.Edfa
|
||||
if equipment_type == 'Fused':
|
||||
return elements.Fused
|
||||
elif equipment_type == 'Roadm':
|
||||
if equipment_type == 'Roadm':
|
||||
return elements.Roadm
|
||||
elif equipment_type == 'Transceiver':
|
||||
if equipment_type == 'Transceiver':
|
||||
return elements.Transceiver
|
||||
elif equipment_type == 'Fiber':
|
||||
if equipment_type == 'Fiber':
|
||||
return elements.Fiber
|
||||
elif equipment_type == 'RamanFiber':
|
||||
if equipment_type == 'RamanFiber':
|
||||
return elements.RamanFiber
|
||||
else:
|
||||
raise ConfigurationError(f'Unknown network equipment "{equipment_type}"')
|
||||
if equipment_type == 'Multiband_amplifier':
|
||||
return elements.Multiband_amplifier
|
||||
raise ConfigurationError(f'Unknown network equipment "{equipment_type}"')
|
||||
|
||||
|
||||
def network_from_json(json_data, equipment):
|
||||
def network_from_json(json_data: dict, equipment: dict) -> DiGraph:
|
||||
"""create digraph based on json input dict and using equipment library to fill in the gaps
|
||||
"""
|
||||
# NOTE|dutc: we could use the following, but it would tie our data format
|
||||
# too closely to the graph library
|
||||
# from networkx import node_link_graph
|
||||
@@ -349,18 +548,80 @@ def network_from_json(json_data, equipment):
|
||||
typ = el_config.pop('type')
|
||||
variety = el_config.pop('type_variety', 'default')
|
||||
cls = _cls_for(typ)
|
||||
if typ == 'Fused':
|
||||
if typ == 'Transceiver':
|
||||
temp = el_config.setdefault('params', {})
|
||||
if typ == 'Multiband_amplifier':
|
||||
if variety in ['default', '']:
|
||||
extra_params = None
|
||||
temp = el_config.setdefault('params', {})
|
||||
temp = merge_amplifier_restrictions(temp, deepcopy(MultiBandParams.default_values))
|
||||
el_config['params'] = temp
|
||||
else:
|
||||
extra_params = equipment['Edfa'][variety]
|
||||
temp = el_config.setdefault('params', {})
|
||||
# use config params preferably to library params, only use library params to fill in
|
||||
# the missing attribute
|
||||
temp = merge_amplifier_restrictions(temp, deepcopy(extra_params.__dict__))
|
||||
el_config['params'] = temp
|
||||
el_config['type_variety'] = variety
|
||||
# if config does not contain any amp list create one
|
||||
amps = el_config.setdefault('amplifiers', [])
|
||||
for amp in amps:
|
||||
amp_variety = amp['type_variety'] # juste pour essayer
|
||||
amp_extra_params = equipment['Edfa'][amp_variety]
|
||||
temp = amp.setdefault('params', {})
|
||||
temp = merge_amplifier_restrictions(temp, amp_extra_params.__dict__)
|
||||
amp['params'] = temp
|
||||
amp['type_variety'] = amp_variety
|
||||
# check type_variety consistant with amps type_variety
|
||||
if amps:
|
||||
try:
|
||||
multiband_type_variety = find_type_variety([a['type_variety'] for a in amps], equipment)
|
||||
except ConfigurationError as e:
|
||||
msg = f'Node {el_config["uid"]}: {e}'
|
||||
raise ConfigurationError(msg)
|
||||
if variety is not None and variety not in multiband_type_variety:
|
||||
raise ConfigurationError(f'In node {el_config["uid"]}: multiband amplifier type_variety is not '
|
||||
+ 'consistent with its amps type varieties.')
|
||||
if not amps and extra_params is not None:
|
||||
# the amp config does not contain the amplifiers operational settings, but has a type_variety
|
||||
# defined so that it is possible to create the template of amps for design for each band. This
|
||||
# defines the default design bands.
|
||||
# This lopp populates each amp with default values, for each band
|
||||
for band in extra_params.bands:
|
||||
params = {k: v for k, v in Amp.default_values.items()}
|
||||
# update frequencies with band values
|
||||
params['f_min'] = band['f_min']
|
||||
params['f_max'] = band['f_max']
|
||||
amps.append({'params': params})
|
||||
# without type_variety, it is not possible to set the amplifier dict at this point: need to wait
|
||||
# for design, and use user defined design-bands
|
||||
elif typ == 'Fused':
|
||||
# well, there's no variety for the 'Fused' node type
|
||||
pass
|
||||
elif variety in equipment[typ]:
|
||||
extra_params = equipment[typ][variety]
|
||||
extra_params = equipment[typ][variety].__dict__
|
||||
temp = el_config.setdefault('params', {})
|
||||
temp = merge_amplifier_restrictions(temp, extra_params.__dict__)
|
||||
if typ == 'Roadm':
|
||||
# if equalization is defined, remove default equalization from the extra_params
|
||||
# If equalisation is not defined in the element config, then use the default one from equipment
|
||||
# if more than one equalization was defined in element config, then raise an error
|
||||
extra_params = merge_equalization(temp, extra_params)
|
||||
if not extra_params:
|
||||
msg = f'ROADM {el_config["uid"]}: invalid equalization settings'
|
||||
raise ConfigurationError(msg)
|
||||
temp = merge_amplifier_restrictions(temp, extra_params)
|
||||
el_config['params'] = temp
|
||||
el_config['type_variety'] = variety
|
||||
elif typ in ['Edfa', 'Fiber', 'RamanFiber']: # catch it now because the code will crash later!
|
||||
elif (typ in ['Fiber', 'RamanFiber', 'Roadm']):
|
||||
raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:'
|
||||
'\nplease check it is properly defined in the eqpt_config json file')
|
||||
elif typ == 'Edfa':
|
||||
if variety in ['default', '']:
|
||||
el_config['params'] = Amp.default_values
|
||||
else:
|
||||
raise ConfigurationError(f'The Edfa of variety type {variety} was not recognized:'
|
||||
'\nplease check it is properly defined in the eqpt_config json file')
|
||||
el = cls(**el_config)
|
||||
g.add_node(el)
|
||||
|
||||
@@ -374,13 +635,16 @@ def network_from_json(json_data, equipment):
|
||||
else:
|
||||
edge_length = 0.01
|
||||
g.add_edge(nodes[from_node], nodes[to_node], weight=edge_length)
|
||||
except KeyError:
|
||||
raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}')
|
||||
except KeyError as exc:
|
||||
msg = f'can not find {from_node} or {to_node} defined in {cx}'
|
||||
raise NetworkTopologyError(msg) from exc
|
||||
|
||||
return g
|
||||
|
||||
|
||||
def network_to_json(network):
|
||||
def network_to_json(network: DiGraph) -> dict:
|
||||
"""Export network graph as a json dict
|
||||
"""
|
||||
data = {
|
||||
'elements': [n.to_json for n in network]
|
||||
}
|
||||
@@ -394,68 +658,74 @@ def network_to_json(network):
|
||||
return data
|
||||
|
||||
|
||||
def load_json(filename):
|
||||
def load_json(filename: Path) -> dict:
|
||||
"""load json data, convert from the yang to the legacy
|
||||
supports both legacy ang yang formatted inputs based on yang models
|
||||
"""
|
||||
with open(filename, 'r', encoding='utf-8') as f:
|
||||
data = json.load(f)
|
||||
return data
|
||||
|
||||
|
||||
def save_json(obj, filename):
|
||||
def save_json(obj: Dict, filename: Path):
|
||||
"""Save in json format. Use yang formatted data for Topo and Services
|
||||
"""
|
||||
with open(filename, 'w', encoding='utf-8') as f:
|
||||
json.dump(obj, f, indent=2, ensure_ascii=False)
|
||||
|
||||
|
||||
def load_requests(filename, eqpt, bidir, network, network_filename):
|
||||
""" loads the requests from a json or an excel file into a data string
|
||||
"""
|
||||
def load_requests(filename: Path, eqpt: dict, bidir: bool, network: DiGraph, network_filename: str) -> dict:
|
||||
"""loads the requests from a json or an excel file into a data string"""
|
||||
if filename.suffix.lower() in ('.xls', '.xlsx'):
|
||||
_logger.info('Automatically converting requests from XLS to JSON')
|
||||
try:
|
||||
return convert_service_sheet(filename, eqpt, network, network_filename=network_filename, bidir=bidir)
|
||||
except ServiceError as this_e:
|
||||
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {this_e}')
|
||||
exit(1)
|
||||
raise ServiceError(f'Service error: {this_e}') from this_e
|
||||
else:
|
||||
return load_json(filename)
|
||||
|
||||
|
||||
def requests_from_json(json_data, equipment):
|
||||
def requests_from_json(json_data: dict, equipment: dict) -> List[PathRequest]:
|
||||
"""Extract list of requests from data parsed from JSON"""
|
||||
requests_list = []
|
||||
|
||||
for req in json_data['path-request']:
|
||||
# init all params from request
|
||||
params = {}
|
||||
params['request_id'] = req['request-id']
|
||||
params['source'] = req['source']
|
||||
params['bidir'] = req['bidirectional']
|
||||
params['destination'] = req['destination']
|
||||
params['trx_type'] = req['path-constraints']['te-bandwidth']['trx_type']
|
||||
if 'trx_mode' in req['path-constraints']['te-bandwidth'].keys():
|
||||
params['trx_mode'] = req['path-constraints']['te-bandwidth']['trx_mode']
|
||||
else:
|
||||
params['trx_mode'] = None
|
||||
params['format'] = params['trx_mode']
|
||||
params['spacing'] = req['path-constraints']['te-bandwidth']['spacing']
|
||||
trx_type = req['path-constraints']['te-bandwidth']['trx_type']
|
||||
trx_mode = req['path-constraints']['te-bandwidth'].get('trx_mode', None)
|
||||
if trx_type is None:
|
||||
msg = f'Request {req["request-id"]} has no transceiver type defined.'
|
||||
raise ServiceError(msg)
|
||||
try:
|
||||
nd_list = req['explicit-route-objects']['route-object-include-exclude']
|
||||
nd_list = sorted(req['explicit-route-objects']['route-object-include-exclude'], key=lambda x: x['index'])
|
||||
except KeyError:
|
||||
nd_list = []
|
||||
params['nodes_list'] = [n['num-unnum-hop']['node-id'] for n in nd_list]
|
||||
params['loose_list'] = [n['num-unnum-hop']['hop-type'] for n in nd_list]
|
||||
params = {
|
||||
'request_id': f'{req["request-id"]}',
|
||||
'source': req['source'],
|
||||
'destination': req['destination'],
|
||||
'bidir': req['bidirectional'],
|
||||
'trx_type': trx_type,
|
||||
'trx_mode': trx_mode,
|
||||
'format': trx_mode,
|
||||
'spacing': req['path-constraints']['te-bandwidth']['spacing'],
|
||||
'nodes_list': [n['num-unnum-hop']['node-id'] for n in nd_list],
|
||||
'loose_list': [n['num-unnum-hop']['hop-type'] for n in nd_list]
|
||||
}
|
||||
# recover trx physical param (baudrate, ...) from type and mode
|
||||
# in trx_mode_params optical power is read from equipment['SI']['default'] and
|
||||
# nb_channel is computed based on min max frequency and spacing
|
||||
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
|
||||
params.update(trx_params)
|
||||
# print(trx_params['min_spacing'])
|
||||
# optical power might be set differently in the request. if it is indicated then the
|
||||
# params['power'] is updated
|
||||
try:
|
||||
if req['path-constraints']['te-bandwidth']['output-power']:
|
||||
params['power'] = req['path-constraints']['te-bandwidth']['output-power']
|
||||
except KeyError:
|
||||
pass
|
||||
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
|
||||
except EquipmentConfigError as e:
|
||||
msg = f'Equipment Config error in {req["request-id"]}: {e}'
|
||||
raise EquipmentConfigError(msg) from e
|
||||
params.update(trx_params)
|
||||
params['power'] = req['path-constraints']['te-bandwidth'].get('output-power')
|
||||
# params must not be None, but user can set to None: catch this case
|
||||
if params['power'] is None:
|
||||
params['power'] = dbm2watt(equipment['SI']['default'].power_dbm)
|
||||
|
||||
# same process for nb-channel
|
||||
f_min = params['f_min']
|
||||
f_max_from_si = params['f_max']
|
||||
@@ -469,54 +739,92 @@ def requests_from_json(json_data, equipment):
|
||||
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
|
||||
except KeyError:
|
||||
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
|
||||
if 'effective-freq-slot' in req['path-constraints']['te-bandwidth']:
|
||||
# temporarily reads only the first slot
|
||||
params['effective_freq_slot'] = req['path-constraints']['te-bandwidth']['effective-freq-slot'][0]
|
||||
else:
|
||||
params['effective_freq_slot'] = None
|
||||
_check_one_request(params, f_max_from_si)
|
||||
|
||||
params['effective_freq_slot'] = \
|
||||
req['path-constraints']['te-bandwidth'].get('effective-freq-slot', [{'N': None, 'M': None}])
|
||||
try:
|
||||
params['path_bandwidth'] = req['path-constraints']['te-bandwidth']['path_bandwidth']
|
||||
except KeyError:
|
||||
pass
|
||||
params['tx_power'] = req['path-constraints']['te-bandwidth'].get('tx_power')
|
||||
default_tx_power_dbm = equipment['SI']['default'].tx_power_dbm
|
||||
if params['tx_power'] is None:
|
||||
# use request's input power in span instead
|
||||
params['tx_power'] = params['power']
|
||||
if default_tx_power_dbm is not None:
|
||||
# use default tx power
|
||||
params['tx_power'] = dbm2watt(default_tx_power_dbm)
|
||||
_check_one_request(params, f_max_from_si)
|
||||
requests_list.append(PathRequest(**params))
|
||||
return requests_list
|
||||
|
||||
|
||||
def _check_one_request(params, f_max_from_si):
|
||||
def _check_one_request(params: dict, f_max_from_si: float):
|
||||
"""Checks that the requested parameters are consistant (spacing vs nb channel vs transponder mode...)"""
|
||||
f_min = params['f_min']
|
||||
f_max = params['f_max']
|
||||
max_recommanded_nb_channels = automatic_nch(f_min, f_max, params['spacing'])
|
||||
max_recommanded_nb_channels = automatic_nch(f_min, f_max_from_si, params['spacing'])
|
||||
if params['baud_rate'] is not None:
|
||||
# implicitly means that a mode is defined with min_spacing
|
||||
if params['min_spacing'] > params['spacing']:
|
||||
msg = f'Request {params["request_id"]} has spacing below transponder ' +\
|
||||
f'{params["trx_type"]} {params["trx_mode"]} min spacing value ' +\
|
||||
f'{params["min_spacing"]*1e-9}GHz.\nComputation stopped'
|
||||
print(msg)
|
||||
_logger.critical(msg)
|
||||
f'{params["min_spacing"] * 1e-9}GHz.\nComputation stopped'
|
||||
raise ServiceError(msg)
|
||||
if f_max > f_max_from_si:
|
||||
msg = f'''Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"]} GHz
|
||||
and requested spacing {params["spacing"]*1e-9}GHz is not consistent with frequency range
|
||||
{f_min*1e-12} THz, {f_max*1e-12} THz, min recommanded spacing {params["min_spacing"]*1e-9}GHz.
|
||||
max recommanded nb of channels is {max_recommanded_nb_channels}.'''
|
||||
_logger.critical(msg)
|
||||
msg = f'Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"] * 1e-9} GHz' \
|
||||
+ f' and requested spacing {params["spacing"] * 1e-9}GHz is not consistent with frequency range' \
|
||||
+ f' {f_min * 1e-12} THz, {f_max_from_si * 1e-12} THz.' \
|
||||
+ f' Max recommanded nb of channels is {max_recommanded_nb_channels}.'
|
||||
raise ServiceError(msg)
|
||||
# Transponder mode already selected; will it fit to the requested bandwidth?
|
||||
if params['trx_mode'] is not None and params['effective_freq_slot'] is not None:
|
||||
required_nb_of_channels, _ = compute_spectrum_slot_vs_bandwidth(params['path_bandwidth'],
|
||||
params['spacing'],
|
||||
params['bit_rate'])
|
||||
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(params['bit_rate'],
|
||||
params['spacing'],
|
||||
params['bit_rate'])
|
||||
# each M should fit one or more channels if it is not None
|
||||
# spectrum slots should not overlap
|
||||
# resulting nb of channels should be bigger than the nb computed with path_bandwidth
|
||||
# without being splitted
|
||||
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
|
||||
# superchannel closed packing.
|
||||
nb_of_channels = 0
|
||||
# order slots
|
||||
slots = sorted(params['effective_freq_slot'], key=lambda x: float('inf') if x['N'] is None else x['N'])
|
||||
for slot in slots:
|
||||
nb_of_channels = nb_of_channels + slot['M'] // per_channel_m if slot['M'] is not None \
|
||||
and nb_of_channels is not None else None
|
||||
if slot['M'] is not None and slot['M'] < per_channel_m:
|
||||
msg = f'Requested M {slot} number of slots for request' +\
|
||||
f' {params["request_id"]} should be greater than {per_channel_m} to support request' +\
|
||||
f'with {params["trx_type"]} {params["trx_mode"]}'
|
||||
_logger.critical(msg)
|
||||
if nb_of_channels is not None and nb_of_channels < required_nb_of_channels:
|
||||
msg = f'Requested M {slots} number of slots for request {params["request_id"]} support {nb_of_channels}' +\
|
||||
f' nb of channels while {required_nb_of_channels} are required to support request' +\
|
||||
f' {params["path_bandwidth"] * 1e-9} Gbit/s with {params["trx_type"]} {params["trx_mode"]}'
|
||||
raise ServiceError(msg)
|
||||
if nb_of_channels is not None:
|
||||
_, stop0n = mvalue_to_slots(slots[0]['N'], slots[0]['M'])
|
||||
i = 1
|
||||
while i < len(slots):
|
||||
slot = slots[i]
|
||||
startn, stopn = mvalue_to_slots(slot['N'], slot['M'])
|
||||
if startn <= stop0n:
|
||||
msg = f'Requested M {slots} for request {params["request_id"]} overlap'
|
||||
raise ServiceError(msg)
|
||||
_, stop0n = startn, stopn
|
||||
i += 1
|
||||
|
||||
|
||||
def disjunctions_from_json(json_data):
|
||||
""" reads the disjunction requests from the json dict and create the list
|
||||
of requested disjunctions for this set of requests
|
||||
def disjunctions_from_json(json_data: dict) -> List[Disjunction]:
|
||||
"""reads the disjunction requests from the json dict and create the list
|
||||
of requested disjunctions for this set of requests
|
||||
"""
|
||||
disjunctions_list = []
|
||||
try:
|
||||
temp_test = json_data['synchronization']
|
||||
except KeyError:
|
||||
temp_test = []
|
||||
if temp_test:
|
||||
if 'synchronization' in json_data:
|
||||
for snc in json_data['synchronization']:
|
||||
params = {}
|
||||
params['disjunction_id'] = snc['synchronization-id']
|
||||
@@ -530,15 +838,63 @@ def disjunctions_from_json(json_data):
|
||||
|
||||
|
||||
def convert_service_sheet(
|
||||
input_filename,
|
||||
eqpt,
|
||||
network,
|
||||
network_filename=None,
|
||||
output_filename='',
|
||||
bidir=False,
|
||||
filter_region=None):
|
||||
input_filename: Path,
|
||||
eqpt: dict,
|
||||
network: DiGraph,
|
||||
network_filename: Union[Path, None] = None,
|
||||
output_filename: str = '',
|
||||
bidir: bool = False):
|
||||
"""Converts xls into json format services
|
||||
|
||||
:param input_filename: xls(x) file containing the service sheet
|
||||
:param eqpt: equipment library
|
||||
:param network: network for which these services apply (required for xls inputs to correct names)
|
||||
:param network_filename: optional network file name that was used for network creation
|
||||
(required for xls inputs to correct names)
|
||||
:param output_filename: name of the file where converted data are savec
|
||||
:param bidir: set all services bidir attribute with this bool
|
||||
"""
|
||||
if output_filename == '':
|
||||
output_filename = f'{str(input_filename)[0:len(str(input_filename))-len(str(input_filename.suffixes[0]))]}_services.json'
|
||||
data = read_service_sheet(input_filename, eqpt, network, network_filename, bidir, filter_region)
|
||||
output_filename = f'{str(input_filename)[0:len(str(input_filename)) - len(str(input_filename.suffixes[0]))]}_services.json'
|
||||
data = read_service_sheet(input_filename, eqpt, network, network_filename, bidir)
|
||||
save_json(data, output_filename)
|
||||
return data
|
||||
|
||||
|
||||
def find_equalisation(params: Dict, equalization_types: List[str]):
|
||||
"""Find the equalization(s) defined in params. params can be a dict or a Roadm object.
