mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 01:32:21 +00:00
Compare commits
48 Commits
experiment
...
v2.5
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5b104af296 | ||
|
|
f170574abf | ||
|
|
a68e8ff8d2 | ||
|
|
d5a52d1b2b | ||
|
|
7ac6e058ec | ||
|
|
74ab3c1bcd | ||
|
|
1a2ff2d215 | ||
|
|
aaf0480e9c | ||
|
|
5e50ffbbf6 | ||
|
|
243b701391 | ||
|
|
bdbfe76aed | ||
|
|
541ec04444 | ||
|
|
bf1522b047 | ||
|
|
3f4188a0fd | ||
|
|
8b387ef722 | ||
|
|
cad9a0f18e | ||
|
|
ab84c77363 | ||
|
|
62fa9ab0b0 | ||
|
|
14591c7a11 | ||
|
|
587932290d | ||
|
|
82b148eb87 | ||
|
|
8393daf67d | ||
|
|
be61dfd094 | ||
|
|
77925b218e | ||
|
|
4621ac12bf | ||
|
|
09920c0af2 | ||
|
|
e6a3d9ce5b | ||
|
|
b9645702c8 | ||
|
|
9c2095b138 | ||
|
|
cb42115230 | ||
|
|
5909da4bbf | ||
|
|
2ba1e86b28 | ||
|
|
3358c5eeb5 | ||
|
|
13e4c29bc1 | ||
|
|
4becc9060c | ||
|
|
32d8b2a4d8 | ||
|
|
399eb9700f | ||
|
|
82f83e1462 | ||
|
|
171450fa54 | ||
|
|
9f9f4c78fc | ||
|
|
c469a8d9ba | ||
|
|
99b2a554dc | ||
|
|
57e98d7173 | ||
|
|
78b45a3958 | ||
|
|
64b6b486a9 | ||
|
|
65cb46f479 | ||
|
|
f94d06f124 | ||
|
|
e1f2c55942 |
9
.github/workflows/main.yml
vendored
9
.github/workflows/main.yml
vendored
@@ -26,7 +26,8 @@ jobs:
|
||||
matrix:
|
||||
tox_env:
|
||||
- py38
|
||||
- py39-cover
|
||||
- py39
|
||||
- py310-cover
|
||||
include:
|
||||
- tox_env: docs
|
||||
dnf_install: graphviz
|
||||
@@ -43,7 +44,7 @@ jobs:
|
||||
- uses: actions/setup-python@v2
|
||||
name: Install Python
|
||||
with:
|
||||
python-version: '3.9'
|
||||
python-version: '3.10'
|
||||
- uses: casperdcl/deploy-pypi@bb869aafd89f657ceaafe9561d3b5584766c0f95
|
||||
with:
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
@@ -103,9 +104,9 @@ jobs:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- run: |
|
||||
pip install --editable .
|
||||
pip install 'pytest>=5.0.0,<6'
|
||||
pip install 'pytest>=6.2.5,<7'
|
||||
pytest -vv
|
||||
strategy:
|
||||
matrix:
|
||||
python_version:
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
|
||||
3
.lgtm.yml
Normal file
3
.lgtm.yml
Normal file
@@ -0,0 +1,3 @@
|
||||
queries:
|
||||
- exclude: py/clear-text-logging-sensitive-data
|
||||
- exclude: py/clear-text-storage-sensitive-data
|
||||
22
.zuul.yaml
22
.zuul.yaml
@@ -2,25 +2,21 @@
|
||||
- project:
|
||||
check:
|
||||
jobs:
|
||||
- tox-py38-f34
|
||||
- tox-py39-cover
|
||||
- tox-docs-f34
|
||||
- tox-py38
|
||||
- tox-py39
|
||||
- tox-py310-cover
|
||||
- tox-docs-f35
|
||||
- coverage-diff:
|
||||
voting: false
|
||||
dependencies:
|
||||
- tox-py39-cover-previous
|
||||
- tox-py39-cover
|
||||
- tox-py310-cover-previous
|
||||
- tox-py310-cover
|
||||
vars:
|
||||
coverage_job_name_previous: tox-py39-cover-previous
|
||||
coverage_job_name_current: tox-py39-cover
|
||||
coverage_job_name_previous: tox-py310-cover-previous
|
||||
coverage_job_name_current: tox-py310-cover
|
||||
- tox-linters-diff-n-report:
|
||||
voting: false
|
||||
- tox-py39-cover-previous
|
||||
gate:
|
||||
jobs:
|
||||
- tox-py38-f34
|
||||
- tox-py39-f34
|
||||
- tox-docs-f34
|
||||
- tox-py310-cover-previous
|
||||
tag:
|
||||
jobs:
|
||||
- oopt-release-python:
|
||||
|
||||
@@ -7,6 +7,7 @@ There are weekly calls about our progress.
|
||||
Newcomers, users and telecom operators are especially welcome there.
|
||||
We encourage all interested people outside the TIP to [join the project](https://telecominfraproject.com/apply-for-membership/) and especially to [get in touch with us](https://github.com/Telecominfraproject/oopt-gnpy/discussions).
|
||||
|
||||
(contributing)=
|
||||
## Contributing
|
||||
|
||||
`gnpy` is looking for additional contributors, especially those with experience planning and maintaining large-scale, real-world mesh optical networks.
|
||||
|
||||
@@ -190,3 +190,5 @@ autodoc_default_options = {
|
||||
}
|
||||
|
||||
graphviz_output_format = 'svg'
|
||||
|
||||
bibtex_bibfiles = ['biblio.bib']
|
||||
|
||||
@@ -4,7 +4,7 @@ Extending GNPy with vendor-specific data
|
||||
========================================
|
||||
|
||||
GNPy ships with an :ref:`equipment library<concepts-equipment>` containing machine-readable datasheets of networking equipment.
|
||||
Vendors who are willing to contribute descriptions of their supported products are encouraged to `submit a patch <https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html>`__.
|
||||
Vendors who are willing to contribute descriptions of their supported products are encouraged to `submit a patch <https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html>`__ -- or just :ref:`get in touch with us directly<contributing>`.
|
||||
|
||||
This chapter discusses option for modeling performance of :ref:`EDFA amplifiers<extending-edfa>`, :ref:`Raman amplifiers<extending-raman>`, :ref:`transponders<extending-transponder>` and :ref:`ROADMs<extending-roadm>`.
|
||||
|
||||
@@ -29,7 +29,7 @@ The NF is expressed as a third-degree polynomial:
|
||||
|
||||
f(x) &= \text{a}x^3 + \text{b}x^2 + \text{c}x + \text{d}
|
||||
|
||||
\text{NF} &= f(G_\text{max} - G)
|
||||
\text{NF} &= f(G - G_\text{max})
|
||||
|
||||
This model can be also used for fixed-gain fixed-NF amplifiers.
|
||||
In that case, use:
|
||||
|
||||
103
docs/json.rst
103
docs/json.rst
@@ -73,13 +73,57 @@ The fiber library currently describes SSMF and NZDF but additional fiber types c
|
||||
| ``dispersion_slope`` | (number) | In :math:`s \times m^{-1} \times m^{-1} |
|
||||
| | | \times m^{-1}` |
|
||||
+----------------------+-----------+------------------------------------------+
|
||||
| ``gamma`` | (number) | :math:`2\pi\times n^2/(\lambda*A_{eff})`,|
|
||||
| | | in :math:`w^{-1} \times m^{-1}`. |
|
||||
| ``effective_area`` | (number) | Effective area of the fiber (not just |
|
||||
| | | the MFD circle). This is the |
|
||||
| | | :math:`A_{eff}`, see e.g., the |
|
||||
| | | `Corning whitepaper on MFD/EA`_. |
|
||||
| | | Specified in :math:`m^{2}`. |
|
||||
+----------------------+-----------+------------------------------------------+
|
||||
| ``gamma`` | (number) | Coefficient :math:`\gamma = 2\pi\times |
|
||||
| | | n^2/(\lambda*A_{eff})`. |
|
||||
| | | If not provided, this will be derived |
|
||||
| | | from the ``effective_area`` |
|
||||
| | | :math:`A_{eff}`. |
|
||||
| | | In :math:`w^{-1} \times m^{-1}`. |
|
||||
+----------------------+-----------+------------------------------------------+
|
||||
| ``pmd_coef`` | (number) | Polarization mode dispersion (PMD) |
|
||||
| | | coefficient. In |
|
||||
| | | :math:`s\times\sqrt{m}^{-1}`. |
|
||||
+----------------------+-----------+------------------------------------------+
|
||||
| ``lumped_losses`` | (array) | Places along the fiber length with extra |
|
||||
| | | losses. Specified as a loss in dB at |
|
||||
| | | each relevant position (in km): |
|
||||
| | | ``{"position": 10, "loss": 1.5}``) |
|
||||
+----------------------+-----------+------------------------------------------+
|
||||
|
||||
.. _Corning whitepaper on MFD/EA: https://www.corning.com/microsites/coc/oem/documents/specialty-fiber/WP7071-Mode-Field-Diam-and-Eff-Area.pdf
|
||||
|
||||
RamanFiber
|
||||
~~~~~~~~~~
|
||||
|
||||
The RamanFiber can be used to simulate Raman amplification through dedicated Raman pumps. The Raman pumps must be listed
|
||||
in the key ``raman_pumps`` within the RamanFiber ``operational`` dictionary. The description of each Raman pump must
|
||||
contain the following:
|
||||
|
||||
+---------------------------+-----------+------------------------------------------------------------+
|
||||
| field | type | description |
|
||||
+===========================+===========+============================================================+
|
||||
| ``power`` | (number) | Total pump power in :math:`W` |
|
||||
| | | considering a depolarized pump |
|
||||
+---------------------------+-----------+------------------------------------------------------------+
|
||||
| ``frequency`` | (number) | Pump central frequency in :math:`Hz` |
|
||||
+---------------------------+-----------+------------------------------------------------------------+
|
||||
| ``propagation_direction`` | (number) | The pumps can propagate in the same or opposite direction |
|
||||
| | | with respect the signal. Valid choices are ``coprop`` and |
|
||||
| | | ``counterprop``, respectively |
|
||||
+---------------------------+-----------+------------------------------------------------------------+
|
||||
|
||||
Beside the list of Raman pumps, the RamanFiber ``operational`` dictionary must include the ``temperature`` that affects
|
||||
the amplified spontaneous emission noise generated by the Raman amplification.
|
||||
As the loss coefficient significantly varies outside the C-band, where the Raman pumps are usually placed,
|
||||
it is suggested to include an estimation of the loss coefficient for the Raman pump central frequencies within
|
||||
a dictionary-like definition of the ``RamanFiber.params.loss_coef``
|
||||
(e.g. ``loss_coef = {"value": [0.18, 0.18, 0.20, 0.20], "frequency": [191e12, 196e12, 200e12, 210e12]}``).
|
||||
|
||||
Transceiver
|
||||
~~~~~~~~~~~
|
||||
@@ -176,6 +220,61 @@ Only the EDFA that are marked ``'allowed_for_design': true`` are considered.
|
||||
|
||||
For amplifiers defined in the topology JSON input but whose ``gain = 0`` (placeholder), auto-design will set its gain automatically: see ``power_mode`` in the ``Spans`` library to find out how the gain is calculated.
|
||||
|
||||
The file ``sim_params.json`` contains the tuning parameters used within both the ``gnpy.science_utils.RamanSolver`` and
|
||||
the ``gnpy.science_utils.NliSolver`` for the evaluation of the Raman profile and the NLI generation, respectively.
|
||||
|
||||
+---------------------------------------------+-----------+---------------------------------------------+
|
||||
| field | type | description |
|
||||
+=============================================+===========+=============================================+
|
||||
| ``raman_params.flag`` | (boolean) | Enable/Disable the Raman effect that |
|
||||
| | | produces a power transfer from higher to |
|
||||
| | | lower frequencies. |
|
||||
| | | In general, considering the Raman effect |
|
||||
| | | provides more accurate results. It is |
|
||||
| | | mandatory when Raman amplification is |
|
||||
| | | included in the simulation |
|
||||
+---------------------------------------------+-----------+---------------------------------------------+
|
||||
| ``raman_params.result_spatial_resolution`` | (number) | Spatial resolution of the output |
|
||||
| | | Raman profile along the entire fiber span. |
|
||||
| | | This affects the accuracy and the |
|
||||
| | | computational time of the NLI |
|
||||
| | | calculation when the GGN method is used: |
|
||||
| | | smaller the spatial resolution higher both |
|
||||
| | | the accuracy and the computational time. |
|
||||
| | | In C-band simulations, with input power per |
|
||||
| | | channel around 0 dBm, a suggested value of |
|
||||
| | | spatial resolution is 10e3 m |
|
||||
+---------------------------------------------+-----------+---------------------------------------------+
|
||||
| ``raman_params.solver_spatial_resolution`` | (number) | Spatial step for the iterative solution |
|
||||
| | | of the first order differential equation |
|
||||
| | | used to calculate the Raman profile |
|
||||
| | | along the entire fiber span. |
|
||||
| | | This affects the accuracy and the |
|
||||
| | | computational time of the evaluated |
|
||||
| | | Raman profile: |
|
||||
| | | smaller the spatial resolution higher both |
|
||||
| | | the accuracy and the computational time. |
|
||||
| | | In C-band simulations, with input power per |
|
||||
| | | channel around 0 dBm, a suggested value of |
|
||||
| | | spatial resolution is 100 m |
|
||||
+---------------------------------------------+-----------+---------------------------------------------+
|
||||
| ``nli_params.method`` | (string) | Model used for the NLI evaluation. Valid |
|
||||
| | | choices are ``gn_model_analytic`` (see |
|
||||
| | | eq. 120 from `arXiv:1209.0394 |
|
||||
| | | <https://arxiv.org/abs/1209.0394>`_) and |
|
||||
| | | ``ggn_spectrally_separated`` (see eq. 21 |
|
||||
| | | from `arXiv:1710.02225 |
|
||||
| | | <https://arxiv.org/abs/1710.02225>`_). |
|
||||
+---------------------------------------------+-----------+---------------------------------------------+
|
||||
| ``nli_params.computed_channels`` | (number) | The channels on which the NLI is |
|
||||
| | | explicitly evaluated. |
|
||||
| | | The NLI of the other channels is |
|
||||
| | | interpolated using ``numpy.interp``. |
|
||||
| | | In a C-band simulation with 96 channels in |
|
||||
| | | a 50 GHz spacing fix-grid we recommend at |
|
||||
| | | one computed channel every 20 channels. |
|
||||
+---------------------------------------------+-----------+---------------------------------------------+
|
||||
|
||||
Span
|
||||
~~~~
|
||||
|
||||
|
||||
@@ -145,4 +145,4 @@ Raman Scattering in order to give a proper estimation for all channels
|
||||
:cite:`cantono2018modeling`. This will be the main upgrade required within the
|
||||
PSE framework.
|
||||
|
||||
.. bibliography:: biblio.bib
|
||||
.. bibliography::
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
alabaster>=0.7.12,<1
|
||||
docutils>=0.15.2,<1
|
||||
myst-parser>=0.14.0,<1
|
||||
Pygments>=2.7.4,<3
|
||||
docutils>=0.17.1,<1
|
||||
myst-parser>=0.16.1,<1
|
||||
Pygments>=2.11.2,<3
|
||||
rstcheck
|
||||
Sphinx>=3.5.0,<4
|
||||
sphinxcontrib-bibtex>=0.4.2,<1
|
||||
Sphinx>=4.4.0,<5
|
||||
sphinxcontrib-bibtex>=2.4.1,<3
|
||||
|
||||
@@ -20,13 +20,17 @@ unique identifier and a printable name, and provide the :py:meth:`__call__` meth
|
||||
instance as a result.
|
||||
"""
|
||||
|
||||
from numpy import abs, arange, array, divide, errstate, ones, interp, mean, pi, polyfit, polyval, sum, sqrt
|
||||
from numpy import abs, array, errstate, ones, interp, mean, pi, polyfit, polyval, sum, sqrt, log10, exp, asarray, full,\
|
||||
squeeze, zeros, append, flip, outer
|
||||
from scipy.constants import h, c
|
||||
from scipy.interpolate import interp1d
|
||||
from collections import namedtuple
|
||||
|
||||
from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum
|
||||
from gnpy.core.parameters import FiberParams, PumpParams
|
||||
from gnpy.core.science_utils import NliSolver, RamanSolver, propagate_raman_fiber, _psi
|
||||
from gnpy.core.parameters import RoadmParams, FusedParams, FiberParams, PumpParams, EdfaParams, EdfaOperational
|
||||
from gnpy.core.science_utils import NliSolver, RamanSolver
|
||||
from gnpy.core.info import SpectralInformation
|
||||
from gnpy.core.exceptions import NetworkTopologyError, SpectrumError
|
||||
|
||||
|
||||
class Location(namedtuple('Location', 'latitude longitude city region')):
|
||||
@@ -79,32 +83,47 @@ class Transceiver(_Node):
|
||||
self.baud_rate = None
|
||||
self.chromatic_dispersion = None
|
||||
self.pmd = None
|
||||
self.pdl = None
|
||||
self.penalties = {}
|
||||
self.total_penalty = 0
|
||||
|
||||
def _calc_cd(self, spectral_info):
|
||||
""" Updates the Transceiver property with the CD of the received channels. CD in ps/nm.
|
||||
"""
|
||||
self.chromatic_dispersion = [carrier.chromatic_dispersion * 1e3 for carrier in spectral_info.carriers]
|
||||
self.chromatic_dispersion = spectral_info.chromatic_dispersion * 1e3
|
||||
|
||||
def _calc_pmd(self, spectral_info):
|
||||
"""Updates the Transceiver property with the PMD of the received channels. PMD in ps.
|
||||
"""
|
||||
self.pmd = [carrier.pmd*1e12 for carrier in spectral_info.carriers]
|
||||
self.pmd = spectral_info.pmd * 1e12
|
||||
|
||||
def _calc_pdl(self, spectral_info):
|
||||
"""Updates the Transceiver property with the PDL of the received channels. PDL in dB.
|
||||
"""
|
||||
self.pdl = spectral_info.pdl
|
||||
|
||||
def _calc_penalty(self, impairment_value, boundary_list):
|
||||
return interp(impairment_value, boundary_list['up_to_boundary'], boundary_list['penalty_value'],
|
||||
left=float('inf'), right=float('inf'))
|
||||
|
||||
def calc_penalties(self, penalties):
|
||||
"""Updates the Transceiver property with penalties (CD, PMD, etc.) of the received channels in dB.
|
||||
Penalties are linearly interpolated between given points and set to 'inf' outside interval.
|
||||
"""
|
||||
self.penalties = {impairment: self._calc_penalty(getattr(self, impairment), boundary_list)
|
||||
for impairment, boundary_list in penalties.items()}
|
||||
self.total_penalty = sum(list(self.penalties.values()), axis=0)
|
||||
|
||||
def _calc_snr(self, spectral_info):
|
||||
with errstate(divide='ignore'):
|
||||
self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
|
||||
ratio_01nm = [lin2db(12.5e9 / b_rate) for b_rate in self.baud_rate]
|
||||
self.baud_rate = spectral_info.baud_rate
|
||||
ratio_01nm = lin2db(12.5e9 / self.baud_rate)
|
||||
# set raw values to record original calculation, before update_snr()
|
||||
self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
|
||||
for c in spectral_info.carriers]
|
||||
self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
|
||||
in zip(self.raw_osnr_ase, ratio_01nm)]
|
||||
self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
|
||||
for c in spectral_info.carriers]
|
||||
self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli + c.power.ase))
|
||||
for c in spectral_info.carriers]
|
||||
self.raw_snr_01nm = [snr - ratio for snr, ratio
|
||||
in zip(self.raw_snr, ratio_01nm)]
|
||||
self.raw_osnr_ase = lin2db(spectral_info.signal / spectral_info.ase)
|
||||
self.raw_osnr_ase_01nm = self.raw_osnr_ase - ratio_01nm
|
||||
self.raw_osnr_nli = lin2db(spectral_info.signal / spectral_info.nli)
|
||||
self.raw_snr = lin2db(spectral_info.signal / (spectral_info.ase + spectral_info.nli))
|
||||
self.raw_snr_01nm = self.raw_snr - ratio_01nm
|
||||
|
||||
self.osnr_ase = self.raw_osnr_ase
|
||||
self.osnr_ase_01nm = self.raw_osnr_ase_01nm
|
||||
@@ -124,14 +143,10 @@ class Transceiver(_Node):
|
||||
for s in args:
|
||||
snr_added += db2lin(-s)
|
||||
snr_added = -lin2db(snr_added)
|
||||
self.osnr_ase = list(map(lambda x, y: snr_sum(x, y, snr_added),
|
||||
self.raw_osnr_ase, self.baud_rate))
|
||||
self.snr = list(map(lambda x, y: snr_sum(x, y, snr_added),
|
||||
self.raw_snr, self.baud_rate))
|
||||
self.osnr_ase_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
|
||||
self.raw_osnr_ase_01nm))
|
||||
self.snr_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
|
||||
self.raw_snr_01nm))
|
||||
self.osnr_ase = snr_sum(self.raw_osnr_ase, self.baud_rate, snr_added)
|
||||
self.snr = snr_sum(self.raw_snr, self.baud_rate, snr_added)
|
||||
self.osnr_ase_01nm = snr_sum(self.raw_osnr_ase_01nm, 12.5e9, snr_added)
|
||||
self.snr_01nm = snr_sum(self.raw_snr_01nm, 12.5e9, snr_added)
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
@@ -150,7 +165,9 @@ class Transceiver(_Node):
|
||||
f'osnr_nli={self.osnr_nli!r}, '
|
||||
f'snr={self.snr!r}, '
|
||||
f'chromatic_dispersion={self.chromatic_dispersion!r}, '
|
||||
f'pmd={self.pmd!r})')
|
||||
f'pmd={self.pmd!r}, '
|
||||
f'pdl={self.pdl!r}, '
|
||||
f'penalties={self.penalties!r})')
|
||||
|
||||
def __str__(self):
|
||||
if self.snr is None or self.osnr_ase is None:
|
||||
@@ -162,34 +179,46 @@ class Transceiver(_Node):
|
||||
snr_01nm = round(mean(self.snr_01nm), 2)
|
||||
cd = mean(self.chromatic_dispersion)
|
||||
pmd = mean(self.pmd)
|
||||
pdl = mean(self.pdl)
|
||||
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
result = '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
|
||||
f' GSNR (0.1nm, dB): {snr_01nm:.2f}',
|
||||
f' GSNR (signal bw, dB): {snr:.2f}',
|
||||
f' OSNR ASE (0.1nm, dB): {osnr_ase_01nm:.2f}',
|
||||
f' OSNR ASE (signal bw, dB): {osnr_ase:.2f}',
|
||||
f' CD (ps/nm): {cd:.2f}',
|
||||
f' PMD (ps): {pmd:.2f}'])
|
||||
f' PMD (ps): {pmd:.2f}',
|
||||
f' PDL (dB): {pdl:.2f}'])
|
||||
|
||||
cd_penalty = self.penalties.get('chromatic_dispersion')
|
||||
if cd_penalty is not None:
|
||||
result += f'\n CD penalty (dB): {mean(cd_penalty):.2f}'
|
||||
pmd_penalty = self.penalties.get('pmd')
|
||||
if pmd_penalty is not None:
|
||||
result += f'\n PMD penalty (dB): {mean(pmd_penalty):.2f}'
|
||||
pdl_penalty = self.penalties.get('pdl')
|
||||
if pdl_penalty is not None:
|
||||
result += f'\n PDL penalty (dB): {mean(pdl_penalty):.2f}'
|
||||
|
||||
return result
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
self._calc_snr(spectral_info)
|
||||
self._calc_cd(spectral_info)
|
||||
self._calc_pmd(spectral_info)
|
||||
self._calc_pdl(spectral_info)
|
||||
return spectral_info
|
||||
|
||||
|
||||
RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr pmd restrictions per_degree_pch_out_db')
|
||||
|
||||
|
||||
class Roadm(_Node):
|
||||
def __init__(self, *args, params, **kwargs):
|
||||
if 'per_degree_pch_out_db' not in params.keys():
|
||||
params['per_degree_pch_out_db'] = {}
|
||||
def __init__(self, *args, params=None, **kwargs):
|
||||
if not params:
|
||||
params = {}
|
||||
super().__init__(*args, params=RoadmParams(**params), **kwargs)
|
||||
self.pch_out_db = self.params.target_pch_out_db
|
||||
self.loss = 0 # auto-design interest
|
||||
self.effective_loss = None
|
||||
self.effective_pch_out_db = self.params.target_pch_out_db
|
||||
self.passive = True
|
||||
self.restrictions = self.params.restrictions
|
||||
self.per_degree_pch_out_db = self.params.per_degree_pch_out_db
|
||||
@@ -199,7 +228,7 @@ class Roadm(_Node):
|
||||
return {'uid': self.uid,
|
||||
'type': type(self).__name__,
|
||||
'params': {
|
||||
'target_pch_out_db': self.effective_pch_out_db,
|
||||
'target_pch_out_db': self.pch_out_db,
|
||||
'restrictions': self.restrictions,
|
||||
'per_degree_pch_out_db': self.per_degree_pch_out_db
|
||||
},
|
||||
@@ -217,9 +246,9 @@ class Roadm(_Node):
|
||||
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
f' effective loss (dB): {self.effective_loss:.2f}',
|
||||
f' pch out (dBm): {self.effective_pch_out_db:.2f}'])
|
||||
f' pch out (dBm): {self.pch_out_db:.2f}'])
|
||||
|
||||
def propagate(self, pref, *carriers, degree):
|
||||
def propagate(self, spectral_info, degree):
|
||||
# pin_target and loss are read from eqpt_config.json['Roadm']
|
||||
# all ingress channels in xpress are set to this power level
|
||||
# but add channels are not, so we define an effective loss
|
||||
@@ -229,38 +258,31 @@ class Roadm(_Node):
|
||||
# if the input power is lower than the target one, use the input power instead because
|
||||
# a ROADM doesn't amplify, it can only attenuate
|
||||
# TODO maybe add a minimum loss for the ROADM
|
||||
per_degree_pch = self.per_degree_pch_out_db[degree] if degree in self.per_degree_pch_out_db.keys() else self.params.target_pch_out_db
|
||||
self.effective_pch_out_db = min(pref.p_spani, per_degree_pch)
|
||||
self.effective_loss = pref.p_spani - self.effective_pch_out_db
|
||||
carriers_power = array([c.power.signal + c.power.nli + c.power.ase for c in carriers])
|
||||
carriers_att = list(map(lambda x: lin2db(x * 1e3) - per_degree_pch, carriers_power))
|
||||
exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default=0)
|
||||
carriers_att = list(map(lambda x: db2lin(x + exceeding_att), carriers_att))
|
||||
for carrier_att, carrier in zip(carriers_att, carriers):
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / carrier_att,
|
||||
nli=pwr.nli / carrier_att,
|
||||
ase=pwr.ase / carrier_att)
|
||||
pmd = sqrt(carrier.pmd**2 + self.params.pmd**2)
|
||||
yield carrier._replace(power=pwr, pmd=pmd)
|
||||
per_degree_pch = self.per_degree_pch_out_db[degree] \
|
||||
if degree in self.per_degree_pch_out_db else self.pch_out_db
|
||||
self.pch_out_db = min(spectral_info.pref.p_spani, per_degree_pch)
|
||||
self.effective_loss = spectral_info.pref.p_spani - self.pch_out_db
|
||||
input_power = spectral_info.signal + spectral_info.nli + spectral_info.ase
|
||||
min_power = min(lin2db(input_power * 1e3))
|
||||
per_degree_pch = per_degree_pch if per_degree_pch < min_power else min_power
|
||||
delta_power = lin2db(input_power * 1e3) - per_degree_pch
|
||||
spectral_info.apply_attenuation_db(delta_power)
|
||||
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.params.pmd ** 2)
|
||||
spectral_info.pdl = sqrt(spectral_info.pdl ** 2 + self.params.pdl ** 2)
|
||||
|
||||
def update_pref(self, pref):
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=self.effective_pch_out_db)
|
||||
def update_pref(self, spectral_info):
|
||||
spectral_info.pref = spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0, p_spani=self.pch_out_db)
|
||||
|
||||
def __call__(self, spectral_info, degree):
|
||||
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers, degree=degree))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
|
||||
|
||||
FusedParams = namedtuple('FusedParams', 'loss')
|
||||
self.propagate(spectral_info, degree=degree)
|
||||
self.update_pref(spectral_info)
|
||||
return spectral_info
|
||||
|
||||
|
||||
class Fused(_Node):
|
||||
def __init__(self, *args, params=None, **kwargs):
|
||||
if params is None:
|
||||
# default loss value if not mentioned in loaded network json
|
||||
params = {'loss': 1}
|
||||
if not params:
|
||||
params = {}
|
||||
super().__init__(*args, params=FusedParams(**params), **kwargs)
|
||||
self.loss = self.params.loss
|
||||
self.passive = True
|
||||
@@ -284,23 +306,17 @@ class Fused(_Node):
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
f' loss (dB): {self.loss:.2f}'])
|
||||
|
||||
def propagate(self, *carriers):
|
||||
attenuation = db2lin(self.loss)
|
||||
def propagate(self, spectral_info):
|
||||
spectral_info.apply_attenuation_db(self.loss)
|
||||
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / attenuation,
|
||||
nli=pwr.nli / attenuation,
|
||||
ase=pwr.ase / attenuation)
|
||||
yield carrier._replace(power=pwr)
|
||||
|
||||
def update_pref(self, pref):
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=pref.p_spani - self.loss)
|
||||
def update_pref(self, spectral_info):
|
||||
spectral_info.pref = spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0,
|
||||
p_spani=spectral_info.pref.p_spani - self.loss)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
carriers = tuple(self.propagate(*spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
self.propagate(spectral_info)
|
||||
self.update_pref(spectral_info)
|
||||
return spectral_info
|
||||
|
||||
|
||||
class Fiber(_Node):
|
||||
@@ -309,7 +325,28 @@ class Fiber(_Node):
|
||||
params = {}
|
||||
super().__init__(*args, params=FiberParams(**params), **kwargs)
|
||||
self.pch_out_db = None
|
||||
self.nli_solver = NliSolver(self)
|
||||
self.passive = True
|
||||
|
||||
# Raman efficiency matrix function of the delta frequency constructed such that each row is related to a
|
||||
# fixed frequency: positive elements represent a gain (from higher frequency) and negative elements represent
|
||||
# a loss (to lower frequency)
|
||||
if self.params.raman_efficiency:
|
||||
frequency_offset = self.params.raman_efficiency['frequency_offset']
|
||||
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
|
||||
cr = self.params.raman_efficiency['cr']
|
||||
cr = append(- flip(cr[1:]), cr)
|
||||
self._cr_function = lambda frequency: interp(frequency, frequency_offset, cr)
|
||||
else:
|
||||
self._cr_function = lambda frequency: zeros(squeeze(frequency).shape)
|
||||
|
||||
# Lumped losses
|
||||
z_lumped_losses = array([lumped['position'] for lumped in self.params.lumped_losses]) # km
|
||||
lumped_losses_power = array([lumped['loss'] for lumped in self.params.lumped_losses]) # dB
|
||||
if not ((z_lumped_losses > 0) * (z_lumped_losses < 1e-3 * self.params.length)).all():
|
||||
raise NetworkTopologyError("Lumped loss positions must be between 0 and the fiber length "
|
||||
f"({1e-3 * self.params.length} km), boundaries excluded.")
