286 Commits

Author SHA1 Message Date
EstherLerouzic
0d236fd31e fix: remove unused invocation test file
Wrongly added by commit #4a071c5

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I337b8d4560cd7f2634fca7d242783da327127de5
2024-10-16 16:42:09 +00:00
EstherLerouzic
9a84e29433 fix: remove freq2wavelength that is already defined
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8ef480460e689bfcb33116cd393ad92ed0e03338
2024-10-08 11:07:13 +00:00
‘Renato
143f63170e FIX: json indentation in example-data
Change-Id: If3585fc554638cb1e5f7e4564d10af29420b6159
2024-09-20 13:49:26 +00:00
EstherLerouzic
b2d7f883a1 Add documentation for topology, service and sim-params files
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0d917b742acd91aa52403f1ac96a378bb3cd8497
2024-06-02 19:26:33 +02:00
EstherLerouzic
73dbdf3042 Add documentation for the roadm impairment feature
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ief7e79ef10edf098c49ab1a0164284e5ae604961
2024-06-02 19:26:33 +02:00
EstherLerouzic
4a071c53d7 feat: transform roadm-paths into list indexed with frequency band
to be conformed with ietf + to prepare for next multiband case

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If71857ef7dff9eaaa4c16e3837d3500bcef2fa72
2024-06-02 19:26:33 +02:00
EstherLerouzic
dcde64a8db clean some leftover from previous refactor
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibd6e32090155433d7b1aa5b6572f1fe07a4cbe4a
2024-06-02 19:26:33 +02:00
EstherLerouzic
38cc0e3cc5 feat: separate span power from tx power
gnpy currently uses the same parameter for tx output power and span
input power: this prevents from modelling low tx power effect.
This patch introduces a new tx-cannel-power and uses it to
propagate in ROADM.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id3ac75e2cb617b513bdb38b51a52e05d15af46f5
2024-06-02 19:26:33 +02:00
EstherLerouzic
fb70413784 Refactor equipment and add some tests
This fixes error message for wrong trx type,  catches the case of
KeyError when trx_type is not part of the library.

removes power setting from this function: power out of transceiver or
at the input of span is nor defined in equipment Transceiver

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I15fa7cc772ab5c1a8c7637738eb83c2ddffa1219
2024-06-02 19:26:33 +02:00
EstherLerouzic
87e10c240e Add test on blocking due to PDL penalty
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d6a7f9ed0ff8ad6977bcfe1b78ed620bb0e848d
2024-06-02 19:26:33 +02:00
EstherLerouzic
43c1085be6 feat: apply per path_type ROADM OSNR
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2b0838c9a217a7f918b2cf08c233aacdbf686a72
2024-06-02 19:26:33 +02:00
EstherLerouzic
4ace60bea2 Feat: apply roadm-path loss
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I87e27d5b653bdce814f43e4c9c1183fb51fbcc1e
2024-06-02 19:26:33 +02:00
EstherLerouzic
f950a6aee8 Feat: add detailed ROADM impairments per roadm-path
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I09c55dcff53ffb264609654cde0f1d8b9dc7fe9b
2024-06-02 19:26:33 +02:00
EstherLerouzic
fb4195c775 Feat: Enable multiple type_varieties for ROADM
This commit introduces the 'type_variety' attribute for ROADM elements,
allowing the use of different types of ROADM specifications instead of
being limited to the default one.

If no type variety name is provided in the eqpt_config, the 'default'
name is used for backward compatibility with libraries. Additionally,
if no type variety is defined in the ROADM element in the topology,
the default one is used for backward compatibility with topologies.

The 'type_variety' attribute is included in the 'to_json' and
'display' methods for ROADM elements.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I61a2491f994e47ad0b08cf8eaef30d6d855aa706
2024-06-02 19:26:33 +02:00
EstherLerouzic
29f42666e5 remove whites spaces and align parentheses
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0f5f389a3cf20155ceb0e9d9f071d1334a5ad688
2024-06-02 19:26:33 +02:00
EstherLerouzic
9bf7f336e3 Update release notes of v2.9
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib949ff81fa818886a69339117bc66290dc2685b0
2024-06-02 19:26:27 +02:00
EstherLerouzic
eed6564f11 Add power sweep functionality description in documentation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic8db566bc168f120ddb0016c91bcc1d24263548c
2024-06-02 19:17:07 +02:00
EstherLerouzic
fbb2f2c587 fix missing to_json export of computed_number_of_channels
The parameter was introduced in commit 9736f7c032
but the export to_json was not added.

In the next commits, it is necessary to compute Raman gain during the design
phase. The sim-params used for this computation are updated during the
design phase for speed reasons. To ensure the proper restoration of user
settings for propagation, the export must include all parameters. Therefore,
this commit adds 'computed_number_of_channels' to the JSON export. This allows
for the accurate recording of all user settings locally and enables their
restoration.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I221a6f614010edea9cf46c3a7d43c5be064ff09c
2024-06-01 19:17:50 +02:00
EstherLerouzic
44040c4d06 fix missing description of computed_number_of_channels
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5c8d057dcdab535617eee8de3eccdd806cec403e
2024-06-01 09:11:56 +02:00
EstherLerouzic
ee9af69558 Improve doc to state when tilt is vs wavelength
add some text in the docs to explain that tilt can be expressed
vs freq or lambda depending on context:
advanced_model expresses dgt as a function of frequency,
while tilt target is still defined vs wavelength (common usage).

Change the variable to have explicit name when it is per wavelength,
or add a comment to help identifyper wavelength or per frequency
variables.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7727f00b38244152b95954e981cc9da096bb3d1d
2024-05-24 07:11:02 +00:00
Esther Le Rouzic
ce21609fec Merge "fix: image of the script and documentation" 2024-05-22 14:24:26 +00:00
Esther Le Rouzic
a1289e6a9b Merge "feat: enable different sim_param vectors for multiple requests" 2024-05-22 14:19:35 +00:00
AndreaDAmico
138115e1d7 Frequency scaling description in release notes v2.8
Change-Id: I74f3d52a3cbc087b914ff18075869d2162b693ac
2024-05-16 01:23:27 -04:00
EstherLerouzic
ed41305f55 fix: image of the script and documentation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib022320efd36a2d912f7b443686d7fee137e48b1
2024-04-26 18:19:53 +02:00
EstherLerouzic
9736f7c032 feat: enable different sim_param vectors for multiple requests
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia800a7b98b33b795cc3553500116be61c612e45c
2024-04-26 17:12:43 +02:00
EstherLerouzic
be7ae35db3 Refactor amp default in parameters
default parameters are shared between json and network function,
so it is better to have them on the parameters to avoid circular
dependency when importing modules

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib9d41852e394586d36f74992c91f67f3330cc552
2024-04-25 17:51:56 +02:00
EstherLerouzic
2b4a4ab72c fix Raman gain estimation during design
- Replaced multiple calls to the span_loss function
  with recording the span loss result in the fiber elements,
  reducing computation time.
- Updated Raman gain estimation based on design target powers to ensure
  accurate Edfa gain calculation or gain reduction during design.
- display the computed and design Raman gain in RamanFiber string output
- do not add padding on Raman fibers
- Added to_json function to preserve user input SimParams values,
  which were previously overwritten by initializing SimParams
  with fake values during design.

Next step is to allow users to balance computation time and
target accuracy of the design by inputing their own SimParams
and ref channels design values.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1ca4954d0621858cefb3d776a538131992cae3e3
2024-04-12 08:58:16 +02:00
EstherLerouzic
426c88432d fix: update README script animation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I31381ddf3e372f34836416162c080a5205ef969d
2024-04-12 08:41:27 +02:00
AndreaDAmico
2a800b781f Bug fix: Raman coefficient properly scaled in non SSMF case
Before the Raman coefficient was normalized with respect the given effective area, instead of the reference.

Change-Id: I4c0547db4fbd0f823a9058022b93c1ca37d67b51
2024-04-11 01:21:02 -04:00
Jan Kundrát
8d1d3677ed docs: fix graphs on RTD
At OFC I was talking with the OpenROADM people, and it turned out that
our docs stopped rendering properly at RTD. It turned out that the build
started skipping the bindep.txt file at some (unknown) point in time.

Reported-by: Aparaajitha G L <aparaajitha.gomathinayakamlatha@utdallas.edu>
Change-Id: Ie9a4b61f36fb979fb5c109d02de06e0b2cbf270e
2024-03-29 19:23:08 +01:00
Jan Kundrát
5b6f8c60cf docs: use the default theme on ReadTheDocs.org as well
Historically, we've been using the RTD theme on the RTD site which hosts
the docs for us, and a Sphinx-default, "Alabaster" theme for other docs
builds. Doing that however started failing:

 Traceback (most recent call last):
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 1096, in handle_page
     output = self.templates.render(templatename, ctx)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/readthedocs_ext/readthedocs.py", line 181, in rtd_render
     content = old_render(template, render_context)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/jinja2glue.py", line 194, in render
     return self.environment.get_template(template).render(context)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/environment.py", line 1301, in render
     self.environment.handle_exception()
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/environment.py", line 936, in handle_exception
     raise rewrite_traceback_stack(source=source)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/basic/page.html", line 10, in top-level template code
     {%- extends "layout.html" %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/classic/layout.html", line 10, in top-level template code
     {%- extends "basic/layout.html" %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 170, in top-level template code
     {%- block content %}
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 189, in block 'content'
     {%- block sidebar2 %}{{ sidebar() }}{% endblock %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 189, in block 'sidebar2'
     {%- block sidebar2 %}{{ sidebar() }}{% endblock %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/sandbox.py", line 393, in call
     return __context.call(__obj, *args, **kwargs)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/runtime.py", line 777, in _invoke
     rv = self._func(*arguments)
          ^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 63, in template
     {%- include sidebartemplate %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/jinja2glue.py", line 215, in get_source
     raise TemplateNotFound(template)
 jinja2.exceptions.TemplateNotFound: about.html

 The above exception was the direct cause of the following exception:

 Traceback (most recent call last):
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/cmd/build.py", line 281, in build_main
     app.build(args.force_all, args.filenames)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/application.py", line 347, in build
     self.builder.build_update()
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 310, in build_update
     self.build(to_build,
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 376, in build
     self.write(docnames, list(updated_docnames), method)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 571, in write
     self._write_serial(sorted(docnames))
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 581, in _write_serial
     self.write_doc(docname, doctree)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 672, in write_doc
     self.handle_page(docname, ctx, event_arg=doctree)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 1103, in handle_page
     raise ThemeError(__("An error happened in rendering the page %s.\nReason: %r") %
 sphinx.errors.ThemeError: An error happened in rendering the page about-project.
 Reason: TemplateNotFound('about.html')

 Theme error:
 An error happened in rendering the page about-project.
 Reason: TemplateNotFound('about.html')

I have no clue what that means because we have never requested this
`about.html`, nor do we reference that file from anywhere. Chances are
that it's "just" some version pinning/compatibility issue, but hey --
why mess with that when there's a perfectly good default theme that
we're using for other purposes already.

As a side effect, this also solves that long-standing issue that Esther
reported where the tables have overly long lines. Apparently, it's a
theme-specific misfeature (readthedocs/sphinx_rtd_theme/#117), and the
Alabaster one doesn't suffer from that.

All hail alabaster!

Change-Id: I857890f29f14b7c0f66bca201c9a9c1b1cbf8841
2024-03-13 21:30:20 +01:00
Jan Kundrát
3a733b1fd5 docs: try to unbreak the readthedocs.io build
It was failing with a message:

  Config validation error in build.os. Value os not found.

Apparently, the v2 config file is mandatory, so let's do that.

Change-Id: I267d5314db026de532b2b6644f500d25de08e343
2024-03-13 21:30:20 +01:00
Jan Kundrát
2d68b94a46 build: specify dependencies directly in setup.cfg
In tox v4, "reuse of environments" was disabled [1]. This is then later
explained [2] to refer to exactly that thing which we were using for
inheriting the dependencies from the top-level testenv all the way to
the docs build. That's why the docs build in GitHub CI started failing.

IMHO, The Correct Way™ of specifying what dependencies are used for
which feature are the so-called "extra dependencies". Once they are in
place, it is be possible to install gnpy via, e.g., `pip install
oopt-gnpy[docs]`. However, this process is (as far as I can tell)
incompatible with `requirements.txt`; all my attempts at using the
standard dependency syntax in that file have failed for me.

So, in order to make this happen, let's move all the dependencies from a
more-or-less ad-hoc collection of files to this declarative approach
right in setup.cfg. That way, the deps are listed on a single place, in
a declarative manner, and as a result, the installation is now a trivial
pip oneliner.

As a result, one can also remove that duplication of dependencies in
docs requirements.

[1] https://tox.wiki/en/4.11.4/upgrading.html#reuse-of-environments
[2] https://tox.wiki/en/4.11.4/upgrading.html#packaging-configuration-and-inheritance

Change-Id: I34aa0c71e993b39e2b805a7de40e133b4d290318
Fixes: 47c89626 fix docs requirements
2024-03-13 21:28:01 +01:00
EstherLerouzic
bc71823bd0 docs: add a release-note section and update documentation for penalties and SI
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I12a5747df3cee6df79c24dd6261f7be17aa77fcf
2024-02-09 18:59:40 +01:00
EstherLerouzic
5481b93728 Fix frequency scaling for fiber
- wrong parameter was used in parameter
- error message could not read 0-dimensional arrey for 0 and -1 element
- add a test that makes use of the feature

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id7f6d6766d5b91a4b9410ad23aaa5e472b8ebb6f
2024-01-16 09:10:31 +00:00
EstherLerouzic
05e301182d Change fedora-python in action
"Until version 0.4, this action always used the
latest fedora-python-tox image"
https://github.com/fedora-python/tox-github-action

So let's use one that supports python 3.8

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibf3e0baa715da70b4c2af6e2cde6efccfab50311
2024-01-15 20:02:13 +01:00
EstherLerouzic
47c89626e3 fix docs requirements
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9d151b842a38380b0368e099c67957ec36b78250
2024-01-15 13:53:44 +01:00
EstherLerouzic
7a032a63b5 ci change allow_whitelist which is deprecated
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic62050d351eb5bb2f8be2b8d9e0088bd965dc71d
2024-01-15 13:12:35 +01:00
EstherLerouzic
f195d5f496 fix: use ref power on transceiver to Roadm (or transceivers) links
The recent refactor removed a default pref in case of transceivers-OMS
(amplified links starting with a transceiver).
This resulted in a mismatch between input power during design
(default 0 forced in the function) and the design ref power using SI
power_dbm.

This change ensures that the same power is used for the input power
and for the design ref power, and avoid inconsistent gain computatiion.

The code has been using the same power input (SI power_dbm) to define the
power target out of a transceiver and the target out of amplifiers
(at the input of fibers). This will be changed in a future patch.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I610c8df19039bcf156a8ba77c79114b22913a538
2023-12-08 12:27:05 +01:00
Esther Le Rouzic
56569f866f Merge changes from topics "mixed-rate", "refactor_remove_pref"
* changes:
  Add a test on EOL
  add invocation test with the 3 equalization settings
  Add a test on out_voa optimisation function
  Clean a bit, add docstrings
  Remove Pref, and move ref_carrier definition
  Remove p_span0 from SI
  Remove p_spani from Pref
  Use design delta_p and gains instead of p_spani
  restore initial power sweep behaviour
  refactor cli to use a common design function
  Parametrize verbose in autodesign
  refactor build_network: create a separate function to add elements
  Computes reference input power in fiber during design
  Computes reference input power in ROADM during design
  Add a variable to hold delta_p even if gain mode is selected
  Add frequency range in default_edfa profile
  Add a test on gain mode behaviour
  Check element setting before and after propagation
  Correct design: apply saturation in all cases
  Add more tests on amp saturation
2023-12-04 16:09:37 +00:00
Esther Le Rouzic
bf1f293043 Merge "Add test in amplifier behaviour" 2023-12-04 16:08:14 +00:00
Esther Le Rouzic
28871c6f2d Merge pull request #480 from jktjkt/python-3.12
CI: Python 3.12 and extended platform coverage
2023-11-23 17:54:02 +01:00
EstherLerouzic
d7c1a6b75e Add a test on EOL
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iddce655a64623a42cdaeaa2e8c269e3a737dd935
2023-11-20 17:07:53 +01:00
EstherLerouzic
c69c2a3af2 add invocation test with the 3 equalization settings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0aee8da7bbf71991c68e163c7188efe1ddf29ff9
2023-11-20 17:07:53 +01:00
EstherLerouzic
fb29d72906 Add a test on out_voa optimisation function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I36d71d85e5837965f6d5ae47820506d06b3cb94e
2023-11-20 17:07:53 +01:00
EstherLerouzic
30a06da6b1 Clean a bit, add docstrings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8639d458ebb090761846387921f9da4fc65a9f64
2023-11-20 17:07:53 +01:00
EstherLerouzic
139c8cc1e7 Remove Pref, and move ref_carrier definition
Finally, ref_carrier is not meant to change after design since
it is the carrier used for design. So let's move its definition
to networks function. Only ROADM need the ref_carrier baud rate
so let's define a dedicated variable in ROADM to hold it.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida7e42dd534a04c8df8792b44980f3fd2165ecb6
2023-11-20 17:07:53 +01:00
EstherLerouzic
7034d4c686 Remove p_span0 from SI
reference channel is defined during design. No need to convey it
anymore during propagation.

move target_pch_out_db definition to the design phase and change
its name to be consistent with what it contains (dbm)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I350e4557e8488a614674042de26152ab89b2d245
2023-11-20 17:07:53 +01:00
EstherLerouzic
10164495b9 Remove p_spani from Pref
next step: remove Pref

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7cc17253a2d7ab3fb42e3d07c1665991cffa6222
2023-11-20 17:07:53 +01:00
EstherLerouzic
87211b35e9 Use design delta_p and gains instead of p_spani
Remove the visualisation of the effective_pch in amp because actual
and target are the relevant ones. effective_pch was artificially
related to a mix of reference channel and noisy channel (mixed between
on the fly redesign but using actual ROADM equalisation which includes noise
in its actual loss).

the change does no more rely on the target power (which is rounded)
but on the designed gain, which is not rounded.

Propagations are slightly changed for openroadm simulations because of that.
(I verified)

The gain of amp was estimated on the fly with p_spni also in case of
RamanFiber preceding elements. removing p_spani requies that an estimation
of Raman gain be done during design.

This commit also adds this estimation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I960b85e99f85a7d168ac5349e325c4928fa5673b
2023-11-20 17:07:46 +01:00
EstherLerouzic
e9f9ddb4d6 restore initial power sweep behaviour
if user define a delta_p that is reduced because of saturation,
then this initial setting is still kept for power sweep to be sure
that the full amplitude of sweep is used.

SI power = 0 dBm
max power amp1 = 20 dBm,
user_defined_delta_p set by user = 3
80 channels, so pch_max = 20 - 10log10(80) = 0.96 dBm
power_sweep -> power range [-3, 0] dBm

then for initial design,
   pref = 0 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref = 0.96

but for -3 power sweep
   pref = -3 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref =
      min(0.96,    -3 + 3) - (-3) = 3
   so the user defined delta_p is applied as much as possible

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8fd459c29aa9754ff9d4868af1d8be8642a31913
2023-11-20 11:10:07 +01:00
EstherLerouzic
8ea13bb4d6 refactor cli to use a common design function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I029d8c7fc29b1e86e1e3b2b64933bae5da134226
2023-11-20 10:27:43 +01:00
EstherLerouzic
b45829d2df Parametrize verbose in autodesign
transmission-main-example and path-request-run functions implement an
on-the-fly redesign based on p_span_i.
Since we remove p_span_i from elements, we will need to properly call
redesign several times before each propagation, to keep the same
behaviour of these functions.

in this commit we simply enable the possibility to mute warnings.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3aa3d8fc87325033ef69641078bdd7213e0409eb
2023-11-20 10:27:41 +01:00
EstherLerouzic
6ac3a517cf refactor build_network: create a separate function to add elements
separate function that adds element, from function that configure them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ica332223bdf7fc599cb007d7513d7cd62d9c5f9c
2023-11-20 10:25:07 +01:00
EstherLerouzic
2f2920a716 Computes reference input power in fiber during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for reference channel fiber loss computation.
Note that this loss parameter is only used for visualisation purpose.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I16bd792bd6079ce521aafadcf5e21922aa3b4c81
2023-11-20 10:23:21 +01:00
EstherLerouzic
07fd89351b Computes reference input power in ROADM during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for ROADM reference channel loss computation.
Note that this loss parameter is only used for visualisation purpose.
No impact on propagation.

Since this loss is computed for the reference channel used for
design, we need to record input power based on input degrees,
and indicate this information within the call function.

Note that this will be also usefull later on to implement ROADM
parameters

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I64d510fc20df72f07158f400964d592d76dc0ce4
2023-11-20 10:23:21 +01:00
EstherLerouzic
7c60b000b5 Add a variable to hold delta_p even if gain mode is selected
Let's use a clean convention to hold values that are configured,
autodesigned or resulting from propagation.

- edfa.operational.delta_p: holds the value set by the user if any.
  This is needed in case of redesign for power sweep for example.
  It is never changed.
- edfa.delta_p:
  o if power_mode is true, records the value computed by the design.
      Applies user defined value except:
      If the user has set non possible values (eg leading to saturation),
      then the value is corrected at design phase.
      If the element is propagated for different conditions than
      design, for example leading to saturation,  then delta_p might be
      different than the value initially computed during design.
  o if power_mode is False, it is set to None
- edfa._delta_p: records the value computed during design whatever
  the power mode

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4e130a3abe0a5e3f6c057d89360e50531c168123
2023-11-20 10:23:21 +01:00
EstherLerouzic
537eb017b5 Add frequency range in default_edfa profile
This range is the property of amps and is independant from user propagation range.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib89f1987910aa3121a3b8c859a0a785f7d5e27eb
2023-11-20 10:23:21 +01:00
EstherLerouzic
9c514e8086 Add a test on gain mode behaviour
This test checks that setting in gain mode forces amp to the gain settings
and ignores any power requirements. Change in SI in eqpt config and change
in req power (eg power sweep) should have no effect on the propagation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iad826f30010fe3110d105b5206d99f502fbf98ff
2023-11-20 10:23:21 +01:00
EstherLerouzic
78efb6c650 Check element setting before and after propagation
In power mode, all elements design attributes should not change except
amplifiers' gain in case of power saturation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2fec00232c80dd395e4dec20ec531c9c2e127760
2023-11-20 10:23:18 +01:00
EstherLerouzic
3510d59250 Correct design: apply saturation in all cases
Previously saturation was not checked during design if amp type was set.
This commit also applies saturation for these amplifiers.

This changes some of the autodesign result (since range for selection
is changed). For example, this changes some of the gains, or type variety
of amplifier of test files.

The commit also removes one of the rounding in the design phase, and
applies rounding only for printing purpose.

It also adds minor refactor on a function

In order to keep power sweep behaviour in case of saturation, the saturation
check in amplifier element uses initial power targets set by user instead
of a possible autodesign delta_p result.

Note that gain_mode is unchanged: design in gain mode means that delta_p
is set to None during the build process, even if the user defined a value
in operational.delta_p.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idc5cfc8263cf678473acb6ec490207d9d6ba5c0a
2023-11-20 10:21:38 +01:00
EstherLerouzic
41d9d156a6 Add more tests on amp saturation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibba18bed646748d59cfe906b403a9b100c58bb7e
2023-11-20 10:21:35 +01:00
EstherLerouzic
e9d5e748e4 Add test in amplifier behaviour
Check that amp correctly applies saturation, when there is tilt.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e7623e9d5b28bdc12eae24766588645781c2827
2023-11-20 10:21:06 +01:00
EstherLerouzic
5a5bed56c2 Add test on _check_one_request function
Add the call to the function, and creates additional test cases to raise the
different situations related to spectrum slots:
- M value too small
- total nb of channels too small
- overlapping

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7ab3923deef2ff154ee1be21dcaeb3d9e4b84375
2023-11-17 16:26:12 +01:00
EstherLerouzic
22de1b1281 Add tests on aggregation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5409d847657fbe14f7963ff56546d0bedbf6c941
2023-11-17 16:26:12 +01:00
EstherLerouzic
73e1485b47 aggregate demands with defined mode and spectrum
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id9fc2e0fe6f6ff5a3996700f6db7dfa6222dc3ca
2023-11-17 16:26:12 +01:00
EstherLerouzic
22ee05ea6f Add more tests for multiple slots spectrum assignment
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id773f0f14cfe80b7ebcf07370170ad425faf0919
2023-11-17 16:23:48 +01:00
EstherLerouzic
31824f318d Enable multiple slots assignment
list of slot may include (N, M) values such as
(int, uint>0)
(int, None)
(None, uint>0)
(None, None)

Demands will be splitted into requested slots according to first fit strategy.
For example, if request is for 32 slots corresponding to 8 x 4slots 32Gbauds
channels, the following frequency slots will result in the following
assignments:
example 1
N = 0, 8,    16, 32           -> 0,   8,   16,   32
M = 8, None, 8,  None         -> 8,   8,    8,    8
example 2
N = 0,    8,    16, 32        -> 0,   , 16
M = None, None, 8,  None      -> 24,  , 8

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ice9bb4b5700d23bcf30db25aa4882e74853169ac
2023-11-17 16:23:48 +01:00
EstherLerouzic
b0cb604e91 Remove old commented code
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idd2fcca0fe757eb801ab575953828c6df0521bb4
2023-11-17 16:23:48 +01:00
EstherLerouzic
79102e283a Refactor function to simplify the process
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I362d23a969c338ccd70caecc4e59e991d2a8d8a2
2023-11-17 16:23:48 +01:00
EstherLerouzic
db5e63d51b Refactor spectrum selection function
Cut some functions into smaller pieces to be easily re-used afterwards.
This step to prepare multiple slots assignment.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0fa2df7f6174e54405f92a57d60289d560c1166
2023-11-17 16:23:48 +01:00
EstherLerouzic
af42699133 Enable the loading of a bitmap
OMS are currently built with a brand new spectrum bitmap using f_min, f_max,
guard band and grid values. This changes enables to load an existing bitmap.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0547bc337c863a3510ad9e43928e6f64701d295
2023-11-17 16:23:48 +01:00
EstherLerouzic
4ba77d0a0a Change rq.N and rq.M from scalar to list
Prepare for the next step, to be able to handle lists of candidate assignment

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2bd78606ce4502f68efb60f85892df5f76d52bb5
2023-11-17 16:23:48 +01:00
EstherLerouzic
064d3af8e0 Remove line number from invocation logs
line numbers are useful for debugging, but the benefit does not
compensate for the painful update of lines in files at each commit
that changes line numbers.
So I have removed those lines only for the test_invocation logs case.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic1f628d80b204a9a098f3902ebdfd10b480c7613
2023-11-17 11:56:06 +01:00
AndreaDAmico
4ab5bac45f EDFA Parameters restructuring
The parameters of the EDFA are explicitely retrieved in the EDFAParams class.
All the defaults are set instead in the gnpy.tool.json_io.AMP class.
Where required, the AMP.default_values are used instead of an empty dictionary.

Change-Id: Iba80a6a56bc89feb7e959b54b9bd424ec9b0bf06
Co-authored-by: Vittorio Gatto <vittoriogatto98@gmail.com>
2023-11-17 09:08:00 +01:00
AndreaDAmico
bbe5fb7821 Chromatic Dispersion scaling along frequency
The chromatic dispersion and dispersion slope can be provided as a single values evaluated at the fiber reference frequency or in a dictionary containing the dispersion values evaluated at multiple frequencies:
"dispersion": {"value": [], "frequency": []}

Change-Id: I81429484dd373cc49bd9baf013247782ba1912fd
2023-11-17 09:04:44 +01:00
AndreaDAmico
edf1eec072 Nonlinear coefficient scaling along frequency
The nonlinear coefficient can be expressed at the reference frequency and will be scaled in frequency using the scaling rule of the effective area

Change-Id: Id103b227472702776bda17ab0a2a120ecfbf7473
2023-11-17 08:53:58 +01:00
AndreaDAmico
88ac41f721 Seprating the eta matrix evaluation in compute nli
The evaluation of the eta matrix is reintroduced for nli evaluation and validation purposes. Also, the parameters for cut and pump are separated explicitelly.

Change-Id: Id3844fa8ba41a5d4f5a72d281d758136ee983f45
2023-11-17 08:51:35 +01:00
AndreaDAmico
c20e6fb320 Effective Area and Raman Gain Coefficient Scaling
1. Effective area scaling along frequency is implemented by means of a technological model.
2. Raman gain coefficient is extended coherently, including the scaling due to the pump frequency.

Change-Id: I4e8b79697500ef0f73ba2f969713d9bdb3e9949c
Co-authored-by: Giacomo Borraccini <giacomo.borraccini@polito.it>
2023-11-17 08:51:26 +01:00
Jan Kundrát
05500c7047 CI: run tests on Apple M1 CPUs as well (64bit ARM)
Note that on GitHub, this currently targets a "runner" that's behind a
paywall. TIP does have a payment setup in place AFAICT, so we make sure
that this job does not run on forks.

Change-Id: I50c556424d86a1ce47e59911b9e39f336df34ce5
2023-11-15 20:37:26 +01:00
Jan Kundrát
86a39f4b5e packaging: mark Python 3.12 as supported
Change-Id: If3c8ea7d5a7651b71379a71e5dfde6b464aa5b4a
2023-11-15 20:06:55 +01:00
Jan Kundrát
2b25609255 CI: test on Python 3.12 and some new platforms
Change-Id: Ice5c3ca21245c4ac87cb2bf4f0fd062596615a2e
2023-11-15 20:06:55 +01:00
Jan Kundrát
7e0b95bcfd Bump all dependencies
Change-Id: Id08b7722880b992b1bb70f53ad243d4f40ffe387
2023-11-15 20:06:54 +01:00
Jan Kundrát
f0a52dcc8a tests: upgrade pandas
There are no binary wheels for Python 3.12 prior to pandas v2.1.1. Our
previous pin requested the 1.x branch, and that resulted in building
Pandas from source, which takes time. We cannot pin to 2.1.1 because
they removed support of Python 3.8 in 2.1, so 2.0.3 it is.

Change-Id: Ia9a567e54f4dda19a0a6b67d0c295a9a079892de
2023-11-15 20:05:54 +01:00
EstherLerouzic
3bea4b3c9f Feat: improve sanity check for eqpt sheet
add cases of wrong sheets that were not captured and
generate errors later in propagation:
- if the eqpt line is duplicated
- if the eqpt contains a link that is not present in Links sheet,
  but Nodes are OK
- if the same link is defined but with opposite directions
- if the ila is defined twice with opposite directions
- if the service type or mode are not in the library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4715886e19f07380bf02ed0e664559972bb39b71
2023-11-02 10:14:03 +01:00
EstherLerouzic
f2cc9f7225 Add more logs
and test them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I05ffc3a75354fa8d8f3a668973ab7f4cbcfa1a98
2023-11-02 10:01:38 +01:00
Esther Le Rouzic
e79f9f51b6 Merge "Feat: add offset power option for transceivers" 2023-10-31 08:30:13 +00:00
Esther Le Rouzic
7fd7f94efe Merge "Refactor error message" 2023-10-31 08:29:58 +00:00
Esther Le Rouzic
0acdf9d9f6 Merge "docs: rename the Matrix channel" 2023-10-27 15:09:16 +00:00
EstherLerouzic
a3edb20142 Feat: add offset power option for transceivers
Offset power is used for equalization purpose to correct for the
generic equalization target set in ROADM for this particular transceiver.
This is usefull to handle exception to the general equalization rule.
For example in the case of constant power equalization, the user might
want to apply particular power offsets unrelated to slot width or baudrate.
or in constant PSW, the user might want to have a given mode equalized for
a different value than the one computed based on the request bandwidth.

For example consider that a transceiver mode is meant to be equalized with
75 GHz whatever the spacing specified in request. then the user may specify
2 flavours depending on used spacing:

  service 1 : mode 3, spacing 75GHz
  service 2 : mode 4, spacing 87.5Ghz
avec
  {
    "format": "mode 3",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 75e9,
    "cost": 1
  }

  {
    "format": "mode 4",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 87.5e9,
    "equalization_offset_db": -0.67,
    "cost": 1
  }

then the same target power would be considered for mode3 and mode4
despite using a different slot width

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I437f75c42f257b88b24207260ef9ec9b1ab7066e
2023-10-24 13:20:00 +02:00
EstherLerouzic
33cc11b85c Refactor error message
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie8fc6bedcdbce26e2e80759c6c56d2c7429bf560
2023-10-24 13:20:00 +02:00
Jan Kundrát
5d079ab261 docs: rename the Matrix channel
It seems that the Matrix server at `foss.wtf` disappeared some time ago
with no details posted anywhere. I've marked the long-existing channel
alias `#oopt-gnpy:matrix.org` as the primary one, so let's adjust the
docs so that new people can actually join this channel.

This should have no consequences on people who have already joined.

Change-Id: Idee9c050ff5cb1c3926e5d4cf751002ad1541e71
2023-10-03 01:50:11 +02:00
AndreaDAmico
a3b1157e38 Fiber latency calculation
Fiber latency evaluated during propagation. The speed of ligth in fiber is evaluated as the vacuum speed of ligth  divided by the core reflective index n1.
The latency in the transceiver is evaluated in ms.

Change-Id: I7a3638c49f346aecaf1d4897cecf96d345fdb26c
2023-08-07 18:29:03 +02:00
AndreaDAmico
70731b64d6 fix: include position of lumped losses in Raman profile
In the previous version, the position of the lumped losses were not
included in the result Raman profile. As the latter is then used to
evaluate the NLI, including the lumped loss positions is required for
accurate estimations.

Change-Id: I683f48ceb7139d1a8be03d2e7ca7e3abffecbe85
2023-07-24 17:13:15 +02:00
AndreaDAmico
4ea0180caf tests: prefer pandas.read_csv over numpy.genfromtext
Change-Id: Icc9618afc4cad0c7a07f3a785c99b6b438e0c6cc
2023-07-24 17:12:25 +02:00
AndreaDAmico
eb2363a3d4 Fix: lumped losses included in total fiber loss
In previous version, the lumped losses where not included in the fiber loss, creating an inaccurate overall power balance.

Change-Id: I98a4d37b9cc0526218fe3c6f2b9318b6fa797901
2023-07-06 15:19:07 +02:00
EstherLerouzic
41b94cc888 fix: don't crash if PMD, PDL or CD penalties are missing in transceivers
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iafc248af3ecfcd4da4c1135fd3a37da796cdfb5f
2023-05-09 10:11:26 +02:00
Jan Kundrát
1eeb6a0583 Merge changes Icd0b4fbd,I3ca81bcd,Ia33315f0
* changes:
  docs: docstring formatting
  SimParams: less boilerplate
  python: prefer isinstance(foo, Bar) over type(foo) == Bar
2023-04-18 23:01:30 +00:00
Jan Kundrát
215c20e245 Merge "fix: add missing PSW case for power computation" 2023-04-18 00:41:45 +00:00
Jan Kundrát
76e9146043 docs: docstring formatting
Let's use the pythonic indenting, quoting and structure in general as
specified in PEP 0257.

Change-Id: Icd0b4fbd94dabd9a163ae3f6887b236e76c486ab
2023-04-18 01:34:19 +02:00
Jan Kundrát
2a07eec966 SimParams: less boilerplate
The code look as if it was trying to prevent direct instantiation of the
SimParams class. However, instance *creation* in Python is actually
handled via `__new__` which was not overridden. In addition, the
`get()` accessor was invoking `SimParams.__new__()` directly, which
meant that this class was instantiated each time it was needed.

Let's cut the boilerplate by getting rid of the extra step and just use
the regular constructor.

This patch doesn't change anything in actual observable behavior. I
still do not like this implicit singleton design pattern, but nuking
that will have to wait until some other time.

Change-Id: I3ca81bcd0042e91b4f6b7581879922611f18febe
2023-04-17 23:06:31 +02:00
Jan Kundrát
cc994bf118 python: prefer isinstance(foo, Bar) over type(foo) == Bar
Use of isinstance() is more Python and it also allows inheritance to
work properly.

Change-Id: Ia33315f0e3faf6638334bec85d0fa92ea8ac81f0
2023-04-17 23:02:51 +02:00
EstherLerouzic
37e70e622c fix: add missing PSW case for power computation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5fa9135cdde1735ec142bc88d8fdf0aa03b13a41
2023-04-13 16:48:21 +02:00
Florian FRANK
7d9a508955 Fix 2 minor typos in docs/model.rst
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: Ic2160f554b120b011c941aca36b69a0f032cf45f
2023-04-13 09:33:19 +02:00
Florian FRANK
185adabd77 Fix bug of comparison dimension when Raman is allowed and loss_coef is a vector instead of a scalar
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: I0b39d102b9200ec25ed62e6f53b1e0addcc66f67
2023-04-11 17:30:24 +02:00
Jan Kundrát
8f9cf8ccc7 docs: sync the author list from git history
I don't have a script for this because it requires some manual fixups.

Change-Id: I19f36b953c98d6bc0c09040c27b964b288360c0e
2023-03-06 01:31:41 +01:00
Sami Alavi
0c797a254c simplify type annotations
PEP 484 says that `float` also implicitly allows `int`, so there's no
need to use `Union[int | float]`.

Fixes: #450
Change-Id: Ib1aeda4c13ffabd47719c1e0886e9ebcf21a64e0
2023-03-03 21:12:57 +05:00
Jan Kundrát
2cdeeabfa6 Mark Python 3.11 as supported
Change-Id: I2dedd942c92959e1f891194f6234376b9ecad6e5
2023-03-02 14:28:12 +01:00
Jan Kundrát
5e874798cb CI: GitHub: add builds on 3.11
...and also switch various jobs to use that by default.

Change-Id: I9170fc305bfd9bea6b5dde5741f912c6ed455e3e
2023-03-02 14:28:12 +01:00
Jan Kundrát
ff8f044064 Merge changes from topic "mixed-rate"
* changes:
  complete tests with the --power option tests
  Add Roadm uid when raising error
  add equalization per constant ratio power/slot_width
2023-02-14 09:59:20 +00:00
Jan Kundrát
d84ee4e76c Merge "doc: add a link to our public chat room" 2023-02-07 17:09:15 +00:00
Jan Kundrát
521d27ffac docs: fix a nasty typo
Fixes: b1067a62 docs: flexgrid
Change-Id: I44613d8ef4a27e7791db81509a56efa7ee29b4ff
2023-02-07 00:36:14 +01:00
Jan Kundrát
35e759212e doc: add a link to our public chat room
Change-Id: Id5323ad01ff0705efb9c9335e2c1f61227e5b73b
2023-02-02 17:29:19 +01:00
Jan Kundrát
f6dede2b5f docs: remove LGTM.com code-quality badge
...which no longer works since they got acquired by GitHub. Setting up
that CodeQL will need a bit more time I'm afraid.

Change-Id: I2f2bf21d31df643b25e931b2aadf60406bba683b
2023-02-02 17:28:40 +01:00
Jan Kundrát
0d0019f627 Update my e-mail address
I was informed that my TIP-specific e-mail address won't be coming back.

Change-Id: Ic2ee4986203490d90143a89dc49d7fca71a84c73
2023-02-02 17:13:23 +01:00
EstherLerouzic
06fe1c2f63 complete tests with the --power option tests
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia7be6b86b82cc0317a5ba48086ef63f67d490990
2023-01-30 18:05:41 +01:00
EstherLerouzic
092316a9d7 Add Roadm uid when raising error
in case parameters are not correct, catch the ParameterError
and raises it again with the uid of the ROADM to ease debug

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1f85f0e9e9226fc613d35611774c739adb2104c7
2023-01-30 18:05:37 +01:00
EstherLerouzic
48e3f96967 add equalization per constant ratio power/slot_width
Constant power per slot_width uses the slot width instead of
baud rate compared to PSD.

This is the equalization used in OpenROADM

add tests for constant power per slot width equalization

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie350e4c15cb6b54c15e418556fe33e72486cb134
2023-01-30 18:03:58 +01:00
Jan Kundrát
e9e8956caf docs: fix the GitHub CI (actions) badge
Bug: https://github.com/badges/shields/issues/8671
Change-Id: I9cb15b762710cae7c3c37ed95d08aee2ca7b2457
2023-01-18 22:57:17 +01:00
Jan Kundrát
0ae341c2a5 tests: update to flake8 v5
flake8-html is now compatible with the v5 of this package, so let's use
it. Unfortunately, they killed the `--diff` option in v6, so we cannot
use it right now. I understand the reasoning as well as the fact that
it's easy to be broken, but I don't like broken CI that much.

Change-Id: I70dd686e097f411c39bfc53f83d519540687dd64
2023-01-18 22:25:48 +01:00
Jan Kundrát
0c2f6372f8 tests: switch to PEP517-compliant build process
...mainly to be in sync with oopt-gnpy-libyang that I've been working on
recently, and to allow us to modernize this infrastructure later on.

Change-Id: Id0ed1d7620762fc204300ebe8a190de8e42ae9df
2023-01-18 22:20:39 +01:00
Jan Kundrát
97e80b4445 Merge changes from topic "enable-multiple-slots-assignment"
* changes:
  record request_id as string, not integer
  support missing trx_mode in request instead of null value
2023-01-18 21:20:03 +00:00
Jan Kundrát
5e4c9b7d73 Merge "Respect fiber max_length when splitting fibers" 2023-01-18 21:19:39 +00:00
Jan Kundrát
e96f821cce CI: Switch to Fedora 36
...because Vexxhost pulled the plug on the F35 mirroring infrastructure,
and as a result, all jobs started failing.

Change-Id: Ib5d795397e907de3eff6cdb9c4145353400793ab
Depends-on: https://review.gerrithub.io/c/Telecominfraproject/oopt-zuul-jobs/+/548583
2023-01-18 21:35:08 +01:00
Jan Kundrát
5f7e61e255 CI: temporarily remove Fedora 35 jobs
...since the hosting provider pulled the plug on the mirroring
infrastructure. See the rest of these commits in this serie for
details.

Change-Id: Iac1d5f1c6f557458194deafe441564afc4851d94
2023-01-18 21:32:11 +01:00
Jonas Mårtensson
682b5c5691 Respect fiber max_length when splitting fibers
According to the documentation, auto-design will
"Split fiber lengths > max_length", which also makes sense based on the
name of the parameter but with the existing implementation fiber
length could still be longer than max_length after splitting. This
patch makes auto-design respect the specified max_length.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ifd83aa4d77206bf10796579df73632fe405e2d54
2023-01-18 11:59:06 +00:00
Jan Kundrát
11e5117505 tests: do not compare floating point numbers for equality
GitHub CI started failing with the following error:

  assert (watt2dbm(si.signal) == target - correction).all()
  assert False
   +  where False = <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0>()
   +    where <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0> = array([-25.5, -24.5, -22.5, -25. , -27.5]) == array([-25.5, -24.5, -22.5, -25. , -27.5])
        +array([-25.5, -24.5, -22.5, -25. , -27.5])
        -array([-25.5, -24.5, -22.5, -25. , -27.5])
        Full diff:
          array([-25.5, -24.5, -22.5, -25. , -27.5]).all

This is with code which has passed in the Zuul/Vexxhost CI.

It looks very similar to a regression that hit numpy 1.24.0, but the
GitHub action log shows that this happens with numpy 1.24.1. Weird, and
I'm not getting these differences locally, and also not on an ARM64
cloud VM.

Anyway, comparing floating point numbers for strict equality is futile,
so let's use this opportunity to use a proper check for these.

Change-Id: I05683f3116cad78d067bddde2780fe25b5caf768
2023-01-18 00:27:53 +01:00
EstherLerouzic
50603420fc ROADM: rework equalization
On a ROADM, the code would previously set the same per-carrier power
regardless of the channel spectrum width. With this patch, carriers are
equalized either by their:

- absolute power (same as before),
- power spectral density (PSD).

Also, it's possible to apply a per-channel power offset (in dB) which
will be applied to a specified channel on top of the selected
power-level or PSD strategy. The same offset can be also selected
through the `--spectrum` option via the `default_pdb` parameter.

The equalization policy can be set via the ROADM model (in the equipment
config) as well as on a per-instance basis.

The PSD is defined as the absolute power over a spectral bandwidth,
where the spectral bandwidth corresponds to the actual spectrum
occupation (without any applicable guard bands), as approximated by the
symbol rate. PSD is specified in mW/GHz. As an example, for a 32 GBaud
signal at 0.01 mW, the PSD is 0.01/32 = 3.125e-4 mW/GHz.

This has some implications on the power sweep and ROADM behavior. Same
as previously (with absolute power targets), the ROADM design determines
the power set points. Target power is usually the best (highest) power
that can be supported by the ROADMs, especially the Add/Drop and express
stages' losses, with the goal to maximize the power at the booster's
input. As such, the `--power` option (or the power sweep) doesn't
manipulate with ROADM's target output power, but only with the output
power of the amplifiers. With PSD equalization, the `--power` option is
interpreted as the power of the reference channel defined in equipment
config's `SI` container, and its PSD is used for propagation. Power
sweep is interpreted in the same way, e.g.:

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": 0,
            "power_range_db": [-1,1,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

...and with the PSD equalization in a ROADM:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 3.125e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

then we use the power steps of the power_range_db to compute resulting
powers of each carrier out of the booster amp:

 power_db = psd2powerdbm(target_psd_out_mWperGHz, baud_rate)
 sweep = power_db + delta_power for delta_power in power_range_db

Assuming one 32Gbaud and one 64Gbaud carriers:

                   32 Gbaud        64 Gbaud
roadmA out power
(sig+ase+nli)      -20dBm         -17dBm

EDFA out power
range[
        -1          1dBm            4dBm
         0          2dBm            5dBm
         1          3dBm            6dBm
]

Design case:

Design is performed based on the reference channel set defined in SI
in equipment config (independantly of equalization process):

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": -1,
            "power_range_db": [0,0,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

`delta_p` values of amps refer to this reference channel, but are applicable
for any baudrate during propagation, e.g.:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 2.717e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

Then the output power for a 64 Gbaud carrier will be +4 =
= lin2db(db2lin(power_dbm + delta_p)/32e9 * 64e9)
= lin2db(db2lin(power_dbm + delta_p) * 2)
= powerdbm + delta + 3 = 4 dBm

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I28bcfeb72b0e74380b087762bb92ba5d39219eb3
2023-01-17 12:26:50 +01:00
Jan Kundrát
125264f265 coding style: don't yell when using the recommended newline-vs-operator
Fun stuff -- PEP8 used to recommend against this pattern, but back in
2016 the Pythonic Truth got reversed to actually recommend the pattern
which we're using. Unfortunately, W503 is still a thing, and even though
it's supposed to be ignored, it really ain't.

Change-Id: I99f42548d236f05d1050fd78cb81b3b20a78013c
2023-01-17 12:26:50 +01:00
Jan Kundrát
b1067a6266 docs: flexgrid
Co-authored-by: Esther Lerouzic <esther.lerouzic@orange.com>
Change-Id: If38b56a39e083deec0563f25a2b575788dcedc43
2023-01-17 09:48:15 +00:00
EstherLerouzic
50d4ecd700 docs: fix power mode vs. gain mode and power sweep
Change-Id: Ibef9a49123767d6e2ce73081485833f281711e04
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2023-01-17 09:47:58 +00:00
Jan Kundrát
9f37e0371e CI: temporarily require tox 3.x
Upstream introduced some breaking changes, one of which is a different
installation process. As a result, the builds won't perform a full
package installation, which means that there are no console entry points
(shell wrappers), which means that the test suite fails.

Hotfix this by temporarily requiring an older version of tox.

Change-Id: I0466c70f2024d35d87606d9ad738284a143a574f
2023-01-17 01:31:33 +01:00
Jan Kundrát
9bd303db05 CI: github: upgrade deprecated actions
...because the GitHub infrastructure is deprecating Node 12 actions:

 https: //github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/

Change-Id: I2d4a28be37a407aa26e79a1755eb5c3b0ec36a87
2023-01-10 12:27:50 +01:00
EstherLerouzic
1bcb3ce25c JSON: ensure that node constraints use correct indexing
The program currently ignores the explicit `index` and reads the
constraints in the JSON order of the list. However in general, it is not
guaranteed that constraints are listed in order.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icefe271f5801cf9f7b43311c6666556564587c65
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2022-11-22 01:53:24 +01:00
Jan Kundrát
e381138320 move test-only dependencies from main requirements
Pandas is only used from the test suite.

Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/451
Change-Id: Iafd02c800e5b7772e180979d19b81a2eda0e588f
2022-11-15 10:01:31 +00:00
EstherLerouzic
b450677709 Minor refactor: use watt2dbm function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I09c3e923a8e1565d2ab07596c393bb5b2dc30f6c
2022-11-09 14:39:27 +01:00
EstherLerouzic
54a3725e17 Add a -spectrum option to input external file to define spectrum
The option is only set for gnpy-transmission-main.