|
||||
|
||||
>>> roadm = {'add_drop_osnr': 100, 'pmd': 1, 'pdl': 0.5,
|
||||
... 'restrictions': {'preamp_variety_list': ['a'], 'booster_variety_list': ['b']},
|
||||
... 'target_psd_out_mWperGHz': 4e-4}
|
||||
>>> equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz']
|
||||
>>> find_equalisation(roadm, equalization_types)
|
||||
{'target_pch_out_db': False, 'target_psd_out_mWperGHz': True}
|
||||
"""
|
||||
equalization = {e: False for e in equalization_types}
|
||||
for equ in equalization_types:
|
||||
if equ in params:
|
||||
equalization[equ] = True
|
||||
return equalization
|
||||
|
||||
|
||||
def merge_equalization(params: dict, extra_params: dict) -> Union[dict, None]:
|
||||
"""params contains ROADM element config and extra_params default values from equipment library.
|
||||
If equalization is not defined in ROADM element use the one defined in equipment library.
|
||||
Only one type of equalization must be defined: power (target_pch_out_db) or PSD (target_psd_out_mWperGHz)
|
||||
or PSW (target_out_mWperSlotWidth)
|
||||
params and extra_params are dict
|
||||
"""
|
||||
equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
|
||||
roadm_equalizations = find_equalisation(params, equalization_types)
|
||||
if sum(roadm_equalizations.values()) > 1:
|
||||
# if ROADM config contains more than one equalization type then this is an error
|
||||
return None
|
||||
if sum(roadm_equalizations.values()) == 1:
|
||||
# if ROADM config contains one equalization
|
||||
# don't use the default equalization
|
||||
return {k: v for k, v in extra_params.items() if k not in equalization_types}
|
||||
if sum(roadm_equalizations.values()) == 0:
|
||||
# If ROADM config doesn't contain any equalization type, keep the default one
|
||||
return extra_params
|
||||
return None
|
||||
|
||||
@@ -1,62 +1,50 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
"""
|
||||
gnpy.tools.plots
|
||||
================
|
||||
|
||||
Graphs and plots usable form a CLI application
|
||||
'''
|
||||
Graphs and plots usable from a CLI application
|
||||
"""
|
||||
|
||||
from matplotlib.pyplot import show, axis, figure, title, text
|
||||
from networkx import draw_networkx_nodes, draw_networkx_edges, draw_networkx_labels
|
||||
from networkx import draw_networkx
|
||||
from gnpy.core.elements import Transceiver
|
||||
|
||||
|
||||
def plot_baseline(network):
|
||||
edges = set(network.edges())
|
||||
pos = {n: (n.lng, n.lat) for n in network.nodes()}
|
||||
labels = {n: n.location.city for n in network.nodes() if isinstance(n, Transceiver)}
|
||||
city_labels = set(labels.values())
|
||||
for n in network.nodes():
|
||||
if n.location.city and n.location.city not in city_labels:
|
||||
labels[n] = n.location.city
|
||||
city_labels.add(n.location.city)
|
||||
label_pos = pos
|
||||
def _try_city(node):
|
||||
return node.location.city if node.location.city else node.uid
|
||||
|
||||
fig = figure()
|
||||
kwargs = {'figure': fig, 'pos': pos}
|
||||
plot = draw_networkx_nodes(network, nodelist=network.nodes(), node_color='#ababab', **kwargs)
|
||||
draw_networkx_edges(network, edgelist=edges, edge_color='#ababab', **kwargs)
|
||||
draw_networkx_labels(network, labels=labels, font_size=14, **{**kwargs, 'pos': label_pos})
|
||||
|
||||
def plot_baseline(network):
|
||||
pos = {n: (n.lng, n.lat) for n in network.nodes()}
|
||||
labels = {n: _try_city(n) for n in network.nodes() if isinstance(n, Transceiver)}
|
||||
draw_networkx(network, pos=pos, node_size=50, node_color='#ababab', edge_color='#ababab',
|
||||
labels=labels, font_size=14)
|
||||
axis('off')
|
||||
show()
|
||||
|
||||
|
||||
def plot_results(network, path, source, destination, infos):
|
||||
def plot_results(network, path, source, destination):
|
||||
path_edges = set(zip(path[:-1], path[1:]))
|
||||
edges = set(network.edges()) - path_edges
|
||||
nodes = [n for n in network.nodes() if n not in path]
|
||||
pos = {n: (n.lng, n.lat) for n in network.nodes()}
|
||||
nodes = {}
|
||||
nodes_by_pos = {}
|
||||
for k, (x, y) in pos.items():
|
||||
nodes.setdefault((round(x, 1), round(y, 1)), []).append(k)
|
||||
labels = {n: n.location.city for n in network.nodes() if isinstance(n, Transceiver)}
|
||||
city_labels = set(labels.values())
|
||||
for n in network.nodes():
|
||||
if n.location.city and n.location.city not in city_labels:
|
||||
labels[n] = n.location.city
|
||||
city_labels.add(n.location.city)
|
||||
label_pos = pos
|
||||
nodes_by_pos.setdefault((round(x, 1), round(y, 1)), []).append(k)
|
||||
|
||||
labels = {n: _try_city(n) for n in network.nodes() if isinstance(n, Transceiver)}
|
||||
|
||||
fig = figure()
|
||||
kwargs = {'figure': fig, 'pos': pos}
|
||||
all_nodes = [n for n in network.nodes() if n not in path]
|
||||
plot = draw_networkx_nodes(network, nodelist=all_nodes, node_color='#ababab', node_size=50, **kwargs)
|
||||
draw_networkx_nodes(network, nodelist=path, node_color='#ff0000', node_size=55, **kwargs)
|
||||
draw_networkx_edges(network, edgelist=edges, edge_color='#ababab', **kwargs)
|
||||
draw_networkx_edges(network, edgelist=path_edges, edge_color='#ff0000', **kwargs)
|
||||
draw_networkx_labels(network, labels=labels, font_size=14, **{**kwargs, 'pos': label_pos})
|
||||
title(f'Propagating from {source.loc.city} to {destination.loc.city}')
|
||||
draw_networkx(network, pos=pos, labels=labels, font_size=14,
|
||||
nodelist=nodes, node_color='#ababab', node_size=50,
|
||||
edgelist=edges, edge_color='#ababab')
|
||||
draw_networkx(network, pos=pos, with_labels=False,
|
||||
nodelist=path, node_color='#ff0000', node_size=55,
|
||||
edgelist=path_edges, edge_color='#ff0000')
|
||||
title(f'Propagating from {_try_city(source)} to {_try_city(destination)}')
|
||||
axis('off')
|
||||
|
||||
heading = 'Spectral Information\n\n'
|
||||
@@ -65,7 +53,7 @@ def plot_results(network, path, source, destination, infos):
|
||||
bbox={'boxstyle': 'round', 'facecolor': 'wheat', 'alpha': 0.5})
|
||||
|
||||
msgs = {(x, y): heading + '\n\n'.join(str(n) for n in ns if n in path)
|
||||
for (x, y), ns in nodes.items()}
|
||||
for (x, y), ns in nodes_by_pos.items()}
|
||||
|
||||
def hover(event):
|
||||
if event.xdata is None or event.ydata is None:
|
||||
|
||||
@@ -11,109 +11,150 @@ Yang model for requesting path computation.
|
||||
See: draft-ietf-teas-yang-path-computation-01.txt
|
||||
"""
|
||||
|
||||
from xlrd import open_workbook, XL_CELL_EMPTY
|
||||
from collections import namedtuple
|
||||
from logging import getLogger
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
from networkx import DiGraph
|
||||
from xlrd import open_workbook, XL_CELL_EMPTY
|
||||
|
||||
from gnpy.core.utils import db2lin
|
||||
from gnpy.core.exceptions import ServiceError
|
||||
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fiber
|
||||
import gnpy.core.ansi_escapes as ansi_escapes
|
||||
from gnpy.tools.convert import corresp_names, corresp_next_node
|
||||
from gnpy.tools.convert import corresp_names, corresp_next_node, all_rows
|
||||
|
||||
SERVICES_COLUMN = 12
|
||||
|
||||
|
||||
def all_rows(sheet, start=0):
|
||||
return (sheet.row(x) for x in range(start, sheet.nrows))
|
||||
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class Request(namedtuple('Request', 'request_id source destination trx_type mode \
|
||||
spacing power nb_channel disjoint_from nodes_list is_loose path_bandwidth')):
|
||||
def __new__(cls, request_id, source, destination, trx_type, mode=None, spacing=None, power=None, nb_channel=None, disjoint_from='', nodes_list=None, is_loose='', path_bandwidth=None):
|
||||
return super().__new__(cls, request_id, source, destination, trx_type, mode, spacing, power, nb_channel, disjoint_from, nodes_list, is_loose, path_bandwidth)
|
||||
class Request(namedtuple('request_param', 'request_id source destination trx_type mode \
|
||||
spacing power nb_channel disjoint_from nodes_list is_loose path_bandwidth')):
|
||||
"""DATA class for a request.
|
||||
|
||||
:params request_id (int): The unique identifier for the request.
|
||||
:params source (str): The source node for the communication.
|
||||
:params destination (str): The destination node for the communication.
|
||||
:params trx_type (str): The type of transmission for the communication.
|
||||
:params mode (str, optional): The mode of transmission. Defaults to None.
|
||||
:params spacing (float, optional): The spacing between channels. Defaults to None.
|
||||
:params power (float, optional): The power level for the communication. Defaults to None.
|
||||
:params nb_channel (int, optional): The number of channels required for the communication. Defaults to None.
|
||||
:params disjoint_from (str, optional): The node to be disjoint from. Defaults to ''.
|
||||
:params nodes_list (list, optional): The list of nodes involved in the communication. Defaults to None.
|
||||
:params is_loose (str, optional): Indicates if the communication is loose. Defaults to ''.
|
||||
:params path_bandwidth (float, optional): The bandwidth required for the communication. Defaults to None.
|
||||
"""
|
||||
def __new__(cls, request_id, source, destination, trx_type, mode=None, spacing=None, power=None, nb_channel=None,
|
||||
disjoint_from='', nodes_list=None, is_loose='', path_bandwidth=None):
|
||||
return super().__new__(cls, request_id, source, destination, trx_type, mode, spacing, power, nb_channel,
|
||||
disjoint_from, nodes_list, is_loose, path_bandwidth)
|
||||
|
||||
|
||||
class Element:
|
||||
"""
|
||||
"""
|
||||
def __init__(self, uid):
|
||||
self.uid = uid
|
||||
|
||||
def __eq__(self, other):
|
||||
return type(self) == type(other) and self.uid == other.uid
|
||||
return isinstance(other, type(self)) and self.uid == other.ui
|
||||
|
||||
def __hash__(self):
|
||||
return hash((type(self), self.uid))
|
||||
|
||||
|
||||
class Request_element(Element):
|
||||
def __init__(self, Request, equipment, bidir):
|
||||
"""Class that generate the request in the json format
|
||||
|
||||
:params request_param (Request): The request object containing the information for the element.
|
||||
:params equipment (dict): The equipment configuration for the communication.
|
||||
:params bidir (bool): Indicates if the communication is bidirectional.
|
||||
|
||||
Attributes:
|
||||
request_id (str): The unique identifier for the request.
|
||||
source (str): The source node for the communication.
|
||||
destination (str): The destination node for the communication.
|
||||
srctpid (str): The source TP ID for the communication.
|
||||
dsttpid (str): The destination TP ID for the communication.
|
||||
bidir (bool): Indicates if the communication is bidirectional.
|
||||
trx_type (str): The type of transmission for the communication.
|
||||
mode (str): The mode of transmission for the communication.
|
||||
spacing (float): The spacing between channels for the communication.
|
||||
power (float): The power level for the communication.
|
||||
nb_channel (int): The number of channels required for the communication.
|
||||
disjoint_from (list): The list of nodes to be disjoint from.
|
||||
nodes_list (list): The list of nodes involved in the communication.
|
||||
loose (str): Indicates if the communication is loose or strict.
|
||||
path_bandwidth (float): The bandwidth required for the communication.
|
||||
"""
|
||||
def __init__(self, request_param: Request, equipment: Dict, bidir: bool):
|
||||
"""
|
||||
"""
|
||||
super().__init__(uid=request_param.request_id)
|
||||
# request_id is str
|
||||
# excel has automatic number formatting that adds .0 on integer values
|
||||
# the next lines recover the pure int value, assuming this .0 is unwanted
|
||||
self.request_id = correct_xlrd_int_to_str_reading(Request.request_id)
|
||||
self.source = f'trx {Request.source}'
|
||||
self.destination = f'trx {Request.destination}'
|
||||
self.request_id = correct_xlrd_int_to_str_reading(request_param.request_id)
|
||||
self.source = f'trx {request_param.source}'
|
||||
self.destination = f'trx {request_param.destination}'
|
||||
# TODO: the automatic naming generated by excel parser requires that source and dest name
|
||||
# be a string starting with 'trx' : this is manually added here.
|
||||
self.srctpid = f'trx {Request.source}'
|
||||
self.dsttpid = f'trx {Request.destination}'
|
||||
self.srctpid = f'trx {request_param.source}'
|
||||
self.dsttpid = f'trx {request_param.destination}'
|
||||
self.bidir = bidir
|
||||
# test that trx_type belongs to eqpt_config.json
|
||||
# if not replace it with a default
|
||||
try:
|
||||
if equipment['Transceiver'][Request.trx_type]:
|
||||
self.trx_type = correct_xlrd_int_to_str_reading(Request.trx_type)
|
||||
if Request.mode is not None:
|
||||
Requestmode = correct_xlrd_int_to_str_reading(Request.mode)
|
||||
if [mode for mode in equipment['Transceiver'][Request.trx_type].mode if mode['format'] == Requestmode]:
|
||||
self.mode = Requestmode
|
||||
if equipment['Transceiver'][request_param.trx_type]:
|
||||
self.trx_type = correct_xlrd_int_to_str_reading(request_param.trx_type)
|
||||
if request_param.mode is not None:
|
||||
request_mode = correct_xlrd_int_to_str_reading(request_param.mode)
|
||||
if [mode for mode in equipment['Transceiver'][request_param.trx_type].mode
|
||||
if mode['format'] == request_mode]:
|
||||
self.mode = request_mode
|
||||
else:
|
||||
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
|
||||
# print(msg)
|
||||
logger.critical(msg)
|
||||
msg = f'Request Id: {self.request_id} - could not find tsp : \'{request_param.trx_type}\' ' \
|
||||
+ f'with mode: \'{request_mode}\' in eqpt library \nComputation stopped.'
|
||||
raise ServiceError(msg)
|
||||
else:
|
||||
Requestmode = None
|
||||
self.mode = Request.mode
|
||||
except KeyError:
|
||||
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
|
||||
# print(msg)
|
||||
logger.critical(msg)
|
||||
raise ServiceError(msg)
|
||||
request_mode = None
|
||||
self.mode = request_param.mode
|
||||
except KeyError as e:
|
||||
msg = f'Request Id: {self.request_id} - could not find tsp : \'{request_param.trx_type}\' with mode: ' \
|
||||
+ f'\'{request_param.mode}\' in eqpt library \nComputation stopped.'
|
||||
raise ServiceError(msg) from e
|
||||
# excel input are in GHz and dBm
|
||||
if Request.spacing is not None:
|
||||
self.spacing = Request.spacing * 1e9
|
||||
if request_param.spacing is not None:
|
||||
self.spacing = request_param.spacing * 1e9
|
||||
else:
|
||||
msg = f'Request {self.request_id} missing spacing: spacing is mandatory.\ncomputation stopped'
|
||||
logger.critical(msg)
|
||||
raise ServiceError(msg)
|
||||
if Request.power is not None:
|
||||
self.power = db2lin(Request.power) * 1e-3
|
||||
else:
|
||||
self.power = None
|
||||
if Request.nb_channel is not None:
|
||||
self.nb_channel = int(Request.nb_channel)
|
||||
else:
|
||||
self.nb_channel = None
|
||||
self.power = None
|
||||
if request_param.power is not None:
|
||||
self.power = db2lin(request_param.power) * 1e-3
|
||||
self.nb_channel = None
|
||||
if request_param.nb_channel is not None:
|
||||
self.nb_channel = int(request_param.nb_channel)
|
||||
|
||||
value = correct_xlrd_int_to_str_reading(Request.disjoint_from)
|
||||
value = correct_xlrd_int_to_str_reading(request_param.disjoint_from)
|
||||
self.disjoint_from = [n for n in value.split(' | ') if value]
|
||||
self.nodes_list = []
|
||||
if Request.nodes_list:
|
||||
self.nodes_list = Request.nodes_list.split(' | ')
|
||||
if request_param.nodes_list:
|
||||
self.nodes_list = request_param.nodes_list.split(' | ')
|
||||
self.loose = 'LOOSE'
|
||||
if Request.is_loose.lower() == 'no':
|
||||
if request_param.is_loose.lower() == 'no':
|
||||
self.loose = 'STRICT'
|
||||
self.path_bandwidth = None
|
||||
if Request.path_bandwidth is not None:
|
||||
self.path_bandwidth = Request.path_bandwidth * 1e9
|
||||
else:
|
||||
self.path_bandwidth = 0
|
||||
|
||||
uid = property(lambda self: repr(self))
|
||||
self.path_bandwidth = 0
|
||||
if request_param.path_bandwidth is not None:
|
||||
self.path_bandwidth = request_param.path_bandwidth * 1e9
|
||||
|
||||
@property
|
||||
def pathrequest(self):
|
||||
"""Creates json dictionnary for the request
|
||||
"""
|
||||
# Default assumption for bidir is False
|
||||
req_dictionnary = {
|
||||
'request-id': self.request_id,
|
||||
@@ -156,34 +197,34 @@ class Request_element(Element):
|
||||
|
||||
@property
|
||||
def pathsync(self):
|
||||
"""Creates json dictionnary for disjunction list (synchronization vector)
|
||||
"""
|
||||
if self.disjoint_from:
|
||||
return {'synchronization-id': self.request_id,
|
||||
'svec': {
|
||||
'relaxable': 'false',
|
||||
'disjointness': 'node link',
|
||||
'request-id-number': [self.request_id] + [n for n in self.disjoint_from]
|
||||
'request-id-number': [self.request_id] + list(self.disjoint_from)
|
||||
}
|
||||
}
|
||||
else:
|
||||
return None
|
||||
return None
|
||||
# TO-DO: avoid multiple entries with same synchronisation vectors
|
||||
|
||||
@property
|
||||
def json(self):
|
||||
"""Returns the json dictionnary for requests and for synchronisation vector
|
||||
"""
|
||||
return self.pathrequest, self.pathsync
|
||||
|
||||
|
||||
def read_service_sheet(
|
||||
input_filename,
|
||||
eqpt,
|
||||
network,
|
||||
network_filename=None,
|
||||
bidir=False,
|
||||
filter_region=None):
|
||||
input_filename: Path,
|
||||
eqpt: Dict,
|
||||
network: DiGraph,
|
||||
network_filename: Path = None,
|
||||
bidir: bool = False) -> Dict:
|
||||
""" converts a service sheet into a json structure
|
||||
"""
|
||||
if filter_region is None:
|
||||
filter_region = []
|
||||
if network_filename is None:
|
||||
network_filename = input_filename
|
||||
service = parse_excel(input_filename)
|
||||
@@ -191,19 +232,16 @@ def read_service_sheet(
|
||||
req = correct_xls_route_list(network_filename, network, req)
|
||||
# if there is no sync vector , do not write any synchronization
|
||||
synchro = [n.json[1] for n in req if n.json[1] is not None]
|
||||
data = {'path-request': [n.json[0] for n in req]}
|
||||
if synchro:
|
||||
data = {
|
||||
'path-request': [n.json[0] for n in req],
|
||||
'synchronization': synchro
|
||||
}
|
||||
else:
|
||||
data = {
|
||||
'path-request': [n.json[0] for n in req]
|
||||
}
|
||||
data['synchronization'] = synchro
|
||||
return data
|
||||
|
||||
|
||||
def correct_xlrd_int_to_str_reading(v):
|
||||
"""Utils: ensure that int values in id are read as strings containing the int and
|
||||
do not use the automatic float conversion from xlrd
|
||||
"""
|
||||
if not isinstance(v, str):
|
||||
value = str(int(v))
|
||||
if value.endswith('.0'):
|
||||
@@ -213,22 +251,27 @@ def correct_xlrd_int_to_str_reading(v):
|
||||
return value
|
||||
|
||||
|
||||
def parse_row(row, fieldnames):
|
||||
def parse_row(row: List, fieldnames: List[str]) -> Dict:
|
||||
"""Reads each values in a row and creates a dict using field names
|
||||
"""
|
||||
return {f: r.value for f, r in zip(fieldnames, row[0:SERVICES_COLUMN])
|
||||
if r.ctype != XL_CELL_EMPTY}
|
||||
|
||||
|
||||
def parse_excel(input_filename):
|
||||
def parse_excel(input_filename: Path) -> List[Request]:
|
||||
"""Opens xls_file and reads 'Service' sheet
|
||||
Returns the list of services data in Request class
|
||||
"""
|
||||
with open_workbook(input_filename) as wb:
|
||||
service_sheet = wb.sheet_by_name('Service')
|
||||
services = list(parse_service_sheet(service_sheet))
|
||||
return services
|
||||
|
||||
|
||||
def parse_service_sheet(service_sheet):
|
||||
def parse_service_sheet(service_sheet) -> Request:
|
||||
""" reads each column according to authorized fieldnames. order is not important.