|
||||
self.lumped_losses = db2lin(- lumped_losses_power) # [linear units]
|
||||
self.z_lumped_losses = array(z_lumped_losses) * 1e3 # [m]
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
@@ -319,7 +356,7 @@ class Fiber(_Node):
|
||||
'params': {
|
||||
# have to specify each because namedtupple cannot be updated :(
|
||||
'length': round(self.params.length * 1e-3, 6),
|
||||
'loss_coef': self.params.loss_coef * 1e3,
|
||||
'loss_coef': round(self.params.loss_coef * 1e3, 6),
|
||||
'length_units': 'km',
|
||||
'att_in': self.params.att_in,
|
||||
'con_in': self.params.con_in,
|
||||
@@ -348,43 +385,56 @@ class Fiber(_Node):
|
||||
f' (conn loss out includes EOL margin defined in eqpt_config.json)',
|
||||
f' pch out (dBm): {self.pch_out_db:.2f}'])
|
||||
|
||||
def loss_coef_func(self, frequency):
|
||||
frequency = asarray(frequency)
|
||||
if self.params.loss_coef.size > 1:
|
||||
try:
|
||||
loss_coef = interp1d(self.params.f_loss_ref, self.params.loss_coef)(frequency)
|
||||
except ValueError:
|
||||
raise SpectrumError('The spectrum bandwidth exceeds the frequency interval used to define the fiber '
|
||||
f'loss coefficient in "{type(self).__name__} {self.uid}".'
|
||||
f'\nSpectrum f_min-f_max: {round(frequency[0]*1e-12,2)}-'
|
||||
f'{round(frequency[-1]*1e-12,2)}'
|
||||
f'\nLoss coefficient f_min-f_max: {round(self.params.f_loss_ref[0]*1e-12,2)}-'
|
||||
f'{round(self.params.f_loss_ref[-1]*1e-12,2)}')
|
||||
else:
|
||||
loss_coef = full(frequency.size, self.params.loss_coef)
|
||||
return squeeze(loss_coef)
|
||||
|
||||
|
||||
@property
|
||||
def loss(self):
|
||||
"""total loss including padding att_in: useful for polymorphism with roadm loss"""
|
||||
return self.params.loss_coef * self.params.length + self.params.con_in + self.params.con_out + self.params.att_in
|
||||
return self.loss_coef_func(self.params.ref_frequency) * self.params.length + \
|
||||
self.params.con_in + self.params.con_out + self.params.att_in
|
||||
|
||||
@property
|
||||
def passive(self):
|
||||
return True
|
||||
def alpha(self, frequency):
|
||||
"""Returns the linear exponent attenuation coefficient such that
|
||||
:math: `lin_attenuation = e^{- alpha length}`
|
||||
|
||||
def alpha(self, frequencies):
|
||||
"""It returns the values of the series expansion of attenuation coefficient alpha(f) for all f in frequencies
|
||||
|
||||
:param frequencies: frequencies of series expansion [Hz]
|
||||
:return: alpha: power attenuation coefficient for f in frequencies [Neper/m]
|
||||
:param frequency: the frequency at which alpha is computed [Hz]
|
||||
:return: alpha: power attenuation coefficient for f in frequency [Neper/m]
|
||||
"""
|
||||
if type(self.params.loss_coef) == dict:
|
||||
alpha = interp(frequencies, self.params.f_loss_ref, self.params.lin_loss_exp)
|
||||
else:
|
||||
alpha = self.params.lin_loss_exp * ones(frequencies.shape)
|
||||
return self.loss_coef_func(frequency) / (10 * log10(exp(1)))
|
||||
|
||||
return alpha
|
||||
def cr(self, frequency):
|
||||
"""Returns the raman efficiency matrix including the vibrational loss
|
||||
|
||||
def alpha0(self, f_ref=193.5e12):
|
||||
"""It returns the zero element of the series expansion of attenuation coefficient alpha(f) in the
|
||||
reference frequency f_ref
|
||||
|
||||
:param f_ref: reference frequency of series expansion [Hz]
|
||||
:return: alpha0: power attenuation coefficient in f_ref [Neper/m]
|
||||
:param frequency: the frequency at which cr is computed [Hz]
|
||||
:return: cr: raman efficiency matrix [1 / (W m)]
|
||||
"""
|
||||
return self.alpha(f_ref * ones(1))[0]
|
||||
df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
|
||||
cr = self._cr_function(df)
|
||||
vibrational_loss = outer(frequency, ones(frequency.shape)) / outer(ones(frequency.shape), frequency)
|
||||
return cr * (cr >= 0) + cr * (cr < 0) * vibrational_loss # Raman efficiency [1/(W m)]
|
||||
|
||||
def chromatic_dispersion(self, freq=193.5e12):
|
||||
def chromatic_dispersion(self, freq=None):
|
||||
"""Returns accumulated chromatic dispersion (CD).
|
||||
|
||||
:param freq: the frequency at which the chromatic dispersion is computed
|
||||
:return: chromatic dispersion: the accumulated dispersion [s/m]
|
||||
"""
|
||||
freq = self.params.ref_frequency if freq is None else freq
|
||||
beta2 = self.params.beta2
|
||||
beta3 = self.params.beta3
|
||||
ref_f = self.params.ref_frequency
|
||||
@@ -398,147 +448,103 @@ class Fiber(_Node):
|
||||
"""differential group delay (PMD) [s]"""
|
||||
return self.params.pmd_coef * sqrt(self.params.length)
|
||||
|
||||
def _gn_analytic(self, carrier, *carriers):
|
||||
r"""Computes the nonlinear interference power on a single carrier.
|
||||
The method uses eq. 120 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__.
|
||||
|
||||
:param carrier: the signal under analysis
|
||||
:param \*carriers: the full WDM comb
|
||||
:return: carrier_nli: the amount of nonlinear interference in W on the under analysis
|
||||
def propagate(self, spectral_info: SpectralInformation):
|
||||
"""Modifies the spectral information computing the attenuation, the non-linear interference generation,
|
||||
the CD and PMD accumulation.
|
||||
"""
|
||||
# apply the attenuation due to the input connector loss
|
||||
attenuation_in_db = self.params.con_in + self.params.att_in
|
||||
spectral_info.apply_attenuation_db(attenuation_in_db)
|
||||
|
||||
g_nli = 0
|
||||
for interfering_carrier in carriers:
|
||||
psi = _psi(carrier, interfering_carrier, beta2=self.params.beta2,
|
||||
asymptotic_length=self.params.asymptotic_length)
|
||||
g_nli += (interfering_carrier.power.signal / interfering_carrier.baud_rate)**2 \
|
||||
* (carrier.power.signal / carrier.baud_rate) * psi
|
||||
# inter channels Raman effect
|
||||
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, self)
|
||||
|
||||
g_nli *= (16 / 27) * (self.params.gamma * self.params.effective_length)**2 \
|
||||
/ (2 * pi * abs(self.params.beta2) * self.params.asymptotic_length)
|
||||
# NLI noise evaluated at the fiber input
|
||||
spectral_info.nli += NliSolver.compute_nli(spectral_info, stimulated_raman_scattering, self)
|
||||
|
||||
carrier_nli = carrier.baud_rate * g_nli
|
||||
return carrier_nli
|
||||
# chromatic dispersion and pmd variations
|
||||
spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
|
||||
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
|
||||
|
||||
def propagate(self, *carriers):
|
||||
r"""Generator that computes the fiber propagation: attenuation, non-linear interference generation, CD
|
||||
accumulation and PMD accumulation.
|
||||
# apply the attenuation due to the fiber losses
|
||||
attenuation_fiber = stimulated_raman_scattering.loss_profile[:, -1]
|
||||
spectral_info.apply_attenuation_lin(attenuation_fiber)
|
||||
|
||||
:param: \*carriers: the channels at the input of the fiber
|
||||
:yield: carrier: the next channel at the output of the fiber
|
||||
"""
|
||||
# apply the attenuation due to the output connector loss
|
||||
attenuation_out_db = self.params.con_out
|
||||
spectral_info.apply_attenuation_db(attenuation_out_db)
|
||||
|
||||
# apply connector_att_in on all carriers before computing gn analytics premiere partie pas bonne
|
||||
attenuation = db2lin(self.params.con_in + self.params.att_in)
|
||||
|
||||
chan = []
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / attenuation,
|
||||
nli=pwr.nli / attenuation,
|
||||
ase=pwr.ase / attenuation)
|
||||
carrier = carrier._replace(power=pwr)
|
||||
chan.append(carrier)
|
||||
|
||||
carriers = tuple(f for f in chan)
|
||||
|
||||
# propagate in the fiber and apply attenuation out
|
||||
attenuation = db2lin(self.params.con_out)
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
carrier_nli = self._gn_analytic(carrier, *carriers)
|
||||
pwr = pwr._replace(signal=pwr.signal / self.params.lin_attenuation / attenuation,
|
||||
nli=(pwr.nli + carrier_nli) / self.params.lin_attenuation / attenuation,
|
||||
ase=pwr.ase / self.params.lin_attenuation / attenuation)
|
||||
chromatic_dispersion = carrier.chromatic_dispersion + self.chromatic_dispersion(carrier.frequency)
|
||||
pmd = sqrt(carrier.pmd**2 + self.pmd**2)
|
||||
yield carrier._replace(power=pwr, chromatic_dispersion=chromatic_dispersion, pmd=pmd)
|
||||
|
||||
def update_pref(self, pref):
|
||||
self.pch_out_db = round(pref.p_spani - self.loss, 2)
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
|
||||
def update_pref(self, spectral_info):
|
||||
# in case of Raman, the resulting loss of the fiber is not equivalent to self.loss
|
||||
# because of Raman gain. In order to correctly update pref, we need the resulting loss:
|
||||
# power_out - power_in. We use the total signal power (sum on all channels) to compute
|
||||
# this loss, because pref is a noiseless reference.
|
||||
loss = round(lin2db(self._psig_in / sum(spectral_info.signal)), 2)
|
||||
self.pch_out_db = spectral_info.pref.p_spani - loss
|
||||
spectral_info.pref = spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0,
|
||||
p_spani=self.pch_out_db)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
carriers = tuple(self.propagate(*spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
# _psig_in records the total signal power of the spectral information before propagation.
|
||||
self._psig_in = sum(spectral_info.signal)
|
||||
self.propagate(spectral_info)
|
||||
self.update_pref(spectral_info)
|
||||
return spectral_info
|
||||
|
||||
|
||||
class RamanFiber(Fiber):
|
||||
def __init__(self, *args, params=None, **kwargs):
|
||||
super().__init__(*args, params=params, **kwargs)
|
||||
if self.operational and 'raman_pumps' in self.operational:
|
||||
self.raman_pumps = tuple(PumpParams(p['power'], p['frequency'], p['propagation_direction'])
|
||||
for p in self.operational['raman_pumps'])
|
||||
else:
|
||||
self.raman_pumps = None
|
||||
self.raman_solver = RamanSolver(self)
|
||||
if not self.operational:
|
||||
raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
|
||||
'defined as RamanFiber without operational parameters')
|
||||
|
||||
if 'raman_pumps' not in self.operational:
|
||||
raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
|
||||
'defined as RamanFiber without raman pumps description in operational')
|
||||
|
||||
if 'temperature' not in self.operational:
|
||||
raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
|
||||
'defined as RamanFiber without temperature in operational')
|
||||
|
||||
pump_loss = db2lin(self.params.con_out)
|
||||
self.raman_pumps = tuple(PumpParams(p['power'] / pump_loss, p['frequency'], p['propagation_direction'])
|
||||
for p in self.operational['raman_pumps'])
|
||||
self.temperature = self.operational['temperature']
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
return dict(super().to_json, operational=self.operational)
|
||||
|
||||
def update_pref(self, pref, *carriers):
|
||||
pch_out_db = lin2db(mean([carrier.power.signal for carrier in carriers])) + 30
|
||||
self.pch_out_db = round(pch_out_db, 2)
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
|
||||
def propagate(self, spectral_info: SpectralInformation):
|
||||
"""Modifies the spectral information computing the attenuation, the non-linear interference generation,
|
||||
the CD and PMD accumulation.
|
||||
"""
|
||||
# apply the attenuation due to the input connector loss
|
||||
attenuation_in_db = self.params.con_in + self.params.att_in
|
||||
spectral_info.apply_attenuation_db(attenuation_in_db)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
carriers = tuple(self.propagate(*spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref, *carriers)
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
# Raman pumps and inter channel Raman effect
|
||||
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, self)
|
||||
spontaneous_raman_scattering = \
|
||||
RamanSolver.calculate_spontaneous_raman_scattering(spectral_info, stimulated_raman_scattering, self)
|
||||
|
||||
def propagate(self, *carriers):
|
||||
for propagated_carrier in propagate_raman_fiber(self, *carriers):
|
||||
chromatic_dispersion = propagated_carrier.chromatic_dispersion + \
|
||||
self.chromatic_dispersion(propagated_carrier.frequency)
|
||||
pmd = sqrt(propagated_carrier.pmd**2 + self.pmd**2)
|
||||
propagated_carrier = propagated_carrier._replace(chromatic_dispersion=chromatic_dispersion, pmd=pmd)
|
||||
yield propagated_carrier
|
||||
# nli and ase noise evaluated at the fiber input
|
||||
spectral_info.nli += NliSolver.compute_nli(spectral_info, stimulated_raman_scattering, self)
|
||||
spectral_info.ase += spontaneous_raman_scattering
|
||||
|
||||
# chromatic dispersion and pmd variations
|
||||
spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
|
||||
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
|
||||
|
||||
class EdfaParams:
|
||||
def __init__(self, **params):
|
||||
self.update_params(params)
|
||||
if params == {}:
|
||||
self.type_variety = ''
|
||||
self.type_def = ''
|
||||
# self.gain_flatmax = 0
|
||||
# self.gain_min = 0
|
||||
# self.p_max = 0
|
||||
# self.nf_model = None
|
||||
# self.nf_fit_coeff = None
|
||||
# self.nf_ripple = None
|
||||
# self.dgt = None
|
||||
# self.gain_ripple = None
|
||||
# self.out_voa_auto = False
|
||||
# self.allowed_for_design = None
|
||||
# apply the attenuation due to the fiber losses
|
||||
attenuation_fiber = stimulated_raman_scattering.loss_profile[:spectral_info.number_of_channels, -1]
|
||||
|
||||
def update_params(self, kwargs):
|
||||
for k, v in kwargs.items():
|
||||
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
|
||||
spectral_info.apply_attenuation_lin(attenuation_fiber)
|
||||
|
||||
|
||||
class EdfaOperational:
|
||||
default_values = {
|
||||
'gain_target': None,
|
||||
'delta_p': None,
|
||||
'out_voa': None,
|
||||
'tilt_target': 0
|
||||
}
|
||||
|
||||
def __init__(self, **operational):
|
||||
self.update_attr(operational)
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||||
for k, v in self.default_values.items():
|
||||
setattr(self, k, clean_kwargs.get(k, v))
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{type(self).__name__}('
|
||||
f'gain_target={self.gain_target!r}, '
|
||||
f'tilt_target={self.tilt_target!r})')
|
||||
# apply the attenuation due to the output connector loss
|
||||
attenuation_out_db = self.params.con_out
|
||||
spectral_info.apply_attenuation_db(attenuation_out_db)
|
||||
|
||||
|
||||
class Edfa(_Node):
|
||||
@@ -548,12 +554,7 @@ class Edfa(_Node):
|
||||
if operational is None:
|
||||
operational = {}
|
||||
self.variety_list = kwargs.pop('variety_list', None)
|
||||
super().__init__(
|
||||
*args,
|
||||
params=EdfaParams(**params),
|
||||
operational=EdfaOperational(**operational),
|
||||
**kwargs
|
||||
)
|
||||
super().__init__(*args, params=EdfaParams(**params), operational=EdfaOperational(**operational), **kwargs)
|
||||
self.interpol_dgt = None # interpolated dynamic gain tilt
|
||||
self.interpol_gain_ripple = None # gain ripple
|
||||
self.interpol_nf_ripple = None # nf_ripple
|
||||
@@ -579,7 +580,7 @@ class Edfa(_Node):
|
||||
'type': type(self).__name__,
|
||||
'type_variety': self.params.type_variety,
|
||||
'operational': {
|
||||
'gain_target': self.effective_gain,
|
||||
'gain_target': round(self.effective_gain, 6),
|
||||
'delta_p': self.delta_p,
|
||||
'tilt_target': self.tilt_target,
|
||||
'out_voa': self.out_voa
|
||||
@@ -619,26 +620,33 @@ class Edfa(_Node):
|
||||
f' effective pch (dBm): {self.effective_pch_out_db:.2f}',
|
||||
f' output VOA (dB): {self.out_voa:.2f}'])
|
||||
|
||||
def interpol_params(self, frequencies, pin, baud_rates, pref):
|
||||
def interpol_params(self, spectral_info):
|
||||
"""interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
|
||||
:param spectral_info: instance of gnpy.core.info.SpectralInformation
|
||||
:return: None
|
||||
"""
|
||||
# TODO|jla: read amplifier actual frequencies from additional params in json
|
||||
self.channel_freq = frequencies
|
||||
|
||||
self.channel_freq = spectral_info.frequency
|
||||
amplifier_freq = arrange_frequencies(len(self.params.dgt), self.params.f_min, self.params.f_max) # Hz
|
||||
self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
|
||||
self.interpol_dgt = interp(spectral_info.frequency, amplifier_freq, self.params.dgt)
|
||||
|
||||
amplifier_freq = arrange_frequencies(len(self.params.gain_ripple), self.params.f_min, self.params.f_max) # Hz
|
||||
self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
|
||||
self.interpol_gain_ripple = interp(spectral_info.frequency, amplifier_freq, self.params.gain_ripple)
|
||||
|
||||
amplifier_freq = arrange_frequencies(len(self.params.nf_ripple), self.params.f_min, self.params.f_max) # Hz
|
||||
self.interpol_nf_ripple = interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
|
||||
self.interpol_nf_ripple = interp(spectral_info.frequency, amplifier_freq, self.params.nf_ripple)
|
||||
|
||||
self.nch = frequencies.size
|
||||
self.nch = spectral_info.number_of_channels
|
||||
pin = spectral_info.signal + spectral_info.ase + spectral_info.nli
|
||||
self.pin_db = lin2db(sum(pin * 1e3))
|
||||
# The following should be changed when we have the new spectral information including slot widths.
|
||||
# For now, with homogeneous spectrum, we can calculate it as the difference between neighbouring channels.
|
||||
self.slot_width = self.channel_freq[1] - self.channel_freq[0]
|
||||
|
||||
"""in power mode: delta_p is defined and can be used to calculate the power target
|
||||
This power target is used calculate the amplifier gain"""
|
||||
pref = spectral_info.pref
|
||||
if self.delta_p is not None:
|
||||
self.target_pch_out_db = round(self.delta_p + pref.p_span0, 2)
|
||||
self.effective_gain = self.target_pch_out_db - pref.p_spani
|
||||
@@ -656,7 +664,7 @@ class Edfa(_Node):
|
||||
self.nf = self._calc_nf()
|
||||
self.gprofile = self._gain_profile(pin)
|
||||
|
||||
pout = (pin + self.noise_profile(baud_rates)) * db2lin(self.gprofile)
|
||||
pout = (pin + self.noise_profile(spectral_info)) * db2lin(self.gprofile)
|
||||
self.pout_db = lin2db(sum(pout * 1e3))
|
||||
# ase & nli are only calculated in signal bandwidth
|
||||
# pout_db is not the absolute full output power (negligible if sufficient channels)
|
||||
@@ -673,13 +681,17 @@ class Edfa(_Node):
|
||||
elif type_def == 'fixed_gain':
|
||||
nf_avg = nf_model.nf0
|
||||
elif type_def == 'openroadm':
|
||||
pin_ch = self.pin_db - lin2db(self.nch)
|
||||
# model OSNR = f(Pin)
|
||||
nf_avg = pin_ch - polyval(nf_model.nf_coef, pin_ch) + 58
|
||||
# OpenROADM specifies OSNR vs. input power per channel for 50 GHz slot width so we
|
||||
# scale it to 50 GHz based on actual slot width.
|
||||
pin_ch_50GHz = self.pin_db - lin2db(self.nch) + lin2db(50e9 / self.slot_width)
|
||||
# model OSNR = f(Pin per 50 GHz channel)
|
||||
nf_avg = pin_ch_50GHz - polyval(nf_model.nf_coef, pin_ch_50GHz) + 58
|
||||
elif type_def == 'openroadm_preamp':
|
||||
pin_ch = self.pin_db - lin2db(self.nch)
|
||||
# model OSNR = f(Pin)
|
||||
nf_avg = pin_ch - min((4 * pin_ch + 275) / 7, 33) + 58
|
||||
# OpenROADM specifies OSNR vs. input power per channel for 50 GHz slot width so we
|
||||
# scale it to 50 GHz based on actual slot width.
|
||||
pin_ch_50GHz = self.pin_db - lin2db(self.nch) + lin2db(50e9 / self.slot_width)
|
||||
# model OSNR = f(Pin per 50 GHz channel)
|
||||
nf_avg = pin_ch_50GHz - min((4 * pin_ch_50GHz + 275) / 7, 33) + 58
|
||||
elif type_def == 'openroadm_booster':
|
||||
# model a zero-noise amp with "infinitely negative" (in dB) NF
|
||||
nf_avg = float('-inf')
|
||||
@@ -725,13 +737,8 @@ class Edfa(_Node):
|
||||
else:
|
||||
return self.interpol_nf_ripple + nf_avg # input VOA = 1 for 1 NF degradation
|
||||
|
||||
def noise_profile(self, df):
|
||||
"""noise_profile(bw) computes amplifier ASE (W) in signal bandwidth (Hz)
|
||||
|
||||
Noise is calculated at amplifier input
|
||||
|
||||
:bw: signal bandwidth = baud rate in Hz
|
||||
:type bw: float
|
||||
def noise_profile(self, spectral_info: SpectralInformation):
|
||||
"""Computes amplifier ASE noise integrated over the signal bandwidth. This is calculated at amplifier input.
|
||||
|
||||
:return: the asepower in W in the signal bandwidth bw for 96 channels
|
||||
:return type: numpy array of float
|
||||
@@ -767,7 +774,7 @@ class Edfa(_Node):
|
||||
quoting power spectral density in the same BW for both signal and ASE,
|
||||
e.g. 12.5GHz."""
|
||||
|
||||
ase = h * df * self.channel_freq * db2lin(self.nf) # W
|
||||
ase = h * spectral_info.baud_rate * spectral_info.frequency * db2lin(self.nf) # W
|
||||
return ase # in W at amplifier input
|
||||
|
||||
def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
|
||||
@@ -873,30 +880,24 @@ class Edfa(_Node):
|
||||
|
||||
return g1st - voa + array(self.interpol_dgt) * dgts3
|
||||
|
||||
def propagate(self, pref, *carriers):
|
||||
def propagate(self, spectral_info):
|
||||
"""add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
|
||||
pin = array([c.power.signal + c.power.nli + c.power.ase for c in carriers]) # pin in W
|
||||
freq = array([c.frequency for c in carriers])
|
||||
brate = array([c.baud_rate for c in carriers])
|
||||
# interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
|
||||
self.interpol_params(freq, pin, brate, pref)
|
||||
self.interpol_params(spectral_info)
|
||||
|
||||
gains = db2lin(self.gprofile)
|
||||
carrier_ases = self.noise_profile(brate)
|
||||
att = db2lin(self.out_voa)
|
||||
ase = self.noise_profile(spectral_info)
|
||||
spectral_info.ase += ase
|
||||
|
||||
for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal * gain / att,
|
||||
nli=pwr.nli * gain / att,
|
||||
ase=(pwr.ase + carrier_ase) * gain / att)
|
||||
yield carrier._replace(power=pwr)
|
||||
spectral_info.apply_gain_db(self.gprofile - self.out_voa)
|
||||
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.params.pmd ** 2)
|
||||
spectral_info.pdl = sqrt(spectral_info.pdl ** 2 + self.params.pdl ** 2)
|
||||
|
||||
def update_pref(self, pref):
|
||||
return pref._replace(p_span0=pref.p_span0,
|
||||
p_spani=pref.p_spani + self.effective_gain - self.out_voa)
|
||||
def update_pref(self, spectral_info):
|
||||
spectral_info.pref = \
|
||||
spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0,
|
||||
p_spani=spectral_info.pref.p_spani + self.effective_gain - self.out_voa)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
self.propagate(spectral_info)
|
||||
self.update_pref(spectral_info)
|
||||
return spectral_info
|
||||
|
||||
@@ -35,6 +35,7 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
|
||||
mode_params = {"format": "undetermined",
|
||||
"baud_rate": None,
|
||||
"OSNR": None,
|
||||
"penalties": None,
|
||||
"bit_rate": None,
|
||||
"roll_off": None,
|
||||
"tx_osnr": None,
|
||||
@@ -59,6 +60,7 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
|
||||
trx_params['baud_rate'] = default_si_data.baud_rate
|
||||
trx_params['spacing'] = default_si_data.spacing
|
||||
trx_params['OSNR'] = None
|
||||
trx_params['penalties'] = {}
|
||||
trx_params['bit_rate'] = None
|
||||
trx_params['cost'] = None
|
||||
trx_params['roll_off'] = default_si_data.roll_off
|
||||
|
||||
@@ -8,24 +8,36 @@ gnpy.core.info
|
||||
This module contains classes for modelling :class:`SpectralInformation`.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
from collections import namedtuple
|
||||
from gnpy.core.utils import automatic_nch, lin2db
|
||||
from collections.abc import Iterable
|
||||
from typing import Union
|
||||
from numpy import argsort, mean, array, append, ones, ceil, any, zeros, outer, full, ndarray, asarray
|
||||
|
||||
from gnpy.core.utils import automatic_nch, lin2db, db2lin
|
||||
from gnpy.core.exceptions import SpectrumError
|
||||
|
||||
DEFAULT_SLOT_WIDTH_STEP = 12.5e9 # Hz
|
||||
"""Channels with unspecified slot width will have their slot width evaluated as the baud rate rounded up to the minimum
|
||||
multiple of the DEFAULT_SLOT_WIDTH_STEP (the baud rate is extended including the roll off in this evaluation)"""
|
||||
|
||||
|
||||
class Power(namedtuple('Power', 'signal nli ase')):
|
||||
"""carriers power in W"""
|
||||
|
||||
|
||||
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power chromatic_dispersion pmd')):
|
||||
class Channel(namedtuple('Channel',
|
||||
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl')):
|
||||
""" Class containing the parameters of a WDM signal.
|
||||
|
||||
:param channel_number: channel number in the WDM grid
|
||||
:param frequency: central frequency of the signal (Hz)
|
||||
:param baud_rate: the symbol rate of the signal (Baud)
|
||||
:param slot_width: the slot width (Hz)
|
||||
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
|
||||
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
|
||||
:param chromatic_dispersion: chromatic dispersion (s/m)
|
||||
:param pmd: polarization mode dispersion (s)
|
||||
:param pdl: polarization dependent loss (dB)
|
||||
"""
|
||||
|
||||
|
||||
@@ -36,21 +48,217 @@ class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
|
||||
neq_ch: equivalent channel count in dB"""
|
||||
|
||||
|
||||
class SpectralInformation(namedtuple('SpectralInformation', 'pref carriers')):
|
||||
class SpectralInformation(object):
|
||||
""" Class containing the parameters of the entire WDM comb."""
|
||||
|
||||
def __new__(cls, pref, carriers):
|
||||
return super().__new__(cls, pref, carriers)
|
||||
def __init__(self, frequency: array, baud_rate: array, slot_width: array, signal: array, nli: array, ase: array,
|
||||
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array):
|
||||
indices = argsort(frequency)
|
||||
self._frequency = frequency[indices]
|
||||
self._df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
|
||||
self._number_of_channels = len(self._frequency)
|
||||
self._channel_number = [*range(1, self._number_of_channels + 1)]
|
||||
self._slot_width = slot_width[indices]
|
||||
self._baud_rate = baud_rate[indices]
|
||||
overlap = self._frequency[:-1] + self._slot_width[:-1] / 2 > self._frequency[1:] - self._slot_width[1:] / 2
|
||||
if any(overlap):
|
||||
overlap = [pair for pair in zip(overlap * self._channel_number[:-1], overlap * self._channel_number[1:])
|
||||
if pair != (0, 0)]
|
||||
raise SpectrumError(f'Spectrum required slot widths larger than the frequency spectral distances '
|
||||
f'between channels: {overlap}.')
|
||||
exceed = self._baud_rate > self._slot_width
|
||||
if any(exceed):
|
||||
raise SpectrumError(f'Spectrum baud rate, including the roll off, larger than the slot width for channels: '
|
||||
f'{[ch for ch in exceed * self._channel_number if ch]}.')
|
||||
self._signal = signal[indices]
|
||||
self._nli = nli[indices]
|
||||
self._ase = ase[indices]
|
||||
self._roll_off = roll_off[indices]
|
||||
self._chromatic_dispersion = chromatic_dispersion[indices]
|
||||
self._pmd = pmd[indices]
|
||||
self._pdl = pdl[indices]
|
||||
pref = lin2db(mean(signal) * 1e3)
|
||||
self._pref = Pref(pref, pref, lin2db(self._number_of_channels))
|
||||
|
||||
@property
|
||||
def pref(self):
|
||||
"""Instance of gnpy.info.Pref"""
|
||||
return self._pref
|
||||
|
||||
@pref.setter
|
||||
def pref(self, pref: Pref):
|
||||
self._pref = pref
|
||||
|
||||
@property
|
||||
def frequency(self):
|
||||
return self._frequency
|
||||
|
||||
@property
|
||||
def df(self):
|
||||
"""Matrix of relative frequency distances between all channels. Positive elements in the upper right side."""
|
||||
return self._df
|
||||
|
||||
@property
|
||||
def slot_width(self):
|
||||
return self._slot_width
|
||||
|
||||
@property
|
||||
def baud_rate(self):
|
||||
return self._baud_rate
|
||||
|
||||
@property
|
||||
def number_of_channels(self):
|
||||
return self._number_of_channels
|
||||
|
||||
@property
|
||||
def powers(self):
|
||||
powers = zip(self.signal, self.nli, self.ase)
|
||||
return [Power(*p) for p in powers]
|
||||
|
||||
@property
|
||||
def signal(self):
|
||||
return self._signal
|
||||
|
||||
@signal.setter
|
||||
def signal(self, signal):
|
||||
self._signal = signal
|
||||
|
||||
@property
|
||||
def nli(self):
|
||||
return self._nli
|
||||
|
||||
@nli.setter
|
||||
def nli(self, nli):
|
||||
self._nli = nli
|
||||
|
||||
@property
|
||||
def ase(self):
|
||||
return self._ase
|
||||
|
||||
@ase.setter
|
||||
def ase(self, ase):
|
||||
self._ase = ase
|
||||
|
||||
@property
|
||||
def roll_off(self):
|
||||
return self._roll_off
|
||||
|
||||
@property
|
||||
def chromatic_dispersion(self):
|
||||
return self._chromatic_dispersion
|
||||
|
||||
@chromatic_dispersion.setter
|
||||
def chromatic_dispersion(self, chromatic_dispersion):
|
||||
self._chromatic_dispersion = chromatic_dispersion
|
||||
|
||||
@property
|
||||
def pmd(self):
|
||||
return self._pmd
|
||||
|
||||
@pmd.setter
|
||||
def pmd(self, pmd):
|
||||
self._pmd = pmd
|
||||
|
||||
@property
|
||||
def pdl(self):
|
||||
return self._pdl
|
||||
|
||||
@pdl.setter
|
||||
def pdl(self, pdl):
|
||||
self._pdl = pdl
|
||||
|
||||
@property
|
||||
def channel_number(self):
|
||||
return self._channel_number
|
||||
|
||||
@property
|
||||
def carriers(self):
|
||||
entries = zip(self.channel_number, self.frequency, self.baud_rate, self.slot_width,
|
||||
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl)
|
||||
return [Channel(*entry) for entry in entries]
|
||||
|
||||
def apply_attenuation_lin(self, attenuation_lin):
|
||||
self.signal *= attenuation_lin
|
||||
self.nli *= attenuation_lin
|
||||
self.ase *= attenuation_lin
|
||||
|
||||
def apply_attenuation_db(self, attenuation_db):
|
||||
attenuation_lin = 1 / db2lin(attenuation_db)
|
||||
self.apply_attenuation_lin(attenuation_lin)
|
||||
|
||||
def apply_gain_lin(self, gain_lin):
|
||||
self.signal *= gain_lin
|
||||
self.nli *= gain_lin
|
||||
self.ase *= gain_lin
|
||||
|
||||
def apply_gain_db(self, gain_db):
|
||||
gain_lin = db2lin(gain_db)
|
||||
self.apply_gain_lin(gain_lin)
|
||||
|
||||
def __add__(self, other: SpectralInformation):
|
||||
try:
|
||||
return SpectralInformation(frequency=append(self.frequency, other.frequency),
|
||||
slot_width=append(self.slot_width, other.slot_width),
|
||||
signal=append(self.signal, other.signal), nli=append(self.nli, other.nli),
|
||||
ase=append(self.ase, other.ase),
|
||||
baud_rate=append(self.baud_rate, other.baud_rate),
|
||||
roll_off=append(self.roll_off, other.roll_off),
|
||||
chromatic_dispersion=append(self.chromatic_dispersion,
|
||||
other.chromatic_dispersion),
|
||||
pmd=append(self.pmd, other.pmd),
|
||||
pdl=append(self.pdl, other.pdl))
|
||||
except SpectrumError:
|
||||
raise SpectrumError('Spectra cannot be summed: channels overlapping.')
|
||||
|
||||
def _replace(self, carriers, pref):
|
||||
self.chromatic_dispersion = array([c.chromatic_dispersion for c in carriers])
|
||||
self.pmd = array([c.pmd for c in carriers])
|
||||
self.pdl = array([c.pdl for c in carriers])
|
||||
self.signal = array([c.power.signal for c in carriers])
|
||||
self.nli = array([c.power.nli for c in carriers])
|
||||
self.ase = array([c.power.ase for c in carriers])
|
||||
self.pref = pref
|
||||
return self
|
||||
|
||||
|
||||
def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, int, float],
|
||||
signal: Union[int, float, ndarray, Iterable],
|
||||
baud_rate: Union[int, float, ndarray, Iterable],
|
||||
slot_width: Union[int, float, ndarray, Iterable] = None,
|
||||
roll_off: Union[int, float, ndarray, Iterable] = 0.,
|
||||
chromatic_dispersion: Union[int, float, ndarray, Iterable] = 0.,
|
||||
pmd: Union[int, float, ndarray, Iterable] = 0.,
|
||||
pdl: Union[int, float, ndarray, Iterable] = 0.):
|
||||
"""This is just a wrapper around the SpectralInformation.__init__() that simplifies the creation of
|
||||
a non-uniform spectral information with NLI and ASE powers set to zero."""
|
||||
frequency = asarray(frequency)
|
||||
number_of_channels = frequency.size
|
||||
try:
|
||||
signal = full(number_of_channels, signal)
|
||||
baud_rate = full(number_of_channels, baud_rate)
|
||||
roll_off = full(number_of_channels, roll_off)
|
||||
slot_width = full(number_of_channels, slot_width) if slot_width is not None else \
|
||||
ceil((1 + roll_off) * baud_rate / DEFAULT_SLOT_WIDTH_STEP) * DEFAULT_SLOT_WIDTH_STEP
|
||||
chromatic_dispersion = full(number_of_channels, chromatic_dispersion)
|
||||
pmd = full(number_of_channels, pmd)
|
||||
pdl = full(number_of_channels, pdl)
|
||||
nli = zeros(number_of_channels)
|
||||
ase = zeros(number_of_channels)
|
||||
return SpectralInformation(frequency=frequency, slot_width=slot_width,
|
||||
signal=signal, nli=nli, ase=ase,
|
||||
baud_rate=baud_rate, roll_off=roll_off,
|
||||
chromatic_dispersion=chromatic_dispersion,
|
||||
pmd=pmd, pdl=pdl)
|
||||
except ValueError as e:
|
||||
if 'could not broadcast' in str(e):
|
||||
raise SpectrumError('Dimension mismatch in input fields.')