The spectrum file is a list of spectrum objects, each defining
f_min, f_max and spectrum attributes using the same meaning as SI
in eqpt_config.json for baud_rate, roll_off, tx_osnr. slot_width is
used for the occupation of each carrier around their central frequency,
so slot_width corresponds to spacing of SI.
Unlike SI, the frequencies are defined includint f_min and f_max.
The partitions must be contiguous not overlapping.

Pref.p_span0 object records the req_power, while
ref_carrier records info that will be useful for equalization ie baud_rate.

For now, I have not integrated the possibility to directly use
transceivers type and mode in the list.

User can define sets of contiguous channels and a label to identify
the spectrum bands. If no label are defined, the program justs uses
the index + baud rate of the spectrum bands as label.

Print results per spectrum label

If propagated spectrum has mixed rates, then prints results (GSNR and OSNR)
for each propagated spectrum type according to its label.

Print per label channel power of elements

Per channel power prints were previously only showing the noiseless
reference channel power and only an average power.
With this change, we add a new information on the print:
the average total power (signal + noise + non-linear noise).
If there are several spectrum types propagating, the average per
spectrum is displayed using the label.
For this purpose, label and total power are recorded in each element
upon propagation

Note that the difference between this total power and the existing
channel power represents the added noise for the considered OMS.
Indeed ROADMs equalize per channel total power, so that power displayed
in 'actual pch (dBm)' may contain some noise contribution accumulated
with previous propagation.
Because 'reference pch out (dBm)' is for the noiseless reference,
it is exactly set to the target power and 'actual pch (dBm)' is always
matching 'reference pch out (dBm)' in ROADM prints.

Add examples and tests for -spectrum option

initial_spectrum1.json reproduces exactly the case of SI
initial_spectrum2.json sets half of the spectrum with 50GHz 32Gbauds and
half with 75GHz 64 Gbauds. Power setting is not set for the second half,
So that equalization will depend on ROADM settings.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibc01e59e461e5e933e95d23dacbc5289e275ccf7
2022-11-09 14:39:25 +01:00
Jan Kundrát
8889c2437a refactoring: ROADM: clarify effective_loss and improve the docs
Move the docs to a place where that variable is declared, not to the
place where it's computed.

Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-id: I17dff12c1e81827dfb4be869e59c9be85797dba4
2022-11-03 10:24:42 +01:00
Jan Kundrát
8bf8b2947b tests: pass the reference carrier when constructing SI
Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Fixes: 18610fb7 Add ref_carrier to Pref and remove req_power from ReferenceCarrier
Change-Id: I8ac2a7ca7c6d866170e564771c6cb78dcf3754d8
2022-11-03 10:24:38 +01:00
EstherLerouzic
cb85b8fe2b Add a test with long propagation
Existing tests only cover short distances, and effect on accumulated
noise, especially when crossing ROADMs with equalization, are not well
reported on elements power prints.
With this long path, I can catch more printing inconsistencies.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d0e8ccbbd387a2cd6c645c07f4b5f75e4617c30
2022-11-02 12:05:26 +01:00
EstherLerouzic
18610fb7a9 Add ref_carrier to Pref and remove req_power from ReferenceCarrier
ref_carrier is added in Pref conveys the reference channel type
information ie the channel that was used for design (would it be
auto-design or for a given design). Other attributes (like
slot_width or roll-off) may be added here for future equalization
types.

Pref object already records the req_power, so let's remove it
from ReferenceCarrier and only use ref_carrier to record info that
will be useful for PSD equalization ie baud_rate.

This reference baud_rate is required to compute reference target power
based on spectral density values during propagation. It is thus required
because of on-the-fly evaluation of loss for p_span_i and for printing
loss and target power of ROADM during propagation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic7441afa12ca5273ff99dea0268e439276107257
2022-11-02 12:05:26 +01:00
EstherLerouzic
bd6b278dd1 Add tx_osnr in spectral information
This change enables to use a different tx_osnr per carrier.

If tx_osnr is defined via spectrum then use it to define a tx_osnr per
carrier in si else use the tx_osnr of request to set tx_osnr of si.

Then, the propagate function for requests is changed to update OSNR with
tx_OSNR per carrier defined in si.

TODO: The tx_osnr defined in spectrum is not yet taken into account for
the propagate_and_optimize function, because the loop that optimizes
the choice for the mode only loops on baudrate.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0fcdf559d4f1f8f0047faa257076084ec7adcc77
2022-10-31 16:04:46 +01:00
EstherLerouzic
e143d25339 Add a user defined initial spectrum in propagation functions
A new function is added to build spectrum information based on
the actual mixture of channels to be simulated (baud rate, slot width,
power per frequency).

Propagation function is changed so that, if the user defines a
specific distribution, then it uses it, else it uses as before,
all identical channels based on the initial request. In this case,
as before this change, we assume full load, with same channel for
the spectral info and not the resulting mixt of channels after
routing.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icf56396837b77009e98accd27fcebd2dded6d112
2022-10-31 16:03:15 +01:00
EstherLerouzic
ffc7dbc241 Change pref from a scalar to a list of per channel delta power
The idea behind this change is to reproduce the exact same behaviour as
with the scalar, but accounting for variable levels of powers.

- delete the  neq_ch: equivalent channel count in dB because with mixed
  rates and power such a value has limited utility
- instead creates a vector that records the 'user defined' distribution
  of power.

This vector is used as a reference for channel equalization out of the
ROADM. If target_power_per_channel has some channels power above
input power, then the whole target is reduced.
For example, if user specifies delta_pdb_per_channel:
   freq1: 1dB, freq2: 3dB, freq3: -3dB, and target is -20dBm out of the
ROADM, then the target power for each channel uses the specified
delta_pdb_per_channel.
   target_power_per_channel[f1, f2, f3] = -19, -17, -23
However if input_signal = -23, -16, -26, then the target can not be
applied, because -23 < -19dBm and -26 < -23dBm, and a reduction must be
applied (ROADM can not amplify).
Then the target is only applied to signals whose power is above the
threshold. others are left unchanged and unequalized.
the new target is [-23, -17, -26]
and the attenuation to apply is [-23, -16, -26] - [-23, -17, -26] = [0, 1, 0]

Important note:
This changes the previous behaviour that equalized all identical channels
based on the one that had the min power !!

TODO: in coming refactor where transmission and design will be properly
separated, the initial behaviour may be set again as a design choice.

This change corresponds to a discussion held during coders call. Please look at this document for
a reference: https://telecominfraproject.atlassian.net/wiki/spaces/OOPT/pages/669679645/PSE+Meeting+Minutes

- in amplifier: the saturation is computed based on this vector
delta_pdb_per_channel, instead of the nb of channels.
The target of the future refactor will be to use the effective
carrier's power. I prefer to have this first step, because this is
how it is implemented today (ie based on the noiseless reference),
and I would like first to add more behaviour tests before doing
this refactor (would it be needed).

- in spectralInfo class, change pref to a Pref object to enable both
p_span0 and p_spani to be conveyed during propagation of
spectral_information in elements. No refactor of them at this point.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I591027cdd08e89098330c7d77d6f50212f4d4724
2022-10-28 09:13:24 +02:00
EstherLerouzic
b842898baf Change precision of --show-channels to 5 digits
Flexgrid precision is 6.25GHz so --show-channels should be at least 5 digits

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7de4254ab18508320133371e0d8cc8b5e08f0d2f
2022-10-28 00:38:28 +00:00
EstherLerouzic
7ea9e3b341 Fix bug when gain is not initialized
If gain is not initialized, save_networks does not work properly
trying to round a None value

Change-Id: I614859f16e0019a2f6fe680c04159398c9b1eb51
2022-10-20 15:38:12 +00:00
Jan Kundrát
fcf168b361 tests: fix flake8 and flake8-html incompatibility
Test runs (`linters-diff-ci`) end up with an error:

 Traceback (most recent call last):
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/bin/flake8", line 8, in <module>
     sys.exit(main())
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/cli.py", line 22, in main
     app.run(argv)
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 336, in run
     self._run(argv)
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 326, in _run
     self.report()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 321, in report
     self.formatter.stop()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8_html/plugin.py", line 245, in stop
     self.write_index()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8_html/plugin.py", line 281, in write_index
     versions=self.option_manager.generate_versions(),
 AttributeError: 'OptionManager' object has no attribute 'generate_versions'
 ERROR: InvocationError for command /home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/bin/flake8 --format html --htmldir linters --exit-zero (exited with code 1)

Bug: https://github.com/lordmauve/flake8-html/issues/30
Change-Id: I755877341dec2d9cd9bdcdab098e2067f783cc27
2022-10-20 15:37:12 +02:00
Jan Kundrát
a7ec7e2ed6 Merge changes from topic "mixed-rate"
* changes:
  Change saturation verification to total input power
  Prepare for Pref definition
  Add utilities
2022-09-19 09:30:59 +00:00
Jan Kundrát
00ee102b3a docs: fix RST formatting
...of a bullet list. This ain't markdown, apparently.

Change-Id: I4f7a55a4084eda6463636c1dd5c41ef43ef78921
2022-09-18 12:46:19 +02:00
EstherLerouzic
ce11524ad9 Correct dgt vector: listed in the reversed order
This was corrected for example-data but not for tests data
(in commit 3a72ce84d0, related
to issue #390)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I929beeb034166d30aa994439a1d6a26350f5c3e9
2022-09-14 05:35:15 +00:00
EstherLerouzic
74be14562a record request_id as string, not integer
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I59416a6d69a5989d0c152461ca9e264abcf09ea8
2022-08-24 16:45:56 +02:00
EstherLerouzic
16694d0a09 support missing trx_mode in request instead of null value
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5c05b17b0b134c7782a08e86015dc30c7c9b3713
2022-08-24 16:43:57 +02:00
EstherLerouzic
33c6038921 Change saturation verification to total input power
Previous check was made on reference channel computation.
Now we use the actual total input power to compute the actual gain.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e0db72fdb030a49e2b06cdcfb442b5e642c1777
2022-08-17 14:13:38 +02:00
EstherLerouzic
119c9eda90 Prepare for Pref definition
Mainly changes self.pch_out_db to self.ref_pch_out_dbm in order
to reflect real unit for the value and to remind that this value
is defined for a reference noiseless channel (whose power is recorded
in p_spani in Pref).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0e008c3efc36ce73c9df01c76cf46985543d9fa
2022-08-17 14:13:38 +02:00
EstherLerouzic
b63e146bf4 Add utilities
to convert from/to watt, mW, dBm, power spectral density ...

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9b9684c1ad096aa54d01ef3f0242ecd2dcae79aa
2022-08-17 14:13:38 +02:00
gborrach
09dba8a166 Fix: Raman pumps SRS solver
In the previous version, when the values of the counter-propagating Raman pump profiles were flipped, the pumps resulted flipped also in frequency.

Change-Id: I66f7c2aff35c72f5dcb4fb11f7a82fe1df2ee3f2
Co-authored-by: Andrea D'Amico <andrea.damico@polito.it>
2022-07-27 00:20:47 +02:00
Jan Kundrát
7f5043622b CI: GitHub: show all build failures
Change-Id: I4a5aeb123aa89a30371a36788188964ca924ca12
2022-07-07 16:32:13 +02:00
Jan Kundrát
6ad4593f41 CI: GitHub: test on Mac OS as well
Change-Id: Ifb8ba470765fc02e3367beeaf8f048da6fdad6d7
2022-07-05 13:18:37 +02:00
Jan Kundrát
706661d801 CI: GitHub: use new test-requirements
Follow-up: b86fe960 I8d2e610c91da728d72c7d19590b25bbd8713f0de tests: Easier installation of test requirements via PIP
Change-Id: I870ed27af7301829ced572214f517ca76a94a0dc
2022-07-05 13:07:18 +02:00
Jan Kundrát
a408d28911 Merge "Remove Travis-CI leftovers" 2022-07-05 11:07:08 +00:00
Jan Kundrát
b86fe96032 tests: Easier installation of test requirements via PIP
Burying these behind the tox.ini works fine on CI, but it means that
someone has to ask the users to run an extra `pip install pytest` for
the test suite. Not nice.

This will need a follow-up commit to adjust the GitHub action to use
this new simplified way. That cannot land via Gerrit due to GitHub's
permission model.

Change-Id: I8d2e610c91da728d72c7d19590b25bbd8713f0de
2022-07-05 12:45:19 +02:00
Jan Kundrát
43926518ad Remove Travis-CI leftovers
These builds have not been running for about an year. Now that we have
Zuul for day-to-day CI and GitHub actions for some auxiliary package
building, remove Travis.

Change-Id: I1dd7f70045fd24d2f73f0d2086cb49edde2093c7
2022-07-05 10:14:18 +02:00
Jan Kundrát
128a6e816b docs: better anchor for legacy JSON
Change-Id: I410a4c0cdd34dd9aa5d8e34bb859746236fffdd2
2022-07-03 01:03:26 +02:00
Jan Kundrát
44db951261 docs: show gnpy.app
Change-Id: I7ec5eec72fb0f07e277ac849da09003d376eec17
2022-04-12 11:42:06 +02:00
Jonas Mårtensson
3c3d919b77 Merge "Fix: penalties are not correctly initialized" 2022-04-11 18:55:42 +00:00
EstherLerouzic
2079d2bc5b Fix: penalties are not correctly initialized
When mode is not given and propagation is performed bidir, penalties
corresponding to automatically  selected mode are not correctly
initialized in request, and gnpy-path-request fails.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If045624ff5dad7f0dfdec93eaa05bb5eae86e643
2022-04-06 17:17:21 +02:00
Jonas Mårtensson
062e2076ed Properly initialize power profiles for Raman calculation
numpy.empty should not be used for initializing arrays without manually
setting values since it does not initialize entries. Use numpy.zeros
instead.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I4e85eb39bdce00663c0cab9582ea7ae25eb90986
2022-03-29 21:41:57 +02:00
Jonas Mårtensson
1dd1bad273 Fix bug in Raman calculation without counterpropagating pumps
The counterpropagating power profile was initialized based on number of
copropagating frequencies, which caused simulation to crash when no
counterpropagating pumps were present.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I685e5438fda06058f0757ff51fdd67bc68aa1352
2022-03-29 21:27:18 +02:00
Jan Kundrát
5b104af296 packaging: cleanup: remove non-existing paths
The examples have lived below gnpy/example-data/ for a few releases
already, and I've checked that these files are included in release
tarballs and wheels.

Change-Id: I782fc56a171f4cbc08f6698ac5d339e4cacecbb4
2022-03-09 00:13:43 +01:00
Jan Kundrát
f170574abf CI: retire gate
We have not started using this one, so let's not pretend that it's
active.

Change-Id: I806a76e2c6e0dc1d1fb76796cfea8eb37bfa39ca
2022-02-15 13:27:24 +01:00
Jan Kundrát
a68e8ff8d2 CI: Use default VMs for Python 3.8
Since the mirror infra for Fedora 34 is now gone on Vexxhost, let's try
to use the default options.

Change-Id: I6e4cc07705287666a772c6b1b70e981b24da6670
2022-02-15 13:18:31 +01:00
AndreaDAmico
d5a52d1b2b Restructure Transceiver with new spectral information
Change-Id: Iec9a6e4a510b8020aed8804d4a594b2b0429e28d
2022-02-10 17:38:39 +01:00
AndreaDAmico
7ac6e058ec EDFA new spectral information restructuring
Change-Id: Ia30e0e9bd666e83394c7a0740b2117a2d9c9d485
2022-02-10 17:37:03 +01:00
AndreaDAmico
74ab3c1bcd Fused new spectral information restructuring
Change-Id: Ie4dd989e2fd72682820845d21c43afed177f0f2f
2022-02-10 17:36:35 +01:00
AndreaDAmico
1a2ff2d215 Roadm new spectral information restructuring
Change-Id: I5c7c615e8278bff79dc74af10810589a15cc7535
2022-02-10 17:34:28 +01:00
Giacomo Borraccini
aaf0480e9c Management of lumped losses along a fiber span
The lumped losses are used in the computation of the loss/gain profile
through the fiber whether the Raman effect is considered or not. The
computed power profile is used to calculate the related NLI impairment.

Using the 'gn_model_analytic' method, the lumped losses are taken into
account as the contribution of an additional total loss at the end of
the fiber span. In case the 'ggn_spectrally_separated' is selected, the
method uses the computed power profile according to the specified z and
frequency arrays. The lumped losses are so considered within the NLI
power evolution along the fiber.

Change-Id: I73a6baa321aca4d041cafa180f47afed824ce267
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2022-02-10 17:33:34 +01:00
Jan Kundrát
5e50ffbbf6 CI: check patches on Python 3.10 as well
Depends-on: https://review.gerrithub.io/c/Telecominfraproject/oopt-zuul-jobs/+/531900
Change-Id: I975c38b2f287aa07b68cc37500c7022feb4ae3e2
2022-02-02 02:13:23 +01:00
Jan Kundrát
243b701391 docs: update dependencies
Python 3.10 builds require a fix in Sphinx, so let's update all docs
dependencies while we're at this.

Unfortunately, the myst-parser requires docutils<0.18,>=0.15 so we
cannot take the latest and greatest of that one.

After this update, sphinxcontrib-bibtex now requires an explicit
reference to the .bib files directly in the config file. Let's remove
the one in the actual docs, then.

Bug: https://github.com/sphinx-doc/sphinx/pull/9513
Change-Id: I80f62131b25f3afa23351646001f6ce381723487
2022-02-02 02:13:04 +01:00
Jan Kundrát
bdbfe76aed Mark Python 3.10 as supported
The CI is (so far) only post-merge via the GitHub CI. The Zuul CI is
pending on Fedora 35 images within nodepool; I've requested that via a
ticket at Vexxhost, our hosted CI provider.

Change-Id: I81c9867792f972db8fcb2bf902f5f8d1ed7ffeea
2022-01-20 18:51:02 +01:00
Jan Kundrát
541ec04444 GitHub CI: Python 3.10
Add a new target, and switch those builds where a specific version is
not that important to the latest and greatest.

Change-Id: I6f62a08c671a98b3663c7a8cf0099947457f1e4d
2022-01-20 18:50:54 +01:00
Jan Kundrát
bf1522b047 Merge changes Iff561600,I60f951e9
* changes:
  tests: update pytest
  Update dependencies
2022-01-20 17:50:09 +00:00
Jan Kundrát
3f4188a0fd Merge changes I79611db3,Ib0ab383b,I3745eba4,Ic19aff08,Ic255f35d
* changes:
  Add PMD and PDL in amplifiers
  Introduce PDL accumulation and penalty calculation
  Calculate CD and PMD penalty
  Set PMD for ROADMs in OpenROADM eqpt_config according to MSA spec
  Fix formatting of OpenROADM eqpt files
2022-01-20 16:48:11 +00:00
Jan Kundrát
8b387ef722 tests: update pytest
Let's switch to this new major version; it's not wise to stay on a
previous major release indefinitely. In practical terms, version 6.x is
a requirement for supporting Python 3.10.

I'm not updating the CI configuration yet because GitHub disallows
pushes via Gerrit when GitHub CI Actions are modified. The version will
have to be bumped in there as well.

Change-Id: Iff5616007b51e6098f53810a28fef5b839dadec2
2022-01-19 16:25:38 +01:00
Jan Kundrát
cad9a0f18e Update dependencies
Updating everything to the latest versions which are available on PIP --
apart from xlrd, which decided to stop supporting XLSX files in their
newest version. Since we have some XLSX files in this repo, I think we
cannot update now.

Change-Id: I60f951e9f17cc62f0dcdc6b6d0cfce0cb5f891fa
2022-01-19 16:23:18 +01:00
Jonas Mårtensson
ab84c77363 Restore RamanFiber to_json method with operational parameters
The recent commit 77925b2 removed the to_json method from RamanFiber
class, which means that operational parameters (temperature and
raman_pumps) were not included when converting a topology to json and
saving it. This patch restores it.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Icbea349c1ffaa2f216533b84c8edf5c8b59765f9
2022-01-18 19:07:28 +01:00
Jonas Mårtensson
62fa9ab0b0 Add PMD and PDL in amplifiers
Both PMD and PDL is set to 0 by default. Values from the OpenROADM MSA
for ILAs are included in corresponding eqpt files.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I79611db3ae798e9dadc47ee39161dc1e242f2595
2022-01-18 12:35:59 +01:00
Jonas Mårtensson
14591c7a11 Introduce PDL accumulation and penalty calculation
This fixes #421

As a first step PDL is specified in the eqpt library for ROADMs only.
In a later step, PDL (as well as PMD) should be specified also for amps
and possibly for fibers. PDL values from the OpenROADM MSA for ROADMs
are included in the corresponding eqpt files.

The acculumation rule for PDL is the same as for PMD as shown in:

"The statistics of polarization-dependent loss in optical communication
systems", A. Mecozzi and M. Shtaif, IEEE Photon. Technol. Lett., vol.
14, pp. 313-315, Mar 2002.

PDL penalty is specified and calculated in the same way as for CD and
PMD, i.e. linear interpolation between impairment_value/penalty_value
pairs. This patch includes penalty specification for OpenROADM trx
modes according to the MSA.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ib0ab383bcaee7d7523ffc3fa9a949d76c8c86ff7
2022-01-18 12:35:59 +01:00
Jonas Mårtensson
587932290d Calculate CD and PMD penalty
The penalties are calculated and presented separately from the GSNR.

They are also taken into account when optimizing trx mode and verifying
path feasibility in path_requests_run processing.

Penalties are specified in the eqpt_config file as part of trx modes.
This patch includes specifications for OpenROADM trx modes.

Penalties are defined by a list of
impairment_value/penalty_value pairs, for example:

"penalties": [
    {
        "chromatic_dispersion": 4e3,
        "penalty_value": 0
    },
    {
        "chromatic_dispersion": 18e3,
        "penalty_value": 0.5
    },
    {
        "pmd": 10,
        "penalty_value": 0
    },
    {
        "pmd": 30,
        "penalty_value": 0.5
    }
]

- Between given pairs, penalty is linearly interpolated.
- Below min and above max up_to_boundary, transmission is considered
  not feasible.

This is in line with how penalties are specified in OpenROADM and
compatible with specifications from most other organizations and
vendors.

The implementation makes it easy to add other penalties (PDL, etc.) in
the future.

The input format is flexible such that it can easily be extended to
accept combined penalty entries (e.g. CD and PMD) in the future.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I3745eba48ca60c0e4c904839a99b59104eae9216
2022-01-18 12:35:59 +01:00
Jonas Mårtensson
82b148eb87 Set PMD for ROADMs in OpenROADM eqpt_config according to MSA spec
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ic19aff08ea0da51656ba81e04f34a405413f7b54
2022-01-18 12:35:59 +01:00
Jonas Mårtensson
8393daf67d Fix formatting of OpenROADM eqpt files
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ic255f35d32ce996724a547962efc44d7950bac4d
2022-01-18 12:35:57 +01:00
Jan Kundrát
be61dfd094 Merge changes from topic "mixed-rate"
* changes:
  Raman Solver restructuring and speed up
  Effective area included in fiber parameters
  Fiber propagation of new Spectral Information.
  Small change on Fiber parameters
2022-01-18 09:58:07 +00:00
AndreaDAmico
77925b218e Raman Solver restructuring and speed up
In this change, the RamanSolver is completely restructured in order to obtain a simplified and faster solution of the Raman equation. Additionally, the inter-channel Raman effect can be evaluated also in the standard fiber, when no Raman pumping is present. The same is true for the GGN model.

The Raman pump parameter pumps_loss_coef has been removed as it was not used. The loss coefficient value evaluated at the pump frequency can be included within the fiber loss_coef parameter.

This change induces variations in some expected test results as the Raman profile solution is calculated by a completely distinct algorithm. Nevertheless, these variations are negligible being lower than 0.1dB.

Change-Id: Iaa40fbb23c555571497e1ff3bf19dbcbfcadf96b
2022-01-12 19:37:10 +01:00
AndreaDAmico
4621ac12bf Effective area included in fiber parameters
Gamma and the raman efficiency are calculated using the effective area if not provided. Both these parameters are managed as optional in json_io.py for backward compatibility.

Change-Id: Id7f1403ae33aeeff7ec464e4c7f9c1dcfa946827
2022-01-06 12:00:00 +01:00
AndreaDAmico
09920c0af2 Fiber propagation of new Spectral Information.
Modification of the Fiber and the NliSolver in order to properly propagate the new definition of the spectral information taking advantage of the numpy array structures.

In the previous version, the propagation of the spectral information was implemented by means of for cycles over each channel, in turn.
In this change the propagation is applied directly on the newly defined spectral information attributes as numpy arrays.

Additional changes:
- Simplification of the FiberParameters and the NliParameters;
- Previous issues regarding the loss_coef definition along the frequency are solved;
- New test in test_science_utils.py verifing that the fiber propagation provides the correct values in case of a few cases of flex grid spectra.

Change-Id: Id71f36effba35fc3ed4bbf2481a3cf6566ccb51c
2022-01-06 12:00:00 +01:00
AndreaDAmico
e6a3d9ce5b Small change on Fiber parameters
Squeeze function has been replaced by asarray. Using 'get' function
instead of if condition for the dictionaries.  Frequency reference
derived from wavelength reference of 1550 nm.

Change-Id: I815ad8591c9e238f3fc9322ca0946ea469ff448f
2022-01-06 12:00:00 +01:00
Jonas Mårtensson
b9645702c8 Add fiber padding after splitting fibers
Since splitting fibers may result in fibers with loss lower than
specifed padding, the padding should be added after splitting.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Id75ddf5d81c4c1c52f8f8becfdb005d2fe04c1f8
2021-12-19 21:20:08 +01:00
Jan Kundrát
9c2095b138 remove unused import
Change-Id: I08d31eab16f0c4195c4431f339c60ac694788d22
2021-12-07 16:49:40 +01:00
Jan Kundrát
cb42115230 LGTM: exclude more harmless "errors"
The {node.uid} pattern is used also when exporting some data to a file,
and once again it is not an antipattern for us.

Change-Id: Ib4441155b5ca42fad7dd6cf8554a0302a69ef136
2021-12-07 16:47:30 +01:00
Jan Kundrát
5909da4bbf remove an unused import
Change-Id: I4d719813b647424c20cc7fc990c36a57490b7f5b
2021-12-07 12:49:46 +01:00
Jan Kundrát
2ba1e86b28 Silence an irrelevant warning on LGTM.com
By default, this service issues a warning for strings which format data
like {uid}, flagging this pattern as related to antipatterns CWE-312,
CWE-315 and CWE-359. This warning is not relevant for us because we
never process sensitive information (if there are some NDA-covered data
in the input, well, the user already has them, we're just using these).

Silence this warning (it's currently getting us an B rating,
apparently).

See-also: https://lgtm.com/rules/1510014536001/
Change-Id: Id5cdd2c62e61a8329760d3fb79665737beb22378
2021-12-07 12:49:46 +01:00
Jan Kundrát
3358c5eeb5 Merge "docs: a beginner-friendly way of reaching out to vendors" 2021-11-25 14:53:57 +00:00
Jan Kundrát
13e4c29bc1 Merge "tests: rely on pytest's native comparisons of nested dicts" 2021-11-11 16:17:14 +00:00
Jan Kundrát
4becc9060c docs: a beginner-friendly way of reaching out to vendors
As Gert proposed on the latest call, submitting patches could be a bit
high of a barrier to go over. Let's make it clear that we're here to
help those vendors who are willing to collaborate.

Change-Id: Ieac1c91480143c553ffb25dd1c46e94022bf5ba3
2021-11-04 18:45:05 +01:00
AndreaDAmico
32d8b2a4d8 Simulation Parameters
This change siplifies the structure of the simulation parameters,
removing the gnpy.science_utils.simulation layer, provides some
documentation of the parameters and define a mock fixture for testing in
safe mode.

Jan: while I'm not thrilled by this concept of hidden global state, we
agreed to let it in as a temporary measure (so as not to hold merging of
Andrea's flexgrid/multirate patches). I've refactored this to a more
pytest-ish way of dealing with fixtures. In the end, it was also
possible to remove the MockSimParams class because it was not adding any
features on top of what SimParams can do already (and to what was
tested).

Change-Id: If5ef341e0585586127d5dae3f39dca2c232236f1
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2021-10-29 13:14:22 +02:00
Jan Kundrát
399eb9700f tests: rely on pytest's native comparisons of nested dicts
In my opinion, this actually produces more useful output *if* pytest is
invoked with `-vv` (which the CI is already doing). When I deliberately
change the expected result of services like this:

 --- a/tests/data/testService_services_expected.json
 +++ b/tests/data/testService_services_expected.json
 @@ -45,7 +45,7 @@
            ],
            "spacing": 50000000000.0,
            "max-nb-of-channel": null,
 -          "output-power": 0.0012589254117941673,
 +          "output-power": 0.001258925411791673,
            "path_bandwidth": 10000000000.0
          }
        }

...the old code would just say:

 >       assert not results.requests.different
 E       AssertionError: assert not [({'bidirectional': False, 'destination': 'trx Vannes_KBE', 'dst-tp-id': 'trx Vannes_KBE', 'path-constraints': {'te-ba......}], 'max-nb-of-channel': None, 'output-power': 0.0012589254117941673, 'path_bandwidth': 10000000000.0, ...}}, ...})]
 E        +  where [({'bidirectional': False, 'destination': 'trx Vannes_KBE', 'dst-tp-id': 'trx Vannes_KBE', 'path-constraints': {'te-ba......}], 'max-nb-of-channel': None, 'output-power': 0.0012589254117941673, 'path_bandwidth': 10000000000.0, ...}}, ...})] = Results(missing=set(), extra=set(), different=[({'request-id': '1', 'source': 'trx Brest_KLA', 'destination': 'trx Van...g': 50000000000.0, 'max-nb-of-channel': 80, 'output-power': 0.0012589254117941673, 'path_bandwidth': 60000000000.0}}}}).different
 E        +    where Results(missing=set(), extra=set(), different=[({'request-id': '1', 'source': 'trx Brest_KLA', 'destination': 'trx Van...g': 50000000000.0, 'max-nb-of-channel': 80, 'output-power': 0.0012589254117941673, 'path_bandwidth': 60000000000.0}}}}) = ServicesResults(requests=Results(missing=set(), extra=set(), different=[({'request-id': '1', 'source': 'trx Brest_KLA'...': 50000000000.0, 'max-nb-of-channel': 80, 'output-power': 0.0012589254117941673, 'path_bandwidth': 60000000000.0}}}})).requests

 tests/test_parser.py:147: AssertionError
 ...
 FAILED tests/test_parser.py::test_excel_service_json_generation[xls_input1-expected_json_output1] - AssertionError: assert not [({'bidirectional': False, 'destination': 'trx Vannes_KBE', 'dst-tp-id': 'trx Vannes_KBE', 'path-constraints': {'te-ba......}], 'max-nb-of-channel': None, 'output-power': 0.0012589254117941673, 'path_bandwidth': 10000000000.0, ...}}, ...})]

With this change in place, the report becomes more useful:

 >       assert from_xls == load_json(expected_json_output)
 E       AssertionError: assert {'path-request': [{'bidirectional': False,\n                   'destination': 'trx Vannes_KBE',\n                   'dst-tp-id': 'trx Vannes_KBE',\n                   'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,\n                                                                                  'N': None}],\n                                                         'max-nb-of-channel': 80,\n                                                         'output-power': None,\n                                                         'path_bandwidth': 100000000000.0,\n                                                         'spacing': 50000000000.0,\n                                                         'technology': 'flexi-grid',\n                                                         'trx_mode': 'mode 1',\n                                                         'trx_type': 'Voyager'}},\n                   'request-id': '0',\n                   'source': 'trx Lorient_KMA',\n                   'src-tp-id': 'trx Lorient_KMA'},\n                  {'bidirectional': False,\n                   'destination': 'trx Vannes_KBE',\n                   'dst-tp-id': 'trx Vannes_KBE',\n                   'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,\n                                                                                  'N': None}],\n                                                         'max-nb-of-channel': None,\n                                                         'output-power': 0.0012589254117941673,\n                                                         'path_bandwidth': 10000000000.0,\n                                                         'spacing': 50000000000.0,\n                                                         'technology': 'flexi-grid',\n                                                         'trx_mode': 'mode 1',\n                                                         'trx_type': 'Voyager'}},\n                   'request-id': '1',\n                   'source': 'trx Brest_KLA',\n                   'src-tp-id': 'trx Brest_KLA'},\n                  {'bidirectional': False,\n                   'destination': 'trx Rennes_STA',\n                   'dst-tp-id': 'trx Rennes_STA',\n                   'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,\n                                                                                  'N': None}],\n                                                         'max-nb-of-channel': 80,\n                                                         'output-power': 0.0012589254117941673,\n                                                         'path_bandwidth': 60000000000.0,\n                                                         'spacing': 50000000000.0,\n                                                         'technology': 'flexi-grid',\n                                                         'trx_mode': 'mode 1',\n                                                         'trx_type': 'vendorA_trx-type1'}},\n                   'request-id': '3',\n                   'source': 'trx Lannion_CAS',\n                   'src-tp-id': 'trx Lannion_CAS'}]} == {'path-request': [{'bidirectional': False,\n                   'destination': 'trx Vannes_KBE',\n                   'dst-tp-id': 'trx Vannes_KBE',\n                   'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,\n                                                                                  'N': None}],\n                                                         'max-nb-of-channel': 80,\n                                                         'output-power': None,\n                                                         'path_bandwidth': 100000000000.0,\n                                                         'spacing': 50000000000.0,\n                                                         'technology': 'flexi-grid',\n                                                         'trx_mode': 'mode 1',\n                                                         'trx_type': 'Voyager'}},\n                   'request-id': '0',\n                   'source': 'trx Lorient_KMA',\n                   'src-tp-id': 'trx Lorient_KMA'},\n                  {'bidirectional': False,\n                   'destination': 'trx Vannes_KBE',\n                   'dst-tp-id': 'trx Vannes_KBE',\n                   'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,\n                                                                                  'N': None}],\n                                                         'max-nb-of-channel': None,\n                                                         'output-power': 0.001258925411791673,\n                                                         'path_bandwidth': 10000000000.0,\n                                                         'spacing': 50000000000.0,\n                                                         'technology': 'flexi-grid',\n                                                         'trx_mode': 'mode 1',\n                                                         'trx_type': 'Voyager'}},\n                   'request-id': '1',\n                   'source': 'trx Brest_KLA',\n                   'src-tp-id': 'trx Brest_KLA'},\n                  {'bidirectional': False,\n                   'destination': 'trx Rennes_STA',\n                   'dst-tp-id': 'trx Rennes_STA',\n                   'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,\n                                                                                  'N': None}],\n                                                         'max-nb-of-channel': 80,\n                                                         'output-power': 0.0012589254117941673,\n                                                         'path_bandwidth': 60000000000.0,\n                                                         'spacing': 50000000000.0,\n                                                         'technology': 'flexi-grid',\n                                                         'trx_mode': 'mode 1',\n                                                         'trx_type': 'vendorA_trx-type1'}},\n                   'request-id': '3',\n                   'source': 'trx Lannion_CAS',\n                   'src-tp-id': 'trx Lannion_CAS'}]}
 E         Differing items:
 E         {'path-request': [{'bidirectional': False, 'destination': 'trx Vannes_KBE', 'dst-tp-id': 'trx Vannes_KBE', 'path-const...[{...}], 'max-nb-of-channel': 80, 'output-power': 0.0012589254117941673, 'path_bandwidth': 60000000000.0, ...}}, ...}]} != {'path-request': [{'bidirectional': False, 'destination': 'trx Vannes_KBE', 'dst-tp-id': 'trx Vannes_KBE', 'path-const...[{...}], 'max-nb-of-channel': 80, 'output-power': 0.0012589254117941673, 'path_bandwidth': 60000000000.0, ...}}, ...}]}
 E         Full diff:
 E           {
 E            'path-request': [{'bidirectional': False,
 E                              'destination': 'trx Vannes_KBE',
 E                              'dst-tp-id': 'trx Vannes_KBE',
 E                              'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,
 E                                                                                             'N': None}],
 E                                                                    'max-nb-of-channel': 80,
 E                                                                    'output-power': None,
 E                                                                    'path_bandwidth': 100000000000.0,
 E                                                                    'spacing': 50000000000.0,
 E                                                                    'technology': 'flexi-grid',
 E                                                                    'trx_mode': 'mode 1',
 E                                                                    'trx_type': 'Voyager'}},
 E                              'request-id': '0',
 E                              'source': 'trx Lorient_KMA',
 E                              'src-tp-id': 'trx Lorient_KMA'},
 E                             {'bidirectional': False,
 E                              'destination': 'trx Vannes_KBE',
 E                              'dst-tp-id': 'trx Vannes_KBE',
 E                              'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,
 E                                                                                             'N': None}],
 E                                                                    'max-nb-of-channel': None,
 E         -                                                          'output-power': 0.001258925411791673,
 E         +                                                          'output-power': 0.0012589254117941673,
 E         ?                                                                                          +
 E                                                                    'path_bandwidth': 10000000000.0,
 E                                                                    'spacing': 50000000000.0,
 E                                                                    'technology': 'flexi-grid',
 E                                                                    'trx_mode': 'mode 1',
 E                                                                    'trx_type': 'Voyager'}},
 E                              'request-id': '1',
 E                              'source': 'trx Brest_KLA',
 E                              'src-tp-id': 'trx Brest_KLA'},
 E                             {'bidirectional': False,
 E                              'destination': 'trx Rennes_STA',
 E                              'dst-tp-id': 'trx Rennes_STA',
 E                              'path-constraints': {'te-bandwidth': {'effective-freq-slot': [{'M': None,
 E                                                                                             'N': None}],
 E                                                                    'max-nb-of-channel': 80,
 E                                                                    'output-power': 0.0012589254117941673,
 E                                                                    'path_bandwidth': 60000000000.0,
 E                                                                    'spacing': 50000000000.0,
 E                                                                    'technology': 'flexi-grid',
 E                                                                    'trx_mode': 'mode 1',
 E                                                                    'trx_type': 'vendorA_trx-type1'}},
 E                              'request-id': '3',
 E                              'source': 'trx Lannion_CAS',
 E                              'src-tp-id': 'trx Lannion_CAS'}],
 E           }

 tests/test_parser.py:140: AssertionError

Change-Id: I30eafb3c7c0f2e800fb0983371eaa5058e78b029
2021-10-28 17:16:11 +02:00
AndreaDAmico
82f83e1462 Add documentation of simulation parameters
Jan: only add those parameter which are not being removed in future
patches and which have useful documentation that the user can plausibly
act on.

Change-Id: I02173f500fed8c065a30de5d23e318bce2a90c33
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2021-10-28 16:18:25 +02:00
Jonas Mårtensson
171450fa54 Update documentation of polynomial NF to match the code
This fixes #422.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I39af6767e41723b23dd61a832860fc66f21dbf17
2021-10-28 08:41:14 +02:00
AndreaDAmico
9f9f4c78fc Small change on Raman pump parameters
Getter and setter removed from the class PumpParams. The propagation
direction is cast to lower case string within the PumpParams
constructor.

Change-Id: Ice28affe8bcffbf8adcebb5cb096be8100081511
2021-10-26 16:33:35 +02:00
AndreaDAmico
c469a8d9ba New definition of spectral information
It allows the definition of an arbitrary spectral information.
It is fully back-compatible.

Change-Id: Id050e9f0a0d30780a49ecfbe8b96271fe47bcedc
2021-10-26 15:59:20 +02:00
Jonas Mårtensson
99b2a554dc Correct calculation of NF for OpenROADM amps
This fixes #420.

In order to be consistent with the OpenROADM MSA, the input power per
channel used for calculating incremental OSNR and NF should be scaled to
50 GHz slot width.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I64ca3e4cad6399f308827f4161d7c6b89be9d2ca
2021-10-19 12:02:48 +02:00
Jan Kundrát
57e98d7173 CI: linters: don't complain about non-lowercase variable names
...as agreed during today's coders call. It turned out that we do not
have a strong opinion, and it appeared that this limits us bit. The
rationale was that sometimes there's a loss of information when we
force-lowercase (such as milli- vs. mega-). So let's hope we're gonna be
smarter than a rigid set of rules :).

See-also: https://review.gerrithub.io/c/Telecominfraproject/oopt-gnpy/+/525660/2/gnpy/core/elements.py#681
Change-Id: If88abfa8383a437cc42e9196c612897fae6c96a0
2021-10-19 12:00:07 +02:00
Jan Kundrát
78b45a3958 Merge "Fix warnings for raman amp type varieties" 2021-10-11 19:32:03 +00:00
Jan Kundrát
64b6b486a9 Merge "Fix unit for max_fiber_lineic_loss_for_raman" 2021-10-11 19:15:59 +00:00
Jonas Mårtensson
65cb46f479 Fix unit for max_fiber_lineic_loss_for_raman
See GitHub issue #419.

The unit of max_fiber_lineic_loss_for_raman in the default equipment
config file is dB/km but it was compared with Fiber.params.loss_coef
which is in units of dB/m.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I27c8ab03845a72fcda97415843c007078b7b9d06
2021-10-11 21:03:17 +02:00
Jonas Mårtensson
f94d06f124 Fix warnings for raman amp type varieties
Currently, a warning about fiber lineic loss being above threshold is
printed even when the warning is triggered by that the previous node is
not a fiber, which is confusing. Additionally, when a warning about
raman is triggered, the code in the following else clause is not
executed, which means that a potential warning about gain level is
disabled. These two warnings are independent and the second one should
not be disabled by the first one.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I8ad58b4ebf6e7df1a949a77d67ed948ef385c47e
2021-09-28 13:08:57 +02:00
EstherLerouzic
e1f2c55942 Remove the representation error due to floating point
On certain values of loss_coef, the computation loss_coef * 1e-3 * 1e3
results in x.0000000000000000y values:
eg if 0.21 is provided in the topology file, then parameters.FiberParams
changes this to _loss_coef = 0.00021
and elements.Fiber.to_json prints 0.21000000000000002
This is a normal floating point behaviour, but is rather confusing.
In order to remove this unwanted decimal, I propose to round the printings
in to_json

https://docs.python.org/3/tutorial/floatingpoint.html

The change also add this round for gain, because in power mode
the gain is computed based on loss and loss may have this floating value.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib3287a794e7da985eabf0af914c0e1ef4914e857
2021-09-16 15:41:25 +02:00
Jan Kundrát
d28c67143e docs: remove link to asciinema
This image needs changing, so let's prepare by not linking to asciinema
anymore.

Change-Id: I15567325139fdf02bcca2bf2b1f1460d689cbfa4
2021-09-15 16:21:10 +02:00
Jan Kundrát
6bb9ae8336 tests: Fix after merging two incompatible changes
Oops. We are not using gating, which means that changes are tested
against the "current tip of the branch" and might pass fine there, but
once they are merged, there can well be a conflict between them. This
has just happened.

The EDFA which reported a difference had its VOA set to 0.5. Previously,
this was not taken into assumption.

Fixes: ce51a4d1 Take explicitly set out_voa value into account in power calculation
Fixes: 280443f1 add an invocation test with power saturation
Change-Id: Icebbb16d2ef5886d2c9c04cc9a300a6aa08bf245
2021-09-15 15:31:20 +02:00
Jan Kundrát
0dc7d853ef Merge changes I7f6cc553,I0a6a8442,I34fe2dcf
* changes:
  requests: avoid TypeError
  add an invocation test with power saturation
  Update a roadm test to include more cases for power handling
2021-09-15 13:09:32 +00:00
Jan Kundrát
dec9388416 Merge changes from topic "openroadm-v5"
* changes:
  tests: add OpenROADMv5 example propagation
  OpenROADM: mark example config files as v4 explicitly
  Add an eqpt config file matching latest OpenROADM MSA version
  Add updated openroadm amp specifications to eqpt config
2021-09-15 13:08:40 +00:00
Jan Kundrát
017b35fa33 Merge changes I4e407484,Id35aeffe
* changes:
  examples: json-to-csv: fix invocation
  examples: fix JSON-to-CSV description
2021-09-15 13:06:27 +00:00
Jan Kundrát
cb0a410418 Merge "Take explicitly set out_voa value into account in power calculation" 2021-09-15 13:05:12 +00:00
Jan Kundrát
f250990a49 requests: avoid TypeError
When printing a Request which had its baud_rate set and bit_rate unset,
the code would hit a TypeError.

Fixes: https://review.gerrithub.io/c/Telecominfraproject/oopt-gnpy/+/521471
Change-Id: I7f6cc553c07fd8e7d1ef32866d9f711a32016744
2021-09-15 14:59:59 +02:00
EstherLerouzic
280443f17f add an invocation test with power saturation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0a6a8442326fdfb9c9922abf05aeee52cfa42090
2021-09-15 14:59:59 +02:00
EstherLerouzic
6f62251cb4 Update a roadm test to include more cases for power handling
add several power reference setting tests to the existing test

the test only checks the  power level out of roadm B.
if previous node is a preamp, power level is the one specified in
target_pch_out_db.
if previous node is a fused , power level at roadm input is below
target_pch_out_db and roadm can not increase this power (no amp).
then expected outpower is in_power, which should be equal to -22 + power_dBm
on this particular node.

nota bene
currently, no minimum losss is coded on roadm, so that the applied loss
is 0 dB, and roadm does not affect power in this case.
This behaviour is not correct and should be changed in the future.
But for now, I am only concentrating on existing behaviour tests.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I34fe2dcf2d355b291c27745ab511d3d77057dd94
2021-09-15 13:04:09 +02:00
Jan Kundrát
5ad54879b1 Merge "docs: cross-reference topology section with XLS/JSON" 2021-09-15 10:39:46 +00:00
Jan Kundrát
825d37c05c tests: add OpenROADMv5 example propagation
These numbers "appear to look sane" as per [1]. Let's make sure that the
config files are CI-tested.

[1] https://review.gerrithub.io/c/Telecominfraproject/oopt-gnpy/+/522340/1#message-b40ac2c839f138237139407374452f254c3b0b0d

Change-Id: Iad346a14ed12b984f90a40629c0339fa0823290e
2021-09-15 12:33:18 +02:00
Jan Kundrát
3ac9f90914 OpenROADM: mark example config files as v4 explicitly
The recent commit has added support for OpenROADM v5, the latest
published optical spec sheet. Given that the upstream project has
released v10 YANG files (but still just v3, v4 and v5 XLS sheets with
optical performance numbers), I think it would be rather misleading to
have both versioned and non-versioned config files -- especially when
the unversioned one refers to the oldest release, not the newest one.

Change-Id: I04109341724b51d276660d400c923dc28561aef2
2021-09-15 12:31:05 +02:00
Jan Kundrát
dbfbf115ff examples: json-to-csv: fix invocation
The two filenames are actually mandatory, not optional.

Reported-by: 张路 <luzhang@bupt.edu.cn>
Change-Id: I4e40748430a602a2c06eb35c96e0a8267519b8b3
2021-09-15 12:14:19 +02:00
Jan Kundrát
ad2590962b examples: fix JSON-to-CSV description
Change-Id: Id35aeffe4e71da663f3c91298cb166cee5646c98
2021-09-15 12:13:10 +02:00
Jan Kundrát
a9d530c776 Merge "Check for non-existing N or M values when comparing requests" 2021-09-14 14:39:12 +00:00
Jan Kundrát
f255c31f1f Merge "Add option to cli examples for disabling auto-insertion of EDFAs" 2021-09-14 13:15:14 +00:00
Jan Kundrát
80ec05f84c Merge "Limit target length when splitting fibers to max_length in eqpt config" 2021-09-07 09:29:15 +00:00
Jonas Mårtensson
22541d65e4 Check for non-existing N or M values when comparing requests
The compare_reqs function checks if N and M values of the requests are
None but these attributes may not exist e.g. if a service file does not
define an "effective-freq-slot" for a request.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I786aad97ed658cd703694f164a87525d77b51fe1
2021-08-31 22:52:10 +02:00
Jan Kundrát
26fcf0ff6e CI: docker: releases should update the latest tag
We've been accidentally not updating the `latest` tag on Docker hub
after switching from Travis CI to GitHub actions. Traditionally, we've
assumed the `latest` points to the "latest release", so this patch makes
it simple and will call any pushed "version tag" as the `latest`. This
will become a problem if/when we start maintaining multiple releases,
but I think it's a safe approach for now.

As before, there's also the `master` tag which always points to the,
well, master branch of the repo.