|
||||
"""
|
||||
logger.info(f'Validating headers on {service_sheet.name!r}')
|
||||
logger.debug('Validating headers on %r', service_sheet.name)
|
||||
# add a test on field to enable the '' field case that arises when columns on the
|
||||
# right hand side are used as comments or drawing in the excel sheet
|
||||
header = [x.value.strip() for x in service_sheet.row(4)[0:SERVICES_COLUMN]
|
||||
@@ -246,15 +289,52 @@ def parse_service_sheet(service_sheet):
|
||||
'routing: is loose?': 'is_loose', 'path bandwidth': 'path_bandwidth'}
|
||||
try:
|
||||
service_fieldnames = [authorized_fieldnames[e] for e in header]
|
||||
except KeyError:
|
||||
except KeyError as e:
|
||||
msg = f'Malformed header on Service sheet: {header} field not in {authorized_fieldnames}'
|
||||
logger.critical(msg)
|
||||
raise ValueError(msg)
|
||||
raise ValueError(msg) from e
|
||||
for row in all_rows(service_sheet, start=5):
|
||||
yield Request(**parse_row(row[0:SERVICES_COLUMN], service_fieldnames))
|
||||
|
||||
|
||||
def correct_xls_route_list(network_filename, network, pathreqlist):
|
||||
def check_end_points(pathreq: Request_element, network: DiGraph):
|
||||
"""Raise error if end point is not correct
|
||||
"""
|
||||
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
|
||||
if pathreq.source not in transponders:
|
||||
msg = f'Request: {pathreq.request_id}: could not find' +\
|
||||
f' transponder source : {pathreq.source}.'
|
||||
logger.critical(msg)
|
||||
raise ServiceError(msg)
|
||||
if pathreq.destination not in transponders:
|
||||
msg = f'Request: {pathreq.request_id}: could not find' +\
|
||||
f' transponder destination: {pathreq.destination}.'
|
||||
logger.critical(msg)
|
||||
raise ServiceError(msg)
|
||||
|
||||
|
||||
def find_node_sugestion(n_id, corresp_roadm, corresp_fused, corresp_ila, network):
|
||||
"""
|
||||
"""
|
||||
roadmtype = [n.uid for n in network.nodes() if isinstance(n, Roadm)]
|
||||
edfatype = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
|
||||
# check that n_id is in the node list, if not find a correspondance name
|
||||
if n_id in roadmtype + edfatype:
|
||||
return [n_id]
|
||||
# checks first roadm, fused, and ila in this order, because ila automatic name
|
||||
# contains roadm names. If it is a fused node, next ila names might be correct
|
||||
# suggestions, especially if following fibers were splitted and ila names
|
||||
# created with the name of the fused node
|
||||
if n_id in corresp_roadm.keys():
|
||||
return corresp_roadm[n_id]
|
||||
if n_id in corresp_fused.keys():
|
||||
return corresp_fused[n_id] + corresp_ila[n_id]
|
||||
if n_id in corresp_ila.keys():
|
||||
return corresp_ila[n_id]
|
||||
return []
|
||||
|
||||
|
||||
def correct_xls_route_list(network_filename: Path, network: DiGraph,
|
||||
pathreqlist: List[Request_element]) -> List[Request_element]:
|
||||
""" prepares the format of route list of nodes to be consistant with nodes names:
|
||||
remove wrong names, find correct names for ila, roadm and fused if the entry was
|
||||
xls.
|
||||
@@ -268,32 +348,17 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
|
||||
corresp_ila, next_node = corresp_next_node(network, corresp_ila, corresp_roadm)
|
||||
# finally correct constraints based on these dict
|
||||
trxfibertype = [n.uid for n in network.nodes() if isinstance(n, (Transceiver, Fiber))]
|
||||
roadmtype = [n.uid for n in network.nodes() if isinstance(n, Roadm)]
|
||||
edfatype = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
|
||||
# TODO there is a problem of identification of fibers in case of parallel
|
||||
# fibers between two adjacent roadms so fiber constraint is not supported
|
||||
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
|
||||
for pathreq in pathreqlist:
|
||||
# first check that source and dest are transceivers
|
||||
if pathreq.source not in transponders:
|
||||
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
|
||||
f' transponder source : {pathreq.source}.{ansi_escapes.reset}'
|
||||
logger.critical(msg)
|
||||
raise ServiceError(msg)
|
||||
|
||||
if pathreq.destination not in transponders:
|
||||
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
|
||||
f' transponder destination: {pathreq.destination}.{ansi_escapes.reset}'
|
||||
logger.critical(msg)
|
||||
raise ServiceError(msg)
|
||||
check_end_points(pathreq, network)
|
||||
# silently pop source and dest nodes from the list if they were added by the user as first
|
||||
# and last elem in the constraints respectively. Other positions must lead to an error
|
||||
# caught later on
|
||||
if pathreq.nodes_list and pathreq.source == pathreq.nodes_list[0]:
|
||||
pathreq.loose_list.pop(0)
|
||||
pathreq.nodes_list.pop(0)
|
||||
if pathreq.nodes_list and pathreq.destination == pathreq.nodes_list[-1]:
|
||||
pathreq.loose_list.pop(-1)
|
||||
pathreq.nodes_list.pop(-1)
|
||||
# Then process user defined constraints with respect to automatic namings
|
||||
temp = deepcopy(pathreq)
|
||||
@@ -303,79 +368,57 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
|
||||
# n_id must not be a transceiver and must not be a fiber (non supported, user
|
||||
# can not enter fiber names in excel)
|
||||
if n_id not in trxfibertype:
|
||||
# check that n_id is in the node list, if not find a correspondance name
|
||||
if n_id in roadmtype + edfatype:
|
||||
nodes_suggestion = [n_id]
|
||||
else:
|
||||
# checks first roadm, fused, and ila in this order, because ila automatic name
|
||||
# contain roadm names. If it is a fused node, next ila names might be correct
|
||||
# suggestions, especially if following fibers were splitted and ila names
|
||||
# created with the name of the fused node
|
||||
if n_id in corresp_roadm.keys():
|
||||
nodes_suggestion = corresp_roadm[n_id]
|
||||
elif n_id in corresp_fused.keys():
|
||||
nodes_suggestion = corresp_fused[n_id] + corresp_ila[n_id]
|
||||
elif n_id in corresp_ila.keys():
|
||||
nodes_suggestion = corresp_ila[n_id]
|
||||
nodes_suggestion = find_node_sugestion(n_id, corresp_roadm, corresp_fused, corresp_ila, network)
|
||||
try:
|
||||
if len(nodes_suggestion) > 1:
|
||||
# if there is more than one suggestion, we need to choose the direction
|
||||
# we rely on the next node provided by the user for this purpose
|
||||
new_n = next(n for n in nodes_suggestion
|
||||
if n in next_node
|
||||
and next_node[n] in temp.nodes_list[i:] + [pathreq.destination]
|
||||
and next_node[n] not in temp.nodes_list[:i])
|
||||
elif len(nodes_suggestion) == 1:
|
||||
new_n = nodes_suggestion[0]
|
||||
else:
|
||||
nodes_suggestion = []
|
||||
if nodes_suggestion:
|
||||
try:
|
||||
if len(nodes_suggestion) > 1:
|
||||
# if there is more than one suggestion, we need to choose the direction
|
||||
# we rely on the next node provided by the user for this purpose
|
||||
new_n = next(n for n in nodes_suggestion
|
||||
if n in next_node.keys() and next_node[n]
|
||||
in temp.nodes_list[i:] + [pathreq.destination] and
|
||||
next_node[n] not in temp.nodes_list[:i])
|
||||
else:
|
||||
new_n = nodes_suggestion[0]
|
||||
if new_n != n_id:
|
||||
# warns the user when the correct name is used only in verbose mode,
|
||||
# eg 'a' is a roadm and correct name is 'roadm a' or when there was
|
||||
# too much ambiguity, 'b' is an ila, its name can be:
|
||||
# Edfa0_fiber (a → b)-xx if next node is c or
|
||||
# Edfa0_fiber (c → b)-xx if next node is a
|
||||
msg = f'{ansi_escapes.yellow}Invalid route node specified:' +\
|
||||
f'\n\t\'{n_id}\', replaced with \'{new_n}\'{ansi_escapes.reset}'
|
||||
if temp.loose == 'LOOSE':
|
||||
# if no matching can be found in the network just ignore this constraint
|
||||
# if it is a loose constraint
|
||||
# warns the user that this node is not part of the topology
|
||||
msg = f'{pathreq.request_id}: Invalid node specified:\n\t\'{n_id}\'' \
|
||||
+ ', could not use it as constraint, skipped!'
|
||||
print(msg)
|
||||
logger.info(msg)
|
||||
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
|
||||
except StopIteration:
|
||||
# shall not come in this case, unless requested direction does not exist
|
||||
msg = f'{ansi_escapes.yellow}Invalid route specified {n_id}: could' +\
|
||||
f' not decide on direction, skipped!.\nPlease add a valid' +\
|
||||
f' direction in constraints (next neighbour node){ansi_escapes.reset}'
|
||||
print(msg)
|
||||
logger.info(msg)
|
||||
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
|
||||
pathreq.nodes_list.remove(n_id)
|
||||
else:
|
||||
if temp.loose_list[i] == 'LOOSE':
|
||||
# if no matching can be found in the network just ignore this constraint
|
||||
# if it is a loose constraint
|
||||
# warns the user that this node is not part of the topology
|
||||
msg = f'{ansi_escapes.yellow}Invalid node specified:\n\t\'{n_id}\'' +\
|
||||
f', could not use it as constraint, skipped!{ansi_escapes.reset}'
|
||||
print(msg)
|
||||
logger.info(msg)
|
||||
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
|
||||
pathreq.nodes_list.remove(n_id)
|
||||
else:
|
||||
msg = f'{ansi_escapes.red}Could not find node:\n\t\'{n_id}\' in network' +\
|
||||
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
|
||||
logger.critical(msg)
|
||||
pathreq.nodes_list.remove(n_id)
|
||||
continue
|
||||
msg = f'{pathreq.request_id}: Could not find node:\n\t\'{n_id}\' in network' \
|
||||
+ ' topology. Strict constraint can not be applied.'
|
||||
raise ServiceError(msg)
|
||||
if new_n != n_id:
|
||||
# warns the user when the correct name is used only in verbose mode,
|
||||
# eg 'a' is a roadm and correct name is 'roadm a' or when there was
|
||||
# too much ambiguity, 'b' is an ila, its name can be:
|
||||
# "east edfa in b to c", or "west edfa in b to a" if next node is c or
|
||||
# "west edfa in b to c", or "east edfa in b to a" if next node is a
|
||||
msg = f'{pathreq.request_id}: Invalid route node specified:' \
|
||||
+ f'\n\t\'{n_id}\', replaced with \'{new_n}\''
|
||||
logger.info(msg)
|
||||
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
|
||||
except StopIteration:
|
||||
# shall not come in this case, unless requested direction does not exist
|
||||
msg = f'{pathreq.request_id}: Invalid route specified {n_id}: could' \
|
||||
+ ' not decide on direction, skipped!.\nPlease add a valid' \
|
||||
+ ' direction in constraints (next neighbour node)'
|
||||
logger.info(msg)
|
||||
pathreq.nodes_list.remove(n_id)
|
||||
else:
|
||||
if temp.loose_list[i] == 'LOOSE':
|
||||
print(f'{ansi_escapes.yellow}Invalid route node specified:\n\t\'{n_id}\'' +
|
||||
f' type is not supported as constraint with xls network input,' +
|
||||
f' skipped!{ansi_escapes.reset}')
|
||||
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
|
||||
if temp.loose == 'LOOSE':
|
||||
msg = f'{pathreq.request_id}: Invalid route node specified:\n\t\'{n_id}\'' \
|
||||
+ ' type is not supported as constraint with xls network input, skipped!'
|
||||
logger.warning(msg)
|
||||
pathreq.nodes_list.remove(n_id)
|
||||
else:
|
||||
msg = f'{ansi_escapes.red}Invalid route node specified \n\t\'{n_id}\'' +\
|
||||
f' type is not supported as constraint with xls network input,' +\
|
||||
f', Strict constraint can not be applied.{ansi_escapes.reset}'
|
||||
logger.critical(msg)
|
||||
msg = f'{pathreq.request_id}: Invalid route node specified \n\t\'{n_id}\'' \
|
||||
+ ' type is not supported as constraint with xls network input,' \
|
||||
+ ', Strict constraint can not be applied.'
|
||||
raise ServiceError(msg)
|
||||
return pathreqlist
|
||||
|
||||
248
gnpy/tools/worker_utils.py
Normal file
248
gnpy/tools/worker_utils.py
Normal file
@@ -0,0 +1,248 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.tools.worker_utils
|
||||
=======================
|
||||
|
||||
Common code for CLI examples and API
|
||||
'''
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Union, List, Tuple
|
||||
from numpy import linspace
|
||||
from networkx import DiGraph
|
||||
|
||||
from gnpy.core.utils import automatic_nch, watt2dbm, dbm2watt, pretty_summary_print, per_label_average
|
||||
from gnpy.core.equipment import trx_mode_params
|
||||
from gnpy.core.network import add_missing_elements_in_network, design_network
|
||||
from gnpy.core import exceptions
|
||||
from gnpy.core.info import SpectralInformation
|
||||
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum, OMS
|
||||
from gnpy.topology.request import correct_json_route_list, deduplicate_disjunctions, requests_aggregation, \
|
||||
compute_path_dsjctn, compute_path_with_disjunction, ResultElement, PathRequest, Disjunction, \
|
||||
compute_constrained_path, propagate
|
||||
from gnpy.tools.json_io import requests_from_json, disjunctions_from_json
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def designed_network(equipment: dict, network: DiGraph, source: str = None, destination: str = None,
|
||||
nodes_list: List[str] = None, loose_list: List[str] = None,
|
||||
initial_spectrum: dict = None, no_insert_edfas: bool = False,
|
||||
args_power: Union[str, float, int] = None,
|
||||
service_req: PathRequest = None) -> Tuple[DiGraph, PathRequest, PathRequest]:
|
||||
"""Build the reference channels based on inputs and design the network for this reference channel, and build the
|
||||
channel to be propagated for the single transmission script.
|
||||
|
||||
Reference channel (target input power in spans, nb of channels, transceiver output power) is built using
|
||||
equipment['SI'] information. If indicated, with target input power in spans is updated with args_power.
|
||||
Channel to be propagated is using the same channel reference, except if different settings are provided
|
||||
with service_req and initial_spectrum. The service to be propagated uses specified source, destination
|
||||
and list nodes_list of include nodes constraint except if the service_req is specified.
|
||||
|
||||
Args:
|
||||
- equipment: a dictionary containing equipment information.
|
||||
- network: a directed graph representing the initial network.
|
||||
- no_insert_edfas: a boolean indicating whether to insert EDFAs in the network.
|
||||
- args_power: the power to be used for the network design.
|
||||
- service_req: the service request the user wants to propagate.
|
||||
- source: the source node for the channel to be propagated if no service_req is specified.
|
||||
- destination: the destination node for the channel to be propagated if no service_req is specified.
|
||||
- nodes_list: a list of nodes to be included ifor the channel to be propagated if no service_req is specified.
|
||||
- loose_list: a list of loose nodes to be included in the network design.
|
||||
- initial_spectrum: a dictionary representing the initial spectrum to propagate.
|
||||
|
||||
Returns:
|
||||
- The designed network.
|
||||
- The channel to propagate.
|
||||
- The reference channel used for the design.
|
||||
"""
|
||||
if loose_list is None:
|
||||
loose_list = []
|
||||
if nodes_list is None:
|
||||
nodes_list = []
|
||||
if not no_insert_edfas:
|
||||
add_missing_elements_in_network(network, equipment)
|
||||
|
||||
if not nodes_list:
|
||||
if destination:
|
||||
nodes_list = [destination]
|
||||
loose_list = ['STRICT']
|
||||
else:
|
||||
nodes_list = []
|
||||
loose_list = []
|
||||
params = {
|
||||
'request_id': 'reference',
|
||||
'trx_type': '',
|
||||
'trx_mode': '',
|
||||
'source': source,
|
||||
'destination': destination,
|
||||
'bidir': False,
|
||||
'nodes_list': nodes_list,
|
||||
'loose_list': loose_list,
|
||||
'format': '',
|
||||
'path_bandwidth': 0,
|
||||
'effective_freq_slot': None,
|
||||
'nb_channel': automatic_nch(equipment['SI']['default'].f_min, equipment['SI']['default'].f_max,
|
||||
equipment['SI']['default'].spacing),
|
||||
'power': dbm2watt(equipment['SI']['default'].power_dbm),
|
||||
'tx_power': None
|
||||
}
|
||||
params['tx_power'] = dbm2watt(equipment['SI']['default'].power_dbm)
|
||||
if equipment['SI']['default'].tx_power_dbm is not None:
|
||||
# use SI tx_power if present
|
||||
params['tx_power'] = dbm2watt(equipment['SI']['default'].tx_power_dbm)
|
||||
trx_params = trx_mode_params(equipment)
|
||||
params.update(trx_params)
|
||||
|
||||
# use args_power instead of si
|
||||
if args_power:
|
||||
params['power'] = dbm2watt(float(args_power))
|
||||
if equipment['SI']['default'].tx_power_dbm is None:
|
||||
params['tx_power'] = params['power']
|
||||
|
||||
# use si as reference channel
|
||||
reference_channel = PathRequest(**params)
|
||||
# temporary till multiband design feat is available: do not design for L band
|
||||
reference_channel.nb_channel = min(params['nb_channel'], automatic_nch(191.2e12, 196.0e12, params['spacing']))
|
||||
|
||||
if service_req:
|
||||
# use service_req as reference channel with si tx_power if service_req tx_power is None
|
||||
if service_req.tx_power is None:
|
||||
service_req.tx_power = params['tx_power']
|
||||
reference_channel = service_req
|
||||
|
||||
design_network(reference_channel, network, equipment, set_connector_losses=True, verbose=True)
|
||||
|
||||
if initial_spectrum:
|
||||
params['nb_channel'] = len(initial_spectrum)
|
||||
|
||||
req = PathRequest(**params)
|
||||
if service_req:
|
||||
req = service_req
|
||||
|
||||
req.initial_spectrum = initial_spectrum
|
||||
return network, req, reference_channel
|
||||
|
||||
|
||||
def check_request_path_ids(rqs: List[PathRequest]):
|
||||
"""check that request ids are unique. Non unique ids, may
|
||||
mess the computation: better to stop the computation
|
||||
"""
|
||||
all_ids = [r.request_id for r in rqs]
|
||||
if len(all_ids) != len(set(all_ids)):
|
||||
for item in list(set(all_ids)):
|
||||
all_ids.remove(item)
|
||||
msg = f'Requests id {all_ids} are not unique'
|
||||
logger.error(msg)
|
||||
raise ValueError(msg)
|
||||
|
||||
|
||||
def planning(network: DiGraph, equipment: dict, data: dict, redesign: bool = False) \
|
||||
-> Tuple[List[OMS], list, list, List[PathRequest], List[Disjunction], List[ResultElement]]:
|
||||
"""Run planning
|
||||
data contain the service dict from json
|
||||
redesign True means that network is redesign using each request as reference channel
|
||||
when False it means that the design is made once and successive propagation use the settings
|
||||
computed with this design.