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
|
||||
# pref in dB : convert power lin into power in dB
|
||||
pref = lin2db(power * 1e3)
|
||||
""" Creates a fixed slot width spectral information with flat power """
|
||||
nb_channel = automatic_nch(f_min, f_max, spacing)
|
||||
si = SpectralInformation(
|
||||
pref=Pref(pref, pref, lin2db(nb_channel)),
|
||||
carriers=[
|
||||
Channel(f, (f_min + spacing * f),
|
||||
baud_rate, roll_off, Power(power, 0, 0), 0, 0) for f in range(1, nb_channel + 1)
|
||||
]
|
||||
)
|
||||
return si
|
||||
frequency = [(f_min + spacing * i) for i in range(1, nb_channel + 1)]
|
||||
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=power, baud_rate=baud_rate,
|
||||
roll_off=roll_off)
|
||||
|
||||
@@ -27,6 +27,7 @@ def edfa_nf(gain_target, variety_type, equipment):
|
||||
)
|
||||
amp.pin_db = 0
|
||||
amp.nch = 88
|
||||
amp.slot_width = 50e9
|
||||
return amp._calc_nf(True)
|
||||
|
||||
|
||||
@@ -282,7 +283,7 @@ def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_d
|
||||
|
||||
if isinstance(prev_node, elements.Fiber):
|
||||
max_fiber_lineic_loss_for_raman = \
|
||||
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
|
||||
equipment['Span']['default'].max_fiber_lineic_loss_for_raman * 1e-3 # dB/m
|
||||
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
|
||||
else:
|
||||
raman_allowed = False
|
||||
@@ -303,9 +304,14 @@ def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_d
|
||||
node.params.update_params(extra_params.__dict__)
|
||||
dp += power_reduction
|
||||
gain_target += power_reduction
|
||||
elif node.params.raman and not raman_allowed:
|
||||
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n but fiber lineic loss is above threshold\n')
|
||||
else:
|
||||
if node.params.raman and not raman_allowed:
|
||||
if isinstance(prev_node, elements.Fiber):
|
||||
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n '
|
||||
'but fiber lineic loss is above threshold\n')
|
||||
else:
|
||||
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n '
|
||||
'but previous node is not a fiber\n')
|
||||
# if variety is imposed by user, and if the gain_target (computed or imposed) is also above
|
||||
# variety max gain + extended range, then warn that gain > max_gain + extended range
|
||||
if gain_target - equipment['Edfa'][node.params.type_variety].gain_flatmax - \
|
||||
@@ -521,7 +527,6 @@ def build_network(network, equipment, pref_ch_db, pref_total_db, no_insert_edfas
|
||||
# set roadm loss for gain_mode before to build network
|
||||
fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
|
||||
add_connector_loss(network, fibers, default_span_data.con_in, default_span_data.con_out, default_span_data.EOL)
|
||||
add_fiber_padding(network, fibers, default_span_data.padding)
|
||||
# don't group split fiber and add amp in the same loop
|
||||
# =>for code clarity (at the expense of speed):
|
||||
|
||||
@@ -539,6 +544,8 @@ def build_network(network, equipment, pref_ch_db, pref_total_db, no_insert_edfas
|
||||
for fiber in fibers:
|
||||
add_inline_amplifier(network, fiber)
|
||||
|
||||
add_fiber_padding(network, fibers, default_span_data.padding)
|
||||
|
||||
for roadm in roadms:
|
||||
set_egress_amplifier(network, roadm, equipment, pref_ch_db, pref_total_db)
|
||||
|
||||
|
||||
@@ -9,9 +9,9 @@ This module contains all parameters to configure standard network elements.
|
||||
"""
|
||||
|
||||
from scipy.constants import c, pi
|
||||
from numpy import squeeze, log10, exp
|
||||
from numpy import asarray, array
|
||||
|
||||
from gnpy.core.utils import db2lin, convert_length
|
||||
from gnpy.core.utils import convert_length
|
||||
from gnpy.core.exceptions import ParametersError
|
||||
|
||||
|
||||
@@ -28,110 +28,102 @@ class Parameters:
|
||||
|
||||
class PumpParams(Parameters):
|
||||
def __init__(self, power, frequency, propagation_direction):
|
||||
self._power = power
|
||||
self._frequency = frequency
|
||||
self._propagation_direction = propagation_direction
|
||||
|
||||
@property
|
||||
def power(self):
|
||||
return self._power
|
||||
|
||||
@property
|
||||
def frequency(self):
|
||||
return self._frequency
|
||||
|
||||
@property
|
||||
def propagation_direction(self):
|
||||
return self._propagation_direction
|
||||
self.power = power
|
||||
self.frequency = frequency
|
||||
self.propagation_direction = propagation_direction.lower()
|
||||
|
||||
|
||||
class RamanParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self._flag_raman = kwargs['flag_raman']
|
||||
self._space_resolution = kwargs['space_resolution'] if 'space_resolution' in kwargs else None
|
||||
self._tolerance = kwargs['tolerance'] if 'tolerance' in kwargs else None
|
||||
|
||||
@property
|
||||
def flag_raman(self):
|
||||
return self._flag_raman
|
||||
|
||||
@property
|
||||
def space_resolution(self):
|
||||
return self._space_resolution
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
return self._tolerance
|
||||
def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
|
||||
""" Simulation parameters used within the Raman Solver
|
||||
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
|
||||
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
|
||||
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
|
||||
"""
|
||||
self.flag = flag
|
||||
self.result_spatial_resolution = result_spatial_resolution # [m]
|
||||
self.solver_spatial_resolution = solver_spatial_resolution # [m]
|
||||
|
||||
|
||||
class NLIParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self._nli_method_name = kwargs['nli_method_name']
|
||||
self._wdm_grid_size = kwargs['wdm_grid_size']
|
||||
self._dispersion_tolerance = kwargs['dispersion_tolerance']
|
||||
self._phase_shift_tolerance = kwargs['phase_shift_tolerance']
|
||||
self._f_cut_resolution = None
|
||||
self._f_pump_resolution = None
|
||||
self._computed_channels = kwargs['computed_channels'] if 'computed_channels' in kwargs else None
|
||||
|
||||
@property
|
||||
def nli_method_name(self):
|
||||
return self._nli_method_name
|
||||
|
||||
@property
|
||||
def wdm_grid_size(self):
|
||||
return self._wdm_grid_size
|
||||
|
||||
@property
|
||||
def dispersion_tolerance(self):
|
||||
return self._dispersion_tolerance
|
||||
|
||||
@property
|
||||
def phase_shift_tolerance(self):
|
||||
return self._phase_shift_tolerance
|
||||
|
||||
@property
|
||||
def f_cut_resolution(self):
|
||||
return self._f_cut_resolution
|
||||
|
||||
@f_cut_resolution.setter
|
||||
def f_cut_resolution(self, f_cut_resolution):
|
||||
self._f_cut_resolution = f_cut_resolution
|
||||
|
||||
@property
|
||||
def f_pump_resolution(self):
|
||||
return self._f_pump_resolution
|
||||
|
||||
@f_pump_resolution.setter
|
||||
def f_pump_resolution(self, f_pump_resolution):
|
||||
self._f_pump_resolution = f_pump_resolution
|
||||
|
||||
@property
|
||||
def computed_channels(self):
|
||||
return self._computed_channels
|
||||
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
|
||||
computed_channels=None):
|
||||
""" Simulation parameters used within the Nli Solver
|
||||
:params method: formula for NLI calculation
|
||||
:params dispersion_tolerance: tuning parameter for ggn model solution
|
||||
:params phase_shift_tolerance: tuning parameter for ggn model solution
|
||||
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
|
||||
"""
|
||||
self.method = method.lower()
|
||||
self.dispersion_tolerance = dispersion_tolerance
|
||||
self.phase_shift_tolerance = phase_shift_tolerance
|
||||
self.computed_channels = computed_channels
|
||||
|
||||
|
||||
class SimParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
try:
|
||||
if 'nli_parameters' in kwargs:
|
||||
self._nli_params = NLIParams(**kwargs['nli_parameters'])
|
||||
else:
|
||||
self._nli_params = None
|
||||
if 'raman_parameters' in kwargs:
|
||||
self._raman_params = RamanParams(**kwargs['raman_parameters'])
|
||||
else:
|
||||
self._raman_params = None
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Simulation parameters must include {e}. Configuration: {kwargs}')
|
||||
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
|
||||
|
||||
def __init__(self):
|
||||
if type(self) == SimParams:
|
||||
raise NotImplementedError('Instances of SimParams cannot be generated')
|
||||
|
||||
@classmethod
|
||||
def set_params(cls, sim_params):
|
||||
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
|
||||
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
|
||||
|
||||
@classmethod
|
||||
def get(cls):
|
||||
self = cls.__new__(cls)
|
||||
return self
|
||||
|
||||
@property
|
||||
def nli_params(self):
|
||||
return self._nli_params
|
||||
return self._shared_dict['nli_params']
|
||||
|
||||
@property
|
||||
def raman_params(self):
|
||||
return self._raman_params
|
||||
return self._shared_dict['raman_params']
|
||||
|
||||
|
||||
class RoadmParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
try:
|
||||
self.target_pch_out_db = kwargs['target_pch_out_db']
|
||||
self.add_drop_osnr = kwargs['add_drop_osnr']
|
||||
self.pmd = kwargs['pmd']
|
||||
self.pdl = kwargs['pdl']
|
||||
self.restrictions = kwargs['restrictions']
|
||||
self.per_degree_pch_out_db = kwargs['per_degree_pch_out_db'] if 'per_degree_pch_out_db' in kwargs else {}
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
|
||||
|
||||
|
||||
class FusedParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
|
||||
|
||||
|
||||
# SSMF Raman coefficient profile normalized with respect to the effective area (Cr * A_eff)
|
||||
CR_NORM = array([
|
||||
0., 7.802e-16, 2.4236e-15, 4.0504e-15, 5.6606e-15, 6.8973e-15, 7.802e-15, 8.4162e-15, 8.8727e-15, 9.2877e-15,
|
||||
1.01011e-14, 1.05244e-14, 1.13295e-14, 1.2367e-14, 1.3695e-14, 1.5023e-14, 1.64091e-14, 1.81936e-14, 2.04927e-14,
|
||||
2.28167e-14, 2.48917e-14, 2.66098e-14, 2.82615e-14, 2.98136e-14, 3.1042e-14, 3.17558e-14, 3.18803e-14, 3.17558e-14,
|
||||
3.15566e-14, 3.11748e-14, 2.94567e-14, 3.14985e-14, 2.8552e-14, 2.43439e-14, 1.67992e-14, 9.6114e-15, 7.02180e-15,
|
||||
5.9262e-15, 5.6938e-15, 7.055e-15, 7.4119e-15, 7.4783e-15, 6.7645e-15, 5.5361e-15, 3.6271e-15, 2.7224e-15,
|
||||
2.4568e-15, 2.1995e-15, 2.1331e-15, 2.3323e-15, 2.5564e-15, 3.0461e-15, 4.8555e-15, 5.5029e-15, 5.2788e-15,
|
||||
4.565e-15, 3.3698e-15, 2.2991e-15, 2.0086e-15, 1.5521e-15, 1.328e-15, 1.162e-15, 9.379e-16, 8.715e-16, 8.134e-16,
|
||||
8.134e-16, 9.379e-16, 1.3612e-15, 1.6185e-15, 1.9754e-15, 1.8758e-15, 1.6849e-15, 1.2284e-15, 9.047e-16, 8.134e-16,
|
||||
8.715e-16, 9.711e-16, 1.0375e-15, 1.0043e-15, 9.047e-16, 8.134e-16, 6.806e-16, 5.478e-16, 3.901e-16, 2.241e-16,
|
||||
1.577e-16, 9.96e-17, 3.32e-17, 1.66e-17, 8.3e-18])
|
||||
|
||||
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
|
||||
FREQ_OFFSET = array([
|
||||
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
|
||||
12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75, 19.,
|
||||
19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5, 29., 29.5,
|
||||
30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5, 39., 39.5, 40.,
|
||||
40.5, 41., 41.5, 42.]) * 1e12
|
||||
|
||||
|
||||
class FiberParams(Parameters):
|
||||
@@ -139,45 +131,50 @@ class FiberParams(Parameters):
|
||||
try:
|
||||
self._length = convert_length(kwargs['length'], kwargs['length_units'])
|
||||
# fixed attenuator for padding
|
||||
self._att_in = kwargs['att_in'] if 'att_in' in kwargs else 0
|
||||
self._att_in = kwargs.get('att_in', 0)
|
||||
# if not defined in the network json connector loss in/out
|
||||
# the None value will be updated in network.py[build_network]
|
||||
# with default values from eqpt_config.json[Spans]
|
||||
self._con_in = kwargs['con_in'] if 'con_in' in kwargs else None
|
||||
self._con_out = kwargs['con_out'] if 'con_out' in kwargs else None
|
||||
self._con_in = kwargs.get('con_in')
|
||||
self._con_out = kwargs.get('con_out')
|
||||
if 'ref_wavelength' in kwargs:
|
||||
self._ref_wavelength = kwargs['ref_wavelength']
|
||||
self._ref_frequency = c / self.ref_wavelength
|
||||
self._ref_frequency = c / self._ref_wavelength
|
||||
elif 'ref_frequency' in kwargs:
|
||||
self._ref_frequency = kwargs['ref_frequency']
|
||||
self._ref_wavelength = c / self.ref_frequency
|
||||
self._ref_wavelength = c / self._ref_frequency
|
||||
else:
|
||||
self._ref_wavelength = 1550e-9
|
||||
self._ref_frequency = c / self.ref_wavelength
|
||||
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
|
||||
self._ref_frequency = c / self._ref_wavelength
|
||||
self._dispersion = kwargs['dispersion'] # s/m/m
|
||||
self._dispersion_slope = kwargs['dispersion_slope'] if 'dispersion_slope' in kwargs else \
|
||||
-2 * self._dispersion/self.ref_wavelength # s/m/m/m
|
||||
self._dispersion_slope = \
|
||||
kwargs.get('dispersion_slope', -2 * self._dispersion / self.ref_wavelength) # s/m/m/m
|
||||
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
|
||||
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
|
||||
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
|
||||
# (accessed on 25 March 2018) (2005).
|
||||
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
|
||||
(2*pi*c/self.ref_wavelength**2)**2)
|
||||
self._gamma = kwargs['gamma'] # 1/W/m
|
||||
self._effective_area = kwargs.get('effective_area') # m^2
|
||||
n2 = 2.6e-20 # m^2/W
|
||||
if self._effective_area:
|
||||
self._gamma = kwargs.get('gamma', 2 * pi * n2 / (self.ref_wavelength * self._effective_area)) # 1/W/m
|
||||
elif 'gamma' in kwargs:
|
||||
self._gamma = kwargs['gamma'] # 1/W/m
|
||||
self._effective_area = 2 * pi * n2 / (self.ref_wavelength * self._gamma) # m^2
|
||||
else:
|
||||
self._gamma = 0 # 1/W/m
|
||||
self._effective_area = 83e-12 # m^2
|
||||
default_raman_efficiency = {'cr': CR_NORM / self._effective_area, 'frequency_offset': FREQ_OFFSET}
|
||||
self._raman_efficiency = kwargs.get('raman_efficiency', default_raman_efficiency)
|
||||
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
|
||||
if type(kwargs['loss_coef']) == dict:
|
||||
self._loss_coef = squeeze(kwargs['loss_coef']['loss_coef_power']) * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = squeeze(kwargs['loss_coef']['frequency']) # Hz
|
||||
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
|
||||
else:
|
||||
self._loss_coef = kwargs['loss_coef'] * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = 193.5e12 # Hz
|
||||
self._lin_attenuation = db2lin(self.length * self.loss_coef)
|
||||
self._lin_loss_exp = self.loss_coef / (10 * log10(exp(1))) # linear power exponent loss Neper/m
|
||||
self._effective_length = (1 - exp(- self.lin_loss_exp * self.length)) / self.lin_loss_exp
|
||||
self._asymptotic_length = 1 / self.lin_loss_exp
|
||||
# raman parameters (not compulsory)
|
||||
self._raman_efficiency = kwargs['raman_efficiency'] if 'raman_efficiency' in kwargs else None
|
||||
self._pumps_loss_coef = kwargs['pumps_loss_coef'] if 'pumps_loss_coef' in kwargs else None
|
||||
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = asarray(self._ref_frequency) # Hz
|
||||
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else []
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
|
||||
|
||||
@@ -210,6 +207,10 @@ class FiberParams(Parameters):
|
||||
def con_out(self):
|
||||
return self._con_out
|
||||
|
||||
@property
|
||||
def lumped_losses(self):
|
||||
return self._lumped_losses
|
||||
|
||||
@con_out.setter
|
||||
def con_out(self, con_out):
|
||||
self._con_out = con_out
|
||||
@@ -254,32 +255,60 @@ class FiberParams(Parameters):
|
||||
def f_loss_ref(self):
|
||||
return self._f_loss_ref
|
||||
|
||||
@property
|
||||
def lin_loss_exp(self):
|
||||
return self._lin_loss_exp
|
||||
|
||||
@property
|
||||
def lin_attenuation(self):
|
||||
return self._lin_attenuation
|
||||
|
||||
@property
|
||||
def effective_length(self):
|
||||
return self._effective_length
|
||||
|
||||
@property
|
||||
def asymptotic_length(self):
|
||||
return self._asymptotic_length
|
||||
|
||||
@property
|
||||
def raman_efficiency(self):
|
||||
return self._raman_efficiency
|
||||
|
||||
@property
|
||||
def pumps_loss_coef(self):
|
||||
return self._pumps_loss_coef
|
||||
|
||||
def asdict(self):
|
||||
dictionary = super().asdict()
|
||||
dictionary['loss_coef'] = self.loss_coef * 1e3
|
||||
dictionary['length_units'] = 'm'
|
||||
if not self.lumped_losses:
|
||||
dictionary.pop('lumped_losses')
|
||||
if not self.raman_efficiency:
|
||||
dictionary.pop('raman_efficiency')
|
||||
return dictionary
|
||||
|
||||
|
||||
class EdfaParams:
|
||||
def __init__(self, **params):
|
||||
self.update_params(params)
|
||||
if params == {}:
|
||||
self.type_variety = ''
|
||||
self.type_def = ''
|
||||
# self.gain_flatmax = 0
|
||||
# self.gain_min = 0
|
||||
# self.p_max = 0
|
||||
# self.nf_model = None
|
||||
# self.nf_fit_coeff = None
|
||||
# self.nf_ripple = None
|
||||
# self.dgt = None
|
||||
# self.gain_ripple = None
|
||||
# self.out_voa_auto = False
|
||||
# self.allowed_for_design = None
|
||||
|
||||
def update_params(self, kwargs):
|
||||
for k, v in kwargs.items():
|
||||
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
|
||||
|
||||
|
||||
class EdfaOperational:
|
||||
default_values = {
|
||||
'gain_target': None,
|
||||
'delta_p': None,
|
||||
'out_voa': None,
|
||||
'tilt_target': 0
|
||||
}
|
||||
|
||||
def __init__(self, **operational):
|
||||
self.update_attr(operational)
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||||
for k, v in self.default_values.items():
|
||||
setattr(self, k, clean_kwargs.get(k, v))
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{type(self).__name__}('
|
||||
f'gain_target={self.gain_target!r}, '
|
||||
f'tilt_target={self.tilt_target!r})')
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -180,51 +180,27 @@
|
||||
"Fiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"gamma": 0.00146,
|
||||
"effective_area": 72e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"gamma": 0.000843,
|
||||
"effective_area": 125e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15,
|
||||
"raman_efficiency": {
|
||||
"cr":[
|
||||
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
|
||||
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
|
||||
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
|
||||
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
|
||||
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
|
||||
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
|
||||
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
|
||||
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
|
||||
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
|
||||
2E-07, 1E-07
|
||||
],
|
||||
"frequency_offset":[
|
||||
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
|
||||
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
|
||||
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
|
||||
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
|
||||
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
|
||||
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
|
||||
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
|
||||
41.5e12, 42e12
|
||||
]
|
||||
}
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"Span":[{
|
||||
@@ -245,6 +221,7 @@
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 38,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list":[],
|
||||
"booster_variety_list":[]
|
||||
|
||||
@@ -1,95 +1,80 @@
|
||||
{ "Edfa":[
|
||||
{
|
||||
{
|
||||
"Edfa": [
|
||||
{
|
||||
"type_variety": "openroadm_ila_low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
|
||||
"nf_coef": [-8.104e-4, -6.221e-2, -5.889e-1, 37.62],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_ila_standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
|
||||
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp",
|
||||
"type_def": "openroadm_preamp",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_booster",
|
||||
"type_def": "openroadm_booster",
|
||||
"gain_flatmax": 32,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
}
|
||||
],
|
||||
"Fiber":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"Fiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"gamma": 0.00146,
|
||||
"effective_area": 72e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"gamma": 0.000843,
|
||||
"effective_area": 125e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"RamanFiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15,
|
||||
"raman_efficiency": {
|
||||
"cr":[
|
||||
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
|
||||
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
|
||||
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
|
||||
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
|
||||
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
|
||||
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
|
||||
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
|
||||
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
|
||||
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
|
||||
2E-07, 1E-07
|
||||
],
|
||||
"frequency_offset":[
|
||||
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
|
||||
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
|
||||
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
|
||||
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
|
||||
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
|
||||
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
|
||||
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
|
||||
41.5e12, 42e12
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"Span":[
|
||||
{
|
||||
"power_mode":true,
|
||||
"delta_power_range_db": [0,0,0],
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"Span": [
|
||||
{
|
||||
"power_mode": true,
|
||||
"delta_power_range_db": [0, 0, 0],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 0,
|
||||
"max_length": 135,
|
||||
@@ -99,92 +84,266 @@
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
],
|
||||
"Roadm":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"Roadm": [
|
||||
{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 30,
|
||||
"pmd": 0,
|
||||
"pmd": 3e-12,
|
||||
"pdl": 1.5,
|
||||
"restrictions": {
|
||||
"preamp_variety_list":["openroadm_mw_mw_preamp"],
|
||||
"booster_variety_list":["openroadm_mw_mw_booster"]
|
||||
}
|
||||
"preamp_variety_list": ["openroadm_mw_mw_preamp"],
|
||||
"booster_variety_list": ["openroadm_mw_mw_booster"]
|
||||
}
|
||||
],
|
||||
"SI":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"SI": [
|
||||
{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 31.57e9,
|
||||
"f_max":196.1e12,
|
||||
"f_max": 196.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 2,
|
||||
"power_range_db": [0,0,1],
|
||||
"power_range_db": [0, 0, 1],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 35,
|
||||
"sys_margins": 2
|
||||
}
|
||||
],
|
||||
"Transceiver":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"Transceiver": [
|
||||
{
|
||||
"type_variety": "OpenROADM MSA ver. 4.0",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
|
||||
"baud_rate": 27.95e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": null,
|
||||
"tx_osnr": 33,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
"mode":[
|
||||
{
|
||||
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
|
||||
"baud_rate": 27.95e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": null,
|
||||
"tx_osnr": 33,
|
||||
"min_spacing": 50e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 35,
|
||||
"min_spacing": 50e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, DP-QPSK",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 87.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "300 Gbit/s, DP-8QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 87.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "400 Gbit/s, DP-16QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 24,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 87.5e9,
|
||||
"cost":1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
{
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 35,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 40e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, DP-QPSK",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 24e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "300 Gbit/s, DP-8QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "400 Gbit/s, DP-16QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 24,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 12e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 20,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
@@ -1,105 +1,92 @@
|
||||
{ "Edfa":[
|
||||
{
|
||||
{
|
||||
"Edfa": [
|
||||
{
|
||||
"type_variety": "openroadm_ila_low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
|
||||
"nf_coef": [-8.104e-4, -6.221e-2, -5.889e-1, 37.62],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_ila_standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
|
||||
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
|
||||
"pmd": 3e-12,
|
||||
"pdl": 0.7,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
|
||||
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,27.99],
|
||||
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 27.99],
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "openroadm_mw_mw_booster",
|
||||
"type_def": "openroadm_booster",
|
||||
"gain_flatmax": 32,
|
||||
"gain_min": 0,
|
||||
"p_max": 22,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"allowed_for_design": false
|
||||
}
|
||||
],
|
||||
"Fiber":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"Fiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"gamma": 0.00146,
|
||||
"effective_area": 72e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"gamma": 0.000843,
|
||||
"effective_area": 125e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"RamanFiber": [
|
||||
{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15,
|
||||
"raman_efficiency": {
|
||||
"cr":[
|
||||
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
|
||||
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
|
||||
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
|
||||
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
|
||||
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
|
||||
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
|
||||
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
|
||||
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
|
||||