Change-Id: I14c08b12010986d4327bd9d685619a98cfec370f
2021-08-31 16:16:01 +02:00
Jan Kundrát
1c32e437a2 docs: README: link to pretty installation docs
The docs used to point to in-the-tree source code of the documentation
in the RST format. When navigating from the landing page on GitHub, this
led to GitHub's rendering of the RST, which is rather incomplete. Just
point to readthedocs to get a nice doc format.

Change-Id: I985a8fd1688337b4e0e47cdb09b666cf4e96cc1b
2021-08-31 12:59:01 +02:00
EstherLerouzic
718007b3de Do not agregate requests which have non None N,M spectrum values
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib103e3292887c863e7c1cd785ffbffba629d0d02
2021-08-31 11:31:16 +02:00
EstherLerouzic
4d6c06340f Add a complementary set of tests on the N and M values
- if specified, they must be used except:
    - if N and M are not consistant (eg M smaller than the required
      spectrum for the demand)
    - if N value and M value lead to occupation outside of the band
    - if spectrum is occupied
- if any of them is None, the program uses the first fit strategy for M and
the path_bandwidth value to compute minimum required M

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9160ffb116dd9d7d53ad80638826b609a1367446
2021-08-31 11:31:16 +02:00
EstherLerouzic
bad893bf86 Remove this test which should never happen
this sort of verification should be covered by automatic tests
since this is a verification of the correct behaviour of the
spectrum_selection function

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I76dd3bcad74085e1cd36ecb6503dad0271b61b80
2021-08-31 11:31:16 +02:00
EstherLerouzic
75e7fca8e4 change M value from 0 to None in case of blocking
Change tests based on M==0 value for response creation and use
instead the blocking_reason attribute existence
result element should have non null M value if request is not blocked.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I67e4222cf9d014201e91d3aefd3624b001264e03
2021-08-31 11:31:16 +02:00
EstherLerouzic
4e38ba98ab Change N value from 0 to None in case of NO_SPECTRUM
in case spectrum can not be assigned default value for N
was set to 0, which is not correct (N is a meaningfull value for
center frequency index). This changes replaces this default
value with None

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibe642682e48d09f340d53e2092f172de6aa7cc90
2021-08-31 11:31:16 +02:00
EstherLerouzic
fdcdfca589 refactor spectrum assignment
use the new function compute_spectrum_slot_vs_bandwidth

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If045fe53550dbde57c56fd4e8b99275c0757ea2b
2021-08-31 11:31:16 +02:00
EstherLerouzic
299ca10a47 Add a consistency check on request before any propagation is performed
In case user defines trx_mode, it is possible to check consistency of
nb of required slots and the total requested path_bandwidth and raise
a service error, before staring any propagation computation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I543cab581280faef5d6072eb172da136f2542492
2021-08-31 11:31:16 +02:00
EstherLerouzic
c0b7bf714e Remove "null" entries of effective-freq-slot
before 'effective-freq-slot' was just ignored, and filled with "null" strings.
this is no longer supported

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I24d30de91b8b29d37f6ba81220d3cad5aabb6781
2021-08-31 11:31:16 +02:00
EstherLerouzic
7f7c568160 Enabling the reading of N and M value from the json request
For this commit only the first element from the {N, M} list is read
and assigned.

This is better than not reading this value at all.

the commit also updates test_files and test data files with correct
values for the effective_freq_slot attribute

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1e60fe833ca1092b40de27c8cbfb13083810414e
2021-08-31 11:31:07 +02:00
EstherLerouzic
9bf6ed953a Add a new cause of blocking
if the user has specified a nb of slot and has not specified a mode
it may happen that the nb of slot is finally not large enough to support
the requested traffic: then blocking reason is 'NOT_ENOUGH_RESERVED_SPECTRUM'

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8d4c4df5fa97e37aefac8d9ee0d93c901505fa55
2021-08-31 11:23:08 +02:00
EstherLerouzic
e68dc39ddd Avoid overwriting blocking reason
When a path is blocked for 'NO_FEASIBLE_MODE' reason, and bidir is true,
the request attributes are filled with the last explored mode values
(baudrate notably), and the reversed path is propagated with this last
explored mode specs. if this reversed path is also not feasible the blocking
reason was overwritten with a 'MODE_NOT_FESIBLE' reasonn, because
baudrate is filled in the request attribute.

This change ensure that the blocking reason (if it exists) is not overwritten.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If80a37d77e2b967a327562c733a44e7f78f1c544
2021-08-31 11:23:08 +02:00
Jan Kundrát
f8007b41d1 Merge changes from topic "refactor disjunction"
* changes:
  adding another set of test for disjunction
  Minor refactor
  Refactor step4 of the compute_path_dsjctn
2021-08-31 09:19:57 +00:00
Jonas Mårtensson
228125029e Add an eqpt config file matching latest OpenROADM MSA version
This adds a separate OpenROADM eqpt config file corresponding to the
latest version of the MSA:

https://0201.nccdn.net/4_2/000/000/071/260/20210629_open-roadm_msa_specification_ver5.0.xlsx

The existing config file corresponding to the old version is kept for
backward compatibility. The new version introduces the following
changes:

* New definition of incremental OSNR for a ROADM based on polynomial
  (see also previous commit).

* ROADM add path OSNR changed from 30 dB to 33 dB

* New transceiver mode: 200 Gbit/s, 31.57 Gbaud, DP-16QAM

* Tx OSNR for transceiver mode 100 Gbit/s, 31.57 Gbaud, DP-QPSK changed
  from 35 dB to 36 dB

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ieb7d33bd448ed9d0cb8320ed190019c9aa94c9ef
2021-08-16 22:10:21 +02:00
Jonas Mårtensson
d185e0c241 Add updated openroadm amp specifications to eqpt config
The latest version 5.0 of the OpenROADM MSA changes the definition
of the incremental OSNR mask of a ROADM to a polynomial:

https://0201.nccdn.net/4_2/000/000/071/260/20210629_open-roadm_msa_specification_ver5.0.xlsx

A new preamp type variety corresponding to the updated specification is
added to the default eqpt config file while also keeping the type
variety corresponding to the old specification for backward
compatibility.

The updated specification includes both typical and worst case values.
These are added as separate type varieties to let the user choose which
values to use. Note that the specification with typical values is
identical to the existing OpenROADM ILA standard type variety but a new
type variety is still added for clarity.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I2de5e9db69f9ae3b218e30a3b246bd9b83cef458
2021-08-16 20:57:42 +02:00
Jonas Mårtensson
357bbec257 Limit target length when splitting fibers to max_length in eqpt config
Auto-design tries to split fibers longer than the max_length parameter
specified in the eqpt config file. When calculating new fiber lengths,
it uses a target_length parameter, which is currently hardcoded to 90
km. If the user specifies a max_length that is shorter than the
target_length and the topology includes any fiber that is longer than
the max_length but shorter than the hardcoded target_length, the
calculation crashes with a ZeroDivisionError. This patch limits the
target_length parameter so that it can't be longer than max_length.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Id0851fcf79ab0b1a05832e22ee7e9cf63691446c
2021-08-10 14:10:25 +02:00
EstherLerouzic
d25e98c567 adding another set of test for disjunction
Previous set of tests did not correctly check the combinations of
disjunction and route constraint. This new set tests specific cases
with several demands in one synchronization vector with and without
route constraint, and the case where both disjunction constraint and
route can not be met (STRICT and LOOSE cases)

+ minor refactor on test_disjunction

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id5a5902e6945185922ce5743ac97d15dbc777af2
2021-08-02 18:02:14 +02:00
Jan Kundrát
397411690e Merge "Nicer printing of Edfa elements when parameters are None" 2021-06-29 16:06:02 +00:00
Jonas Mårtensson
4ab6f8cb1b Nicer printing of Edfa elements when parameters are None
When delta_p or target_pch_out_db is None (resulting e.g. from
operating in gain mode) the current logic replaces a whole printed
line with 'None' which does not look very nice in the script outputs.
With this patch, the parameter information is kept in the printout
like this:

  Delta_P (dB):           None
  target pch (dBm):       None

Change-Id: Ie52ce7353a708a174cf9d769918a6136eefbf444
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Fixes: 225cafa8 (Floating point formatting of elements' operational parameters)
2021-06-29 11:37:05 +00:00
Jan Kundrát
44aff147db Merge pull request #410 from jktjkt/ci-on-windows
CI: test on Windows
2021-06-29 13:33:48 +02:00
Jan Kundrát
a36b139065 CI: GitHub: push coverage reports to codecov
Since Travis CI builds stopped, nothing was pushing updates to codecov.

Change-Id: Ia9a15a1a956c41586eda9ab85bd1f22fa798e960
2021-06-17 20:32:50 +02:00
Jan Kundrát
141fc66d47 CI: GitHub: fix conditional syntax
This is strange because the docs say that it's required [1], but during
my testing it appeared to work just fine without this wrapping. Anyway,
let's follow the docs.

[1] https://docs.github.com/en/actions/reference/context-and-expression-syntax-for-github-actions#about-contexts-and-expressions

Change-Id: I6a03f9423d7f10d03687759de71f25aed15bd172
2021-06-17 19:52:43 +02:00
Jan Kundrát
53f29957fd CI: GitHub: don't fail pushing PyPI releases from forks
...and also unify the condition with what syntax that the Docker build
job is using.

Change-Id: Ia6e3fe308093bac144441f4d9a33df93ffdca06f
2021-06-17 19:05:52 +02:00
Jan Kundrát
9f3995ee20 CI: GitHub: don't try to access Docker Hub without proper credentials
Change-Id: I9dccb2d12ad97d54fa0f5bfa0d8db63cc5deb2ec
2021-06-17 18:49:07 +02:00
Jan Kundrát
0cf45bd102 CI: test on Windows
I've been getting reports that the test suite is broken on Windows (the
usual set of problems such as CRLF line endings and backslashes in path
names), so let's make sure we have a way of reproducing this.
Unfortunately, we don't have a Windows image in Zuul, so this will be a
post-merge CI I'm afraid :(.

Change-Id: Ibd539764d6e40693b95a9b231324bd0216e4a207
2021-06-17 18:18:16 +02:00
Jan Kundrát
55932ee3e9 tests: handle Unicode properly for "expected console output"
Let's use the text mode everywhere because Unicode codepoints is what
matters. The only catch on Windows turned out to be the default file IO
encoding; forcing UTF-8 there fixes all issues in the CI (and it makes
sense because that file was written out in a UTF-8 locale, and the
system which runs the test suite might be set to something else.

This was a rather interesting debugging experience; passing logs over
the web and handling "strange" characters as utf-8 did not help.

Change-Id: I1fdbe3a115458558b27a81f9eab8e58c9605bae7
Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/358
2021-06-17 18:14:36 +02:00
Jan Kundrát
797a0856ec tests: Use a portable /dev/null file name
Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/358
Change-Id: Icbca94682ce0ded860ba6397e4445651b6a61f32
2021-06-17 16:20:49 +02:00
Jan Kundrát
3fa53adc4d Don't print file name when handling requests
We have a test which compares the raw output of GNPy against a fixed
expected output. That comparison of course chokes when forward slashes
and backslashes are used, which breaks the test suite on Windows. Let's
try to solve this by always using forward slashes if possible. The way
to go is via pathlib's as_posix(), but that one can possibly return an
absolute path -- which cannot work in a test suite, obviously. So one
can workaround that via calling a Path.relative_to(), but that one
chokes on paths which require at least one "path up" component (`..`).
I posted a patch which use brute force here, but Jonas is right, better
just don't print that output in the test suite in the first place.

Change-Id: I762ddb58a2042120c7b20414152a06a3ed72048d
Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/358
2021-06-17 16:20:38 +02:00
Jan Kundrát
bcb5e6bb60 Merge changes I60b4e3bf,I2bb3b5a0,I344c4a03
* changes:
  tests: requests: rely on pytest's own dict support
  tests: enable pytest's builtin multiline diffing
  utils: document round2float
2021-06-17 14:15:32 +00:00
Jan Kundrát
6380f8f37a Merge "CI: Zuul: Introduce Python 3.9, and switch all to Fedora 34" 2021-06-11 13:44:58 +00:00
Jan Kundrát
93869d6cb5 CI: Zuul: Introduce Python 3.9, and switch all to Fedora 34
Change-Id: I40e66ca0eca21b91809ea0f94291f3bd77bc53d2
Depends-on: https://review.gerrithub.io/c/Telecominfraproject/oopt-zuul-jobs/+/518622
2021-06-11 15:35:46 +02:00
Jonas Mårtensson
ce51a4d160 Take explicitly set out_voa value into account in power calculation
As mentioned in GitHub issue #409, an out_voa value for an EDFA
explicitly set in the topology file is not taken into account by
auto-design when calculating target power and gain. I think it is
more logical if the target power resulting from the optimization
algorithm represents the desired power into the fiber. This is also
more consistent with the behaviour for an automatically set out_voa
value when out_voa_auto is set to true.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I7e58b61d0bf30728c39d36404619dbe370c12f2b
2021-06-11 08:32:00 +02:00
Jan Kundrát
601e228bb6 tests: requests: rely on pytest's own dict support
When `pytest` is run with `-vv`, it shows a diff of multiline strings
and dict just fine. The only drawback is that there's the raw string
with newlines shown as "\n", however, *then* the nice diff pretty
printing kicks in, and the result is:

 E                 Common items:
 E                 {'response-id': '5'}
 E                 Differing items:
 E                 {'path-properties': {'path-metric': [{'accumulative-value': 21.68, 'metric-type': 'SNR-bandwidth'}, {'accumulative-val...EDFA', 'link-tp-id': 'east edfa in Rennes_STA to Stbrieuc', 'node-id': 'east edfa in Rennes_STA to Stbrieuc'}}}, ...]}} != {'path-properties': {'path-metric': [{'accumulative-value': 21.68, 'metric-type': 'SNR-bandwidth'}, {'accumulative-val...EDFA', 'link-tp-id': 'east edfa in Rennes_STA to Stbrieuc', 'node-id': 'east edfa in Rennes_STA to Stbrieuc'}}}, ...]}}
 E                 Full diff:
 E                   {
 E                    'path-properties': {'path-metric': [{'accumulative-value': 21.68,
 E                                                         'metric-type': 'SNR-bandwidth'},
 E                                                        {'accumulative-value': 28.77,
 E                                                         'metric-type': 'SNR-0.1nm'},
 E                                                        {'accumulative-value': 23.7,
 E                                                         'metric-type': 'OSNR-bandwidth'},
 E                                                        {'accumulative-value': 30.79,
 E                                                         'metric-type': 'OSNR-0.1nm'},
 E                                                        {'accumulative-value': 0.0019952623149688794,
 E                                                         'metric-type': 'reference_power'},
 E                                                        {'accumulative-value': 20000000000.0,
 E                                                         'metric-type': 'path_bandwidth'}],
 ...
 ... now, it's a bit annoying that there's too much output, but
 ... that's just for context; the offending lines will be properly
 ... marked, see --\
 ...               |
 ...               v
 ...
 E                                                               {'path-route-object': {'index': 17,
 E                 -                                                                    'num-unnum-hop': {'gnpy-node-type': 'transceiver',
 E                 ?                                                                                       ^ ^^^^^^^  - ^      ^^^^^^^^^ -
 E                 +                                                                    'num-unnum-hop': {'link-tp-id': 'trx '
 E                 ?                                                                                       ^^ ^   ^^^      ^^
 E                 -                                                                                      'link-tp-id': 'trx '
 E                                                                                                                      'Lannion_CAS',
 E                                                                                                        'node-id': 'trx '
 E                                                                                                                   'Lannion_CAS'}}},
 E                                                               {'path-route-object': {'index': 18,
 E                                                                                      'label-hop': {'M': 6,
 E                                                                                                    'N': -274}}},
 E                                                               {'path-route-object': {'index': 19,
 E                                                                                      'transponder': {'transponder-mode': 'mode '
 E                                                                                                                          '2',
 E                                                                                                      'transponder-type': 'vendorA_trx-type1'}}}]},
 E                    'response-id': '5',
 E                   }

 tests/test_parser.py:312: AssertionError

Change-Id: I60b4e3bfa432a720a381bf2c0a9f0288e989dab2
2021-06-09 21:17:21 +02:00
Jan Kundrát
3f58cbd559 tests: enable pytest's builtin multiline diffing
...because it works on strings while doesn't work on byte arrays.

Change-Id: I2bb3b5a0a3d6ad965321c58fb90a02341db66d0f
2021-06-09 21:17:21 +02:00
Jan Kundrát
2e3274ac78 utils: document round2float
Change-Id: I344c4a03e7d3e0614e0fc3307b12af359c61b882
2021-06-09 21:17:21 +02:00
Jan Kundrát
e33144f8cc Merge "refactoring: OpenROADM: store the NF model of a premp/booster" 2021-06-09 18:54:56 +00:00
Jan Kundrát
fd1e3f0f61 Merge "Do not load equipment['SI']['default'].power_range_db in the gain mode" 2021-06-09 18:31:48 +00:00
Jan Kundrát
80c41264cf CI: Docker: remove the dev- prefix
We have never used that one before, so let's not introduce it now.
Noise, noise, noise, sorry.

Change-Id: I336b3e73f7dd61b14615412ea52ec90986468fcf
2021-06-09 20:22:58 +02:00
Jan Kundrát
a051a5723b Merge tag 'v2.3.1'
GNPy 2.3.1

Just some release automation on top of v2.3. If you're already on v2.3,
there's no need to update; this release does not contain any
user-visible changes.

Change-Id: I0473a0bb43be596cf376cf18eb8a546b53aa0214
2021-06-09 20:14:11 +02:00
Jan Kundrát
bd025f3af4 setup metadata: fix description
Our landing page on PyPI was not displaying the longer version of the
README, just a one-sentence summary. It turns out that `pbr` can indeed
read the README file, but specifying the `description` overrides that
with no warning. Yay.

Change-Id: Ic03412928fe09f5edab4a7b9f4297a485a740cd0
2021-06-09 16:30:38 +02:00
Jan Kundrát
c3e546abe3 packaging: fix the long description
Fixes: e45a54c2 (README: rewrite in Markdown)
Change-Id: Ifefd78ba1008f0a37299dca07b53b5481ebeac27
2021-06-09 02:32:48 +02:00
Jan Kundrát
9427d0b139 CI: GitHub: ensure tags are present
We're using PBR, so let's make sure we don't get a package that's marked
as version 0.0.0.

Bug: https://github.com/actions/checkout/issues/217
Change-Id: Icd8264a798f9a1a404e21a9b64317c57662d53fe
2021-06-09 01:17:34 +02:00
Jan Kundrát
89f5b12f7e CI: always try to build a release wheel
This might be a wee bit controversial, I guess, because the Zuul jobs
look like there's a dedicated playbook for that
(playbooks/python/release.yaml). However, that would be one extra VM
launch, which feels wasteful. Let's waste the CPU cycles elsewhere --
during each "regular test build", produce a wheel as well.

It looks that these "wheels" are *the* format for distributing Python
packages now -- including the source code, of course. Since there's no
real support for tag review in Gerrit, I don't think I need Zuul for
release management, either, so I'll just rely on GitHub actions for
release upload, I guess. And for that, I need to "somehow" create a
wheel anyway, so let's just do this all the time to ensure that it
really works and never stops working.

Change-Id: Ib86852a386673cd4929a8059b19fa527cd4d5955
2021-06-09 00:49:52 +02:00
Jan Kundrát
9d2c10e267 CI: Run on GitHub Actions
We have Zuul, and we're happy with it; however, every now and then
there's a problem with the managed infrastructure, and there's also
people who contribute patches as GitHub PRs.

Change-Id: I405c5806ed9ad2e7f59f9b2394daf068b373e425
2021-06-08 22:34:00 +02:00
Jan Kundrát
305620e5dd Do not load equipment['SI']['default'].power_range_db in the gain mode
It is not used, so don't check it.

Change-Id: I309638ac8e647ed9f507016a116d9c8d0342c32d
2021-06-07 13:51:40 +00:00
Jan Kundrát
c91c5d622f Bump the minimal required Python to 3.8
We discussed this at one of the recent coder calls; the motivation
includes better mypy type hint support, especially in numpy, but also in
the language core, and of course the dataclasses.

Change-Id: I8ffee28c33f167cbcba978c85486e58a1b8c99be
2021-06-07 10:01:49 +00:00
Jan Kundrát
24e7f4a5a1 refactoring: OpenROADM: store the NF model of a premp/booster
All other noise models set the `nf_def` variable, so let's make the YANG
code simpler by remembering the amplifier NF model like that.

Change-Id: I341e4ac296c25bf9f27a98a7e4e92e0fd1546021
2021-06-04 23:10:30 +02:00
Jonas Mårtensson
08c922a5e5 Add option to cli examples for disabling auto-insertion of EDFAs
The auto-design feature inserts EDFAs after ROADMs and fibers when they
are not already present in the input topology file. This functionality
can be locally disabled by manually adding a Fused element in the
topology. This patch adds an option to the cli example scripts,
"--no-insert-edfas", which globally disables insertion of EDFAs as well
as automatic splitting of fibers.

Change-Id: If40aa6ac6d8b47d5e7b6f8eabfe389e8258cbce6
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
2021-06-01 16:18:13 +02:00
Jan Kundrát
efd7468d42 docs: cross-reference topology section with XLS/JSON
Suggested-by: Melin, Stefan M. <Stefan.Melin@teliacompany.com>
Change-Id: I01defca88e0355af39fd6f97e5a69fc1bb5f8f73
2021-02-16 18:04:21 +01:00
EstherLerouzic
902cfa11a7 Minor refactor
Correct comments

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I99874f08625bade15223cfbbd3cd933419fb5c66
2021-02-04 10:02:51 +01:00
EstherLerouzic
24c6acc027 Refactor step4 of the compute_path_dsjctn
Previous implementation selected last candidate in case both routing
and disjunction constraints could not be applied. The new implementation
elaborates an alternate list where each feasible paths satisfyng
disjunction constraint but not route constraint is recorded. The algorithm
then preferably selects a feasible path that satisfies all constraints and
if none is found and route constraint is LOOSE, the first set of paths
that satisfy disjunction is selected (instead of the last one).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iba44397d105006a98539494d821cc83dc3e3bbd9
2021-02-04 10:02:51 +01:00
137 changed files with 26758 additions and 7988 deletions

View File

@@ -1,47 +0,0 @@
#!/bin/bash
set -e
IMAGE_NAME=telecominfraproject/oopt-gnpy
IMAGE_TAG=$(git describe --tags)
ALREADY_FOUND=0
docker pull ${IMAGE_NAME}:${IMAGE_TAG} && ALREADY_FOUND=1
if [[ $ALREADY_FOUND == 0 ]]; then
docker build . -t ${IMAGE_NAME}
docker tag ${IMAGE_NAME} ${IMAGE_NAME}:${IMAGE_TAG}
# shared directory setup: do not clobber the real data
mkdir trash
cd trash
docker run -it --rm --volume $(pwd):/shared ${IMAGE_NAME} gnpy-transmission-example
else
echo "Image ${IMAGE_NAME}:${IMAGE_TAG} already available, will just update the other tags"
fi
docker images
do_docker_login() {
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
}
if [[ "${TRAVIS_PULL_REQUEST}" == "false" ]]; then
if [[ "${TRAVIS_BRANCH}" == "develop" || "${TRAVIS_BRANCH}" == "docker" ]]; then
echo "Publishing latest"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:latest
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:latest
elif [[ "${TRAVIS_BRANCH}" == "master" ]]; then
echo "Publishing stable"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:stable
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:stable
fi
fi

View File

@@ -11,35 +11,43 @@ jobs:
name: Tox test
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: fedora-python/tox-github-action@v0.4
- uses: fedora-python/tox-github-action@v37.0
with:
tox_env: ${{ matrix.tox_env }}
dnf_install: ${{ matrix.dnf_install }}
- uses: codecov/codecov-action@v3.1.1
if: ${{ endswith(matrix.tox_env, '-cover') }}
with:
files: ${{ github.workspace }}/cover/coverage.xml
strategy:
fail-fast: false
matrix:
tox_env:
- py38
- py39
- py310
- py311
- py312-cover
include:
- tox_env: docs
dnf_install: graphviz
pypi:
needs: build
if: ${{ github.event_name == 'push' && startsWith(github.event.ref, 'refs/tags/v') }}
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && github.repository_owner == 'Telecominfraproject' }}
name: PyPI packaging
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v2
- uses: actions/setup-python@v4
name: Install Python
with:
python-version: '3.9'
python-version: '3.12'
- uses: casperdcl/deploy-pypi@bb869aafd89f657ceaafe9561d3b5584766c0f95
with:
password: ${{ secrets.PYPI_API_TOKEN }}
@@ -48,7 +56,7 @@ jobs:
docker:
needs: build
if: github.event_name == 'push' && (github.ref == 'refs/heads/master' || startsWith(github.ref, 'refs/tags/v'))
if: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/master' || startsWith(github.ref, 'refs/tags/v')) && github.repository_owner == 'Telecominfraproject' }}
name: Docker image
runs-on: ubuntu-latest
steps:
@@ -57,31 +65,81 @@ jobs:
with:
username: jktjkt
password: ${{ secrets.DOCKERHUB_TOKEN }}
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Extract tag name
if: github.event_name == 'push' && github.ref == 'refs/heads/master'
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
id: extract_pretty_git
run: echo ::set-output name=GIT_DESC::$(git describe --tags)
- name: Build and push a container
uses: docker/build-push-action@v2
if: github.event_name == 'push' && github.ref == 'refs/heads/master'
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
with:
context: .
push: true
tags: |
telecominfraproject/oopt-gnpy:dev-${{ steps.extract_pretty_git.outputs.GIT_DESC }}
telecominfraproject/oopt-gnpy:${{ steps.extract_pretty_git.outputs.GIT_DESC }}
telecominfraproject/oopt-gnpy:master
- name: Extract tag name
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') }}
id: extract_tag_name
run: echo ::set-output name=GIT_DESC::${GITHUB_REF/refs\/tags\//}
- name: Build and push a container
uses: docker/build-push-action@v2
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') }}
with:
context: .
push: true
tags: |
telecominfraproject/oopt-gnpy:${{ steps.extract_tag_name.outputs.GIT_DESC }}
telecominfraproject/oopt-gnpy:latest
other-platforms:
name: Tests on other platforms
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- run: |
pip install --editable .[tests]
pytest -vv
strategy:
fail-fast: false
matrix:
include:
- os: windows-2019
python_version: "3.10"
- os: windows-2022
python_version: "3.11"
- os: windows-2022
python_version: "3.12"
- os: macos-12
python_version: "3.11"
- os: macos-13
python_version: "3.12"
paywalled-platforms:
name: Tests on paywalled platforms
if: github.repository_owner == 'Telecominfraproject'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- run: |
pip install --editable .[tests]
pytest -vv
strategy:
fail-fast: false
matrix:
include:
- os: macos-13-xlarge # Apple M1 CPU
python_version: "3.12"

3
.lgtm.yml Normal file
View File

@@ -0,0 +1,3 @@
queries:
- exclude: py/clear-text-logging-sensitive-data
- exclude: py/clear-text-storage-sensitive-data

View File

@@ -1,5 +1,17 @@
version: 2
build:
image: latest
os: ubuntu-22.04
tools:
python: "3.12"
apt_packages:
- graphviz
python:
version: 3.8
requirements_file: docs/requirements.txt
install:
- method: pip
path: .
extra_requirements:
- docs
sphinx:
configuration: docs/conf.py

View File

@@ -1,29 +0,0 @@
dist: focal
os: linux
language: python
services: docker
python:
- "3.6"
- "3.7"
- "3.8"
- "3.9"
before_install:
- sudo apt-get -y install graphviz
install: skip
script:
- pip install --editable .
- pip install pytest-cov rstcheck
- pytest --cov-report=xml --cov=gnpy -v
- pip install -r docs/requirements.txt
- rstcheck --ignore-roles cite *.rst
- sphinx-build -W --keep-going docs/ x-throwaway-location
after_success:
- bash <(curl -s https://codecov.io/bash)
jobs:
include:
- stage: test
name: Docker image
script:
- git fetch --unshallow
- ./.docker-travis.sh
- docker images

View File

@@ -2,24 +2,33 @@
- project:
check:
jobs:
- tox-py38-cover
- tox-py38:
vars:
ensure_tox_version: '<4'
- tox-py39:
vars:
ensure_tox_version: '<4'
- tox-py310-cover:
vars:
ensure_tox_version: '<4'
- tox-docs-f36:
vars:
ensure_tox_version: '<4'
- coverage-diff:
voting: false
dependencies:
- tox-py38-cover-previous
- tox-py38-cover
- tox-py310-cover-previous
- tox-py310-cover
vars:
coverage_job_name_previous: tox-py38-cover-previous
coverage_job_name_current: tox-py38-cover
coverage_job_name_previous: tox-py310-cover-previous
coverage_job_name_current: tox-py310-cover
- tox-linters-diff-n-report:
voting: false
- tox-py36-el8
- tox-docs-f32
- tox-py38-cover-previous
gate:
jobs:
- tox-py38-f32
- tox-docs-f32
vars:
ensure_tox_version: '<4'
- tox-py310-cover-previous:
vars:
ensure_tox_version: '<4'
tag:
jobs:
- oopt-release-python:

View File

@@ -11,18 +11,21 @@ To learn how to contribute, please see CONTRIBUTING.md
- Brian Taylor (Facebook) <briantaylor@fb.com>
- David Boertjes (Ciena) <dboertje@ciena.com>
- Diego Landa (Facebook) <dlanda@fb.com>
- Emmanuelle Delfour (Orange) <WEDE7391@orange.com>
- Esther Le Rouzic (Orange) <esther.lerouzic@orange.com>
- Gabriele Galimberti (Cisco) <ggalimbe@cisco.com>
- Gert Grammel (Juniper Networks) <ggrammel@juniper.net>
- Giacomo Borraccini (Politecnico di Torino) <giacomo.borraccini@polito.it>
- Gilad Goldfarb (Facebook) <giladg@fb.com>
- James Powell (Telecom Infra Project) <james.powell@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jan.kundrat@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jkt@jankundrat.com>
- Jeanluc Augé (Orange) <jeanluc.auge@orange.com>
- Jonas Mårtensson (RISE) <jonas.martensson@ri.se>
- Mattia Cantono (Politecnico di Torino) <mattia.cantono@polito.it>
- Miguel Garrich (University Catalunya) <miquel.garrich@upct.es>
- Raj Nagarajan (Lumentum) <raj.nagarajan@lumentum.com>
- Roberts Miculens (Lattelecom) <roberts.miculens@lattelecom.lv>
- Sami Alavi (NUST) <sami.mansooralavi1999@gmail.com>
- Shengxiang Zhu (University of Arizona) <szhu@email.arizona.edu>
- Stefan Melin (Telia Company) <Stefan.Melin@teliacompany.com>
- Vittorio Curri (Politecnico di Torino) <vittorio.curri@polito.it>

View File

@@ -3,12 +3,12 @@
[![Install via pip](https://img.shields.io/pypi/v/gnpy)](https://pypi.org/project/gnpy/)
[![Python versions](https://img.shields.io/pypi/pyversions/gnpy)](https://pypi.org/project/gnpy/)
[![Documentation status](https://readthedocs.org/projects/gnpy/badge/?version=master)](http://gnpy.readthedocs.io/en/master/?badge=master)
[![GitHub Workflow Status](https://img.shields.io/github/workflow/status/Telecominfraproject/oopt-gnpy/build)](https://github.com/Telecominfraproject/oopt-gnpy/actions/workflows/main.yml)
[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/Telecominfraproject/oopt-gnpy/main.yml)](https://github.com/Telecominfraproject/oopt-gnpy/actions/workflows/main.yml)
[![Gerrit](https://img.shields.io/badge/patches-via%20Gerrit-blue)](https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+is:open)
[![Contributors](https://img.shields.io/github/contributors-anon/Telecominfraproject/oopt-gnpy)](https://github.com/Telecominfraproject/oopt-gnpy/graphs/contributors)
[![Code Quality via LGTM.com](https://img.shields.io/lgtm/grade/python/github/Telecominfraproject/oopt-gnpy)](https://lgtm.com/projects/g/Telecominfraproject/oopt-gnpy/)
[![Code Coverage via codecov](https://img.shields.io/codecov/c/github/Telecominfraproject/oopt-gnpy)](https://codecov.io/gh/Telecominfraproject/oopt-gnpy)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3458319.svg)](https://doi.org/10.5281/zenodo.3458319)
[![Matrix chat](https://img.shields.io/matrix/oopt-gnpy:matrix.org)](https://matrix.to/#/%23oopt-gnpy%3Amatrix.org?via=matrix.org)
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks.
We are a consortium of operators, vendors, and academic researchers sponsored via the [Telecom Infra Project](http://telecominfraproject.com)'s [OOPT/PSE](https://telecominfraproject.com/open-optical-packet-transport) working group.
@@ -18,12 +18,14 @@ Together, we are building this tool for rapid development of production-grade ro
## Quick Start
Install either via [Docker](docs/install.rst#install-docker), or as a [Python package](docs/install.rst#install-pip).
Install either via [Docker](https://gnpy.readthedocs.io/en/master/install.html#using-prebuilt-docker-images), or as a [Python package](https://gnpy.readthedocs.io/en/master/install.html#using-python-on-your-computer).
Read our [documentation](https://gnpy.readthedocs.io/), learn from the demos, and [get in touch with us](https://github.com/Telecominfraproject/oopt-gnpy/discussions).
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
[![Running a simple simulation example](https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg)](https://asciinema.org/a/252295)
![Running a simple simulation example](docs/images/gnpy-transmission-example.svg)
GNPy can do much more, including acting as a Path Computation Engine, tracking bandwidth requests, or advising the SDN controller about a best possible path through a large DWDM network.
Learn more about this [in the documentation](https://gnpy.readthedocs.io/).
Learn more about this [in the documentation](https://gnpy.readthedocs.io/), or give it a [try online at `gnpy.app`](https://gnpy.app/):
[![Path propagation at gnpy.app](docs/images/2022-04-12-gnpy-app.png)](https://gnpy.app/)

View File

@@ -7,11 +7,12 @@ There are weekly calls about our progress.
Newcomers, users and telecom operators are especially welcome there.
We encourage all interested people outside the TIP to [join the project](https://telecominfraproject.com/apply-for-membership/) and especially to [get in touch with us](https://github.com/Telecominfraproject/oopt-gnpy/discussions).
(contributing)=
## Contributing
`gnpy` is looking for additional contributors, especially those with experience planning and maintaining large-scale, real-world mesh optical networks.
To get involved, please contact [Jan Kundrát](mailto:jan.kundrat@telecominfraproject.com) or [Gert Grammel](mailto:ggrammel@juniper.net).
To get involved, please contact [Jan Kundrát](mailto:jkt@jankundrat.com) or [Gert Grammel](mailto:ggrammel@juniper.net).
`gnpy` contributions are currently limited to members of [TIP](http://telecominfraproject.com).
Membership is free and open to all.

View File

@@ -1848,3 +1848,15 @@ month={Sept},}
title = {Telecom Infra Project},
url = {https://www.telecominfraproject.com},
}
@ARTICLE{DAmicoJLT2022,
author={DAmico, Andrea and Correia, Bruno and London, Elliot and Virgillito,
Emanuele and Borraccini, Giacomo and Napoli, Antonio and Curri, Vittorio},
journal={Journal of Lightwave Technology},
title={Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network},
year={2022},
volume={40},
number={11},
pages={3499-3511},
doi={10.1109/JLT.2022.3162134}
}

View File

@@ -29,6 +29,7 @@ This path is directional, and all "GNPy elements" along the path match the unidi
The network topology contains not just the physical topology of the network, but also references to the :ref:`equipment library<concepts-equipment>` and a set of *operating parameters* for each entity.
These parameters include the **fiber length** of each fiber, the connector **attenutation losses**, or an amplifier's specific **gain setting**.
The topology is specified via :ref:`XLS files<excel>` or via :ref:`JSON<legacy-json>`.
.. _complete-vs-incomplete:

View File

@@ -65,7 +65,7 @@ author = 'Telecom Infra Project - OOPT PSE Group'
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
language = 'en'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
@@ -84,18 +84,11 @@ todo_include_todos = False
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
on_rtd = os.environ.get('READTHEDOCS') == 'True'
if on_rtd:
html_theme = 'default'
html_theme_options = {
'logo_only': True,
}
else:
html_theme = 'alabaster'
html_theme_options = {
'logo': 'images/GNPy-logo.png',
'logo_name': False,
}
html_theme = 'alabaster'
html_theme_options = {
'logo': 'images/GNPy-logo.png',
'logo_name': False,
}
html_logo = 'images/GNPy-logo.png'
@@ -190,3 +183,5 @@ autodoc_default_options = {
}
graphviz_output_format = 'svg'
bibtex_bibfiles = ['biblio.bib']

View File

@@ -1,3 +1,5 @@
.. _excel:
Excel (XLS, XLSX) input files
=============================

View File

@@ -4,7 +4,7 @@ Extending GNPy with vendor-specific data
========================================
GNPy ships with an :ref:`equipment library<concepts-equipment>` containing machine-readable datasheets of networking equipment.
Vendors who are willing to contribute descriptions of their supported products are encouraged to `submit a patch <https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html>`__.
Vendors who are willing to contribute descriptions of their supported products are encouraged to `submit a patch <https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html>`__ -- or just :ref:`get in touch with us directly<contributing>`.
This chapter discusses option for modeling performance of :ref:`EDFA amplifiers<extending-edfa>`, :ref:`Raman amplifiers<extending-raman>`, :ref:`transponders<extending-transponder>` and :ref:`ROADMs<extending-roadm>`.
@@ -29,7 +29,7 @@ The NF is expressed as a third-degree polynomial:
f(x) &= \text{a}x^3 + \text{b}x^2 + \text{c}x + \text{d}
\text{NF} &= f(G_\text{max} - G)
\text{NF} &= f(G - G_\text{max})
This model can be also used for fixed-gain fixed-NF amplifiers.
In that case, use:
@@ -91,7 +91,8 @@ Advanced Specification
**********************
The amplifier performance can be further described in terms of gain ripple, NF ripple, and the dynamic gain tilt.
When provided, the amplifier characteristic is fine-tuned as a function of carrier frequency.
When provided, the amplifier characteristic is fine-tuned as a function of carrier frequency. Note that in this advanced
specification tilt is defined vs frequency while tilt_target specified in EDFA instances is defined vs wavelength.
.. _extending-raman:
@@ -100,10 +101,10 @@ Raman Amplifiers
An accurate simulation of Raman amplification requires knowledge of:
- the *power* and *wavelength* of all Raman pumping lasers,
- the *direction*, whether it is co-propagating or counter-propagating,
- the Raman efficiency of the fiber,
- the fiber temperature.
* the *power* and *wavelength* of all Raman pumping lasers,
* the *direction*, whether it is co-propagating or counter-propagating,
* the Raman efficiency of the fiber,
* the fiber temperature.
Under certain scenarios it is useful to be able to run a simulation without an accurate Raman description.
For these purposes, it is possible to approximate a Raman amplifier via a fixed-gain EDFA with the :ref:`polynomial NF<ext-nf-model-polynomial-NF>` model using :math:`\text{a} = \text{b} = \text{c} = 0`, and a desired effective :math:`\text{d} = NF`.
@@ -119,38 +120,32 @@ A *mode* usually refers to a particular performance point that is defined by a c
The following data are required for each mode:
``bit-rate``
Data bit rate, in :math:`\text{Gbits}\times s^{-1}`.
``baud-rate``
Symbol modulation rate, in :math:`\text{Gbaud}`.
``required-osnr``
Minimal allowed OSNR for the receiver.
``bit_rate``
Data bit rate, in :math:`\text{bits}\times s^{-1}`.
``baud_rate``
Symbol modulation rate, in :math:`\text{baud}`.
``OSNR``
Minimal required OSNR for the receiver. In :math:`\text{dB}`
``tx-osnr``
Initial OSNR at the transmitter's output.
``grid-spacing``
Initial OSNR at the transmitter's output. In :math:`\text{dB}`
``min-spacing``
Minimal grid spacing, i.e., an effective channel spectral bandwidth.
In :math:`\text{Hz}`.
``tx-roll-off``
``roll-off``
Roll-off parameter (:math:`\beta`) of the TX pulse shaping filter.
This assumes a raised-cosine filter.
``rx-power-min`` and ``rx-power-max``
The allowed range of power at the receiver.
(work in progress) The allowed range of power at the receiver.
In :math:`\text{dBm}`.
``cd-max``
Maximal allowed Chromatic Dispersion (CD).
In :math:`\text{ps}/\text{nm}`.
``pmd-max``
Maximal allowed Polarization Mode Dispersion (PMD).
In :math:`\text{ps}`.
``cd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`CD (Chromatic Dispersion)` deteriorates.
``dgd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`DGD (Differential Group Delay)` deteriorates.
``pmd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`PMD (Polarization Mode Dispersion)` deteriorates.
``penalties``
Impairments such as Chromatic Dispersion (CD), Polarization Mode Dispersion (PMD), and Polarization Dispersion Loss (PDL)
result in penalties at the receiver. The receiver's ability to handle these impairments can be defined for each mode as
a list of {impairment: in defined units, 'penalty_value' in dB} (see `transceiver section here <json.rst#_transceiver>`).
Maximum allowed CD, maximum allowed PMD, and maximum allowed PDL should be listed there with corresponding penalties.
Impairments experienced during propagation are linearly interpolated between given points to obtain the corresponding penalty.
The accumulated penalties are subtracted from the path GSNR before comparing with the minimum required OSNR.
Impairments: PMD in :math:`\text{ps}`, CD in :math:`\text{ps/nm}`, PDL in :math:`\text{dB}`, penalty_value in :math:`\text{dB}`
GNPy does not directly track the FEC performance, so the type of chosen FEC is likely indicated in the *name* of the selected transponder mode alone.
@@ -168,6 +163,7 @@ The set of parameters for each ROADM model therefore includes:
Per-channel target TX power towards the egress amplifier.
Within GNPy, a ROADM is expected to attenuate any signal that enters the ROADM node to this level.
This can be overridden on a per-link in the network topology.
Targets can be set using power or power spectral density (see `roadm section here <json.rst#__roadm>`)
``pmd``
Polarization mode dispersion (PMD) penalty of the express path.
In :math:`\text{ps}`.

Binary file not shown.

After

Width:  |  Height:  |  Size: 288 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 478 KiB

View File

@@ -17,6 +17,7 @@ in real-world mesh optical networks. It is based on the Gaussian Noise Model.
about-project
model
gnpy-api
release-notes
Indices and tables
==================

View File

@@ -38,7 +38,7 @@ Using Python on your computer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note**: `gnpy` supports Python 3 only. Python 2 is not supported.
`gnpy` requires Python ≥3.6
`gnpy` requires Python ≥3.8
**Note**: the `gnpy` maintainers strongly recommend the use of Anaconda for
managing dependencies.
@@ -84,7 +84,7 @@ exact version of Python you are using.
$ which python # check which Python executable is used
/path/to/anaconda/bin/python
$ python -V # check your Python version
Python 3.6.5 :: Anaconda, Inc.
Python 3.8.0 :: Anaconda, Inc.
.. _install-pip:

View File

@@ -10,33 +10,33 @@ fully-functional programs.
**Note**: *If you are a network operator or involved in route planning and
optimization for your organization, please contact project maintainer Jan
Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking for users with
Kundrát <jkt@jankundrat.com>. gnpy is looking for users with
specific, delineated use cases to drive requirements for future
development.*
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power,
or to run a planning script to check SNR of several services:
.. image:: https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg
.. image:: images/gnpy-transmission-example.svg
:width: 100%
:align: left
:alt: Running a simple simulation example
:target: https://asciinema.org/a/252295
By default, this script operates on a single span network defined in
`gnpy/example-data/edfa_example_network.json <gnpy/example-data/edfa_example_network.json>`_
By default, the gnpy-transmission-example script operates on a single span network defined in
`gnpy/example-data/edfa_example_network.json <../gnpy/example-data/edfa_example_network.json>`_
You can specify a different network at the command line as follows. For
example, to use the CORONET Global network defined in
`gnpy/example-data/CORONET_Global_Topology.json <gnpy/example-data/CORONET_Global_Topology.json>`_:
`gnpy/example-data/CORONET_Global_Topology.json <../gnpy/example-data/CORONET_Global_Topology.json>`_:
.. code-block:: shell-session
$ gnpy-transmission-example $(gnpy-example-data)/CORONET_Global_Topology.json
It is also possible to use an Excel file input (for example
`gnpy/example-data/CORONET_Global_Topology.xls <gnpy/example-data/CORONET_Global_Topology.xls>`_).
`gnpy/example-data/CORONET_Global_Topology.xls <../gnpy/example-data/CORONET_Global_Topology.xls>`_).
The Excel file will be processed into a JSON file with the same prefix.
Further details about the Excel data structure are available `in the documentation <docs/excel.rst>`__.
Further details about the Excel data structure are available `in the documentation <excel.rst>`__.
The main transmission example will calculate the average signal OSNR and SNR
across network elements (transceiver, ROADMs, fibers, and amplifiers)
@@ -57,10 +57,10 @@ interference noise.
Further Instructions for Use
----------------------------
Simulations are driven by a set of `JSON <docs/json.rst>`__ or `XLS <docs/excel.rst>`__ files.
Simulations are driven by a set of `JSON <json.rst>`__ or `XLS <excel.rst>`__ files.
The ``gnpy-transmission-example`` script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
Launch power can be overridden by using the ``--power`` argument.
Launch power in fiber spans can be overridden by using the ``--power`` argument.
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
@@ -72,8 +72,8 @@ An experimental support for Raman amplification is available:
$(gnpy-example-data)/raman_edfa_example_network.json \
--sim $(gnpy-example-data)/sim_params.json --show-channels
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <gnpy/example-data/raman_edfa_example_network.json>`_.
General numeric parameters for simulation control are provided in the `gnpy/example-data/sim_params.json <gnpy/example-data/sim_params.json>`_.
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <../gnpy/example-data/raman_edfa_example_network.json>`_.
General numeric parameters for simulation control are provided in the `gnpy/example-data/sim_params.json <../gnpy/example-data/sim_params.json>`_.
Use ``gnpy-path-request`` to request several paths at once:
@@ -83,7 +83,7 @@ Use ``gnpy-path-request`` to request several paths at once:
$ gnpy-path-request -o output_file.json \
meshTopologyExampleV2.xls meshTopologyExampleV2_services.json
This program operates on a network topology (`JSON <docs/json.rst>`__ or `Excel <docs/excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
This program operates on a network topology (`JSON <json.rst>`__ or `Excel <excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
The service requests and reply formats are based on the `draft-ietf-teas-yang-path-computation-01 <https://tools.ietf.org/html/draft-ietf-teas-yang-path-computation-01>`__ with custom extensions (e.g., for transponder modes).
An example of the JSON input is provided in file `service-template.json`, while results are shown in `path_result_template.json`.
@@ -92,4 +92,4 @@ As a result transponder type is not part of the network info. it is related to t
The current version includes a spectrum assigment features that enables to compute a candidate spectrum assignment for each service based on a first fit policy. Spectrum is assigned based on service specified spacing value, path_bandwidth value and selected mode for the transceiver. This spectrum assignment includes a basic capacity planning capability so that the spectrum resource is limited by the frequency min and max values defined for the links. If the requested services reach the link spectrum capacity, additional services feasibility are computed but marked as blocked due to spectrum reason.
OpenROADM networks can be simulated via ``gnpy/example-data/eqpt_config_openroadm.json`` -- see ``gnpy/example-data/Sweden_OpenROADM_example_network.json`` as an example.
OpenROADM networks can be simulated via ``gnpy/example-data/eqpt_config_openroadm_*.json`` -- see ``gnpy/example-data/Sweden_OpenROADM*_example_network.json`` as an example.