|
||||
"""
|
||||
oms_list = build_oms_list(network, equipment)
|
||||
rqs = requests_from_json(data, equipment)
|
||||
# check that request ids are unique.
|
||||
check_request_path_ids(rqs)
|
||||
rqs = correct_json_route_list(network, rqs)
|
||||
dsjn = disjunctions_from_json(data)
|
||||
logger.info('List of disjunctions:\n%s', dsjn)
|
||||
# need to warn or correct in case of wrong disjunction form
|
||||
# disjunction must not be repeated with same or different ids
|
||||
dsjn = deduplicate_disjunctions(dsjn)
|
||||
logger.info('Aggregating similar requests')
|
||||
rqs, dsjn = requests_aggregation(rqs, dsjn)
|
||||
logger.info('The following services have been requested:\n%s', rqs)
|
||||
# logger.info('Computing all paths with constraints for request %s', optical_path_result_id)
|
||||
|
||||
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
|
||||
logger.info('Propagating on selected path')
|
||||
propagatedpths, reversed_pths, reversed_propagatedpths = \
|
||||
compute_path_with_disjunction(network, equipment, rqs, pths, redesign=redesign)
|
||||
# Note that deepcopy used in compute_path_with_disjunction returns
|
||||
# a list of nodes which are not belonging to network (they are copies of the node objects).
|
||||
# so there can not be propagation on these nodes.
|
||||
|
||||
# Allowed user_policy are first_fit and 2partition
|
||||
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
|
||||
for i, rq in enumerate(rqs):
|
||||
if hasattr(rq, 'OSNR') and rq.OSNR:
|
||||
rq.osnr_with_sys_margin = rq.OSNR + equipment["SI"]["default"].sys_margins
|
||||
|
||||
# assumes that list of rqs and list of propgatedpths have same order
|
||||
result = [ResultElement(rq, pth, rpth) for rq, pth, rpth in zip(rqs, propagatedpths, reversed_propagatedpths)]
|
||||
return oms_list, propagatedpths, reversed_propagatedpths, rqs, dsjn, result
|
||||
|
||||
|
||||
def transmission_simulation(equipment: dict, network: DiGraph, req: PathRequest, ref_req: PathRequest) \
|
||||
-> Tuple[list, List[list], List[Union[float, int]], SpectralInformation]:
|
||||
"""Run simulation and returms the propagation result for each power sweep iteration.
|
||||
Args:
|
||||
- equipment: a dictionary containing equipment information.
|
||||
- network: network after being designed using ref_req. Any missing information (amp gain or delta_p) must have
|
||||
been filled using ref_req as reference channel previuos to this function.
|
||||
- req: channel to be propagated.
|
||||
- ref_req: the reference channel used for filling missing information in the network.
|
||||
In case of power sweep, network is redesigned using ref_req whose target input power in span is
|
||||
updated with the power step.
|
||||
|
||||
Returns a tuple containing:
|
||||
- path: last propagated path. Power sweep is not possible with gain mode (as gain targets are used)
|
||||
- propagations: list of propagated path for each power iteration
|
||||
- powers_dbm: list of power used for the power sweep
|
||||
- infos: last propagated spectral information
|
||||
"""
|
||||
power_mode = equipment['Span']['default'].power_mode
|
||||
logger.info('Power mode is set to %s=> it can be modified in eqpt_config.json - Span', power_mode)
|
||||
# initial network is designed using ref_req. that is that any missing information (amp gain or delta_p) is filled
|
||||
# using this ref_req.power, previous to any sweep requested later on.
|
||||
|
||||
pref_ch_db = watt2dbm(ref_req.power)
|
||||
p_ch_db = watt2dbm(req.power)
|
||||
path = compute_constrained_path(network, req)
|
||||
power_range = [0]
|
||||
if power_mode:
|
||||
# power cannot be changed in gain mode
|
||||
try:
|
||||
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
|
||||
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
|
||||
power_range = list(linspace(p_start, p_stop, p_num))
|
||||
except TypeError as e:
|
||||
msg = 'invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]'
|
||||
logger.error(msg)
|
||||
raise exceptions.EquipmentConfigError(msg) from e
|
||||
|
||||
logger.info('Now propagating between %s and %s', req.source, req.destination)
|
||||
|
||||
propagations = []
|
||||
powers_dbm = []
|
||||
for dp_db in power_range:
|
||||
ref_req.power = dbm2watt(pref_ch_db + dp_db)
|
||||
req.power = dbm2watt(p_ch_db + dp_db)
|
||||
|
||||
# Power sweep is made to evaluate different span input powers, so redesign is mandatory for each power,
|
||||
# but no need to redesign if there are no power sweep
|
||||
if len(power_range) > 1:
|
||||
design_network(ref_req, network.subgraph(path), equipment, set_connector_losses=False, verbose=False)
|
||||
|
||||
infos = propagate(path, req, equipment)
|
||||
propagations.append(deepcopy(path))
|
||||
powers_dbm.append(pref_ch_db + dp_db)
|
||||
logger.info('\nChannels propagating: (Input optical power deviation in span = '
|
||||
+ f'{pretty_summary_print(per_label_average(infos.delta_pdb_per_channel, infos.label))}dB,\n'
|
||||
+ ' spacing = '
|
||||
+ f'{pretty_summary_print(per_label_average(infos.slot_width * 1e-9, infos.label))}GHz,\n'
|
||||
+ ' transceiver output power = '
|
||||
+ f'{pretty_summary_print(per_label_average(watt2dbm(infos.tx_power), infos.label))}dBm,\n'
|
||||
+ f' nb_channels = {infos.number_of_channels})')
|
||||
if not power_mode:
|
||||
logger.info('\n\tPropagating using gain targets: Input optical power deviation in span ignored')
|
||||
return path, propagations, powers_dbm, infos
|
||||
@@ -1,3 +1,3 @@
|
||||
'''
|
||||
"""
|
||||
Tracking :py:mod:`.request` for spectrum and their :py:mod:`.spectrum_assignment`.
|
||||
'''
|
||||
"""
|
||||
|
||||
@@ -16,34 +16,36 @@ See: draft-ietf-teas-yang-path-computation-01.txt
|
||||
"""
|
||||
|
||||
from collections import namedtuple, OrderedDict
|
||||
from typing import List
|
||||
from logging import getLogger
|
||||
from networkx import (dijkstra_path, NetworkXNoPath,
|
||||
all_simple_paths, shortest_simple_paths)
|
||||
from networkx.utils import pairwise
|
||||
from numpy import mean
|
||||
from gnpy.core.elements import Transceiver, Roadm
|
||||
from gnpy.core.utils import lin2db
|
||||
from gnpy.core.info import create_input_spectral_information
|
||||
from numpy import mean, argmin
|
||||
|
||||
from gnpy.core.elements import Transceiver, Roadm, Edfa, Multiband_amplifier
|
||||
from gnpy.core.utils import lin2db, unique_ordered, find_common_range
|
||||
from gnpy.core.info import create_input_spectral_information, carriers_to_spectral_information, \
|
||||
demuxed_spectral_information, muxed_spectral_information, SpectralInformation
|
||||
from gnpy.core import network as network_module
|
||||
from gnpy.core.exceptions import ServiceError, DisjunctionError
|
||||
import gnpy.core.ansi_escapes as ansi_escapes
|
||||
from copy import deepcopy
|
||||
from csv import writer
|
||||
from math import ceil
|
||||
|
||||
LOGGER = getLogger(__name__)
|
||||
|
||||
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type' +
|
||||
' trx_mode nodes_list loose_list spacing power nb_channel f_min' +
|
||||
' f_max format baud_rate OSNR bit_rate roll_off tx_osnr' +
|
||||
' min_spacing cost path_bandwidth effective_freq_slot')
|
||||
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link' +
|
||||
'_diverse node_diverse disjunctions_req')
|
||||
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type'
|
||||
' trx_mode nodes_list loose_list spacing power nb_channel f_min'
|
||||
' f_max format baud_rate OSNR penalties bit_rate'
|
||||
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot'
|
||||
' equalization_offset_db, tx_power')
|
||||
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link_diverse'
|
||||
' node_diverse disjunctions_req')
|
||||
|
||||
|
||||
class PathRequest:
|
||||
""" the class that contains all attributes related to a request
|
||||
"""
|
||||
|
||||
"""the class that contains all attributes related to a request"""
|
||||
def __init__(self, *args, **params):
|
||||
params = RequestParams(**params)
|
||||
self.request_id = params.request_id
|
||||
@@ -62,15 +64,19 @@ class PathRequest:
|
||||
self.f_max = params.f_max
|
||||
self.format = params.format
|
||||
self.OSNR = params.OSNR
|
||||
self.penalties = params.penalties
|
||||
self.bit_rate = params.bit_rate
|
||||
self.roll_off = params.roll_off
|
||||
self.tx_osnr = params.tx_osnr
|
||||
self.tx_power = params.tx_power
|
||||
self.min_spacing = params.min_spacing
|
||||
self.cost = params.cost
|
||||
self.path_bandwidth = params.path_bandwidth
|
||||
if params.effective_freq_slot is not None:
|
||||
self.N = params.effective_freq_slot['N']
|
||||
self.M = params.effective_freq_slot['M']
|
||||
self.N = [s['N'] for s in params.effective_freq_slot]
|
||||
self.M = [s['M'] for s in params.effective_freq_slot]
|
||||
self.initial_spectrum = None
|
||||
self.offset_db = params.equalization_offset_db
|
||||
|
||||
def __str__(self):
|
||||
return '\n\t'.join([f'{type(self).__name__} {self.request_id}',
|
||||
@@ -78,7 +84,7 @@ class PathRequest:
|
||||
f'destination: {self.destination}'])
|
||||
|
||||
def __repr__(self):
|
||||
if self.baud_rate is not None:
|
||||
if self.baud_rate is not None and self.bit_rate is not None:
|
||||
temp = self.baud_rate * 1e-9
|
||||
temp2 = self.bit_rate * 1e-9
|
||||
else:
|
||||
@@ -93,7 +99,8 @@ class PathRequest:
|
||||
f'baud_rate:\t{temp} Gbaud',
|
||||
f'bit_rate:\t{temp2} Gb/s',
|
||||
f'spacing:\t{self.spacing * 1e-9} GHz',
|
||||
f'power: \t{round(lin2db(self.power)+30, 2)} dBm',
|
||||
f'power: \t{round(lin2db(self.power) + 30, 2)} dBm',
|
||||
f'tx_power_dbm: \t{round(lin2db(self.tx_power) + 30, 2)} dBm',
|
||||
f'nb channels: \t{self.nb_channel}',
|
||||
f'path_bandwidth: \t{round(self.path_bandwidth * 1e-9, 2)} Gbit/s',
|
||||
f'nodes-list:\t{self.nodes_list}',
|
||||
@@ -102,8 +109,7 @@ class PathRequest:
|
||||
|
||||
|
||||
class Disjunction:
|
||||
""" the class that contains all attributes related to disjunction constraints
|
||||
"""
|
||||
"""the class that contains all attributes related to disjunction constraints"""
|
||||
|
||||
def __init__(self, *args, **params):
|
||||
params = DisjunctionParams(**params)
|
||||
@@ -132,7 +138,7 @@ BLOCKING_NOPATH = ['NO_PATH', 'NO_PATH_WITH_CONSTRAINT',
|
||||
'NO_FEASIBLE_BAUDRATE_WITH_SPACING',
|
||||
'NO_COMPUTED_SNR']
|
||||
BLOCKING_NOMODE = ['NO_FEASIBLE_MODE', 'MODE_NOT_FEASIBLE']
|
||||
BLOCKING_NOSPECTRUM = 'NO_SPECTRUM'
|
||||
BLOCKING_NOSPECTRUM = ['NO_SPECTRUM', 'NOT_ENOUGH_RESERVED_SPECTRUM']
|
||||
|
||||
|
||||
class ResultElement:
|
||||
@@ -148,8 +154,7 @@ class ResultElement:
|
||||
|
||||
@property
|
||||
def detailed_path_json(self):
|
||||
""" a function that builds path object for normal and blocking cases
|
||||
"""
|
||||
"""a function that builds path object for normal and blocking cases"""
|
||||
index = 0
|
||||
pro_list = []
|
||||
for element in self.computed_path:
|
||||
@@ -165,24 +170,30 @@ class ResultElement:
|
||||
}
|
||||
pro_list.append(temp)
|
||||
index += 1
|
||||
if self.path_request.M > 0:
|
||||
if not hasattr(self.path_request, 'blocking_reason'):
|
||||
# M and N values should not be None at this point
|
||||
if self.path_request.M is None or self.path_request.N is None:
|
||||
raise ServiceError('request {self.path_id} should have positive non null n and m values.')
|
||||
|
||||
temp = {
|
||||
'path-route-object': {
|
||||
'index': index,
|
||||
"label-hop": {
|
||||
"N": self.path_request.N,
|
||||
"M": self.path_request.M
|
||||
},
|
||||
"label-hop": [{
|
||||
"N": n,
|
||||
"M": m
|
||||
} for n, m in zip(self.path_request.N, self.path_request.M)],
|
||||
}
|
||||
}
|
||||
pro_list.append(temp)
|
||||
index += 1
|
||||
elif self.path_request.M == 0 and hasattr(self.path_request, 'blocking_reason'):
|
||||
# if the path is blocked due to spectrum, no label object is created, but
|
||||
# the json response includes a detailed path for user infromation.
|
||||
pass
|
||||
else:
|
||||
raise ServiceError('request {self.path_id} should have positive path bandwidth value.')
|
||||
# if the path is blocked, no label object is created, but
|
||||
# the json response includes a detailed path for user information.
|
||||
# M and N values should be None at this point
|
||||
if self.path_request.M is not None or self.path_request.N is not None:
|
||||
raise ServiceError('request {self.path_id} should not have label M and N values at this point.')
|
||||
|
||||
|
||||
if isinstance(element, Transceiver):
|
||||
temp = {
|
||||
'path-route-object': {
|
||||
@@ -199,11 +210,9 @@ class ResultElement:
|
||||
|
||||
@property
|
||||
def path_properties(self):
|
||||
""" a function that returns the path properties (metrics, crossed elements) into a dict
|
||||
"""
|
||||
"""a function that returns the path properties (metrics, crossed elements) into a dict"""
|
||||
def path_metric(pth, req):
|
||||
""" creates the metrics dictionary
|
||||
"""
|
||||
"""creates the metrics dictionary"""
|
||||
return [
|
||||
{
|
||||
'metric-type': 'SNR-bandwidth',
|
||||
@@ -245,8 +254,7 @@ class ResultElement:
|
||||
|
||||
@property
|
||||
def pathresult(self):
|
||||
""" create the result dictionnary (response for a request)
|
||||
"""
|
||||
"""create the result dictionnary (response for a request)"""
|
||||
try:
|
||||
if self.path_request.blocking_reason in BLOCKING_NOPATH:
|
||||
response = {
|
||||
@@ -284,7 +292,6 @@ def compute_constrained_path(network, req):
|
||||
# been corrected and harmonized before
|
||||
msg = (f'Request {req.request_id} malformed list of nodes: last node should '
|
||||
'be destination trx')
|
||||
LOGGER.critical(msg)
|
||||
raise ValueError()
|
||||
|
||||
trx = [n for n in network if isinstance(n, Transceiver)]
|
||||
@@ -294,15 +301,16 @@ def compute_constrained_path(network, req):
|
||||
nodes_list = []
|
||||
for node in req.nodes_list[:-1]:
|
||||
nodes_list.append(next(el for el in network if el.uid == node))
|
||||
|
||||
total_path = explicit_path(nodes_list, source, destination, network)
|
||||
if total_path is not None:
|
||||
return total_path
|
||||
try:
|
||||
path_generator = shortest_simple_paths(network, source, destination, weight='weight')
|
||||
total_path = next(path for path in path_generator if ispart(nodes_list, path))
|
||||
except NetworkXNoPath:
|
||||
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path from'
|
||||
f' {source.uid} to node: {destination.uid} in network topology{ansi_escapes.reset}')
|
||||
msg = (f'Request {req.request_id} could not find a path from'
|
||||
f' {source.uid} to node: {destination.uid} in network topology')
|
||||
LOGGER.critical(msg)
|
||||
print(msg)
|
||||
req.blocking_reason = 'NO_PATH'
|
||||
total_path = []
|
||||
except StopIteration:
|
||||
@@ -311,79 +319,118 @@ def compute_constrained_path(network, req):
|
||||
# last node which is the transceiver)
|
||||
# if all nodes i n node_list are LOOSE constraint, skip the constraints and find
|
||||
# a path w/o constraints, else there is no possible path
|
||||
print(f'{ansi_escapes.yellow}Request {req.request_id} could not find a path crossing '
|
||||
f'{[el.uid for el in nodes_list[:-1]]} in network topology{ansi_escapes.reset}')
|
||||
LOGGER.warning(f'Request {req.request_id} could not find a path crossing '
|
||||
f'{[el.uid for el in nodes_list[:-1]]} in network topology')
|
||||
|
||||
if 'STRICT' not in req.loose_list[:-1]:
|
||||
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user_'
|
||||
f'include node constraints{ansi_escapes.reset}')
|
||||
LOGGER.info(msg)
|
||||
print(f'constraint ignored')
|
||||
msg = (f'Request {req.request_id} could not find a path with user_'
|
||||
f'include node constraints. Constraint ignored')
|
||||
LOGGER.warning(msg)
|
||||
total_path = dijkstra_path(network, source, destination, weight='weight')
|
||||
else:
|
||||
# one STRICT makes the whole list STRICT
|
||||
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user '
|
||||
f'include node constraints.\nNo path computed{ansi_escapes.reset}')
|
||||
msg = (f'Request {req.request_id} could not find a path with user '
|
||||
f'include node constraints.\nNo path computed')
|
||||
LOGGER.critical(msg)
|
||||
print(msg)
|
||||
req.blocking_reason = 'NO_PATH_WITH_CONSTRAINT'
|
||||
total_path = []
|
||||
|
||||
return total_path
|
||||
|
||||
|
||||
def filter_si(path: list, equipment: dict, si: SpectralInformation) -> SpectralInformation:
|
||||
"""Filter spectral information based on the amplifiers common range"""
|
||||
# First retrieve f_min, f_max spectrum according to amplifiers' spectrum on the path
|
||||
common_range = find_elements_common_range(path, equipment)
|
||||
# filter out frequencies that should not be created
|
||||
filtered_si = []
|
||||
for band in common_range:
|
||||
temp = demuxed_spectral_information(si, band)
|
||||
if temp:
|
||||
filtered_si.append(temp)
|
||||
if not filtered_si:
|
||||
raise ValueError('Defined propagation band does not match amplifiers band.')