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
|
||||
2E-07, 1E-07
|
||||
],
|
||||
"frequency_offset":[
|
||||
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
|
||||
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
|
||||
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
|
||||
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
|
||||
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
|
||||
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
|
||||
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
|
||||
41.5e12, 42e12
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"Span":[
|
||||
{
|
||||
"power_mode":true,
|
||||
"delta_power_range_db": [0,0,0],
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"Span": [
|
||||
{
|
||||
"power_mode": true,
|
||||
"delta_power_range_db": [0, 0, 0],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 0,
|
||||
"max_length": 135,
|
||||
@@ -109,102 +96,314 @@
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
],
|
||||
"Roadm":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"Roadm": [
|
||||
{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 33,
|
||||
"pmd": 0,
|
||||
"pmd": 3e-12,
|
||||
"pdl": 1.5,
|
||||
"restrictions": {
|
||||
"preamp_variety_list":["openroadm_mw_mw_preamp_worstcase_ver5"],
|
||||
"booster_variety_list":["openroadm_mw_mw_booster"]
|
||||
}
|
||||
"preamp_variety_list": ["openroadm_mw_mw_preamp_worstcase_ver5"],
|
||||
"booster_variety_list": ["openroadm_mw_mw_booster"]
|
||||
}
|
||||
],
|
||||
"SI":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"SI": [
|
||||
{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 31.57e9,
|
||||
"f_max":196.1e12,
|
||||
"f_max": 196.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 2,
|
||||
"power_range_db": [0,0,1],
|
||||
"power_range_db": [0, 0, 1],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 35,
|
||||
"sys_margins": 2
|
||||
}
|
||||
],
|
||||
"Transceiver":[
|
||||
{
|
||||
}
|
||||
],
|
||||
"Transceiver": [
|
||||
{
|
||||
"type_variety": "OpenROADM MSA ver. 5.0",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode":[
|
||||
"frequency": {
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode": [
|
||||
{
|
||||
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
|
||||
"baud_rate": 27.95e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": null,
|
||||
"tx_osnr": 33,
|
||||
"penalties": [
|
||||
{
|
||||
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
|
||||
"baud_rate": 27.95e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": null,
|
||||
"tx_osnr": 33,
|
||||
"min_spacing": 50e9,
|
||||
"cost":1
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 50e9,
|
||||
"cost":1
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 20.5,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 50e9,
|
||||
"cost":1
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, DP-QPSK",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 87.5e9,
|
||||
"cost":1
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"format": "300 Gbit/s, DP-8QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 87.5e9,
|
||||
"cost":1
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"format": "400 Gbit/s, DP-16QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 24,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"min_spacing": 87.5e9,
|
||||
"cost":1
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 48e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
|
||||
"baud_rate": 31.57e9,
|
||||
"OSNR": 20.5,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 24e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 30,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
},
|
||||
{
|
||||
"pdl": 6,
|
||||
"penalty_value": 4
|
||||
}
|
||||
],
|
||||
"min_spacing": 50e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "200 Gbit/s, DP-QPSK",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 17,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 24e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "300 Gbit/s, DP-8QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 18e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 25,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
},
|
||||
{
|
||||
"format": "400 Gbit/s, DP-16QAM",
|
||||
"baud_rate": 63.1e9,
|
||||
"OSNR": 24,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 36,
|
||||
"penalties": [
|
||||
{
|
||||
"chromatic_dispersion": -1e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 4e3,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"chromatic_dispersion": 12e3,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pmd": 10,
|
||||
"penalty_value": 0
|
||||
},
|
||||
{
|
||||
"pmd": 20,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 1,
|
||||
"penalty_value": 0.5
|
||||
},
|
||||
{
|
||||
"pdl": 2,
|
||||
"penalty_value": 1
|
||||
},
|
||||
{
|
||||
"pdl": 4,
|
||||
"penalty_value": 2.5
|
||||
}
|
||||
],
|
||||
"min_spacing": 87.5e9,
|
||||
"cost": 1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
@@ -20,12 +20,12 @@
|
||||
"temperature": 283,
|
||||
"raman_pumps": [
|
||||
{
|
||||
"power": 200e-3,
|
||||
"power": 224.403e-3,
|
||||
"frequency": 205e12,
|
||||
"propagation_direction": "counterprop"
|
||||
},
|
||||
{
|
||||
"power": 206e-3,
|
||||
"power": 231.135e-3,
|
||||
"frequency": 201e12,
|
||||
"propagation_direction": "counterprop"
|
||||
}
|
||||
@@ -49,6 +49,21 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Fused1",
|
||||
"type": "Fused",
|
||||
"params": {
|
||||
"loss": 0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 1.5,
|
||||
"longitude": 0,
|
||||
"city": null,
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Edfa1",
|
||||
"type": "Edfa",
|
||||
@@ -88,6 +103,10 @@
|
||||
},
|
||||
{
|
||||
"from_node": "Span1",
|
||||
"to_node": "Fused1"
|
||||
},
|
||||
{
|
||||
"from_node": "Fused1",
|
||||
"to_node": "Edfa1"
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,14 +1,13 @@
|
||||
{
|
||||
"raman_parameters": {
|
||||
"flag_raman": true,
|
||||
"space_resolution": 10e3,
|
||||
"tolerance": 1e-8
|
||||
"raman_params": {
|
||||
"flag": true,
|
||||
"result_spatial_resolution": 10e3,
|
||||
"solver_spatial_resolution": 50
|
||||
},
|
||||
"nli_parameters": {
|
||||
"nli_method_name": "ggn_spectrally_separated",
|
||||
"wdm_grid_size": 50e9,
|
||||
"dispersion_tolerance": 1,
|
||||
"phase_shift_tolerance": 0.1,
|
||||
"computed_channels": [1, 18, 37, 56, 75]
|
||||
"nli_params": {
|
||||
"method": "ggn_spectrally_separated",
|
||||
"dispersion_tolerance": 1,
|
||||
"phase_shift_tolerance": 0.1,
|
||||
"computed_channels": [1, 18, 37, 56, 75]
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -10,7 +10,6 @@ Common code for CLI examples
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os.path
|
||||
import sys
|
||||
from math import ceil
|
||||
from numpy import linspace, mean
|
||||
@@ -21,7 +20,6 @@ from gnpy.core.equipment import trx_mode_params
|
||||
import gnpy.core.exceptions as exceptions
|
||||
from gnpy.core.network import build_network
|
||||
from gnpy.core.parameters import SimParams
|
||||
from gnpy.core.science_utils import Simulation
|
||||
from gnpy.core.utils import db2lin, lin2db, automatic_nch
|
||||
from gnpy.topology.request import (ResultElement, jsontocsv, compute_path_dsjctn, requests_aggregation,
|
||||
BLOCKING_NOPATH, correct_json_route_list,
|
||||
@@ -57,14 +55,15 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
|
||||
if save_raw_network_filename is not None:
|
||||
save_network(network, save_raw_network_filename)
|
||||
print(f'{ansi_escapes.blue}Raw network (no optimizations) saved to {save_raw_network_filename}{ansi_escapes.reset}')
|
||||
sim_params = SimParams(**load_json(simulation_filename)) if simulation_filename is not None else None
|
||||
if not sim_params:
|
||||
if not simulation_filename:
|
||||
sim_params = {}
|
||||
if next((node for node in network if isinstance(node, RamanFiber)), None) is not None:
|
||||
print(f'{ansi_escapes.red}Invocation error:{ansi_escapes.reset} '
|
||||
f'RamanFiber requires passing simulation params via --sim-params')
|
||||
sys.exit(1)
|
||||
else:
|
||||
Simulation.set_params(sim_params)
|
||||
sim_params = load_json(simulation_filename)
|
||||
SimParams.set_params(sim_params)
|
||||
except exceptions.EquipmentConfigError as e:
|
||||
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
|
||||
sys.exit(1)
|
||||
|
||||
@@ -94,6 +94,7 @@ class Roadm(_JsonThing):
|
||||
'target_pch_out_db': -17,
|
||||
'add_drop_osnr': 100,
|
||||
'pmd': 0,
|
||||
'pdl': 0,
|
||||
'restrictions': {
|
||||
'preamp_variety_list': [],
|
||||
'booster_variety_list': []
|
||||
@@ -113,36 +114,45 @@ class Transceiver(_JsonThing):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.update_attr(self.default_values, kwargs, 'Transceiver')
|
||||
for mode_params in self.mode:
|
||||
penalties = mode_params.get('penalties')
|
||||
mode_params['penalties'] = {}
|
||||
if not penalties:
|
||||
continue
|
||||
for impairment in ('chromatic_dispersion', 'pmd', 'pdl'):
|
||||
imp_penalties = [p for p in penalties if impairment in p]
|
||||
if not imp_penalties:
|
||||
continue
|
||||
if all(p[impairment] > 0 for p in imp_penalties):
|
||||
# make sure the list of penalty values include a proper lower boundary
|
||||
# (we assume 0 penalty for 0 impairment)
|
||||
imp_penalties.insert(0, {impairment: 0, 'penalty_value': 0})
|
||||
# make sure the list of penalty values are sorted by impairment value
|
||||
imp_penalties.sort(key=lambda i: i[impairment])
|
||||
# rearrange as dict of lists instead of list of dicts
|
||||
mode_params['penalties'][impairment] = {
|
||||
'up_to_boundary': [p[impairment] for p in imp_penalties],
|
||||
'penalty_value': [p['penalty_value'] for p in imp_penalties]
|
||||
}
|
||||
|
||||
|
||||
class Fiber(_JsonThing):
|
||||
default_values = {
|
||||
'type_variety': '',
|
||||
'dispersion': None,
|
||||
'gamma': 0,
|
||||
'effective_area': None,
|
||||
'pmd_coef': 0
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.update_attr(self.default_values, kwargs, 'Fiber')
|
||||
self.update_attr(self.default_values, kwargs, self.__class__.__name__)
|
||||
for optional in ['gamma', 'raman_efficiency']:
|
||||
if optional in kwargs:
|
||||
setattr(self, optional, kwargs[optional])
|
||||
|
||||
|
||||
class RamanFiber(_JsonThing):
|
||||
default_values = {
|
||||
'type_variety': '',
|
||||
'dispersion': None,
|
||||
'gamma': 0,
|
||||
'pmd_coef': 0,
|
||||
'raman_efficiency': None
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.update_attr(self.default_values, kwargs, 'RamanFiber')
|
||||
for param in ('cr', 'frequency_offset'):
|
||||
if param not in self.raman_efficiency:
|
||||
raise EquipmentConfigError(f'RamanFiber.raman_efficiency: missing "{param}" parameter')
|
||||
if self.raman_efficiency['frequency_offset'] != sorted(self.raman_efficiency['frequency_offset']):
|
||||
raise EquipmentConfigError(f'RamanFiber.raman_efficiency.frequency_offset is not sorted')
|
||||
class RamanFiber(Fiber):
|
||||
pass
|
||||
|
||||
|
||||
class Amp(_JsonThing):
|
||||
@@ -162,7 +172,9 @@ class Amp(_JsonThing):
|
||||
'gain_ripple': None,
|
||||
'out_voa_auto': False,
|
||||
'allowed_for_design': False,
|
||||
'raman': False
|
||||
'raman': False,
|
||||
'pmd': 0,
|
||||
'pdl': 0
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
@@ -277,7 +289,7 @@ def _check_fiber_vs_raman_fiber(equipment):
|
||||
if 'RamanFiber' not in equipment:
|
||||
return
|
||||
for fiber_type in set(equipment['Fiber'].keys()) & set(equipment['RamanFiber'].keys()):
|
||||
for attr in ('dispersion', 'dispersion-slope', 'gamma', 'pmd-coefficient'):
|
||||
for attr in ('dispersion', 'dispersion-slope', 'effective_area', 'gamma', 'pmd-coefficient'):
|
||||
fiber = equipment['Fiber'][fiber_type]
|
||||
raman = equipment['RamanFiber'][fiber_type]
|
||||
a = getattr(fiber, attr, None)
|
||||
|
||||
@@ -20,7 +20,7 @@ from logging import getLogger
|
||||
from networkx import (dijkstra_path, NetworkXNoPath,
|
||||
all_simple_paths, shortest_simple_paths)
|
||||
from networkx.utils import pairwise
|
||||
from numpy import mean
|
||||
from numpy import mean, argmin
|
||||
from gnpy.core.elements import Transceiver, Roadm
|
||||
from gnpy.core.utils import lin2db
|
||||
from gnpy.core.info import create_input_spectral_information
|
||||
@@ -32,12 +32,12 @@ from math import ceil
|
||||
|
||||
LOGGER = getLogger(__name__)
|
||||
|
||||
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type' +
|
||||
' trx_mode nodes_list loose_list spacing power nb_channel f_min' +
|
||||
' f_max format baud_rate OSNR bit_rate roll_off tx_osnr' +
|
||||
' min_spacing cost path_bandwidth effective_freq_slot')
|
||||
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link' +
|
||||
'_diverse node_diverse disjunctions_req')
|
||||
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type'
|
||||
' trx_mode nodes_list loose_list spacing power nb_channel f_min'
|
||||
' f_max format baud_rate OSNR penalties bit_rate'
|
||||
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot')
|
||||
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link_diverse'
|
||||
' node_diverse disjunctions_req')
|
||||
|
||||
|
||||
class PathRequest:
|
||||
@@ -62,6 +62,7 @@ class PathRequest:
|
||||
self.f_max = params.f_max
|
||||
self.format = params.format
|
||||
self.OSNR = params.OSNR
|
||||
self.penalties = params.penalties
|
||||
self.bit_rate = params.bit_rate
|
||||
self.roll_off = params.roll_off
|
||||
self.tx_osnr = params.tx_osnr
|
||||
@@ -348,10 +349,12 @@ def propagate(path, req, equipment):
|
||||
else:
|
||||
si = el(si)
|
||||
path[0].update_snr(req.tx_osnr)
|
||||
path[0].calc_penalties(req.penalties)
|
||||
if any(isinstance(el, Roadm) for el in path):
|
||||
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
|
||||
else:
|
||||
path[-1].update_snr(req.tx_osnr)
|
||||
path[-1].calc_penalties(req.penalties)
|
||||
return si
|
||||
|
||||
|
||||
@@ -386,11 +389,13 @@ def propagate_and_optimize_mode(path, req, equipment):
|
||||
for this_mode in modes_to_explore:
|
||||
if path[-1].snr is not None:
|
||||
path[0].update_snr(this_mode['tx_osnr'])
|
||||
path[0].calc_penalties(this_mode['penalties'])
|
||||
if any(isinstance(el, Roadm) for el in path):
|
||||
path[-1].update_snr(this_mode['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
|
||||
else:
|
||||
path[-1].update_snr(this_mode['tx_osnr'])
|
||||
if round(min(path[-1].snr + lin2db(this_br / (12.5e9))), 2) \
|
||||
path[-1].calc_penalties(this_mode['penalties'])
|
||||
if round(min(path[-1].snr_01nm - path[-1].total_penalty), 2) \
|
||||
> this_mode['OSNR'] + equipment['SI']['default'].sys_margins:
|
||||
return path, this_mode
|
||||
else:
|
||||
@@ -1107,12 +1112,16 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
# means that at this point the mode was entered/forced by user and thus a
|
||||
# baud_rate was defined
|
||||
propagate(total_path, pathreq, equipment)
|
||||
temp_snr01nm = round(mean(total_path[-1].snr+lin2db(pathreq.baud_rate/(12.5e9))), 2)
|
||||
if temp_snr01nm < pathreq.OSNR + equipment['SI']['default'].sys_margins:
|
||||
snr01nm_with_penalty = total_path[-1].snr_01nm - total_path[-1].total_penalty
|
||||
min_ind = argmin(snr01nm_with_penalty)
|
||||
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
|
||||
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
|
||||
f' {pathreq.source} to {pathreq.destination} does not pass with' +\
|
||||
f' {pathreq.tsp_mode}\n\tcomputedSNR in 0.1nm = {temp_snr01nm} ' +\
|
||||
f'- required osnr {pathreq.OSNR} + {equipment["SI"]["default"].sys_margins} margin'
|
||||
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
|
||||
f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}' +\
|
||||
f'\n\tCD penalty = {round(total_path[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
|
||||
f'\n\tPMD penalty = {round(total_path[-1].penalties["pmd"][min_ind], 2)}' +\
|
||||
f'\n\trequired osnr = {pathreq.OSNR}' +\
|
||||
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
|
||||
print(msg)
|
||||
LOGGER.warning(msg)
|
||||
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
|
||||
@@ -1152,14 +1161,16 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
|
||||
print(f'\tPath (roadsm) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n')
|
||||
propagate(rev_p, pathreq, equipment)
|
||||
propagated_reversed_path = rev_p
|
||||
temp_snr01nm = round(mean(propagated_reversed_path[-1].snr +\
|
||||
lin2db(pathreq.baud_rate/(12.5e9))), 2)
|
||||
if temp_snr01nm < pathreq.OSNR + equipment['SI']['default'].sys_margins:
|
||||
snr01nm_with_penalty = rev_p[-1].snr_01nm - rev_p[-1].total_penalty
|
||||
min_ind = argmin(snr01nm_with_penalty)
|
||||
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
|
||||
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
|
||||
f' {pathreq.source} to {pathreq.destination} does not pass with' +\
|
||||
f' {pathreq.tsp_mode}\n' +\
|
||||
f'\tcomputedSNR in 0.1nm = {temp_snr01nm} -' \
|
||||
f' required osnr {pathreq.OSNR} + {equipment["SI"]["default"].sys_margins} margin'
|
||||
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
|
||||
f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}' +\
|
||||
f'\n\tCD penalty = {round(rev_p[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
|
||||
f'\n\tPMD penalty = {round(rev_p[-1].penalties["pmd"][min_ind], 2)}' +\
|
||||
f'\n\trequired osnr = {pathreq.OSNR}' +\
|
||||
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
|
||||
print(msg)
|
||||
LOGGER.warning(msg)
|
||||
# TODO selection of mode should also be on reversed direction !!
|
||||
|
||||
@@ -15,7 +15,6 @@ element/oms correspondace
|
||||
|
||||
from collections import namedtuple
|
||||
from logging import getLogger
|
||||
from math import ceil
|
||||
from gnpy.core.elements import Roadm, Transceiver
|
||||
from gnpy.core.exceptions import ServiceError, SpectrumError
|
||||
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
matplotlib>=3.3.3,<4
|
||||
networkx>=2.5,<3
|
||||
numpy>=1.19.4,<2
|
||||
pandas>=1.1.5,<2
|
||||
pbr>=5.5.1,<6
|
||||
scipy>=1.5.4,<2
|
||||
matplotlib>=3.5.1,<4
|
||||
networkx>=2.6,<3
|
||||
numpy>=1.22.0,<2
|
||||
pandas>=1.3.5,<2
|
||||
pbr>=5.7.0,<6
|
||||
scipy>=1.7.3,<2
|
||||
xlrd>=1.2.0,<2
|
||||
|
||||
@@ -21,6 +21,7 @@ classifier =
|
||||
Programming Language :: Python :: 3 :: Only
|
||||
Programming Language :: Python :: 3.8
|
||||
Programming Language :: Python :: 3.9
|
||||
Programming Language :: Python :: 3.10
|
||||
Programming Language :: Python :: Implementation :: CPython
|
||||
Topic :: Scientific/Engineering
|
||||
Topic :: Scientific/Engineering :: Physics
|
||||
@@ -39,9 +40,6 @@ warnerrors = True
|
||||
|
||||
[files]
|
||||
packages = gnpy
|
||||
data_files =
|
||||
examples = examples/*
|
||||
# FIXME: solve example data files
|
||||
|
||||
[options.entry_points]
|
||||
console_scripts =
|
||||
|
||||
135
tests/compare.py
135
tests/compare.py
@@ -1,135 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
from json import dump
|
||||
from pathlib import Path
|
||||
from argparse import ArgumentParser
|
||||
from collections import namedtuple
|
||||
from gnpy.tools.json_io import load_json
|
||||
|
||||
|
||||
class Results(namedtuple('Results', 'missing extra different expected actual')):
|
||||
def _asdict(self):
|
||||
return {'missing': self.missing,
|
||||
'extra': self.extra,
|
||||
'different': self.different}
|
||||
|
||||
def __str__(self):
|
||||
rv = []
|
||||
if self.missing:
|
||||
rv.append('Missing: {len(self.missing)}/{len(self.expected)}')
|
||||
rv.extend(f'\t{x}' for x in sorted(self.missing))
|
||||
if self.extra:
|
||||
rv.append('Extra: {len(self.extra)}/{len(self.expected)}')
|
||||
rv.extend(f'\t{x}' for x in sorted(self.extra))
|
||||
if self.different:
|
||||
rv.append('Different: {len(self.different)}/{len(self.expected)}')
|
||||
rv.extend(f'\tExpected: {x}\n\tActual: {y}' for x, y in self.different)
|
||||
if not self.missing and not self.extra and not self.different:
|
||||
rv.append('All match!')
|
||||
return '\n'.join(rv)
|
||||
|
||||
|
||||
class NetworksResults(namedtuple('NetworksResult', 'elements connections')):
|
||||
def _asdict(self):
|
||||
return {'elements': self.elements._asdict(),
|
||||
'connections': self.connections._asdict()}
|
||||
|
||||
def __str__(self):
|
||||
return '\n'.join([
|
||||
'Elements'.center(40, '='),
|
||||
str(self.elements),
|
||||
'Connections'.center(40, '='),
|
||||
str(self.connections),
|
||||
])
|
||||
|
||||
|
||||
class ServicesResults(namedtuple('ServicesResult', 'requests synchronizations')):
|
||||
def _asdict(self):
|
||||
return {'requests': self.requests.asdict(),
|
||||
'synchronizations': self.synchronizations.asdict()}
|
||||
|
||||
def __str__(self):
|
||||
return '\n'.join([
|
||||
'Requests'.center(40, '='),
|
||||
str(self.requests),
|
||||
'Synchronizations'.center(40, '='),
|
||||
str(self.synchronizations),
|
||||
])
|
||||
|
||||
|
||||
class PathsResults(namedtuple('PathsResults', 'paths')):
|
||||
def _asdict(self):
|
||||
return {'paths': self.paths.asdict()}
|
||||
|
||||
def __str__(self):
|
||||
return '\n'.join([
|
||||
'Paths'.center(40, '='),
|
||||
str(self.paths),
|
||||
])
|
||||
|
||||
|
||||
def compare(expected, actual, key=lambda x: x):
|
||||
expected = {key(el): el for el in expected}
|
||||
actual = {key(el): el for el in actual}
|
||||
missing = set(expected) - set(actual)
|
||||
extra = set(actual) - set(expected)
|
||||
different = [(expected[x], actual[x]) for
|
||||
x in set(expected) & set(actual)
|
||||
if expected[x] != actual[x]]
|
||||
return Results(missing, extra, different, expected, actual)
|
||||
|
||||
|
||||
def compare_networks(expected, actual):
|
||||
elements = compare(expected['elements'], actual['elements'],
|
||||
key=lambda el: el['uid'])
|
||||
connections = compare(expected['connections'], actual['connections'],
|
||||
key=lambda el: (el['from_node'], el['to_node']))
|
||||
return NetworksResults(elements, connections)
|
||||
|
||||
|
||||
def compare_services(expected, actual):
|
||||
requests = compare(expected['path-request'], actual['path-request'],
|
||||
key=lambda el: el['request-id'])
|
||||
synchronizations = compare(expected['path-request'], expected['path-request'],
|
||||
key=lambda el: el['request-id'])
|
||||
if 'synchronization' in expected.keys():
|
||||
synchronizations = compare(expected['synchronization'], actual['synchronization'],
|
||||
key=lambda el: el['synchronization-id'])
|
||||
return ServicesResults(requests, synchronizations)
|
||||
|
||||
|
||||
def compare_paths(expected_output, actual_output):
|
||||
paths = compare(expected['path'], actual['path'], key=lambda el: el['path-id'])
|
||||
return PathsResults(paths)
|
||||
|
||||
|
||||
COMPARISONS = {
|
||||
'networks': compare_networks,
|
||||
'services': compare_services,
|
||||
'paths': compare_paths,
|
||||
}
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('expected_output', type=Path, metavar='FILE')
|
||||
parser.add_argument('actual_output', type=Path, metavar='FILE')
|
||||
parser.add_argument('-o', '--output', default=None)
|
||||
parser.add_argument('-c', '--comparison', choices=COMPARISONS, default='networks')
|
||||
|
||||
|
||||
def encode_sets(obj):
|
||||
if isinstance(obj, set):
|
||||
return list(obj)
|
||||
raise TypeError(f'{obj!r} is not JSON serializable!')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parser.parse_args()
|
||||
expected = load_json(args.expected_output)
|
||||
actual = load_json(args.actual_output)
|
||||
|
||||
result = COMPARISONS[args.comparison](expected, actual)
|
||||
|
||||
if args.output:
|
||||
with open(args.output, 'w', encoding='utf-8') as f:
|
||||
dump(result, f, default=encode_sets, indent=2, ensure_ascii=False)
|
||||
else:
|
||||
print(str(result))
|
||||
13
tests/conftest.py
Normal file
13
tests/conftest.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
#
|
||||
# Copyright (C) 2020 Telecom Infra Project and GNPy contributors
|
||||
# see LICENSE.md for a list of contributors
|
||||
#
|
||||
|
||||
import pytest
|
||||
from gnpy.core.parameters import SimParams, NLIParams, RamanParams
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def set_sim_params(monkeypatch):
|
||||
monkeypatch.setattr(SimParams, '_shared_dict', {'nli_params': NLIParams(), 'raman_params': RamanParams()})
|
||||
File diff suppressed because it is too large
Load Diff
@@ -63,7 +63,7 @@
|
||||
"Fiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
@@ -85,6 +85,7 @@
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 38,
|
||||
"pmd": 0,
|
||||
"pdl": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list":[],
|
||||
"booster_variety_list":[]
|
||||
|
||||
@@ -1,224 +0,0 @@
|
||||
{
|
||||
"uid": "Span1",
|
||||
"params": {
|
||||
"length": 80,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0,
|
||||
"con_in": 0.5,
|
||||
"con_out": 0.5,
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 0.0000167,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15,
|
||||
"raman_efficiency": {
|
||||
"cr": [
|
||||
0,
|
||||
0.0000094,
|
||||
0.0000292,
|
||||
0.0000488,
|
||||
0.0000682,
|
||||
0.0000831,
|
||||
0.000094,
|
||||
0.0001014,
|
||||
0.0001069,
|
||||
0.0001119,
|
||||
0.0001217,
|
||||
0.0001268,
|
||||
0.0001365,
|
||||
0.000149,
|
||||
0.000165,
|
||||
0.000181,
|
||||
0.0001977,
|
||||
0.0002192,
|
||||
0.0002469,
|
||||
0.0002749,
|
||||
0.0002999,
|
||||
0.0003206,
|
||||
0.0003405,
|
||||
0.0003592,
|
||||
0.000374,
|
||||
0.0003826,
|
||||
0.0003841,
|
||||
0.0003826,
|
||||
0.0003802,
|
||||
0.0003756,
|
||||
0.0003549,
|
||||
0.0003795,
|
||||
0.000344,
|
||||
0.0002933,
|
||||
0.0002024,
|
||||
0.0001158,
|
||||
0.0000846,
|
||||
0.0000714,
|
||||
0.0000686,
|
||||
0.000085,
|
||||
0.0000893,
|
||||
0.0000901,
|
||||
0.0000815,
|
||||
0.0000667,
|
||||
0.0000437,
|
||||
0.0000328,
|
||||
0.0000296,
|
||||
0.0000265,
|
||||
0.0000257,
|
||||
0.0000281,
|
||||
0.0000308,
|
||||
0.0000367,
|
||||
0.0000585,
|
||||
0.0000663,
|
||||
0.0000636,
|
||||
0.000055,
|
||||
0.0000406,
|
||||
0.0000277,
|
||||
0.0000242,
|
||||
0.0000187,
|
||||
0.000016,
|
||||
0.000014,
|
||||
0.0000113,
|
||||
0.0000105,
|
||||
0.0000098,
|
||||
0.0000098,
|
||||
0.0000113,
|
||||
0.0000164,
|
||||
0.0000195,
|
||||
0.0000238,
|
||||
0.0000226,
|
||||
0.0000203,
|
||||
0.0000148,
|
||||
0.0000109,
|
||||
0.0000098,
|
||||
0.0000105,
|
||||
0.0000117,
|
||||
0.0000125,
|
||||
0.0000121,