File diff suppressed because it is too large Load Diff

View File

@@ -126,9 +126,9 @@ that can be easily evaluated extending the FWM theory from a set of discrete
tones - the standard FWM theory introduced back in the 90s by Inoue
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
Signals propagating in the fiber are not equivalent to Gaussian noise, but
thanks to the absence of in-line compensation for choromatic dispersion, the
thanks to the absence of in-line compensation for chromatic dispersion, the
become so, over short distances. So, the Gaussian noise model with incoherent
accumulation of NLI has estensively proved to be a quick yet accurate and
accumulation of NLI has extensively proved to be a quick yet accurate and
conservative tool to estimate propagation impairments of fiber propagation.
Note that the GN-model has not been derived with the aim of an *exact*
performance estimation, but to pursue a conservative performance prediction.
@@ -145,4 +145,4 @@ Raman Scattering in order to give a proper estimation for all channels
:cite:`cantono2018modeling`. This will be the main upgrade required within the
PSE framework.
.. bibliography:: biblio.bib
.. bibliography::

269
docs/release-notes.rst Normal file
View File

@@ -0,0 +1,269 @@
.. _release-notes:
Release change log
==================
Each release introduces some changes and new features.
(prepare text for next release)
ROADM impairments can be defined per degree and roadm-path type (add, drop or express).
Minimum loss when crossing a ROADM is no more 0 dB. It can be set per ROADM degree with roadm-path-impairments.
The transceiver output power, which was previously set using the same parameter as the input span power (power_dbm),
can now be set using a different parameter. It can be set as:
- for all channels, with tx_power_dbm using SI similarly to tx_osnr (gnpy-transmission-example script)
.. code-block:: json
"SI": [{
"f_min": 191.35e12,
"baud_rate": 32e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 3,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 40,
"tx_power_dbm": -10,
"sys_margins": 2
}
]
- for certain channels, using -spectrum option and tx_channel_power_dbm option (gnpy-transmission-example script).
.. code-block:: json
{
"spectrum": [
{
"f_min": 191.35e12,
"f_max":193.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40
},
{
"f_min": 193.15e12,
"f_max":193.15e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"tx_power_dbm": -10
},
{
"f_min": 193.2e12,
"f_max":195.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40
}
]
}
- per service using the additional parameter ``tx_power`` which similarly to ``power`` should be defined in Watt (gnpy-path-request script)
.. code-block:: json
{
"path-request": [
{
"request-id": "0",
"source": "trx SITE1",
"destination": "trx SITE2",
"src-tp-id": "trx SITE1",
"dst-tp-id": "trx SITE2",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"spacing": 50000000000.0,
"path_bandwidth": 100000000000.0
}
}
},
{
"request-id": "0 with tx_power",
"source": "trx SITE1",
"destination": "trx SITE2",
"src-tp-id": "trx SITE1",
"dst-tp-id": "trx SITE2",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"tx_power": 0.0001,
"spacing": 50000000000.0,
"path_bandwidth": 100000000000.0
}
}
}
]
}
v2.9
----
The revision introduces a major refactor that separates design and propagation. Most of these changes have no impact
on the user experience, except the following ones:
**Network design - amplifiers**: amplifier saturation is checked during design in all cases, even if type_variety is
set; amplifier gain is no more computed on the fly but only at design phase.
Before, the design did not consider amplifier power saturation during design if amplifier type_variety was stated.
With this revision, the saturation is always applied:
If design is made for a per channel power that leads to saturation, the target are properly reduced and the design
is freezed. So that when a new simulation is performed on the same network for lower levels of power per channel
the same gain target is applied. Before these were recomputed, changing the gain targets, so the simulation was
not considering the exact same working points for amplifiers in case of saturation.
Note that this case (working with saturation settings) is not recommended.
The gain of amplifiers was estimated on the fly also in case of RamanFiber preceding elements. The refactor now
requires that an estimation of Raman gain of the RamanFiber is done during design to properly compute a gain target.
The Raman gain is estimated at design for every RamanFiber span and also during propagation instead of being only
estimated at propagation stage for those Raman Fiber spans concerned with the transmission. The auto-design is more
accurate for unpropagated spans, but this results in an increase overall computation time.
This will be improved in the future.
**Network design - ROADMs**: ROADM target power settings are verified during design.
Design checks that expected power coming from every directions ingress from a ROADM are consistent with output power
targets. The checks only considers the adjacent previous hop. If the expected power at the input of this ROADM is
lower than the target power on the out-degree of the ROADM, a warning is displayed, and user is asked to review the
input network to avoid this situation. This does not change the design or propagation behaviour.
**Propagation**: amplifier gain target is no more recomputed during propagation. It is now possible to freeze
the design and propagate without automatic changes.
In previous release, gain was recomputed during propagation based on an hypothetical reference noiseless channel
propagation. It was not possible to «freeze» the autodesign, and propagate without recomputing the gain target
of amplifiers.
With this new release, the design is freezed, so that it is possible to compare performances on same basis.
**Display**: "effective pch (dbm)" is removed. Display contains the target pch which is the target power per channel
in dBm, computed based on reference channel used for design and the amplifier delta_p in dB (and before out VOA
contribution). Note that "actual pch out (dBm)" is the actual propagated total power per channel averaged per spectrum
band definition at the output of the amplifier element, including noises and out VOA contribution.
v2.8
----
**Spectrum assignment**: requests can now support multiple slots.
The definition in service file supports multiple assignments (unchanged syntax):
.. code-block:: json
"effective-freq-slot": [
{
"N": 0,
"M": 4
}, {
"N": 50,
"M": 4
}
],
But in results, label-hop is now a list of slots and center frequency index:
.. code-block:: json
{
"path-route-object": {
"index": 4,
"label-hop": [
{
"N": 0,
"M": 4
}, {
"N": 50,
"M": 4
}
]
}
},
instead of
.. code-block:: json
{
"path-route-object": {
"index": 4,
"label-hop": {
"N": 0,
"M": 4
}
}
},
**change in display**: only warnings are displayed ; information are disabled and needs the -v (verbose)
option to be displayed on standard output.
**frequency scaling**: A more accurate description of fiber parameters is implemented, including frequency scaling of
chromatic dispersion, effective area, Raman gain coefficient, and nonlinear coefficient.
In particular:
1. Chromatic dispersion can be defined with ``'dispersion'`` and ``'dispersion_slope'``, as in previous versions, or
with ``'dispersion_per_frequency'``; the latter must be defined as a dictionary with two keys, ``'value'`` and
``'frequency'`` and it has higher priority than the entries ``'dispersion'`` and ``'dispersion_slope'``.
Essential change: In previous versions, when it was not provided the ``'dispersion_slope'`` was calculated in an
involute manner to get a vanishing beta3 , and this was a mere artifact for NLI evaluation purposes (namely to evaluate
beta2 and beta3, not for total dispersion accumulation). Now, the evaluation of beta2 and beta3 is performed explicitly
in the element.py module.
2. The effective area is provided as a scalar value evaluated at the Fiber reference frequency and properly scaled
considering the Fiber refractive indices n1 and n2, and the core radius. These quantities are assumed to be fixed and
are hard coded in the parameters.py module. Essential change: The effective area is always scaled along the frequency.
3. The Raman gain coefficient is properly scaled considering the overlapping of fiber effective area values scaled at
the interacting frequencies. Essential change: In previous version the Raman gain coefficient depends only on
the frequency offset.
4. The nonlinear coefficient ``'gamma'`` is properly scaled considering the refractive index n2 and the scaling
effective area. Essential change: As the effective area, the nonlinear coefficient is always scaled along the
frequency.
**power offset**: Power equalization now enables defining a power offset in transceiver library to represent
the deviation from the general equalisation strategy defined in ROADMs.
.. code-block:: json
"mode": [{
"format": "100G",
"baud_rate": 32.0e9,
"tx_osnr": 35.0,
"min_spacing": 50.0e9,
"cost": 1,
"OSNR": 10.0,
"bit_rate": 100.0e9,
"roll_off": 0.2,
"equalization_offset_db": 0.0
}, {
"format": "200G",
"baud_rate": 64.0e9,
"tx_osnr": 35.0,
"min_spacing": 75.0e9,
"cost": 1,
"OSNR": 13.0,
"bit_rate": 200.0e9,
"roll_off": 0.2,
"equalization_offset_db": 1.76
}
]
v2.7
----

View File

@@ -1,7 +0,0 @@
alabaster>=0.7.12,<1
docutils>=0.15.2,<1
myst-parser>=0.14.0,<1
Pygments>=2.7.4,<3
rstcheck
Sphinx>=3.5.0,<4
sphinxcontrib-bibtex>=0.4.2,<1

View File

@@ -1,8 +1,8 @@
'''
"""
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks. It is based on the Gaussian Noise Model.
Signal propagation is implemented in :py:mod:`.core`.
Path finding and spectrum assignment is in :py:mod:`.topology`.
Various tools and auxiliary code, including the JSON I/O handling, is in
:py:mod:`.tools`.
'''
"""

View File

@@ -1,4 +1,4 @@
'''
"""
Simulation of signal propagation in the DWDM network
Optical signals, as defined via :class:`.info.SpectralInformation`, enter
@@ -6,4 +6,4 @@ Optical signals, as defined via :class:`.info.SpectralInformation`, enter
through the :py:mod:`.network`.
The simulation is controlled via :py:mod:`.parameters` and implemented mainly
via :py:mod:`.science_utils`.
'''
"""

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.ansi_escapes
======================
A random subset of ANSI terminal escape codes for colored messages
'''
"""
red = '\x1b[1;31;40m'
blue = '\x1b[1;34;40m'

File diff suppressed because it is too large Load Diff

View File

@@ -1,73 +1,82 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.equipment
===================
This module contains functionality for specifying equipment.
'''
"""
from gnpy.core.utils import automatic_nch, db2lin
from gnpy.core.exceptions import EquipmentConfigError
def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=False):
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)"""
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)
if the type or mode do no match an existing transceiver in the library, then the function
raises an error if error_message is True else returns a default mode based on equipment['SI']['default']
If trx_mode is None (but type is valid), it returns an undetermined mode whatever the error message:
this is a special case for automatic mode selection.
"""
trx_params = {}
default_si_data = equipment['SI']['default']
# default transponder characteristics
# mainly used with transmission_main_example.py
default_trx_params = {
'f_min': default_si_data.f_min,
'f_max': default_si_data.f_max,
'baud_rate': default_si_data.baud_rate,
'spacing': default_si_data.spacing,
'OSNR': None,
'penalties': {},
'bit_rate': None,
'cost': None,
'roll_off': default_si_data.roll_off,
'tx_osnr': default_si_data.tx_osnr,
'min_spacing': None,
'equalization_offset_db': 0
}
# Undetermined transponder characteristics
# mainly used with path_request_run.py for the automatic mode computation case
undetermined_trx_params = {
"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"penalties": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr": None,
"min_spacing": None,
"cost": None,
"equalization_offset_db": 0
}
try:
trxs = equipment['Transceiver']
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
# if called from transmission_main.py, trx_mode is ''
if trx_mode is not None:
mode_params = next(mode for trx in trxs
if trx == trx_type_variety
for mode in trxs[trx].mode
if mode['format'] == trx_mode)
trx_params = {**mode_params}
# sanity check: spacing baudrate must be smaller than min spacing
trxs = equipment['Transceiver']
if trx_type_variety in trxs:
modes = {mode['format']: mode for mode in trxs[trx_type_variety].mode}
trx_frequencies = {'f_min': trxs[trx_type_variety].frequency['min'],
'f_max': trxs[trx_type_variety].frequency['max']}
if trx_mode in modes:
# if called from transmission_main.py, trx_mode is ''
trx_params = {**modes[trx_mode], **trx_frequencies}
if trx_params['baud_rate'] > trx_params['min_spacing']:
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" ' +
f'has baud rate {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
else:
mode_params = {"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr": None,
"min_spacing": None,
"cost": None}
trx_params = {**mode_params}
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
# TODO: novel automatic feature maybe unwanted if spacing is specified
# trx_params['spacing'] = _automatic_spacing(trx_params['baud_rate'])
# temp = trx_params['spacing']
# print(f'spacing {temp}')
except StopIteration:
if error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" in equipment library')
else:
# default transponder charcteristics
# mainly used with transmission_main_example.py
trx_params['f_min'] = default_si_data.f_min
trx_params['f_max'] = default_si_data.f_max
trx_params['baud_rate'] = default_si_data.baud_rate
trx_params['spacing'] = default_si_data.spacing
trx_params['OSNR'] = None
trx_params['bit_rate'] = None
trx_params['cost'] = None
trx_params['roll_off'] = default_si_data.roll_off
trx_params['tx_osnr'] = default_si_data.tx_osnr
trx_params['min_spacing'] = None
nch = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
trx_params['nb_channel'] = nch
print(f'There are {nch} channels propagating')
trx_params['power'] = db2lin(default_si_data.power_dbm) * 1e-3
# sanity check: baudrate must be smaller than min spacing
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transponder "{trx_type_variety}" '
+ f'mode "{trx_params["format"]}" has baud rate '
+ f'{trx_params["baud_rate"] * 1e-9:.2f} GHz greater than min_spacing '
+ f'{trx_params["min_spacing"] * 1e-9:.2f}.')
trx_params['equalization_offset_db'] = trx_params.get('equalization_offset_db', 0)
return trx_params
if trx_mode is None:
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
trx_params = {**undetermined_trx_params, **trx_frequencies}
return trx_params
if trx_type_variety in trxs and error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" '
+ 'in equipment library')
if error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" in equipment library')
trx_params = {**default_trx_params}
return trx_params

View File

@@ -8,49 +8,371 @@ gnpy.core.info
This module contains classes for modelling :class:`SpectralInformation`.
"""
from __future__ import annotations
from collections import namedtuple
from gnpy.core.utils import automatic_nch, lin2db
from collections.abc import Iterable
from typing import Union
from dataclasses import dataclass
from numpy import argsort, mean, array, append, ones, ceil, any, zeros, outer, full, ndarray, asarray
from gnpy.core.utils import automatic_nch, db2lin, watt2dbm
from gnpy.core.exceptions import SpectrumError
DEFAULT_SLOT_WIDTH_STEP = 12.5e9 # Hz
"""Channels with unspecified slot width will have their slot width evaluated as the baud rate rounded up to the minimum
multiple of the DEFAULT_SLOT_WIDTH_STEP (the baud rate is extended including the roll off in this evaluation)"""
class Power(namedtuple('Power', 'signal nli ase')):
"""carriers power in W"""
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power chromatic_dispersion pmd')):
""" Class containing the parameters of a WDM signal.
class Channel(
namedtuple('Channel',
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl latency')):
"""Class containing the parameters of a WDM signal.
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param slot_width: the slot width (Hz)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param pdl: polarization dependent loss (dB)
:param latency: propagation latency (s)
"""
class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
"""noiseless reference power in dBm:
p_span0: inital target carrier power
p_spani: carrier power after element i
neq_ch: equivalent channel count in dB"""
class SpectralInformation(object):
"""Class containing the parameters of the entire WDM comb.
delta_pdb_per_channel: (per frequency) per channel delta power in dbm for the actual mix of channels"""
def __init__(self, frequency: array, baud_rate: array, slot_width: array, signal: array, nli: array, ase: array,
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array, latency: array,
delta_pdb_per_channel: array, tx_osnr: array, tx_power: array, label: array):
indices = argsort(frequency)
self._frequency = frequency[indices]
self._df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
self._number_of_channels = len(self._frequency)
self._channel_number = [*range(1, self._number_of_channels + 1)]
self._slot_width = slot_width[indices]
self._baud_rate = baud_rate[indices]
overlap = self._frequency[:-1] + self._slot_width[:-1] / 2 > self._frequency[1:] - self._slot_width[1:] / 2
if any(overlap):
overlap = [pair for pair in zip(overlap * self._channel_number[:-1], overlap * self._channel_number[1:])
if pair != (0, 0)]
raise SpectrumError(f'Spectrum required slot widths larger than the frequency spectral distances '
f'between channels: {overlap}.')
exceed = self._baud_rate > self._slot_width
if any(exceed):
raise SpectrumError(f'Spectrum baud rate, including the roll off, larger than the slot width for channels: '
f'{[ch for ch in exceed * self._channel_number if ch]}.')
self._signal = signal[indices]
self._nli = nli[indices]
self._ase = ase[indices]
self._roll_off = roll_off[indices]
self._chromatic_dispersion = chromatic_dispersion[indices]
self._pmd = pmd[indices]
self._pdl = pdl[indices]
self._latency = latency[indices]
self._delta_pdb_per_channel = delta_pdb_per_channel[indices]
self._tx_osnr = tx_osnr[indices]
self._tx_power = tx_power[indices]
self._label = label[indices]
@property
def frequency(self):
return self._frequency
@property
def df(self):
"""Matrix of relative frequency distances between all channels. Positive elements in the upper right side."""
return self._df
@property
def slot_width(self):
return self._slot_width
@property
def baud_rate(self):
return self._baud_rate
@property
def number_of_channels(self):
return self._number_of_channels
@property
def powers(self):
powers = zip(self.signal, self.nli, self.ase)
return [Power(*p) for p in powers]
@property
def signal(self):
return self._signal
@signal.setter
def signal(self, signal):
self._signal = signal
@property
def nli(self):
return self._nli
@nli.setter
def nli(self, nli):
self._nli = nli
@property
def ase(self):
return self._ase
@ase.setter
def ase(self, ase):
self._ase = ase
@property
def roll_off(self):
return self._roll_off
@property
def chromatic_dispersion(self):
return self._chromatic_dispersion
@chromatic_dispersion.setter
def chromatic_dispersion(self, chromatic_dispersion):
self._chromatic_dispersion = chromatic_dispersion
@property
def pmd(self):
return self._pmd
@property
def label(self):
return self._label
@pmd.setter
def pmd(self, pmd):
self._pmd = pmd
@property
def pdl(self):
return self._pdl
@pdl.setter
def pdl(self, pdl):
self._pdl = pdl
@property
def latency(self):
return self._latency
@latency.setter
def latency(self, latency):
self._latency = latency
@property
def delta_pdb_per_channel(self):
return self._delta_pdb_per_channel
@delta_pdb_per_channel.setter
def delta_pdb_per_channel(self, delta_pdb_per_channel):
self._delta_pdb_per_channel = delta_pdb_per_channel
@property
def tx_osnr(self):
return self._tx_osnr
@tx_osnr.setter
def tx_osnr(self, tx_osnr):
self._tx_osnr = tx_osnr
@property
def tx_power(self):
return self._tx_power
@tx_power.setter
def tx_power(self, tx_power):
self._tx_power = tx_power
@property
def channel_number(self):
return self._channel_number
@property
def carriers(self):
entries = zip(self.channel_number, self.frequency, self.baud_rate, self.slot_width,
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl, self.latency)
return [Channel(*entry) for entry in entries]
def apply_attenuation_lin(self, attenuation_lin):
self.signal *= attenuation_lin
self.nli *= attenuation_lin
self.ase *= attenuation_lin
def apply_attenuation_db(self, attenuation_db):
attenuation_lin = 1 / db2lin(attenuation_db)
self.apply_attenuation_lin(attenuation_lin)
def apply_gain_lin(self, gain_lin):
self.signal *= gain_lin
self.nli *= gain_lin
self.ase *= gain_lin
def apply_gain_db(self, gain_db):
gain_lin = db2lin(gain_db)
self.apply_gain_lin(gain_lin)
def __add__(self, other: SpectralInformation):
try:
return SpectralInformation(frequency=append(self.frequency, other.frequency),
slot_width=append(self.slot_width, other.slot_width),
signal=append(self.signal, other.signal), nli=append(self.nli, other.nli),
ase=append(self.ase, other.ase),
baud_rate=append(self.baud_rate, other.baud_rate),
roll_off=append(self.roll_off, other.roll_off),
chromatic_dispersion=append(self.chromatic_dispersion,
other.chromatic_dispersion),
pmd=append(self.pmd, other.pmd),
pdl=append(self.pdl, other.pdl),
latency=append(self.latency, other.latency),
delta_pdb_per_channel=append(self.delta_pdb_per_channel,
other.delta_pdb_per_channel),
tx_osnr=append(self.tx_osnr, other.tx_osnr),
tx_power=append(self.tx_power, other.tx_power),
label=append(self.label, other.label))
except SpectrumError:
raise SpectrumError('Spectra cannot be summed: channels overlapping.')
def _replace(self, carriers):
self.chromatic_dispersion = array([c.chromatic_dispersion for c in carriers])
self.pmd = array([c.pmd for c in carriers])
self.pdl = array([c.pdl for c in carriers])
self.latency = array([c.latency for c in carriers])
self.signal = array([c.power.signal for c in carriers])
self.nli = array([c.power.nli for c in carriers])
self.ase = array([c.power.ase for c in carriers])
return self
class SpectralInformation(namedtuple('SpectralInformation', 'pref carriers')):
def __new__(cls, pref, carriers):
return super().__new__(cls, pref, carriers)
def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, float],
signal: Union[float, ndarray, Iterable],
baud_rate: Union[float, ndarray, Iterable],
tx_osnr: Union[float, ndarray, Iterable],
tx_power: Union[float, ndarray, Iterable] = None,
delta_pdb_per_channel: Union[float, ndarray, Iterable] = 0.,
slot_width: Union[float, ndarray, Iterable] = None,
roll_off: Union[float, ndarray, Iterable] = 0.,
chromatic_dispersion: Union[float, ndarray, Iterable] = 0.,
pmd: Union[float, ndarray, Iterable] = 0.,
pdl: Union[float, ndarray, Iterable] = 0.,
latency: Union[float, ndarray, Iterable] = 0.,
label: Union[str, ndarray, Iterable] = None):
"""This is just a wrapper around the SpectralInformation.__init__() that simplifies the creation of
a non-uniform spectral information with NLI and ASE powers set to zero."""
frequency = asarray(frequency)
number_of_channels = frequency.size
try:
signal = full(number_of_channels, signal)
baud_rate = full(number_of_channels, baud_rate)
roll_off = full(number_of_channels, roll_off)
slot_width = full(number_of_channels, slot_width) if slot_width is not None else \
ceil((1 + roll_off) * baud_rate / DEFAULT_SLOT_WIDTH_STEP) * DEFAULT_SLOT_WIDTH_STEP
chromatic_dispersion = full(number_of_channels, chromatic_dispersion)
pmd = full(number_of_channels, pmd)
pdl = full(number_of_channels, pdl)
latency = full(number_of_channels, latency)
nli = zeros(number_of_channels)
ase = zeros(number_of_channels)
delta_pdb_per_channel = full(number_of_channels, delta_pdb_per_channel)
tx_osnr = full(number_of_channels, tx_osnr)
tx_power = full(number_of_channels, tx_power)
label = full(number_of_channels, label)
return SpectralInformation(frequency=frequency, slot_width=slot_width,
signal=signal, nli=nli, ase=ase,
baud_rate=baud_rate, roll_off=roll_off,
chromatic_dispersion=chromatic_dispersion,
pmd=pmd, pdl=pdl, latency=latency,
delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
except ValueError as e:
if 'could not broadcast' in str(e):
raise SpectrumError('Dimension mismatch in input fields.')
else:
raise
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
# pref in dB : convert power lin into power in dB
pref = lin2db(power * 1e3)
nb_channel = automatic_nch(f_min, f_max, spacing)
si = SpectralInformation(
pref=Pref(pref, pref, lin2db(nb_channel)),
carriers=[
Channel(f, (f_min + spacing * f),
baud_rate, roll_off, Power(power, 0, 0), 0, 0) for f in range(1, nb_channel + 1)
]
)
return si
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, spacing, tx_osnr, tx_power,
delta_pdb=0):
"""Creates a fixed slot width spectral information with flat power.
all arguments are scalar values"""
number_of_channels = automatic_nch(f_min, f_max, spacing)
frequency = [(f_min + spacing * i) for i in range(1, number_of_channels + 1)]
delta_pdb_per_channel = delta_pdb * ones(number_of_channels)
label = [f'{baud_rate * 1e-9 :.2f}G' for i in range(number_of_channels)]
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=tx_power, baud_rate=baud_rate,
roll_off=roll_off, delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
def carriers_to_spectral_information(initial_spectrum: dict[float, Carrier],
power: float) -> SpectralInformation:
"""Initial spectrum is a dict with key = carrier frequency, and value a Carrier object.
:param initial_spectrum: indexed by frequency in Hz, with power offset (delta_pdb), baudrate, slot width,
tx_osnr, tx_power and roll off.
:param power: power of the request
"""
frequency = list(initial_spectrum.keys())
signal = [c.tx_power for c in initial_spectrum.values()]
roll_off = [c.roll_off for c in initial_spectrum.values()]
baud_rate = [c.baud_rate for c in initial_spectrum.values()]
delta_pdb_per_channel = [c.delta_pdb for c in initial_spectrum.values()]
slot_width = [c.slot_width for c in initial_spectrum.values()]
tx_osnr = [c.tx_osnr for c in initial_spectrum.values()]
tx_power = [c.tx_power for c in initial_spectrum.values()]
label = [c.label for c in initial_spectrum.values()]
return create_arbitrary_spectral_information(frequency=frequency, signal=signal, baud_rate=baud_rate,
slot_width=slot_width, roll_off=roll_off,
delta_pdb_per_channel=delta_pdb_per_channel, tx_osnr=tx_osnr,
tx_power=tx_power, label=label)
@dataclass
class Carrier:
"""One channel in the initial mixed-type spectrum definition, each type being defined by
its delta_pdb (power offset with respect to reference power), baud rate, slot_width, roll_off
tx_power, and tx_osnr. delta_pdb offset is applied to target power out of Roadm.
Label is used to group carriers which belong to the same partition when printing results.
"""
delta_pdb: float
baud_rate: float
slot_width: float
roll_off: float
tx_osnr: float
tx_power: float
label: str
@dataclass
class ReferenceCarrier:
"""Reference channel type is used to determine target power out of ROADM for the reference channel when
constant power spectral density (PSD) equalization is set. Reference channel is the type that has been defined
in SI block and used for the initial design of the network.
Computing the power out of ROADM for the reference channel is required to correctly compute the loss
experienced by reference channel in Roadm element.
Baud rate is required to find the target power in constant PSD: power = PSD_target * baud_rate.
For example, if target PSD is 3.125e4mW/GHz and reference carrier type a 32 GBaud channel then
output power should be -20 dBm and for a 64 GBaud channel power target would need 3 dB more: -17 dBm.
Slot width is required to find the target power in constant PSW (constant power per slot width equalization):
power = PSW_target * slot_width.
For example, if target PSW is 2e4mW/GHz and reference carrier type a 32 GBaud channel in a 50GHz slot width then
output power should be -20 dBm and for a 64 GBaud channel in a 75 GHz slot width, power target would be -18.24 dBm.
Other attributes (like roll-off) may be added there for future equalization purpose.
"""
baud_rate: float
slot_width: float

View File

@@ -1,18 +1,27 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.network
=================
Working with networks which consist of network elements
'''
"""
from copy import deepcopy
from operator import attrgetter
from gnpy.core import ansi_escapes, elements
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
from gnpy.core.utils import round2float, convert_length
from collections import namedtuple
from logging import getLogger
from gnpy.core import elements
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
from gnpy.core.utils import round2float, convert_length, psd2powerdbm, lin2db, watt2dbm, dbm2watt
from gnpy.core.info import ReferenceCarrier, create_input_spectral_information
from gnpy.core.parameters import SimParams, EdfaParams
from gnpy.core.science_utils import RamanSolver
logger = getLogger(__name__)
def edfa_nf(gain_target, variety_type, equipment):
@@ -27,10 +36,11 @@ def edfa_nf(gain_target, variety_type, equipment):
)
amp.pin_db = 0
amp.nch = 88
amp.slot_width = 50e9
return amp._calc_nf(True)
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None, verbose=True):
"""amplifer selection algorithm
@Orange Jean-Luc Augé
"""
@@ -53,15 +63,8 @@ def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restri
# power attribut include power AND gain limitations
edfa_list = [Edfa_list(
variety=edfa_variety,
power=min(
pin
+ edfa.gain_flatmax
+ TARGET_EXTENDED_GAIN,
edfa.p_max
)
- power_target,
gain_min=gain_target + 3
- edfa.gain_min,
power=min(pin + edfa.gain_flatmax + TARGET_EXTENDED_GAIN, edfa.p_max) - power_target,
gain_min=gain_target + 3 - edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment))
for edfa_variety, edfa in edfa_dict.items()
if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
@@ -70,15 +73,8 @@ def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restri
# do not allow extended gain min for Raman
raman_list = [Edfa_list(
variety=edfa_variety,
power=min(
pin
+ edfa.gain_flatmax
+ TARGET_EXTENDED_GAIN,
edfa.p_max
)
- power_target,
gain_min=gain_target
- edfa.gain_min,
power=min(pin + edfa.gain_flatmax + TARGET_EXTENDED_GAIN, edfa.p_max) - power_target,
gain_min=gain_target - edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment))
for edfa_variety, edfa in edfa_dict.items()
if (edfa.allowed_for_design and edfa.raman)] \
@@ -102,10 +98,10 @@ def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restri
please increase span fiber padding')
else:
# TODO: convert to logging
print(
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain in node {uid} is below all available amplifiers min gain: \
amplifier input padding will be assumed, consider increase span fiber padding instead'
)
if verbose:
logger.warning(f'\n\tWARNING: target gain in node {uid} is below all available amplifiers min gain: '
+ '\n\tamplifier input padding will be assumed, consider increase span fiber padding '
+ 'instead.\n')
acceptable_gain_min_list = edfa_list
# filter on gain+power limitation:
@@ -125,33 +121,33 @@ def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restri
# =>chose the amp with the best NF among the acceptable ones:
selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) # filter on NF
# check what are the gain and power limitations of this amp
power_reduction = round(min(selected_edfa.power, 0), 2)
if power_reduction < -0.5:
print(
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain and power in node {uid}\n \
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
a power reduction of {power_reduction} is applied\n'
)
power_reduction = min(selected_edfa.power, 0)
if power_reduction < -0.5 and verbose:
logger.warning(f'\n\tWARNING: target gain and power in node {uid}\n'
+ '\tis beyond all available amplifiers capabilities and/or extended_gain_range:\n'
+ f'\ta power reduction of {round(power_reduction, 2)} is applied\n')
return selected_edfa.variety, power_reduction
def target_power(network, node, equipment): # get_fiber_dp
"""Computes target power using J. -L. Auge, V. Curri and E. Le Rouzic,
Open Design for Multi-Vendor Optical Networks, OFC 2019.
equation 4
"""
if isinstance(node, elements.Roadm):
return 0
SPAN_LOSS_REF = 20
POWER_SLOPE = 0.3
dp_range = list(equipment['Span']['default'].delta_power_range_db)
node_loss = span_loss(network, node)
node_loss = span_loss(network, node, equipment)
try:
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
dp = max(dp_range[0], dp)
dp = min(dp_range[1], dp)
except IndexError:
raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
f'delta_power_range_db: [lower_bound, upper_bound, step]')
raise ConfigurationError('invalid delta_power_range_db definition in eqpt_config[Span]'
'delta_power_range_db: [lower_bound, upper_bound, step]')
return dp
@@ -190,12 +186,74 @@ def next_node_generator(network, node):
yield from next_node_generator(network, next_node)
def span_loss(network, node):
"""Total loss of a span (Fiber and Fused nodes) which contains the given node"""
def estimate_raman_gain(node, equipment, power_dbm):
"""If node is RamanFiber, then estimate the possible Raman gain if any
for this purpose computes stimulated_raman_scattering loss_profile. This may be time consuming.
"""
if isinstance(node, elements.RamanFiber):
if hasattr(node, "estimated_gain"):
return node.estimated_gain
f_min = equipment['SI']['default'].f_min
f_max = equipment['SI']['default'].f_max
roll_off = equipment['SI']['default'].roll_off
baud_rate = equipment['SI']['default'].baud_rate
power = dbm2watt(power_dbm)
spacing = equipment['SI']['default'].spacing
tx_osnr = equipment['SI']['default'].tx_osnr
# reduce the nb of channels to speed up
spacing = spacing * 3
power = power * 3
sim_params = {
"raman_params": {
"flag": True,
"result_spatial_resolution": 50e3,
"solver_spatial_resolution": 100
}
}
# in order to take into account gain generated in RamanFiber, propagate in the RamanFiber with
if hasattr(node, "estimated_gain"):
# do not compute twice to save on time
return node.estimated_gain
spectral_info = create_input_spectral_information(f_min=f_min, f_max=f_max, roll_off=roll_off,
baud_rate=baud_rate, tx_power=power, spacing=spacing,
tx_osnr=tx_osnr)
pin = watt2dbm(sum(spectral_info.signal))
attenuation_in_db = node.params.con_in + node.params.att_in
spectral_info.apply_attenuation_db(attenuation_in_db)
save_sim_params = {"raman_params": SimParams._shared_dict['raman_params'].to_json(),
"nli_params": SimParams._shared_dict['nli_params'].to_json()}
SimParams.set_params(sim_params)
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, node)
attenuation_fiber = stimulated_raman_scattering.loss_profile[:spectral_info.number_of_channels, -1]
spectral_info.apply_attenuation_lin(attenuation_fiber)
attenuation_out_db = node.params.con_out
spectral_info.apply_attenuation_db(attenuation_out_db)
pout = watt2dbm(sum(spectral_info.signal))
estimated_loss = pin - pout
estimated_gain = node.loss - estimated_loss
node.estimated_gain = estimated_gain
SimParams.set_params(save_sim_params)
return round(estimated_gain, 2)
else:
return 0.0
def span_loss(network, node, equipment, input_power=None):
"""Total loss of a span (Fiber and Fused nodes) which contains the given node
Do not recompute, if it was already computed: records it in design_span_loss"""
if hasattr(node, "design_span_loss"):
return node.design_span_loss
loss = node.loss if node.passive else 0
loss += sum(n.loss for n in prev_node_generator(network, node))
loss += sum(n.loss for n in next_node_generator(network, node))
return loss
# add the possible Raman gain
gain = estimate_raman_gain(node, equipment, input_power)
gain += sum(estimate_raman_gain(n, equipment, input_power) for n in prev_node_generator(network, node))
gain += sum(estimate_raman_gain(n, equipment, input_power) for n in next_node_generator(network, node))
return loss - gain
def find_first_node(network, node):
@@ -232,46 +290,48 @@ def set_amplifier_voa(amp, power_target, power_mode):
amp.out_voa = voa
def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_db):
""" this node can be a transceiver or a ROADM (same function called in both cases)
def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_db, verbose):
"""This node can be a transceiver or a ROADM (same function called in both cases).
go through each link staring from this_node until next Roadm or Transceiver and
set gain and delta_p according to configurations set by user.
power_mode = True, set amplifiers delta_p and effective_gain
power_mode = False, set amplifiers effective_gain and ignore delta_p config: set it to None
"""
power_mode = equipment['Span']['default'].power_mode
next_oms = (n for n in network.successors(this_node) if not isinstance(n, elements.Transceiver))
this_node_degree = {k: v for k, v in this_node.per_degree_pch_out_db.items()} if hasattr(this_node, 'per_degree_pch_out_db') else {}
for oms in next_oms:
# go through all the OMS departing from the ROADM
prev_node = this_node
node = oms
# if isinstance(next_node, elements.Fused): #support ROADM wo egress amp for metro applications
# node = find_last_node(next_node)
# next_node = next(n for n in network.successors(node))
# next_node = find_last_node(next_node)
if node.uid not in this_node_degree:
# if no target power is defined on this degree or no per degree target power is given use the global one
# if target_pch_out_db is not an attribute, then the element must be a transceiver
this_node_degree[node.uid] = getattr(this_node.params, 'target_pch_out_db', 0)
if isinstance(this_node, elements.Transceiver):
# todo change pref to a ref channel
if equipment['SI']['default'].tx_power_dbm is not None:
this_node_out_power = equipment['SI']['default'].tx_power_dbm
else:
this_node_out_power = pref_ch_db
if isinstance(this_node, elements.Roadm):
# get target power out from ROADM for the reference carrier based on equalization settings
this_node_out_power = this_node.get_per_degree_ref_power(degree=node.uid)
# use the target power on this degree
prev_dp = this_node_degree[node.uid] - pref_ch_db
prev_dp = this_node_out_power - pref_ch_db
dp = prev_dp
prev_voa = 0
voa = 0
visited_nodes = []
while not (isinstance(node, elements.Roadm) or isinstance(node, elements.Transceiver)):
# go through all nodes in the OMS (loop until next Roadm instance)
try:
next_node = next(network.successors(node))
except StopIteration:
raise NetworkTopologyError(f'{type(node).__name__} {node.uid} is not properly connected, please check network topology')
next_node = get_next_node(node, network)
visited_nodes.append(node)
if next_node in visited_nodes:
raise NetworkTopologyError(f'Loop detected for {type(node).__name__} {node.uid}, please check network topology')
raise NetworkTopologyError(f'Loop detected for {type(node).__name__} {node.uid}, '
+ 'please check network topology')
if isinstance(node, elements.Edfa):
node_loss = span_loss(network, prev_node)
node_loss = span_loss(network, prev_node, equipment)
voa = node.out_voa if node.out_voa else 0
if node.delta_p is None:
dp = target_power(network, next_node, equipment)
if node.operational.delta_p is None:
dp = target_power(network, next_node, equipment) + voa
else:
dp = node.delta_p
dp = node.operational.delta_p
if node.effective_gain is None or power_mode:
gain_target = node_loss + dp - prev_dp + prev_voa
else: # gain mode with effective_gain
@@ -282,8 +342,8 @@ def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_d
if isinstance(prev_node, elements.Fiber):
max_fiber_lineic_loss_for_raman = \
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
equipment['Span']['default'].max_fiber_lineic_loss_for_raman * 1e-3 # dB/m
raman_allowed = (prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman).all()
else:
raman_allowed = False
@@ -298,48 +358,246 @@ def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_d
restrictions = next_node.restrictions['preamp_variety_list']
else:
restrictions = None
edfa_variety, power_reduction = select_edfa(raman_allowed, gain_target, power_target, equipment, node.uid, restrictions)
edfa_variety, power_reduction = select_edfa(raman_allowed, gain_target, power_target, equipment,
node.uid, restrictions, verbose)
extra_params = equipment['Edfa'][edfa_variety]
node.params.update_params(extra_params.__dict__)
dp += power_reduction
gain_target += power_reduction
elif node.params.raman and not raman_allowed:
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n but fiber lineic loss is above threshold\n')
else:
# Check power saturation also in this case
p_max = equipment['Edfa'][node.params.type_variety].p_max
if power_mode:
power_reduction = min(0, p_max - (pref_total_db + dp))
else:
pout = pref_total_db + prev_dp - node_loss - prev_voa + gain_target
power_reduction = min(0, p_max - pout)
dp += power_reduction
gain_target += power_reduction
if node.params.raman and not raman_allowed:
if isinstance(prev_node, elements.Fiber):
logger.warning(f'\n\tWARNING: raman is used in node {node.uid}\n '
+ '\tbut fiber lineic loss is above threshold\n')
else:
logger.critical(f'\n\tWARNING: raman is used in node {node.uid}\n '
+ '\tbut previous node is not a fiber\n')
# if variety is imposed by user, and if the gain_target (computed or imposed) is also above
# variety max gain + extended range, then warn that gain > max_gain + extended range
if gain_target - equipment['Edfa'][node.params.type_variety].gain_flatmax - \
equipment['Span']['default'].target_extended_gain > 1e-2:
equipment['Span']['default'].target_extended_gain > 1e-2 and verbose:
# 1e-2 to allow a small margin according to round2float min step
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: '
f'WARNING: effective gain in Node {node.uid} is above user '
f'specified amplifier {node.params.type_variety}\n'
f'max flat gain: {equipment["Edfa"][node.params.type_variety].gain_flatmax}dB ; '
f'required gain: {gain_target}dB. Please check amplifier type.')
logger.warning(f'\n\tWARNING: effective gain in Node {node.uid}\n'
+ f'\tis above user specified amplifier {node.params.type_variety}\n'
+ '\tmax flat gain: '
+ f'{equipment["Edfa"][node.params.type_variety].gain_flatmax}dB ; '
+ f'required gain: {round(gain_target, 2)}dB. Please check amplifier type.\n')
node.delta_p = dp if power_mode else None
node.effective_gain = gain_target
# if voa is not set, then set it and possibly optimize it with gain and update delta_p and
# effective_gain values
set_amplifier_voa(node, power_target, power_mode)
# set_amplifier_voa may change delta_p in power_mode
node._delta_p = node.delta_p if power_mode else dp
# target_pch_out_dbm records target power for design: If user defines one, then this is displayed,
# else display the one computed during design
if node.delta_p is not None and node.operational.delta_p is not None:
# use the user defined target
node.target_pch_out_dbm = round(node.operational.delta_p + pref_ch_db, 2)
elif node.delta_p is not None:
# use the design target if no target were set
node.target_pch_out_dbm = round(node.delta_p + pref_ch_db, 2)
elif node.delta_p is None:
node.target_pch_out_dbm = None
elif isinstance(node, elements.RamanFiber):
_ = span_loss(network, node, equipment, input_power=pref_ch_db + dp)
prev_dp = dp
prev_voa = voa
prev_node = node
node = next_node
# print(f'{node.uid}')
if isinstance(this_node, elements.Roadm):
this_node.per_degree_pch_out_db = {k: v for k, v in this_node_degree.items()}
def set_roadm_ref_carrier(roadm, equipment):
"""ref_carrier records carrier information used for design and usefull for equalization
"""
roadm.ref_carrier = ReferenceCarrier(baud_rate=equipment['SI']['default'].baud_rate,
slot_width=equipment['SI']['default'].spacing)
def set_roadm_per_degree_targets(roadm, network):
"""Set target powers/PSD on all degrees
This is needed to populate per_degree_pch_out_dbm or per_degree_pch_psd or per_degree_pch_psw dicts when
they are not initialized by users.
"""
next_oms = (n for n in network.successors(roadm) if not isinstance(n, elements.Transceiver))
for node in next_oms:
# go through all the OMS departing from the ROADM
if node.uid not in roadm.per_degree_pch_out_dbm and node.uid not in roadm.per_degree_pch_psd and \
node.uid not in roadm.per_degree_pch_psw:
# if no target power is defined on this degree or no per degree target power is given use the global one
if roadm.params.target_pch_out_db:
roadm.per_degree_pch_out_dbm[node.uid] = roadm.params.target_pch_out_db
elif roadm.params.target_psd_out_mWperGHz:
roadm.per_degree_pch_psd[node.uid] = roadm.params.target_psd_out_mWperGHz
elif roadm.params.target_out_mWperSlotWidth:
roadm.per_degree_pch_psw[node.uid] = roadm.params.target_out_mWperSlotWidth
else:
raise ConfigurationError(roadm.uid, 'needs an equalization target')
def set_roadm_input_powers(network, roadm, equipment, pref_ch_db):
"""Set reference powers at ROADM input for a reference channel and based on the adjacent OMS.
This supposes that there is no dependency on path. For example, the succession:
node power out of element
roadm A (target power -10dBm) -10dBm
fiber A (16 dB loss) -26dBm
roadm B (target power -12dBm) -26dBm
fiber B (10 dB loss) -36dBm
roadm C (target power -14dBm) -36dBm
is not consistent because target powers in roadm B and roadm C can not be met.
input power for the reference channel will be set -26 dBm in roadm B and -22dBm in roadm C,
because at design time we can not know about path.
The function raises a warning if target powers can not be met with the design.
User should be aware that design was not successfull and that power reduction was applied.
Note that this value is only used for visualisation purpose (to compute ROADM loss in elements).
"""
previous_elements = [n for n in network.predecessors(roadm)]
roadm.ref_pch_in_dbm = {}
for element in previous_elements:
node = element
loss = 0.0
while isinstance(node, (elements.Fiber, elements.Fused, elements.RamanFiber)):
# go through all predecessors until a power target is found either in an amplifier, a ROADM or a transceiver
# then deduce power at ROADM input from this degree based on this target and crossed losses
loss += node.loss
previous_node = node
node = next(network.predecessors(node))
if isinstance(node, elements.Edfa):
roadm.ref_pch_in_dbm[element.uid] = pref_ch_db + node._delta_p - node.out_voa - loss
elif isinstance(node, elements.Roadm):
roadm.ref_pch_in_dbm[element.uid] = \
node.get_per_degree_ref_power(degree=previous_node.uid) - loss
elif isinstance(node, elements.Transceiver):
roadm.ref_pch_in_dbm[element.uid] = pref_ch_db - loss
# check if target power can be met
temp = []
if roadm.per_degree_pch_out_dbm:
temp.append(max([p for p in roadm.per_degree_pch_out_dbm.values()]))
if roadm.per_degree_pch_psd:
temp.append(max([psd2powerdbm(p, roadm.ref_carrier.baud_rate) for p in roadm.per_degree_pch_psd.values()]))
if roadm.per_degree_pch_psw:
temp.append(max([psd2powerdbm(p, roadm.ref_carrier.slot_width) for p in roadm.per_degree_pch_psw.values()]))
if roadm.params.target_pch_out_db:
temp.append(roadm.params.target_pch_out_db)
if roadm.params.target_psd_out_mWperGHz:
temp.append(psd2powerdbm(roadm.params.target_psd_out_mWperGHz, roadm.ref_carrier.baud_rate))
if roadm.params.target_out_mWperSlotWidth:
temp.append(psd2powerdbm(roadm.params.target_out_mWperSlotWidth, roadm.ref_carrier.slot_width))
if not temp:
raise ConfigurationError(f'Could not find target power/PSD/PSW in ROADM "{roadm.uid}"')
target_to_be_supported = max(temp)
for from_degree, in_power in roadm.ref_pch_in_dbm.items():
if in_power < target_to_be_supported:
logger.warning(
f'WARNING: maximum target power {target_to_be_supported}dBm '
+ f'in ROADM "{roadm.uid}" can not be met for at least one crossing path. Min input power '
+ f'from "{from_degree}" direction is {round(in_power, 2)}dBm. Please correct input topology.'
)
def set_fiber_input_power(network, fiber, equipment, pref_ch_db):
"""Set reference powers at fiber input for a reference channel.
Supposes that target power out of ROADMs and amplifiers are consistent.
This is only for visualisation purpose
"""
loss = 0.0
node = next(network.predecessors(fiber))
while isinstance(node, elements.Fused):
loss += node.loss
previous_node = node
node = next(network.predecessors(node))
if isinstance(node, (elements.Fiber, elements.RamanFiber)) and node.ref_pch_in_dbm is not None:
fiber.ref_pch_in_dbm = node.ref_pch_in_dbm - loss - node.loss
if isinstance(node, (elements.Fiber, elements.RamanFiber)) and node.ref_pch_in_dbm is None:
set_fiber_input_power(network, node, equipment, pref_ch_db)
fiber.ref_pch_in_dbm = node.ref_pch_in_dbm - loss - node.loss
elif isinstance(node, elements.Roadm):
fiber.ref_pch_in_dbm = \
node.get_per_degree_ref_power(degree=previous_node.uid) - loss
elif isinstance(node, elements.Edfa):
fiber.ref_pch_in_dbm = pref_ch_db + node._delta_p - node.out_voa - loss
elif isinstance(node, elements.Transceiver):
fiber.ref_pch_in_dbm = pref_ch_db - loss
def set_roadm_internal_paths(roadm, network):
"""Set ROADM path types (express, add, drop)
Uses implicit guess if no information is set in ROADM
"""
next_oms = [n.uid for n in network.successors(roadm) if not isinstance(n, elements.Transceiver)]
previous_oms = [n.uid for n in network.predecessors(roadm) if not isinstance(n, elements.Transceiver)]
drop_port = [n.uid for n in network.successors(roadm) if isinstance(n, elements.Transceiver)]
add_port = [n.uid for n in network.predecessors(roadm) if isinstance(n, elements.Transceiver)]
default_express = 'express'
default_add = 'add'
default_drop = 'drop'
# take user defined element impairment id if it exists
correct_from_degrees = []
correct_add = []
correct_to_degrees = []
correct_drop = []
for from_degree in previous_oms:
correct_from_degrees.append(from_degree)
for to_degree in next_oms:
correct_to_degrees.append(to_degree)
impairment_id = roadm.get_per_degree_impairment_id(from_degree, to_degree)
roadm.set_roadm_paths(from_degree=from_degree, to_degree=to_degree, path_type=default_express,
impairment_id=impairment_id)
for drop in drop_port:
correct_drop.append(drop)
impairment_id = roadm.get_per_degree_impairment_id(from_degree, drop)
path_type = roadm.get_path_type_per_id(impairment_id)
# a degree connected to a transceiver MUST be add or drop
# but a degree connected to something else could be an express, add or drop
# (for example case of external shelves)
if path_type and path_type != 'drop':
msg = f'Roadm {roadm.uid} path_type is defined as {path_type} but it should be drop'
raise NetworkTopologyError(msg)
roadm.set_roadm_paths(from_degree=from_degree, to_degree=drop, path_type=default_drop,
impairment_id=impairment_id)
for to_degree in next_oms:
for add in add_port:
correct_add.append(add)
impairment_id = roadm.get_per_degree_impairment_id(add, to_degree)
path_type = roadm.get_path_type_per_id(impairment_id)
if path_type and path_type != 'add':
msg = f'Roadm {roadm.uid} path_type is defined as {path_type} but it should be add'
raise NetworkTopologyError(msg)
roadm.set_roadm_paths(from_degree=add, to_degree=to_degree, path_type=default_add,
impairment_id=impairment_id)
# sanity check: raise an error if per_degree from or to degrees are not in the correct list
# raise an error if user defined path_type is not consistent with inferred path_type:
for item in roadm.per_degree_impairments.values():
if item['from_degree'] not in correct_from_degrees + correct_add or \
item['to_degree'] not in correct_to_degrees + correct_drop:
msg = f'Roadm {roadm.uid} has wrong from-to degree uid {item["from_degree"]} - {item["to_degree"]}'
raise NetworkTopologyError(msg)
def add_roadm_booster(network, roadm):
next_nodes = [n for n in network.successors(roadm)
if not (isinstance(n, elements.Transceiver) or isinstance(n, elements.Fused) or isinstance(n, elements.Edfa))]
if not (isinstance(n, elements.Transceiver) or isinstance(n, elements.Fused)
or isinstance(n, elements.Edfa))]
# no amplification for fused spans or TRX
for next_node in next_nodes:
network.remove_edge(roadm, next_node)
amp = elements.Edfa(
uid=f'Edfa_booster_{roadm.uid}_to_{next_node.uid}',
params={},
params=EdfaParams.default_values,
metadata={
'location': {
'latitude': roadm.lat,
@@ -365,7 +623,7 @@ def add_roadm_preamp(network, roadm):
network.remove_edge(prev_node, roadm)
amp = elements.Edfa(
uid=f'Edfa_preamp_{roadm.uid}_from_{prev_node.uid}',
params={},
params=EdfaParams.default_values,
metadata={
'location': {
'latitude': roadm.lat,
@@ -388,13 +646,13 @@ def add_roadm_preamp(network, roadm):
def add_inline_amplifier(network, fiber):
next_node = next(network.successors(fiber))
next_node = get_next_node(fiber, network)
if isinstance(next_node, elements.Fiber) or isinstance(next_node, elements.RamanFiber):
# no amplification for fused spans or TRX
network.remove_edge(fiber, next_node)
amp = elements.Edfa(
uid=f'Edfa_{fiber.uid}',
params={},
params=EdfaParams.default_values,
metadata={
'location': {
'latitude': (fiber.lat + next_node.lat) / 2,
@@ -413,6 +671,9 @@ def add_inline_amplifier(network, fiber):
def calculate_new_length(fiber_length, bounds, target_length):
"""If fiber is over boundary, then assume this is a link "intent" and computes the set of
identical fiber spans this link should be composed of.
"""
if fiber_length < bounds.stop:
return fiber_length, 1
@@ -426,13 +687,27 @@ def calculate_new_length(fiber_length, bounds, target_length):
return (length1, n_spans1)
elif (bounds.start <= length2 <= bounds.stop) and not(bounds.start <= length1 <= bounds.stop):
return (length2, n_spans2)
elif target_length - length1 < length2 - target_length:
return (length1, n_spans1)
else:
elif length2 - target_length <= target_length - length1 and length2 <= bounds.stop:
return (length2, n_spans2)
else:
return (length1, n_spans1)
def split_fiber(network, fiber, bounds, target_length, equipment):
def get_next_node(node, network):
"""get_next node else raise tha appropriate error
"""
try:
next_node = next(network.successors(node))
return next_node
except StopIteration:
raise NetworkTopologyError(
f'{type(node).__name__} {node.uid} is not properly connected, please check network topology')
def split_fiber(network, fiber, bounds, target_length):
"""If fiber length exceeds boundary then assume this is a link "intent", and replace this one-span link
with an n_spans link, with identical fiber types.
"""
new_length, n_spans = calculate_new_length(fiber.params.length, bounds, target_length)
if n_spans == 1:
return
@@ -475,11 +750,10 @@ def split_fiber(network, fiber, bounds, target_length, equipment):
def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
"""Add default connector loss if no loss are defined. EOL repair margin is added as a connector loss
"""
for fiber in fibers:
try:
next_node = next(network.successors(fiber))
except StopIteration:
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
next_node = get_next_node(fiber, network)
if fiber.params.con_in is None:
fiber.params.con_in = default_con_in
if fiber.params.con_out is None:
@@ -488,19 +762,18 @@ def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
fiber.params.con_out += EOL
def add_fiber_padding(network, fibers, padding):
"""last_fibers = (fiber for n in network.nodes()
if not (isinstance(n, elements.Fiber) or isinstance(n, elements.Fused))
for fiber in network.predecessors(n)
if isinstance(fiber, elements.Fiber))"""
def add_fiber_padding(network, fibers, padding, equipment):
"""Add a padding att_in at the input of the 1st fiber of a succession of fibers and fused
"""
for fiber in fibers:
try:
next_node = next(network.successors(fiber))
except StopIteration:
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
next_node = get_next_node(fiber, network)
if isinstance(next_node, elements.Fused):
continue
this_span_loss = span_loss(network, fiber)
# do not pad if this is a Raman Fiber
if isinstance(fiber, elements.RamanFiber):
continue
this_span_loss = span_loss(network, fiber, equipment)
fiber.design_span_loss = this_span_loss
if this_span_loss < padding:
# add a padding att_in at the input of the 1st fiber:
# address the case when several fibers are spliced together
@@ -509,38 +782,69 @@ def add_fiber_padding(network, fibers, padding):
# just after a roadm: need to check that first_fiber is really a fiber
if isinstance(first_fiber, elements.Fiber):
first_fiber.params.att_in = first_fiber.params.att_in + padding - this_span_loss
fiber.design_span_loss += first_fiber.params.att_in
def build_network(network, equipment, pref_ch_db, pref_total_db):
def add_missing_elements_in_network(network, equipment):
"""Autodesign network: add missing elements. split fibers if their length is too big
add ROADM preamp or booster and inline amplifiers between fibers
"""
default_span_data = equipment['Span']['default']
max_length = int(convert_length(default_span_data.max_length, default_span_data.length_units))
min_length = max(int(default_span_data.padding / 0.2 * 1e3), 50_000)
bounds = range(min_length, max_length)
target_length = max(min_length, 90_000)
# set roadm loss for gain_mode before to build network
target_length = max(min_length, min(max_length, 90_000))
fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
add_connector_loss(network, fibers, default_span_data.con_in, default_span_data.con_out, default_span_data.EOL)
add_fiber_padding(network, fibers, default_span_data.padding)
# don't group split fiber and add amp in the same loop
# =>for code clarity (at the expense of speed):
for fiber in fibers:
split_fiber(network, fiber, bounds, target_length, equipment)
split_fiber(network, fiber, bounds, target_length)
roadms = [r for r in network.nodes() if isinstance(r, elements.Roadm)]
for roadm in roadms:
add_roadm_preamp(network, roadm)
add_roadm_booster(network, roadm)
fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
for fiber in fibers:
add_inline_amplifier(network, fiber)
for roadm in roadms:
set_egress_amplifier(network, roadm, equipment, pref_ch_db, pref_total_db)
trx = [t for t in network.nodes() if isinstance(t, elements.Transceiver)]
for t in trx:
next_node = next(network.successors(t), None)
if next_node and not isinstance(next_node, elements.Roadm):
set_egress_amplifier(network, t, equipment, 0, pref_total_db)
def add_missing_fiber_attributes(network, equipment):
"""Fill in connector loss with default values. Add the padding loss is required.
EOL is added as a connector loss
"""
default_span_data = equipment['Span']['default']
fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
add_connector_loss(network, fibers, default_span_data.con_in, default_span_data.con_out, default_span_data.EOL)
# don't group split fiber and add amp in the same loop
# =>for code clarity (at the expense of speed):
add_fiber_padding(network, fibers, default_span_data.padding, equipment)
def build_network(network, equipment, pref_ch_db, pref_total_db, set_connector_losses=True, verbose=True):
"""Set roadm equalization target and amplifier gain and power
"""
roadms = [r for r in network.nodes() if isinstance(r, elements.Roadm)]
transceivers = [t for t in network.nodes() if isinstance(t, elements.Transceiver)]
if set_connector_losses:
add_missing_fiber_attributes(network, equipment)
# set roadm equalization targets first
for roadm in roadms:
set_roadm_ref_carrier(roadm, equipment)
set_roadm_per_degree_targets(roadm, network)
# then set amplifiers gain, delta_p and out_voa on each OMS
for roadm in roadms + transceivers:
set_egress_amplifier(network, roadm, equipment, pref_ch_db, pref_total_db, verbose)
for roadm in roadms:
set_roadm_input_powers(network, roadm, equipment, pref_ch_db)
set_roadm_internal_paths(roadm, network)
for fiber in [f for f in network.nodes() if isinstance(f, (elements.Fiber, elements.RamanFiber))]:
set_fiber_input_power(network, fiber, equipment, pref_ch_db)
def design_network(reference_channel, network, equipment, set_connector_losses=True, verbose=True):
"""Network is designed according to reference channel. Verbose indicate if the function should
print all warnings or not
"""
pref_ch_db = watt2dbm(reference_channel.power) # reference channel power
pref_total_db = pref_ch_db + lin2db(reference_channel.nb_channel) # reference total power
build_network(network, equipment, pref_ch_db, pref_total_db, set_connector_losses=set_connector_losses,
verbose=verbose)