|
||||
return muxed_spectral_information(filtered_si)
|
||||
|
||||
|
||||
def propagate(path, req, equipment):
|
||||
si = create_input_spectral_information(
|
||||
req.f_min, req.f_max, req.roll_off, req.baud_rate,
|
||||
req.power, req.spacing)
|
||||
for el in path:
|
||||
si = el(si)
|
||||
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
|
||||
return path
|
||||
|
||||
|
||||
def propagate2(path, req, equipment):
|
||||
si = create_input_spectral_information(
|
||||
req.f_min, req.f_max, req.roll_off, req.baud_rate,
|
||||
req.power, req.spacing)
|
||||
infos = {}
|
||||
for el in path:
|
||||
before_si = si
|
||||
after_si = si = el(si)
|
||||
infos[el] = before_si, after_si
|
||||
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
|
||||
return infos
|
||||
"""propagates signals in each element according to initial spectrum set by user
|
||||
Spectrum is specified in request through f_min, f_max and spacing, or initial_spectrum
|
||||
and amps frequency band on the path is used to filter out frequencies"""
|
||||
# generates spectrum based on request
|
||||
if req.initial_spectrum is not None:
|
||||
si = carriers_to_spectral_information(initial_spectrum=req.initial_spectrum, power=req.power)
|
||||
else:
|
||||
si = create_input_spectral_information(
|
||||
f_min=req.f_min, f_max=req.f_max, roll_off=req.roll_off, baud_rate=req.baud_rate,
|
||||
spacing=req.spacing, tx_osnr=req.tx_osnr, tx_power=req.tx_power, delta_pdb=req.offset_db)
|
||||
# filter out frequencies that should not be created
|
||||
si = filter_si(path, equipment, si)
|
||||
roadm_osnr = []
|
||||
for i, el in enumerate(path):
|
||||
if isinstance(el, Roadm):
|
||||
si = el(si, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
|
||||
roadm_osnr.append(el.get_impairment('roadm-osnr', si.frequency,
|
||||
from_degree=path[i - 1].uid, degree=path[i + 1].uid))
|
||||
else:
|
||||
si = el(si)
|
||||
path[0].update_snr(si.tx_osnr)
|
||||
path[0].calc_penalties(req.penalties)
|
||||
roadm_osnr.append(si.tx_osnr)
|
||||
path[-1].update_snr(*roadm_osnr)
|
||||
path[-1].calc_penalties(req.penalties)
|
||||
return si
|
||||
|
||||
|
||||
def propagate_and_optimize_mode(path, req, equipment):
|
||||
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
|
||||
# step 1: create an ordered list of modes based on baudrate
|
||||
baudrate_to_explore = list(set([this_mode['baud_rate']
|
||||
for this_mode in equipment['Transceiver'][req.tsp].mode
|
||||
if float(this_mode['min_spacing']) <= req.spacing]))
|
||||
# step 1: create an ordered list of modes based on baudrate and power offset
|
||||
# order higher baudrate with higher power offset first
|
||||
baudrate_offset_to_explore = list(set([(this_mode['baud_rate'], this_mode['equalization_offset_db'])
|
||||
for this_mode in equipment['Transceiver'][req.tsp].mode
|
||||
if float(this_mode['min_spacing']) <= req.spacing]))
|
||||
# TODO be carefull on limits cases if spacing very close to req spacing eg 50.001 50.000
|
||||
baudrate_to_explore = sorted(baudrate_to_explore, reverse=True)
|
||||
if baudrate_to_explore:
|
||||
baudrate_offset_to_explore = sorted(baudrate_offset_to_explore, reverse=True)
|
||||
if baudrate_offset_to_explore:
|
||||
# at least 1 baudrate can be tested wrt spacing
|
||||
for this_br in baudrate_to_explore:
|
||||
for (this_br, this_offset) in baudrate_offset_to_explore:
|
||||
modes_to_explore = [this_mode for this_mode in equipment['Transceiver'][req.tsp].mode
|
||||
if this_mode['baud_rate'] == this_br and
|
||||
float(this_mode['min_spacing']) <= req.spacing]
|
||||
if this_mode['baud_rate'] == this_br
|
||||
and float(this_mode['min_spacing']) <= req.spacing]
|
||||
modes_to_explore = sorted(modes_to_explore,
|
||||
key=lambda x: x['bit_rate'], reverse=True)
|
||||
# print(modes_to_explore)
|
||||
key=lambda x: (x['bit_rate'], x['equalization_offset_db']), reverse=True)
|
||||
# step2: computes propagation for each baudrate: stop and select the first that passes
|
||||
# TODO: the case of roll of is not included: for now use SI one
|
||||
# TODO: the case of roll off is not included: for now use SI one
|
||||
# TODO: if the loop in mode optimization does not have a feasible path, then bugs
|
||||
spc_info = create_input_spectral_information(req.f_min, req.f_max,
|
||||
equipment['SI']['default'].roll_off,
|
||||
this_br, req.power, req.spacing)
|
||||
for el in path:
|
||||
spc_info = el(spc_info)
|
||||
if req.initial_spectrum is not None:
|
||||
# this case is not yet handled: spectrum can not be defined for the path-request-run function
|
||||
# and this function is only called in this case. so coming here should not be considered yet.
|
||||
msg = f'Request: {req.request_id} contains a unexpected initial_spectrum.'
|
||||
raise ServiceError(msg)
|
||||
spc_info = create_input_spectral_information(f_min=req.f_min, f_max=req.f_max,
|
||||
roll_off=equipment['SI']['default'].roll_off,
|
||||
baud_rate=this_br, spacing=req.spacing,
|
||||
delta_pdb=this_offset, tx_osnr=req.tx_osnr,
|
||||
tx_power=req.tx_power)
|
||||
spc_info = filter_si(path, equipment, spc_info)
|
||||
roadm_osnr = []
|
||||
for i, el in enumerate(path):
|
||||
if isinstance(el, Roadm):
|
||||
spc_info = el(spc_info, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
|
||||
roadm_osnr.append(el.get_impairment('roadm-osnr', spc_info.frequency,
|
||||
from_degree=path[i - 1].uid, degree=path[i + 1].uid))
|
||||
else:
|
||||
spc_info = el(spc_info)
|
||||
for this_mode in modes_to_explore:
|
||||
if path[-1].snr is not None:
|
||||
path[-1].update_snr(this_mode['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
|
||||
if round(min(path[-1].snr + lin2db(this_br / (12.5e9))), 2) > this_mode['OSNR']:
|
||||
path[0].update_snr(this_mode['tx_osnr'])
|
||||
path[0].calc_penalties(this_mode['penalties'])
|
||||
roadm_osnr.append(this_mode['tx_osnr'])
|
||||
path[-1].update_snr(*roadm_osnr)
|
||||
# remove the tx_osnr from roadm_osnr list for the next iteration
|
||||
del roadm_osnr[-1]
|
||||
path[-1].calc_penalties(this_mode['penalties'])
|
||||
if round(min(path[-1].snr_01nm - path[-1].total_penalty), 2) \
|
||||
> this_mode['OSNR'] + equipment['SI']['default'].sys_margins:
|
||||
return path, this_mode
|
||||
else:
|
||||
last_explored_mode = this_mode
|
||||
@@ -394,22 +441,19 @@ def propagate_and_optimize_mode(path, req, equipment):
|
||||
|
||||
# returns the last propagated path and mode
|
||||
msg = f'\tWarning! Request {req.request_id}: no mode satisfies path SNR requirement.\n'
|
||||
print(msg)
|
||||
LOGGER.info(msg)
|
||||
LOGGER.warning(msg)
|
||||
req.blocking_reason = 'NO_FEASIBLE_MODE'
|
||||
return path, last_explored_mode
|
||||
else:
|
||||
# no baudrate satisfying spacing
|
||||
msg = f'\tWarning! Request {req.request_id}: no baudrate satisfies spacing requirement.\n'
|
||||
print(msg)
|
||||
LOGGER.info(msg)
|
||||
LOGGER.warning(msg)
|
||||
req.blocking_reason = 'NO_FEASIBLE_BAUDRATE_WITH_SPACING'
|
||||
return [], None
|
||||
|
||||
|
||||
def jsontopath_metric(path_metric):
|
||||
""" a functions that reads resulting metric from json string
|
||||
"""
|
||||
"""a functions that reads resulting metric from json string"""
|
||||
output_snr = next(e['accumulative-value']
|
||||
for e in path_metric if e['metric-type'] == 'SNR-0.1nm')
|
||||
output_snrbandwidth = next(e['accumulative-value']
|
||||
@@ -427,9 +471,7 @@ def jsontopath_metric(path_metric):
|
||||
|
||||
|
||||
def jsontoparams(my_p, tsp, mode, equipment):
|
||||
""" a function that derives optical params from transponder type and mode
|
||||
supports the no mode case
|
||||
"""
|
||||
"""a function that derives optical params from transponder type and mode supports the no mode case"""
|
||||
temp = []
|
||||
for elem in my_p['path-properties']['path-route-objects']:
|
||||
if 'num-unnum-hop' in elem['path-route-object']:
|
||||
@@ -439,8 +481,8 @@ def jsontoparams(my_p, tsp, mode, equipment):
|
||||
temp2 = []
|
||||
for elem in my_p['path-properties']['path-route-objects']:
|
||||
if 'label-hop' in elem['path-route-object'].keys():
|
||||
temp2.append(f'{elem["path-route-object"]["label-hop"]["N"]}, ' +
|
||||
f'{elem["path-route-object"]["label-hop"]["M"]}')
|
||||
temp2.append(f'{[e["N"] for e in elem["path-route-object"]["label-hop"]]}, '
|
||||
+ f'{[e["M"] for e in elem["path-route-object"]["label-hop"]]}')
|
||||
# OrderedDict.fromkeys returns the unique set of strings.
|
||||
# TODO: if spectrum changes along the path, we should be able to give the segments
|
||||
# eg for regeneration case
|
||||
@@ -464,10 +506,10 @@ def jsontoparams(my_p, tsp, mode, equipment):
|
||||
|
||||
|
||||
def jsontocsv(json_data, equipment, fileout):
|
||||
""" reads json path result file in accordance with:
|
||||
Yang model for requesting Path Computation
|
||||
draft-ietf-teas-yang-path-computation-01.txt.
|
||||
and write results in an CSV file
|
||||
"""reads json path result file in accordance with:
|
||||
Yang model for requesting Path Computation
|
||||
draft-ietf-teas-yang-path-computation-01.txt.
|
||||
and write results in an CSV file
|
||||
"""
|
||||
mywriter = writer(fileout)
|
||||
mywriter.writerow(('response-id', 'source', 'destination', 'path_bandwidth', 'Pass?',
|
||||
@@ -696,8 +738,8 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
|
||||
# in each loop, dpath is updated with a path for rq that satisfies
|
||||
# disjunction with each path in dpath
|
||||
# for example, assume set of requests in the vector (disjunction_list) is {rq1,rq2, rq3}
|
||||
# rq1 p1: abfhg
|
||||
# p2: aefhg
|
||||
# rq1 p1: aefhg
|
||||
# p2: abfhg
|
||||
# p3: abcg
|
||||
# rq2 p8: bf
|
||||
# rq3 p4: abcgh
|
||||
@@ -714,6 +756,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
|
||||
# after second loop:
|
||||
# dpath = [ p3 p8 p6 ]
|
||||
# since p1 and p4 are not disjoint
|
||||
# p1 and p6 are not disjoint
|
||||
# p1 and p7 are not disjoint
|
||||
# p3 and p4 are not disjoint
|
||||
# p3 and p7 are not disjoint
|
||||
@@ -737,7 +780,6 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
|
||||
temp.append(temp2)
|
||||
# print(f' coucou {elem1}: \t{temp}')
|
||||
dpath = temp
|
||||
# print(dpath)
|
||||
candidates[dis.disjunction_id] = dpath
|
||||
|
||||
# for i in disjunctions_list:
|
||||
@@ -778,9 +820,9 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
|
||||
if pth in cndt:
|
||||
candidates[this_id].remove(cndt)
|
||||
|
||||
# for i in disjunctions_list:
|
||||
# print(i.disjunction_id)
|
||||
# print(f'\n{candidates[i.disjunction_id]}')
|
||||
# for i in disjunctions_list:
|
||||
# print(i.disjunction_id)
|
||||
# print(f'\n{candidates[i.disjunction_id]}')
|
||||
|
||||
# step 4 apply route constraints: remove candidate path that do not satisfy
|
||||
# the constraint only in the case of disjounction: the simple path is processed in
|
||||
@@ -788,54 +830,51 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
|
||||
# TODO: keep a version without the loose constraint
|
||||
for this_d in disjunctions_list:
|
||||
temp = []
|
||||
alternatetemp = []
|
||||
for j, sol in enumerate(candidates[this_d.disjunction_id]):
|
||||
testispartok = True
|
||||
testispartnokloose = True
|
||||
for pth in sol:
|
||||
# print(f'test {allpaths[id(pth)].req.request_id}')
|
||||
# print(f'length of route {len(allpaths[id(pth)].req.nodes_list)}')
|
||||
if allpaths[id(pth)].req.nodes_list:
|
||||
# if pth does not containt the ordered list node, remove sol from the candidate
|
||||
# except if this was the last solution: then check if the constraint is loose
|
||||
# or not
|
||||
# if any pth from sol does not contain the ordered list node,
|
||||
# remove sol from the candidate, except if constraint was loose:
|
||||
# then keep sol as an alternate solution
|
||||
if not ispart(allpaths[id(pth)].req.nodes_list, pth):
|
||||
# print(f'nb of solutions {len(temp)}')
|
||||
if j < len(candidates[this_d.disjunction_id]) - 1:
|
||||
msg = f'removing {sol}'
|
||||
LOGGER.info(msg)
|
||||
testispartok = False
|
||||
# break
|
||||
else:
|
||||
if 'LOOSE' in allpaths[id(pth)].req.loose_list:
|
||||
LOGGER.info(f'Could not apply route constraint' +
|
||||
f'{allpaths[id(pth)].req.nodes_list} on request' +
|
||||
f' {allpaths[id(pth)].req.request_id}')
|
||||
else:
|
||||
LOGGER.info(f'removing last solution from candidate paths\n{sol}')
|
||||
testispartok = False
|
||||
testispartok = False
|
||||
if 'STRICT' in allpaths[id(pth)].req.loose_list:
|
||||
LOGGER.debug(f'removing solution from candidate paths\n{pth}')
|
||||
testispartnokloose = False
|
||||
break
|
||||
if testispartok:
|
||||
temp.append(sol)
|
||||
candidates[this_d.disjunction_id] = temp
|
||||
elif testispartnokloose:
|
||||
LOGGER.debug(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
|
||||
alternatetemp.append(sol)
|
||||
if temp:
|
||||
candidates[this_d.disjunction_id] = temp
|
||||
elif alternatetemp:
|
||||
candidates[this_d.disjunction_id] = alternatetemp
|
||||
else:
|
||||
candidates[this_d.disjunction_id] = []
|
||||
|
||||
# step 5 select the first combination that works
|
||||
pathreslist_disjoint = {}
|
||||
for dis in disjunctions_list:
|
||||
test_sol = True
|
||||
while test_sol:
|
||||
# print('coucou')
|
||||
if candidates[dis.disjunction_id]:
|
||||
for pth in candidates[dis.disjunction_id][0]:
|
||||
if allpaths[id(pth)].req in pathreqlist_disjt:
|
||||
# print(f'selected path:{pth} for req {allpaths[id(pth)].req.request_id}')
|
||||
pathreslist_disjoint[allpaths[id(pth)].req] = allpaths[id(pth)].pth
|
||||
pathreqlist_disjt.remove(allpaths[id(pth)].req)
|
||||
candidates = remove_candidate(candidates, allpaths, allpaths[id(pth)].req, pth)
|
||||
test_sol = False
|
||||
else:
|
||||
msg = f'No disjoint path found with added constraint'
|
||||
LOGGER.critical(msg)
|
||||
print(f'{msg}\nComputation stopped.')
|
||||
# TODO in this case: replay step 5 with the candidate without constraints
|
||||
raise DisjunctionError(msg)
|
||||
if candidates[dis.disjunction_id]:
|
||||
for pth in candidates[dis.disjunction_id][0]:
|
||||
if allpaths[id(pth)].req in pathreqlist_disjt:
|
||||
# print(f'selected path:{pth} for req {allpaths[id(pth)].req.request_id}')
|
||||
pathreslist_disjoint[allpaths[id(pth)].req] = allpaths[id(pth)].pth
|
||||
# remove request from list of requests (in case of duplicate)
|
||||
pathreqlist_disjt.remove(allpaths[id(pth)].req)
|
||||
# remove duplicated candidates
|
||||
candidates = remove_candidate(candidates, allpaths, allpaths[id(pth)].req, pth)
|
||||
else:
|
||||
msg = 'No disjoint path found with added constraint\nComputation stopped.'
|
||||
# TODO in this case: replay step 5 with the candidate without constraints
|
||||
raise DisjunctionError(msg)
|
||||
|
||||
# for i in disjunctions_list:
|
||||
# print(i.disjunction_id)
|
||||
@@ -854,8 +893,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
|
||||
|
||||
|
||||
def isdisjoint(pth1, pth2):
|
||||
""" returns 0 if disjoint
|
||||
"""
|
||||
"""returns 0 if disjoint"""
|
||||
edge1 = list(pairwise(pth1))
|
||||
edge2 = list(pairwise(pth2))
|
||||
for edge in edge1:
|
||||
@@ -865,9 +903,9 @@ def isdisjoint(pth1, pth2):
|
||||
|
||||
|
||||
def find_reversed_path(pth):
|
||||
""" select of intermediate roadms and find the path between them
|
||||
note that this function may not give an exact result in case of multiple
|
||||
links between two adjacent nodes.
|
||||
"""select of intermediate roadms and find the path between them
|
||||
note that this function may not give an exact result in case of multiple
|
||||
links between two adjacent nodes.
|
||||
"""
|
||||
# TODO add some indication on elements to indicate from which other they
|
||||
# are the reversed direction. This is partly done with oms indication
|
||||
@@ -890,9 +928,8 @@ def find_reversed_path(pth):
|
||||
# concatenation should be [roadma el1 el2 roadmb el3 el4 roadmc]
|
||||
reversed_path = list(OrderedDict.fromkeys(reversed_path))
|
||||
else:
|
||||
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' +\
|
||||
' can not handle unidir topology. TO DO.'
|
||||
LOGGER.critical(msg)
|
||||
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' \
|
||||
+ ' can not handle unidir topology. TO DO.'
|
||||
raise ValueError(msg)
|
||||
reversed_path.append(pth[0])
|
||||
|
||||
@@ -900,9 +937,7 @@ def find_reversed_path(pth):
|
||||
|
||||
|
||||
def ispart(ptha, pthb):
|
||||
""" the functions takes two paths a and b and retrns True
|
||||
if all a elements are part of b and in the same order
|
||||
"""
|
||||
"""the functions takes two paths a and b and retrns True if all a elements are part of b and in the same order"""
|
||||
j = 0
|
||||
for elem in ptha:
|
||||
if elem in pthb:
|
||||
@@ -916,8 +951,7 @@ def ispart(ptha, pthb):
|
||||
|
||||
|
||||
def remove_candidate(candidates, allpaths, rqst, pth):
|
||||
""" filter duplicate candidates
|
||||
"""
|
||||
"""filter duplicate candidates"""
|
||||
# print(f'coucou {rqst.request_id}')
|
||||
for key, candidate in candidates.items():
|
||||
temp = candidate.copy()
|
||||
@@ -932,8 +966,7 @@ def remove_candidate(candidates, allpaths, rqst, pth):
|
||||
|
||||
|
||||
def compare_reqs(req1, req2, disjlist):
|
||||
""" compare two requests: returns True or False
|
||||
"""
|
||||
"""compare two requests: returns True or False"""
|
||||
dis1 = [d for d in disjlist if req1.request_id in d.disjunctions_req]
|
||||
dis2 = [d for d in disjlist if req2.request_id in d.disjunctions_req]
|
||||
same_disj = False
|
||||
@@ -966,6 +999,7 @@ def compare_reqs(req1, req2, disjlist):
|
||||
req1.format == req2.format and \
|
||||
req1.OSNR == req2.OSNR and \
|
||||
req1.roll_off == req2.roll_off and \
|
||||
req1.tx_power == req2.tx_power and \
|
||||
same_disj:
|
||||
return True
|
||||
else:
|
||||
@@ -973,19 +1007,24 @@ def compare_reqs(req1, req2, disjlist):
|
||||
|
||||
|
||||
def requests_aggregation(pathreqlist, disjlist):
|
||||
""" this function aggregates requests so that if several requests
|
||||
exist between same source and destination and with same transponder type
|
||||
"""this function aggregates requests so that if several requests
|
||||
exist between same source and destination and with same transponder type
|
||||
If transponder mode is defined and identical, then also agregates demands.
|
||||
"""
|
||||
# todo maybe add conditions on mode ??, spacing ...
|
||||
# currently if undefined takes the default values
|
||||
local_list = pathreqlist.copy()
|
||||
for req in pathreqlist:
|
||||
for this_r in local_list:
|
||||
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist):
|
||||
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist) and\
|
||||
this_r.tsp_mode is not None:
|
||||
# aggregate
|
||||
this_r.path_bandwidth += req.path_bandwidth
|
||||
this_r.N = this_r.N + req.N
|
||||
this_r.M = this_r.M + req.M
|
||||
temp_r_id = this_r.request_id
|
||||
this_r.request_id = ' | '.join((this_r.request_id, req.request_id))
|
||||
|
||||
# remove request from list
|
||||
local_list.remove(req)
|
||||
# todo change also disjunction req with new demand
|
||||
@@ -1002,23 +1041,22 @@ def requests_aggregation(pathreqlist, disjlist):
|
||||
|
||||
|
||||
def correct_json_route_list(network, pathreqlist):
|
||||
""" all names in list should be exact name in the network, and there is no ambiguity
|
||||
This function only checks that list is correct, warns user if the name is incorrect and
|
||||
suppresses the constraint it it is loose or raises an error if it is strict
|
||||
"""all names in list should be exact name in the network, and there is no ambiguity
|
||||
|
||||
This function only checks that list is correct, warns user if the name is incorrect and
|
||||
suppresses the constraint it it is loose or raises an error if it is strict
|
||||
"""
|
||||
all_uid = [n.uid for n in network.nodes()]
|
||||
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
|
||||
for pathreq in pathreqlist:
|
||||
if pathreq.source not in transponders:
|
||||
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
|
||||
f' source : {pathreq.source}.{ansi_escapes.reset}'
|
||||
LOGGER.critical(msg)
|
||||
msg = f'Request: {pathreq.request_id}: could not find transponder' \
|
||||
+ f' source : {pathreq.source}.'