|
||||
0.0000109,
|
||||
0.0000098,
|
||||
0.0000082,
|
||||
0.0000066,
|
||||
0.0000047,
|
||||
0.0000027,
|
||||
0.0000019,
|
||||
0.0000012,
|
||||
4e-7,
|
||||
2e-7,
|
||||
1e-7
|
||||
],
|
||||
"frequency_offset": [
|
||||
0,
|
||||
500000000000,
|
||||
1000000000000,
|
||||
1500000000000,
|
||||
2000000000000,
|
||||
2500000000000,
|
||||
3000000000000,
|
||||
3500000000000,
|
||||
4000000000000,
|
||||
4500000000000,
|
||||
5000000000000,
|
||||
5500000000000,
|
||||
6000000000000,
|
||||
6500000000000,
|
||||
7000000000000,
|
||||
7500000000000,
|
||||
8000000000000,
|
||||
8500000000000,
|
||||
9000000000000,
|
||||
9500000000000,
|
||||
10000000000000,
|
||||
10500000000000,
|
||||
11000000000000,
|
||||
11500000000000,
|
||||
12000000000000,
|
||||
12500000000000,
|
||||
12750000000000,
|
||||
13000000000000,
|
||||
13250000000000,
|
||||
13500000000000,
|
||||
14000000000000,
|
||||
14500000000000,
|
||||
14750000000000,
|
||||
15000000000000,
|
||||
15500000000000,
|
||||
16000000000000,
|
||||
16500000000000,
|
||||
17000000000000,
|
||||
17500000000000,
|
||||
18000000000000,
|
||||
18250000000000,
|
||||
18500000000000,
|
||||
18750000000000,
|
||||
19000000000000,
|
||||
19500000000000,
|
||||
20000000000000,
|
||||
20500000000000,
|
||||
21000000000000,
|
||||
21500000000000,
|
||||
22000000000000,
|
||||
22500000000000,
|
||||
23000000000000,
|
||||
23500000000000,
|
||||
24000000000000,
|
||||
24500000000000,
|
||||
25000000000000,
|
||||
25500000000000,
|
||||
26000000000000,
|
||||
26500000000000,
|
||||
27000000000000,
|
||||
27500000000000,
|
||||
28000000000000,
|
||||
28500000000000,
|
||||
29000000000000,
|
||||
29500000000000,
|
||||
30000000000000,
|
||||
30500000000000,
|
||||
31000000000000,
|
||||
31500000000000,
|
||||
32000000000000,
|
||||
32500000000000,
|
||||
33000000000000,
|
||||
33500000000000,
|
||||
34000000000000,
|
||||
34500000000000,
|
||||
35000000000000,
|
||||
35500000000000,
|
||||
36000000000000,
|
||||
36500000000000,
|
||||
37000000000000,
|
||||
37500000000000,
|
||||
38000000000000,
|
||||
38500000000000,
|
||||
39000000000000,
|
||||
39500000000000,
|
||||
40000000000000,
|
||||
40500000000000,
|
||||
41000000000000,
|
||||
41500000000000,
|
||||
42000000000000
|
||||
]
|
||||
}
|
||||
},
|
||||
"operational": {
|
||||
"temperature": 283,
|
||||
"raman_pumps": [
|
||||
{
|
||||
"power": 0.2,
|
||||
"frequency": 205000000000000,
|
||||
"propagation_direction": "counterprop"
|
||||
},
|
||||
{
|
||||
"power": 0.206,
|
||||
"frequency": 201000000000000,
|
||||
"propagation_direction": "counterprop"
|
||||
}
|
||||
]
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 1,
|
||||
"longitude": 0,
|
||||
"city": null,
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,14 +1,13 @@
|
||||
{
|
||||
"raman_parameters": {
|
||||
"flag_raman": true,
|
||||
"space_resolution": 10e3,
|
||||
"tolerance": 1e-8
|
||||
"raman_params": {
|
||||
"flag": true,
|
||||
"result_spatial_resolution": 10e3,
|
||||
"solver_spatial_resolution": 50
|
||||
},
|
||||
"nli_parameters": {
|
||||
"nli_method_name": "ggn_spectrally_separated",
|
||||
"wdm_grid_size": 50e9,
|
||||
"nli_params": {
|
||||
"method": "ggn_spectrally_separated",
|
||||
"dispersion_tolerance": 1,
|
||||
"phase_shift_tolerance": 0.1,
|
||||
"computed_channels": [1, 18, 37, 56, 75]
|
||||
}
|
||||
}
|
||||
}
|
||||
97
tests/data/test_fiber_fix_expected_results.csv
Normal file
97
tests/data/test_fiber_fix_expected_results.csv
Normal file
@@ -0,0 +1,97 @@
|
||||
signal,nli
|
||||
1.9952623149688793e-05,1.1158426495504604e-08
|
||||
1.9952623149688793e-05,1.263949624403159e-08
|
||||
1.9952623149688793e-05,1.3358478621325285e-08
|
||||
1.9952623149688793e-05,1.3830775406251184e-08
|
||||
1.9952623149688793e-05,1.4180462471172083e-08
|
||||
1.9952623149688793e-05,1.4456701012984246e-08
|
||||
1.9952623149688793e-05,1.4683973899785875e-08
|
||||
1.9952623149688793e-05,1.487624147046227e-08
|
||||
1.9952623149688793e-05,1.5042217041806274e-08
|
||||
1.9952623149688793e-05,1.5187703614492153e-08
|
||||
1.9952623149688793e-05,1.5316759790785317e-08
|
||||
1.9952623149688793e-05,1.543233485150211e-08
|
||||
1.9952623149688793e-05,1.553663885878994e-08
|
||||
1.9952623149688793e-05,1.5631370249579246e-08
|
||||
1.9952623149688793e-05,1.5717862065800704e-08
|
||||
1.9952623149688793e-05,1.57971793985894e-08
|
||||
1.9952623149688793e-05,1.5870186356579704e-08
|
||||
1.9952623149688793e-05,1.593759332223716e-08
|
||||
1.9952623149688793e-05,1.5999991070923486e-08
|
||||
1.9952623149688793e-05,1.6057875903450682e-08
|
||||
1.9952623149688793e-05,1.6111668489205982e-08
|
||||
1.9952623149688793e-05,1.6161728217386366e-08
|
||||
1.9952623149688793e-05,1.6208364281630228e-08
|
||||
1.9952623149688793e-05,1.6251844350226973e-08
|
||||
1.9952623149688793e-05,1.629240142540359e-08
|
||||
1.9952623149688793e-05,1.6330239326114482e-08
|
||||
1.9952623149688793e-05,1.6365537111728e-08
|
||||
1.9952623149688793e-05,1.6398452681655655e-08
|
||||
1.9952623149688793e-05,1.642912572715412e-08
|
||||
1.9952623149688793e-05,1.6457680168940455e-08
|
||||
1.9952623149688793e-05,1.6484226183026747e-08
|
||||
1.9952623149688793e-05,1.6508861894003893e-08
|
||||
1.9952623149688793e-05,1.6531674797617433e-08
|
||||
1.9952623149688793e-05,1.655274296130114e-08
|
||||
1.9952623149688793e-05,1.657213604125123e-08
|
||||
1.9952623149688793e-05,1.6589916146838222e-08
|
||||
1.9952623149688793e-05,1.660613857708963e-08
|
||||
1.9952623149688793e-05,1.6620852449214096e-08
|
||||
1.9952623149688793e-05,1.6634101235366932e-08
|
||||
1.9952623149688793e-05,1.664592322084737e-08
|
||||
1.9952623149688793e-05,1.6656351894496074e-08
|
||||
1.9952623149688793e-05,1.666541628009631e-08
|
||||
1.9952623149688793e-05,1.6673141215973025e-08
|
||||
1.9952623149688793e-05,1.6679547588653583e-08
|
||||
1.9952623149688793e-05,1.6684652525341145e-08
|
||||
1.9952623149688793e-05,1.668846954900963e-08
|
||||
1.9952623149688793e-05,1.66910086991187e-08
|
||||
1.9952623149688793e-05,1.6692276620238304e-08
|
||||
1.9952623149688793e-05,1.6692276620238304e-08
|
||||
1.9952623149688793e-05,1.6691008699118703e-08
|
||||
1.9952623149688793e-05,1.6688469549009633e-08
|
||||
1.9952623149688793e-05,1.6684652525341148e-08
|
||||
1.9952623149688793e-05,1.6679547588653586e-08
|
||||
1.9952623149688793e-05,1.6673141215973028e-08
|
||||
1.9952623149688793e-05,1.666541628009631e-08
|
||||
1.9952623149688793e-05,1.6656351894496084e-08
|
||||
1.9952623149688793e-05,1.6645923220847374e-08
|
||||
1.9952623149688793e-05,1.6634101235366935e-08
|
||||
1.9952623149688793e-05,1.66208524492141e-08
|
||||
1.9952623149688793e-05,1.6606138577089633e-08
|
||||
1.9952623149688793e-05,1.6589916146838225e-08
|
||||
1.9952623149688793e-05,1.6572136041251237e-08
|
||||
1.9952623149688793e-05,1.6552742961301146e-08
|
||||
1.9952623149688793e-05,1.653167479761744e-08
|
||||
1.9952623149688793e-05,1.6508861894003893e-08
|
||||
1.9952623149688793e-05,1.648422618302675e-08
|
||||
1.9952623149688793e-05,1.645768016894046e-08
|
||||
1.9952623149688793e-05,1.6429125727154126e-08
|
||||
1.9952623149688793e-05,1.6398452681655658e-08
|
||||
1.9952623149688793e-05,1.6365537111728004e-08
|
||||
1.9952623149688793e-05,1.6330239326114482e-08
|
||||
1.9952623149688793e-05,1.6292401425403594e-08
|
||||
1.9952623149688793e-05,1.6251844350226973e-08
|
||||
1.9952623149688793e-05,1.6208364281630228e-08
|
||||
1.9952623149688793e-05,1.616172821738637e-08
|
||||
1.9952623149688793e-05,1.6111668489205982e-08
|
||||
1.9952623149688793e-05,1.605787590345069e-08
|
||||
1.9952623149688793e-05,1.5999991070923493e-08
|
||||
1.9952623149688793e-05,1.5937593322237167e-08
|
||||
1.9952623149688793e-05,1.5870186356579704e-08
|
||||
1.9952623149688793e-05,1.5797179398589402e-08
|
||||
1.9952623149688793e-05,1.571786206580071e-08
|
||||
1.9952623149688793e-05,1.5631370249579252e-08
|
||||
1.9952623149688793e-05,1.5536638858789946e-08
|
||||
1.9952623149688793e-05,1.5432334851502114e-08
|
||||
1.9952623149688793e-05,1.531675979078532e-08
|
||||
1.9952623149688793e-05,1.5187703614492156e-08
|
||||
1.9952623149688793e-05,1.5042217041806274e-08
|
||||
1.9952623149688793e-05,1.4876241470462273e-08
|
||||
1.9952623149688793e-05,1.4683973899785879e-08
|
||||
1.9952623149688793e-05,1.4456701012984246e-08
|
||||
1.9952623149688793e-05,1.4180462471172086e-08
|
||||
1.9952623149688793e-05,1.3830775406251184e-08
|
||||
1.9952623149688793e-05,1.3358478621325285e-08
|
||||
1.9952623149688793e-05,1.2639496244031593e-08
|
||||
1.9952623149688793e-05,1.1158426495504613e-08
|
||||
|
6
tests/data/test_fiber_flex_expected_results.csv
Normal file
6
tests/data/test_fiber_flex_expected_results.csv
Normal file
@@ -0,0 +1,6 @@
|
||||
signal,nli
|
||||
1.9952623149688793e-05,5.522326183599433e-09
|
||||
1.7957360834719913e-05,4.5606601423111315e-09
|
||||
2.593841009459543e-05,6.633717697038881e-09
|
||||
1.5962098519751036e-05,4.3237017878447286e-09
|
||||
2.3943147779626553e-05,8.311382502260195e-09
|
||||
|
96
tests/data/test_lumped_losses_fiber_no_pumps.csv
Normal file
96
tests/data/test_lumped_losses_fiber_no_pumps.csv
Normal file
@@ -0,0 +1,96 @@
|
||||
1.000000000000000021e-03,5.915557166626927424e-04,3.840877221245049653e-04,2.466727384040633977e-04,1.573474629975438242e-04,9.994300566924636483e-05,6.331217828438720550e-05,4.004003600460594289e-05,2.529553013238426405e-05
|
||||
1.000000000000000021e-03,5.910087140881509866e-04,3.835259923737136521e-04,2.462279833344210639e-04,1.570298910751132091e-04,9.972770370845923681e-05,6.317035443958771254e-05,3.994817502675088248e-05,2.523663218966317481e-05
|
||||
1.000000000000000021e-03,5.904624672772724710e-04,3.829653846278134621e-04,2.457842903404500092e-04,1.567131560243821098e-04,9.951300275831494635e-05,6.302894048828063141e-05,3.985658526347281646e-05,2.517791045472703461e-05
|
||||
1.000000000000000021e-03,5.899169734839467818e-04,3.824058950962419133e-04,2.453416557234028707e-04,1.563972548287988369e-04,9.929890059644241613e-05,6.288793488850426760e-05,3.976526568300959219e-05,2.511936425240675192e-05
|
||||
1.000000000000000021e-03,5.893722299298780965e-04,3.818475199355363483e-04,2.449000757332959262e-04,1.560821844312877747e-04,9.908539497140619857e-05,6.274733607851797545e-05,3.967421524053715842e-05,2.506099289905929403e-05
|
||||
1.000000000000000021e-03,5.888282338048204554e-04,3.812902552499899305e-04,2.444595465697163919e-04,1.557679417349789946e-04,9.887248360327203632e-05,6.260714247720703990e-05,3.958343287844485109e-05,2.500279570274922987e-05
|
||||
1.000000000000000021e-03,5.882849822668304897e-04,3.807340970923119234e-04,2.440200643826254091e-04,1.554545236039297650e-04,9.866016418416755746e-05,6.246735248448248958e-05,3.949291752660743311e-05,2.494477196342878550e-05
|
||||
1.000000000000000021e-03,5.877403241312353140e-04,3.801768826891299322e-04,2.435799392795756472e-04,1.551407333476893054e-04,9.844762961169771281e-05,6.232743618144160702e-05,3.940232665622856909e-05,2.488670234861411131e-05
|
||||
1.000000000000000021e-03,5.871942634186000593e-04,3.796186190022559433e-04,2.431391779090945110e-04,1.548265761463755335e-04,9.823488356157069126e-05,6.218739605181586088e-05,3.931166190013138108e-05,2.482858791458364441e-05
|
||||
1.000000000000000021e-03,5.866468041173980141e-04,3.790593129257516128e-04,2.426977868451053722e-04,1.545120571165502460e-04,9.802192966180839372e-05,6.204723454596646772e-05,3.922092486871354988e-05,2.477042970290643410e-05
|
||||
1.000000000000000021e-03,5.860979501842715923e-04,3.784989712866057847e-04,2.422557725877665796e-04,1.541971813119806349e-04,9.780877149334107738e-05,6.190695408131255699e-05,3.913011715023943305e-05,2.471222874063606835e-05
|
||||
1.000000000000000021e-03,5.855428054911818777e-04,3.779325362214322600e-04,2.418091152720060536e-04,1.538790714407033914e-04,9.759345536126727376e-05,6.176526646718061210e-05,3.903840385562048950e-05,2.465344951928800295e-05
|
||||
1.000000000000000021e-03,5.849813875456967485e-04,3.773600382625630725e-04,2.413578451141304101e-04,1.535577517356502032e-04,9.737599881379701964e-05,6.162218372343696363e-05,3.894579295722817337e-05,2.459409722576532997e-05
|
||||
1.000000000000000021e-03,5.844137140093277807e-04,3.767815081401627831e-04,2.409019924922280132e-04,1.532332465435331354e-04,9.715641947446165209e-05,6.147771791853056712e-05,3.885229245840823961e-05,2.453417706661341544e-05
|
||||
1.000000000000000021e-03,5.838398026969793654e-04,3.761969767804803125e-04,2.404415879440078890e-04,1.529055803229076760e-04,9.693473504062415536e-05,6.133188116843621776e-05,3.875791039276530608e-05,2.447369426754818325e-05
|
||||
1.000000000000000021e-03,5.832596715764015120e-04,3.756064753041117783e-04,2.399766621646476654e-04,1.525747776422469490e-04,9.671096328199675835e-05,6.118468563560254894e-05,3.866265482344967213e-05,2.441265407298631344e-05
|
||||
1.000000000000000021e-03,5.826733387676383139e-04,3.750100350242446291e-04,2.395072460046293692e-04,1.522408631780071723e-04,9.648512203915507620e-05,6.103614352789890607e-05,3.856653384244465896e-05,2.435106174557538284e-05
|
||||
1.000000000000000021e-03,5.820810441807425326e-04,3.744079089136845458e-04,2.390335428197917333e-04,1.519039834472631588e-04,9.625731118926498641e-05,6.088632085792882825e-05,3.846959029618343478e-05,2.428894479270876788e-05
|
||||
1.000000000000000021e-03,5.814828054675655030e-04,3.738001274474016776e-04,2.385555825972570808e-04,1.515641624143126585e-04,9.602754804766522702e-05,6.073522946956701240e-05,3.837183203343020677e-05,2.422630831805138899e-05
|
||||
1.000000000000000021e-03,5.808786404289665358e-04,3.731867212872194738e-04,2.380733954737781241e-04,1.512214241469207320e-04,9.579584999731260704e-05,6.058288124990010364e-05,3.827326693032387752e-05,2.416315744255338838e-05
|
||||
1.000000000000000021e-03,5.802685670142343878e-04,3.725677212800349654e-04,2.375870117335689917e-04,1.508757928143868079e-04,9.556223448729982074e-05,6.042928812817623899e-05,3.817390288966712009e-05,2.409949730398197492e-05
|
||||
1.000000000000000021e-03,5.796526968519212725e-04,3.719432545624587992e-04,2.370965379259533010e-04,1.505273470495264228e-04,9.532675589286383365e-05,6.027448635812982831e-05,3.807376356963088358e-05,2.403534314190221437e-05
|
||||
1.000000000000000021e-03,5.790310479093865609e-04,3.713133518665244839e-04,2.366020041460938778e-04,1.501761108339581341e-04,9.508943151110322721e-05,6.011848775803337427e-05,3.797285679655886708e-05,2.397070004317041725e-05
|
||||
1.000000000000000021e-03,5.784036383121742876e-04,3.706780441238009577e-04,2.361034406501071276e-04,1.498221082613785163e-04,9.485027871279472060e-05,5.996130419345521918e-05,3.787119042685209972e-05,2.390557311366359151e-05
|
||||
1.000000000000000021e-03,5.777704863433433301e-04,3.700373624633735868e-04,2.356008778526011383e-04,1.494653635353745394e-04,9.460931494071504256e-05,5.980294757607067669e-05,3.776877234616485572e-05,2.383996747774973522e-05
|
||||
1.000000000000000021e-03,5.771316104427772061e-04,3.693913382097967039e-04,2.350943463241932639e-04,1.491059009672212558e-04,9.436655770795449559e-05,5.964342986246977532e-05,3.766561046859827219e-05,2.377388827775711285e-05
|
||||
1.000000000000000021e-03,5.764870292064976651e-04,3.687400028810397501e-04,2.345838767890191692e-04,1.487437449736715462e-04,9.412202459622686095e-05,5.948276305296108525e-05,3.756171273589169023e-05,2.370734067344167480e-05
|
||||
1.000000000000000021e-03,5.758375946234993610e-04,3.680842155919215072e-04,2.340701414876563216e-04,1.483793719498717782e-04,9.387603703510192111e-05,5.932115823520561543e-05,3.745721560837426419e-05,2.364041205155829344e-05
|
||||
1.000000000000000021e-03,5.751833223951592329e-04,3.674240032104748388e-04,2.335531666416808738e-04,1.480128027327277474e-04,9.362861002461524574e-05,5.915862564500113025e-05,3.735212585887714390e-05,2.357310681190604310e-05
|
||||
1.000000000000000021e-03,5.745242283439769499e-04,3.667593927483133397e-04,2.330329785818580578e-04,1.476440582313571256e-04,9.337975861033522300e-05,5.899517554647101613e-05,3.724645027783519551e-05,2.350542936525477225e-05
|
||||
1.000000000000000021e-03,5.738603284130473379e-04,3.660904113590355527e-04,2.325096037462197861e-04,1.472731594253864234e-04,9.312949788206356194e-05,5.883081823114703288e-05,3.714019567266727830e-05,2.343738413293735195e-05
|
||||
1.000000000000000021e-03,5.731917314000997948e-04,3.654171810067180655e-04,2.319831433530600859e-04,1.469001805571756218e-04,9.287787898176902846e-05,5.866558771451522606e-05,3.703338420706373603e-05,2.336898537810763873e-05
|
||||
1.000000000000000021e-03,5.725184531760584700e-04,3.647397285916569422e-04,2.314536235223777264e-04,1.465251423190001693e-04,9.262491677678542706e-05,5.849949412959568328e-05,3.692602258076439168e-05,2.330023745100291859e-05
|
||||
1.000000000000000021e-03,5.718405097346714646e-04,3.640580811583470273e-04,2.309210704829702432e-04,1.461480654746279682e-04,9.237062617930094123e-05,5.833254763720848617e-05,3.681811751074023914e-05,2.323114471257928647e-05
|
||||
1.000000000000000021e-03,5.711579171919053044e-04,3.633722658937428313e-04,2.303855105703487465e-04,1.457689708574830614e-04,9.211502214495855044e-05,5.816475842498649012e-05,3.670967573052717390e-05,2.316171153407365905e-05
|
||||
1.000000000000000021e-03,5.704706917853448337e-04,3.626823101255147543e-04,2.298469702246577707e-04,1.453878793688169360e-04,9.185811967146480901e-05,5.799613670639434487e-05,3.660070398956385041e-05,2.309194229656875218e-05
|
||||
1.000000000000000021e-03,5.697788498735841109e-04,3.619882413202942504e-04,2.293054759885765847e-04,1.450048119758659754e-04,9.159993379718755254e-05,5.782669271974067121e-05,3.649120905252569737e-05,2.302184139055488024e-05
|
||||
1.000000000000000021e-03,5.690839249361781711e-04,3.612915831986411477e-04,2.287622092282637863e-04,1.446206010588695675e-04,9.134102410651873409e-05,5.765679311500335815e-05,3.638142760462866287e-05,2.295156024783083523e-05
|
||||
1.000000000000000021e-03,5.683859273133331363e-04,3.605923537461036641e-04,2.282171874164802170e-04,1.442352604283837097e-04,9.108140050118301682e-05,5.748644463023418617e-05,3.627136409615889481e-05,2.288110175599186700e-05
|
||||
1.000000000000000021e-03,5.676848674169825831e-04,3.598905710243090802e-04,2.276704280772651710e-04,1.438488039249314222e-04,9.082107289971861372e-05,5.731565401294060850e-05,3.616102298282374168e-05,2.281046880581413228e-05
|
||||
1.000000000000000021e-03,5.669807557304629327e-04,3.591862531699841626e-04,2.271219487847658911e-04,1.434612454179789358e-04,9.056005123670258442e-05,5.714442801953895405e-05,3.605040872538299508e-05,2.273966429101268041e-05
|
||||
1.000000000000000021e-03,5.662756696284717943e-04,3.584815135619230891e-04,2.265734124911083147e-04,1.430737675597642188e-04,9.029913524493678829e-05,5.697329258726415482e-05,3.593986162522089478e-05,2.266890625682277028e-05
|
||||
1.000000000000000021e-03,5.655696121370722921e-04,3.577763576655677066e-04,2.260248242651153531e-04,1.426863741861267136e-04,9.003832758694041048e-05,5.680224948786493348e-05,3.582938283523433764e-05,2.259819544408493697e-05
|
||||
1.000000000000000021e-03,5.648625863181645518e-04,3.570707909872514684e-04,2.254761892066869196e-04,1.422990691538204475e-04,8.977763093872482745e-05,5.663130050166089515e-05,3.571897351373497692e-05,2.252753259705453904e-05
|
||||
1.000000000000000021e-03,5.641545952693012783e-04,3.563648190736888295e-04,2.249275124461922067e-04,1.419118563399853763e-04,8.951704798938974166e-05,5.646044741725799208e-05,3.560863482425828067e-05,2.245691846327665519e-05
|
||||
1.000000000000000021e-03,5.634456421235028989e-04,3.556584475114634488e-04,2.243787991438712611e-04,1.415247396416227112e-04,8.925658144072659398e-05,5.628969203126926030e-05,3.549836793537420297e-05,2.238635379346144160e-05
|
||||
1.000000000000000021e-03,5.627357300490819225e-04,3.549516819265270164e-04,2.238300544892383743e-04,1.411377229750731741e-04,8.899623400682166435e-05,5.611903614803531905e-05,3.538817402049950172e-05,2.231583934136070575e-05
|
||||
1.000000000000000021e-03,5.620265745740795878e-04,3.542462045793823072e-04,2.232825718355581747e-04,1.407517127660701999e-04,8.873661298955798349e-05,5.594887683102661642e-05,3.527830905094599801e-05,2.224553873809700179e-05
|
||||
1.000000000000000021e-03,5.613181716914067464e-04,3.535420099674467737e-04,2.227363458317740963e-04,1.403667046661989041e-04,8.847771519474716161e-05,5.577921186868756777e-05,3.516877154903826080e-05,2.217545101761858074e-05
|
||||
1.000000000000000021e-03,5.606105174362018646e-04,3.528390926567629869e-04,2.221913711948466166e-04,1.399826943822104249e-04,8.821953746856249804e-05,5.561003907731979445e-05,3.505956005567386572e-05,2.210557522599888898e-05
|
||||
1.000000000000000021e-03,5.599036078855734169e-04,3.521374472813410678e-04,2.216476427089692435e-04,1.395996776753266513e-04,8.796207669700402236e-05,5.544135630070159596e-05,3.495067313006486022e-05,2.203591042126611129e-05
|
||||
1.000000000000000021e-03,5.591992581819900257e-04,3.514388991464684675e-04,2.211065862108586844e-04,1.392186639199167455e-04,8.770601346645835294e-05,5.527361030479937100e-05,3.484239951455165907e-05,2.196664147854661471e-05
|
||||
1.000000000000000021e-03,5.584974577369657654e-04,3.507434317312190116e-04,2.205681855748304113e-04,1.388396401724235928e-04,8.745133837595373525e-05,5.510679463338290224e-05,3.473473491875524963e-05,2.189776560286087024e-05
|
||||
1.000000000000000021e-03,5.577981960279812567e-04,3.500510286412654524e-04,2.200324248112712805e-04,1.384625936044855835e-04,8.719804211084999142e-05,5.494090289064881491e-05,3.462767509292537455e-05,2.182928002589032757e-05
|
||||
1.000000000000000021e-03,5.571014625980537805e-04,3.493616736077873519e-04,2.194992880653100025e-04,1.380875115017372141e-04,8.694611544190507637e-05,5.477592874055209164e-05,3.452121582748434684e-05,2.176118200567564087e-05
|
||||
1.000000000000000021e-03,5.564072470552914543e-04,3.486753504863699662e-04,2.189687596154907018e-04,1.377143812626113696e-04,8.669554922434540153e-05,5.461186590614181566e-05,3.441535295257522900e-05,2.169346882631773742e-05
|
||||
1.000000000000000021e-03,5.557155390724777657e-04,3.479920432559456848e-04,2.184408238724854000e-04,1.373431903971786034e-04,8.644633439696230146e-05,5.444870816891464747e-05,3.431008233762035268e-05,2.162613779768559453e-05
|
||||
1.000000000000000021e-03,5.550282308874212147e-04,3.473135853761227104e-04,2.179168797741835634e-04,1.369749146289257855e-04,8.619912270820690987e-05,5.428688083545962664e-05,3.420567782931384528e-05,2.155936384410790980e-05
|
||||
1.000000000000000021e-03,5.543453044039096641e-04,3.466399489498413807e-04,2.173969005859271932e-04,1.366095327799803094e-04,8.595389890905566596e-05,5.412637349122350694e-05,3.410213253115887156e-05,2.149314248283782383e-05
|
||||
1.000000000000000021e-03,5.536667416543260278e-04,3.459711063207645686e-04,2.168808598269340415e-04,1.362470238846985658e-04,8.571064790824490891e-05,5.396717583150281386e-05,3.399943962027434491e-05,2.142746927933548718e-05
|
||||
1.000000000000000021e-03,5.529925247987736454e-04,3.453070300711248903e-04,2.163687312677279435e-04,1.358873671873677324e-04,8.546935477049620155e-05,5.380927766017944798e-05,3.389759234653519571e-05,2.136233984669994517e-05
|
||||
1.000000000000000021e-03,5.523242123557685823e-04,3.446492679875326503e-04,2.158617145497228296e-04,1.355314077800207832e-04,8.523058755788532964e-05,5.365305115434923267e-05,3.379683095199963850e-05,2.129790788796336886e-05
|
||||
1.000000000000000021e-03,5.516617811459008413e-04,3.439977838203789025e-04,2.153597748770509342e-04,1.351791181086447731e-04,8.499432644189092710e-05,5.349848277838686991e-05,3.369714647650299112e-05,2.123416758034315385e-05
|
||||
1.000000000000000021e-03,5.510052081904127453e-04,3.433525416882428740e-04,2.148628778379304833e-04,1.348304709382760146e-04,8.476055183025699440e-05,5.334555916079864168e-05,3.359853006971443923e-05,2.117111317291617240e-05
|
||||
1.000000000000000021e-03,5.503544707098636342e-04,3.427135060745518090e-04,2.143709894006651793e-04,1.344854393494213974e-04,8.452924436422564868e-05,5.319426709225049006e-05,3.350097298979682009e-05,2.110873898573355285e-05
|
||||
1.000000000000000021e-03,5.497095461228062706e-04,3.420806418242862412e-04,2.138840759097000895e-04,1.341439967345312348e-04,8.430038491581448882e-05,5.304459352362807473e-05,3.340446660208796169e-05,2.104703940894962140e-05
|
||||
1.000000000000000021e-03,5.490704120444732210e-04,3.414539141407250565e-04,2.134021040817290626e-04,1.338061167945246396e-04,8.407395458513211085e-05,5.289652556412503305e-05,3.330900237780223545e-05,2.098600890196449472e-05
|
||||
1.000000000000000021e-03,5.484371298422446297e-04,3.408333692467681113e-04,2.129251024270059081e-04,1.334718163299163942e-04,8.384996326436759272e-05,5.275006911363530105e-05,3.321458388816914869e-05,2.092564965374723430e-05
|
||||
1.000000000000000021e-03,5.478096771889333057e-04,3.402189725469309967e-04,2.124530379214265854e-04,1.331410692793207290e-04,8.362839223924152716e-05,5.260521141428185532e-05,3.312120269498457291e-05,2.086595618361951373e-05
|
||||
1.000000000000000021e-03,5.471880319478338028e-04,3.396106897916775086e-04,2.119858778995733334e-04,1.328138498781884043e-04,8.340922301478033581e-05,5.246193986031627375e-05,3.302885046175365648e-05,2.080692307740899109e-05
|
||||
1.000000000000000021e-03,5.465721721714859958e-04,3.390084870743713592e-04,2.115235900510876890e-04,1.324901326555763298e-04,8.319243731282516567e-05,5.232024199634728476e-05,3.293751895248773966e-05,2.074854498665493433e-05
|
||||
1.000000000000000021e-03,5.459629241404544706e-04,3.384131725428774743e-04,2.110667946787101129e-04,1.321703518944146796e-04,8.297832591380873519e-05,5.218030786215170435e-05,3.284733064718059383e-05,2.069090019482566404e-05
|
||||
1.000000000000000021e-03,5.453602635114507746e-04,3.378247083723790616e-04,2.106154557101209946e-04,1.318544791589579420e-04,8.276686841524559784e-05,5.204212355675735553e-05,3.275827635494999894e-05,2.063398273378693265e-05
|
||||
1.000000000000000021e-03,5.447641661727002649e-04,3.372430571518834691e-04,2.101695374983407439e-04,1.315424863636820575e-04,8.255804467261116894e-05,5.190567535780167048e-05,3.267034700418964161e-05,2.057778671334094953e-05
|
||||
1.000000000000000021e-03,5.441746082424759419e-04,3.366681818805845774e-04,2.097290048174083239e-04,1.312343457694375884e-04,8.235183479637930588e-05,5.177094971942625129e-05,3.258353364113958107e-05,2.052230632028256941e-05
|