View File

@@ -7,11 +7,12 @@ gnpy.core.parameters
This module contains all parameters to configure standard network elements.
"""
from collections import namedtuple
from scipy.constants import c, pi
from numpy import squeeze, log10, exp
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
from gnpy.core.utils import db2lin, convert_length
from gnpy.core.utils import convert_length
from gnpy.core.exceptions import ParametersError
@@ -28,110 +29,228 @@ class Parameters:
class PumpParams(Parameters):
def __init__(self, power, frequency, propagation_direction):
self._power = power
self._frequency = frequency
self._propagation_direction = propagation_direction
@property
def power(self):
return self._power
@property
def frequency(self):
return self._frequency
@property
def propagation_direction(self):
return self._propagation_direction
self.power = power
self.frequency = frequency
self.propagation_direction = propagation_direction.lower()
class RamanParams(Parameters):
def __init__(self, **kwargs):
self._flag_raman = kwargs['flag_raman']
self._space_resolution = kwargs['space_resolution'] if 'space_resolution' in kwargs else None
self._tolerance = kwargs['tolerance'] if 'tolerance' in kwargs else None
def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
"""Simulation parameters used within the Raman Solver
@property
def flag_raman(self):
return self._flag_raman
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
"""
self.flag = flag
self.result_spatial_resolution = result_spatial_resolution # [m]
self.solver_spatial_resolution = solver_spatial_resolution # [m]
@property
def space_resolution(self):
return self._space_resolution
@property
def tolerance(self):
return self._tolerance
def to_json(self):
return {"flag": self.flag,
"result_spatial_resolution": self.result_spatial_resolution,
"solver_spatial_resolution": self.solver_spatial_resolution}
class NLIParams(Parameters):
def __init__(self, **kwargs):
self._nli_method_name = kwargs['nli_method_name']
self._wdm_grid_size = kwargs['wdm_grid_size']
self._dispersion_tolerance = kwargs['dispersion_tolerance']
self._phase_shift_tolerance = kwargs['phase_shift_tolerance']
self._f_cut_resolution = None
self._f_pump_resolution = None
self._computed_channels = kwargs['computed_channels'] if 'computed_channels' in kwargs else None
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
computed_channels=None, computed_number_of_channels=None):
"""Simulation parameters used within the Nli Solver
@property
def nli_method_name(self):
return self._nli_method_name
:params method: formula for NLI calculation
:params dispersion_tolerance: tuning parameter for ggn model solution
:params phase_shift_tolerance: tuning parameter for ggn model solution
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
:params computed_number_of_channels: the NLI is evaluated for this number of channels equally distributed
in the spectrum and extrapolated for the others
"""
self.method = method.lower()
self.dispersion_tolerance = dispersion_tolerance
self.phase_shift_tolerance = phase_shift_tolerance
self.computed_channels = computed_channels
self.computed_number_of_channels = computed_number_of_channels
@property
def wdm_grid_size(self):
return self._wdm_grid_size
@property
def dispersion_tolerance(self):
return self._dispersion_tolerance
@property
def phase_shift_tolerance(self):
return self._phase_shift_tolerance
@property
def f_cut_resolution(self):
return self._f_cut_resolution
@f_cut_resolution.setter
def f_cut_resolution(self, f_cut_resolution):
self._f_cut_resolution = f_cut_resolution
@property
def f_pump_resolution(self):
return self._f_pump_resolution
@f_pump_resolution.setter
def f_pump_resolution(self, f_pump_resolution):
self._f_pump_resolution = f_pump_resolution
@property
def computed_channels(self):
return self._computed_channels
def to_json(self):
return {"method": self.method,
"dispersion_tolerance": self.dispersion_tolerance,
"phase_shift_tolerance": self.phase_shift_tolerance,
"computed_channels": self.computed_channels,
"computed_number_of_channels": self.computed_number_of_channels}
class SimParams(Parameters):
def __init__(self, **kwargs):
try:
if 'nli_parameters' in kwargs:
self._nli_params = NLIParams(**kwargs['nli_parameters'])
else:
self._nli_params = None
if 'raman_parameters' in kwargs:
self._raman_params = RamanParams(**kwargs['raman_parameters'])
else:
self._raman_params = None
except KeyError as e:
raise ParametersError(f'Simulation parameters must include {e}. Configuration: {kwargs}')
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
@classmethod
def set_params(cls, sim_params):
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
@property
def nli_params(self):
return self._nli_params
return self._shared_dict['nli_params']
@property
def raman_params(self):
return self._raman_params
return self._shared_dict['raman_params']
class RoadmParams(Parameters):
def __init__(self, **kwargs):
self.target_pch_out_db = kwargs.get('target_pch_out_db')
self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
temp = [kwargs.get(k) is not None for k in equalisation_type]
if sum(temp) > 1:
raise ParametersError('ROADM config contains more than one equalisation type.'
+ 'Please choose only one', kwargs)
self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
try:
self.add_drop_osnr = kwargs['add_drop_osnr']
self.pmd = kwargs['pmd']
self.pdl = kwargs['pdl']
self.restrictions = kwargs['restrictions']
self.roadm_path_impairments = self.get_roadm_path_impairments(kwargs['roadm-path-impairments'])
except KeyError as e:
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
self.per_degree_impairments = kwargs.get('per_degree_impairments', [])
def get_roadm_path_impairments(self, path_impairments_list):
"""Get the ROADM list of profiles for impairments definition
transform the ietf model into gnpy internal model: add a path-type in the attributes
"""
if not path_impairments_list:
return {}
authorized_path_types = {
'roadm-express-path': 'express',
'roadm-add-path': 'add',
'roadm-drop-path': 'drop',
}
roadm_path_impairments = {}
for path_impairment in path_impairments_list:
index = path_impairment['roadm-path-impairments-id']
path_type = next(key for key in path_impairment if key in authorized_path_types.keys())
impairment_dict = dict({'path-type': authorized_path_types[path_type]}, **path_impairment[path_type][0])
roadm_path_impairments[index] = RoadmImpairment(impairment_dict)
return roadm_path_impairments
class RoadmPath:
def __init__(self, from_degree, to_degree, path_type, impairment_id=None, impairment=None):
"""Records roadm internal paths, types and impairment
path_type must be in "express", "add", "drop"
impairment_id must be one of the id detailed in equipement
"""
self.from_degree = from_degree
self.to_degree = to_degree
self.path_type = path_type
self.impairment_id = impairment_id
self.impairment = impairment
class RoadmImpairment:
"""Generic definition of impairments for express, add and drop"""
def __init__(self, params):
"""Records roadm internal paths and types"""
self.path_type = params.get('path-type')
self.pmd = params.get('roadm-pmd')
self.cd = params.get('roadm-cd')
self.pdl = params.get('roadm-pdl')
self.inband_crosstalk = params.get('roadm-inband-crosstalk')
self.maxloss = params.get('roadm-maxloss', 0)
if params.get('frequency-range') is not None:
self.fmin = params.get('frequency-range')['lower-frequency']
self.fmax = params.get('frequency-range')['upper-frequency']
else:
self.fmin, self.fmax = None, None
self.osnr = params.get('roadm-osnr', None)
self.pmax = params.get('roadm-pmax', None)
self.nf = params.get('roadm-noise-figure', None)
self.minloss = params.get('minloss', None)
self.typloss = params.get('typloss', None)
self.pmin = params.get('pmin', None)
self.ptyp = params.get('ptyp', None)
class FusedParams(Parameters):
def __init__(self, **kwargs):
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
DEFAULT_RAMAN_COEFFICIENT = {
# SSMF Raman coefficient profile in terms of mode intensity (g0 * A_ff_overlap)
'gamma_raman': array(
[0.0, 8.524419934705497e-16, 2.643567866245371e-15, 4.410548410941305e-15, 6.153422961291078e-15,
7.484924703044943e-15, 8.452060808349209e-15, 9.101549322698156e-15, 9.57837595158966e-15,
1.0008642675474562e-14, 1.0865773569905647e-14, 1.1300776305865833e-14, 1.2143238647099625e-14,
1.3231065750676068e-14, 1.4624900971525384e-14, 1.6013330554840492e-14, 1.7458119359310242e-14,
1.9320241330434762e-14, 2.1720395392873534e-14, 2.4137337406734775e-14, 2.628163218460466e-14,
2.8041019963285974e-14, 2.9723155447089933e-14, 3.129353531005888e-14, 3.251796163324624e-14,
3.3198839487612773e-14, 3.329527690685666e-14, 3.313155691238456e-14, 3.289013852154548e-14,
3.2458917188506916e-14, 3.060684277937575e-14, 3.2660349473783173e-14, 2.957419109657689e-14,
2.518894321396672e-14, 1.734560485857344e-14, 9.902860761605233e-15, 7.219176385099358e-15,
6.079565990401311e-15, 5.828373065963427e-15, 7.20580801091692e-15, 7.561924351387493e-15,
7.621152352332206e-15, 6.8859886780643254e-15, 5.629181047471162e-15, 3.679727598966185e-15,
2.7555869742500355e-15, 2.4810133942597675e-15, 2.2160080532403624e-15, 2.1440626024765557e-15,
2.33873070799544e-15, 2.557317929858713e-15, 3.039839048226572e-15, 4.8337165515610065e-15,
5.4647431818257436e-15, 5.229187813711269e-15, 4.510768525811313e-15, 3.3213473130607794e-15,
2.2602577027996455e-15, 1.969576495866441e-15, 1.5179853954188527e-15, 1.2953988551200156e-15,
1.1304672156251838e-15, 9.10004390675213e-16, 8.432919922183503e-16, 7.849224069008326e-16,
7.827568196032024e-16, 9.000514440646232e-16, 1.3025926460013665e-15, 1.5444108938497558e-15,
1.8795594063060786e-15, 1.7796130169921014e-15, 1.5938159865046653e-15, 1.1585522355108287e-15,
8.507044444633358e-16, 7.625404663756823e-16, 8.14510750925789e-16, 9.047944693473188e-16,
9.636431901702084e-16, 9.298633899602105e-16, 8.349739503637023e-16, 7.482901278066085e-16,
6.240794767134268e-16, 5.00652535687506e-16, 3.553373263685851e-16, 2.0344217706119682e-16,
1.4267522642294203e-16, 8.980016576743517e-17, 2.9829068181832594e-17, 1.4861959129014824e-17,
7.404482113326137e-18]
), # m/W
# SSMF Raman coefficient profile
'g0': array(
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
), # [1 / (W m)]
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
'frequency_offset': array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
12., 12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75,
19., 19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5,
29., 29.5, 30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5,
39., 39.5, 40., 40.5, 41., 41.5, 42.]) * 1e12, # [Hz]
# Raman profile reference frequency
'reference_frequency': 206.184634112792e12, # [Hz] (1454 nm)
# Raman profile reference effective area
'reference_effective_area': 75.74659443542413e-12 # [m^2] (@1454 nm)
}
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
""" Raman Gain Coefficient Parameters
Based on:
Andrea DAmico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
J. Lightwave Technol. 40, 3499-3511 (2022)
Section III.D
"""
class FiberParams(Parameters):
@@ -139,45 +258,94 @@ class FiberParams(Parameters):
try:
self._length = convert_length(kwargs['length'], kwargs['length_units'])
# fixed attenuator for padding
self._att_in = kwargs['att_in'] if 'att_in' in kwargs else 0
self._att_in = kwargs.get('att_in', 0)
# if not defined in the network json connector loss in/out
# the None value will be updated in network.py[build_network]
# with default values from eqpt_config.json[Spans]
self._con_in = kwargs['con_in'] if 'con_in' in kwargs else None
self._con_out = kwargs['con_out'] if 'con_out' in kwargs else None
self._con_in = kwargs.get('con_in')
self._con_out = kwargs.get('con_out')
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
if 'ref_wavelength' in kwargs:
self._ref_wavelength = kwargs['ref_wavelength']
self._ref_frequency = c / self.ref_wavelength
self._ref_frequency = c / self._ref_wavelength
elif 'ref_frequency' in kwargs:
self._ref_frequency = kwargs['ref_frequency']
self._ref_wavelength = c / self.ref_frequency
self._ref_wavelength = c / self._ref_frequency
else:
self._ref_wavelength = 1550e-9
self._ref_frequency = c / self.ref_wavelength
self._dispersion = kwargs['dispersion'] # s/m/m
self._dispersion_slope = kwargs['dispersion_slope'] if 'dispersion_slope' in kwargs else \
-2 * self._dispersion/self.ref_wavelength # s/m/m/m
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
# (accessed on 25 March 2018) (2005).
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
(2*pi*c/self.ref_wavelength**2)**2)
self._gamma = kwargs['gamma'] # 1/W/m
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
self._ref_frequency = c / self._ref_wavelength
# Chromatic Dispersion
if 'dispersion_per_frequency' in kwargs:
# Frequency-dependent dispersion
self._dispersion = asarray(kwargs['dispersion_per_frequency']['value']) # s/m/m
self._f_dispersion_ref = asarray(kwargs['dispersion_per_frequency']['frequency']) # Hz
self._dispersion_slope = None
elif 'dispersion' in kwargs:
# Single value dispersion
self._dispersion = asarray(kwargs['dispersion']) # s/m/m
self._dispersion_slope = kwargs.get('dispersion_slope') # s/m/m/m
self._f_dispersion_ref = asarray(self._ref_frequency) # Hz
else:
# Default single value dispersion
self._dispersion = asarray(1.67e-05) # s/m/m
self._dispersion_slope = None
self._f_dispersion_ref = asarray(self.ref_frequency) # Hz
# Effective Area and Nonlinear Coefficient
self._effective_area = kwargs.get('effective_area') # m^2
self._n1 = 1.468
self._core_radius = 4.2e-6 # m
self._n2 = 2.6e-20 # m^2/W
if self._effective_area is not None:
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
elif 'gamma' in kwargs:
self._gamma = kwargs['gamma'] # 1/W/m
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
else:
self._effective_area = 83e-12 # m^2
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
pi * self._core_radius ** 2 / self._effective_area)) ** 2
# Raman Gain Coefficient
raman_coefficient = kwargs.get('raman_coefficient')
if raman_coefficient is None:
self._raman_reference_frequency = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
frequency_offset = asarray(DEFAULT_RAMAN_COEFFICIENT['frequency_offset'])
gamma_raman = asarray(DEFAULT_RAMAN_COEFFICIENT['gamma_raman'])
stokes_wave = self._raman_reference_frequency - frequency_offset
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
self._g0 = gamma_raman / self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
else:
self._raman_reference_frequency = raman_coefficient['reference_frequency']
frequency_offset = asarray(raman_coefficient['frequency_offset'])
stokes_wave = self._raman_reference_frequency - frequency_offset
self._g0 = asarray(raman_coefficient['g0'])
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
# represent a positive power transfer from higher frequency and vice versa
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
# Polarization Mode Dispersion
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
if type(kwargs['loss_coef']) == dict:
self._loss_coef = squeeze(kwargs['loss_coef']['loss_coef_power']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = squeeze(kwargs['loss_coef']['frequency']) # Hz
# Loss Coefficient
if isinstance(kwargs['loss_coef'], dict):
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
else:
self._loss_coef = kwargs['loss_coef'] * 1e-3 # lineic loss dB/m
self._f_loss_ref = 193.5e12 # Hz
self._lin_attenuation = db2lin(self.length * self.loss_coef)
self._lin_loss_exp = self.loss_coef / (10 * log10(exp(1))) # linear power exponent loss Neper/m
self._effective_length = (1 - exp(- self.lin_loss_exp * self.length)) / self.lin_loss_exp
self._asymptotic_length = 1 / self.lin_loss_exp
# raman parameters (not compulsory)
self._raman_efficiency = kwargs['raman_efficiency'] if 'raman_efficiency' in kwargs else None
self._pumps_loss_coef = kwargs['pumps_loss_coef'] if 'pumps_loss_coef' in kwargs else None
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(self._ref_frequency) # Hz
# Lumped Losses
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
self._latency = self._length / (c / self._n1) # s
except KeyError as e:
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
@@ -210,6 +378,10 @@ class FiberParams(Parameters):
def con_out(self):
return self._con_out
@property
def lumped_losses(self):
return self._lumped_losses
@con_out.setter
def con_out(self, con_out):
self._con_out = con_out
@@ -218,6 +390,10 @@ class FiberParams(Parameters):
def dispersion(self):
return self._dispersion
@property
def f_dispersion_ref(self):
return self._f_dispersion_ref
@property
def dispersion_slope(self):
return self._dispersion_slope
@@ -226,6 +402,20 @@ class FiberParams(Parameters):
def gamma(self):
return self._gamma
def effective_area_scaling(self, frequency):
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
w = self._core_radius / sqrt(log(V))
return asarray(pi * w ** 2)
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
effective_area_pump = self.effective_area_scaling(frequency_pump)
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
def gamma_scaling(self, frequency):
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
@property
def pmd_coef(self):
return self._pmd_coef
@@ -238,14 +428,6 @@ class FiberParams(Parameters):
def ref_frequency(self):
return self._ref_frequency
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def loss_coef(self):
return self._loss_coef
@@ -255,31 +437,180 @@ class FiberParams(Parameters):
return self._f_loss_ref
@property
def lin_loss_exp(self):
return self._lin_loss_exp
def raman_coefficient(self):
return self._raman_coefficient
@property
def lin_attenuation(self):
return self._lin_attenuation
@property
def effective_length(self):
return self._effective_length
@property
def asymptotic_length(self):
return self._asymptotic_length
@property
def raman_efficiency(self):
return self._raman_efficiency
@property
def pumps_loss_coef(self):
return self._pumps_loss_coef
def latency(self):
return self._latency
def asdict(self):
dictionary = super().asdict()
dictionary['loss_coef'] = self.loss_coef * 1e3
dictionary['length_units'] = 'm'
if len(self.lumped_losses) == 0:
dictionary.pop('lumped_losses')
if not self.raman_coefficient:
dictionary.pop('raman_coefficient')
else:
raman_frequency_offset = \
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
'frequency_offset': raman_frequency_offset.tolist(),
'reference_frequency': self._raman_reference_frequency}
return dictionary
class EdfaParams:
default_values = {
'f_min': 191.3e12,
'f_max': 196.1e12,
'multi_band': None,
'bands': [],
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'preamp_variety': None,
'booster_variety': None,
'nf_min': None,
'nf_max': None,
'nf_coef': None,
'nf0': None,
'nf_fit_coeff': None,
'nf_ripple': 0,
'dgt': None,
'gain_ripple': 0,
'tilt_ripple': 0,
'f_ripple_ref': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False,
'pmd': 0,
'pdl': 0,
'advance_configurations_from_json': None
}
def __init__(self, **params):
try:
self.type_variety = params['type_variety']
self.type_def = params['type_def']
# Bandwidth
self.f_min = params['f_min']
self.f_max = params['f_max']
self.bandwidth = self.f_max - self.f_min
self.f_cent = (self.f_max + self.f_min) / 2
self.f_ripple_ref = params['f_ripple_ref']
# Gain
self.gain_flatmax = params['gain_flatmax']
self.gain_min = params['gain_min']
gain_ripple = params['gain_ripple']
if gain_ripple == 0:
self.gain_ripple = asarray([0, 0])
self.f_ripple_ref = asarray([self.f_min, self.f_max])
else:
self.gain_ripple = asarray(gain_ripple)
if self.f_ripple_ref is not None:
if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
"with the EDFA frequency maximum and minimum.")
elif self.gain_ripple.size != self.f_ripple_ref.size:
raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
"size.")
else:
self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
tilt_ripple = params['tilt_ripple']
if tilt_ripple == 0:
self.tilt_ripple = full(self.gain_ripple.size, 0)
else:
self.tilt_ripple = asarray(tilt_ripple)
if self.tilt_ripple.size != self.gain_ripple.size:
raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
# Power
self.p_max = params['p_max']
# Noise Figure
self.nf_model = params['nf_model']
self.nf_min = params['nf_min']
self.nf_max = params['nf_max']
self.nf_coef = params['nf_coef']
self.nf0 = params['nf0']
self.nf_fit_coeff = params['nf_fit_coeff']
nf_ripple = params['nf_ripple']
if nf_ripple == 0:
self.nf_ripple = full(self.gain_ripple.size, 0)
else:
self.nf_ripple = asarray(nf_ripple)
if self.nf_ripple.size != self.gain_ripple.size:
raise ParametersError("The noise figure ripple and the gain ripple must have the same size.")
# VOA
self.out_voa_auto = params['out_voa_auto']
# Dual Stage
self.dual_stage_model = params['dual_stage_model']
if self.dual_stage_model is not None:
# Preamp
self.preamp_variety = params['preamp_variety']
self.preamp_type_def = params['preamp_type_def']
self.preamp_nf_model = params['preamp_nf_model']
self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
self.preamp_gain_min = params['preamp_gain_min']
self.preamp_gain_flatmax = params['preamp_gain_flatmax']
# Booster
self.booster_variety = params['booster_variety']
self.booster_type_def = params['booster_type_def']
self.booster_nf_model = params['booster_nf_model']
self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
self.booster_gain_min = params['booster_gain_min']
self.booster_gain_flatmax = params['booster_gain_flatmax']
# Others
self.pmd = params['pmd']
self.pdl = params['pdl']
self.raman = params['raman']
self.dgt = params['dgt']
self.advance_configurations_from_json = params['advance_configurations_from_json']
# Design
self.allowed_for_design = params['allowed_for_design']
except KeyError as e:
raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
def update_params(self, kwargs):
for k, v in kwargs.items():
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
class EdfaOperational:
default_values = {
'gain_target': None,
'delta_p': None,
'out_voa': None,
'tilt_target': 0
}
def __init__(self, **operational):
self.update_attr(operational)
def update_attr(self, kwargs):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in self.default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
def __repr__(self):
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')

File diff suppressed because it is too large Load Diff

View File

@@ -9,8 +9,9 @@ This module contains utility functions that are used with gnpy.
"""
from csv import writer
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and, mean, array
from scipy import constants
from copy import deepcopy
from gnpy.core.exceptions import ConfigurationError
@@ -106,7 +107,99 @@ def db2lin(value):
return 10**(value / 10)
def watt2dbm(value):
"""Convert Watt units to dBm
>>> round(watt2dbm(0.001), 1)
0.0
>>> round(watt2dbm(0.02), 1)
13.0
"""
return lin2db(value * 1e3)
def dbm2watt(value):
"""Convert dBm units to Watt
>>> round(dbm2watt(0), 4)
0.001
>>> round(dbm2watt(-3), 4)
0.0005
>>> round(dbm2watt(13), 4)
0.02
"""
return db2lin(value) * 1e-3
def psd2powerdbm(psd_mwperghz, baudrate_baud):
"""computes power in dBm based on baudrate in bauds and psd in mW/GHz
>>> round(psd2powerdbm(0.031176, 64e9),3)
3.0
>>> round(psd2powerdbm(0.062352, 32e9),3)
3.0
>>> round(psd2powerdbm(0.015625, 64e9),3)
0.0
"""
return lin2db(baudrate_baud * psd_mwperghz * 1e-9)
def power_dbm_to_psd_mw_ghz(power_dbm, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in dBm
>>> power_dbm_to_psd_mw_ghz(0, 64e9)
0.015625
>>> round(power_dbm_to_psd_mw_ghz(3, 64e9), 6)
0.031176
>>> round(power_dbm_to_psd_mw_ghz(3, 32e9), 6)
0.062352
"""
return db2lin(power_dbm) / (baudrate_baud * 1e-9)
def psd_mw_per_ghz(power_watt, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in W
>>> psd_mw_per_ghz(2e-3, 32e9)
0.0625
>>> psd_mw_per_ghz(1e-3, 64e9)
0.015625
>>> psd_mw_per_ghz(0.5e-3, 32e9)
0.015625
"""
return power_watt * 1e3 / (baudrate_baud * 1e-9)
def round2float(number, step):
"""Round a floating point number so that its "resolution" is not bigger than 'step'
The finest step is fixed at 0.01; smaller values are silently changed to 0.01.
>>> round2float(123.456, 1000)
0.0
>>> round2float(123.456, 100)
100.0
>>> round2float(123.456, 10)
120.0
>>> round2float(123.456, 1)
123.0
>>> round2float(123.456, 0.1)
123.5
>>> round2float(123.456, 0.01)
123.46
>>> round2float(123.456, 0.001)
123.46
>>> round2float(123.249, 0.5)
123.0
>>> round2float(123.250, 0.5)
123.0
>>> round2float(123.251, 0.5)
123.5
>>> round2float(123.300, 0.2)
123.2
>>> round2float(123.301, 0.2)
123.4
"""
step = round(step, 1)
if step >= 0.01:
number = round(number / step, 0)
@@ -120,25 +213,39 @@ wavelength2freq = constants.lambda2nu
freq2wavelength = constants.nu2lambda
def freq2wavelength(value):
""" Converts frequency units to wavelength units.
>>> round(freq2wavelength(191.35e12) * 1e9, 3)
1566.723
>>> round(freq2wavelength(196.1e12) * 1e9, 3)
1528.773
"""
return constants.c / value
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
snr_added = snr_added - lin2db(bw / bw_added)
snr = -lin2db(db2lin(-snr) + db2lin(-snr_added))
return snr
def per_label_average(values, labels):
"""computes the average per defined spectrum band, using labels
>>> labels = ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'D', 'D', 'D', 'D']
>>> values = [28.51, 28.23, 28.15, 28.17, 28.36, 28.53, 28.64, 28.68, 28.7, 28.71, 28.72, 28.73, 28.74, 28.91, 27.96, 27.85, 27.87, 28.02]
>>> per_label_average(values, labels)
{'A': 28.28, 'B': 28.68, 'C': 28.91, 'D': 27.92}
"""
label_set = sorted(set(labels))
summary = {}
for label in label_set:
vals = [val for val, lab in zip(values, labels) if lab == label]
summary[label] = round(mean(vals), 2)
return summary
def pretty_summary_print(summary):
"""Build a prettty string that shows the summary dict values per label with 2 digits"""
if len(summary) == 1:
return f'{list(summary.values())[0]:.2f}'
text = ', '.join([f'{label}: {value:.2f}' for label, value in summary.items()])
return text
def deltawl2deltaf(delta_wl, wavelength):
""" deltawl2deltaf(delta_wl, wavelength):
"""deltawl2deltaf(delta_wl, wavelength):
delta_wl is BW in wavelength units
wavelength is the center wl
units for delta_wl and wavelength must be same
@@ -156,9 +263,9 @@ def deltawl2deltaf(delta_wl, wavelength):
def deltaf2deltawl(delta_f, frequency):
""" deltawl2deltaf(delta_f, frequency):
converts delta frequency to delta wavelength
units for delta_wl and wavelength must be same
"""convert delta frequency to delta wavelength
Units for delta_wl and wavelength must be same.
:param delta_f: delta frequency in same units as frequency
:param frequency: frequency BW is relevant for
@@ -173,8 +280,7 @@ def deltaf2deltawl(delta_f, frequency):
def rrc(ffs, baud_rate, alpha):
""" rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
function.
"""compute the root-raised cosine filter function
:param ffs: A numpy array of frequencies
:param baud_rate: The Baud Rate of the System
@@ -200,7 +306,7 @@ def rrc(ffs, baud_rate, alpha):
def merge_amplifier_restrictions(dict1, dict2):
"""Updates contents of dicts recursively
"""Update contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
@@ -295,3 +401,60 @@ def convert_length(value, units):
return value * 1e3
else:
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
def replace_none(dictionary):
""" Replaces None with inf values in a frequency slots dict
>>> replace_none({'N': 3, 'M': None})
{'N': 3, 'M': inf}
"""
for key, val in dictionary.items():
if val is None:
dictionary[key] = float('inf')
if val == float('inf'):
dictionary[key] = None
return dictionary
def order_slots(slots):
""" Order frequency slots from larger slots to smaller ones up to None
>>> l = [{'N': 3, 'M': None}, {'N': 2, 'M': 1}, {'N': None, 'M': None},{'N': 7, 'M': 2},{'N': None, 'M': 1} , {'N': None, 'M': 0}]
>>> order_slots(l)
([7, 2, None, None, 3, None], [2, 1, 1, 0, None, None], [3, 1, 4, 5, 0, 2])
"""
slots_list = deepcopy(slots)
slots_list = [replace_none(e) for e in slots_list]
for i, e in enumerate(slots_list):
e['i'] = i
slots_list = sorted(slots_list, key=lambda x: (-x['M'], x['N']) if x['M'] != float('inf') else (x['M'], x['N']))
slots_list = [replace_none(e) for e in slots_list]
return [e['N'] for e in slots_list], [e['M'] for e in slots_list], [e['i'] for e in slots_list]
def restore_order(elements, order):
""" Use order to re-order the element of the list, and ignore None values
>>> restore_order([7, 2, None, None, 3, None], [3, 1, 4, 5, 0, 2])
[3, 2, 7]
"""
return [elements[i[0]] for i in sorted(enumerate(order), key=lambda x:x[1]) if elements[i[0]] is not None]
def calculate_absolute_min_or_zero(x: array) -> array:
"""Calculates the element-wise absolute minimum between the x and zero.
Parameters:
x (array): The first input array.
Returns:
array: The element-wise absolute minimum between x and zero.
Example:
>>> x = array([-1, 2, -3])
>>> calculate_absolute_min_or_zero(x)
array([1., 0., 3.])
"""
return (abs(x) - x) / 2

View File

@@ -1,160 +1,160 @@
{
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.4e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
-0.15656302345061,
-0.22244242043552,
-0.25188965661642,
-0.23575900335007,
-0.20897508375209,
-0.19440221943049,
-0.18324644053602,
-0.18053287269681,
-0.17113588777219,
-0.15460322445561,
-0.13550774706866,
-0.10606051088777,
-0.0765630234506,
-0.04962835008375,
-0.01319618927973,
0.01027114740367,
0.03378873534338,
0.04961788107202,
0.04494451423784,
0.0399193886097,
0.01584903685091,
-0.00420121440538,
-0.01847257118928,
-0.02475397822447,
-0.01053287269681,
0.01509526800668,
0.05921587102177,
0.1191656197655,
0.18147717755444,
0.23579878559464,
0.26941687604691,
0.27836159966498,
0.26956762981574,
0.23826109715241,
0.18936662479061,
0.1204721524288,
0.0453465242881,
-0.00877407872698,
-0.02199015912898,
0.00107516750419,
0.02795958961474,
0.02740682579566,
-0.01028161641541,
-0.05982935510889,
-0.06701528475711,
0.00223094639866,
0.14157768006701,
0.15017064489112
],
"dgt": [
1.0,
1.03941448941778,
1.07773189112355,
1.11575888725852,
1.15209185089701,
1.18632744096844,
1.21911100318577,
1.24931318255134,
1.27657903892303,
1.30069883494415,
1.32210817897091,
1.3405812000038,
1.35690844654118,
1.3710092503689,
1.38430337205545,
1.3966294751726,
1.40864903907609,
1.42089447397912,
1.43476940680732,
1.44977369463316,
1.46637521309853,
1.48420288841848,
1.50335352244996,
1.5242627235492,
1.54578500307573,
1.56750088631614,
1.58973304612691,
1.61073904908309,
1.63068023161292,
1.64799163036252,
1.66286684904577,
1.6761448370895,
1.68845480656382,
1.70379790088896,
1.72461030013125,
1.75428006928365,
1.79748596476494,
1.85543800978691,
1.92915262384742,
2.01414465424155,
2.10336369905543,
2.19013043016015,
2.26678136721453,
2.33147727493671,
2.38192717604575,
2.41879254989742,
2.44342862248888,
2.4553191172498
]
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.4e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
-0.15656302345061,
-0.22244242043552,
-0.25188965661642,
-0.23575900335007,
-0.20897508375209,
-0.19440221943049,
-0.18324644053602,
-0.18053287269681,
-0.17113588777219,
-0.15460322445561,
-0.13550774706866,
-0.10606051088777,
-0.0765630234506,
-0.04962835008375,
-0.01319618927973,
0.01027114740367,
0.03378873534338,
0.04961788107202,
0.04494451423784,
0.0399193886097,
0.01584903685091,
-0.00420121440538,
-0.01847257118928,
-0.02475397822447,
-0.01053287269681,
0.01509526800668,
0.05921587102177,
0.1191656197655,
0.18147717755444,
0.23579878559464,
0.26941687604691,
0.27836159966498,
0.26956762981574,
0.23826109715241,
0.18936662479061,
0.1204721524288,
0.0453465242881,
-0.00877407872698,
-0.02199015912898,
0.00107516750419,
0.02795958961474,
0.02740682579566,
-0.01028161641541,
-0.05982935510889,
-0.06701528475711,
0.00223094639866,
0.14157768006701,
0.15017064489112
],
"dgt": [
1.0,
1.03941448941778,
1.07773189112355,
1.11575888725852,
1.15209185089701,
1.18632744096844,
1.21911100318577,
1.24931318255134,
1.27657903892303,
1.30069883494415,
1.32210817897091,
1.3405812000038,
1.35690844654118,
1.3710092503689,
1.38430337205545,
1.3966294751726,
1.40864903907609,
1.42089447397912,
1.43476940680732,
1.44977369463316,
1.46637521309853,
1.48420288841848,
1.50335352244996,
1.5242627235492,
1.54578500307573,
1.56750088631614,
1.58973304612691,
1.61073904908309,
1.63068023161292,
1.64799163036252,
1.66286684904577,
1.6761448370895,
1.68845480656382,
1.70379790088896,
1.72461030013125,
1.75428006928365,
1.79748596476494,
1.85543800978691,
1.92915262384742,
2.01414465424155,
2.10336369905543,
2.19013043016015,
2.26678136721453,
2.33147727493671,
2.38192717604575,
2.41879254989742,
2.44342862248888,
2.4553191172498
]
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,106 +1,108 @@
{
"nf_ripple": [
0.0
],
"gain_ripple": [
0.0
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
]
"nf_ripple": [
0.0
],
"gain_ripple": [
0.0
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
]
}

View File

@@ -1,80 +1,80 @@
{
"network_name": "EDFA Example Network - P2P",
"elements": [{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 17,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 2,
"longitude": 0
}
}
"network_name": "EDFA Example Network - P2P",
"elements": [
{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
],
"connections": [{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
]
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 17,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 2,
"longitude": 0
}
}
}
],
"connections": [
{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
]
}

View File

@@ -1,328 +1,443 @@
{ "Edfa":[{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}, {
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
{
"Edfa": [
{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"gamma": 0.00146,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"gamma": 0.000843,
"pmd_coef": 1.265e-15
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"RamanFiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"pmd_coef": 1.265e-15,
"raman_efficiency": {
"cr":[
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
2E-07, 1E-07
],
"frequency_offset":[
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
41.5e12, 42e12
]
}
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [-2,3,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
27.99
],
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}],
"Transceiver":[
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
-2,
3,
0.5
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
},
{
"type_variety": "roadm_type_1",
"target_pch_out_db": -18,
"add_drop_osnr": 35,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": []
},
{
"type_variety": "detailed_impairments",
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": [
{
"roadm-path-impairments-id": 0,
"roadm-express-path": [
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
},
{
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 16.5
}
]
},
{
"roadm-path-impairments-id": 1,
"roadm-add-path": [
{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-pmax": 2.5,
"roadm-osnr": 41,
"roadm-noise-figure": 23
}
]
},
{
"roadm-path-impairments-id": 2,
"roadm-drop-path": [
{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-minloss": 7.5,
"roadm-typloss": 10,
"roadm-pmin": -13.5,
"roadm-pmax": -9.5,
"roadm-ptyp": -12,
"roadm-osnr": 41,
"roadm-noise-figure": 15
}
]
}
]
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max": 195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [
0,
0,
1
],
"tx_power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -1,190 +0,0 @@
{ "Edfa":[
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
}
],
"Fiber":[
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"gamma": 0.00146,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"gamma": 0.000843,
"pmd_coef": 1.265e-15
}
],
"RamanFiber":[
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"pmd_coef": 1.265e-15,
"raman_efficiency": {
"cr":[
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
2E-07, 1E-07
],
"frequency_offset":[
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
41.5e12, 42e12
]
}
}
],
"Span":[
{
"power_mode":true,
"delta_power_range_db": [0,0,0],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm":[
{
"target_pch_out_db": -20,
"add_drop_osnr": 30,
"pmd": 0,
"restrictions": {
"preamp_variety_list":["openroadm_mw_mw_preamp"],
"booster_variety_list":["openroadm_mw_mw_booster"]
}
}
],
"SI":[
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max":196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [0,0,1],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver":[
{
"type_variety": "OpenROADM MSA ver. 4.0",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"min_spacing": 50e9,
"cost":1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 35,
"min_spacing": 50e9,
"cost":1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"min_spacing": 87.5e9,
"cost":1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"min_spacing": 87.5e9,
"cost":1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"min_spacing": 87.5e9,
"cost":1
}
]
}
]
}

View File

@@ -0,0 +1,371 @@
{
"Edfa": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
0,
0,
0
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 30,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": [
"openroadm_mw_mw_preamp"
],
"booster_variety_list": [
"openroadm_mw_mw_booster"
]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 4.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 35,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 40e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,441 @@
{
"Edfa": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
27.99
],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
0,
0,
0
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 33,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": [
"openroadm_mw_mw_preamp_worstcase_ver5"
],
"booster_variety_list": [
"openroadm_mw_mw_booster"
]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 5.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 48e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
"baud_rate": 31.57e9,
"OSNR": 20.5,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,12 @@
{
"spectrum": [
{
"f_min": 191.35e12,
"f_max": 195.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"roll_off": 0.15,
"tx_osnr": 40
}
]
}

View File

@@ -0,0 +1,23 @@
{
"spectrum": [
{
"f_min": 191.4e12,
"f_max": 193.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"delta_pdb": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "mode_1"
},
{
"f_min": 193.1625e12,
"f_max": 195e12,
"baud_rate": 64e9,
"slot_width": 75e9,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "mode_2"
}
]
}

View File

@@ -14,8 +14,8 @@
"trx_mode": null,
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -39,8 +39,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -104,8 +104,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -129,8 +129,8 @@
"trx_mode": null,
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 75000000000.0,
@@ -154,8 +154,8 @@
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 75000000000.0,
@@ -179,8 +179,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -204,8 +204,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -229,8 +229,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 75000000000.0,

View File

@@ -20,12 +20,12 @@
"temperature": 283,
"raman_pumps": [
{
"power": 200e-3,
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 206e-3,
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
@@ -49,6 +49,21 @@
}
}
},
{
"uid": "Fused1",
"type": "Fused",
"params": {
"loss": 0
},
"metadata": {
"location": {
"latitude": 1.5,
"longitude": 0,
"city": null,
"region": ""
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
@@ -88,6 +103,10 @@
},
{
"from_node": "Span1",
"to_node": "Fused1"
},
{
"from_node": "Fused1",
"to_node": "Edfa1"
},
{

View File

@@ -1,14 +1,19 @@
{
"raman_parameters": {
"flag_raman": true,
"space_resolution": 10e3,
"tolerance": 1e-8
"raman_params": {
"flag": true,
"result_spatial_resolution": 10e3,
"solver_spatial_resolution": 50
},
"nli_parameters": {
"nli_method_name": "ggn_spectrally_separated",
"wdm_grid_size": 50e9,
"dispersion_tolerance": 1,
"phase_shift_tolerance": 0.1,
"computed_channels": [1, 18, 37, 56, 75]
"nli_params": {
"method": "ggn_spectrally_separated",
"dispersion_tolerance": 1,
"phase_shift_tolerance": 0.1,
"computed_channels": [
1,
18,
37,
56,
75
]
}
}
}