|
||||
raise ServiceError(msg)
|
||||
|
||||
if pathreq.destination not in transponders:
|
||||
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
|
||||
f' destination : {pathreq.destination}.{ansi_escapes.reset}'
|
||||
LOGGER.critical(msg)
|
||||
msg = f'Request: {pathreq.request_id}: could not find transponder' \
|
||||
+ f' destination : {pathreq.destination}.'
|
||||
raise ServiceError(msg)
|
||||
|
||||
# silently remove source and dest nodes from the list
|
||||
@@ -1037,24 +1075,21 @@ def correct_json_route_list(network, pathreqlist):
|
||||
# if no matching can be found in the network just ignore this constraint
|
||||
# if it is a loose constraint
|
||||
# warns the user that this node is not part of the topology
|
||||
msg = f'{ansi_escapes.yellow}invalid route node specified:\n\t\'{n_id}\',' +\
|
||||
f' could not use it as constraint, skipped!{ansi_escapes.reset}'
|
||||
print(msg)
|
||||
LOGGER.info(msg)
|
||||
msg = f'invalid route node specified:\n\t\'{n_id}\',' \
|
||||
+ ' could not use it as constraint, skipped!'
|
||||
LOGGER.warning(msg)
|
||||
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
|
||||
pathreq.nodes_list.remove(n_id)
|
||||
else:
|
||||
msg = f'{ansi_escapes.red}could not find node:\n\t \'{n_id}\' in network' +\
|
||||
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
|
||||
LOGGER.critical(msg)
|
||||
msg = f'could not find node:\n\t \'{n_id}\' in network' \
|
||||
+ ' topology. Strict constraint can not be applied.'
|
||||
raise ServiceError(msg)
|
||||
|
||||
return pathreqlist
|
||||
|
||||
|
||||
def deduplicate_disjunctions(disjn):
|
||||
""" clean disjunctions to remove possible repetition
|
||||
"""
|
||||
"""clean disjunctions to remove possible repetition"""
|
||||
local_disjn = disjn.copy()
|
||||
for elem in local_disjn:
|
||||
for dis_elem in local_disjn:
|
||||
@@ -1064,23 +1099,28 @@ def deduplicate_disjunctions(disjn):
|
||||
return local_disjn
|
||||
|
||||
|
||||
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
""" use a list but a dictionnary might be helpful to find path based on request_id
|
||||
TODO change all these req, dsjct, res lists into dict !
|
||||
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist, redesign=False):
|
||||
"""use a list but a dictionnary might be helpful to find path based on request_id
|
||||
|
||||
TODO change all these req, dsjct, res lists into dict !
|
||||
"""
|
||||
path_res_list = []
|
||||
reversed_path_res_list = []
|
||||
propagated_reversed_path_res_list = []
|
||||
|
||||
total_nb_requests = len(pathreqlist)
|
||||
if redesign:
|
||||
LOGGER.warning('Redesign the network for each request channel, '
|
||||
+ 'using the request channel as the reference channel for the design.')
|
||||
for i, pathreq in enumerate(pathreqlist):
|
||||
|
||||
# use the power specified in requests but might be different from the one
|
||||
# specified for design the power is an optional parameter for requests
|
||||
# definition if optional, use the one defines in eqt_config.json
|
||||
print(f'request {pathreq.request_id}')
|
||||
print(f'Computing path from {pathreq.source} to {pathreq.destination}')
|
||||
# adding first node to be clearer on the output
|
||||
print(f'with path constraint: {[pathreq.source] + pathreq.nodes_list}')
|
||||
msg = f'\n\trequest {pathreq.request_id}\n' \
|
||||
+ f'\tComputing path from {pathreq.source} to {pathreq.destination}\n' \
|
||||
+ f'\twith path constraint: {[pathreq.source] + pathreq.nodes_list}'
|
||||
# # adding first node to be clearer on the output
|
||||
|
||||
# pathlist[i] contains the whole path information for request i
|
||||
# last element is a transciver and where the result of the propagation is
|
||||
@@ -1089,22 +1129,35 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
# elements to simulate performance, several demands having the same destination
|
||||
# may use the same transponder for the performance simulation. This is why
|
||||
# we use deepcopy: to ensure that each propagation is recorded and not overwritten
|
||||
# reversed path is needed for correct spectrum assignment
|
||||
if redesign:
|
||||
# this is the legacy case where network was automatically redesigned using the
|
||||
# request channel as reference (nb and power used for amplifiers total power out)
|
||||
reversed_path = []
|
||||
if pathlist[i]:
|
||||
reversed_path = find_reversed_path(pathlist[i])
|
||||
network_nodes_for_redesign = pathlist[i] + reversed_path
|
||||
network_module.design_network(pathreq, network.subgraph(network_nodes_for_redesign), equipment,
|
||||
set_connector_losses=False, verbose=False)
|
||||
total_path = deepcopy(pathlist[i])
|
||||
print(f'Computed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}')
|
||||
msg = msg + f'\n\tComputed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}'
|
||||
LOGGER.info(msg)
|
||||
# for debug
|
||||
# print(f'{pathreq.baud_rate} {pathreq.power} {pathreq.spacing} {pathreq.nb_channel}')
|
||||
if total_path:
|
||||
if pathreq.baud_rate is not None:
|
||||
# means that at this point the mode was entered/forced by user and thus a
|
||||
# baud_rate was defined
|
||||
total_path = propagate(total_path, pathreq, equipment)
|
||||
temp_snr01nm = round(mean(total_path[-1].snr+lin2db(pathreq.baud_rate/(12.5e9))), 2)
|
||||
if temp_snr01nm < pathreq.OSNR:
|
||||
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
|
||||
f' {pathreq.source} to {pathreq.destination} does not pass with' +\
|
||||
f' {pathreq.tsp_mode}\n\tcomputedSNR in 0.1nm = {temp_snr01nm} ' +\
|
||||
f'- required osnr {pathreq.OSNR}'
|
||||
print(msg)
|
||||
propagate(total_path, pathreq, equipment)
|
||||
snr01nm_with_penalty = total_path[-1].snr_01nm - total_path[-1].total_penalty
|
||||
min_ind = argmin(snr01nm_with_penalty)
|
||||
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
|
||||
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
|
||||
+ f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' \
|
||||
+ f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}'
|
||||
msg = _penalty_msg(total_path, msg, min_ind) \
|
||||
+ f'\n\trequired osnr = {pathreq.OSNR}' \
|
||||
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
|
||||
LOGGER.warning(msg)
|
||||
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
|
||||
else:
|
||||
@@ -1124,6 +1177,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
pathreq.OSNR = mode['OSNR']
|
||||
pathreq.tx_osnr = mode['tx_osnr']
|
||||
pathreq.bit_rate = mode['bit_rate']
|
||||
pathreq.penalties = mode['penalties']
|
||||
pathreq.offset_db = mode['equalization_offset_db']
|
||||
# other blocking reason should not appear at this point
|
||||
except AttributeError:
|
||||
pathreq.baud_rate = mode['baud_rate']
|
||||
@@ -1132,25 +1187,28 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
pathreq.OSNR = mode['OSNR']
|
||||
pathreq.tx_osnr = mode['tx_osnr']
|
||||
pathreq.bit_rate = mode['bit_rate']
|
||||
pathreq.penalties = mode['penalties']
|
||||
pathreq.offset_db = mode['equalization_offset_db']
|
||||
|
||||
# reversed path is needed for correct spectrum assignment
|
||||
reversed_path = find_reversed_path(pathlist[i])
|
||||
if pathreq.bidir:
|
||||
# only propagate if bidir is true, but needs the reversed path anyway for
|
||||
# correct spectrum assignment
|
||||
if pathreq.bidir and pathreq.baud_rate is not None:
|
||||
# Both directions requested, and a feasible mode was found
|
||||
rev_p = deepcopy(reversed_path)
|
||||
|
||||
print(f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}')
|
||||
print(f'\tPath (roadsm) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n')
|
||||
propagated_reversed_path = propagate(rev_p, pathreq, equipment)
|
||||
temp_snr01nm = round(mean(propagated_reversed_path[-1].snr +\
|
||||
lin2db(pathreq.baud_rate/(12.5e9))), 2)
|
||||
if temp_snr01nm < pathreq.OSNR:
|
||||
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
|
||||
f' {pathreq.source} to {pathreq.destination} does not pass with' +\
|
||||
f' {pathreq.tsp_mode}\n' +\
|
||||
f'\tcomputedSNR in 0.1nm = {temp_snr01nm} - required osnr {pathreq.OSNR}'
|
||||
print(msg)
|
||||
msg = f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}\n' \
|
||||
+ f'\tPath (roadms) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n'
|
||||
LOGGER.info(msg)
|
||||
propagate(rev_p, pathreq, equipment)
|
||||
propagated_reversed_path = rev_p
|
||||
snr01nm_with_penalty = rev_p[-1].snr_01nm - rev_p[-1].total_penalty
|
||||
min_ind = argmin(snr01nm_with_penalty)
|
||||
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
|
||||
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
|
||||
+ f' {pathreq.destination} to {pathreq.source} does not pass with {pathreq.tsp_mode}' \
|
||||
+ f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}'
|
||||
msg = _penalty_msg(rev_p, msg, min_ind) \
|
||||
+ f'\n\trequired osnr = {pathreq.OSNR}' \
|
||||
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
|
||||
LOGGER.warning(msg)
|
||||
# TODO selection of mode should also be on reversed direction !!
|
||||
if not hasattr(pathreq, 'blocking_reason'):
|
||||
@@ -1158,9 +1216,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
else:
|
||||
propagated_reversed_path = []
|
||||
else:
|
||||
msg = 'Total path is empty. No propagation'
|
||||
print(msg)
|
||||
LOGGER.info(msg)
|
||||
msg = f'Request {pathreq.request_id}: Total path is empty. No propagation'
|
||||
LOGGER.warning(msg)
|
||||
reversed_path = []
|
||||
propagated_reversed_path = []
|
||||
|
||||
@@ -1168,5 +1225,79 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
reversed_path_res_list.append(reversed_path)
|
||||
propagated_reversed_path_res_list.append(propagated_reversed_path)
|
||||
# print to have a nice output
|
||||
print('')
|
||||
return path_res_list, reversed_path_res_list, propagated_reversed_path_res_list
|
||||
|
||||
|
||||
def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=0.0125e12):
|
||||
"""Compute the number of required wavelengths and the M value (number of consumed slots)
|
||||
|
||||
Each wavelength consumes one `spacing`, and the result is rounded up to consume a natural number of slots.
|
||||
|
||||
>>> compute_spectrum_slot_vs_bandwidth(400e9, 50e9, 200e9)
|
||||
(2, 8)
|
||||
"""
|
||||
number_of_wavelengths = ceil(bandwidth / bit_rate)
|
||||
total_number_of_slots = ceil(spacing / slot_width) * number_of_wavelengths
|
||||
return number_of_wavelengths, total_number_of_slots
|
||||
|
||||
|
||||
def _penalty_msg(total_path, msg, min_ind):
|
||||
"""formatting helper for reporting unfeasible paths
|
||||
|
||||
The penalty info are optional, so this checks that penalty exists before creating a message."""
|
||||
penalty_dict = {
|
||||
'pdl': 'PDL',
|
||||
'chromatic_dispersion': 'CD',
|
||||
'pmd': 'PMD'}
|
||||
for key, pretty in penalty_dict.items():
|
||||
if key in total_path[-1].penalties:
|
||||
msg += f'\n\t{pretty} penalty = {round(total_path[-1].penalties[key][min_ind], 2)}'
|
||||
else:
|
||||
msg += f'\n\t{pretty} penalty not evaluated'
|
||||
return msg
|
||||
|
||||
|
||||
def is_adjacent(oms1, oms2):
|
||||
""" oms1's egress ROADM is oms2's ingress ROADM
|
||||
"""
|
||||
return oms1.el_list[-1] == oms2.el_list[0]
|
||||
|
||||
|
||||
def explicit_path(node_list, source, destination, network):
|
||||
""" if list of nodes leads to adjacent oms, then means that the path is explicit, and no need to compute
|
||||
the function returns the explicit path (including source and destination ROADMs)
|
||||
"""
|
||||
path_oms = []
|
||||
for elem in node_list:
|
||||
if hasattr(elem, 'oms'):
|
||||
path_oms.append(elem.oms)
|
||||
if not path_oms:
|
||||
return None
|
||||
path_oms = unique_ordered(path_oms)
|
||||
try:
|
||||
next_node = next(network.successors(source))
|
||||
source_roadm = next_node if isinstance(next_node, Roadm) else source
|
||||
previous_node = next(network.predecessors(destination))
|
||||
destination_roadm = previous_node if isinstance(previous_node, Roadm) else destination
|
||||
if not (path_oms[0].el_list[0] == source_roadm and path_oms[-1].el_list[-1] == destination_roadm):
|
||||
return None
|
||||
except StopIteration:
|
||||
return None
|
||||
|
||||
oms0 = path_oms[0]
|
||||
path = [source] + oms0.el_list
|
||||
for oms in path_oms[1:]:
|
||||
if not is_adjacent(oms0, oms):
|
||||
return None
|
||||
oms0 = oms
|
||||
path.extend(oms.el_list)
|
||||
path.append(destination)
|
||||
return unique_ordered(path)
|
||||
|
||||
|
||||
def find_elements_common_range(el_list: list, equipment: dict) -> List[dict]:
|
||||
"""Find the common frequency range of amps of a given list of elements (for example an OMS or a path)
|
||||
If there are no amplifiers in the path, then use the SI
|
||||
"""
|
||||
amp_bands = [n.params.bands for n in el_list if isinstance(n, (Edfa, Multiband_amplifier))]
|
||||
return find_common_range(amp_bands, equipment['SI']['default'].f_min, equipment['SI']['default'].f_max)
|
||||
|
||||
@@ -15,28 +15,31 @@ element/oms correspondace
|
||||
|
||||
from collections import namedtuple
|
||||
from logging import getLogger
|
||||
from math import ceil
|
||||
from gnpy.core.elements import Roadm, Transceiver
|
||||
|
||||
from gnpy.core.elements import Roadm, Transceiver, Edfa, Multiband_amplifier
|
||||
from gnpy.core.exceptions import ServiceError, SpectrumError
|
||||
from gnpy.core.utils import order_slots, restore_order
|
||||
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth, find_elements_common_range
|
||||
|
||||
LOGGER = getLogger(__name__)
|
||||
GUARDBAND = 25e9
|
||||
|
||||
|
||||
class Bitmap:
|
||||
""" records the spectrum occupation
|
||||
"""
|
||||
"""records the spectrum occupation"""
|
||||
|
||||
def __init__(self, f_min, f_max, grid, guardband=0.15e12, bitmap=None):
|
||||
# n is the min index including guardband. Guardband is require to be sure
|
||||
def __init__(self, f_min, f_max, grid, guardband=GUARDBAND, bitmap=None):
|
||||
# n is the min index including guardband. Guardband is required to be sure
|
||||
# that a channel can be assigned with center frequency fmin (means that its
|
||||
# slot occupation goes below freq_index_min
|
||||
n_min = frequency_to_n(f_min - guardband, grid)
|
||||
n_max = frequency_to_n(f_max + guardband, grid) - 1
|
||||
n_min = frequency_to_n(f_min, grid)
|
||||
n_max = frequency_to_n(f_max, grid)
|
||||
self.n_min = n_min
|
||||
self.n_max = n_max
|
||||
self.freq_index_min = frequency_to_n(f_min)
|
||||
self.freq_index_max = frequency_to_n(f_max)
|
||||
self.freq_index_min = frequency_to_n(f_min + guardband)
|
||||
self.freq_index_max = frequency_to_n(f_max - guardband)
|
||||
self.freq_index = list(range(n_min, n_max + 1))
|
||||
self.guardband = guardband
|
||||
if bitmap is None:
|
||||
self.bitmap = [1] * (n_max - n_min + 1)
|
||||
elif len(bitmap) == len(self.freq_index):
|
||||
@@ -45,26 +48,22 @@ class Bitmap:
|
||||
raise SpectrumError(f'bitmap is not consistant with f_min{f_min} - n: {n_min} and f_max{f_max}- n :{n_max}')
|
||||
|
||||
def getn(self, i):
|
||||
""" converts the n (itu grid) into a local index
|
||||
"""
|
||||
"""converts the n (itu grid) into a local index"""
|
||||
return self.freq_index[i]
|
||||
|
||||
def geti(self, nvalue):
|
||||
""" converts the local index into n (itu grid)
|
||||
"""
|
||||
"""converts the local index into n (itu grid)"""
|
||||
return self.freq_index.index(nvalue)
|
||||
|
||||
def insert_left(self, newbitmap):
|
||||
""" insert bitmap on the left to align oms bitmaps if their start frequencies are different
|
||||
"""
|
||||
"""insert bitmap on the left to align oms bitmaps if their start frequencies are different"""
|
||||
self.bitmap = newbitmap + self.bitmap
|
||||
temp = list(range(self.n_min - len(newbitmap), self.n_min))
|
||||
self.freq_index = temp + self.freq_index
|
||||
self.n_min = self.freq_index[0]
|
||||
|
||||
def insert_right(self, newbitmap):
|
||||
""" insert bitmap on the right to align oms bitmaps if their stop frequencies are different
|
||||
"""
|
||||
"""insert bitmap on the right to align oms bitmaps if their stop frequencies are different"""
|
||||
self.bitmap = self.bitmap + newbitmap
|
||||
self.freq_index = self.freq_index + list(range(self.n_max, self.n_max + len(newbitmap)))
|
||||
self.n_max = self.freq_index[-1]
|
||||
@@ -75,8 +74,8 @@ OMSParams = namedtuple('OMSParams', 'oms_id el_id_list el_list')
|
||||
|
||||
|
||||
class OMS:
|
||||
""" OMS class is the logical container that represent a link between two adjacent ROADMs and
|
||||
records the crossed elements and the occupied spectrum
|
||||
"""OMS class is the logical container that represent a link between two adjacent ROADMs and
|
||||
records the crossed elements and the occupied spectrum
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **params):
|
||||
@@ -87,7 +86,6 @@ class OMS:
|
||||
self.spectrum_bitmap = []
|
||||
self.nb_channels = 0
|
||||
self.service_list = []
|
||||
# TODO
|
||||
|
||||
def __str__(self):
|
||||
return '\n\t'.join([f'{type(self).__name__} {self.oms_id}',
|
||||
@@ -98,36 +96,28 @@ class OMS:
|
||||
f'{self.el_id_list[0]} - {self.el_id_list[-1]}', '\n'])
|
||||
|
||||
def add_element(self, elem):
|
||||
""" records oms elements
|
||||
"""
|
||||
"""records oms elements"""
|
||||
self.el_id_list.append(elem.uid)
|
||||
self.el_list.append(elem)
|
||||
|
||||
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None,
|
||||
grid=0.00625e12):
|
||||
""" frequencies expressed in Hz
|
||||
def update_spectrum(self, f_min, f_max, guardband=GUARDBAND, existing_spectrum=None, grid=0.00625e12):
|
||||
"""Frequencies expressed in Hz.
|
||||
Add 150 GHz margin to enable a center channel on f_min
|
||||
Use ITU-T G694.1 Flexible DWDM grid definition
|
||||
For the flexible DWDM grid, the allowed frequency slots have a nominal central frequency (in THz) defined by:
|
||||
193.1 + n × 0.00625 where n is a positive or negative integer including 0
|
||||
and 0.00625 is the nominal central frequency granularity in THz
|
||||
and a slot width defined by:
|
||||
12.5 × m where m is a positive integer and 12.5 is the slot width granularity in GHz.
|
||||
Any combination of frequency slots is allowed as long as no two frequency slots overlap.