||||
1.000000000000000021e-03,5.435915660676414983e-04,3.361000459642789163e-04,2.092938228581225045e-04,1.309300299796617602e-04,8.214821914910500468e-05,5.163793327020207291e-05,3.249782742847867687e-05,2.046753581747058517e-05
|
||||
1.000000000000000021e-03,5.430150162222109568e-04,3.355386132118161487e-04,2.088639572238308215e-04,1.306295119366350911e-04,8.194717834254394587e-05,5.150661281108238069e-05,3.241321964393507540e-05,2.041346954291065543e-05
|
||||
1.000000000000000021e-03,5.424450181544462771e-04,3.349839271155603902e-04,2.084394340599780252e-04,1.303328067075743425e-04,8.174872108664715700e-05,5.137699346328779477e-05,3.232971335519106785e-05,2.036010936323692981e-05
|
||||
1.000000000000000021e-03,5.418815485793469040e-04,3.344359518126675877e-04,2.080202193468776877e-04,1.300398875631312602e-04,8.155282824274543232e-05,5.124906220377890154e-05,3.224729995882103797e-05,2.030744969463951815e-05
|
||||
1.000000000000000021e-03,5.413245844265015877e-04,3.338946518213946552e-04,2.076062794549138172e-04,1.297507280942760690e-04,8.135948090770286575e-05,5.112280617242197348e-05,3.216597096011364272e-05,2.025548502431296445e-05
|
||||
1.000000000000000021e-03,5.407741028387587183e-04,3.333599920378552692e-04,2.071975811406991498e-04,1.294653022088876294e-04,8.116866041129419294e-05,5.099821267012491396e-05,3.208571797180734118e-05,2.020420990962221080e-05
|
||||
1.000000000000000021e-03,5.402303025747014556e-04,3.328321561526745862e-04,2.067942601549091974e-04,1.291837026153304184e-04,8.098042783792958120e-05,5.087532120941394917e-05,3.200656629292941073e-05,2.015364045325785942e-05
|
||||
1.000000000000000021e-03,5.396931605409548225e-04,3.323111087173311550e-04,2.063962829591101838e-04,1.289059030082810651e-04,8.079476437365657295e-05,5.075411899733799342e-05,3.192850747587867838e-05,2.010377117411100997e-05
|
||||
1.000000000000000021e-03,5.391626538584482192e-04,3.317968146613820609e-04,2.060036164003212873e-04,1.286318773981824648e-04,8.061165143636152362e-05,5.063459340114707095e-05,3.185153317990099749e-05,2.005459666083220688e-05
|
||||
1.000000000000000021e-03,5.386387598611086340e-04,3.312892392892789490e-04,2.056162277072543561e-04,1.283616001079104806e-04,8.043107067321031531e-05,5.051673194647494236e-05,3.177563516985718072e-05,2.000611157101859271e-05
|
||||
1.000000000000000021e-03,5.381214560945620949e-04,3.307883482772016118e-04,2.052340844865845515e-04,1.280950457694747437e-04,8.025300395811590449e-05,5.040052231554306949e-05,3.170080531500530551e-05,1.995831063041139523e-05
|
||||
1.000000000000000021e-03,5.376107203148404326e-04,3.302941076699326679e-04,2.048571547192701043e-04,1.278321893207613302e-04,8.007743338923888358e-05,5.028595234538581714e-05,3.162703558779804923e-05,1.991118863210237610e-05
|
||||
1.000000000000000021e-03,5.371022748594453389e-04,3.298024246812891291e-04,2.044823390252625600e-04,1.275708788891961756e-04,7.990292563076895462e-05,5.017208832604374468e-05,3.155372544493714152e-05,1.986436223028797206e-05
|
||||
1.000000000000000021e-03,5.365961117498912114e-04,3.293132869081722108e-04,2.041096254707852251e-04,1.273111050031557620e-04,7.972947385597059739e-05,5.005892559260894715e-05,3.148087179640124731e-05,1.981782941609088261e-05
|
||||
1.000000000000000021e-03,5.360922230056120808e-04,3.288266819633119922e-04,2.037390021489647173e-04,1.270528582181514683e-04,7.955707126027152540e-05,4.994645949643470906e-05,3.140847156340457124e-05,1.977158818812822943e-05
|
||||
1.000000000000000021e-03,5.355906006439992324e-04,3.283425974753378354e-04,2.033704571798752555e-04,1.267961291168465381e-04,7.938571106126265876e-05,4.983468540512894492e-05,3.133652167839010846e-05,1.972563655250571181e-05
|
||||
1.000000000000000021e-03,5.350891259362026411e-04,3.278589502113704612e-04,2.030023855884717748e-04,1.265397912200834861e-04,7.921463777328526478e-05,4.972310904903239575e-05,3.126470337114675132e-05,1.967977067875568528e-05
|
||||
1.000000000000000021e-03,5.345877966909636306e-04,3.273757374134148111e-04,2.026347848040474173e-04,1.262838424862170036e-04,7.904384991646645146e-05,4.961172941171763403e-05,3.119301596587686584e-05,1.963399012641590455e-05
|
||||
1.000000000000000021e-03,5.340866106918126799e-04,3.268929562877650259e-04,2.022676522245876859e-04,1.260282808504260116e-04,7.887334599501782170e-05,4.950054546622813158e-05,3.112145877995456692e-05,1.958829445064508602e-05
|
||||
1.000000000000000021e-03,5.335855656972701092e-04,3.264106040054970534e-04,2.019009852173301103e-04,1.257731042251948573e-04,7.870312449759831505e-05,4.938955617533215942e-05,3.105003112409614148e-05,1.954268320233478379e-05
|
||||
1.000000000000000021e-03,5.330846594410641130e-04,3.259286777029715004e-04,2.015347811193284109e-04,1.255183105007985753e-04,7.853318389767883849e-05,4.927876049177821896e-05,3.097873230253197569e-05,1.949715592822227211e-05
|
||||
|
96
tests/data/test_lumped_losses_fiber_no_raman.csv
Normal file
96
tests/data/test_lumped_losses_fiber_no_raman.csv
Normal file
@@ -0,0 +1,96 @@
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
|
||||
|
98
tests/data/test_lumped_losses_raman_fiber.csv
Normal file
98
tests/data/test_lumped_losses_raman_fiber.csv
Normal file
@@ -0,0 +1,98 @@
|
||||
1.000000000000000021e-03,6.059428294303585358e-04,4.124436878765448634e-04,2.874462507798667202e-04,2.103923932407651741e-04,1.678414792051835720e-04,1.547359756068614396e-04,1.816771264024174659e-04,3.223716208702616772e-04
|
||||
1.000000000000000021e-03,6.053134417926274479e-04,4.117055522849718272e-04,2.867345754340725936e-04,2.097129658661858059e-04,1.671408382188599656e-04,1.538980727463440737e-04,1.804148897825019347e-04,3.196786917797407482e-04
|
||||
1.000000000000000021e-03,6.046849734433535663e-04,4.109690875237402238e-04,2.860250085842350751e-04,2.090360511584246736e-04,1.664434237997556567e-04,1.530650313352837862e-04,1.791618737991747007e-04,3.170092948646618079e-04
|
||||
1.000000000000000021e-03,6.040574211994215528e-04,4.102342878398261821e-04,2.853175420730359193e-04,2.083616379079277403e-04,1.657492189637676920e-04,1.522368203677859210e-04,1.779180061767344980e-04,3.143632101370558260e-04
|
||||
1.000000000000000021e-03,6.034068048547004811e-04,4.094522032835132145e-04,2.845379038962591819e-04,2.075849237814657072e-04,1.649065028354379026e-04,1.511673145690444625e-04,1.761800891032866087e-04,3.101696013411107001e-04
|
||||
1.000000000000000021e-03,6.027571485450614400e-04,4.086719523190792173e-04,2.837607352174946669e-04,2.068114158243908936e-04,1.640683639230874002e-04,1.501056331894667201e-04,1.744595725998800725e-04,3.060328853710948794e-04
|
||||
1.000000000000000021e-03,6.021084488423111532e-04,4.078935283235860985e-04,2.829860258399657913e-04,2.060410983394430761e-04,1.632347745793864737e-04,1.490517152618393740e-04,1.727562758069566841e-04,3.019522704750103072e-04
|
||||
1.000000000000000021e-03,6.014584946769776846e-04,4.071145901524401327e-04,2.822117789926256531e-04,2.052723360542508288e-04,1.624043320606193702e-04,1.480041851535097400e-04,1.710684425093964716e-04,2.979241342510260699e-04
|
||||
1.000000000000000021e-03,6.008072907871274187e-04,4.063351463691671850e-04,2.814380028310788616e-04,2.045051334722086352e-04,1.615770319309204608e-04,1.469630126571907884e-04,1.693959447695294284e-04,2.939478272988644745e-04
|
||||
1.000000000000000021e-03,6.001497788207915121e-04,4.055445944921290597e-04,2.806482406689155018e-04,2.037157793952982566e-04,1.607178158735042268e-04,1.458699426620449350e-04,1.676159912510077627e-04,2.896237141368235984e-04
|
||||
1.000000000000000021e-03,5.994910374944025042e-04,4.047535948218318100e-04,2.798590565363265966e-04,2.029281739019909579e-04,1.598620980598530251e-04,1.447840125437445142e-04,1.658536074234625343e-04,2.853613427461420497e-04
|
||||
1.000000000000000021e-03,5.988260139740232213e-04,4.039566207302157830e-04,2.790656268334378021e-04,2.021383019157014865e-04,1.590064003284783227e-04,1.437018088215471850e-04,1.641044980680633682e-04,2.811520890672289147e-04
|
||||
1.000000000000000021e-03,5.981547295973556680e-04,4.031537149116132062e-04,2.782680029999613086e-04,2.013462168991827844e-04,1.581507747250400562e-04,1.426233730149128554e-04,1.623686402996199669e-04,2.769954674673250896e-04
|
||||
1.000000000000000021e-03,5.974772058480589884e-04,4.023449202032754039e-04,2.774662364916018848e-04,2.005519721420980883e-04,1.572952728586730247e-04,1.415487458023807841e-04,1.606460099014084351e-04,2.728909933446289080e-04
|
||||
1.000000000000000021e-03,5.967924602151245417e-04,4.015280354275974962e-04,2.766567170422079059e-04,1.997501120648868605e-04,1.564314572956195643e-04,1.404632320601022135e-04,1.589039550526354799e-04,2.687258582080010155e-04
|
||||
1.000000000000000021e-03,5.961015210291329552e-04,4.007053572943599577e-04,2.758431797434220318e-04,1.989462429758611403e-04,1.555679612182393453e-04,1.393818318435550562e-04,1.571757793000612348e-04,2.646152969711955188e-04
|
||||
1.000000000000000021e-03,5.954044103428367566e-04,3.998769294251378363e-04,2.750256766566040972e-04,1.981404183299118591e-04,1.547048355449558708e-04,1.383045830163869136e-04,1.554614480121203164e-04,2.605587686095252363e-04
|
||||
1.000000000000000021e-03,5.947013777400173224e-04,3.990430339362700481e-04,2.742044609070656662e-04,1.973328535702731791e-04,1.538422664307762401e-04,1.372316495983985922e-04,1.537610729441031576e-04,2.565559887984316962e-04
|
||||
1.000000000000000021e-03,5.939924446448691022e-04,3.982037130272156897e-04,2.733795825341983144e-04,1.965235995659166514e-04,1.529803013963573505e-04,1.361630645638145173e-04,1.520746117923915490e-04,2.526064078268458078e-04
|
||||
1.000000000000000021e-03,5.932708072008613994e-04,3.973448313523968048e-04,2.725292879585060313e-04,1.956816407574392804e-04,1.520737532268283138e-04,1.350253536692922732e-04,1.502520417395671493e-04,2.482429369311983419e-04
|
||||
1.000000000000000021e-03,5.925433291275937313e-04,3.964806700993557770e-04,2.716755655440644093e-04,1.948383564731119815e-04,1.511684275731327428e-04,1.338932464840604031e-04,1.484467502756363724e-04,2.439468427807235304e-04
|
||||
1.000000000000000021e-03,5.918101288584805405e-04,3.956113769664689763e-04,2.708185566039283476e-04,1.939938721213093850e-04,1.502644330979066827e-04,1.327668256867655240e-04,1.466587172007617287e-04,2.397173806066686273e-04
|
||||
1.000000000000000021e-03,5.910712282476807177e-04,3.947369945531709078e-04,2.699583111402765676e-04,1.931482375169864133e-04,1.493618135415682949e-04,1.316461114156967569e-04,1.448878476419733323e-04,2.355536787532183434e-04
|
||||
1.000000000000000021e-03,5.903266492974269808e-04,3.938575655934699066e-04,2.690948791496987824e-04,1.923015022699072797e-04,1.484606121781560119e-04,1.305311230155930472e-04,1.431340460611192763e-04,2.314548735305102924e-04
|
||||
1.000000000000000021e-03,5.895916361077759233e-04,3.930015889157450278e-04,2.682679585446747167e-04,1.915046725018171748e-04,1.476265343831741983e-04,1.295122987364192039e-04,1.415403000102364922e-04,2.277048762028301403e-04
|
||||
1.000000000000000021e-03,5.888509505821538188e-04,3.921405251235485093e-04,2.674377005486313469e-04,1.907064029438769275e-04,1.467931904457939435e-04,1.284977589807231727e-04,1.399600943498011466e-04,2.240084844157824847e-04
|
||||
1.000000000000000021e-03,5.881046147353881284e-04,3.912744162777674595e-04,2.666041537474170709e-04,1.899067416692393098e-04,1.459606238177286390e-04,1.274875313353729649e-04,1.383933775516596422e-04,2.203650745808937968e-04
|
||||
1.000000000000000021e-03,5.873535041835053691e-04,3.904041908037584924e-04,2.657681073335506784e-04,1.891063272435359547e-04,1.451293640595985746e-04,1.264820875947550167e-04,1.368405966876043531e-04,2.167748460671411873e-04
|
||||
1.000000000000000021e-03,5.865976375297720377e-04,3.895298843642901903e-04,2.649296021207307814e-04,1.883051991594097421e-04,1.442994447916011967e-04,1.254814426573682665e-04,1.353016807452276011e-04,2.132371421364682767e-04
|
||||
1.000000000000000021e-03,5.858370334908887412e-04,3.886515327161476187e-04,2.640886789067201177e-04,1.875033967487228748e-04,1.434708992929061271e-04,1.244856108614830043e-04,1.337765582492128895e-04,2.097513117892475961e-04
|
||||
1.000000000000000021e-03,5.850717109173866415e-04,3.877691717638952012e-04,2.632453785571107932e-04,1.867009592919541521e-04,1.426437606415217971e-04,1.234946061839636009e-04,1.322651576281378186e-04,2.063167108712882474e-04
|
||||
1.000000000000000021e-03,5.843017841779564719e-04,3.868829399849727933e-04,2.623998297381095117e-04,1.858979973489535589e-04,1.418181214209275826e-04,1.225084976697060233e-04,1.307674705482058720e-04,2.029328092689827875e-04
|
||||
1.000000000000000021e-03,5.835272719783185817e-04,3.859928727352694559e-04,2.615520723807220407e-04,1.850945488934469029e-04,1.409940129261724197e-04,1.215272967897141737e-04,1.292834223062770812e-04,1.995989685833853672e-04
|
||||
1.000000000000000021e-03,5.827481931390192209e-04,3.850990054645316799e-04,2.607021463995574332e-04,1.842906517410432266e-04,1.401714661235729505e-04,1.205510144929276286e-04,1.278129378421479238e-04,1.963145562589016025e-04
|
||||
1.000000000000000021e-03,5.819741190680906414e-04,3.842186528659996786e-04,2.598733678747139103e-04,1.835150990942780922e-04,1.393856353878371876e-04,1.196241043053028848e-04,1.264157249384978508e-04,1.931533527071859933e-04
|
||||
1.000000000000000021e-03,5.811954906857532679e-04,3.833344911530978875e-04,2.590423495637437460e-04,1.827389251971546448e-04,1.386010231640464696e-04,1.187014313463915350e-04,1.250305871218520724e-04,1.900379005692562904e-04
|
||||
1.000000000000000021e-03,5.804123268686601621e-04,3.824465553881609072e-04,2.582091305240798466e-04,1.819621668943112273e-04,1.378176602140172575e-04,1.177830097537161525e-04,1.236574657124121280e-04,1.869676369318762604e-04
|
||||
1.000000000000000021e-03,5.796261981805348861e-04,3.815564763513873891e-04,2.573750710547324729e-04,1.811859034357266680e-04,1.370364232713841633e-04,1.168696105278517803e-04,1.222971239749574140e-04,1.839432835829867073e-04
|
||||
1.000000000000000021e-03,5.788371166298537929e-04,3.806642767897665215e-04,2.565401959245502722e-04,1.804101566728638260e-04,1.362573268495191094e-04,1.159612279572367423e-04,1.209494737333099285e-04,1.809642226433420603e-04
|
||||
1.000000000000000021e-03,5.780450942923127944e-04,3.797699794962239458e-04,2.557045298790712744e-04,1.796349483543752492e-04,1.354803852765658562e-04,1.150578560981921263e-04,1.196144270262388971e-04,1.780298433107154344e-04
|
||||
1.000000000000000021e-03,5.772501433097143196e-04,3.788736073065085246e-04,2.548680976361037374e-04,1.788603001211915217e-04,1.347056126906417029e-04,1.141594887707218423e-04,1.182918961012392148e-04,1.751395417672447184e-04
|
||||
1.000000000000000021e-03,5.764543993312114430e-04,3.779774418763772749e-04,2.540328419678222955e-04,1.780877776040980329e-04,1.339342982068885400e-04,1.132672798320007770e-04,1.169830787460522149e-04,1.722947974180976999e-04
|
||||
1.000000000000000021e-03,5.756578658699793754e-04,3.770814893242558957e-04,2.531987675065141240e-04,1.773173809352787060e-04,1.331664323570320042e-04,1.123811939733057949e-04,1.156878429947367658e-04,1.694949148917899182e-04
|
||||
1.000000000000000021e-03,5.748605464740858808e-04,3.761857558021953151e-04,2.523658789003789082e-04,1.765491102506614579e-04,1.324020056947932127e-04,1.115011960644554309e-04,1.144060580710201219e-04,1.667392091004694466e-04
|
||||
1.000000000000000021e-03,5.740605208264367093e-04,3.752860221900411030e-04,2.515274179172670150e-04,1.757730484194969538e-04,1.316262968484167275e-04,1.106031805667756002e-04,1.130890327345630944e-04,1.638824360782746060e-04
|
||||
1.000000000000000021e-03,5.732597217139582440e-04,3.743865400085843336e-04,2.506901966657434509e-04,1.749991992264989145e-04,1.308541788026545852e-04,1.097115653341001649e-04,1.117862964715498958e-04,1.610733229285059244e-04
|
||||
1.000000000000000021e-03,5.724581527307928295e-04,3.734873153380866809e-04,2.498542195054800734e-04,1.742275621656188764e-04,1.300856406740597557e-04,1.088263113284397853e-04,1.104977038827086933e-04,1.583110954216201049e-04
|
||||
1.000000000000000021e-03,5.716575664778975139e-04,3.725901351223118402e-04,2.490209518882956956e-04,1.734592774731394025e-04,1.293215843757922266e-04,1.079481792373105579e-04,1.092239503861538297e-04,1.555962288273640454e-04
|
||||
1.000000000000000021e-03,5.708579584178212615e-04,3.716949912014026899e-04,2.481903820156593069e-04,1.726943281050015661e-04,1.285619816677677630e-04,1.070771097820554131e-04,1.079648627815312081e-04,1.529279069228532445e-04
|
||||
1.000000000000000021e-03,5.700593240595020362e-04,3.708018755033176054e-04,2.473624982033243466e-04,1.719326971657234189e-04,1.278068045492097274e-04,1.062130442456755448e-04,1.067202699871894330e-04,1.503053277730467872e-04
|
||||
1.000000000000000021e-03,5.692616589508734098e-04,3.699107800243283187e-04,2.465372888514933574e-04,1.711743678703278799e-04,1.270560252111956913e-04,1.053559244063845252e-04,1.054900029091859618e-04,1.477277031714797602e-04
|
||||
1.000000000000000021e-03,5.684668249800580104e-04,3.690236622787805977e-04,2.457163959794073484e-04,1.704206404911772779e-04,1.263106878677109810e-04,1.045066466916437628e-04,1.042749156168111009e-04,1.451958181660296986e-04
|
||||
1.000000000000000021e-03,5.676748100054150635e-04,3.681404996529084395e-04,2.448997907163580324e-04,1.696714800685054925e-04,1.255707452244580493e-04,1.036651297187654374e-04,1.030748062779383314e-04,1.427088285865420875e-04
|
||||
1.000000000000000021e-03,5.668856019606317766e-04,3.672612697075048303e-04,2.440874444423345342e-04,1.689268519744038289e-04,1.248361504800705925e-04,1.028312930702206035e-04,1.018894759794533339e-04,1.402659065748177792e-04
|
||||
1.000000000000000021e-03,5.660978860040193896e-04,3.663833351346186431e-04,2.432754355983019401e-04,1.681813812071888568e-04,1.240994738987429935e-04,1.019939514788640786e-04,1.006986246362622330e-04,1.378144424939918523e-04
|
||||
1.000000000000000021e-03,5.653129566917403656e-04,3.655093013788168949e-04,2.424676550876819162e-04,1.674404214250226010e-04,1.233681396595080271e-04,1.011643116013039457e-04,9.952262825359122704e-05,1.354072260989254840e-04
|
||||
1.000000000000000021e-03,5.645308021917731225e-04,3.646391464999218838e-04,2.416640749146854532e-04,1.667039386446287719e-04,1.226421015627000995e-04,1.003422934745905857e-04,9.836128786277046102e-05,1.330434286087782230e-04
|
||||
1.000000000000000021e-03,5.637533512715803535e-04,3.637748048842355184e-04,2.408662573039999728e-04,1.659731272165147797e-04,1.219222820499958832e-04,9.952864742131557339e-05,9.721524794079934454e-05,1.307234068834026641e-04
|
||||
1.000000000000000021e-03,5.629805832911210584e-04,3.629162394326295588e-04,2.400741573155354143e-04,1.652479360999081315e-04,1.212086174287677493e-04,9.872327382660381703e-05,9.608428430098295324e-05,1.284463004684426848e-04
|
||||
1.000000000000000021e-03,5.622124777547171659e-04,3.620634133660168507e-04,2.392877304473862261e-04,1.645283148026117340e-04,1.205010447638324016e-04,9.792607442008048754e-05,9.496817636981473815e-05,1.262112668660531425e-04
|
||||
1.000000000000000021e-03,5.614490142952067260e-04,3.612162901840461500e-04,2.385069325732311319e-04,1.638142133018547766e-04,1.197995017798251111e-04,9.713695214164584071e-05,9.386670693673759554e-05,1.240174806289624668e-04
|
||||
1.000000000000000021e-03,5.606917876274927293e-04,3.603765175920537237e-04,2.377331235014221514e-04,1.631066878653574946e-04,1.191048135885559178e-04,9.635658300529022745e-05,9.278045936752733660e-05,1.218652818497198865e-04
|
||||
1.000000000000000021e-03,5.599407711882442139e-04,3.595440474626148916e-04,2.369662455139816704e-04,1.624056743525901679e-04,1.184169030927857740e-04,9.558485302446070387e-05,9.170919453133945438e-05,1.197538170918552259e-04
|
||||
1.000000000000000021e-03,5.591959386362445371e-04,3.587188321446053963e-04,2.362062415256148103e-04,1.617111093879153761e-04,1.177356942042864595e-04,9.482164989506947420e-05,9.065267746151001182e-05,1.176822517560764241e-04
|
||||
1.000000000000000021e-03,5.584679347085343051e-04,3.579204847030152616e-04,2.354801209260217886e-04,1.610571916563278928e-04,1.171042314833950021e-04,9.412413419793498636e-05,8.969710985766721223e-05,1.158171674873524301e-04
|
||||
1.000000000000000021e-03,5.577460350040716044e-04,3.571292104088583889e-04,2.347605938090600918e-04,1.604093154405005178e-04,1.164788453357124725e-04,9.343405219685640224e-05,8.875393403591714169e-05,1.139848385910069905e-04
|
||||
1.000000000000000021e-03,5.570302142000897652e-04,3.563449642017089015e-04,2.340476072540025119e-04,1.597674235279283352e-04,1.158594695166401697e-04,9.275131062844492946e-05,8.782296490203555085e-05,1.121846347113116888e-04
|
||||
1.000000000000000021e-03,5.563205323021954991e-04,3.555677864531773679e-04,2.333411773810724506e-04,1.591315117132938270e-04,1.152460793074575203e-04,9.207585166649024939e-05,8.690405384945894284e-05,1.104159825692847303e-04
|
||||
1.000000000000000021e-03,5.556169640414684949e-04,3.547976323593042547e-04,2.326412517183593022e-04,1.585015234268918286e-04,1.146386094395640093e-04,9.140758389001004606e-05,8.599702078916069998e-05,1.086782756746748250e-04
|
||||
1.000000000000000021e-03,5.549194843577821444e-04,3.540344575531629255e-04,2.319477783590319386e-04,1.578774027587701891e-04,1.140369954748351631e-04,9.074641718074756330e-05,8.510168863112195785e-05,1.069709201912467553e-04
|
||||
1.000000000000000021e-03,5.542280683854123842e-04,3.532782180675540329e-04,2.312607059053527040e-04,1.572590943887706505e-04,1.134411737206307899e-04,9.009226260907148270e-05,8.421788308143062266e-05,1.052933342707317640e-04
|
||||
1.000000000000000021e-03,5.535435592528614506e-04,3.525297669260542646e-04,2.305807244353639423e-04,1.566471216497641210e-04,1.128515385449576329e-04,8.944542244330133641e-05,8.334582247054855841e-05,1.036454797753234207e-04
|
||||
1.000000000000000021e-03,5.528659293179593237e-04,3.517890550472092793e-04,2.299077767025847687e-04,1.560414233076215052e-04,1.122680202866636689e-04,8.880580140054516926e-05,8.248532556564376009e-05,1.020267728319692934e-04
|
||||
1.000000000000000021e-03,5.521951511907441769e-04,3.510560338657343622e-04,2.292418061160320900e-04,1.554419388795865483e-04,1.116905502099227850e-04,8.817330560855271690e-05,8.163621425685595255e-05,1.004366420798761639e-04
|
||||
1.000000000000000021e-03,5.515357570680511773e-04,3.503384240935171457e-04,2.285926195257032088e-04,1.548599664871607589e-04,1.111316359132737570e-04,8.756139732097920178e-05,8.081143045355856274e-05,9.887558842870256459e-05
|
||||
1.000000000000000021e-03,5.508831499695134287e-04,3.496283778737561509e-04,2.279502431225978031e-04,1.542840041018178729e-04,1.105785086338880569e-04,8.695624145470242240e-05,7.999741899881025698e-05,9.734197099681332458e-05
|
||||
1.000000000000000021e-03,5.502373034395177318e-04,3.489258487042028742e-04,2.273146231686837553e-04,1.537139948092133693e-04,1.100311043442569531e-04,8.635775141128424154e-05,7.919401605398894981e-05,9.583525507692383649e-05
|
||||
1.000000000000000021e-03,5.495982753581815606e-04,3.482308738101717264e-04,2.266857730549029851e-04,1.531499327576744506e-04,1.094893985055618503e-04,8.576587362490598130e-05,7.840109070036870779e-05,9.435495486246966317e-05
|
||||
1.000000000000000021e-03,5.489660394111083985e-04,3.475434070850742167e-04,2.260636396270461598e-04,1.525917617808240120e-04,1.089533281238570496e-04,8.518052329278025009e-05,7.761848365092111231e-05,9.290055631012179708e-05
|
||||
1.000000000000000021e-03,5.483405695169031721e-04,3.468634028939242666e-04,2.254481703234268038e-04,1.520394263837190755e-04,1.084228310216190315e-04,8.460161684084565312e-05,7.684603831721497692e-05,9.147155629123523643e-05
|
||||
1.000000000000000021e-03,5.477218398160970184e-04,3.461908160447295835e-04,2.248393131323322177e-04,1.514928716901747189e-04,1.078978457743454979e-04,8.402907183940372035e-05,7.608360066029366266e-05,9.006746210081428210e-05
|
||||
1.000000000000000021e-03,5.471100509830739483e-04,3.455258336641454844e-04,2.242372067336963117e-04,1.509521904405796073e-04,1.073784265457052923e-04,8.346290305268591516e-05,7.533111218717854750e-05,8.868791149478115541e-05
|
||||
1.000000000000000021e-03,5.465051768578450733e-04,3.448684100639811626e-04,2.236417986238402995e-04,1.504173273640432558e-04,1.068645117117092864e-04,8.290302835464549746e-05,7.458842111919879593e-05,8.733242665255502488e-05
|
||||
1.000000000000000021e-03,5.459071915129861232e-04,3.442185000233075119e-04,2.230530368831633737e-04,1.498882278486614187e-04,1.063560404456327061e-04,8.234936680962616474e-05,7.385537825478157199e-05,8.600053991717240256e-05
|
||||
1.000000000000000021e-03,5.453277270883248422e-04,3.435968835063559607e-04,2.224987019123045480e-04,1.493989071766017103e-04,1.058939742146122178e-04,8.185283432112488435e-05,7.320083692872619591e-05,8.480120525436834187e-05
|
||||
1.000000000000000021e-03,5.447550756300442850e-04,3.429826158632724655e-04,2.219507707465509202e-04,1.489150144895505707e-04,1.054368625228528346e-04,8.136171358212484941e-05,7.255437084770181432e-05,8.362138199130290570e-05
|
||||
1.000000000000000021e-03,5.441892122953419404e-04,3.423756544954533452e-04,2.214091954721005766e-04,1.484365007267826825e-04,1.049846526338566485e-04,8.087593753205775274e-05,7.191586230794716592e-05,8.246071125248328093e-05
|
||||
1.000000000000000021e-03,5.436257869834306257e-04,3.417717090501741430e-04,2.208705585733095858e-04,1.479607869104501987e-04,1.045353737048878776e-04,8.039389156994272538e-05,7.128377081045688692e-05,8.131715986317171246e-05
|
||||
1.000000000000000021e-03,5.430647907230928004e-04,3.411707635569704330e-04,2.203348411819341208e-04,1.474878525008424264e-04,1.040890016129762040e-04,7.991554062444546221e-05,7.065802258502740848e-05,8.019045690600123673e-05
|
||||
1.000000000000000021e-03,5.425062145452035425e-04,3.405728020832017003e-04,2.198020245085192449e-04,1.470176770797095381e-04,1.036455124224165388e-04,7.944084996986793814e-05,7.003854478529189314e-05,7.908033605497744685e-05
|
||||
1.000000000000000021e-03,5.419500494783734655e-04,3.399778087230425684e-04,2.192720898259863408e-04,1.465502403299397984e-04,1.032048823605461293e-04,7.896978519468913008e-05,6.942526543493823701e-05,7.798653539704048551e-05
|
||||
1.000000000000000021e-03,5.413941311127808435e-04,3.393835756573481376e-04,2.187432334857416756e-04,1.460841531649274296e-04,1.027660304092932323e-04,7.850144313387483587e-05,6.881729624423716459e-05,7.690779566810491681e-05
|
||||