View File

@@ -1,304 +1,304 @@
{
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
0.4372876328262819,
0.4372876328262819,
0.41270842850729195,
0.38814205928193013,
0.36358851509924695,
0.3390191214858807,
0.30474360397422756,
0.27048596623174515,
0.23624619427167134,
0.202035284929368,
0.1694483010211072,
0.13687829834471027,
0.1043252636301016,
0.07184040799914815,
0.061288823415841555,
0.050742731588695494,
0.04020212822983975,
0.029667009055877668,
0.01913736978785662,
0.00861320615127981,
-0.010157321677553965,
-0.028982516728038848,
-0.04779792991567815,
-0.06660356886269536,
-0.06256260169582961,
-0.05832916277634124,
-0.05409792133358102,
-0.04990610405914272,
-0.05078533294804249,
-0.05166410580536087,
-0.05254242298580185,
-0.05342028484370278,
-0.051742390657545205,
-0.050039429413028365,
-0.048337350303318156,
-0.04663615264317309,
-0.04493583574805963,
-0.043236398934156144,
-0.035622012697103154,
-0.027999803010447587,
-0.02038153550619876,
-0.012779471908040341,
-0.006436207679519103,
-9.622162373026585e-05,
0.006240488799898697,
0.012573926129294415,
0.021418708618354456,
0.030289222542492025,
0.03915515813685565,
0.047899419704645264,
0.04256372893215024,
0.03723078993416436,
0.03190060058247842,
0.02657315875107553,
0.021248462316134083,
0.01605877647020772,
0.02326948274513522,
0.03047647598902483,
0.037679759069084225,
0.044883315610536455,
0.052470799141237305,
0.06005437964543287,
0.0676340601339394,
0.07521193198077789,
0.08415906712621996,
0.09310160456603413,
0.1020395478432815,
0.11079585523492333,
0.1018180306253394,
0.09284481475528361,
0.0838762040768461,
0.07482015390297145,
0.05670549786742816,
0.03860013139908377,
0.020504047353947653,
0.0024172385953583004,
-0.015660302006048,
-0.03372858157230583,
-0.07037375788020579,
-0.10709599992470213,
-0.14379944379052215,
-0.18048410390821285,
-0.20911178784023846,
-0.23772399031437283,
-0.26632156113294336,
-0.2949045115165272,
-0.30206775396360075,
-0.30915729645781326,
-0.31624321721895354,
-0.3233255190215882,
-0.32037911876162584,
-0.3172854168606314,
-0.31419329378173544,
-0.31110274831665313,
-0.3110761646066259,
-0.3110761646066259
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
],
"gain_ripple": [
0.07704745697916238,
0.06479749697916048,
0.05257029697916238,
0.040326236979161934,
0.028098946979159933,
0.01393231697916164,
-0.0021726530208390216,
-0.01819858302084043,
-0.03218106302083967,
-0.042428283020839785,
-0.05095282302083959,
-0.05947139302083926,
-0.06968090302083851,
-0.07844600302084004,
-0.08407607302083875,
-0.0865687230208394,
-0.08906007302083907,
-0.0913487130208388,
-0.09343261302083761,
-0.09717347302083823,
-0.1027863830208382,
-0.11089282302084058,
-0.11963431302083904,
-0.1279646530208396,
-0.13525493302083902,
-0.1409032730208395,
-0.14591937302083835,
-0.14823350302084037,
-0.1484450830208388,
-0.1455411330208385,
-0.14160178302083892,
-0.1353792530208402,
-0.12789859302083784,
-0.11916081302083725,
-0.11041488302083735,
-0.10103437302083762,
-0.09101254302083817,
-0.07868024302083754,
-0.06468462302083822,
-0.051112303020840244,
-0.039618433020837784,
-0.028748483020837767,
-0.016475303020840215,
-0.006936193020838033,
-0.0015763130208377163,
0.0007104669791608842,
0.0040435869791615175,
0.006965146979162284,
0.00842583697916055,
0.00874012697916271,
0.00936596697916059,
0.01030063697916006,
0.011234826979162449,
0.013321846979160057,
0.01659282697915998,
0.023488786979161347,
0.03285456697916089,
0.04072968697916224,
0.04467697697916151,
0.04551704697916037,
0.04717897697916129,
0.04946107697915991,
0.05154489697916276,
0.05447361697916264,
0.05848224697916038,
0.06916723697916183,
0.08548825697916129,
0.10802383697916085,
0.13114358697916018,
0.15216302697916007,
0.17037189697916233,
0.1767381569791624,
0.1739275269791598,
0.15945681697916214,
0.14239527697916188,
0.12276252697916235,
0.10313984697916112,
0.08731066697916035,
0.07533675697916209,
0.07114372697916238,
0.07094413697916124,
0.07091459697916136,
0.0670723869791594,
0.054956336979159914,
0.038328296979159404,
0.017572956979162058,
-0.0028138630208403015,
-0.016792253020838643,
-0.0246928330208398,
-0.018326963020840026,
-0.0036199830208403228,
0.02602813697916062,
0.06245819697916133,
0.09542181697916163,
0.11822862697916037,
0.1359703369791596
]
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
0.4372876328262819,
0.4372876328262819,
0.41270842850729195,
0.38814205928193013,
0.36358851509924695,
0.3390191214858807,
0.30474360397422756,
0.27048596623174515,
0.23624619427167134,
0.202035284929368,
0.1694483010211072,
0.13687829834471027,
0.1043252636301016,
0.07184040799914815,
0.061288823415841555,
0.050742731588695494,
0.04020212822983975,
0.029667009055877668,
0.01913736978785662,
0.00861320615127981,
-0.010157321677553965,
-0.028982516728038848,
-0.04779792991567815,
-0.06660356886269536,
-0.06256260169582961,
-0.05832916277634124,
-0.05409792133358102,
-0.04990610405914272,
-0.05078533294804249,
-0.05166410580536087,
-0.05254242298580185,
-0.05342028484370278,
-0.051742390657545205,
-0.050039429413028365,
-0.048337350303318156,
-0.04663615264317309,
-0.04493583574805963,
-0.043236398934156144,
-0.035622012697103154,
-0.027999803010447587,
-0.02038153550619876,
-0.012779471908040341,
-0.006436207679519103,
-9.622162373026585e-05,
0.006240488799898697,
0.012573926129294415,
0.021418708618354456,
0.030289222542492025,
0.03915515813685565,
0.047899419704645264,
0.04256372893215024,
0.03723078993416436,
0.03190060058247842,
0.02657315875107553,
0.021248462316134083,
0.01605877647020772,
0.02326948274513522,
0.03047647598902483,
0.037679759069084225,
0.044883315610536455,
0.052470799141237305,
0.06005437964543287,
0.0676340601339394,
0.07521193198077789,
0.08415906712621996,
0.09310160456603413,
0.1020395478432815,
0.11079585523492333,
0.1018180306253394,
0.09284481475528361,
0.0838762040768461,
0.07482015390297145,
0.05670549786742816,
0.03860013139908377,
0.020504047353947653,
0.0024172385953583004,
-0.015660302006048,
-0.03372858157230583,
-0.07037375788020579,
-0.10709599992470213,
-0.14379944379052215,
-0.18048410390821285,
-0.20911178784023846,
-0.23772399031437283,
-0.26632156113294336,
-0.2949045115165272,
-0.30206775396360075,
-0.30915729645781326,
-0.31624321721895354,
-0.3233255190215882,
-0.32037911876162584,
-0.3172854168606314,
-0.31419329378173544,
-0.31110274831665313,
-0.3110761646066259,
-0.3110761646066259
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
],
"gain_ripple": [
0.07704745697916238,
0.06479749697916048,
0.05257029697916238,
0.040326236979161934,
0.028098946979159933,
0.01393231697916164,
-0.0021726530208390216,
-0.01819858302084043,
-0.03218106302083967,
-0.042428283020839785,
-0.05095282302083959,
-0.05947139302083926,
-0.06968090302083851,
-0.07844600302084004,
-0.08407607302083875,
-0.0865687230208394,
-0.08906007302083907,
-0.0913487130208388,
-0.09343261302083761,
-0.09717347302083823,
-0.1027863830208382,
-0.11089282302084058,
-0.11963431302083904,
-0.1279646530208396,
-0.13525493302083902,
-0.1409032730208395,
-0.14591937302083835,
-0.14823350302084037,
-0.1484450830208388,
-0.1455411330208385,
-0.14160178302083892,
-0.1353792530208402,
-0.12789859302083784,
-0.11916081302083725,
-0.11041488302083735,
-0.10103437302083762,
-0.09101254302083817,
-0.07868024302083754,
-0.06468462302083822,
-0.051112303020840244,
-0.039618433020837784,
-0.028748483020837767,
-0.016475303020840215,
-0.006936193020838033,
-0.0015763130208377163,
0.0007104669791608842,
0.0040435869791615175,
0.006965146979162284,
0.00842583697916055,
0.00874012697916271,
0.00936596697916059,
0.01030063697916006,
0.011234826979162449,
0.013321846979160057,
0.01659282697915998,
0.023488786979161347,
0.03285456697916089,
0.04072968697916224,
0.04467697697916151,
0.04551704697916037,
0.04717897697916129,
0.04946107697915991,
0.05154489697916276,
0.05447361697916264,
0.05848224697916038,
0.06916723697916183,
0.08548825697916129,
0.10802383697916085,
0.13114358697916018,
0.15216302697916007,
0.17037189697916233,
0.1767381569791624,
0.1739275269791598,
0.15945681697916214,
0.14239527697916188,
0.12276252697916235,
0.10313984697916112,
0.08731066697916035,
0.07533675697916209,
0.07114372697916238,
0.07094413697916124,
0.07091459697916136,
0.0670723869791594,
0.054956336979159914,
0.038328296979159404,
0.017572956979162058,
-0.0028138630208403015,
-0.016792253020838643,
-0.0246928330208398,
-0.018326963020840026,
-0.0036199830208403228,
0.02602813697916062,
0.06245819697916133,
0.09542181697916163,
0.11822862697916037,
0.1359703369791596
]
}

View File

@@ -18,9 +18,9 @@ from gnpy.tools.json_io import load_equipment
from gnpy.topology.request import jsontocsv
parser = ArgumentParser(description='A function that writes json path results in an excel sheet.')
parser.add_argument('filename', nargs='?', type=Path)
parser.add_argument('output_filename', nargs='?', type=Path)
parser = ArgumentParser(description='Converting JSON path results into a CSV')
parser.add_argument('filename', type=Path)
parser.add_argument('output_filename', type=Path)
parser.add_argument('eqpt_filename', nargs='?', type=Path, default=Path(__file__).parent / 'eqpt_config.json')
if __name__ == '__main__':

View File

@@ -1,5 +1,5 @@
'''
"""
Processing of data via :py:mod:`.json_io`.
Utilities for Excel conversion in :py:mod:`.convert` and :py:mod:`.service_sheet`.
Example code in :py:mod:`.cli_examples` and :py:mod:`.plots`.
'''
"""

View File

@@ -1,35 +1,34 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.cli_examples
=======================
Common code for CLI examples
'''
"""
import argparse
import logging
import os.path
import sys
from math import ceil
from numpy import linspace, mean
from pathlib import Path
import gnpy.core.ansi_escapes as ansi_escapes
from gnpy.core.elements import Transceiver, Fiber, RamanFiber
from gnpy.core.equipment import trx_mode_params
import gnpy.core.exceptions as exceptions
from gnpy.core.network import build_network
from gnpy.core.network import add_missing_elements_in_network, design_network
from gnpy.core.parameters import SimParams
from gnpy.core.science_utils import Simulation
from gnpy.core.utils import db2lin, lin2db, automatic_nch
from gnpy.core.utils import db2lin, lin2db, automatic_nch, watt2dbm, dbm2watt
from gnpy.topology.request import (ResultElement, jsontocsv, compute_path_dsjctn, requests_aggregation,
BLOCKING_NOPATH, correct_json_route_list,
deduplicate_disjunctions, compute_path_with_disjunction,
PathRequest, compute_constrained_path, propagate)
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum
from gnpy.tools.json_io import load_equipment, load_network, load_json, load_requests, save_network, \
requests_from_json, disjunctions_from_json, save_json
from gnpy.tools.json_io import (load_equipment, load_network, load_json, load_requests, save_network,
requests_from_json, disjunctions_from_json, save_json, load_initial_spectrum)
from gnpy.tools.plots import plot_baseline, plot_results
_logger = logging.getLogger(__name__)
@@ -49,7 +48,7 @@ def show_example_data_dir():
def load_common_data(equipment_filename, topology_filename, simulation_filename, save_raw_network_filename):
'''Load common configuration from JSON files'''
"""Load common configuration from JSON files"""
try:
equipment = load_equipment(equipment_filename)
@@ -57,14 +56,15 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
if save_raw_network_filename is not None:
save_network(network, save_raw_network_filename)
print(f'{ansi_escapes.blue}Raw network (no optimizations) saved to {save_raw_network_filename}{ansi_escapes.reset}')
sim_params = SimParams(**load_json(simulation_filename)) if simulation_filename is not None else None
if not sim_params:
if not simulation_filename:
sim_params = {}
if next((node for node in network if isinstance(node, RamanFiber)), None) is not None:
print(f'{ansi_escapes.red}Invocation error:{ansi_escapes.reset} '
f'RamanFiber requires passing simulation params via --sim-params')
sys.exit(1)
else:
Simulation.set_params(sim_params)
sim_params = load_json(simulation_filename)
SimParams.set_params(sim_params)
except exceptions.EquipmentConfigError as e:
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
sys.exit(1)
@@ -85,7 +85,7 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
def _setup_logging(args):
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.CRITICAL}.get(args.verbose, logging.DEBUG))
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.WARNING}.get(args.verbose, logging.DEBUG))
def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
@@ -103,6 +103,9 @@ def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
help='Save the final network as a JSON file')
parser.add_argument('--save-network-before-autodesign', type=Path, metavar=_help_fname_json,
help='Dump the network into a JSON file prior to autodesign')
parser.add_argument('--no-insert-edfas', action='store_true',
help='Disable insertion of EDFAs after ROADMs and fibers '
'as well as splitting of fibers by auto-design.')
def transmission_main_example(args=None):
@@ -116,6 +119,7 @@ def transmission_main_example(args=None):
parser.add_argument('-pl', '--plot', action='store_true')
parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes')
parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm')
parser.add_argument('--spectrum', type=Path, help='user defined mixed rate spectrum JSON file')
parser.add_argument('source', nargs='?', help='source node')
parser.add_argument('destination', nargs='?', help='destination node')
@@ -187,48 +191,81 @@ def transmission_main_example(args=None):
params['loose_list'] = ['strict']
params['format'] = ''
params['path_bandwidth'] = 0
params['effective_freq_slot'] = None
trx_params = trx_mode_params(equipment)
trx_params['power'] = dbm2watt(equipment['SI']['default'].power_dbm)
trx_params['tx_power'] = dbm2watt(equipment['SI']['default'].power_dbm)
if args.power:
trx_params['power'] = db2lin(float(args.power)) * 1e-3
trx_params['power'] = dbm2watt(float(args.power))
trx_params['tx_power'] = dbm2watt(float(args.power))
params.update(trx_params)
initial_spectrum = None
params['nb_channel'] = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
# use ref_req to hold reference channel used for design and req for the propagation
# and req to hold channels to be propagated
# apply power sweep on the design and on the channels
ref_req = PathRequest(**params)
pref_ch_db = watt2dbm(ref_req.power)
if args.spectrum:
# use the spectrum defined by user for the propagation.
# the nb of channel for design remains the one of the reference channel
initial_spectrum = load_initial_spectrum(args.spectrum)
params['nb_channel'] = len(initial_spectrum)
print('User input for spectrum used for propagation instead of SI')
req = PathRequest(**params)
p_ch_db = watt2dbm(req.power)
req.initial_spectrum = initial_spectrum
print(f'There are {req.nb_channel} channels propagating')
power_mode = equipment['Span']['default'].power_mode
print('\n'.join([f'Power mode is set to {power_mode}',
f'=> it can be modified in eqpt_config.json - Span']))
'=> it can be modified in eqpt_config.json - Span']))
if not args.no_insert_edfas:
try:
add_missing_elements_in_network(network, equipment)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
pref_ch_db = lin2db(req.power * 1e3) # reference channel power / span (SL=20dB)
pref_total_db = pref_ch_db + lin2db(req.nb_channel) # reference total power / span (SL=20dB)
path = compute_constrained_path(network, req)
spans = [s.params.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
power_range = [0]
if power_mode:
# power cannot be changed in gain mode
try:
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
power_range = list(linspace(p_start, p_stop, p_num))
except TypeError:
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
# initial network is designed using req.power. that is that any missing information (amp gain or delta_p) is filled
# using this req.power, previous to any sweep requested later on.
try:
build_network(network, equipment, pref_ch_db, pref_total_db)
design_network(ref_req, network, equipment, set_connector_losses=True, verbose=True)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
path = compute_constrained_path(network, req)
spans = [s.params.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} '
f'and {destination.uid}')
print(f'\nNow propagating between {source.uid} and {destination.uid}:')
try:
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
power_range = list(linspace(p_start, p_stop, p_num))
except TypeError:
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
power_range = [0]
if not power_mode:
# power cannot be changed in gain mode
power_range = [0]
for dp_db in power_range:
req.power = db2lin(pref_ch_db + dp_db) * 1e-3
ref_req.power = dbm2watt(pref_ch_db + dp_db)
req.power = dbm2watt(p_ch_db + dp_db)
design_network(ref_req, network, equipment, set_connector_losses=False, verbose=False)
# if initial spectrum did not contain any power, now we need to use this one.
# note the initial power defines a differential wrt req.power so that if req.power is set to 2mW (3dBm)
# and initial spectrum was set to 0, this sets a initial per channel delta power to -3dB, so that
# whatever the equalization, -3 dB is applied on all channels (ie initial power in initial spectrum pre-empts
# "--power" option)
if power_mode:
print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:')
print(f'\nPropagating with input power = {ansi_escapes.cyan}{watt2dbm(req.power):.2f} '
+ f'dBm{ansi_escapes.reset}:')
else:
print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
infos = propagate(path, req, equipment)
@@ -262,9 +299,9 @@ def transmission_main_example(args=None):
ch_freq = final_carrier.frequency * 1e-12
ch_power = lin2db(final_carrier.power.signal * 1e3)
print(
'{:5}{:26.2f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
'{:5}{:26.5f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
final_carrier.channel_number, round(
ch_freq, 2), round(
ch_freq, 5), round(
ch_power, 2), round(
ch_osnr, 2), round(
ch_snr_nl, 2), round(
@@ -306,26 +343,52 @@ def path_requests_run(args=None):
args = parser.parse_args(args if args is not None else sys.argv[1:])
_setup_logging(args)
_logger.info(f'Computing path requests {args.service_filename} into JSON format')
print(f'{ansi_escapes.blue}Computing path requests {os.path.relpath(args.service_filename)} into JSON format{ansi_escapes.reset}')
_logger.info(f'Computing path requests {args.service_filename.name} into JSON format')
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
# Build the network once using the default power defined in SI in eqpt config
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
if not args.no_insert_edfas:
try:
add_missing_elements_in_network(network, equipment)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
params = {
'request_id': 'reference',
'trx_type': '',
'trx_mode': '',
'source': None,
'destination': None,
'bidir': False,
'nodes_list': [],
'loose_list': [],
'format': '',
'path_bandwidth': 0,
'effective_freq_slot': None,
'nb_channel': automatic_nch(equipment['SI']['default'].f_min, equipment['SI']['default'].f_max,
equipment['SI']['default'].spacing),
'power': dbm2watt(equipment['SI']['default'].power_dbm),
'tx_power': dbm2watt(equipment['SI']['default'].power_dbm)
}
trx_params = trx_mode_params(equipment)
params.update(trx_params)
reference_channel = PathRequest(**params)
try:
build_network(network, equipment, p_db, p_total_db)
design_network(reference_channel, network, equipment, verbose=True)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
if args.save_network is not None:
save_network(network, args.save_network)
print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}')

View File

@@ -21,18 +21,22 @@ the "east" information so that it is possible to input undirected data.
"""
from xlrd import open_workbook
from logging import getLogger
from argparse import ArgumentParser
from collections import namedtuple, Counter, defaultdict
from itertools import chain
from json import dumps
from pathlib import Path
from copy import copy
from gnpy.core import ansi_escapes
from gnpy.core.utils import silent_remove
from gnpy.core.exceptions import NetworkTopologyError
from gnpy.core.elements import Edfa, Fused, Fiber
_logger = getLogger(__name__)
def all_rows(sh, start=0):
return (sh.row(x) for x in range(start, sh.nrows))
@@ -118,7 +122,7 @@ class Eqpt(object):
'east_att_in': 0,
'east_amp_gain': None,
'east_amp_dp': None,
'east_tilt': 0,
'east_tilt_vs_wavelength': 0,
'east_att_out': None
}
@@ -183,18 +187,18 @@ def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
slice_out = read_slice(my_sheet, start_line + iteration, slice_in, h0)
iteration += 1
if slice_out == (-1, -1):
msg = f'missing header {h0}'
if h0 in ('east', 'Node A', 'Node Z', 'City'):
print(f'{ansi_escapes.red}CRITICAL{ansi_escapes.reset}: missing _{h0}_ header: EXECUTION ENDS')
raise NetworkTopologyError(f'Missing _{h0}_ header')
raise NetworkTopologyError(msg)
else:
print(f'missing header {h0}')
_logger.warning(msg)
elif not isinstance(input_headers_dict[h0], dict):
headers[slice_out[0]] = input_headers_dict[h0]
else:
headers = parse_headers(my_sheet, input_headers_dict[h0], headers, start_line + 1, slice_out)
if headers == {}:
print(f'{ansi_escapes.red}CRITICAL ERROR{ansi_escapes.reset}: could not find any header to read _ ABORT')
raise NetworkTopologyError('Could not find any header to read')
msg = 'CRITICAL ERROR: could not find any header to read _ ABORT'
raise NetworkTopologyError(msg)
return headers
@@ -219,40 +223,76 @@ def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
for l1 in links:
for l2 in links:
if l1 is not l2 and l1 == l2 and l2 not in duplicate_links:
print(f'\nWARNING\n \
_logger.warning(f'\nWARNING\n \
link {l1.from_city}-{l1.to_city} is duplicate \
\nthe 1st duplicate link will be removed but you should check Links sheet input')
duplicate_links.append(l1)
for l in duplicate_links:
links.remove(l)
links_by_city[l.from_city].remove(l)
links_by_city[l.to_city].remove(l)
if duplicate_links:
msg = 'XLS error: ' \
+ f'links {_format_items([(d.from_city, d.to_city) for d in duplicate_links])} are duplicate'
raise NetworkTopologyError(msg)
unreferenced_nodes = [n for n in nodes_by_city if n not in links_by_city]
if unreferenced_nodes:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} The following nodes are not '
f'referenced from the {ansi_escapes.cyan}Links{ansi_escapes.reset} sheet. '
f'If unused, remove them from the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} '
f'sheet:\n'
+ _format_items(unreferenced_nodes))
msg = 'XLS error: The following nodes are not ' \
+ 'referenced from the Links sheet. ' \
+ 'If unused, remove them from the Nodes sheet:\n' \
+ _format_items(unreferenced_nodes)
raise NetworkTopologyError(msg)
# no need to check "Links" for invalid nodes because that's already in parse_excel()
wrong_eqpt_from = [n for n in eqpts_by_city if n not in nodes_by_city]
wrong_eqpt_to = [n.to_city for destinations in eqpts_by_city.values()
for n in destinations if n.to_city not in nodes_by_city]
wrong_eqpt = wrong_eqpt_from + wrong_eqpt_to
if wrong_eqpt:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} '
f'The {ansi_escapes.cyan}Eqpt{ansi_escapes.reset} sheet refers to nodes that '
f'are not defined in the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} sheet:\n'
+ _format_items(wrong_eqpt))
msg = 'XLS error: ' \
+ 'The Eqpt sheet refers to nodes that ' \
+ 'are not defined in the Nodes sheet:\n'\
+ _format_items(wrong_eqpt)
raise NetworkTopologyError(msg)
# Now check links that are not listed in Links sheet, and duplicates
bad_eqpt = []
possible_links = [f'{e.from_city}|{e.to_city}' for e in links] + [f'{e.to_city}|{e.from_city}' for e in links]
possible_eqpt = []
duplicate_eqpt = []
duplicate_ila = []
for city, eqpts in eqpts_by_city.items():
for eqpt in eqpts:
# Check that each node_A-node_Z exists in links
nodea_nodez = f'{eqpt.from_city}|{eqpt.to_city}'
nodez_nodea = f'{eqpt.to_city}|{eqpt.from_city}'
if nodea_nodez not in possible_links \
or nodez_nodea not in possible_links:
bad_eqpt.append([eqpt.from_city, eqpt.to_city])
else:
# Check that there are no duplicate lines in the Eqpt sheet
if nodea_nodez in possible_eqpt:
duplicate_eqpt.append([eqpt.from_city, eqpt.to_city])
else:
possible_eqpt.append(nodea_nodez)
# check that there are no two lines defining an ILA with different directions
if nodes_by_city[city].node_type == 'ILA' and len(eqpts) > 1:
duplicate_ila.append(city)
if bad_eqpt:
msg = 'XLS error: ' \
+ 'The Eqpt sheet references links that ' \
+ 'are not defined in the Links sheet:\n' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_eqpt)
raise NetworkTopologyError(msg)
if duplicate_eqpt:
msg = 'XLS error: Duplicate lines in Eqpt sheet:' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in duplicate_eqpt)
raise NetworkTopologyError(msg)
if duplicate_ila:
msg = 'XLS error: Duplicate ILA eqpt definition in Eqpt sheet:' \
+ _format_items(duplicate_ila)
raise NetworkTopologyError(msg)
for city, link in links_by_city.items():
if nodes_by_city[city].node_type.lower() == 'ila' and len(link) != 2:
# wrong input: ILA sites can only be Degree 2
# => correct to make it a ROADM and remove entry in links_by_city
# TODO: put in log rather than print
print(f'invalid node type ({nodes_by_city[city].node_type})\
specified in {city}, replaced by ROADM')
_logger.warning(f'invalid node type ({nodes_by_city[city].node_type}) '
+ f'specified in {city}, replaced by ROADM')
nodes_by_city[city].node_type = 'ROADM'
for n in nodes:
if n.city == city:
@@ -305,13 +345,13 @@ def create_east_eqpt_element(node):
eqpt['type_variety'] = f'{node.east_amp_type}'
eqpt['operational'] = {'gain_target': node.east_amp_gain,
'delta_p': node.east_amp_dp,
'tilt_target': node.east_tilt,
'tilt_target': node.east_tilt_vs_wavelength,
'out_voa': node.east_att_out}
elif node.east_amp_type.lower() == '':
eqpt['type'] = 'Edfa'
eqpt['operational'] = {'gain_target': node.east_amp_gain,
'delta_p': node.east_amp_dp,
'tilt_target': node.east_tilt,
'tilt_target': node.east_tilt_vs_wavelength,
'out_voa': node.east_att_out}
elif node.east_amp_type.lower() == 'fused':
# fused edfa variety is a hack to indicate that there should not be
@@ -338,12 +378,12 @@ def create_west_eqpt_element(node):
eqpt['type_variety'] = f'{node.west_amp_type}'
eqpt['operational'] = {'gain_target': node.west_amp_gain,
'delta_p': node.west_amp_dp,
'tilt_target': node.west_tilt,
'tilt_target': node.west_tilt_vs_wavelength,
'out_voa': node.west_att_out}
elif node.west_amp_type.lower() == '':
eqpt['operational'] = {'gain_target': node.west_amp_gain,
'delta_p': node.west_amp_dp,
'tilt_target': node.west_tilt,
'tilt_target': node.west_tilt_vs_wavelength,
'out_voa': node.west_att_out}
elif node.west_amp_type.lower() == 'fused':
eqpt['type'] = 'Fused'
@@ -642,17 +682,19 @@ def parse_excel(input_filename):
# sanity check
all_cities = Counter(n.city for n in nodes)
if len(all_cities) != len(nodes):
raise ValueError(f'Duplicate city: {all_cities}')
msg = f'Duplicate city: {all_cities}'
raise NetworkTopologyError(msg)
bad_links = []
for lnk in links:
if lnk.from_city not in all_cities or lnk.to_city not in all_cities:
bad_links.append([lnk.from_city, lnk.to_city])
if bad_links:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} '
f'The {ansi_escapes.cyan}Links{ansi_escapes.reset} sheet references nodes that '
f'are not defined in the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} sheet:\n'
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_links))
msg = 'XLS error: ' \
+ 'The Links sheet references nodes that ' \
+ 'are not defined in the Nodes sheet:\n' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_links)
raise NetworkTopologyError(msg)
return nodes, links, eqpts, roadms

View File

@@ -1,24 +1,29 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.json_io
==================
Loading and saving data from JSON files in GNPy's internal data format
'''
"""
from networkx import DiGraph
from logging import getLogger
from pathlib import Path
import json
from collections import namedtuple
from gnpy.core import ansi_escapes, elements
from numpy import arange
from gnpy.core import elements
from gnpy.core.equipment import trx_mode_params
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError, ServiceError
from gnpy.core.science_utils import estimate_nf_model
from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions
from gnpy.topology.request import PathRequest, Disjunction
from gnpy.core.info import Carrier
from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions, dbm2watt
from gnpy.core.parameters import DEFAULT_RAMAN_COEFFICIENT, EdfaParams
from gnpy.topology.request import PathRequest, Disjunction, compute_spectrum_slot_vs_bandwidth
from gnpy.topology.spectrum_assignment import mvalue_to_slots
from gnpy.tools.convert import xls_to_json_data
from gnpy.tools.service_sheet import read_service_sheet
@@ -33,16 +38,24 @@ Model_hybrid = namedtuple('Model_hybrid', 'nf_ram gain_ram edfa_variety')
Model_dual_stage = namedtuple('Model_dual_stage', 'preamp_variety booster_variety')
class Model_openroadm_preamp:
pass
class Model_openroadm_booster:
pass
class _JsonThing:
def update_attr(self, default_values, kwargs, name):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
if k not in clean_kwargs and name != 'Amp':
print(ansi_escapes.red +
f'\n WARNING missing {k} attribute in eqpt_config.json[{name}]' +
f'\n default value is {k} = {v}' +
ansi_escapes.reset)
if k not in clean_kwargs and name != 'Amp' and v is not None and v != []:
# do not show this warning if the default value is None
msg = f'\n\tWARNING missing {k} attribute in eqpt_config.json[{name}]' \
+ f'\n\tdefault value is {k} = {v}\n'
_logger.warning(msg)
class SI(_JsonThing):
@@ -55,7 +68,8 @@ class SI(_JsonThing):
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 45,
"sys_margins": 0
"sys_margins": 0,
"tx_power_dbm": None # optional value in SI
}
def __init__(self, **kwargs):
@@ -83,16 +97,33 @@ class Span(_JsonThing):
class Roadm(_JsonThing):
default_values = {
'target_pch_out_db': -17,
'type_variety': 'default',
'add_drop_osnr': 100,
'pmd': 0,
'pdl': 0,
'restrictions': {
'preamp_variety_list': [],
'booster_variety_list': []
}
},
'roadm-path-impairments': []
}
def __init__(self, **kwargs):
# If equalization is not defined in equipment, then raise an error.
# Only one type of equalization must be defined.
allowed_equalisations = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
requested_eq_mask = [eq in kwargs for eq in allowed_equalisations]
if sum(requested_eq_mask) > 1:
msg = 'Only one equalization type should be set in ROADM, found: ' \
+ ', '.join(eq for eq in allowed_equalisations if eq in kwargs)
raise EquipmentConfigError(msg)
if not any(requested_eq_mask):
msg = 'No equalization type set in ROADM'
raise EquipmentConfigError(msg)
for key in allowed_equalisations:
if key in kwargs:
setattr(self, key, kwargs[key])
break
self.update_attr(self.default_values, kwargs, 'Roadm')
@@ -105,57 +136,55 @@ class Transceiver(_JsonThing):
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Transceiver')
for mode_params in self.mode:
penalties = mode_params.get('penalties')
mode_params['penalties'] = {}
mode_params['equalization_offset_db'] = mode_params.get('equalization_offset_db', 0)
if not penalties:
continue
for impairment in ('chromatic_dispersion', 'pmd', 'pdl'):
imp_penalties = [p for p in penalties if impairment in p]
if not imp_penalties:
continue
if all(p[impairment] > 0 for p in imp_penalties):
# make sure the list of penalty values include a proper lower boundary
# (we assume 0 penalty for 0 impairment)
imp_penalties.insert(0, {impairment: 0, 'penalty_value': 0})
# make sure the list of penalty values are sorted by impairment value
imp_penalties.sort(key=lambda i: i[impairment])
# rearrange as dict of lists instead of list of dicts
mode_params['penalties'][impairment] = {
'up_to_boundary': [p[impairment] for p in imp_penalties],
'penalty_value': [p['penalty_value'] for p in imp_penalties]
}
class Fiber(_JsonThing):
default_values = {
'type_variety': '',
'dispersion': None,
'gamma': 0,
'effective_area': None,
'pmd_coef': 0
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Fiber')
self.update_attr(self.default_values, kwargs, self.__class__.__name__)
if 'gamma' in kwargs:
setattr(self, 'gamma', kwargs['gamma'])
if 'raman_efficiency' in kwargs:
raman_coefficient = kwargs['raman_efficiency']
cr = raman_coefficient.pop('cr')
raman_coefficient['g0'] = cr
raman_coefficient['reference_frequency'] = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
setattr(self, 'raman_coefficient', raman_coefficient)
class RamanFiber(_JsonThing):
default_values = {
'type_variety': '',
'dispersion': None,
'gamma': 0,
'pmd_coef': 0,
'raman_efficiency': None
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'RamanFiber')
for param in ('cr', 'frequency_offset'):
if param not in self.raman_efficiency:
raise EquipmentConfigError(f'RamanFiber.raman_efficiency: missing "{param}" parameter')
if self.raman_efficiency['frequency_offset'] != sorted(self.raman_efficiency['frequency_offset']):
raise EquipmentConfigError(f'RamanFiber.raman_efficiency.frequency_offset is not sorted')
class RamanFiber(Fiber):
pass
class Amp(_JsonThing):
default_values = {
'f_min': 191.35e12,
'f_max': 196.1e12,
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'nf_fit_coeff': None,
'nf_ripple': None,
'dgt': None,
'gain_ripple': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False
}
default_values = EdfaParams.default_values
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Amp')
@@ -173,7 +202,8 @@ class Amp(_JsonThing):
try:
nf0 = kwargs.pop('nf0')
except KeyError: # nf0 is expected for a fixed gain amp
raise EquipmentConfigError(f'missing nf0 value input for amplifier: {type_variety} in equipment config')
msg = f'missing nf0 value input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg)
for k in ('nf_min', 'nf_max'):
try:
del kwargs[k]
@@ -188,7 +218,8 @@ class Amp(_JsonThing):
nf_min = kwargs.pop('nf_min')
nf_max = kwargs.pop('nf_max')
except KeyError:
raise EquipmentConfigError(f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config')
msg = f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg)
try: # remove all remaining nf inputs
del kwargs['nf0']
except KeyError:
@@ -201,14 +232,17 @@ class Amp(_JsonThing):
except KeyError: # nf_coef is expected for openroadm amp
raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config')
nf_def = Model_openroadm_ila(nf_coef)
elif type_def in ('openroadm_preamp', 'openroadm_booster'):
pass # no extra parameters needed
elif type_def == 'openroadm_preamp':
nf_def = Model_openroadm_preamp()
elif type_def == 'openroadm_booster':
nf_def = Model_openroadm_booster()
elif type_def == 'dual_stage':
try: # nf_ram and gain_ram are expected for a hybrid amp
preamp_variety = kwargs.pop('preamp_variety')
booster_variety = kwargs.pop('booster_variety')
except KeyError:
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config')
msg = f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg)
dual_stage_def = Model_dual_stage(preamp_variety, booster_variety)
else:
raise EquipmentConfigError(f'Edfa type_def {type_def} does not exist')
@@ -227,11 +261,93 @@ def _automatic_spacing(baud_rate):
return min((s[1] for s in spacing_list if s[0] > baud_rate), default=baud_rate * 1.2)
def _spectrum_from_json(json_data):
"""JSON_data is a list of spectrum partitions each with
{f_min, f_max, baud_rate, roll_off, delta_pdb, slot_width, tx_osnr, label}
Creates the per freq Carrier's dict.
f_min, f_max, baud_rate, slot_width and roll_off are mandatory
label, tx_osnr and delta_pdb are created if not present
label should be different for each partition
>>> json_data = {'spectrum': \
[{'f_min': 193.2e12, 'f_max': 193.4e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15, \
'delta_pdb': 1, 'tx_osnr': 45, 'tx_power_dbm': -7},\
{'f_min': 193.4625e12, 'f_max': 193.9875e12, 'slot_width': 75e9, 'baud_rate': 64e9, 'roll_off': 0.15},\
{'f_min': 194.075e12, 'f_max': 194.075e12, 'slot_width': 100e9, 'baud_rate': 90e9, 'roll_off': 0.15},\
{'f_min': 194.2e12, 'f_max': 194.35e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15}]}
>>> spectrum = _spectrum_from_json(json_data['spectrum'])
>>> for k, v in spectrum.items():
... print(f'{k}: {v}')
...
193200000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193250000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193300000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193350000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193400000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193462500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193537500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193612500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193687500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193762500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193837500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193912500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193987500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
194075000000000.0: Carrier(delta_pdb=0, baud_rate=90000000000.0, slot_width=100000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='2-90.00G')
194200000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
194250000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
194300000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
194350000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
"""
spectrum = {}
json_data = sorted(json_data, key=lambda x: x['f_min'])
# min freq of occupation is f_min - slot_width/2 (numbering starts at 0)
previous_part_max_freq = 0.0
for index, part in enumerate(json_data):
# default delta_pdb is 0 dB
if 'delta_pdb' not in part:
part['delta_pdb'] = 0
# add a label to the partition for the printings
if 'label' not in part:
part['label'] = f'{index}-{part["baud_rate"] * 1e-9 :.2f}G'
# default tx_osnr is set to 40 dB
if 'tx_osnr' not in part:
part['tx_osnr'] = 40
# default tx_power_dbm is set to 0 dBn
if 'tx_power_dbm' not in part:
part['tx_power_dbm'] = 0
# starting freq is exactly f_min to be consistent with utils.automatic_nch
# first partition min occupation is f_min - slot_width / 2 (central_frequency is f_min)
# supposes that carriers are centered on frequency
if previous_part_max_freq > (part['f_min'] - part['slot_width'] / 2):
# check that previous part last channel does not overlap on next part first channel
# max center of the part should be below part['f_max'] and aligned on the slot_width
msg = 'Not a valid initial spectrum definition:\nprevious spectrum last carrier max occupation ' +\
f'{previous_part_max_freq * 1e-12 :.5f}GHz ' +\
'overlaps on next spectrum first carrier occupation ' +\
f'{(part["f_min"] - part["slot_width"] / 2) * 1e-12 :.5f}GHz'
raise ValueError(msg)
max_range = ((part['f_max'] - part['f_min']) // part['slot_width'] + 1) * part['slot_width']
for current_freq in arange(part['f_min'],
part['f_min'] + max_range,
part['slot_width']):
spectrum[current_freq] = Carrier(delta_pdb=part['delta_pdb'], baud_rate=part['baud_rate'],
slot_width=part['slot_width'], roll_off=part['roll_off'],
tx_osnr=part['tx_osnr'], tx_power=dbm2watt(part['tx_power_dbm']),
label=part['label'])
previous_part_max_freq = current_freq + part['slot_width'] / 2
return spectrum
def load_equipment(filename):
json_data = load_json(filename)
return _equipment_from_json(json_data, filename)
def load_initial_spectrum(filename):
json_data = load_json(filename)
return _spectrum_from_json(json_data['spectrum'])
def _update_dual_stage(equipment):
edfa_dict = equipment['Edfa']
for edfa in edfa_dict.values():
@@ -252,14 +368,14 @@ def _update_dual_stage(equipment):
def _roadm_restrictions_sanity_check(equipment):
""" verifies that booster and preamp restrictions specified in roadm equipment are listed
in the edfa.
"""
restrictions = equipment['Roadm']['default'].restrictions['booster_variety_list'] + \
equipment['Roadm']['default'].restrictions['preamp_variety_list']
for amp_name in restrictions:
if amp_name not in equipment['Edfa']:
raise EquipmentConfigError(f'ROADM restriction {amp_name} does not refer to a defined EDFA name')
"""verifies that booster and preamp restrictions specified in roadm equipment are listed in the edfa."""
for roadm_type, roadm_eqpt in equipment['Roadm'].items():
restrictions = roadm_eqpt.restrictions['booster_variety_list'] + \
roadm_eqpt.restrictions['preamp_variety_list']
for amp_name in restrictions:
if amp_name not in equipment['Edfa']:
raise EquipmentConfigError(f'ROADM {roadm_type} restriction {amp_name} does not refer to a '
+ 'defined EDFA name')
def _check_fiber_vs_raman_fiber(equipment):
@@ -267,7 +383,7 @@ def _check_fiber_vs_raman_fiber(equipment):
if 'RamanFiber' not in equipment:
return
for fiber_type in set(equipment['Fiber'].keys()) & set(equipment['RamanFiber'].keys()):
for attr in ('dispersion', 'dispersion-slope', 'gamma', 'pmd-coefficient'):
for attr in ('dispersion', 'dispersion-slope', 'effective_area', 'gamma', 'pmd-coefficient'):
fiber = equipment['Fiber'][fiber_type]
raman = equipment['RamanFiber'][fiber_type]
a = getattr(fiber, attr, None)
@@ -300,6 +416,9 @@ def _equipment_from_json(json_data, filename):
elif key == 'Roadm':
equipment[key][subkey] = Roadm(**entry)
elif key == 'SI':
# use power_dbm value for tx_power_dbm if the key is not in 'SI'
# if 'tx_power_dbm' not in entry.keys():
# entry['tx_power_dbm'] = entry['power_dbm']
equipment[key][subkey] = SI(**entry)
elif key == 'Transceiver':
equipment[key][subkey] = Transceiver(**entry)
@@ -324,11 +443,11 @@ def load_network(filename, equipment):
def save_network(network: DiGraph, filename: str):
'''Dump the network into a JSON file
"""Dump the network into a JSON file
:param network: network to work on
:param filename: file to write to
'''
"""
save_json(network_to_json(network), filename)
@@ -362,14 +481,28 @@ def network_from_json(json_data, equipment):
# well, there's no variety for the 'Fused' node type
pass
elif variety in equipment[typ]:
extra_params = equipment[typ][variety]
extra_params = equipment[typ][variety].__dict__
temp = el_config.setdefault('params', {})
temp = merge_amplifier_restrictions(temp, extra_params.__dict__)
if typ == 'Roadm':
# if equalization is defined, remove default equalization from the extra_params
# If equalisation is not defined in the element config, then use the default one from equipment
# if more than one equalization was defined in element config, then raise an error
extra_params = merge_equalization(temp, extra_params)
if not extra_params:
msg = f'ROADM {el_config["uid"]}: invalid equalization settings'
raise ConfigurationError(msg)
temp = merge_amplifier_restrictions(temp, extra_params)
el_config['params'] = temp
el_config['type_variety'] = variety
elif (typ in ['Fiber', 'RamanFiber']) or (typ == 'Edfa' and variety not in ['default', '']):
elif (typ in ['Fiber', 'RamanFiber', 'Roadm']):
raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
elif typ == 'Edfa':
if variety in ['default', '']:
el_config['params'] = Amp.default_values
else:
raise ConfigurationError(f'The Edfa of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
el = cls(**el_config)
g.add_node(el)
@@ -384,7 +517,8 @@ def network_from_json(json_data, equipment):
edge_length = 0.01
g.add_edge(nodes[from_node], nodes[to_node], weight=edge_length)
except KeyError:
raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}')
msg = f'can not find {from_node} or {to_node} defined in {cx}'
raise NetworkTopologyError(msg)
return g
@@ -415,15 +549,13 @@ def save_json(obj, filename):
def load_requests(filename, eqpt, bidir, network, network_filename):
""" loads the requests from a json or an excel file into a data string
"""
"""loads the requests from a json or an excel file into a data string"""
if filename.suffix.lower() in ('.xls', '.xlsx'):
_logger.info('Automatically converting requests from XLS to JSON')
try:
return convert_service_sheet(filename, eqpt, network, network_filename=network_filename, bidir=bidir)
except ServiceError as this_e:
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {this_e}')
exit(1)
raise ServiceError(f'Service error: {this_e}')
else:
return load_json(filename)
@@ -435,33 +567,36 @@ def requests_from_json(json_data, equipment):
for req in json_data['path-request']:
# init all params from request
params = {}
params['request_id'] = req['request-id']
params['request_id'] = f'{req["request-id"]}'
params['source'] = req['source']
params['bidir'] = req['bidirectional']
params['destination'] = req['destination']
params['trx_type'] = req['path-constraints']['te-bandwidth']['trx_type']
params['trx_mode'] = req['path-constraints']['te-bandwidth']['trx_mode']
if params['trx_type'] is None:
msg = f'Request {req["request-id"]} has no transceiver type defined.'
raise ServiceError(msg)
params['trx_mode'] = req['path-constraints']['te-bandwidth'].get('trx_mode', None)
params['format'] = params['trx_mode']
params['spacing'] = req['path-constraints']['te-bandwidth']['spacing']
try:
nd_list = req['explicit-route-objects']['route-object-include-exclude']
nd_list = sorted(req['explicit-route-objects']['route-object-include-exclude'], key=lambda x: x['index'])
except KeyError:
nd_list = []
params['nodes_list'] = [n['num-unnum-hop']['node-id'] for n in nd_list]
params['loose_list'] = [n['num-unnum-hop']['hop-type'] for n in nd_list]
# recover trx physical param (baudrate, ...) from type and mode
# in trx_mode_params optical power is read from equipment['SI']['default'] and
# nb_channel is computed based on min max frequency and spacing
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
params.update(trx_params)
# print(trx_params['min_spacing'])
# optical power might be set differently in the request. if it is indicated then the
# params['power'] is updated
try:
if req['path-constraints']['te-bandwidth']['output-power']:
params['power'] = req['path-constraints']['te-bandwidth']['output-power']
except KeyError:
pass
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
except EquipmentConfigError as e:
msg = f'Equipment Config error in {req["request-id"]}: {e}'
raise EquipmentConfigError(msg) from e
params.update(trx_params)
params['power'] = req['path-constraints']['te-bandwidth'].get('output-power')
# params must not be None, but user can set to None: catch this case
if params['power'] is None:
params['power'] = dbm2watt(equipment['SI']['default'].power_dbm)
# same process for nb-channel
f_min = params['f_min']
f_max_from_si = params['f_max']
@@ -475,12 +610,21 @@ def requests_from_json(json_data, equipment):
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
except KeyError:
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
_check_one_request(params, f_max_from_si)
params['effective_freq_slot'] = \
req['path-constraints']['te-bandwidth'].get('effective-freq-slot', [{'N': None, 'M': None}])
try:
params['path_bandwidth'] = req['path-constraints']['te-bandwidth']['path_bandwidth']
except KeyError:
pass
params['tx_power'] = req['path-constraints']['te-bandwidth'].get('tx_power')
default_tx_power_dbm = equipment['SI']['default'].tx_power_dbm
if params['tx_power'] is None:
# use request's input power in span instead
params['tx_power'] = params['power']
if default_tx_power_dbm is not None:
# use default tx power
params['tx_power'] = dbm2watt(default_tx_power_dbm)
_check_one_request(params, f_max_from_si)
requests_list.append(PathRequest(**params))
return requests_list
@@ -489,28 +633,66 @@ def _check_one_request(params, f_max_from_si):
"""Checks that the requested parameters are consistant (spacing vs nb channel vs transponder mode...)"""
f_min = params['f_min']
f_max = params['f_max']
max_recommanded_nb_channels = automatic_nch(f_min, f_max, params['spacing'])
max_recommanded_nb_channels = automatic_nch(f_min, f_max_from_si, params['spacing'])
if params['baud_rate'] is not None:
# implicitly means that a mode is defined with min_spacing
if params['min_spacing'] > params['spacing']:
msg = f'Request {params["request_id"]} has spacing below transponder ' +\
f'{params["trx_type"]} {params["trx_mode"]} min spacing value ' +\
f'{params["min_spacing"]*1e-9}GHz.\nComputation stopped'
print(msg)
_logger.critical(msg)
raise ServiceError(msg)
if f_max > f_max_from_si:
msg = f'''Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"]} GHz
and requested spacing {params["spacing"]*1e-9}GHz is not consistent with frequency range
{f_min*1e-12} THz, {f_max*1e-12} THz, min recommanded spacing {params["min_spacing"]*1e-9}GHz.
max recommanded nb of channels is {max_recommanded_nb_channels}.'''
_logger.critical(msg)
msg = f'Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"] * 1e-9} GHz' \
+ f' and requested spacing {params["spacing"]*1e-9}GHz is not consistent with frequency range' \
+ f' {f_min*1e-12} THz, {f_max_from_si*1e-12} THz.' \
+ f' Max recommanded nb of channels is {max_recommanded_nb_channels}.'
raise ServiceError(msg)
# Transponder mode already selected; will it fit to the requested bandwidth?
if params['trx_mode'] is not None and params['effective_freq_slot'] is not None:
required_nb_of_channels, requested_m = compute_spectrum_slot_vs_bandwidth(params['path_bandwidth'],
params['spacing'],
params['bit_rate'])
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(params['bit_rate'],
params['spacing'],
params['bit_rate'])
# each M should fit one or more channels if it is not None
# spectrum slots should not overlap
# resulting nb of channels should be bigger than the nb computed with path_bandwidth
# without being splitted
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
# superchannel closed packing.
nb_of_channels = 0
# order slots
slots = sorted(params['effective_freq_slot'], key=lambda x: float('inf') if x['N'] is None else x['N'])
for slot in slots:
nb_of_channels = nb_of_channels + slot['M'] // per_channel_m if slot['M'] is not None \
and nb_of_channels is not None else None
if slot['M'] is not None and slot['M'] < per_channel_m:
msg = f'Requested M {slot} number of slots for request' +\
f' {params["request_id"]} should be greater than {per_channel_m} to support request' +\
f'with {params["trx_type"]} {params["trx_mode"]}'
_logger.critical(msg)
if nb_of_channels is not None and nb_of_channels < required_nb_of_channels:
msg = f'Requested M {slots} number of slots for request {params["request_id"]} support {nb_of_channels}' +\
f' nb of channels while {required_nb_of_channels} are required to support request' +\
f' {params["path_bandwidth"] * 1e-9} Gbit/s with {params["trx_type"]} {params["trx_mode"]}'
raise ServiceError(msg)
if nb_of_channels is not None:
_, stop0n = mvalue_to_slots(slots[0]['N'], slots[0]['M'])
i = 1
while i < len(slots):
slot = slots[i]
startn, stopn = mvalue_to_slots(slot['N'], slot['M'])
if startn <= stop0n:
msg = f'Requested M {slots} for request {params["request_id"]} overlap'
raise ServiceError(msg)
_, stop0n = startn, stopn
i += 1
def disjunctions_from_json(json_data):
""" reads the disjunction requests from the json dict and create the list
of requested disjunctions for this set of requests
"""reads the disjunction requests from the json dict and create the list
of requested disjunctions for this set of requests
"""
disjunctions_list = []
if 'synchronization' in json_data:
@@ -538,3 +720,42 @@ def convert_service_sheet(
data = read_service_sheet(input_filename, eqpt, network, network_filename, bidir)
save_json(data, output_filename)
return data
def find_equalisation(params, equalization_types):
"""Find the equalization(s) defined in params. params can be a dict or a Roadm object.
>>> roadm = {'add_drop_osnr': 100, 'pmd': 1, 'pdl': 0.5,
... 'restrictions': {'preamp_variety_list': ['a'], 'booster_variety_list': ['b']},
... 'target_psd_out_mWperGHz': 4e-4}
>>> equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz']
>>> find_equalisation(roadm, equalization_types)
{'target_pch_out_db': False, 'target_psd_out_mWperGHz': True}
"""
equalization = {e: False for e in equalization_types}
for equ in equalization_types:
if equ in params:
equalization[equ] = True
return equalization
def merge_equalization(params, extra_params):
"""params contains ROADM element config and extra_params default values from equipment library.
If equalization is not defined in ROADM element use the one defined in equipment library.
Only one type of equalization must be defined: power (target_pch_out_db) or PSD (target_psd_out_mWperGHz)
or PSW (target_out_mWperSlotWidth)
params and extra_params are dict
"""
equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
roadm_equalizations = find_equalisation(params, equalization_types)
if sum(roadm_equalizations.values()) > 1:
# if ROADM config contains more than one equalization type then this is an error
return None
if sum(roadm_equalizations.values()) == 1:
# if ROADM config contains one equalization
# don't use the default equalization
return {k: v for k, v in extra_params.items() if k not in equalization_types}
if sum(roadm_equalizations.values()) == 0:
# If ROADM config doesn't contain any equalization type, keep the default one
return extra_params
return None