|
||||
If bitmap is not None, then use it: Bitmap checks its consistency with f_min f_max
|
||||
else a brand new bitmap is created
|
||||
"""
|
||||
if existing_spectrum is None:
|
||||
# add some 150 GHz margin to enable a center channel on f_min
|
||||
# use ITU-T G694.1
|
||||
# Flexible DWDM grid definition
|
||||
# For the flexible DWDM grid, the allowed frequency slots have a nominal
|
||||
# central frequency (in THz) defined by:
|
||||
# 193.1 + n × 0.00625 where n is a positive or negative integer including 0
|
||||
# and 0.00625 is the nominal central frequency granularity in THz
|
||||
# and a slot width defined by:
|
||||
# 12.5 × m where m is a positive integer and 12.5 is the slot width granularity in
|
||||
# GHz.
|
||||
# Any combination of frequency slots is allowed as long as no two frequency
|
||||
# slots overlap.
|
||||
|
||||
# TODO : add explaination on that / parametrize ....
|
||||
self.spectrum_bitmap = Bitmap(f_min, f_max, grid, guardband)
|
||||
# print(len(self.spectrum_bitmap.bitmap))
|
||||
self.spectrum_bitmap = Bitmap(f_min=f_min, f_max=f_max, grid=grid, guardband=guardband,
|
||||
bitmap=existing_spectrum)
|
||||
|
||||
def assign_spectrum(self, nvalue, mvalue):
|
||||
""" change oms spectrum to mark spectrum assigned
|
||||
"""
|
||||
"""change oms spectrum to mark spectrum assigned"""
|
||||
if not isinstance(nvalue, int):
|
||||
raise SpectrumError(f'N must be a signed integer, got {nvalue}')
|
||||
if not isinstance(mvalue, int):
|
||||
@@ -146,16 +136,16 @@ class OMS:
|
||||
self.spectrum_bitmap.bitmap[self.spectrum_bitmap.geti(startn):self.spectrum_bitmap.geti(stopn) + 1] = [0] * (stopn - startn + 1)
|
||||
|
||||
def add_service(self, service_id, nb_wl):
|
||||
""" record service and mark spectrum as occupied
|
||||
"""
|
||||
"""record service and mark spectrum as occupied"""
|
||||
self.service_list.append(service_id)
|
||||
self.nb_channels += nb_wl
|
||||
|
||||
|
||||
def frequency_to_n(freq, grid=0.00625e12):
|
||||
""" converts frequency into the n value (ITU grid)
|
||||
reference to Recommendation G.694.1 (02/12), Figure I.3
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
"""converts frequency into the n value (ITU grid)
|
||||
|
||||
reference to Recommendation G.694.1 (02/12), Figure I.3
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
|
||||
>>> frequency_to_n(193.1375e12)
|
||||
6
|
||||
@@ -167,9 +157,10 @@ def frequency_to_n(freq, grid=0.00625e12):
|
||||
|
||||
|
||||
def nvalue_to_frequency(nvalue, grid=0.00625e12):
|
||||
""" converts n value into a frequency
|
||||
reference to Recommendation G.694.1 (02/12), Table 1
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
"""converts n value into a frequency
|
||||
|
||||
reference to Recommendation G.694.1 (02/12), Table 1
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
|
||||
>>> nvalue_to_frequency(6)
|
||||
193137500000000.0
|
||||
@@ -181,17 +172,17 @@ def nvalue_to_frequency(nvalue, grid=0.00625e12):
|
||||
|
||||
|
||||
def mvalue_to_slots(nvalue, mvalue):
|
||||
""" convert center n an m into start and stop n
|
||||
"""
|
||||
"""convert center n an m into start and stop n"""
|
||||
startn = nvalue - mvalue
|
||||
stopn = nvalue + mvalue - 1
|
||||
return startn, stopn
|
||||
|
||||
|
||||
def slots_to_m(startn, stopn):
|
||||
""" converts the start and stop n values to the center n and m value
|
||||
reference to Recommendation G.694.1 (02/12), Figure I.3
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
"""converts the start and stop n values to the center n and m value
|
||||
|
||||
reference to Recommendation G.694.1 (02/12), Figure I.3
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
|
||||
>>> nval, mval = slots_to_m(6, 20)
|
||||
>>> nval
|
||||
@@ -206,10 +197,11 @@ def slots_to_m(startn, stopn):
|
||||
|
||||
|
||||
def m_to_freq(nvalue, mvalue, grid=0.00625e12):
|
||||
""" converts m into frequency range
|
||||
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
|
||||
reference to Recommendation G.694.1 (02/12), Figure I.3
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
"""converts m into frequency range
|
||||
|
||||
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
|
||||
reference to Recommendation G.694.1 (02/12), Figure I.3
|
||||
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
|
||||
|
||||
>>> fstart, fstop = m_to_freq(13, 7)
|
||||
>>> fstart
|
||||
@@ -225,9 +217,7 @@ def m_to_freq(nvalue, mvalue, grid=0.00625e12):
|
||||
|
||||
|
||||
def align_grids(oms_list):
|
||||
""" used to apply same grid to all oms : same starting n, stop n and slot size
|
||||
out of grid slots are set to 0
|
||||
"""
|
||||
"""Used to apply same grid to all oms : same starting n, stop n and slot size. Out of grid slots are set to 0."""
|
||||
n_min = min([o.spectrum_bitmap.n_min for o in oms_list])
|
||||
n_max = max([o.spectrum_bitmap.n_max for o in oms_list])
|
||||
for this_o in oms_list:
|
||||
@@ -238,17 +228,60 @@ def align_grids(oms_list):
|
||||
return oms_list
|
||||
|
||||
|
||||
def find_network_freq_range(network, equipment):
|
||||
"""Find the lowest freq from amps and highest freq among all amps to determine the resulting bitmap
|
||||
"""
|
||||
amp_bands = [band for n in network.nodes() if isinstance(n, (Edfa, Multiband_amplifier)) for band in n.params.bands]
|
||||
min_frequencies = [a['f_min'] for a in amp_bands]
|
||||
max_frequencies = [a['f_max'] for a in amp_bands]
|
||||
return min(min_frequencies), max(max_frequencies)
|
||||
|
||||
|
||||
def create_oms_bitmap(oms, equipment, f_min, f_max, guardband, grid):
|
||||
"""Find the highest low freq from oms amps and lowest high freq among oms amps to determine
|
||||
the possible bitmap window.
|
||||
f_min and f_max represent the useable spectrum (not the useable center frequencies)
|
||||
ie n smaller than frequency_to_n(min_freq, grid) are not useable
|
||||
"""
|
||||
n_min = frequency_to_n(f_min, grid)
|
||||
n_max = frequency_to_n(f_max, grid) - 1
|
||||
common_range = find_elements_common_range(oms.el_list, equipment)
|
||||
band0 = common_range[0]
|
||||
band0_n_min = frequency_to_n(band0['f_min'], grid)
|
||||
band0_n_max = frequency_to_n(band0['f_max'], grid)
|
||||
bitmap = [0] * (band0_n_min - n_min) + [1] * (band0_n_max - band0_n_min + 1)
|
||||
i = 1
|
||||
while i < len(common_range):
|
||||
band = common_range[i]
|
||||
band_n_min = frequency_to_n(band['f_min'], grid)
|
||||
band_n_max = frequency_to_n(band['f_max'], grid)
|
||||
bitmap = bitmap + [0] * (band_n_min - band0_n_max - 1) + [1] * (band_n_max - band_n_min + 1)
|
||||
band0_n_max = band_n_max
|
||||
i += 1
|
||||
bitmap = bitmap + [0] * (n_max - band0_n_max)
|
||||
return bitmap
|
||||
|
||||
|
||||
def build_oms_list(network, equipment):
|
||||
""" initialization of OMS list in the network
|
||||
an oms is build reading all intermediate nodes between two adjacent ROADMs
|
||||
each element within the list is being added an oms and oms_id to record the
|
||||
oms it belongs to.
|
||||
the function supports different spectrum width and supposes that the whole network
|
||||
works with the min range among OMSs
|
||||
"""initialization of OMS list in the network
|
||||
|
||||
an oms is build reading all intermediate nodes between two adjacent ROADMs
|
||||
each element within the list is being added an oms and oms_id to record the
|
||||
oms it belongs to.
|
||||
the function supports different spectrum width and supposes that the whole network
|
||||
works with the min range among OMSs
|
||||
"""
|
||||
oms_id = 0
|
||||
oms_list = []
|
||||
for node in [n for n in network.nodes() if isinstance(n, Roadm)]:
|
||||
# identify all vertices of OMS: of course ROADM, but aso links to external chassis transponders
|
||||
oms_vertices = [n for n in network.nodes() if isinstance(n, Roadm)] +\
|
||||
[n for n in network.nodes() if isinstance(n, Transceiver)
|
||||
and not isinstance(next(network.successors(n)), Roadm)]
|
||||
# determine the size of the bitmap common to all the omses: find min and max frequencies of all amps
|
||||
# in the network. These gives the band not the center frequency. Thhen we use a reference channel
|
||||
# slot width (50GHz) to set the f_min, f_max
|
||||
f_min, f_max = find_network_freq_range(network, equipment)
|
||||
for node in oms_vertices:
|
||||
for edge in network.edges([node]):
|
||||
if not isinstance(edge[1], Transceiver):
|
||||
nd_in = edge[0] # nd_in is a Roadm
|
||||
@@ -282,8 +315,9 @@ def build_oms_list(network, equipment):
|
||||
nd_out.oms_list = []
|
||||
nd_out.oms_list.append(oms_id)
|
||||
|
||||
oms.update_spectrum(equipment['SI']['default'].f_min,
|
||||
equipment['SI']['default'].f_max, grid=0.00625e12)
|
||||
bitmap = create_oms_bitmap(oms, equipment, f_min=f_min, f_max=f_max, guardband=GUARDBAND,
|
||||
grid=0.00625e12)
|
||||
oms.update_spectrum(f_min, f_max, guardband=GUARDBAND, grid=0.00625e12, existing_spectrum=bitmap)
|
||||
# oms.assign_spectrum(13,7) gives back (193137500000000.0, 193225000000000.0)
|
||||
# as in the example in the standard
|
||||
# oms.assign_spectrum(13,7)
|
||||
@@ -296,8 +330,9 @@ def build_oms_list(network, equipment):
|
||||
|
||||
|
||||
def reversed_oms(oms_list):
|
||||
""" identifies reversed OMS
|
||||
only applicable for non parallel OMS
|
||||
"""identifies reversed OMS
|
||||
|
||||
only applicable for non parallel OMS
|
||||
"""
|
||||
for oms in oms_list:
|
||||
has_reversed = False
|
||||
@@ -322,28 +357,42 @@ def bitmap_sum(band1, band2):
|
||||
return res
|
||||
|
||||
|
||||
def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
|
||||
"""Collects spectrum availability and call the select_candidate function"""
|
||||
|
||||
# use indexes instead of ITU-T n values
|
||||
def build_path_oms_id_list(pth):
|
||||
path_oms = []
|
||||
for elem in pth:
|
||||
if not isinstance(elem, Roadm) and not isinstance(elem, Transceiver):
|
||||
# only edfa, fused and fibers have oms_id attribute
|
||||
path_oms.append(elem.oms_id)
|
||||
# remove duplicate oms_id, order is not important
|
||||
path_oms = list(set(path_oms))
|
||||
# assuming all oms have same freq index
|
||||
if not path_oms:
|
||||
candidate = (None, None, None)
|
||||
return candidate, path_oms
|
||||
freq_index = oms_list[path_oms[0]].spectrum_bitmap.freq_index
|
||||
freq_index_min = oms_list[path_oms[0]].spectrum_bitmap.freq_index_min
|
||||
freq_index_max = oms_list[path_oms[0]].spectrum_bitmap.freq_index_max
|
||||
return list(set(path_oms))
|
||||
|
||||
freq_availability = oms_list[path_oms[0]].spectrum_bitmap.bitmap
|
||||
|
||||
def aggregate_oms_bitmap(path_oms, oms_list):
|
||||
spectrum = oms_list[path_oms[0]].spectrum_bitmap
|
||||
bitmap = spectrum.bitmap
|
||||
# assuming all oms have same freq indices
|
||||
for oms in path_oms[1:]:
|
||||
freq_availability = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, freq_availability)
|
||||
bitmap = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, bitmap)
|
||||
params = {
|
||||
'oms_id': 0,
|
||||
'el_id_list': 0,
|
||||
'el_list': []
|
||||
}
|
||||
freq_min = nvalue_to_frequency(spectrum.n_min)
|
||||
freq_max = nvalue_to_frequency(spectrum.n_max)
|
||||
aggregate_oms = OMS(**params)
|
||||
aggregate_oms.update_spectrum(freq_min, freq_max, grid=0.00625e12, guardband=spectrum.guardband,
|
||||
existing_spectrum=bitmap)
|
||||
return aggregate_oms
|
||||
|
||||
|
||||
def spectrum_selection(test_oms, requested_m, requested_n=None):
|
||||
"""Collects spectrum availability and call the select_candidate function"""
|
||||
freq_index = test_oms.spectrum_bitmap.freq_index
|
||||
freq_index_min = test_oms.spectrum_bitmap.freq_index_min
|
||||
freq_index_max = test_oms.spectrum_bitmap.freq_index_max
|
||||
freq_availability = test_oms.spectrum_bitmap.bitmap
|
||||
|
||||
if requested_n is None:
|
||||
# avoid slots reserved on the edge 0.15e-12 on both sides -> 24
|
||||
candidates = [(freq_index[i] + requested_m, freq_index[i], freq_index[i] + 2 * requested_m - 1)
|
||||
@@ -354,29 +403,36 @@ def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
|
||||
|
||||
candidate = select_candidate(candidates, policy='first_fit')
|
||||
else:
|
||||
i = oms_list[path_oms[0]].spectrum_bitmap.geti(requested_n)
|
||||
# print(f'N {requested_n} i {i}')
|
||||
# print(freq_availability[i-m:i+m] )
|
||||
# print(freq_index[i-m:i+m])
|
||||
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m) and
|
||||
freq_index[i - requested_m] >= freq_index_min
|
||||
i = test_oms.spectrum_bitmap.geti(requested_n)
|
||||
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m)
|
||||
and freq_index[i - requested_m] >= freq_index_min
|
||||
and freq_index[i + requested_m - 1] <= freq_index_max):
|
||||
# candidate is the triplet center_n, startn and stopn
|
||||
candidate = (requested_n, requested_n - requested_m, requested_n + requested_m - 1)
|
||||
else:
|
||||
candidate = (None, None, None)
|
||||
# print("coucou11")
|
||||
# print(candidate)
|
||||
# print(freq_availability[321:321+2*m])
|
||||
# a = [i+321 for i in range(2*m)]
|
||||
# print(a)
|
||||
# print(candidate)
|
||||
return candidate, path_oms
|
||||
return candidate
|
||||
|
||||
|
||||
def determine_slot_numbers(test_oms, requested_n, required_m, per_channel_m):
|
||||
"""determines max availability around requested_n. requested_n should not be None"""
|
||||
bitmap = test_oms.spectrum_bitmap
|
||||
freq_index = bitmap.freq_index
|
||||
freq_index_min = bitmap.freq_index_min
|
||||
freq_index_max = bitmap.freq_index_max
|
||||
freq_availability = bitmap.bitmap
|
||||
center_i = bitmap.geti(requested_n)
|
||||
i = per_channel_m
|
||||
while (freq_availability[center_i - i:center_i + i] == [1] * (2 * i)
|
||||
and freq_index[center_i - i] >= freq_index_min
|
||||
and freq_index[center_i + i - 1] <= freq_index_max
|
||||
and i <= required_m):
|
||||
i += per_channel_m
|
||||
return i - per_channel_m
|
||||
|
||||
|
||||
def select_candidate(candidates, policy):
|
||||
""" selects a candidate among all available spectrum
|
||||
"""
|
||||
"""selects a candidate among all available spectrum"""
|
||||
if policy == 'first_fit':
|
||||
if candidates:
|
||||
return candidates[0]
|
||||
@@ -386,62 +442,112 @@ def select_candidate(candidates, policy):
|
||||
raise ServiceError('Only first_fit spectrum assignment policy is implemented.')
|
||||
|
||||
|
||||
def pth_assign_spectrum(pths, rqs, oms_list, rpths):
|
||||
""" basic first fit assignment
|
||||
if reversed path are provided, means that occupation is bidir
|
||||
"""
|
||||
for i, pth in enumerate(pths):
|
||||
# computes the number of channels required
|
||||
try:
|
||||
if rqs[i].blocking_reason:
|
||||
rqs[i].blocked = True
|
||||
rqs[i].N = None
|
||||
rqs[i].M = 0
|
||||
except AttributeError:
|
||||
nb_wl = ceil(rqs[i].path_bandwidth / rqs[i].bit_rate)
|
||||
# computes the total nb of slots according to requested spacing
|
||||
# TODO : express superchannels
|
||||
# assumes that all channels must be grouped
|
||||
# TODO : enables non contiguous reservation in case of blocking
|
||||
requested_m = ceil(rqs[i].spacing / 0.0125e12) * nb_wl
|
||||
if hasattr(rqs[i], 'M') and rqs[i].M is not None:
|
||||
# Consistency check between the requested M and path_bandwidth
|
||||
# M value should be bigger than the computed requested_m (simple estimate)
|
||||
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
|
||||
# superchannel closed packing.
|
||||
if requested_m <= rqs[i].M:
|
||||
requested_m = rqs[i].M
|
||||
else:
|
||||
# TODO : create a specific blocking reason and following process for this case instead of an exception
|
||||
raise SpectrumError(f'requested M {rqs[i].M} number of slots for request {rqs[i].request_id} ' +
|
||||
f'should be greater than {requested_m} to support request ' +
|
||||
f'{rqs[i].path_bandwidth * 1e-9} Gbit/s with {rqs[i].tsp} {rqs[i].tsp_mode}')
|
||||
# else: there is no M value so the programs uses the requested_m one
|
||||
if hasattr(rqs[i], 'N'):
|
||||
requested_n = rqs[i].N
|
||||
else:
|
||||
requested_n = None
|
||||
(center_n, startn, stopn), path_oms = spectrum_selection(pth + rpths[i], oms_list, requested_m,
|
||||
requested_n)
|
||||
# checks that requested_m is fitting startm and stopm
|
||||
# if not None, center_n and start, stop frequencies are applicable to all oms of pth
|
||||
# checks that spectrum is not None else indicate blocking reason
|
||||
if center_n is not None:
|
||||
# checks that requested_m is fitting startm and stopm
|
||||
if 2 * requested_m > (stopn - startn + 1):
|
||||
msg = f'candidate: {(center_n, startn, stopn)} is not consistant ' +\
|
||||
f'with {requested_m}'
|
||||
LOGGER.critical(msg)
|
||||
raise ValueError(msg)
|
||||
def compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m, policy='first_fit'):
|
||||
""" based on requested path_bandwidth fill in M=None values with uint values, using per_channel_m
|
||||
and center frequency, with first fit strategy. The function checks the available spectrum but check
|
||||
consistencies among M values of the request, but not with other requests.