1.000000000000000021e-03,5.408384570747234218e-04,3.387900992487282684e-04,2.182154508640741402e-04,1.456194096560940569e-04,1.023289477092565169e-04,7.803580657419308998e-05,6.821458972979072498e-05,7.584390730667668775e-05
|
||||
1.000000000000000021e-03,5.402830249660243826e-04,3.381973758275843189e-04,2.176887373150658610e-04,1.451560038709627043e-04,1.018936254270842219e-04,7.757285840469518032e-05,6.761709884283491779e-05,7.479466373034050742e-05
|
||||
1.000000000000000021e-03,5.397131798668998448e-04,3.375789411508863902e-04,2.171273238640323091e-04,1.446496280566233409e-04,1.014059885387841374e-04,7.704415358894297196e-05,6.692941074150365747e-05,7.359880640935691578e-05
|
||||
1.000000000000000021e-03,5.391436022217508317e-04,3.369613465901344558e-04,2.165671485747253328e-04,1.441448734692186333e-04,1.009205829600201576e-04,7.651897498112265308e-05,6.624864922679121694e-05,7.242198835523922060e-05
|
||||
1.223599761281599736e-03,2.870574988594920204e-03,5.410558860144323162e-03,9.740321680379944794e-03,1.718226620812626088e-02,3.032327552654904765e-02,5.460894525232919822e-02,1.025522470341594938e-01,2.059999999999999887e-01
|
||||
4.083745694274921144e-03,8.369042825128880300e-03,1.439530071705045523e-02,2.397223043565064812e-02,3.897486419880552555e-02,6.202545653148217042e-02,9.626510461383173956e-02,1.437785279168776742e-01,2.000000000000000111e-01
|
||||
|
36
tests/data/test_lumped_losses_raman_fiber_config.json
Normal file
36
tests/data/test_lumped_losses_raman_fiber_config.json
Normal file
@@ -0,0 +1,36 @@
|
||||
{
|
||||
"uid": "Span1",
|
||||
"params": {
|
||||
"length": 80,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0,
|
||||
"con_in": 0.5,
|
||||
"con_out": 0.0,
|
||||
"lumped_losses": [
|
||||
{
|
||||
"position": 7,
|
||||
"loss": 0.5
|
||||
}
|
||||
],
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 0.0000167,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
"operational": {
|
||||
"temperature": 283,
|
||||
"raman_pumps": [
|
||||
{
|
||||
"power": 0.2,
|
||||
"frequency": 205000000000000,
|
||||
"propagation_direction": "counterprop"
|
||||
},
|
||||
{
|
||||
"power": 0.206,
|
||||
"frequency": 201000000000000,
|
||||
"propagation_direction": "counterprop"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
97
tests/data/test_raman_fiber_expected_results.csv
Normal file
97
tests/data/test_raman_fiber_expected_results.csv
Normal file
@@ -0,0 +1,97 @@
|
||||
,signal,ase,nli
|
||||
0,0.0002866683470642085,3.455694800734997e-08,2.1767706055953313e-07
|
||||
1,0.0002842930902246378,3.4445260342151434e-08,2.20064716108892e-07
|
||||
2,0.00028193841273409963,3.4334217950641774e-08,2.2239856929822977e-07
|
||||
3,0.0002796041237984927,3.422381587730477e-08,2.2467937700272344e-07
|
||||
4,0.00027589218358262,3.3956266402003705e-08,2.2576401766047814e-07
|
||||
5,0.0002722303444814487,3.3690926476196685e-08,2.2678094635121413e-07
|
||||
6,0.00026861791294303266,3.342777134334201e-08,2.2773179097640802e-07
|
||||
7,0.00026505174756069215,3.316675429137828e-08,2.2861602718115889e-07
|
||||
8,0.0002615312775878486,3.290785186664305e-08,2.294352005376256e-07
|
||||
9,0.0002577007690018081,3.26092154155734e-08,2.2987401053105823e-07
|
||||
10,0.00025392474812815994,3.231329178154223e-08,2.3024928325076607e-07
|
||||
11,0.0002501957390130402,3.201993265117851e-08,2.3055653947072044e-07
|
||||
12,0.0002465133077961936,3.172911082648897e-08,2.3079745224174315e-07
|
||||
13,0.00024287702172285261,3.144079924487205e-08,2.309736700807475e-07
|
||||
14,0.00023918644496802598,3.1142660565561954e-08,2.3099023972100006e-07
|
||||
15,0.00023554415781363666,3.084719002003063e-08,2.3094533745656626e-07
|
||||
16,0.0002319496781605366,3.0554358283826426e-08,2.3084061926161906e-07
|
||||
17,0.000228402746264896,3.026413819712743e-08,2.306779372506828e-07
|
||||
18,0.00022490287297566154,2.997650061885732e-08,2.2679314039447925e-07
|
||||
19,0.0002210339853226993,2.9639081336421986e-08,2.225476971173533e-07
|
||||
20,0.00021722472675673681,2.9305156366940595e-08,2.1837424228396343e-07
|
||||
21,0.00021347443350916938,2.8974683300060073e-08,2.1427183120915025e-07
|
||||
22,0.00020978233224910872,2.864761802749998e-08,2.1023941353936252e-07
|
||||
23,0.0002061476568412488,2.832391679540816e-08,2.0627595093585302e-07
|
||||
24,0.0002028237056285935,2.8034565895618217e-08,2.0263423697267893e-07
|
||||
25,0.00019954715529254185,2.7748013284124615e-08,1.9905015325521452e-07
|
||||
26,0.0001963174528000437,2.7464226779716075e-08,1.9552292765090665e-07
|
||||
27,0.00019313475803109547,2.718318103861899e-08,1.920525003885138e-07
|
||||
28,0.00018999848980183525,2.6904843987797665e-08,1.8863807494364378e-07
|
||||
29,0.00018690807208013476,2.6629183784477213e-08,1.852788635171717e-07
|
||||
30,0.00018386293497138034,2.635616888672288e-08,1.8197408797080072e-07
|
||||
31,0.0001808626075954048,2.608576967648626e-08,1.7872307155753016e-07
|
||||
32,0.00017790652540681915,2.5817954962418864e-08,1.7552504805064169e-07
|
||||
33,0.00017499412908771533,2.5552693765056307e-08,1.723792598876346e-07
|
||||
34,0.0001721914205512116,2.529821177538242e-08,1.69350416018518e-07
|
||||
35,0.00016942913344260413,2.5046172734840803e-08,1.663699885487624e-07
|
||||
36,0.0001667067703020692,2.4796549229968703e-08,1.6343730102750106e-07
|
||||
37,0.00016402494737034808,2.4549324625938814e-08,1.602954566731582e-07
|
||||
38,0.0001613831201060569,2.430447139995257e-08,1.5720933628441338e-07
|
||||
39,0.00015878075021906192,2.406196225171638e-08,1.541780421866172e-07
|
||||
40,0.00015621730558753943,2.3821770097360405e-08,1.5120068940449393e-07
|
||||
41,0.000153694061439545,2.3583901792213434e-08,1.4827814327673852e-07
|
||||
42,0.00015121040694331307,2.3348329147104765e-08,1.4540943949658482e-07
|
||||
43,0.00014876574026315321,2.3115024224465226e-08,1.425936300160931e-07
|
||||
44,0.00014623043935025647,2.2864250993313975e-08,1.397065102093322e-07
|
||||
45,0.00014373723010448477,2.2616046400344574e-08,1.3687531950007013e-07
|
||||
46,0.0001412854316913198,2.2370377299191064e-08,1.3409901704421416e-07
|
||||
47,0.00013887544742801196,2.2127221340618422e-08,1.313775961274423e-07
|
||||
48,0.0001365065605420479,2.1886545482453933e-08,1.2870998887773554e-07
|
||||
49,0.00013417806673897108,2.164831702445933e-08,1.2609514810979993e-07
|
||||
50,0.00013188927370907155,2.1412503578881085e-08,1.2353204666803017e-07
|
||||
51,0.00012964085531237725,2.117909919147538e-08,1.2102094138348867e-07
|
||||
52,0.00012743207116500861,2.094807084934547e-08,1.1856076487337955e-07
|
||||
53,0.0001252621950917354,2.0719385892834214e-08,1.161504721855161e-07
|
||||
54,0.00012308423338164536,2.0485363383535514e-08,1.1374627006340893e-07
|
||||
55,0.00012094535834842106,2.0253755300794944e-08,1.1139168040879032e-07
|
||||
56,0.00011884484242431182,2.0024527468430072e-08,1.0897675288127846e-07
|
||||
57,0.00011678298769107047,1.9797656169961167e-08,1.0661409941810817e-07
|
||||
58,0.0001147590394591346,1.9573107382367898e-08,1.0430256532408603e-07
|
||||
59,0.00011277225867179729,1.935084744632288e-08,1.0204102225018314e-07
|
||||
60,0.00011082192110664448,1.913084301808743e-08,9.982836715827351e-08
|
||||
61,0.00010890831555726861,1.8913080844667903e-08,9.76644171489201e-08
|
||||
62,0.00010703069380321927,1.8697527263494167e-08,9.554805889434612e-08
|
||||
63,0.00010518832400867466,1.8484148971365717e-08,9.347820572370307e-08
|
||||
64,0.00010353027948847247,1.8300360477604286e-08,9.158630538270034e-08
|
||||
65,0.00010190114820620951,1.8118339508838893e-08,8.97332684173061e-08
|
||||
66,0.00010030037817345079,1.7938063167097722e-08,8.791826040657302e-08
|
||||
67,9.872746699919663e-05,1.775950920143011e-08,8.614049912759125e-08
|
||||
68,9.718188342878233e-05,1.7582655209782296e-08,8.439918541238176e-08
|
||||
69,9.566310719955732e-05,1.740747903977101e-08,8.269353818341506e-08
|
||||
70,9.417062845393912e-05,1.7233958752991638e-08,8.102279372648069e-08
|
||||
71,9.27044102709892e-05,1.7062082036004708e-08,7.938660156523957e-08
|
||||
72,9.12639411274833e-05,1.6891826998956218e-08,7.778420731697601e-08
|
||||
73,8.984872036936478e-05,1.6723171993235663e-08,7.621487408851861e-08
|
||||
74,8.845926525396718e-05,1.6557077218868872e-08,7.467873241780861e-08
|
||||
75,8.709405706837696e-05,1.6392620086127443e-08,7.352620174175576e-08
|
||||
76,8.575262707251024e-05,1.6229781230847938e-08,7.239374499535451e-08
|
||||
77,8.44345490553445e-05,1.6068541919248203e-08,7.128100236441453e-08
|
||||
78,8.313937224726923e-05,1.5908883354530017e-08,7.018759330199112e-08
|
||||
79,8.18666553697718e-05,1.5750787028460176e-08,6.91131452736768e-08
|
||||
80,8.061596620368467e-05,1.5594234699428168e-08,6.80572933931087e-08
|
||||
81,7.93869860927298e-05,1.54392105845737e-08,6.701976864553917e-08
|
||||
82,7.81792957880057e-05,1.528569691328632e-08,6.600021709431229e-08
|
||||
83,7.69924848842345e-05,1.5133676199095668e-08,6.499829226870119e-08
|
||||
84,7.592423495462984e-05,1.5006007729453082e-08,6.40964585216171e-08
|
||||
85,7.487323130273564e-05,1.4879695488874347e-08,6.320918435915818e-08
|
||||
86,7.383915942693816e-05,1.475473179887786e-08,6.233620427401105e-08
|
||||
87,7.282024738915393e-05,1.4631093950979863e-08,6.147602236758762e-08
|
||||
88,7.181625694043332e-05,1.4508775744557438e-08,6.062843750629826e-08
|
||||
89,7.082695384072487e-05,1.4387771381868581e-08,5.979325194092954e-08
|
||||
90,6.985210770121701e-05,1.4268075471622408e-08,5.8970271173546604e-08
|
||||
91,6.889061932028676e-05,1.414966436041678e-08,5.8158567240485706e-08
|
||||
92,6.79423037538828e-05,1.4032534237451406e-08,5.7357984009008465e-08
|
||||
93,6.700697867481953e-05,1.3916681725635683e-08,5.656836755557654e-08
|
||||
94,6.594003301527265e-05,1.3765768410137306e-08,5.5667634894222326e-08
|
||||
95,6.489000516837228e-05,1.3616343300622314e-08,5.4781184522010985e-08
|
||||
|
@@ -1,97 +0,0 @@
|
||||
,signal,ase,nli
|
||||
0,0.0002869472910749756,3.829244288314411e-08,2.1570435023738975e-07
|
||||
1,0.0002844264441819097,3.810807396068084e-08,2.1799950841473497e-07
|
||||
2,0.00028192866252406385,3.792544000755193e-08,2.2023841125047751e-07
|
||||
3,0.0002794537215642667,3.7744517714620316e-08,2.2242189941355056e-07
|
||||
4,0.00027562432957345563,3.739256592350871e-08,2.2343448272115905e-07
|
||||
5,0.0002718482755003939,3.7044482870002475e-08,2.2437826192962336e-07
|
||||
6,0.00026812479793132313,3.670020704375223e-08,2.2525495466693408e-07
|
||||
7,0.000264450700138397,3.635954085714981e-08,2.2606415187873477e-07
|
||||
8,0.0002608253488030976,3.602242835595967e-08,2.2680748521505387e-07
|
||||
9,0.0002569046888856947,3.564392097524325e-08,2.2718285844823122e-07
|
||||
10,0.0002530414048172964,3.52696660940159e-08,2.2749429758474536e-07
|
||||
11,0.0002492279873569917,3.489974200864255e-08,2.277374766527899e-07
|
||||
12,0.00024546394589921574,3.453407358954537e-08,2.2791414400785136e-07
|
||||
13,0.00024174879169001578,3.4172586853993816e-08,2.280260208417818e-07
|
||||
14,0.00023798746912554602,3.3802283179520985e-08,2.2798420759778034e-07
|
||||
15,0.00023427697848580554,3.343627022987542e-08,2.2788101592695744e-07
|
||||
16,0.0002306167836320285,3.307447309241581e-08,2.2771816297650914e-07
|
||||
17,0.00022700656967539738,3.2716831574363364e-08,2.274975560288182e-07
|
||||
18,0.00022344579480967338,3.236327278261661e-08,2.2361822442592406e-07
|
||||
19,0.00021953361935365365,3.195819964288877e-08,2.1939761734541424e-07
|
||||
20,0.000215683131390894,3.155821693631402e-08,2.152494588710531e-07
|
||||
21,0.0002118936126056039,3.116322947665684e-08,2.1117277567387026e-07
|
||||
22,0.00020816423698459974,3.0773146233359933e-08,2.0716649124095414e-07
|
||||
23,0.000204494186708796,3.0387877710694614e-08,2.0322954179937734e-07
|
||||
24,0.0002011608152067422,3.0044038268833097e-08,1.9963693210325328e-07
|
||||
25,0.0001978756946189507,2.9704204306604607e-08,1.9610141536963302e-07
|
||||
26,0.00019463824873067792,2.9368307297032184e-08,1.9262221997374404e-07
|
||||
27,0.00019144860669288407,2.903632861769827e-08,1.8919927457566036e-07
|
||||
28,0.00018830616497929743,2.870820070744311e-08,1.8583178406705711e-07
|
||||
29,0.0001852103256336822,2.838385708911634e-08,1.8251896218718027e-07
|
||||
30,0.0001821604972098109,2.8063232252848876e-08,1.7926003240910756e-07
|
||||
31,0.00017915618670059162,2.774625963676283e-08,1.76054318231953e-07
|
||||
32,0.00017619680881745593,2.7432875871797347e-08,1.729010553429381e-07
|
||||
33,0.0001732817839023698,2.712301856538676e-08,1.6979948820365403e-07
|
||||
34,0.0001704966413678542,2.6828122477482957e-08,1.6683312331765736e-07
|
||||
35,0.00016775189226190024,2.6536528664560742e-08,1.639139770351803e-07
|
||||
36,0.00016504703499518105,2.624818226917535e-08,1.6104139135569604e-07
|
||||
37,0.00016238266779776653,2.5963117448579666e-08,1.5795381794641793e-07
|
||||
38,0.0001597582427278871,2.568127942199337e-08,1.5492098715709327e-07
|
||||
39,0.0001571732182027887,2.5402614261982925e-08,1.5194201541883415e-07
|
||||
40,0.00015462705891567335,2.5127068868391087e-08,1.4901603171959048e-07
|
||||
41,0.00015212101646395513,2.4854550603641668e-08,1.4614388817380648e-07
|
||||
42,0.00014965447757985992,2.4585009902449718e-08,1.4332463586635585e-07
|
||||
43,0.0001472268380950584,2.4318397887399997e-08,1.4055734193945962e-07
|
||||
44,0.0001447164668892332,2.4034551917480693e-08,1.377259000826997e-07
|
||||
45,0.00014224784112376056,2.3753930444781328e-08,1.3494914625940223e-07
|
||||
46,0.000139820283675003,2.3476479506890216e-08,1.3222606385781202e-07
|
||||
47,0.00013743418748444287,2.3202247900619965e-08,1.295566531341862e-07
|
||||
48,0.00013508884015386686,2.2931181973013504e-08,1.2693987096025158e-07
|
||||
49,0.00013278354172498307,2.2663228905058608e-08,1.2437469442130953e-07
|
||||
50,0.00013051760419724657,2.2398336706395863e-08,1.2186012017917007e-07
|
||||
51,0.00012829168984638487,2.2136423459712534e-08,1.1939640981689728e-07
|
||||
52,0.00012610506317956756,2.1877440279108582e-08,1.1698252030563078e-07
|
||||
53,0.00012395700285919374,2.1621338937233993e-08,1.1461743054419825e-07
|
||||
54,0.00012180241033650921,2.136015630373758e-08,1.1225922783040025e-07
|
||||
55,0.0001196865090578088,2.11019103466444e-08,1.0994951537260489e-07
|
||||
56,0.00011760857776205185,2.0846552296319304e-08,1.0757395097863843e-07
|
||||
57,0.00011556891128259512,2.0594154864038522e-08,1.0524972555992818e-07
|
||||
58,0.00011356676177304645,2.0344670536408355e-08,1.0297570549834491e-07
|
||||
59,0.00011160139690545148,2.009805268169949e-08,1.007507830554809e-07
|
||||
60,0.00010967209909252316,1.9854255584746143e-08,9.857387536569294e-08
|
||||
61,0.00010777915187088834,1.961321154131787e-08,9.644480679617587e-08
|
||||
62,0.00010592181397175025,1.9374877782865603e-08,9.43624842461164e-08
|
||||
63,0.00010409936038609485,1.913921236065976e-08,9.232584080120623e-08
|
||||
64,0.00010246447558376296,1.8936229484424864e-08,9.046927135292076e-08
|
||||
65,0.00010085803630103994,1.873544193319646e-08,8.865067925960422e-08
|
||||
66,9.927950010555374e-05,1.8536821682157304e-08,8.686925127148483e-08
|
||||
67,9.772837346090753e-05,1.834034757300294e-08,8.512422533827403e-08
|
||||
68,9.62041343011343e-05,1.8145993316507615e-08,8.341482250640209e-08
|
||||
69,9.470627135912848e-05,1.7953733512786736e-08,8.174028142913557e-08
|
||||
70,9.32342835979764e-05,1.776354374489084e-08,8.009985766376519e-08
|
||||
71,9.178813743816069e-05,1.757538990695628e-08,7.849321446941075e-08
|
||||
72,9.036733009485282e-05,1.7389250225057777e-08,7.691961625609573e-08
|
||||
73,8.897136946428169e-05,1.7205104136353174e-08,7.537834446343352e-08
|
||||
74,8.760740745801088e-05,1.7025340034280735e-08,7.38751341742058e-08
|
||||
75,8.626710469266231e-05,1.6847609082084475e-08,7.274492099364066e-08
|
||||
76,8.495000573672366e-05,1.6671897815367364e-08,7.16342744751107e-08
|
||||
77,8.365569697520734e-05,1.6498202874185357e-08,7.054284583689086e-08
|
||||
78,8.238374036673638e-05,1.6326516066391613e-08,6.94702656996508e-08
|
||||
79,8.11337070649851e-05,1.615683240442047e-08,6.84161724378069e-08
|
||||
80,7.990517700271111e-05,1.5989150837085435e-08,6.738021182875641e-08
|
||||
81,7.869784230919362e-05,1.5823472723367315e-08,6.63621242598539e-08
|
||||
82,7.751129541079501e-05,1.5659808141896922e-08,6.536156604375558e-08
|
||||
83,7.634513730458697e-05,1.5498175122781168e-08,6.437820072038669e-08
|
||||
84,7.530262080974513e-05,1.5364277079429572e-08,6.349909645089698e-08
|
||||
85,7.427675504203511e-05,1.523236493234819e-08,6.263403294276124e-08
|
||||
86,7.326723873728716e-05,1.510251249079146e-08,6.178275615432246e-08
|
||||
87,7.227232864620995e-05,1.4974078108462424e-08,6.094379608687809e-08
|
||||
88,7.1291797553153e-05,1.4847055996011248e-08,6.011696114034367e-08
|
||||
89,7.032542203609039e-05,1.4721440784517874e-08,5.930206291361685e-08
|
||||
90,6.937298231673965e-05,1.4597227547292096e-08,5.849891607818969e-08
|
||||
91,6.843339696762385e-05,1.447443282270653e-08,5.7706608718023645e-08
|
||||
92,6.750649045006057e-05,1.4353051811356354e-08,5.6924992809748396e-08
|
||||
93,6.65920896785063e-05,1.4233080214004659e-08,5.615392239860827e-08
|
||||
94,6.554258932109667e-05,1.407504972937325e-08,5.5268928972034444e-08
|
||||
95,6.450957734109368e-05,1.3918655180382722e-08,5.439783940506079e-08
|
||||
|
38
tests/data/test_science_utils_fiber_config.json
Normal file
38
tests/data/test_science_utils_fiber_config.json
Normal file
@@ -0,0 +1,38 @@
|
||||
{
|
||||
"uid": "Span1",
|
||||
"params": {
|
||||
"length": 80,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0,
|
||||
"con_in": 0.5,
|
||||
"con_out": 0.5,
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 0.0000167,
|
||||
"effective_area": 83e-12,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
"operational": {
|
||||
"temperature": 283,
|
||||
"raman_pumps": [
|
||||
{
|
||||
"power": 224.403e-3,
|
||||
"frequency": 205e12,
|
||||
"propagation_direction": "counterprop"
|
||||
},
|
||||
{
|
||||
"power": 231.135e-3,
|
||||
"frequency": 201e12,
|
||||
"propagation_direction": "counterprop"
|
||||
}
|
||||
]
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"latitude": 1,
|
||||
"longitude": 0,
|
||||
"city": null,
|
||||
"region": ""
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -14,6 +14,7 @@ Transceiver trx_Stockholm
|
||||
OSNR ASE (signal bw, dB): 30.98
|
||||
CD (ps/nm): 0.00
|
||||
PMD (ps): 0.00
|
||||
PDL (dB): 0.00
|
||||
Roadm roadm_Stockholm
|
||||
effective loss (dB): 22.00
|
||||
pch out (dBm): -20.00
|
||||
@@ -229,7 +230,8 @@ Transceiver trx_Gothenburg
|
||||
OSNR ASE (0.1nm, dB): 21.20
|
||||
OSNR ASE (signal bw, dB): 17.18
|
||||
CD (ps/nm): 8350.42
|
||||
PMD (ps): 0.89
|
||||
PMD (ps): 7.99
|
||||
PDL (dB): 3.74
|
||||
|
||||
Transmission result for input power = 2.00 dBm:
|
||||
Final GSNR (0.1 nm): [1;36;40m18.90 dB[0m
|
||||
|
||||
@@ -14,6 +14,7 @@ Transceiver trx_Stockholm
|
||||
OSNR ASE (signal bw, dB): 30.98
|
||||
CD (ps/nm): 0.00
|
||||
PMD (ps): 0.00
|
||||
PDL (dB): 0.00
|
||||
Roadm roadm_Stockholm
|
||||
effective loss (dB): 22.00
|
||||
pch out (dBm): -20.00
|
||||
@@ -229,7 +230,8 @@ Transceiver trx_Gothenburg
|
||||
OSNR ASE (0.1nm, dB): 21.84
|
||||
OSNR ASE (signal bw, dB): 17.82
|
||||
CD (ps/nm): 8350.42
|
||||
PMD (ps): 0.89
|
||||
PMD (ps): 7.99
|
||||
PDL (dB): 3.74
|
||||
|
||||
Transmission result for input power = 2.00 dBm:
|
||||
Final GSNR (0.1 nm): [1;36;40m19.27 dB[0m
|
||||
|
||||
@@ -14,6 +14,7 @@ Transceiver Site_A
|
||||
OSNR ASE (signal bw, dB): 35.92
|
||||
CD (ps/nm): 0.00
|
||||
PMD (ps): 0.00
|
||||
PDL (dB): 0.00
|
||||
Fiber Span1
|
||||
type_variety: SSMF
|
||||
length (km): 80.00
|
||||
@@ -42,6 +43,7 @@ Transceiver Site_B
|
||||
OSNR ASE (signal bw, dB): 29.21
|
||||
CD (ps/nm): 1336.00
|
||||
PMD (ps): 0.36
|
||||
PDL (dB): 0.00
|
||||
|
||||
Transmission result for input power = 0.00 dBm:
|
||||
Final GSNR (0.1 nm): [1;36;40m31.17 dB[0m
|
||||
|
||||
@@ -14,6 +14,7 @@ Transceiver Site_A
|
||||
OSNR ASE (signal bw, dB): 35.92
|
||||
CD (ps/nm): 0.00
|
||||
PMD (ps): 0.00
|
||||
PDL (dB): 0.00
|
||||
RamanFiber Span1
|
||||
type_variety: SSMF
|
||||
length (km): 80.00
|
||||
@@ -21,109 +22,112 @@ RamanFiber Span1
|
||||
total loss (dB): 17.00
|
||||
(includes conn loss (dB) in: 0.50 out: 0.50)
|
||||
(conn loss out includes EOL margin defined in eqpt_config.json)
|
||||
pch out (dBm): -7.74
|
||||
pch out (dBm): -7.71
|
||||
Fused Fused1
|
||||
loss (dB): 0.00
|
||||
Edfa Edfa1
|
||||
type_variety: std_low_gain
|
||||
effective gain(dB): 5.74
|
||||
effective gain(dB): 5.71
|
||||
(before att_in and before output VOA)
|
||||
noise figure (dB): 13.26
|
||||
noise figure (dB): 13.29
|
||||
(including att_in)
|
||||
pad att_in (dB): 2.26
|
||||
Power In (dBm): 11.07
|
||||
pad att_in (dB): 2.29
|
||||
Power In (dBm): 11.11
|
||||
Power Out (dBm): 16.82
|
||||
Delta_P (dB): -2.00
|
||||
target pch (dBm): -2.00
|
||||
effective pch (dBm): -2.00
|
||||
output VOA (dB): 0.00
|
||||
Transceiver Site_B
|
||||
GSNR (0.1nm, dB): 31.43
|
||||
GSNR (signal bw, dB): 27.35
|
||||
OSNR ASE (0.1nm, dB): 34.18
|
||||
OSNR ASE (signal bw, dB): 30.10
|
||||
GSNR (0.1nm, dB): 31.44
|
||||
GSNR (signal bw, dB): 27.36
|
||||
OSNR ASE (0.1nm, dB): 34.22
|
||||
OSNR ASE (signal bw, dB): 30.14
|
||||
CD (ps/nm): 1336.00
|
||||
PMD (ps): 0.36
|
||||
PDL (dB): 0.00
|
||||
|
||||
Transmission result for input power = 0.00 dBm:
|
||||
Final GSNR (0.1 nm): [1;36;40m31.43 dB[0m
|
||||
Final GSNR (0.1 nm): [1;36;40m31.44 dB[0m
|
||||
|
||||
The GSNR per channel at the end of the line is:
|
||||
Ch. # Channel frequency (THz) Channel power (dBm) OSNR ASE (signal bw, dB) SNR NLI (signal bw, dB) GSNR (signal bw, dB)
|
||||
1 191.35 0.21 31.56 31.47 28.50
|
||||
2 191.40 0.17 31.54 31.38 28.45
|
||||
3 191.45 0.14 31.52 31.30 28.40
|
||||
4 191.50 0.10 31.50 31.22 28.34
|
||||
5 191.55 0.04 31.47 31.14 28.29
|
||||
6 191.60 -0.02 31.44 31.06 28.23
|
||||
7 191.65 -0.08 31.41 30.98 28.18
|
||||
8 191.70 -0.14 31.37 30.90 28.12
|
||||
9 191.75 -0.20 31.34 30.83 28.07
|
||||
10 191.80 -0.26 31.31 30.75 28.01
|
||||
11 191.85 -0.33 31.27 30.68 27.96
|
||||
12 191.90 -0.39 31.24 30.61 27.90
|
||||
13 191.95 -0.46 31.20 30.54 27.85
|
||||
14 192.00 -0.52 31.17 30.47 27.79
|
||||
15 192.05 -0.59 31.13 30.40 27.74
|
||||
16 192.10 -0.66 31.10 30.33 27.69
|
||||
17 192.15 -0.72 31.06 30.26 27.63
|
||||
18 192.20 -0.79 31.02 30.20 27.58
|
||||
19 192.25 -0.86 30.98 30.21 27.57
|
||||
20 192.30 -0.94 30.94 30.21 27.55
|
||||
21 192.35 -1.01 30.90 30.22 27.54
|
||||
22 192.40 -1.09 30.86 30.23 27.52
|
||||
23 192.45 -1.16 30.81 30.23 27.50
|
||||
24 192.50 -1.24 30.77 30.24 27.49
|
||||
25 192.55 -1.31 30.73 30.25 27.47
|
||||
26 192.60 -1.38 30.69 30.25 27.46
|
||||
27 192.65 -1.45 30.65 30.26 27.44
|
||||
28 192.70 -1.52 30.61 30.27 27.42
|
||||
29 192.75 -1.59 30.56 30.28 27.41
|
||||
30 192.80 -1.66 30.52 30.28 27.39
|
||||
31 192.85 -1.73 30.48 30.29 27.37
|
||||
32 192.90 -1.80 30.44 30.30 27.36
|
||||
33 192.95 -1.87 30.39 30.30 27.34
|
||||
34 193.00 -1.94 30.35 30.31 27.32
|
||||
35 193.05 -2.01 30.31 30.32 27.30
|
||||
36 193.10 -2.08 30.27 30.33 27.29
|
||||
37 193.15 -2.15 30.22 30.33 27.27
|
||||
38 193.20 -2.22 30.18 30.35 27.25
|
||||
39 193.25 -2.29 30.14 30.37 27.24
|
||||
40 193.30 -2.36 30.09 30.39 27.23
|
||||
41 193.35 -2.43 30.05 30.40 27.21
|
||||
42 193.40 -2.49 30.01 30.42 27.20
|
||||
43 193.45 -2.56 29.96 30.44 27.18
|
||||
44 193.50 -2.63 29.92 30.46 27.17
|
||||
45 193.55 -2.70 29.87 30.47 27.15
|
||||
46 193.60 -2.78 29.83 30.49 27.13
|
||||
47 193.65 -2.85 29.78 30.51 27.12
|
||||
48 193.70 -2.92 29.73 30.53 27.10
|
||||
49 193.75 -2.99 29.68 30.54 27.08
|
||||
50 193.80 -3.06 29.64 30.56 27.06
|
||||
51 193.85 -3.14 29.59 30.58 27.05
|
||||
52 193.90 -3.21 29.54 30.60 27.03
|
||||
53 193.95 -3.28 29.49 30.62 27.01
|
||||
54 194.00 -3.35 29.44 30.64 26.99
|
||||
55 194.05 -3.42 29.39 30.65 26.97
|
||||
56 194.10 -3.50 29.34 30.67 26.95
|
||||
57 194.15 -3.57 29.29 30.73 26.94
|
||||
58 194.20 -3.64 29.24 30.79 26.94
|
||||
59 194.25 -3.72 29.19 30.85 26.93
|
||||
60 194.30 -3.79 29.14 30.91 26.93
|
||||
61 194.35 -3.86 29.09 30.97 26.92
|
||||
62 194.40 -3.93 29.04 31.03 26.91
|
||||
63 194.45 -4.01 28.99 31.09 26.90
|
||||
64 194.50 -4.08 28.94 31.15 26.90
|
||||
65 194.55 -4.14 28.89 31.22 26.89
|
||||
66 194.60 -4.21 28.85 31.28 26.88
|
||||
67 194.65 -4.28 28.80 31.35 26.88
|
||||
68 194.70 -4.34 28.75 31.41 26.87
|
||||
69 194.75 -4.41 28.70 31.48 26.86
|
||||
70 194.80 -4.47 28.66 31.55 26.86
|
||||
71 194.85 -4.54 28.61 31.62 26.85
|
||||
72 194.90 -4.60 28.56 31.69 26.84
|
||||
73 194.95 -4.67 28.51 31.77 26.83
|
||||
74 195.00 -4.73 28.47 31.84 26.82
|
||||
75 195.05 -4.80 28.42 31.91 26.81
|
||||
76 195.10 -4.86 28.37 31.91 26.78
|
||||
1 191.35 0.18 31.61 31.43 28.51
|
||||
2 191.40 0.14 31.59 31.34 28.45
|
||||
3 191.45 0.11 31.57 31.26 28.40
|
||||
4 191.50 0.07 31.55 31.17 28.35
|
||||
5 191.55 0.02 31.52 31.09 28.29
|
||||
6 191.60 -0.04 31.49 31.02 28.24
|
||||
7 191.65 -0.10 31.46 30.94 28.18
|
||||
8 191.70 -0.16 31.43 30.86 28.13
|
||||
9 191.75 -0.21 31.40 30.79 28.07
|
||||
10 191.80 -0.28 31.36 30.71 28.02
|
||||
11 191.85 -0.34 31.33 30.64 27.96
|
||||
12 191.90 -0.40 31.29 30.57 27.91
|
||||
13 191.95 -0.47 31.26 30.50 27.85
|
||||
14 192.00 -0.53 31.22 30.43 27.80
|
||||
15 192.05 -0.60 31.18 30.36 27.74
|
||||
16 192.10 -0.66 31.15 30.30 27.69
|
||||
17 192.15 -0.73 31.11 30.23 27.64
|
||||
18 192.20 -0.79 31.07 30.16 27.58
|
||||
19 192.25 -0.86 31.04 30.17 27.57
|
||||
20 192.30 -0.94 30.99 30.18 27.56
|
||||
21 192.35 -1.01 30.95 30.19 27.54
|
||||
22 192.40 -1.08 30.91 30.20 27.53
|
||||
23 192.45 -1.16 30.86 30.20 27.51
|
||||
24 192.50 -1.23 30.82 30.21 27.49
|
||||
25 192.55 -1.30 30.78 30.22 27.48
|
||||
26 192.60 -1.37 30.74 30.23 27.46
|
||||
27 192.65 -1.44 30.70 30.23 27.45
|
||||
28 192.70 -1.51 30.65 30.24 27.43
|
||||
29 192.75 -1.58 30.61 30.25 27.42
|
||||
30 192.80 -1.65 30.57 30.26 27.40
|
||||
31 192.85 -1.72 30.53 30.27 27.38
|
||||
32 192.90 -1.79 30.48 30.27 27.37
|
||||
33 192.95 -1.86 30.44 30.28 27.35
|
||||
34 193.00 -1.93 30.40 30.29 27.33
|
||||
35 193.05 -2.00 30.35 30.30 27.32
|
||||
36 193.10 -2.07 30.31 30.30 27.30
|
||||
37 193.15 -2.14 30.27 30.31 27.28
|
||||
38 193.20 -2.20 30.22 30.33 27.27
|
||||
39 193.25 -2.27 30.18 30.35 27.25
|
||||
40 193.30 -2.34 30.14 30.37 27.24
|
||||
41 193.35 -2.41 30.09 30.38 27.23
|
||||
42 193.40 -2.48 30.05 30.40 27.21
|
||||