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.plots
================
Graphs and plots usable from a CLI application
'''
"""
from matplotlib.pyplot import show, axis, figure, title, text
from networkx import draw_networkx

View File

@@ -18,7 +18,6 @@ from copy import deepcopy
from gnpy.core.utils import db2lin
from gnpy.core.exceptions import ServiceError
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fiber
import gnpy.core.ansi_escapes as ansi_escapes
from gnpy.tools.convert import corresp_names, corresp_next_node
SERVICES_COLUMN = 12
@@ -68,24 +67,21 @@ class Request_element(Element):
if [mode for mode in equipment['Transceiver'][Request.trx_type].mode if mode['format'] == Requestmode]:
self.mode = Requestmode
else:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' ' \
+ f'with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg)
else:
Requestmode = None
self.mode = Request.mode
except KeyError:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' ' \
+ f'with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg)
# excel input are in GHz and dBm
if Request.spacing is not None:
self.spacing = Request.spacing * 1e9
else:
msg = f'Request {self.request_id} missing spacing: spacing is mandatory.\ncomputation stopped'
logger.critical(msg)
raise ServiceError(msg)
if Request.power is not None:
self.power = db2lin(Request.power) * 1e-3
@@ -127,7 +123,7 @@ class Request_element(Element):
'technology': 'flexi-grid',
'trx_type': self.trx_type,
'trx_mode': self.mode,
'effective-freq-slot': [{'N': 'null', 'M': 'null'}],
'effective-freq-slot': [{'N': None, 'M': None}],
'spacing': self.spacing,
'max-nb-of-channel': self.nb_channel,
'output-power': self.power
@@ -225,7 +221,7 @@ def parse_excel(input_filename):
def parse_service_sheet(service_sheet):
""" reads each column according to authorized fieldnames. order is not important.
"""
logger.info(f'Validating headers on {service_sheet.name!r}')
logger.debug(f'Validating headers on {service_sheet.name!r}')
# add a test on field to enable the '' field case that arises when columns on the
# right hand side are used as comments or drawing in the excel sheet
header = [x.value.strip() for x in service_sheet.row(4)[0:SERVICES_COLUMN]
@@ -245,7 +241,6 @@ def parse_service_sheet(service_sheet):
service_fieldnames = [authorized_fieldnames[e] for e in header]
except KeyError:
msg = f'Malformed header on Service sheet: {header} field not in {authorized_fieldnames}'
logger.critical(msg)
raise ValueError(msg)
for row in all_rows(service_sheet, start=5):
yield Request(**parse_row(row[0:SERVICES_COLUMN], service_fieldnames))
@@ -273,15 +268,13 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
for pathreq in pathreqlist:
# first check that source and dest are transceivers
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.'
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.'
raise ServiceError(msg)
# silently pop source and dest nodes from the list if they were added by the user as first
# and last elem in the constraints respectively. Other positions must lead to an error
@@ -333,17 +326,16 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
# too much ambiguity, 'b' is an ila, its name can be:
# Edfa0_fiber (a → b)-xx if next node is c or
# Edfa0_fiber (c → b)-xx if next node is a
msg = f'{ansi_escapes.yellow}Invalid route node specified:' +\
f'\n\t\'{n_id}\', replaced with \'{new_n}\'{ansi_escapes.reset}'
logger.info(msg)
msg = f'Request {pathreq.request_id}: Invalid route node specified:' \
+ f'\n\t\'{n_id}\', replaced with \'{new_n}\''
logger.warning(msg)
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
except StopIteration:
# shall not come in this case, unless requested direction does not exist
msg = f'{ansi_escapes.yellow}Invalid route specified {n_id}: could' +\
f' not decide on direction, skipped!.\nPlease add a valid' +\
f' direction in constraints (next neighbour node){ansi_escapes.reset}'
print(msg)
logger.info(msg)
msg = f'Request {pathreq.request_id}: Invalid route specified {n_id}: could' \
+ ' not decide on direction, skipped!.\nPlease add a valid' \
+ ' direction in constraints (next neighbour node)'
logger.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
@@ -351,28 +343,24 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}Invalid node specified:\n\t\'{n_id}\'' +\
f', could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
logger.info(msg)
msg = f'Request {pathreq.request_id}: Invalid node specified:\n\t\'{n_id}\'' \
+ ', could not use it as constraint, skipped!'
logger.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Could not find node:\n\t\'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Request {pathreq.request_id}: Could not find node:\n\t\'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
else:
if temp.loose_list[i] == 'LOOSE':
print(f'{ansi_escapes.yellow}Invalid route node specified:\n\t\'{n_id}\'' +
f' type is not supported as constraint with xls network input,' +
f' skipped!{ansi_escapes.reset}')
logger.warning(f'Request {pathreq.request_id}: Invalid route node specified:\n\t\'{n_id}\''
+ ' type is not supported as constraint with xls network input, skipped!')
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Invalid route node specified \n\t\'{n_id}\'' +\
f' type is not supported as constraint with xls network input,' +\
f', Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Invalid route node specified \n\t\'{n_id}\'' \
+ ' type is not supported as constraint with xls network input,' \
+ ', Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist

View File

@@ -1,3 +1,3 @@
'''
"""
Tracking :py:mod:`.request` for spectrum and their :py:mod:`.spectrum_assignment`.
'''
"""

View File

@@ -20,30 +20,29 @@ from logging import getLogger
from networkx import (dijkstra_path, NetworkXNoPath,
all_simple_paths, shortest_simple_paths)
from networkx.utils import pairwise
from numpy import mean
from numpy import mean, argmin
from gnpy.core.elements import Transceiver, Roadm
from gnpy.core.utils import lin2db
from gnpy.core.info import create_input_spectral_information
from gnpy.core.info import create_input_spectral_information, carriers_to_spectral_information
from gnpy.core import network as network_module
from gnpy.core.exceptions import ServiceError, DisjunctionError
import gnpy.core.ansi_escapes as ansi_escapes
from copy import deepcopy
from csv import writer
from math import ceil
LOGGER = getLogger(__name__)
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type' +
' trx_mode nodes_list loose_list spacing power nb_channel f_min' +
' f_max format baud_rate OSNR bit_rate roll_off tx_osnr' +
' min_spacing cost path_bandwidth')
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link' +
'_diverse node_diverse disjunctions_req')
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type'
' trx_mode nodes_list loose_list spacing power nb_channel f_min'
' f_max format baud_rate OSNR penalties bit_rate'
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot'
' equalization_offset_db, tx_power')
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link_diverse'
' node_diverse disjunctions_req')
class PathRequest:
""" the class that contains all attributes related to a request
"""
"""the class that contains all attributes related to a request"""
def __init__(self, *args, **params):
params = RequestParams(**params)
self.request_id = params.request_id
@@ -62,12 +61,19 @@ class PathRequest:
self.f_max = params.f_max
self.format = params.format
self.OSNR = params.OSNR
self.penalties = params.penalties
self.bit_rate = params.bit_rate
self.roll_off = params.roll_off
self.tx_osnr = params.tx_osnr
self.tx_power = params.tx_power
self.min_spacing = params.min_spacing
self.cost = params.cost
self.path_bandwidth = params.path_bandwidth
if params.effective_freq_slot is not None:
self.N = [s['N'] for s in params.effective_freq_slot]
self.M = [s['M'] for s in params.effective_freq_slot]
self.initial_spectrum = None
self.offset_db = params.equalization_offset_db
def __str__(self):
return '\n\t'.join([f'{type(self).__name__} {self.request_id}',
@@ -75,7 +81,7 @@ class PathRequest:
f'destination: {self.destination}'])
def __repr__(self):
if self.baud_rate is not None:
if self.baud_rate is not None and self.bit_rate is not None:
temp = self.baud_rate * 1e-9
temp2 = self.bit_rate * 1e-9
else:
@@ -90,7 +96,8 @@ class PathRequest:
f'baud_rate:\t{temp} Gbaud',
f'bit_rate:\t{temp2} Gb/s',
f'spacing:\t{self.spacing * 1e-9} GHz',
f'power: \t{round(lin2db(self.power)+30, 2)} dBm',
f'power: \t{round(lin2db(self.power) + 30, 2)} dBm',
f'tx_power_dbm: \t{round(lin2db(self.tx_power) + 30, 2)} dBm',
f'nb channels: \t{self.nb_channel}',
f'path_bandwidth: \t{round(self.path_bandwidth * 1e-9, 2)} Gbit/s',
f'nodes-list:\t{self.nodes_list}',
@@ -99,8 +106,7 @@ class PathRequest:
class Disjunction:
""" the class that contains all attributes related to disjunction constraints
"""
"""the class that contains all attributes related to disjunction constraints"""
def __init__(self, *args, **params):
params = DisjunctionParams(**params)
@@ -129,7 +135,7 @@ BLOCKING_NOPATH = ['NO_PATH', 'NO_PATH_WITH_CONSTRAINT',
'NO_FEASIBLE_BAUDRATE_WITH_SPACING',
'NO_COMPUTED_SNR']
BLOCKING_NOMODE = ['NO_FEASIBLE_MODE', 'MODE_NOT_FEASIBLE']
BLOCKING_NOSPECTRUM = 'NO_SPECTRUM'
BLOCKING_NOSPECTRUM = ['NO_SPECTRUM', 'NOT_ENOUGH_RESERVED_SPECTRUM']
class ResultElement:
@@ -145,8 +151,7 @@ class ResultElement:
@property
def detailed_path_json(self):
""" a function that builds path object for normal and blocking cases
"""
"""a function that builds path object for normal and blocking cases"""
index = 0
pro_list = []
for element in self.computed_path:
@@ -162,24 +167,30 @@ class ResultElement:
}
pro_list.append(temp)
index += 1
if self.path_request.M > 0:
if not hasattr(self.path_request, 'blocking_reason'):
# M and N values should not be None at this point
if self.path_request.M is None or self.path_request.N is None:
raise ServiceError('request {self.path_id} should have positive non null n and m values.')
temp = {
'path-route-object': {
'index': index,
"label-hop": {
"N": self.path_request.N,
"M": self.path_request.M
},
"label-hop": [{
"N": n,
"M": m
} for n, m in zip(self.path_request.N, self.path_request.M)],
}
}
pro_list.append(temp)
index += 1
elif self.path_request.M == 0 and hasattr(self.path_request, 'blocking_reason'):
# if the path is blocked due to spectrum, no label object is created, but
# the json response includes a detailed path for user infromation.
pass
else:
raise ServiceError('request {self.path_id} should have positive path bandwidth value.')
# if the path is blocked, no label object is created, but
# the json response includes a detailed path for user information.
# M and N values should be None at this point
if self.path_request.M is not None or self.path_request.N is not None:
raise ServiceError('request {self.path_id} should not have label M and N values at this point.')
if isinstance(element, Transceiver):
temp = {
'path-route-object': {
@@ -196,11 +207,9 @@ class ResultElement:
@property
def path_properties(self):
""" a function that returns the path properties (metrics, crossed elements) into a dict
"""
"""a function that returns the path properties (metrics, crossed elements) into a dict"""
def path_metric(pth, req):
""" creates the metrics dictionary
"""
"""creates the metrics dictionary"""
return [
{
'metric-type': 'SNR-bandwidth',
@@ -242,8 +251,7 @@ class ResultElement:
@property
def pathresult(self):
""" create the result dictionnary (response for a request)
"""
"""create the result dictionnary (response for a request)"""
try:
if self.path_request.blocking_reason in BLOCKING_NOPATH:
response = {
@@ -281,7 +289,6 @@ def compute_constrained_path(network, req):
# been corrected and harmonized before
msg = (f'Request {req.request_id} malformed list of nodes: last node should '
'be destination trx')
LOGGER.critical(msg)
raise ValueError()
trx = [n for n in network if isinstance(n, Transceiver)]
@@ -296,10 +303,9 @@ def compute_constrained_path(network, req):
path_generator = shortest_simple_paths(network, source, destination, weight='weight')
total_path = next(path for path in path_generator if ispart(nodes_list, path))
except NetworkXNoPath:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH'
total_path = []
except StopIteration:
@@ -308,80 +314,94 @@ def compute_constrained_path(network, req):
# last node which is the transceiver)
# if all nodes i n node_list are LOOSE constraint, skip the constraints and find
# a path w/o constraints, else there is no possible path
print(f'{ansi_escapes.yellow}Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology{ansi_escapes.reset}')
LOGGER.warning(f'Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology')
if 'STRICT' not in req.loose_list[:-1]:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user_'
f'include node constraints{ansi_escapes.reset}')
LOGGER.info(msg)
print(f'constraint ignored')
msg = (f'Request {req.request_id} could not find a path with user_'
f'include node constraints. Constraint ignored')
LOGGER.warning(msg)
total_path = dijkstra_path(network, source, destination, weight='weight')
else:
# one STRICT makes the whole list STRICT
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH_WITH_CONSTRAINT'
total_path = []
return total_path
def propagate(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
"""propagates signals in each element according to initial spectrum set by user"""
if req.initial_spectrum is not None:
si = carriers_to_spectral_information(initial_spectrum=req.initial_spectrum, power=req.power)
else:
si = create_input_spectral_information(
f_min=req.f_min, f_max=req.f_max, roll_off=req.roll_off, baud_rate=req.baud_rate,
spacing=req.spacing, tx_osnr=req.tx_osnr, tx_power=req.tx_power, delta_pdb=req.offset_db)
roadm_osnr = []
for i, el in enumerate(path):
if isinstance(el, Roadm):
si = el(si, degree=path[i+1].uid)
si = el(si, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
roadm_osnr.append(el.get_roadm_path(from_degree=path[i - 1].uid, to_degree=path[i + 1].uid).impairment.osnr)
else:
si = el(si)
path[0].update_snr(req.tx_osnr)
if any(isinstance(el, Roadm) for el in path):
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
else:
path[-1].update_snr(req.tx_osnr)
path[0].update_snr(si.tx_osnr)
path[0].calc_penalties(req.penalties)
roadm_osnr.append(si.tx_osnr)
path[-1].update_snr(*roadm_osnr)
path[-1].calc_penalties(req.penalties)
return si
def propagate_and_optimize_mode(path, req, equipment):
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
# step 1: create an ordered list of modes based on baudrate
baudrate_to_explore = list(set([this_mode['baud_rate']
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# step 1: create an ordered list of modes based on baudrate and power offset
# order higher baudrate with higher power offset first
baudrate_offset_to_explore = list(set([(this_mode['baud_rate'], this_mode['equalization_offset_db'])
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# TODO be carefull on limits cases if spacing very close to req spacing eg 50.001 50.000
baudrate_to_explore = sorted(baudrate_to_explore, reverse=True)
if baudrate_to_explore:
baudrate_offset_to_explore = sorted(baudrate_offset_to_explore, reverse=True)
if baudrate_offset_to_explore:
# at least 1 baudrate can be tested wrt spacing
for this_br in baudrate_to_explore:
for (this_br, this_offset) in baudrate_offset_to_explore:
modes_to_explore = [this_mode for this_mode in equipment['Transceiver'][req.tsp].mode
if this_mode['baud_rate'] == this_br and
float(this_mode['min_spacing']) <= req.spacing]
if this_mode['baud_rate'] == this_br
and float(this_mode['min_spacing']) <= req.spacing]
modes_to_explore = sorted(modes_to_explore,
key=lambda x: x['bit_rate'], reverse=True)
# print(modes_to_explore)
key=lambda x: (x['bit_rate'], x['equalization_offset_db']), reverse=True)
# step2: computes propagation for each baudrate: stop and select the first that passes
# TODO: the case of roll of is not included: for now use SI one
# TODO: the case of roll off is not included: for now use SI one
# TODO: if the loop in mode optimization does not have a feasible path, then bugs
spc_info = create_input_spectral_information(req.f_min, req.f_max,
equipment['SI']['default'].roll_off,
this_br, req.power, req.spacing)
if req.initial_spectrum is not None:
# this case is not yet handled: spectrum can not be defined for the path-request-run function
# and this function is only called in this case. so coming here should not be considered yet.
msg = f'Request: {req.request_id} contains a unexpected initial_spectrum.'
raise ServiceError(msg)
spc_info = create_input_spectral_information(f_min=req.f_min, f_max=req.f_max,
roll_off=equipment['SI']['default'].roll_off,
baud_rate=this_br, spacing=req.spacing,
delta_pdb=this_offset, tx_osnr=req.tx_osnr,
tx_power=req.tx_power)
roadm_osnr = []
for i, el in enumerate(path):
if isinstance(el, Roadm):
spc_info = el(spc_info, degree=path[i+1].uid)
spc_info = el(spc_info, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
roadm_osnr.append(el.get_roadm_path(from_degree=path[i - 1].uid, to_degree=path[i + 1].uid).impairment.osnr)
else:
spc_info = el(spc_info)
for this_mode in modes_to_explore:
if path[-1].snr is not None:
path[0].update_snr(this_mode['tx_osnr'])
if any(isinstance(el, Roadm) for el in path):
path[-1].update_snr(this_mode['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
else:
path[-1].update_snr(this_mode['tx_osnr'])
if round(min(path[-1].snr + lin2db(this_br / (12.5e9))), 2) \
path[0].calc_penalties(this_mode['penalties'])
roadm_osnr.append(this_mode['tx_osnr'])
path[-1].update_snr(*roadm_osnr)
# remove the tx_osnr from roadm_osnr list for the next iteration
del roadm_osnr[-1]
path[-1].calc_penalties(this_mode['penalties'])
if round(min(path[-1].snr_01nm - path[-1].total_penalty), 2) \
> this_mode['OSNR'] + equipment['SI']['default'].sys_margins:
return path, this_mode
else:
@@ -389,27 +409,23 @@ def propagate_and_optimize_mode(path, req, equipment):
else:
req.blocking_reason = 'NO_COMPUTED_SNR'
return path, None
# only get to this point if no baudrate/mode satisfies OSNR requirement
# returns the last propagated path and mode
msg = f'\tWarning! Request {req.request_id}: no mode satisfies path SNR requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_MODE'
return path, last_explored_mode
else:
# no baudrate satisfying spacing
msg = f'\tWarning! Request {req.request_id}: no baudrate satisfies spacing requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_BAUDRATE_WITH_SPACING'
return [], None
def jsontopath_metric(path_metric):
""" a functions that reads resulting metric from json string
"""
"""a functions that reads resulting metric from json string"""
output_snr = next(e['accumulative-value']
for e in path_metric if e['metric-type'] == 'SNR-0.1nm')
output_snrbandwidth = next(e['accumulative-value']
@@ -427,9 +443,7 @@ def jsontopath_metric(path_metric):
def jsontoparams(my_p, tsp, mode, equipment):
""" a function that derives optical params from transponder type and mode
supports the no mode case
"""
"""a function that derives optical params from transponder type and mode supports the no mode case"""
temp = []
for elem in my_p['path-properties']['path-route-objects']:
if 'num-unnum-hop' in elem['path-route-object']:
@@ -439,8 +453,8 @@ def jsontoparams(my_p, tsp, mode, equipment):
temp2 = []
for elem in my_p['path-properties']['path-route-objects']:
if 'label-hop' in elem['path-route-object'].keys():
temp2.append(f'{elem["path-route-object"]["label-hop"]["N"]}, ' +
f'{elem["path-route-object"]["label-hop"]["M"]}')
temp2.append(f'{[e["N"] for e in elem["path-route-object"]["label-hop"]]}, '
+ f'{[e["M"] for e in elem["path-route-object"]["label-hop"]]}')
# OrderedDict.fromkeys returns the unique set of strings.
# TODO: if spectrum changes along the path, we should be able to give the segments
# eg for regeneration case
@@ -464,10 +478,10 @@ def jsontoparams(my_p, tsp, mode, equipment):
def jsontocsv(json_data, equipment, fileout):
""" reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""
mywriter = writer(fileout)
mywriter.writerow(('response-id', 'source', 'destination', 'path_bandwidth', 'Pass?',
@@ -696,8 +710,8 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# in each loop, dpath is updated with a path for rq that satisfies
# disjunction with each path in dpath
# for example, assume set of requests in the vector (disjunction_list) is {rq1,rq2, rq3}
# rq1 p1: abfhg
# p2: aefhg
# rq1 p1: aefhg
# p2: abfhg
# p3: abcg
# rq2 p8: bf
# rq3 p4: abcgh
@@ -714,6 +728,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# after second loop:
# dpath = [ p3 p8 p6 ]
# since p1 and p4 are not disjoint
# p1 and p6 are not disjoint
# p1 and p7 are not disjoint
# p3 and p4 are not disjoint
# p3 and p7 are not disjoint
@@ -737,7 +752,6 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
temp.append(temp2)
# print(f' coucou {elem1}: \t{temp}')
dpath = temp
# print(dpath)
candidates[dis.disjunction_id] = dpath
# for i in disjunctions_list:
@@ -778,9 +792,9 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
if pth in cndt:
candidates[this_id].remove(cndt)
# for i in disjunctions_list:
# print(i.disjunction_id)
# print(f'\n{candidates[i.disjunction_id]}')
# for i in disjunctions_list:
# print(i.disjunction_id)
# print(f'\n{candidates[i.disjunction_id]}')
# step 4 apply route constraints: remove candidate path that do not satisfy
# the constraint only in the case of disjounction: the simple path is processed in
@@ -788,33 +802,34 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# TODO: keep a version without the loose constraint
for this_d in disjunctions_list:
temp = []
alternatetemp = []
for j, sol in enumerate(candidates[this_d.disjunction_id]):
testispartok = True
testispartnokloose = True
for pth in sol:
# print(f'test {allpaths[id(pth)].req.request_id}')
# print(f'length of route {len(allpaths[id(pth)].req.nodes_list)}')
if allpaths[id(pth)].req.nodes_list:
# if pth does not containt the ordered list node, remove sol from the candidate
# except if this was the last solution: then check if the constraint is loose
# or not
# if any pth from sol does not contain the ordered list node,
# remove sol from the candidate, except if constraint was loose:
# then keep sol as an alternate solution
if not ispart(allpaths[id(pth)].req.nodes_list, pth):
# print(f'nb of solutions {len(temp)}')
if j < len(candidates[this_d.disjunction_id]) - 1:
msg = f'removing {sol}'
LOGGER.info(msg)
testispartok = False
# break
else:
if 'LOOSE' in allpaths[id(pth)].req.loose_list:
LOGGER.info(f'Could not apply route constraint' +
f'{allpaths[id(pth)].req.nodes_list} on request' +
f' {allpaths[id(pth)].req.request_id}')
else:
LOGGER.info(f'removing last solution from candidate paths\n{sol}')
testispartok = False
testispartok = False
if 'STRICT' in allpaths[id(pth)].req.loose_list:
LOGGER.debug(f'removing solution from candidate paths\n{pth}')
testispartnokloose = False
break
if testispartok:
temp.append(sol)
candidates[this_d.disjunction_id] = temp
elif testispartnokloose:
LOGGER.debug(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
alternatetemp.append(sol)
if temp:
candidates[this_d.disjunction_id] = temp
elif alternatetemp:
candidates[this_d.disjunction_id] = alternatetemp
else:
candidates[this_d.disjunction_id] = []
# step 5 select the first combination that works
pathreslist_disjoint = {}
@@ -829,9 +844,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# remove duplicated candidates
candidates = remove_candidate(candidates, allpaths, allpaths[id(pth)].req, pth)
else:
msg = f'No disjoint path found with added constraint'
LOGGER.critical(msg)
print(f'{msg}\nComputation stopped.')
msg = 'No disjoint path found with added constraint\nComputation stopped.'
# TODO in this case: replay step 5 with the candidate without constraints
raise DisjunctionError(msg)
@@ -852,8 +865,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
def isdisjoint(pth1, pth2):
""" returns 0 if disjoint
"""
"""returns 0 if disjoint"""
edge1 = list(pairwise(pth1))
edge2 = list(pairwise(pth2))
for edge in edge1:
@@ -863,9 +875,9 @@ def isdisjoint(pth1, pth2):
def find_reversed_path(pth):
""" select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""
# TODO add some indication on elements to indicate from which other they
# are the reversed direction. This is partly done with oms indication
@@ -888,9 +900,8 @@ def find_reversed_path(pth):
# concatenation should be [roadma el1 el2 roadmb el3 el4 roadmc]
reversed_path = list(OrderedDict.fromkeys(reversed_path))
else:
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' +\
' can not handle unidir topology. TO DO.'
LOGGER.critical(msg)
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' \
+ ' can not handle unidir topology. TO DO.'
raise ValueError(msg)
reversed_path.append(pth[0])
@@ -898,9 +909,7 @@ def find_reversed_path(pth):
def ispart(ptha, pthb):
""" the functions takes two paths a and b and retrns True
if all a elements are part of b and in the same order
"""
"""the functions takes two paths a and b and retrns True if all a elements are part of b and in the same order"""
j = 0
for elem in ptha:
if elem in pthb:
@@ -914,8 +923,7 @@ def ispart(ptha, pthb):
def remove_candidate(candidates, allpaths, rqst, pth):
""" filter duplicate candidates
"""
"""filter duplicate candidates"""
# print(f'coucou {rqst.request_id}')
for key, candidate in candidates.items():
temp = candidate.copy()
@@ -930,8 +938,7 @@ def remove_candidate(candidates, allpaths, rqst, pth):
def compare_reqs(req1, req2, disjlist):
""" compare two requests: returns True or False
"""
"""compare two requests: returns True or False"""
dis1 = [d for d in disjlist if req1.request_id in d.disjunctions_req]
dis2 = [d for d in disjlist if req2.request_id in d.disjunctions_req]
same_disj = False
@@ -964,6 +971,7 @@ def compare_reqs(req1, req2, disjlist):
req1.format == req2.format and \
req1.OSNR == req2.OSNR and \
req1.roll_off == req2.roll_off and \
req1.tx_power == req2.tx_power and \
same_disj:
return True
else:
@@ -971,19 +979,24 @@ def compare_reqs(req1, req2, disjlist):
def requests_aggregation(pathreqlist, disjlist):
""" this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
"""this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
If transponder mode is defined and identical, then also agregates demands.
"""
# todo maybe add conditions on mode ??, spacing ...
# currently if undefined takes the default values
local_list = pathreqlist.copy()
for req in pathreqlist:
for this_r in local_list:
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist):
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist) and\
this_r.tsp_mode is not None:
# aggregate
this_r.path_bandwidth += req.path_bandwidth
this_r.N = this_r.N + req.N
this_r.M = this_r.M + req.M
temp_r_id = this_r.request_id
this_r.request_id = ' | '.join((this_r.request_id, req.request_id))
# remove request from list
local_list.remove(req)
# todo change also disjunction req with new demand
@@ -1000,23 +1013,22 @@ def requests_aggregation(pathreqlist, disjlist):
def correct_json_route_list(network, pathreqlist):
""" all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""
all_uid = [n.uid for n in network.nodes()]
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
for pathreq in pathreqlist:
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' source : {pathreq.source}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' source : {pathreq.source}.'
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' destination : {pathreq.destination}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' destination : {pathreq.destination}.'
raise ServiceError(msg)
# silently remove source and dest nodes from the list
@@ -1035,24 +1047,21 @@ def correct_json_route_list(network, pathreqlist):
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}invalid route node specified:\n\t\'{n_id}\',' +\
f' could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
LOGGER.info(msg)
msg = f'invalid route node specified:\n\t\'{n_id}\',' \
+ ' could not use it as constraint, skipped!'
LOGGER.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}could not find node:\n\t \'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'could not find node:\n\t \'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist
def deduplicate_disjunctions(disjn):
""" clean disjunctions to remove possible repetition
"""
"""clean disjunctions to remove possible repetition"""
local_disjn = disjn.copy()
for elem in local_disjn:
for dis_elem in local_disjn:
@@ -1063,8 +1072,9 @@ def deduplicate_disjunctions(disjn):
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
""" use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
"""use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
"""
path_res_list = []
reversed_path_res_list = []
@@ -1075,10 +1085,10 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# use the power specified in requests but might be different from the one
# specified for design the power is an optional parameter for requests
# definition if optional, use the one defines in eqt_config.json
print(f'request {pathreq.request_id}')
print(f'Computing path from {pathreq.source} to {pathreq.destination}')
# adding first node to be clearer on the output
print(f'with path constraint: {[pathreq.source] + pathreq.nodes_list}')
msg = f'\n\trequest {pathreq.request_id}\n' \
+ f'\tComputing path from {pathreq.source} to {pathreq.destination}\n' \
+ f'\twith path constraint: {[pathreq.source] + pathreq.nodes_list}'
# # adding first node to be clearer on the output
# pathlist[i] contains the whole path information for request i
# last element is a transciver and where the result of the propagation is
@@ -1087,8 +1097,10 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# elements to simulate performance, several demands having the same destination
# may use the same transponder for the performance simulation. This is why
# we use deepcopy: to ensure that each propagation is recorded and not overwritten
network_module.design_network(pathreq, network, equipment, set_connector_losses=False, verbose=False)
total_path = deepcopy(pathlist[i])
print(f'Computed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}')
msg = msg + f'\n\tComputed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}'
LOGGER.info(msg)
# for debug
# print(f'{pathreq.baud_rate} {pathreq.power} {pathreq.spacing} {pathreq.nb_channel}')
if total_path:
@@ -1096,13 +1108,15 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# means that at this point the mode was entered/forced by user and thus a
# baud_rate was defined
propagate(total_path, pathreq, equipment)
temp_snr01nm = round(mean(total_path[-1].snr+lin2db(pathreq.baud_rate/(12.5e9))), 2)
if temp_snr01nm < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with' +\
f' {pathreq.tsp_mode}\n\tcomputedSNR in 0.1nm = {temp_snr01nm} ' +\
f'- required osnr {pathreq.OSNR} + {equipment["SI"]["default"].sys_margins} margin'
print(msg)
snr01nm_with_penalty = total_path[-1].snr_01nm - total_path[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(total_path, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
else:
@@ -1122,6 +1136,7 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
pathreq.OSNR = mode['OSNR']
pathreq.tx_osnr = mode['tx_osnr']
pathreq.bit_rate = mode['bit_rate']
pathreq.penalties = mode['penalties']
# other blocking reason should not appear at this point
except AttributeError:
pathreq.baud_rate = mode['baud_rate']
@@ -1130,35 +1145,36 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
pathreq.OSNR = mode['OSNR']
pathreq.tx_osnr = mode['tx_osnr']
pathreq.bit_rate = mode['bit_rate']
pathreq.penalties = mode['penalties']
# reversed path is needed for correct spectrum assignment
reversed_path = find_reversed_path(pathlist[i])
if pathreq.bidir and pathreq.baud_rate is not None:
# Both directions requested, and a feasible mode was found
rev_p = deepcopy(reversed_path)
print(f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}')
print(f'\tPath (roadsm) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n')
msg = f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}\n' \
+ f'\tPath (roadms) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n'
LOGGER.info(msg)
propagate(rev_p, pathreq, equipment)
propagated_reversed_path = rev_p
temp_snr01nm = round(mean(propagated_reversed_path[-1].snr +\
lin2db(pathreq.baud_rate/(12.5e9))), 2)
if temp_snr01nm < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with' +\
f' {pathreq.tsp_mode}\n' +\
f'\tcomputedSNR in 0.1nm = {temp_snr01nm} -' \
f' required osnr {pathreq.OSNR} + {equipment["SI"]["default"].sys_margins} margin'
print(msg)
snr01nm_with_penalty = rev_p[-1].snr_01nm - rev_p[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.destination} to {pathreq.source} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(rev_p, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
# TODO selection of mode should also be on reversed direction !!
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
if not hasattr(pathreq, 'blocking_reason'):
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
else:
propagated_reversed_path = []
else:
msg = 'Total path is empty. No propagation'
print(msg)
LOGGER.info(msg)
msg = f'Request {pathreq.request_id}: Total path is empty. No propagation'
LOGGER.warning(msg)
reversed_path = []
propagated_reversed_path = []
@@ -1166,5 +1182,33 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
reversed_path_res_list.append(reversed_path)
propagated_reversed_path_res_list.append(propagated_reversed_path)
# print to have a nice output
print('')
return path_res_list, reversed_path_res_list, propagated_reversed_path_res_list
def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=0.0125e12):
"""Compute the number of required wavelengths and the M value (number of consumed slots)
Each wavelength consumes one `spacing`, and the result is rounded up to consume a natural number of slots.
>>> compute_spectrum_slot_vs_bandwidth(400e9, 50e9, 200e9)
(2, 8)
"""
number_of_wavelengths = ceil(bandwidth / bit_rate)
total_number_of_slots = ceil(spacing / slot_width) * number_of_wavelengths
return number_of_wavelengths, total_number_of_slots
def _penalty_msg(total_path, msg, min_ind):
"""formatting helper for reporting unfeasible paths
The penalty info are optional, so this checks that penalty exists before creating a message."""
penalty_dict = {
'pdl': 'PDL',
'chromatic_dispersion': 'CD',
'pmd': 'PMD'}
for key, pretty in penalty_dict.items():
if key in total_path[-1].penalties:
msg += f'\n\t{pretty} penalty = {round(total_path[-1].penalties[key][min_ind], 2)}'
else:
msg += f'\n\t{pretty} penalty not evaluated'
return msg

View File

@@ -15,16 +15,16 @@ element/oms correspondace
from collections import namedtuple
from logging import getLogger
from math import ceil
from gnpy.core.elements import Roadm, Transceiver
from gnpy.core.exceptions import ServiceError, SpectrumError
from gnpy.core.utils import order_slots, restore_order
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth
LOGGER = getLogger(__name__)
class Bitmap:
""" records the spectrum occupation
"""
"""records the spectrum occupation"""
def __init__(self, f_min, f_max, grid, guardband=0.15e12, bitmap=None):
# n is the min index including guardband. Guardband is require to be sure
@@ -45,26 +45,22 @@ class Bitmap:
raise SpectrumError(f'bitmap is not consistant with f_min{f_min} - n: {n_min} and f_max{f_max}- n :{n_max}')
def getn(self, i):
""" converts the n (itu grid) into a local index
"""
"""converts the n (itu grid) into a local index"""
return self.freq_index[i]
def geti(self, nvalue):
""" converts the local index into n (itu grid)
"""
"""converts the local index into n (itu grid)"""
return self.freq_index.index(nvalue)
def insert_left(self, newbitmap):
""" insert bitmap on the left to align oms bitmaps if their start frequencies are different
"""
"""insert bitmap on the left to align oms bitmaps if their start frequencies are different"""
self.bitmap = newbitmap + self.bitmap
temp = list(range(self.n_min - len(newbitmap), self.n_min))
self.freq_index = temp + self.freq_index
self.n_min = self.freq_index[0]
def insert_right(self, newbitmap):
""" insert bitmap on the right to align oms bitmaps if their stop frequencies are different
"""
"""insert bitmap on the right to align oms bitmaps if their stop frequencies are different"""
self.bitmap = self.bitmap + newbitmap
self.freq_index = self.freq_index + list(range(self.n_max, self.n_max + len(newbitmap)))
self.n_max = self.freq_index[-1]
@@ -75,8 +71,8 @@ OMSParams = namedtuple('OMSParams', 'oms_id el_id_list el_list')
class OMS:
""" OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""
def __init__(self, *args, **params):
@@ -98,36 +94,28 @@ class OMS:
f'{self.el_id_list[0]} - {self.el_id_list[-1]}', '\n'])
def add_element(self, elem):
""" records oms elements
"""
"""records oms elements"""
self.el_id_list.append(elem.uid)
self.el_list.append(elem)
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None,
grid=0.00625e12):
""" frequencies expressed in Hz
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None, grid=0.00625e12):
"""Frequencies expressed in Hz.
Add 150 GHz margin to enable a center channel on f_min
Use ITU-T G694.1 Flexible DWDM grid definition
For the flexible DWDM grid, the allowed frequency slots have a nominal central frequency (in THz) defined by:
193.1 + n × 0.00625 where n is a positive or negative integer including 0
and 0.00625 is the nominal central frequency granularity in THz
and a slot width defined by:
12.5 × m where m is a positive integer and 12.5 is the slot width granularity in GHz.
Any combination of frequency slots is allowed as long as no two frequency slots overlap.
If bitmap is not None, then use it: Bitmap checks its consistency with f_min f_max
else a brand new bitmap is created
"""
if existing_spectrum is None:
# add some 150 GHz margin to enable a center channel on f_min
# use ITU-T G694.1
# Flexible DWDM grid definition
# For the flexible DWDM grid, the allowed frequency slots have a nominal
# central frequency (in THz) defined by:
# 193.1 + n × 0.00625 where n is a positive or negative integer including 0
# and 0.00625 is the nominal central frequency granularity in THz
# and a slot width defined by:
# 12.5 × m where m is a positive integer and 12.5 is the slot width granularity in
# GHz.
# Any combination of frequency slots is allowed as long as no two frequency
# slots overlap.
# TODO : add explaination on that / parametrize ....
self.spectrum_bitmap = Bitmap(f_min, f_max, grid, guardband)
# print(len(self.spectrum_bitmap.bitmap))
self.spectrum_bitmap = Bitmap(f_min=f_min, f_max=f_max, grid=grid, guardband=guardband,
bitmap=existing_spectrum)
def assign_spectrum(self, nvalue, mvalue):
""" change oms spectrum to mark spectrum assigned
"""
"""change oms spectrum to mark spectrum assigned"""
if not isinstance(nvalue, int):
raise SpectrumError(f'N must be a signed integer, got {nvalue}')
if not isinstance(mvalue, int):
@@ -146,16 +134,16 @@ class OMS:
self.spectrum_bitmap.bitmap[self.spectrum_bitmap.geti(startn):self.spectrum_bitmap.geti(stopn) + 1] = [0] * (stopn - startn + 1)
def add_service(self, service_id, nb_wl):
""" record service and mark spectrum as occupied
"""
"""record service and mark spectrum as occupied"""
self.service_list.append(service_id)
self.nb_channels += nb_wl
def frequency_to_n(freq, grid=0.00625e12):
""" converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> frequency_to_n(193.1375e12)
6
@@ -167,9 +155,10 @@ def frequency_to_n(freq, grid=0.00625e12):
def nvalue_to_frequency(nvalue, grid=0.00625e12):
""" converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nvalue_to_frequency(6)
193137500000000.0
@@ -181,17 +170,17 @@ def nvalue_to_frequency(nvalue, grid=0.00625e12):
def mvalue_to_slots(nvalue, mvalue):
""" convert center n an m into start and stop n
"""
"""convert center n an m into start and stop n"""
startn = nvalue - mvalue
stopn = nvalue + mvalue - 1
return startn, stopn
def slots_to_m(startn, stopn):
""" converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nval, mval = slots_to_m(6, 20)
>>> nval
@@ -206,10 +195,11 @@ def slots_to_m(startn, stopn):
def m_to_freq(nvalue, mvalue, grid=0.00625e12):
""" converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> fstart, fstop = m_to_freq(13, 7)
>>> fstart
@@ -225,9 +215,7 @@ def m_to_freq(nvalue, mvalue, grid=0.00625e12):
def align_grids(oms_list):
""" used to apply same grid to all oms : same starting n, stop n and slot size
out of grid slots are set to 0
"""
"""Used to apply same grid to all oms : same starting n, stop n and slot size. Out of grid slots are set to 0."""
n_min = min([o.spectrum_bitmap.n_min for o in oms_list])
n_max = max([o.spectrum_bitmap.n_max for o in oms_list])
for this_o in oms_list:
@@ -239,12 +227,13 @@ def align_grids(oms_list):
def build_oms_list(network, equipment):
""" initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""
oms_id = 0
oms_list = []
@@ -296,8 +285,9 @@ def build_oms_list(network, equipment):
def reversed_oms(oms_list):
""" identifies reversed OMS
only applicable for non parallel OMS
"""identifies reversed OMS
only applicable for non parallel OMS
"""
for oms in oms_list:
has_reversed = False
@@ -322,28 +312,41 @@ def bitmap_sum(band1, band2):
return res
def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
# use indexes instead of ITU-T n values
def build_path_oms_id_list(pth):
path_oms = []
for elem in pth:
if not isinstance(elem, Roadm) and not isinstance(elem, Transceiver):
# only edfa, fused and fibers have oms_id attribute
path_oms.append(elem.oms_id)
# remove duplicate oms_id, order is not important
path_oms = list(set(path_oms))
# assuming all oms have same freq index
if not path_oms:
candidate = (None, None, None)
return candidate, path_oms
freq_index = oms_list[path_oms[0]].spectrum_bitmap.freq_index
freq_index_min = oms_list[path_oms[0]].spectrum_bitmap.freq_index_min
freq_index_max = oms_list[path_oms[0]].spectrum_bitmap.freq_index_max
return list(set(path_oms))
freq_availability = oms_list[path_oms[0]].spectrum_bitmap.bitmap
def aggregate_oms_bitmap(path_oms, oms_list):
spectrum = oms_list[path_oms[0]].spectrum_bitmap
bitmap = spectrum.bitmap
# assuming all oms have same freq indices
for oms in path_oms[1:]:
freq_availability = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, freq_availability)
bitmap = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, bitmap)
params = {
'oms_id': 0,
'el_id_list': 0,
'el_list': []
}
freq_min = nvalue_to_frequency(spectrum.freq_index_min)
freq_max = nvalue_to_frequency(spectrum.freq_index_max)
aggregate_oms = OMS(**params)
aggregate_oms.update_spectrum(freq_min, freq_max, grid=0.00625e12, existing_spectrum=bitmap)
return aggregate_oms
def spectrum_selection(test_oms, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
freq_index = test_oms.spectrum_bitmap.freq_index
freq_index_min = test_oms.spectrum_bitmap.freq_index_min
freq_index_max = test_oms.spectrum_bitmap.freq_index_max
freq_availability = test_oms.spectrum_bitmap.bitmap
if requested_n is None:
# avoid slots reserved on the edge 0.15e-12 on both sides -> 24
candidates = [(freq_index[i] + requested_m, freq_index[i], freq_index[i] + 2 * requested_m - 1)
@@ -354,29 +357,36 @@ def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
candidate = select_candidate(candidates, policy='first_fit')
else:
i = oms_list[path_oms[0]].spectrum_bitmap.geti(requested_n)
# print(f'N {requested_n} i {i}')
# print(freq_availability[i-m:i+m] )
# print(freq_index[i-m:i+m])
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m) and
freq_index[i - requested_m] >= freq_index_min
i = test_oms.spectrum_bitmap.geti(requested_n)
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m)
and freq_index[i - requested_m] >= freq_index_min
and freq_index[i + requested_m - 1] <= freq_index_max):
# candidate is the triplet center_n, startn and stopn
candidate = (requested_n, requested_n - requested_m, requested_n + requested_m - 1)
else:
candidate = (None, None, None)
# print("coucou11")
# print(candidate)
# print(freq_availability[321:321+2*m])
# a = [i+321 for i in range(2*m)]
# print(a)
# print(candidate)
return candidate, path_oms
return candidate
def determine_slot_numbers(test_oms, requested_n, required_m, per_channel_m):
"""determines max availability around requested_n. requested_n should not be None"""
bitmap = test_oms.spectrum_bitmap
freq_index = bitmap.freq_index
freq_index_min = bitmap.freq_index_min
freq_index_max = bitmap.freq_index_max
freq_availability = bitmap.bitmap
center_i = bitmap.geti(requested_n)
i = per_channel_m
while (freq_availability[center_i - i:center_i + i] == [1] * (2 * i)
and freq_index[center_i - i] >= freq_index_min
and freq_index[center_i + i - 1] <= freq_index_max
and i <= required_m):
i += per_channel_m
return i - per_channel_m
def select_candidate(candidates, policy):
""" selects a candidate among all available spectrum
"""
"""selects a candidate among all available spectrum"""
if policy == 'first_fit':
if candidates:
return candidates[0]
@@ -386,46 +396,112 @@ def select_candidate(candidates, policy):
raise ServiceError('Only first_fit spectrum assignment policy is implemented.')
def pth_assign_spectrum(pths, rqs, oms_list, rpths):
""" basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""
for i, pth in enumerate(pths):
# computes the number of channels required
try:
if rqs[i].blocking_reason:
rqs[i].blocked = True
rqs[i].N = 0
rqs[i].M = 0
except AttributeError:
nb_wl = ceil(rqs[i].path_bandwidth / rqs[i].bit_rate)
# computes the total nb of slots according to requested spacing
# TODO : express superchannels
# assumes that all channels must be grouped
# TODO : enables non contiguous reservation in case of blocking
requested_m = ceil(rqs[i].spacing / 0.0125e12) * nb_wl
# concatenate all path and reversed path elements to derive slots availability
(center_n, startn, stopn), path_oms = spectrum_selection(pth + rpths[i], oms_list, requested_m,
requested_n=None)
# checks that requested_m is fitting startm and stopm
# if not None, center_n and start, stop frequencies are applicable to all oms of pth
# checks that spectrum is not None else indicate blocking reason
if center_n is not None:
# checks that requested_m is fitting startm and stopm
if 2 * requested_m > (stopn - startn + 1):
msg = f'candidate: {(center_n, startn, stopn)} is not consistant ' +\
f'with {requested_m}'
LOGGER.critical(msg)
raise ValueError(msg)
def compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m, policy='first_fit'):
""" based on requested path_bandwidth fill in M=None values with uint values, using per_channel_m
and center frequency, with first fit strategy. The function checks the available spectrum but check
consistencies among M values of the request, but not with other requests.
For example, if request is for 32 slots corresponding to 8 x 4 slots of 32Gbauds channels,
the following frequency slots will result in the following assignment
for oms_elem in path_oms:
oms_list[oms_elem].assign_spectrum(center_n, requested_m)
oms_list[oms_elem].add_service(rqs[i].request_id, nb_wl)
rqs[i].blocked = False
rqs[i].N = center_n
rqs[i].M = requested_m
N = 0, 8, 16, 32 -> 0, 8, 16, 32
M = 8, None, 8, None -> 8, 8, 8, 8
N = 0, 8, 16, 32 -> 0, , 16
M = None, None, 8, None -> 24, , 8
"""
selected_m = []
selected_n = []
remaining_slots_to_serve = required_m
# order slots for the computation: assign biggest m first
rq_N, rq_M, order = order_slots([{'N': n, 'M': m} for n, m in zip(rq.N, rq.M)])
# Create an oms that represents current assignments of all oms listed in path_oms, and test N and M on it.
# If M is defined, checks that proposed N, M is free
test_oms = aggregate_oms_bitmap(path_oms, oms_list)
for n, m in zip(rq_N, rq_M):
if m is not None and n is not None:
# check availabilityfor this n, m
available_slots = determine_slot_numbers(test_oms, n, m, m)
if available_slots == 0:
# if n, m are not feasible, break at this point no have non zero remaining_slots_to_serve
# in order to blocks the request (even is other N,M where feasible)
break
elif m is not None and n is None:
# find a candidate n
n, _, _ = spectrum_selection(test_oms, m, None)
if n is None:
# if no n is feasible for the m, block the request
break
elif m is None and n is not None:
# find a feasible m for this n. If None is found, then block the request
m = determine_slot_numbers(test_oms, n, remaining_slots_to_serve, per_channel_m)
if m == 0 or remaining_slots_to_serve == 0:
break
else:
# if n and m are not defined, try to find a single assignment to fits the remaining slots to serve
# (first fit strategy)
n, _, _ = spectrum_selection(test_oms, remaining_slots_to_serve, None)
if n is None or remaining_slots_to_serve == 0:
break
else:
rqs[i].blocked = True
rqs[i].N = 0
rqs[i].M = 0
rqs[i].blocking_reason = 'NO_SPECTRUM'
m = remaining_slots_to_serve
selected_m.append(m)
selected_n.append(n)
test_oms.assign_spectrum(n, m)
remaining_slots_to_serve = remaining_slots_to_serve - m
# re-order selected_m and selected_n according to initial request N, M order, ignoring None values
not_selected = [None for i in range(len(rq_N) - len(selected_n))]
selected_m = restore_order(selected_m + not_selected, order)
selected_n = restore_order(selected_n + not_selected, order)
return selected_n, selected_m, remaining_slots_to_serve
def pth_assign_spectrum(pths, rqs, oms_list, rpths):
"""basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""
for pth, rq, rpth in zip(pths, rqs, rpths):
if hasattr(rq, 'blocking_reason'):
rq.N = None
rq.M = None
else:
# computes the number of channels required for path_bandwidth and the min required nb of slots
# for one channel (corresponds to the spacing)
nb_wl, required_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
rq.spacing, rq.bit_rate)
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(rq.bit_rate,
rq.spacing, rq.bit_rate)
# find oms ids that are concerned both by pth and rpth
path_oms = build_path_oms_id_list(pth + rpth)
if getattr(rq, 'M', None) is not None and all(rq.M):
# if all M are well defined: Consistency check that the requested M are enough to carry the nb_wl:
# check that the integer number of per_channel_m carried in each M value is enough to carry nb_wl.
# if not, blocks the demand
nb_channels_of_request = sum([m // per_channel_m for m in rq.M])
# TODO: elaborate a more accurate estimate with nb_wl * min_spacing + possibly guardbands in case of
# superchannel closed packing.
if nb_wl > nb_channels_of_request:
rq.N = None
rq.M = None
rq.blocking_reason = 'NOT_ENOUGH_RESERVED_SPECTRUM'
# need to stop here for this request and not go though spectrum selection process
continue
# Use the req.M even if nb_wl and required_m are smaller.
# first fit strategy: assign as many lambda as possible in the None remaining N, M values
selected_n, selected_m, remaining_slots_to_serve = \
compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m)
# if there are some remaining_slots_to_serve, this means that provided rq.M and rq.N values were
# not possible. Then do not go though spectrum assignment process and blocks the demand
if remaining_slots_to_serve > 0:
rq.N = None
rq.M = None
rq.blocking_reason = 'NO_SPECTRUM'
continue
for oms_elem in path_oms:
for this_n, this_m in zip(selected_n, selected_m):
if this_m is not None:
oms_list[oms_elem].assign_spectrum(this_n, this_m)
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
rq.N = selected_n
rq.M = selected_m