|
||||
For example, if request is for 32 slots corresponding to 8 x 4 slots of 32Gbauds channels,
|
||||
the following frequency slots will result in the following assignment
|
||||
|
||||
for oms_elem in path_oms:
|
||||
oms_list[oms_elem].assign_spectrum(center_n, requested_m)
|
||||
oms_list[oms_elem].add_service(rqs[i].request_id, nb_wl)
|
||||
rqs[i].blocked = False
|
||||
rqs[i].N = center_n
|
||||
rqs[i].M = requested_m
|
||||
N = 0, 8, 16, 32 -> 0, 8, 16, 32
|
||||
M = 8, None, 8, None -> 8, 8, 8, 8
|
||||
|
||||
N = 0, 8, 16, 32 -> 0, , 16
|
||||
M = None, None, 8, None -> 24, , 8
|
||||
"""
|
||||
selected_m = []
|
||||
selected_n = []
|
||||
remaining_slots_to_serve = required_m
|
||||
# order slots for the computation: assign biggest m first
|
||||
rq_N, rq_M, order = order_slots([{'N': n, 'M': m} for n, m in zip(rq.N, rq.M)])
|
||||
# Create an oms that represents current assignments of all oms listed in path_oms, and test N and M on it.
|
||||
# If M is defined, checks that proposed N, M is free
|
||||
test_oms = aggregate_oms_bitmap(path_oms, oms_list)
|
||||
for n, m in zip(rq_N, rq_M):
|
||||
if m is not None and n is not None:
|
||||
# check availabilityfor this n, m
|
||||
available_slots = determine_slot_numbers(test_oms, n, m, m)
|
||||
if available_slots == 0:
|
||||
# if n, m are not feasible, break at this point no have non zero remaining_slots_to_serve
|
||||
# in order to blocks the request (even is other N,M where feasible)
|
||||
break
|
||||
elif m is not None and n is None:
|
||||
# find a candidate n
|
||||
n, _, _ = spectrum_selection(test_oms, m, None)
|
||||
if n is None:
|
||||
# if no n is feasible for the m, block the request
|
||||
break
|
||||
elif m is None and n is not None:
|
||||
# find a feasible m for this n. If None is found, then block the request
|
||||
m = determine_slot_numbers(test_oms, n, remaining_slots_to_serve, per_channel_m)
|
||||
if m == 0 or remaining_slots_to_serve == 0:
|
||||
break
|
||||
else:
|
||||
# if n and m are not defined, try to find a single assignment to fits the remaining slots to serve
|
||||
# (first fit strategy)
|
||||
n, _, _ = spectrum_selection(test_oms, remaining_slots_to_serve, None)
|
||||
if n is None or remaining_slots_to_serve == 0:
|
||||
break
|
||||
else:
|
||||
rqs[i].blocked = True
|
||||
rqs[i].N = None
|
||||
rqs[i].M = 0
|
||||
rqs[i].blocking_reason = 'NO_SPECTRUM'
|
||||
m = remaining_slots_to_serve
|
||||
selected_m.append(m)
|
||||
selected_n.append(n)
|
||||
test_oms.assign_spectrum(n, m)
|
||||
remaining_slots_to_serve = remaining_slots_to_serve - m
|
||||
|
||||
# re-order selected_m and selected_n according to initial request N, M order, ignoring None values
|
||||
not_selected = [None for i in range(len(rq_N) - len(selected_n))]
|
||||
selected_m = restore_order(selected_m + not_selected, order)
|
||||
selected_n = restore_order(selected_n + not_selected, order)
|
||||
return selected_n, selected_m, remaining_slots_to_serve
|
||||
|
||||
|
||||
def pth_assign_spectrum(pths, rqs, oms_list, rpths):
|
||||
"""basic first fit assignment
|
||||
|
||||
if reversed path are provided, means that occupation is bidir
|
||||
"""
|
||||
for pth, rq, rpth in zip(pths, rqs, rpths):
|
||||
if hasattr(rq, 'blocking_reason'):
|
||||
rq.N = None
|
||||
rq.M = None
|
||||
else:
|
||||
# computes the number of channels required for path_bandwidth and the min required nb of slots
|
||||
# for one channel (corresponds to the spacing)
|
||||
nb_wl, required_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
|
||||
rq.spacing, rq.bit_rate)
|
||||
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(rq.bit_rate,
|
||||
rq.spacing, rq.bit_rate)
|
||||
# find oms ids that are concerned both by pth and rpth
|
||||
path_oms = build_path_oms_id_list(pth + rpth)
|
||||
if getattr(rq, 'M', None) is not None and all(rq.M):
|
||||
# if all M are well defined: Consistency check that the requested M are enough to carry the nb_wl:
|
||||
# check that the integer number of per_channel_m carried in each M value is enough to carry nb_wl.
|
||||
# if not, blocks the demand
|
||||
nb_channels_of_request = sum([m // per_channel_m for m in rq.M])
|
||||
# TODO: elaborate a more accurate estimate with nb_wl * min_spacing + possibly guardbands in case of
|
||||
# superchannel closed packing.
|
||||
if nb_wl > nb_channels_of_request:
|
||||
rq.N = None
|
||||
rq.M = None
|
||||
rq.blocking_reason = 'NOT_ENOUGH_RESERVED_SPECTRUM'
|
||||
# need to stop here for this request and not go though spectrum selection process
|
||||
continue
|
||||
# Use the req.M even if nb_wl and required_m are smaller.
|
||||
# first fit strategy: assign as many lambda as possible in the None remaining N, M values
|
||||
selected_n, selected_m, remaining_slots_to_serve = \
|
||||
compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m)
|
||||
# if there are some remaining_slots_to_serve, this means that provided rq.M and rq.N values were
|
||||
# not possible. Then do not go though spectrum assignment process and blocks the demand
|
||||
if remaining_slots_to_serve > 0:
|
||||
rq.N = None
|
||||
rq.M = None
|
||||
rq.blocking_reason = 'NO_SPECTRUM'
|
||||
continue
|
||||
for oms_elem in path_oms:
|
||||
for this_n, this_m in zip(selected_n, selected_m):
|
||||
if this_m is not None:
|
||||
oms_list[oms_elem].assign_spectrum(this_n, this_m)
|
||||
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
|
||||
rq.N = selected_n
|
||||
rq.M = selected_m
|
||||
|
||||
@@ -1,310 +0,0 @@
|
||||
{
|
||||
"Edfa":[{
|
||||
"type_variety": "high_detail_model_example",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25.0,
|
||||
"gain_min": 15.0,
|
||||
"p_max": 21.0,
|
||||
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
}, {
|
||||
"type_variety": "Juniper_BoosterHG",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25.0,
|
||||
"gain_min": 10.0,
|
||||
"p_max": 21.0,
|
||||
"advanced_config_from_json": "Juniper-BoosterHG.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "operator_model_example",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26.0,
|
||||
"gain_min": 15.0,
|
||||
"p_max": 23.0,
|
||||
"nf_min": 6.0,
|
||||
"nf_max": 10.0,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27.0,
|
||||
"gain_min": 12.0,
|
||||
"p_max": 22.0,
|
||||
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27.0,
|
||||
"gain_min": 12.0,
|
||||
"p_max": 22.0,
|
||||
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_high_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 35.0,
|
||||
"gain_min": 25.0,
|
||||
"p_max": 21.0,
|
||||
"nf_min": 5.5,
|
||||
"nf_max": 7.0,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26.0,
|
||||
"gain_min": 15.0,
|
||||
"p_max": 23.0,
|
||||
"nf_min": 6.0,
|
||||
"nf_max": 10.0,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16.0,
|
||||
"gain_min": 8.0,
|
||||
"p_max": 23.0,
|
||||
"nf_min": 6.5,
|
||||
"nf_max": 11.0,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "high_power",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16.0,
|
||||
"gain_min": 8.0,
|
||||
"p_max": 25.0,
|
||||
"nf_min": 9.0,
|
||||
"nf_max": 15.0,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_fixed_gain",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21.0,
|
||||
"gain_min": 20.0,
|
||||
"p_max": 21.0,
|
||||
"nf0": 5.5,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "4pumps_raman",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 12.0,
|
||||
"gain_min": 12.0,
|
||||
"p_max": 21.0,
|
||||
"nf0": -1.0,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_lowgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25.0,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_mediumgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25.0,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_medium_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+low_gain",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25.0,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+high_power",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25.0,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "high_power",
|
||||
"allowed_for_design": false
|
||||
}
|
||||
],
|
||||
"Fiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"gamma": 0.00146,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"gamma": 0.000843,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15,
|
||||
"raman_efficiency": {
|
||||
"cr":[
|
||||
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
|
||||
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
|
||||
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
|
||||
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
|
||||
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
|
||||
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
|
||||
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
|
||||
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
|
||||
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
|
||||
2E-07, 1E-07
|
||||
],
|
||||
"frequency_offset":[
|
||||
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
|
||||
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
|
||||
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
|
||||
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
|
||||
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
|
||||
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
|
||||
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
|
||||
41.5e12, 42e12
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"Span":[{
|
||||
"power_mode":true,
|
||||
"delta_power_range_db": [-2.0, 3.0, 0.5],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 2.5,
|
||||
"max_length": 150.0,
|
||||
"length_units": "km",
|
||||
"max_loss": 28.0,
|
||||
"padding": 10.0,
|
||||
"EOL": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
}
|
||||
],
|
||||
"Roadm":[{
|
||||
"target_pch_out_db": -20.0,
|
||||
"add_drop_osnr": 38.0,
|
||||
"pmd": 0.0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list":[],
|
||||
"booster_variety_list":[]
|
||||
}
|
||||
}],
|
||||
"SI":[{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max":195.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 0.0,
|
||||
"power_range_db": [0.0,0.0,1.0],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40.0,
|
||||
"sys_margins": 2.0
|
||||
}],
|
||||
"Transceiver":[
|
||||
{
|
||||
"type_variety": "vendorA_trx-type1",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode":[{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 11.0,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40.0,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost":1.0
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 15.0,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40.0,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1.0
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"type_variety": "Voyager",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode":[
|
||||
{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 12.0,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40.0,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost":1.0
|
||||
},
|
||||
{
|
||||
"format": "mode 3",
|
||||
"baud_rate": 44e9,
|
||||
"OSNR": 18.0,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40.0,
|
||||
"min_spacing": 62.5e9,
|
||||
"cost":1.0
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 21.0,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40.0,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1.0
|
||||
},
|
||||
{
|
||||
"format": "mode 4",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 16.0,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40.0,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1.0
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -1,180 +0,0 @@
|
||||
{
|
||||
"gnpy-api:service":{
|
||||
"path-request": [
|
||||
{
|
||||
"request-id": "0",
|
||||
"source": "trx Alice",
|
||||
"destination": "trx Bob",
|
||||
"src-tp-id": "trx Alice",
|
||||
"dst-tp-id": "trx Bob",
|
||||
"bidirectional": false,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"trx_mode": "mode 1",
|
||||
"effective-freq-slot": [
|
||||
{
|
||||
"N": 0,
|
||||
"M": 12
|
||||
}
|
||||
],
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "1",
|
||||
"source": "trx Alice",
|
||||
"destination": "trx Bob",
|
||||
"src-tp-id": "trx Alice",
|
||||
"dst-tp-id": "trx Bob",
|
||||
"bidirectional": false,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"trx_mode": "mode 1",
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "2",
|
||||
"source": "trx Alice",
|
||||
"destination": "trx Bob",
|
||||
"src-tp-id": "trx Alice",
|
||||
"dst-tp-id": "trx Bob",
|
||||
"bidirectional": false,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"trx_mode": "mode 2",
|
||||
"spacing": 100000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "3",
|
||||
"source": "trx Alice",
|
||||
"destination": "trx Bob",
|
||||
"src-tp-id": "trx Alice",
|
||||
"dst-tp-id": "trx Bob",
|
||||
"bidirectional": true,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
},
|
||||
"explicit-route-objects": {
|
||||
"route-object-include-exclude": [
|
||||
{
|
||||
"explicit-route-usage": "route-include-ero",
|
||||
"index": 0,
|
||||
"num-unnum-hop": {
|
||||
"node-id": "roadm Carol",
|
||||
"link-tp-id": "link-tp-id is not used",
|
||||
"hop-type": "LOOSE"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "4",
|
||||
"source": "trx Alice",
|
||||
"destination": "trx Bob",
|
||||
"src-tp-id": "trx Alice",
|
||||
"dst-tp-id": "trx Bob",
|
||||
"bidirectional": true,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"effective-freq-slot": [
|
||||
{
|
||||
"N": -284,
|
||||
"M": 12
|
||||
}
|
||||
],
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "5",
|
||||
"source": "trx Bob1",
|
||||
"destination": "trx Carol1",
|
||||
"src-tp-id": "trx Bob1",
|
||||
"dst-tp-id": "trx Carol1",
|
||||
"bidirectional": true,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "vendorA_trx-type1",
|
||||
"spacing": 100000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "6",
|
||||
"source": "trx Bob1",
|
||||
"destination": "trx Carol1",
|
||||
"src-tp-id": "trx Bob1",
|
||||
"dst-tp-id": "trx Carol1",
|
||||
"bidirectional": true,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"trx_mode": "mode 1",
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"request-id": "7",
|
||||
"source": "trx Bob1",
|
||||
"destination": "trx Carol",
|
||||
"src-tp-id": "trx Bob1",
|
||||
"dst-tp-id": "trx Carol",
|
||||
"bidirectional": true,
|
||||
"path-constraints": {
|
||||
"te-bandwidth": {
|
||||
"technology": "flexi-grid",
|
||||
"trx_type": "Voyager",
|
||||
"trx_mode": "mode 1",
|
||||
"spacing": 50000000000.0,
|
||||
"path_bandwidth": 100000000000.0
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"synchronization": [
|
||||
{
|
||||
"synchronization-id": "1",
|
||||
"svec": {
|
||||
"relaxable": false,
|
||||
"disjointness": "node link",
|
||||
"request-id-number": [
|
||||
"1",
|
||||
"0"
|
||||
]
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
"gnpy-api:topology_id": "5cf39d4b-be10-4ee9-b38b-7f4db7403db7",
|
||||
"gnpy-api:equipment_id": "9ed86e34-9d41-41b2-b8e4-984ca0901d47"
|
||||
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,901 +0,0 @@
|
||||
{
|
||||
"elements": [
|
||||
{
|
||||
"uid": "trx Alice",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Alice",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "trx Bob",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "trx Carol",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "trx Bob1",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "trx Carol1",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "roadm Alice",
|
||||
"type": "Roadm",
|
||||
"params": {
|
||||
"target_pch_out_db": -20.0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
}
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Alice",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "roadm Bob",
|
||||
"type": "Roadm",
|
||||
"params": {
|
||||
"target_pch_out_db": -20.0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
}
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "roadm Carol",
|
||||
"type": "Roadm",
|
||||
"params": {
|
||||
"target_pch_out_db": -20.0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
}
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "roadm Bob1",
|
||||
"type": "Roadm",
|
||||
"params": {
|
||||
"target_pch_out_db": -20.0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
}
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "roadm Carol1",
|
||||
"type": "Roadm",
|
||||
"params": {
|
||||
"target_pch_out_db": -20.0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list": [],
|
||||
"booster_variety_list": []
|
||||
}
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Alice → Bob)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 75.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Bob → Carol)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 80.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Bob1 → Carol1)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 80.0,
|
||||
"loss_coef": 0.5,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Carol → Dan)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 83.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Dan → Alice)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 60.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Bob → Alice)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 75.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Carol → Bob)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 80.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Carol1 → Bob1)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 80.0,
|
||||
"loss_coef": 0.5,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Dan → Carol)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 83.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "fiber (Alice → Dan)-",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 60.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0.0,
|
||||
"con_in": 0.0,
|
||||
"con_out": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "null",
|
||||
"region": "null"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Alice to Bob",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 18.5,
|
||||
"delta_p": -1.5,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Alice",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Bob to Carol",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 19.0,
|
||||
"delta_p": -1.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Bob1 to Carol1",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 19.0,
|
||||
"delta_p": -1.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Carol to Dan",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 19.0,
|
||||
"delta_p": -1.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Dan to Alice",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 15.600000000000001,
|
||||
"delta_p": -2.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Dan",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Bob to Alice",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 18.5,
|
||||
"delta_p": -1.5,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Alice to Dan",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 18.0,
|
||||
"delta_p": -2.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Alice",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Carol to Bob",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 19.0,
|
||||
"delta_p": -1.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "east edfa in Carol1 to Bob1",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 19.0,
|
||||
"delta_p": -1.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Alice to Bob",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 16.5,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Alice",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Bob to Carol",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 17.0,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Bob1 to Carol1",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 17.0,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Carol to Dan",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 17.6,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Dan to Alice",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 13.0,
|
||||
"delta_p": -1.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Dan",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Bob to Alice",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 16.5,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Bob",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Alice to Dan",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 14.0,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Alice",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Carol to Bob",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 17.0,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "west edfa in Carol1 to Bob1",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_medium_gain",
|
||||
"operational": {
|
||||
"gain_target": 17.0,
|
||||
"delta_p": 0.0,
|
||||
"tilt_target": 0.0,
|
||||
"out_voa": 0.0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 0.0,
|
||||
"longitude": 0.0,
|
||||
"city": "Carol",
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"connections": [
|
||||
{
|
||||
"from_node": "trx Alice",
|
||||
"to_node": "roadm Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "trx Bob",
|
||||
"to_node": "roadm Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "trx Bob1",
|
||||
"to_node": "roadm Bob1"
|
||||
},
|
||||
{
|
||||
"from_node": "trx Carol",
|
||||
"to_node": "roadm Carol"
|
||||
},
|
||||
{
|
||||
"from_node": "trx Carol1",
|
||||
"to_node": "roadm Carol1"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Alice",
|
||||
"to_node": "east edfa in Alice to Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Alice",
|
||||
"to_node": "east edfa in Alice to Dan"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Alice",
|
||||
"to_node": "trx Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Bob",
|
||||
"to_node": "east edfa in Bob to Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Bob1",
|
||||
"to_node": "east edfa in Bob1 to Carol1"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Bob",
|
||||
"to_node": "east edfa in Bob to Carol"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Bob",
|
||||
"to_node": "trx Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Bob1",
|
||||
"to_node": "trx Bob1"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Carol",
|
||||
"to_node": "east edfa in Carol to Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Carol1",
|
||||
"to_node": "east edfa in Carol1 to Bob1"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Carol",
|
||||
"to_node": "east edfa in Carol to Dan"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Carol",
|
||||
"to_node": "trx Carol"
|
||||
},
|
||||
{
|
||||
"from_node": "roadm Carol1",
|
||||
"to_node": "trx Carol1"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Alice → Bob)-",
|
||||
"to_node": "west edfa in Bob to Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Bob → Carol)-",
|
||||
"to_node": "west edfa in Carol to Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Bob1 → Carol1)-",
|
||||
"to_node": "west edfa in Carol1 to Bob1"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Carol → Dan)-",
|
||||
"to_node": "east edfa in Dan to Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Dan → Alice)-",
|
||||
"to_node": "west edfa in Alice to Dan"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Bob → Alice)-",
|
||||
"to_node": "west edfa in Alice to Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Carol → Bob)-",
|
||||
"to_node": "west edfa in Bob to Carol"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Carol1 → Bob1)-",
|
||||
"to_node": "west edfa in Bob1 to Carol1"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Dan → Carol)-",
|
||||
"to_node": "west edfa in Carol to Dan"
|
||||
},
|
||||
{
|
||||
"from_node": "fiber (Alice → Dan)-",
|
||||
"to_node": "west edfa in Dan to Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Alice to Bob",
|
||||
"to_node": "fiber (Alice → Bob)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Bob to Carol",
|
||||
"to_node": "fiber (Bob → Carol)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Bob1 to Carol1",
|
||||
"to_node": "fiber (Bob1 → Carol1)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Carol to Dan",
|
||||
"to_node": "fiber (Carol → Dan)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Dan to Alice",
|
||||
"to_node": "fiber (Dan → Alice)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Bob to Alice",
|
||||
"to_node": "fiber (Bob → Alice)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Alice to Dan",
|
||||
"to_node": "fiber (Alice → Dan)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Carol to Bob",
|
||||
"to_node": "fiber (Carol → Bob)-"
|
||||
},
|
||||
{
|
||||
"from_node": "east edfa in Carol1 to Bob1",
|
||||
"to_node": "fiber (Carol1 → Bob1)-"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Alice to Bob",
|
||||
"to_node": "roadm Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Bob to Carol",
|
||||
"to_node": "roadm Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Bob1 to Carol1",
|
||||
"to_node": "roadm Bob1"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Bob1 to Carol1",
|
||||
"to_node": "roadm Bob1"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Carol to Dan",
|
||||
"to_node": "roadm Carol"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Dan to Alice",
|
||||
"to_node": "fiber (Dan → Carol)-"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Bob to Alice",
|
||||
"to_node": "roadm Bob"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Alice to Dan",
|
||||
"to_node": "roadm Alice"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Carol to Bob",
|
||||
"to_node": "roadm Carol"
|
||||
},
|
||||
{
|
||||
"from_node": "west edfa in Carol1 to Bob1",
|
||||
"to_node": "roadm Carol1"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -1,53 +0,0 @@
|
||||
module gnpy-api {
|
||||
yang-version 1.1;
|
||||
namespace "gnpy:gnpy-api";
|
||||
prefix gnpyapi;
|
||||
|
||||
import gnpy-network-topology {
|
||||
prefix gnpynt;
|
||||
}
|
||||
import gnpy-path-computation-simplified {
|
||||
prefix gnpypc;
|
||||
}
|
||||
import gnpy-eqpt-config {
|
||||
prefix gnpyeqpt;
|
||||
}
|
||||
|
||||
organization
|
||||
"Telecom Infra Project OOPT PSE Working Group";
|
||||
contact
|
||||
"WG Web: <https://github.com/Telecominfraproject/oopt-gnpy>
|
||||
contact: <mailto:ahmed.triki@orange.com>
|
||||
contact: <mailto:esther.lerouzic@orange.com>
|
||||
";
|
||||
description
|
||||
"YANG model for gnpy api input for path computation - TransportPCE preversion";
|
||||
|
||||
revision 2020-10-22 {
|
||||
description
|
||||
"draft for experimental/2020-candi";
|
||||
reference
|
||||
"YANG model for api input for path computation with gnpy";
|
||||
}
|
||||
|
||||
container service {
|
||||
description
|
||||
"Describe the service file to connect to gnpy";
|
||||
uses gnpypc:service;
|
||||
}
|
||||
container result {
|
||||
uses gnpypc:result;
|
||||
description
|
||||
"Describe the response object to gnpy";
|
||||
}
|
||||
container topology {
|
||||
description
|
||||
"Describe the topology file to connect to gnpy";
|
||||
uses gnpynt:topo;
|
||||
}
|
||||
container equipment {
|
||||
description
|
||||
"Describe the equipment library to connect to gnpy";
|
||||
uses gnpyeqpt:eqpt;
|
||||
}
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user