43 193.45 -2.55 30.00 30.42 27.20
|
||||
44 193.50 -2.61 29.96 30.44 27.18
|
||||
45 193.55 -2.69 29.91 30.46 27.16
|
||||
46 193.60 -2.76 29.86 30.47 27.15
|
||||
47 193.65 -2.83 29.82 30.49 27.13
|
||||
48 193.70 -2.90 29.77 30.51 27.11
|
||||
49 193.75 -2.98 29.72 30.53 27.10
|
||||
50 193.80 -3.05 29.67 30.55 27.08
|
||||
51 193.85 -3.12 29.62 30.57 27.06
|
||||
52 193.90 -3.19 29.58 30.58 27.04
|
||||
53 193.95 -3.26 29.53 30.60 27.02
|
||||
54 194.00 -3.33 29.48 30.62 27.00
|
||||
55 194.05 -3.41 29.43 30.64 26.98
|
||||
56 194.10 -3.48 29.38 30.66 26.96
|
||||
57 194.15 -3.55 29.33 30.72 26.96
|
||||
58 194.20 -3.63 29.28 30.78 26.95
|
||||
59 194.25 -3.70 29.23 30.83 26.95
|
||||
60 194.30 -3.77 29.18 30.89 26.94
|
||||
61 194.35 -3.85 29.12 30.96 26.93
|
||||
62 194.40 -3.92 29.07 31.02 26.93
|
||||
63 194.45 -3.99 29.02 31.08 26.92
|
||||
64 194.50 -4.06 28.97 31.14 26.91
|
||||
65 194.55 -4.13 28.92 31.21 26.91
|
||||
66 194.60 -4.19 28.88 31.27 26.90
|
||||
67 194.65 -4.26 28.83 31.34 26.89
|
||||
68 194.70 -4.33 28.78 31.41 26.89
|
||||
69 194.75 -4.39 28.73 31.47 26.88
|
||||
70 194.80 -4.46 28.68 31.54 26.87
|
||||
71 194.85 -4.52 28.64 31.61 26.86
|
||||
72 194.90 -4.59 28.59 31.68 26.86
|
||||
73 194.95 -4.65 28.54 31.76 26.85
|
||||
74 195.00 -4.72 28.49 31.83 26.84
|
||||
75 195.05 -4.78 28.44 31.91 26.83
|
||||
76 195.10 -4.85 28.39 31.91 26.79
|
||||
|
||||
(No source node specified: picked Site_A)
|
||||
|
||||
|
||||
@@ -250,6 +250,7 @@ Transceiver trx Lannion_CAS
|
||||
OSNR ASE (signal bw, dB): 95.92
|
||||
CD (ps/nm): 0.00
|
||||
PMD (ps): 0.00
|
||||
PDL (dB): 0.00
|
||||
Roadm roadm Lannion_CAS
|
||||
effective loss (dB): 23.00
|
||||
pch out (dBm): -20.00
|
||||
@@ -317,6 +318,7 @@ Transceiver trx Lorient_KMA
|
||||
OSNR ASE (signal bw, dB): 20.20
|
||||
CD (ps/nm): 2171.00
|
||||
PMD (ps): 0.46
|
||||
PDL (dB): 0.00
|
||||
|
||||
Transmission result for input power = 3.00 dBm:
|
||||
Final GSNR (0.1 nm): [1;36;40m23.94 dB[0m
|
||||
|
||||
@@ -80,13 +80,12 @@ def si(nch_and_spacing, bw):
|
||||
def test_variable_gain_nf(gain, nf_expected, setup_edfa_variable_gain, si):
|
||||
"""=> unitary test for variable gain model Edfa._calc_nf() (and Edfa.interpol_params)"""
|
||||
edfa = setup_edfa_variable_gain
|
||||
frequencies = array([c.frequency for c in si.carriers])
|
||||
pin = array([c.power.signal + c.power.nli + c.power.ase for c in si.carriers])
|
||||
pin = pin / db2lin(gain)
|
||||
baud_rates = array([c.baud_rate for c in si.carriers])
|
||||
si.signal /= db2lin(gain)
|
||||
si.nli /= db2lin(gain)
|
||||
si.ase /= db2lin(gain)
|
||||
edfa.operational.gain_target = gain
|
||||
pref = Pref(0, -gain, lin2db(len(frequencies)))
|
||||
edfa.interpol_params(frequencies, pin, baud_rates, pref)
|
||||
si.pref = si.pref._replace(p_span0=0, p_spani=-gain, neq_ch=lin2db(si.number_of_channels))
|
||||
edfa.interpol_params(si)
|
||||
result = edfa.nf
|
||||
assert pytest.approx(nf_expected, abs=0.01) == result[0]
|
||||
|
||||
@@ -95,23 +94,20 @@ def test_variable_gain_nf(gain, nf_expected, setup_edfa_variable_gain, si):
|
||||
def test_fixed_gain_nf(gain, nf_expected, setup_edfa_fixed_gain, si):
|
||||
"""=> unitary test for fixed gain model Edfa._calc_nf() (and Edfa.interpol_params)"""
|
||||
edfa = setup_edfa_fixed_gain
|
||||
frequencies = array([c.frequency for c in si.carriers])
|
||||
pin = array([c.power.signal + c.power.nli + c.power.ase for c in si.carriers])
|
||||
pin = pin / db2lin(gain)
|
||||
baud_rates = array([c.baud_rate for c in si.carriers])
|
||||
si.signal /= db2lin(gain)
|
||||
si.nli /= db2lin(gain)
|
||||
si.ase /= db2lin(gain)
|
||||
edfa.operational.gain_target = gain
|
||||
pref = Pref(0, -gain, lin2db(len(frequencies)))
|
||||
edfa.interpol_params(frequencies, pin, baud_rates, pref)
|
||||
|
||||
si.pref = si.pref._replace(p_span0=0, p_spani=-gain, neq_ch=lin2db(si.number_of_channels))
|
||||
edfa.interpol_params(si)
|
||||
assert pytest.approx(nf_expected, abs=0.01) == edfa.nf[0]
|
||||
|
||||
|
||||
def test_si(si, nch_and_spacing):
|
||||
"""basic total power check of the channel comb generation"""
|
||||
nb_channel = nch_and_spacing[0]
|
||||
pin = array([c.power.signal + c.power.nli + c.power.ase for c in si.carriers])
|
||||
p_tot = pin.sum()
|
||||
expected_p_tot = si.carriers[0].power.signal * nb_channel
|
||||
p_tot = sum(si.signal + si.ase + si.nli)
|
||||
expected_p_tot = si.signal[0] * nb_channel
|
||||
assert pytest.approx(expected_p_tot, abs=0.01) == p_tot
|
||||
|
||||
|
||||
@@ -122,14 +118,13 @@ def test_compare_nf_models(gain, setup_edfa_variable_gain, si):
|
||||
between gain_min and gain_flatmax some discrepancy is expected but target < 0.5dB
|
||||
=> unitary test for Edfa._calc_nf (and Edfa.interpol_params)"""
|
||||
edfa = setup_edfa_variable_gain
|
||||
frequencies = array([c.frequency for c in si.carriers])
|
||||
pin = array([c.power.signal + c.power.nli + c.power.ase for c in si.carriers])
|
||||
pin = pin / db2lin(gain)
|
||||
baud_rates = array([c.baud_rate for c in si.carriers])
|
||||
si.signal /= db2lin(gain)
|
||||
si.nli /= db2lin(gain)
|
||||
si.ase /= db2lin(gain)
|
||||
edfa.operational.gain_target = gain
|
||||
# edfa is variable gain type
|
||||
pref = Pref(0, -gain, lin2db(len(frequencies)))
|
||||
edfa.interpol_params(frequencies, pin, baud_rates, pref)
|
||||
si.pref = si.pref._replace(p_span0=0, p_spani=-gain, neq_ch=lin2db(si.number_of_channels))
|
||||
edfa.interpol_params(si)
|
||||
nf_model = edfa.nf[0]
|
||||
|
||||
# change edfa type variety to a polynomial
|
||||
@@ -155,7 +150,7 @@ def test_compare_nf_models(gain, setup_edfa_variable_gain, si):
|
||||
edfa = Edfa(**el_config)
|
||||
|
||||
# edfa is variable gain type
|
||||
edfa.interpol_params(frequencies, pin, baud_rates, pref)
|
||||
edfa.interpol_params(si)
|
||||
nf_poly = edfa.nf[0]
|
||||
print(nf_poly, nf_model)
|
||||
assert pytest.approx(nf_model, abs=0.5) == nf_poly
|
||||
@@ -183,21 +178,16 @@ def test_ase_noise(gain, si, setup_trx, bw):
|
||||
si = span(si)
|
||||
print(span)
|
||||
|
||||
frequencies = array([c.frequency for c in si.carriers])
|
||||
pin = array([c.power.signal + c.power.nli + c.power.ase for c in si.carriers])
|
||||
baud_rates = array([c.baud_rate for c in si.carriers])
|
||||
pref = Pref(0, -gain, lin2db(len(frequencies)))
|
||||
edfa.interpol_params(frequencies, pin, baud_rates, pref)
|
||||
si.pref = si.pref._replace(p_span0=0, p_spani=-gain, neq_ch=lin2db(si.number_of_channels))
|
||||
edfa.interpol_params(si)
|
||||
nf = edfa.nf
|
||||
print('nf', nf)
|
||||
pin = lin2db(pin[0] * 1e3)
|
||||
pin = lin2db((si.signal[0] + si.ase[0] + si.nli[0]) * 1e3)
|
||||
osnr_expected = pin - nf[0] + 58
|
||||
|
||||
si = edfa(si)
|
||||
print(edfa)
|
||||
pout = array([c.power.signal for c in si.carriers])
|
||||
pase = array([c.power.ase for c in si.carriers])
|
||||
osnr = lin2db(pout[0] / pase[0]) - lin2db(12.5e9 / bw)
|
||||
osnr = lin2db(si.signal[0] / si.ase[0]) - lin2db(12.5e9 / bw)
|
||||
assert pytest.approx(osnr_expected, abs=0.01) == osnr
|
||||
|
||||
trx = setup_trx
|
||||
|
||||
50
tests/test_info.py
Normal file
50
tests/test_info.py
Normal file
@@ -0,0 +1,50 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import pytest
|
||||
from numpy import array, zeros, ones
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from gnpy.core.info import create_arbitrary_spectral_information
|
||||
from gnpy.core.exceptions import SpectrumError
|
||||
|
||||
|
||||
def test_create_arbitrary_spectral_information():
|
||||
si = create_arbitrary_spectral_information(frequency=[193.25e12, 193.3e12, 193.35e12],
|
||||
baud_rate=32e9, signal=[1, 1, 1])
|
||||
assert_array_equal(si.baud_rate, array([32e9, 32e9, 32e9]))
|
||||
assert_array_equal(si.slot_width, array([37.5e9, 37.5e9, 37.5e9]))
|
||||
assert_array_equal(si.signal, ones(3))
|
||||
assert_array_equal(si.nli, zeros(3))
|
||||
assert_array_equal(si.ase, zeros(3))
|
||||
assert_array_equal(si.roll_off, zeros(3))
|
||||
assert_array_equal(si.chromatic_dispersion, zeros(3))
|
||||
assert_array_equal(si.pmd, zeros(3))
|
||||
assert_array_equal(si.channel_number, array([1, 2, 3]))
|
||||
assert_array_equal(si.number_of_channels, 3)
|
||||
assert_array_equal(si.df, array([[0, 50e9, 100e9], [-50e9, 0, 50e9], [-100e9, -50e9, 0]]))
|
||||
|
||||
with pytest.raises(SpectrumError, match='Spectra cannot be summed: channels overlapping.'):
|
||||
si += si
|
||||
|
||||
si = create_arbitrary_spectral_information(frequency=array([193.35e12, 193.3e12, 193.25e12]),
|
||||
slot_width=array([50e9, 50e9, 50e9]),
|
||||
baud_rate=32e9, signal=array([1, 2, 3]))
|
||||
assert_array_equal(si.signal, array([3, 2, 1]))
|
||||
|
||||
with pytest.raises(SpectrumError, match='Spectrum baud rate, including the roll off, '
|
||||
r'larger than the slot width for channels: \[1, 3\].'):
|
||||
create_arbitrary_spectral_information(frequency=[193.25e12, 193.3e12, 193.35e12], signal=1,
|
||||
baud_rate=[64e9, 32e9, 64e9], slot_width=50e9)
|
||||
with pytest.raises(SpectrumError, match='Spectrum required slot widths larger than the frequency spectral '
|
||||
r'distances between channels: \[\(1, 2\), \(3, 4\)\].'):
|
||||
create_arbitrary_spectral_information(frequency=[193.26e12, 193.3e12, 193.35e12, 193.39e12], signal=1,
|
||||
baud_rate=32e9, slot_width=50e9)
|
||||
with pytest.raises(SpectrumError, match='Spectrum required slot widths larger than the frequency spectral '
|
||||
r'distances between channels: \[\(1, 2\), \(2, 3\)\].'):
|
||||
create_arbitrary_spectral_information(frequency=[193.25e12, 193.3e12, 193.35e12], signal=1, baud_rate=49e9,
|
||||
roll_off=0.1)
|
||||
|
||||
with pytest.raises(SpectrumError,
|
||||
match='Dimension mismatch in input fields.'):
|
||||
create_arbitrary_spectral_information(frequency=[193.25e12, 193.3e12, 193.35e12], signal=[1, 2], baud_rate=49e9)
|
||||
@@ -1,26 +1,23 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from pathlib import Path
|
||||
"""
|
||||
Checks that the class SimParams behaves as a mutable Singleton.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
from gnpy.core.parameters import SimParams
|
||||
from gnpy.core.science_utils import Simulation
|
||||
from gnpy.tools.json_io import load_json
|
||||
|
||||
TEST_DIR = Path(__file__).parent
|
||||
DATA_DIR = TEST_DIR / 'data'
|
||||
|
||||
|
||||
@pytest.mark.usefixtures('set_sim_params')
|
||||
def test_sim_parameters():
|
||||
j = load_json(DATA_DIR / 'sim_params.json')
|
||||
sim_params = SimParams(**j)
|
||||
Simulation.set_params(sim_params)
|
||||
s1 = Simulation.get_simulation()
|
||||
assert s1.sim_params.raman_params.flag_raman
|
||||
s2 = Simulation.get_simulation()
|
||||
assert s2.sim_params.raman_params.flag_raman
|
||||
j['raman_parameters']['flag_raman'] = False
|
||||
sim_params = SimParams(**j)
|
||||
Simulation.set_params(sim_params)
|
||||
assert not s2.sim_params.raman_params.flag_raman
|
||||
assert not s1.sim_params.raman_params.flag_raman
|
||||
sim_params = {'nli_params': {}, 'raman_params': {}}
|
||||
SimParams.set_params(sim_params)
|
||||
s1 = SimParams.get()
|
||||
assert s1.nli_params.method == 'gn_model_analytic'
|
||||
s2 = SimParams.get()
|
||||
assert not s1.raman_params.flag
|
||||
sim_params['raman_params']['flag'] = True
|
||||
SimParams.set_params(sim_params)
|
||||
assert s2.raman_params.flag
|
||||
assert s1.raman_params.flag
|
||||
|
||||
@@ -21,7 +21,6 @@ import shutil
|
||||
from pandas import read_csv
|
||||
from xlrd import open_workbook
|
||||
import pytest
|
||||
from tests.compare import compare_networks, compare_services
|
||||
from copy import deepcopy
|
||||
from gnpy.core.utils import automatic_nch, lin2db
|
||||
from gnpy.core.network import build_network
|
||||
@@ -56,15 +55,7 @@ def test_excel_json_generation(tmpdir, xls_input, expected_json_output):
|
||||
actual_json_output = xls_copy.with_suffix('.json')
|
||||
actual = load_json(actual_json_output)
|
||||
unlink(actual_json_output)
|
||||
expected = load_json(expected_json_output)
|
||||
|
||||
results = compare_networks(expected, actual)
|
||||
assert not results.elements.missing
|
||||
assert not results.elements.extra
|
||||
assert not results.elements.different
|
||||
assert not results.connections.missing
|
||||
assert not results.connections.extra
|
||||
assert not results.connections.different
|
||||
assert actual == load_json(expected_json_output)
|
||||
|
||||
# assume xls entries
|
||||
# test that the build network gives correct results in gain mode
|
||||
@@ -95,15 +86,7 @@ def test_auto_design_generation_fromxlsgainmode(tmpdir, xls_input, expected_json
|
||||
save_network(network, actual_json_output)
|
||||
actual = load_json(actual_json_output)
|
||||
unlink(actual_json_output)
|
||||
expected = load_json(expected_json_output)
|
||||
|
||||
results = compare_networks(expected, actual)
|
||||
assert not results.elements.missing
|
||||
assert not results.elements.extra
|
||||
assert not results.elements.different
|
||||
assert not results.connections.missing
|
||||
assert not results.connections.extra
|
||||
assert not results.connections.different
|
||||
assert actual == load_json(expected_json_output)
|
||||
|
||||
# test that autodesign creates same file as an input file already autodesigned
|
||||
|
||||
@@ -134,15 +117,7 @@ def test_auto_design_generation_fromjson(tmpdir, json_input, power_mode):
|
||||
save_network(network, actual_json_output)
|
||||
actual = load_json(actual_json_output)
|
||||
unlink(actual_json_output)
|
||||
expected = load_json(json_input)
|
||||
|
||||
results = compare_networks(expected, actual)
|
||||
assert not results.elements.missing
|
||||
assert not results.elements.extra
|
||||
assert not results.elements.different
|
||||
assert not results.connections.missing
|
||||
assert not results.connections.extra
|
||||
assert not results.connections.different
|
||||
assert actual == load_json(json_input)
|
||||
|
||||
# test services creation
|
||||
|
||||
@@ -162,15 +137,7 @@ def test_excel_service_json_generation(xls_input, expected_json_output):
|
||||
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
|
||||
build_network(network, equipment, p_db, p_total_db)
|
||||
from_xls = read_service_sheet(xls_input, equipment, network, network_filename=DATA_DIR / 'testTopology.xls')
|
||||
expected = load_json(expected_json_output)
|
||||
|
||||
results = compare_services(expected, from_xls)
|
||||
assert not results.requests.missing
|
||||
assert not results.requests.extra
|
||||
assert not results.requests.different
|
||||
assert not results.synchronizations.missing
|
||||
assert not results.synchronizations.extra
|
||||
assert not results.synchronizations.different
|
||||
assert from_xls == load_json(expected_json_output)
|
||||
|
||||
# TODO verify that requested bandwidth is not zero !
|
||||
|
||||
@@ -391,6 +358,7 @@ def test_excel_ila_constraints(source, destination, route_list, hoptype, expecte
|
||||
'cost': None,
|
||||
'roll_off': 0,
|
||||
'tx_osnr': 0,
|
||||
'penalties': None,
|
||||
'min_spacing': None,
|
||||
'nb_channel': 0,
|
||||
'power': 0,
|
||||
|
||||
@@ -12,6 +12,8 @@ checks that restrictions in roadms are correctly applied during autodesign
|
||||
|
||||
from pathlib import Path
|
||||
import pytest
|
||||
from numpy.testing import assert_allclose
|
||||
|
||||
from gnpy.core.utils import lin2db, automatic_nch
|
||||
from gnpy.core.elements import Fused, Roadm, Edfa
|
||||
from gnpy.core.network import build_network
|
||||
@@ -254,10 +256,11 @@ def test_roadm_target_power(prev_node_type, effective_pch_out_db, power_dbm):
|
||||
req.power, req.spacing)
|
||||
for i, el in enumerate(path):
|
||||
if isinstance(el, Roadm):
|
||||
carriers_power_in_roadm = min([c.power.signal + c.power.nli + c.power.ase for c in si.carriers])
|
||||
min_power_in_roadm = min(si.signal + si.ase + si.nli)
|
||||
si = el(si, degree=path[i + 1].uid)
|
||||
power_out_roadm = si.signal + si.ase + si.nli
|
||||
if el.uid == 'roadm node B':
|
||||
print('input', carriers_power_in_roadm)
|
||||
print('input', min_power_in_roadm)
|
||||
# if previous was an EDFA, power level at ROADM input is enough for the ROADM to apply its
|
||||
# target power (as specified in equipment ie -20 dBm)
|
||||
# if it is a Fused, the input power to the ROADM is smaller than the target power, and the
|
||||
@@ -266,23 +269,17 @@ def test_roadm_target_power(prev_node_type, effective_pch_out_db, power_dbm):
|
||||
# corresponds to -22dBm + power_dbm
|
||||
# next step (for ROADM modelling) will be to apply a minimum loss for ROADMs !
|
||||
if prev_node_type == 'edfa':
|
||||
assert el.effective_pch_out_db == effective_pch_out_db
|
||||
if prev_node_type == 'fused':
|
||||
# then output power == input_power == effective_pch_out_db + power_dbm
|
||||
assert effective_pch_out_db + power_dbm == \
|
||||
pytest.approx(lin2db(carriers_power_in_roadm * 1e3), rel=1e-3)
|
||||
assert el.effective_pch_out_db == effective_pch_out_db + power_dbm
|
||||
for carrier in si.carriers:
|
||||
print(carrier.power.signal + carrier.power.nli + carrier.power.ase)
|
||||
power = carrier.power.signal + carrier.power.nli + carrier.power.ase
|
||||
if prev_node_type == 'edfa':
|
||||
# edfa prev_node sets input power to roadm to a high enough value:
|
||||
# Check that egress power of roadm is equal to target power
|
||||
assert power == pytest.approx(db2lin(effective_pch_out_db - 30), rel=1e-3)
|
||||
elif prev_node_type == 'fused':
|
||||
# fused prev_node does reamplfy power after fiber propagation, so input power
|
||||
# to roadm is low.
|
||||
# Check that egress power of roadm is equalized to the min carrier input power.
|
||||
assert power == pytest.approx(carriers_power_in_roadm, rel=1e-3)
|
||||
# edfa prev_node sets input power to roadm to a high enough value:
|
||||
# check that target power is correctly set in the ROADM
|
||||
assert_allclose(el.pch_out_db, effective_pch_out_db, rtol=1e-3)
|
||||
# Check that egress power of roadm is equal to target power
|
||||
assert_allclose(power_out_roadm, db2lin(effective_pch_out_db - 30), rtol=1e-3)
|
||||
elif prev_node_type == 'fused':
|
||||
# fused prev_node does reamplfy power after fiber propagation, so input power
|
||||
# to roadm is low.
|
||||
# check that target power correctly reports power_dbm from previous propagation
|
||||
assert_allclose(el.pch_out_db, effective_pch_out_db + power_dbm, rtol=1e-3)
|
||||
# Check that egress power of roadm is equalized to the min carrier input power.
|
||||
assert_allclose(power_out_roadm, min_power_in_roadm, rtol=1e-3)
|
||||
else:
|
||||
si = el(si)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Author: Alessio Ferrari
|
||||
|
||||
"""
|
||||
Checks that RamanFiber propagates properly the spectral information. In this way, also the RamanSolver and the NliSolver
|
||||
are tested.
|
||||
@@ -9,40 +9,120 @@ are tested.
|
||||
from pathlib import Path
|
||||
from pandas import read_csv
|
||||
from numpy.testing import assert_allclose
|
||||
from numpy import array, genfromtxt
|
||||
import pytest
|
||||
|
||||
from gnpy.core.info import create_input_spectral_information
|
||||
from gnpy.core.elements import RamanFiber
|
||||
from gnpy.core.info import create_input_spectral_information, create_arbitrary_spectral_information
|
||||
from gnpy.core.elements import Fiber, RamanFiber
|
||||
from gnpy.core.parameters import SimParams
|
||||
from gnpy.core.science_utils import Simulation
|
||||
from gnpy.tools.json_io import load_json
|
||||
from gnpy.core.exceptions import NetworkTopologyError
|
||||
from gnpy.core.science_utils import RamanSolver
|
||||
|
||||
TEST_DIR = Path(__file__).parent
|
||||
|
||||
|
||||
def test_raman_fiber():
|
||||
""" Test the accuracy of propagating the RamanFiber."""
|
||||
# spectral information generation
|
||||
power = 1e-3
|
||||
eqpt_params = load_json(TEST_DIR / 'data' / 'eqpt_config.json')
|
||||
spectral_info_params = eqpt_params['SI'][0]
|
||||
spectral_info_params.pop('power_dbm')
|
||||
spectral_info_params.pop('power_range_db')
|
||||
spectral_info_params.pop('tx_osnr')
|
||||
spectral_info_params.pop('sys_margins')
|
||||
spectral_info_input = create_input_spectral_information(power=power, **spectral_info_params)
|
||||
def test_fiber():
|
||||
""" Test the accuracy of propagating the Fiber."""
|
||||
fiber = Fiber(**load_json(TEST_DIR / 'data' / 'test_science_utils_fiber_config.json'))
|
||||
|
||||
sim_params = SimParams(**load_json(TEST_DIR / 'data' / 'sim_params.json'))
|
||||
Simulation.set_params(sim_params)
|
||||
fiber = RamanFiber(**load_json(TEST_DIR / 'data' / 'raman_fiber_config.json'))
|
||||
# fix grid spectral information generation
|
||||
spectral_info_input = create_input_spectral_information(f_min=191.3e12, f_max=196.1e12, roll_off=0.15,
|
||||
baud_rate=32e9, power=1e-3, spacing=50e9)
|
||||
# propagation
|
||||
spectral_info_out = fiber(spectral_info_input)
|
||||
|
||||
p_signal = spectral_info_out.signal
|
||||
p_nli = spectral_info_out.nli
|
||||
|
||||
expected_results = read_csv(TEST_DIR / 'data' / 'test_fiber_fix_expected_results.csv')
|
||||
assert_allclose(p_signal, expected_results['signal'], rtol=1e-3)
|
||||
assert_allclose(p_nli, expected_results['nli'], rtol=1e-3)
|
||||
|
||||
# flex grid spectral information generation
|
||||
frequency = 191e12 + array([0, 50e9, 150e9, 225e9, 275e9])
|
||||
slot_width = array([37.5e9, 50e9, 75e9, 50e9, 37.5e9])
|
||||
baud_rate = array([32e9, 42e9, 64e9, 42e9, 32e9])
|
||||
signal = 1e-3 + array([0, -1e-4, 3e-4, -2e-4, +2e-4])
|
||||
spectral_info_input = create_arbitrary_spectral_information(frequency=frequency, slot_width=slot_width,
|
||||
signal=signal, baud_rate=baud_rate, roll_off=0.15)
|
||||
|
||||
# propagation
|
||||
spectral_info_out = fiber(spectral_info_input)
|
||||
|
||||
p_signal = [carrier.power.signal for carrier in spectral_info_out.carriers]
|
||||
p_ase = [carrier.power.ase for carrier in spectral_info_out.carriers]
|
||||
p_nli = [carrier.power.nli for carrier in spectral_info_out.carriers]
|
||||
p_signal = spectral_info_out.signal
|
||||
p_nli = spectral_info_out.nli
|
||||
|
||||
expected_results = read_csv(TEST_DIR / 'data' / 'test_science_utils_expected_results.csv')
|
||||
expected_results = read_csv(TEST_DIR / 'data' / 'test_fiber_flex_expected_results.csv')
|
||||
assert_allclose(p_signal, expected_results['signal'], rtol=1e-3)
|
||||
assert_allclose(p_nli, expected_results['nli'], rtol=1e-3)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures('set_sim_params')
|
||||
def test_raman_fiber():
|
||||
""" Test the accuracy of propagating the RamanFiber."""
|
||||
# spectral information generation
|
||||
spectral_info_input = create_input_spectral_information(f_min=191.3e12, f_max=196.1e12, roll_off=0.15,
|
||||
baud_rate=32e9, power=1e-3, spacing=50e9)
|
||||
SimParams.set_params(load_json(TEST_DIR / 'data' / 'sim_params.json'))
|
||||
fiber = RamanFiber(**load_json(TEST_DIR / 'data' / 'test_science_utils_fiber_config.json'))
|
||||
|
||||
# propagation
|
||||
spectral_info_out = fiber(spectral_info_input)
|
||||
|
||||
p_signal = spectral_info_out.signal
|
||||
p_ase = spectral_info_out.ase
|
||||
p_nli = spectral_info_out.nli
|
||||
|
||||
expected_results = read_csv(TEST_DIR / 'data' / 'test_raman_fiber_expected_results.csv')
|
||||
assert_allclose(p_signal, expected_results['signal'], rtol=1e-3)
|
||||
assert_allclose(p_ase, expected_results['ase'], rtol=1e-3)
|
||||
assert_allclose(p_nli, expected_results['nli'], rtol=1e-3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"loss, position, errmsg",
|
||||
((0.5, -2, "Lumped loss positions must be between 0 and the fiber length (80.0 km), boundaries excluded."),
|
||||
(0.5, 81, "Lumped loss positions must be between 0 and the fiber length (80.0 km), boundaries excluded.")))
|
||||
@pytest.mark.usefixtures('set_sim_params')
|
||||
def test_fiber_lumped_losses(loss, position, errmsg, set_sim_params):
|
||||
""" Lumped losses length sanity checking."""
|
||||
SimParams.set_params(load_json(TEST_DIR / 'data' / 'sim_params.json'))
|
||||
fiber_dict = load_json(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber_config.json')
|
||||
fiber_dict['params']['lumped_losses'] = [{'position': position, 'loss': loss}]
|
||||
with pytest.raises(NetworkTopologyError) as e:
|
||||
Fiber(**fiber_dict)
|
||||
assert str(e.value) == errmsg
|
||||
|
||||
|
||||
@pytest.mark.usefixtures('set_sim_params')
|
||||
def test_fiber_lumped_losses_srs(set_sim_params):
|
||||
""" Test the accuracy of Fiber with lumped losses propagation."""
|
||||
# spectral information generation
|
||||
spectral_info_input = create_input_spectral_information(f_min=191.3e12, f_max=196.1e12, roll_off=0.15,
|
||||
baud_rate=32e9, power=1e-3, spacing=50e9)
|
||||
|
||||
SimParams.set_params(load_json(TEST_DIR / 'data' / 'sim_params.json'))
|
||||
fiber = Fiber(**load_json(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber_config.json'))
|
||||
raman_fiber = RamanFiber(**load_json(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber_config.json'))
|
||||
|
||||
# propagation
|
||||
# without Raman pumps
|
||||
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(
|
||||
spectral_info_input, fiber)
|
||||
power_profile = stimulated_raman_scattering.power_profile
|
||||
expected_power_profile = genfromtxt(TEST_DIR / 'data' / 'test_lumped_losses_fiber_no_pumps.csv', delimiter=',')
|
||||
assert_allclose(power_profile, expected_power_profile, rtol=1e-3)
|
||||
|
||||
# with Raman pumps
|
||||
expected_power_profile = genfromtxt(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber.csv', delimiter=',')
|
||||
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(
|
||||
spectral_info_input, raman_fiber)
|
||||
power_profile = stimulated_raman_scattering.power_profile
|
||||
assert_allclose(power_profile, expected_power_profile, rtol=1e-3)
|
||||
|
||||
# without Stimulated Raman Scattering
|
||||
expected_power_profile = genfromtxt(TEST_DIR / 'data' / 'test_lumped_losses_fiber_no_raman.csv', delimiter=',')
|
||||
stimulated_raman_scattering = RamanSolver.calculate_attenuation_profile(spectral_info_input, fiber)
|
||||
power_profile = stimulated_raman_scattering.power_profile
|
||||
assert_allclose(power_profile, expected_power_profile, rtol=1e-3)
|
||||
|
||||
@@ -291,6 +291,7 @@ def request_set():
|
||||
'cost': 1,
|
||||
'roll_off': 0.15,
|
||||
'tx_osnr': 38,
|
||||
'penalties': {},
|
||||
'min_spacing': 37.5e9,
|
||||
'nb_channel': None,
|
||||
'power': 0,
|
||||
|
||||
Reference in New Issue
Block a user