View File

@@ -1,7 +0,0 @@
matplotlib>=3.3.3,<4
networkx>=2.5,<3
numpy>=1.19.4,<2
pandas>=1.1.5,<2
pbr>=5.5.1,<6
scipy>=1.5.4,<2
xlrd>=1.2.0,<2

View File

@@ -3,13 +3,13 @@ name = gnpy
description-file = README.md
description-content-type = text/markdown; variant=GFM
author = Telecom Infra Project
author-email = jan.kundrat@telecominfraproject.com
author-email = jkt@jankundrat.com
license = BSD-3-Clause
home-page = https://github.com/Telecominfraproject/oopt-gnpy
project_urls =
Bug Tracker = https://github.com/Telecominfraproject/oopt-gnpy/issues
Documentation = https://gnpy.readthedocs.io/
python-requires = >=3.6
python-requires = >=3.8
classifier =
Development Status :: 5 - Production/Stable
Intended Audience :: Developers
@@ -19,10 +19,11 @@ classifier =
Natural Language :: English
Programming Language :: Python
Programming Language :: Python :: 3 :: Only
Programming Language :: Python :: 3.6
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
Programming Language :: Python :: 3.12
Programming Language :: Python :: Implementation :: CPython
Topic :: Scientific/Engineering
Topic :: Scientific/Engineering :: Physics
@@ -41,9 +42,6 @@ warnerrors = True
[files]
packages = gnpy
data_files =
examples = examples/*
# FIXME: solve example data files
[options.entry_points]
console_scripts =
@@ -51,3 +49,35 @@ console_scripts =
gnpy-transmission-example = gnpy.tools.cli_examples:transmission_main_example
gnpy-path-request = gnpy.tools.cli_examples:path_requests_run
gnpy-convert-xls = gnpy.tools.convert:_do_convert
[options]
install_requires =
# matplotlib 3.8 removed support for Python 3.8
matplotlib>=3.7.3,<4
# networkx 3.2 removed support for Python 3.8
networkx>=3.1,<4
# numpy 1.25 removed support for Python 3.8
numpy>=1.24.4,<2
pbr>=6.0.0,<7
# scipy 1.11 removed support for Python 3.8
scipy>=1.10.1,<2
# xlrd 2.x removed support for .xlsx, it's only .xls now
xlrd>=1.2.0,<2
[options.extras_require]
tests =
build>=1.0.3,<2
pytest>=7.4.3,<8
# pandas 2.1 removed support for Python 3.8
pandas>=2.0.3,<3
# flake v6 killed the --diff option
flake8>=5.0.4,<6
docs =
alabaster>=0.7.12,<1
docutils>=0.17.1,<1
myst-parser>=0.16.1,<1
Pygments>=2.11.2,<3
rstcheck
Sphinx>=5.3.0,<6
sphinxcontrib-bibtex>=2.4.1,<3

View File

@@ -1,135 +0,0 @@
#!/usr/bin/env python3
from json import dump
from pathlib import Path
from argparse import ArgumentParser
from collections import namedtuple
from gnpy.tools.json_io import load_json
class Results(namedtuple('Results', 'missing extra different expected actual')):
def _asdict(self):
return {'missing': self.missing,
'extra': self.extra,
'different': self.different}
def __str__(self):
rv = []
if self.missing:
rv.append('Missing: {len(self.missing)}/{len(self.expected)}')
rv.extend(f'\t{x}' for x in sorted(self.missing))
if self.extra:
rv.append('Extra: {len(self.extra)}/{len(self.expected)}')
rv.extend(f'\t{x}' for x in sorted(self.extra))
if self.different:
rv.append('Different: {len(self.different)}/{len(self.expected)}')
rv.extend(f'\tExpected: {x}\n\tActual: {y}' for x, y in self.different)
if not self.missing and not self.extra and not self.different:
rv.append('All match!')
return '\n'.join(rv)
class NetworksResults(namedtuple('NetworksResult', 'elements connections')):
def _asdict(self):
return {'elements': self.elements._asdict(),
'connections': self.connections._asdict()}
def __str__(self):
return '\n'.join([
'Elements'.center(40, '='),
str(self.elements),
'Connections'.center(40, '='),
str(self.connections),
])
class ServicesResults(namedtuple('ServicesResult', 'requests synchronizations')):
def _asdict(self):
return {'requests': self.requests.asdict(),
'synchronizations': self.synchronizations.asdict()}
def __str__(self):
return '\n'.join([
'Requests'.center(40, '='),
str(self.requests),
'Synchronizations'.center(40, '='),
str(self.synchronizations),
])
class PathsResults(namedtuple('PathsResults', 'paths')):
def _asdict(self):
return {'paths': self.paths.asdict()}
def __str__(self):
return '\n'.join([
'Paths'.center(40, '='),
str(self.paths),
])
def compare(expected, actual, key=lambda x: x):
expected = {key(el): el for el in expected}
actual = {key(el): el for el in actual}
missing = set(expected) - set(actual)
extra = set(actual) - set(expected)
different = [(expected[x], actual[x]) for
x in set(expected) & set(actual)
if expected[x] != actual[x]]
return Results(missing, extra, different, expected, actual)
def compare_networks(expected, actual):
elements = compare(expected['elements'], actual['elements'],
key=lambda el: el['uid'])
connections = compare(expected['connections'], actual['connections'],
key=lambda el: (el['from_node'], el['to_node']))
return NetworksResults(elements, connections)
def compare_services(expected, actual):
requests = compare(expected['path-request'], actual['path-request'],
key=lambda el: el['request-id'])
synchronizations = compare(expected['path-request'], expected['path-request'],
key=lambda el: el['request-id'])
if 'synchronization' in expected.keys():
synchronizations = compare(expected['synchronization'], actual['synchronization'],
key=lambda el: el['synchronization-id'])
return ServicesResults(requests, synchronizations)
def compare_paths(expected_output, actual_output):
paths = compare(expected['path'], actual['path'], key=lambda el: el['path-id'])
return PathsResults(paths)
COMPARISONS = {
'networks': compare_networks,
'services': compare_services,
'paths': compare_paths,
}
parser = ArgumentParser()
parser.add_argument('expected_output', type=Path, metavar='FILE')
parser.add_argument('actual_output', type=Path, metavar='FILE')
parser.add_argument('-o', '--output', default=None)
parser.add_argument('-c', '--comparison', choices=COMPARISONS, default='networks')
def encode_sets(obj):
if isinstance(obj, set):
return list(obj)
raise TypeError(f'{obj!r} is not JSON serializable!')
if __name__ == '__main__':
args = parser.parse_args()
expected = load_json(args.expected_output)
actual = load_json(args.actual_output)
result = COMPARISONS[args.comparison](expected, actual)
if args.output:
with open(args.output, 'w', encoding='utf-8') as f:
dump(result, f, default=encode_sets, indent=2, ensure_ascii=False)
else:
print(str(result))

13
tests/conftest.py Normal file
View File

@@ -0,0 +1,13 @@
# SPDX-License-Identifier: BSD-3-Clause
#
# Copyright (C) 2020 Telecom Infra Project and GNPy contributors
# see LICENSE.md for a list of contributors
#
import pytest
from gnpy.core.parameters import SimParams, NLIParams, RamanParams
@pytest.fixture
def set_sim_params(monkeypatch):
monkeypatch.setattr(SimParams, '_shared_dict', {'nli_params': NLIParams(), 'raman_params': RamanParams()})

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,21 @@
{
"path-request": [
{
"request-id": "0",
"source": "trx Abilene",
"destination": "trx Albany",
"src-tp-id": "trx Abilene",
"dst-tp-id": "trx Albany",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 3",
"spacing": 62500000000.0,
"path_bandwidth": 100000000000.0
}
}
}
]
}

View File

@@ -1,4 +1,6 @@
{
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
@@ -196,101 +198,101 @@
0.0
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.0,
1.017807767853702,
1.0
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
]
}
}

View File

@@ -1,4 +1,5 @@
{ "Edfa":[{
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
@@ -7,10 +8,9 @@
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
@@ -18,10 +18,9 @@
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
@@ -29,8 +28,7 @@
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
@@ -40,8 +38,7 @@
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
@@ -49,8 +46,7 @@
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
}, {
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
@@ -58,18 +54,18 @@
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber":[{
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
}
],
"Span": [{
"power_mode": true,
"delta_power_range_db": [0, 0, 0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
@@ -79,156 +75,218 @@
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm":[{
}
],
"Roadm": [{
"type_variety": "example_test",
"target_pch_out_db": -18,
"add_drop_osnr": 35,
"pmd": 1e-12,
"pdl": 0.5,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": []
}, {
"type_variety": "example_detailed_impairments",
"target_pch_out_db": -20,
"add_drop_osnr": 35,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
},
"roadm-path-impairments": [
{
"roadm-path-impairments-id": 0,
"roadm-express-path": [{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 16.5
}
]
}, {
"roadm-path-impairments-id": 1,
"roadm-add-path": [{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-pmax": 2.5,
"roadm-osnr": 41,
"roadm-noise-figure": 23
}]
}, {
"roadm-path-impairments-id": 2,
"roadm-drop-path": [{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-minloss": 7.5,
"roadm-typloss": 10,
"roadm-pmin": -13.5,
"roadm-pmax": -9.5,
"roadm-ptyp": -12,
"roadm-osnr": 41,
"roadm-noise-figure": 15
}]
}]
}, {
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [{
"f_min": 191.3e12,
"f_max":196.1e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,0.5],
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
"sys_margins": 0
}],
"Transceiver":[
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
}
]
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
{
"mode": [{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager_16QAM",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
}
]
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
{
"mode": [{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
}
]
}
]
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,220 @@
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
}, {
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [{
"power_mode": true,
"delta_power_range_db": [0, 0, 0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [{
"target_psd_out_mWperGHz": 3.125e-4,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}
],
"Transceiver": [{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager_16QAM",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,220 @@
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
}, {
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [{
"power_mode": true,
"delta_power_range_db": [0, 0, 0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [{
"target_out_mWperSlotWidth": 2.0e-4,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}
],
"Transceiver": [{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager_16QAM",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,238 @@
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}
],
"SI": [{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [-6,0,0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}
],
"Transceiver":[
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.4e12,
"max": 196.1e12
},
"mode":[
{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
},
{
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager_16QAM",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [
{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -63,6 +63,7 @@
{
"uid": "roadm Lannion_CAS",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -18.6,
"restrictions": {
@@ -87,6 +88,7 @@
{
"uid": "roadm Lorient_KMA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -111,6 +113,7 @@
{
"uid": "roadm Vannes_KBE",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -134,6 +137,7 @@
{
"uid": "roadm Rennes_STA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -157,6 +161,7 @@
{
"uid": "roadm Brest_KLA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1668,4 +1673,4 @@
"to_node": "fiber (Ploermel → Vannes_KBE)-"
}
]
}
}

View File

@@ -1,224 +0,0 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"gamma": 0.00127,
"pmd_coef": 1.265e-15,
"raman_efficiency": {
"cr": [
0,
0.0000094,
0.0000292,
0.0000488,
0.0000682,
0.0000831,
0.000094,
0.0001014,
0.0001069,
0.0001119,
0.0001217,
0.0001268,
0.0001365,
0.000149,
0.000165,
0.000181,
0.0001977,
0.0002192,
0.0002469,
0.0002749,
0.0002999,
0.0003206,
0.0003405,
0.0003592,
0.000374,
0.0003826,
0.0003841,
0.0003826,
0.0003802,
0.0003756,
0.0003549,
0.0003795,
0.000344,
0.0002933,
0.0002024,
0.0001158,
0.0000846,
0.0000714,
0.0000686,
0.000085,
0.0000893,
0.0000901,
0.0000815,
0.0000667,
0.0000437,
0.0000328,
0.0000296,
0.0000265,
0.0000257,
0.0000281,
0.0000308,
0.0000367,
0.0000585,
0.0000663,
0.0000636,
0.000055,
0.0000406,
0.0000277,
0.0000242,
0.0000187,
0.000016,
0.000014,
0.0000113,
0.0000105,
0.0000098,
0.0000098,
0.0000113,
0.0000164,
0.0000195,
0.0000238,
0.0000226,
0.0000203,
0.0000148,
0.0000109,
0.0000098,
0.0000105,
0.0000117,
0.0000125,
0.0000121,
0.0000109,
0.0000098,
0.0000082,
0.0000066,
0.0000047,
0.0000027,
0.0000019,
0.0000012,
4e-7,
2e-7,
1e-7
],
"frequency_offset": [
0,
500000000000,
1000000000000,
1500000000000,
2000000000000,
2500000000000,
3000000000000,
3500000000000,
4000000000000,
4500000000000,
5000000000000,
5500000000000,
6000000000000,
6500000000000,
7000000000000,
7500000000000,
8000000000000,
8500000000000,
9000000000000,
9500000000000,
10000000000000,
10500000000000,
11000000000000,
11500000000000,
12000000000000,
12500000000000,
12750000000000,
13000000000000,
13250000000000,
13500000000000,
14000000000000,
14500000000000,
14750000000000,
15000000000000,
15500000000000,
16000000000000,
16500000000000,
17000000000000,
17500000000000,
18000000000000,
18250000000000,
18500000000000,
18750000000000,
19000000000000,
19500000000000,
20000000000000,
20500000000000,
21000000000000,
21500000000000,
22000000000000,
22500000000000,
23000000000000,
23500000000000,
24000000000000,
24500000000000,
25000000000000,
25500000000000,
26000000000000,
26500000000000,
27000000000000,
27500000000000,
28000000000000,
28500000000000,
29000000000000,
29500000000000,
30000000000000,
30500000000000,
31000000000000,
31500000000000,
32000000000000,
32500000000000,
33000000000000,
33500000000000,
34000000000000,
34500000000000,
35000000000000,
35500000000000,
36000000000000,
36500000000000,
37000000000000,
37500000000000,
38000000000000,
38500000000000,
39000000000000,
39500000000000,
40000000000000,
40500000000000,
41000000000000,
41500000000000,
42000000000000
]
}
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 0.2,
"frequency": 205000000000000,
"propagation_direction": "counterprop"
},
{
"power": 0.206,
"frequency": 201000000000000,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

View File

@@ -1,14 +1,13 @@
{
"raman_parameters": {
"flag_raman": true,
"space_resolution": 10e3,
"tolerance": 1e-8
"raman_params": {
"flag": true,
"result_spatial_resolution": 10e3,
"solver_spatial_resolution": 50
},
"nli_parameters": {
"nli_method_name": "ggn_spectrally_separated",
"wdm_grid_size": 50e9,
"nli_params": {
"method": "ggn_spectrally_separated",
"dispersion_tolerance": 1,
"phase_shift_tolerance": 0.1,
"computed_channels": [1, 18, 37, 56, 75]
}
}
}

View File

@@ -14,8 +14,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -39,8 +39,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -64,8 +64,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,

View File

@@ -159,6 +159,7 @@
{
"uid": "roadm Lannion_CAS",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -183,6 +184,7 @@
{
"uid": "roadm Lorient_KMA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -207,6 +209,7 @@
{
"uid": "roadm Vannes_KBE",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -230,6 +233,7 @@
{
"uid": "roadm Rennes_STA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -240,7 +244,6 @@
"east edfa in Rennes_STA to Stbrieuc": -20,
"east edfa in Rennes_STA to Ploermel": -20
}
},
"metadata": {
"location": {
@@ -254,6 +257,7 @@
{
"uid": "roadm Brest_KLA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -277,6 +281,7 @@
{
"uid": "roadm a",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -302,6 +307,7 @@
{
"uid": "roadm b",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -310,7 +316,7 @@
],
"booster_variety_list": []
},
"per_degree_pch_out_db":{
"per_degree_pch_out_db": {
"east edfa in b to a": -20,
"east edfa in b to f": -20
}
@@ -327,13 +333,14 @@
{
"uid": "roadm c",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"per_degree_pch_out_db":{
"per_degree_pch_out_db": {
"east edfa in c to a": -20,
"east edfa in c to d": -20,
"east edfa in c to f": -20
@@ -351,6 +358,7 @@
{
"uid": "roadm d",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -374,6 +382,7 @@
{
"uid": "roadm e",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -397,6 +406,7 @@
{
"uid": "roadm f",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -421,6 +431,7 @@
{
"uid": "roadm g",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -430,7 +441,7 @@
"per_degree_pch_out_db": {
"east edfa in g to e": -20,
"east edfa in g to h": -20
}
}
},
"metadata": {
"location": {
@@ -444,6 +455,7 @@
{
"uid": "roadm h",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1593,7 +1605,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 18.5,
"gain_target": 13.177288,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -2235,7 +2247,7 @@
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 6.5,
"gain_target": 11.822712,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -2292,7 +2304,7 @@
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 13.82,
"gain_target": 13.822712,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -2311,7 +2323,7 @@
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 15.18,
"gain_target": 15.177288,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
response-id,source,destination,path_bandwidth,Pass?,nb of tsp pairs,total cost,transponder-type,transponder-mode,OSNR-0.1nm,SNR-0.1nm,SNR-bandwidth,baud rate (Gbaud),input power (dBm),path,"spectrum (N,M)",reversed path OSNR-0.1nm,reversed path SNR-0.1nm,reversed path SNR-bandwidth
0,trx Lorient_KMA,trx Vannes_KBE,100.0,True,1,1,Voyager,mode 1,30.84,30.84,26.75,32.0,0.0,trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"-284, 4",,,
1,trx Brest_KLA,trx Vannes_KBE,10.0,True,1,1,Voyager,mode 1,22.65,22.11,18.03,32.0,1.0,trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"-276, 4",,,
3,trx Lannion_CAS,trx Rennes_STA,60.0,True,1,1,vendorA_trx-type1,mode 1,28.29,25.85,21.77,32.0,1.0,trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA,"-284, 4",,,
4,trx Rennes_STA,trx Lannion_CAS,150.0,True,1,1,vendorA_trx-type1,mode 2,22.27,22.15,15.05,64.0,0.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS,"-266, 6",,,
5,trx Rennes_STA,trx Lannion_CAS,20.0,True,1,1,vendorA_trx-type1,mode 2,30.79,28.77,21.68,64.0,3.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS,"-274, 6",,,
0,trx Lorient_KMA,trx Vannes_KBE,100.0,True,1,1,Voyager,mode 1,30.84,30.84,26.75,32.0,0.0,trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"[-284], [4]",,,
1,trx Brest_KLA,trx Vannes_KBE,10.0,True,1,1,Voyager,mode 1,22.65,22.11,18.03,32.0,1.0,trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"[-276], [4]",,,
3,trx Lannion_CAS,trx Rennes_STA,60.0,True,1,1,vendorA_trx-type1,mode 1,28.29,25.85,21.77,32.0,1.0,trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA,"[-284], [4]",,,
4,trx Rennes_STA,trx Lannion_CAS,150.0,True,1,1,vendorA_trx-type1,mode 2,22.27,22.14,15.05,64.0,0.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS,"[-266], [6]",,,
5,trx Rennes_STA,trx Lannion_CAS,20.0,True,1,1,vendorA_trx-type1,mode 2,30.79,28.76,21.67,64.0,3.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS,"[-274], [6]",,,
6,,,,NO_PATH,,,,,,,,,,,,,,
1 response-id source destination path_bandwidth Pass? nb of tsp pairs total cost transponder-type transponder-mode OSNR-0.1nm SNR-0.1nm SNR-bandwidth baud rate (Gbaud) input power (dBm) path spectrum (N,M) reversed path OSNR-0.1nm reversed path SNR-0.1nm reversed path SNR-bandwidth
2 0 trx Lorient_KMA trx Vannes_KBE 100.0 True 1 1 Voyager mode 1 30.84 30.84 26.75 32.0 0.0 trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE -284, 4 [-284], [4]
3 1 trx Brest_KLA trx Vannes_KBE 10.0 True 1 1 Voyager mode 1 22.65 22.11 18.03 32.0 1.0 trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE -276, 4 [-276], [4]
4 3 trx Lannion_CAS trx Rennes_STA 60.0 True 1 1 vendorA_trx-type1 mode 1 28.29 25.85 21.77 32.0 1.0 trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA -284, 4 [-284], [4]
5 4 trx Rennes_STA trx Lannion_CAS 150.0 True 1 1 vendorA_trx-type1 mode 2 22.27 22.15 22.14 15.05 64.0 0.0 trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS -266, 6 [-266], [6]
6 5 trx Rennes_STA trx Lannion_CAS 20.0 True 1 1 vendorA_trx-type1 mode 2 30.79 28.77 28.76 21.68 21.67 64.0 3.0 trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS -274, 6 [-274], [6]
7 6 NO_PATH

View File

@@ -14,8 +14,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -39,8 +39,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -104,8 +104,8 @@
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 50000000000.0,
@@ -129,8 +129,8 @@
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 75000000000.0,
@@ -154,8 +154,8 @@
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 75000000000.0,
@@ -179,8 +179,8 @@
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"N": "null",
"M": "null"
"N": null,
"M": null
}
],
"spacing": 75000000000.0,

View File

@@ -12,12 +12,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -37,12 +31,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -62,12 +50,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -87,12 +69,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -133,12 +109,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 2 - fake",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": 63,
"output-power": 0.001,
@@ -158,12 +128,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": 63,
"output-power": 0.001,
@@ -183,12 +147,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -221,12 +179,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 3",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 62500000000.0,
"max-nb-of-channel": 76,
"output-power": 0.001,
@@ -259,12 +211,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -284,12 +230,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -330,12 +270,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": null,
@@ -355,12 +289,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": null,
"output-power": 0.001,
@@ -380,12 +308,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": null,
"output-power": null,
@@ -405,12 +327,6 @@
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
@@ -451,12 +367,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": null,
"output-power": 0.001,
@@ -476,12 +386,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": 63,
"output-power": null,
@@ -501,12 +405,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": null,
"output-power": null,
@@ -526,12 +424,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": null,
"output-power": null,
@@ -551,12 +443,6 @@
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 30000000000.0,
"max-nb-of-channel": null,
"output-power": null,

View File

@@ -0,0 +1,97 @@
signal,nli
1.9952623149688796e-05,1.0570305869494063e-08
1.9952623149688796e-05,1.1989102199581664e-08
1.9952623149688796e-05,1.2687787891259665e-08
1.9952623149688796e-05,1.3153676763101585e-08
1.9952623149688796e-05,1.3504001312414315e-08
1.9952623149688796e-05,1.378517965356758e-08
1.9952623149688796e-05,1.4020312829929705e-08
1.9952623149688796e-05,1.4222564206194578e-08
1.9952623149688796e-05,1.440014394542033e-08
1.9952623149688796e-05,1.4558516068269932e-08
1.9952623149688796e-05,1.4701499315172012e-08
1.9952623149688796e-05,1.4831866587815758e-08
1.9952623149688796e-05,1.4951694168451522e-08
1.9952623149688796e-05,1.506257639956634e-08
1.9952623149688796e-05,1.5165763570833366e-08
1.9952623149688796e-05,1.5262253772723937e-08
1.9952623149688796e-05,1.535285600134073e-08
1.9952623149688796e-05,1.543823467328411e-08
1.9952623149688796e-05,1.551894175425445e-08
1.9952623149688796e-05,1.5595440417063968e-08
1.9952623149688796e-05,1.5668122772822936e-08
1.9952623149688796e-05,1.5737323370281063e-08
1.9952623149688796e-05,1.5803329618444796e-08
1.9952623149688796e-05,1.5866389935670908e-08
1.9952623149688796e-05,1.592672019391794e-08
1.9952623149688796e-05,1.598450886742589e-08
1.9952623149688796e-05,1.6039921184766554e-08
1.9952623149688796e-05,1.609310250559421e-08
1.9952623149688796e-05,1.61441810880001e-08
1.9952623149688796e-05,1.6193270372246937e-08
1.9952623149688796e-05,1.6240470877236143e-08
1.9952623149688796e-05,1.6285871784230113e-08
1.9952623149688796e-05,1.6329552265978812e-08
1.9952623149688796e-05,1.6371582606990462e-08
1.9952623149688796e-05,1.641202515119326e-08
1.9952623149688796e-05,1.6450935105904177e-08
1.9952623149688796e-05,1.6488361225310858e-08
1.9952623149688796e-05,1.6524346392188574e-08
1.9952623149688796e-05,1.6558928113022246e-08
1.9952623149688796e-05,1.6592138938867027e-08
1.9952623149688796e-05,1.6624006821997905e-08
1.9952623149688796e-05,1.665455541654349e-08
1.9952623149688796e-05,1.668380432977811e-08
1.9952623149688796e-05,1.6711769329485368e-08
1.9952623149688796e-05,1.6738462511750264e-08
1.9952623149688796e-05,1.6763892432637406e-08
1.9952623149688796e-05,1.6788064206436675e-08
1.9952623149688796e-05,1.681097957247311e-08
1.9952623149688796e-05,1.6832636931862217e-08
1.9952623149688796e-05,1.6853031355021186e-08
1.9952623149688796e-05,1.687215456020574e-08
1.9952623149688796e-05,1.688999486281053e-08
1.9952623149688796e-05,1.690653709463382e-08
1.9952623149688796e-05,1.6921762491746848e-08
1.9952623149688796e-05,1.6935648549006222e-08
1.9952623149688796e-05,1.6948168838584662e-08
1.9952623149688796e-05,1.695929278914847e-08
1.9952623149688796e-05,1.696898542145055e-08
1.9952623149688796e-05,1.6977207035104874e-08
1.9952623149688796e-05,1.6983912840119302e-08
1.9952623149688796e-05,1.6989052525338295e-08
1.9952623149688796e-05,1.699256975421989e-08
1.9952623149688796e-05,1.6994401576260005e-08
1.9952623149688796e-05,1.6994477739772384e-08
1.9952623149688796e-05,1.699271988849318e-08
1.9952623149688796e-05,1.6989040620420942e-08
1.9952623149688796e-05,1.6983342382173362e-08
1.9952623149688796e-05,1.6975516165613388e-08
1.9952623149688796e-05,1.6965439965112504e-08
1.9952623149688796e-05,1.6952976942961452e-08
1.9952623149688796e-05,1.693797323625088e-08
1.9952623149688796e-05,1.6920255319826076e-08
1.9952623149688796e-05,1.6899626814970685e-08
1.9952623149688796e-05,1.6875864599859146e-08
1.9952623149688796e-05,1.6848714031984708e-08
1.9952623149688796e-05,1.6817883029489423e-08
1.9952623149688796e-05,1.6783034669737056e-08
1.9952623149688796e-05,1.674377783759437e-08
1.9952623149688796e-05,1.669965527407164e-08
1.9952623149688796e-05,1.6650128108596616e-08
1.9952623149688796e-05,1.6594555557112625e-08
1.9952623149688796e-05,1.6532167853144137e-08
1.9952623149688796e-05,1.6462029512327026e-08
1.9952623149688796e-05,1.6382988469074245e-08
1.9952623149688796e-05,1.6293604020234886e-08
1.9952623149688796e-05,1.619204201130206e-08
1.9952623149688796e-05,1.607591759753518e-08
1.9952623149688796e-05,1.5942050594874486e-08
1.9952623149688796e-05,1.578606776895102e-08
1.9952623149688796e-05,1.5601720601345105e-08
1.9952623149688796e-05,1.5379633197361104e-08
1.9952623149688796e-05,1.5104793671989548e-08
1.9952623149688796e-05,1.4750892345803154e-08
1.9952623149688796e-05,1.4265134295425351e-08
1.9952623149688796e-05,1.3514359541675816e-08
1.9952623149688796e-05,1.194579997186553e-08
1 signal nli
2 1.9952623149688796e-05 1.0570305869494063e-08
3 1.9952623149688796e-05 1.1989102199581664e-08
4 1.9952623149688796e-05 1.2687787891259665e-08
5 1.9952623149688796e-05 1.3153676763101585e-08
6 1.9952623149688796e-05 1.3504001312414315e-08
7 1.9952623149688796e-05 1.378517965356758e-08
8 1.9952623149688796e-05 1.4020312829929705e-08
9 1.9952623149688796e-05 1.4222564206194578e-08
10 1.9952623149688796e-05 1.440014394542033e-08
11 1.9952623149688796e-05 1.4558516068269932e-08
12 1.9952623149688796e-05 1.4701499315172012e-08
13 1.9952623149688796e-05 1.4831866587815758e-08
14 1.9952623149688796e-05 1.4951694168451522e-08
15 1.9952623149688796e-05 1.506257639956634e-08
16 1.9952623149688796e-05 1.5165763570833366e-08
17 1.9952623149688796e-05 1.5262253772723937e-08
18 1.9952623149688796e-05 1.535285600134073e-08
19 1.9952623149688796e-05 1.543823467328411e-08
20 1.9952623149688796e-05 1.551894175425445e-08
21 1.9952623149688796e-05 1.5595440417063968e-08
22 1.9952623149688796e-05 1.5668122772822936e-08
23 1.9952623149688796e-05 1.5737323370281063e-08
24 1.9952623149688796e-05 1.5803329618444796e-08
25 1.9952623149688796e-05 1.5866389935670908e-08
26 1.9952623149688796e-05 1.592672019391794e-08
27 1.9952623149688796e-05 1.598450886742589e-08
28 1.9952623149688796e-05 1.6039921184766554e-08
29 1.9952623149688796e-05 1.609310250559421e-08
30 1.9952623149688796e-05 1.61441810880001e-08
31 1.9952623149688796e-05 1.6193270372246937e-08
32 1.9952623149688796e-05 1.6240470877236143e-08
33 1.9952623149688796e-05 1.6285871784230113e-08
34 1.9952623149688796e-05 1.6329552265978812e-08
35 1.9952623149688796e-05 1.6371582606990462e-08
36 1.9952623149688796e-05 1.641202515119326e-08
37 1.9952623149688796e-05 1.6450935105904177e-08
38 1.9952623149688796e-05 1.6488361225310858e-08
39 1.9952623149688796e-05 1.6524346392188574e-08
40 1.9952623149688796e-05 1.6558928113022246e-08
41 1.9952623149688796e-05 1.6592138938867027e-08
42 1.9952623149688796e-05 1.6624006821997905e-08
43 1.9952623149688796e-05 1.665455541654349e-08
44 1.9952623149688796e-05 1.668380432977811e-08
45 1.9952623149688796e-05 1.6711769329485368e-08
46 1.9952623149688796e-05 1.6738462511750264e-08
47 1.9952623149688796e-05 1.6763892432637406e-08
48 1.9952623149688796e-05 1.6788064206436675e-08
49 1.9952623149688796e-05 1.681097957247311e-08
50 1.9952623149688796e-05 1.6832636931862217e-08
51 1.9952623149688796e-05 1.6853031355021186e-08
52 1.9952623149688796e-05 1.687215456020574e-08
53 1.9952623149688796e-05 1.688999486281053e-08
54 1.9952623149688796e-05 1.690653709463382e-08
55 1.9952623149688796e-05 1.6921762491746848e-08
56 1.9952623149688796e-05 1.6935648549006222e-08
57 1.9952623149688796e-05 1.6948168838584662e-08
58 1.9952623149688796e-05 1.695929278914847e-08
59 1.9952623149688796e-05 1.696898542145055e-08
60 1.9952623149688796e-05 1.6977207035104874e-08
61 1.9952623149688796e-05 1.6983912840119302e-08
62 1.9952623149688796e-05 1.6989052525338295e-08
63 1.9952623149688796e-05 1.699256975421989e-08
64 1.9952623149688796e-05 1.6994401576260005e-08
65 1.9952623149688796e-05 1.6994477739772384e-08
66 1.9952623149688796e-05 1.699271988849318e-08
67 1.9952623149688796e-05 1.6989040620420942e-08
68 1.9952623149688796e-05 1.6983342382173362e-08
69 1.9952623149688796e-05 1.6975516165613388e-08
70 1.9952623149688796e-05 1.6965439965112504e-08
71 1.9952623149688796e-05 1.6952976942961452e-08
72 1.9952623149688796e-05 1.693797323625088e-08
73 1.9952623149688796e-05 1.6920255319826076e-08
74 1.9952623149688796e-05 1.6899626814970685e-08
75 1.9952623149688796e-05 1.6875864599859146e-08
76 1.9952623149688796e-05 1.6848714031984708e-08
77 1.9952623149688796e-05 1.6817883029489423e-08
78 1.9952623149688796e-05 1.6783034669737056e-08
79 1.9952623149688796e-05 1.674377783759437e-08
80 1.9952623149688796e-05 1.669965527407164e-08
81 1.9952623149688796e-05 1.6650128108596616e-08
82 1.9952623149688796e-05 1.6594555557112625e-08
83 1.9952623149688796e-05 1.6532167853144137e-08
84 1.9952623149688796e-05 1.6462029512327026e-08
85 1.9952623149688796e-05 1.6382988469074245e-08
86 1.9952623149688796e-05 1.6293604020234886e-08
87 1.9952623149688796e-05 1.619204201130206e-08
88 1.9952623149688796e-05 1.607591759753518e-08
89 1.9952623149688796e-05 1.5942050594874486e-08
90 1.9952623149688796e-05 1.578606776895102e-08
91 1.9952623149688796e-05 1.5601720601345105e-08
92 1.9952623149688796e-05 1.5379633197361104e-08
93 1.9952623149688796e-05 1.5104793671989548e-08
94 1.9952623149688796e-05 1.4750892345803154e-08
95 1.9952623149688796e-05 1.4265134295425351e-08
96 1.9952623149688796e-05 1.3514359541675816e-08
97 1.9952623149688796e-05 1.194579997186553e-08

View File

@@ -0,0 +1,6 @@
signal,nli
1.9952623149688796e-05,5.183134799604202e-09
1.7957360834719913e-05,4.286200408629989e-09
2.593841009459543e-05,6.2510001955285065e-09
1.5962098519751036e-05,4.082332034495425e-09
2.3943147779626556e-05,7.857762167195498e-09
1 signal nli
2 1.9952623149688796e-05 5.183134799604202e-09
3 1.7957360834719913e-05 4.286200408629989e-09
4 2.593841009459543e-05 6.2510001955285065e-09
5 1.5962098519751036e-05 4.082332034495425e-09
6 2.3943147779626556e-05 7.857762167195498e-09

View File

@@ -0,0 +1,809 @@
{
"network_name": "Example Network - long path",
"elements": [{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "roadm Site A",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster A",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span2",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa2",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span3",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa3",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span4",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa4",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span5",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa5",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site C",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster C",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span6",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa6",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span7",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa7",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span8",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa8",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span9",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa9",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span10",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa10",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site D",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster D",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span11",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa11",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span12",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa12",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site E",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster E",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span13",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa13",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span14",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa14",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span15",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa15",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site B",
"metadata": {
"location": {
"city": "Site B",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 3,
"longitude": 0
}
}
}
],
"connections": [{
"from_node": "Site_A",
"to_node": "roadm Site A"
},
{
"from_node": "roadm Site A",
"to_node": "booster A"
},
{
"from_node": "booster A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Span2"
},
{
"from_node": "Span2",
"to_node": "Edfa2"
},
{
"from_node": "Edfa2",
"to_node": "Span3"
},
{
"from_node": "Span3",
"to_node": "Edfa3"
},
{
"from_node": "Edfa3",
"to_node": "Span4"
},
{
"from_node": "Span4",
"to_node": "Edfa4"
},
{
"from_node": "Edfa4",
"to_node": "Span5"
},
{
"from_node": "Span5",
"to_node": "Edfa5"
},
{
"from_node": "Edfa5",
"to_node": "roadm Site C"
},
{
"from_node": "roadm Site C",
"to_node": "booster C"
},
{
"from_node": "booster C",
"to_node": "Span6"
},
{
"from_node": "Span6",
"to_node": "Edfa6"
},
{
"from_node": "Edfa6",
"to_node": "Span7"
},
{
"from_node": "Span7",
"to_node": "Edfa7"
},
{
"from_node": "Edfa7",
"to_node": "Span8"
},
{
"from_node": "Span8",
"to_node": "Edfa8"
},
{
"from_node": "Edfa8",
"to_node": "Span9"
},
{
"from_node": "Span9",
"to_node": "Edfa9"
},
{
"from_node": "Edfa9",
"to_node": "Span10"
},
{
"from_node": "Span10",
"to_node": "Edfa10"
},
{
"from_node": "Edfa10",
"to_node": "roadm Site D"
},
{
"from_node": "roadm Site D",
"to_node": "booster D"
},
{
"from_node": "booster D",
"to_node": "Span11"
},
{
"from_node": "Span11",
"to_node": "Edfa11"
},
{
"from_node": "Edfa11",
"to_node": "Span12"
},
{
"from_node": "Span12",
"to_node": "Edfa12"
},
{
"from_node": "Edfa12",
"to_node": "roadm Site E"
},
{
"from_node": "roadm Site E",
"to_node": "booster E"
},
{
"from_node": "booster E",
"to_node": "Span13"
},
{
"from_node": "Span13",
"to_node": "Edfa13"
},
{
"from_node": "Edfa13",
"to_node": "Span14"
},
{
"from_node": "Span14",
"to_node": "Edfa14"
},
{
"from_node": "Edfa14",
"to_node": "Span15"
},
{
"from_node": "Span15",
"to_node": "Edfa15"
},
{
"from_node": "Edfa15",
"to_node": "roadm Site B"
},
{
"from_node": "roadm Site B",
"to_node": "Site_B"
}
]
}

View File

@@ -0,0 +1,96 @@
0.001,0.0007537739940510926,0.0005921033539224395,0.000384643453726324,0.00024710943492700773,0.00015765779381207088,0.00010015276356884663,6.345008665672524e-05,4.012925332336102e-05,2.535268958174273e-05
0.001,0.0007532443480762404,0.0005915606741358828,0.00038408573214392957,0.00024666764094038643,0.00015734224135307426,9.993879038586218e-05,6.330912140259024e-05,4.003794165686942e-05,2.529414108865862e-05
0.001,0.0007527148738848327,0.0005910183036445593,0.0003835286706438232,0.0002462265418760313,0.00015702726304657165,9.972523988324127e-05,6.316844848796591e-05,3.994682503096186e-05,2.5235719950422228e-05
0.001,0.0007521855703345118,0.0005904762413907948,0.00038297226807207136,0.0002457861365766504,0.00015671285789580896,9.9512111295817e-05,6.302806736731544e-05,3.985590307420444e-05,2.5177425921282973e-05
0.001,0.0007516564362539944,0.0005899344862777934,0.00038241652320864807,0.0002453464238190796,0.00015639902485083639,9.929940381972637e-05,6.288797746852316e-05,3.976517539750482e-05,2.511925874398998e-05
0.001,0.0007511274704431355,0.0005893930371697809,0.0003818614347679428,0.0002449074023149522,0.00015608576280913723,9.908711661290977e-05,6.27481781932559e-05,3.967464159435973e-05,2.5061218149955632e-05
0.001,0.0007505986716729718,0.0005888518928921378,0.00038130700139925517,0.0002444690707113658,0.00015577307061625246,9.887524879560432e-05,6.260866891731864e-05,3.958430124109855e-05,2.5003303859417958e-05
0.001,0.0007500678710880661,0.0005883088511431218,0.000380751009486411,0.0002440296996901373,0.00015545972380501664,9.866297459432463e-05,6.246890748950651e-05,3.949380391318895e-05,2.4945291488462056e-05
0.001,0.0007495350705096461,0.0005877639154939723,0.000380193466563788,0.00024358929686534952,0.00015514572847430736,9.8450298405315e-05,6.232889690863924e-05,3.9403151593579556e-05,2.4887182324516918e-05
0.001,0.0007490002717484986,0.0005872170894971442,0.00037963438011605534,0.00024314786979147204,0.00015483109067004745,9.823722458416644e-05,6.218864014470764e-05,3.931234624568946e-05,2.4828977642138712e-05
0.001,0.0007484634766050366,0.000586668376686434,0.0003790737575785661,0.00024270542596389042,0.0001545158163857142,9.802375744622405e-05,6.204814013916893e-05,3.9221389813611975e-05,2.4770678703146694e-05
0.001,0.0007479199274773811,0.0005861128912299699,0.0003785065486556895,0.00024225795000622747,0.0001541970308568484,9.780794472023814e-05,6.190610951865765e-05,3.9129447888412384e-05,2.471175028700643e-05
0.001,0.0007473696306726699,0.0005855506450602122,0.0003779327791658341,0.00024180546890527417,0.0001538747562360148,9.758980264023896e-05,6.176255947727244e-05,3.903652792388679e-05,2.4652197254708885e-05
0.001,0.0007468125926679213,0.0005849816503235855,0.0003773524752207052,0.00024134800990073543,0.00015354901486124996,9.736934756691086e-05,6.161750129261558e-05,3.8942637427869684e-05,2.459202450185328e-05
0.001,0.0007462488201102061,0.0005844059193804029,0.00037676566322402907,0.00024088560048334876,0.0001532198292542639,9.714659598616437e-05,6.147094632476142e-05,3.884778396152801e-05,2.4531236958179027e-05
0.001,0.0007456783198168171,0.0005838234648047683,0.00037617236987025305,0.00024041826839299018,0.00015288722211863548,9.692156450770277e-05,6.132290601522212e-05,3.875197513865345e-05,2.4469839587096592e-05
0.001,0.0007451010987754332,0.0005832342993844907,0.0003755726221432343,0.0002399460416167659,0.00015255121633799497,9.66942698635831e-05,6.11733918859104e-05,3.8655218624953314e-05,2.4407837385217267e-05
0.001,0.0007445173992825126,0.0005826386743528757,0.00037496668540476865,0.00023946913369259697,0.00015221196586566552,9.646481704279825e-05,6.102247334575324e-05,3.85575594785277e-05,2.4345259282747418e-05
0.001,0.0007439272282773631,0.0005820366023339485,0.0003743545861363169,0.00023898757201912962,0.00015186949307274757,9.623322238874437e-05,6.0870161643097905e-05,3.845900518061352e-05,2.4282110155051444e-05
0.001,0.0007433305928659832,0.0005814280961601982,0.00037373635109929905,0.0002385013842326201,0.0001515238205025659,9.599950236146117e-05,6.071646810276464e-05,3.835956326175255e-05,2.4218394908993806e-05
0.001,0.0007427275003211868,0.0005808131688724332,0.0003731120073337174,0.00023801059820498021,0.0001511749708688244,9.576367353617374e-05,6.05614041249978e-05,3.825924130107498e-05,2.4154118482464792e-05
0.001,0.0007421180800523362,0.0005801919587229117,0.00037248171070273063,0.0002375153439047009,0.00015082303982525373,9.55258019540184e-05,6.0405013700224733e-05,3.815806798909622e-05,2.4089299350133826e-05
0.001,0.0007415023395254894,0.0005795644789202474,0.00037184548827748576,0.0002370156491221818,0.00015046804996987382,9.528590408468248e-05,6.0247308147258e-05,3.8056050847170796e-05,2.4023942410771268e-05
0.001,0.0007408802863797739,0.000578930742889133,0.00037120336741830446,0.00023651154189285886,0.00015011002407818366,9.504399651802114e-05,6.008829886368558e-05,3.7953197447440844e-05,2.395805259559495e-05
0.001,0.0007402519284274773,0.00057829076427012,0.0003705553757730914,0.00023600305049498863,0.0001497489851010917,9.480009596242987e-05,5.992799732470356e-05,3.784951541204015e-05,2.389163486774317e-05
0.001,0.0007396172736541335,0.0005776445569193926,0.0003699015412757306,0.000235490203447419,0.00014938495616282697,9.455421924320194e-05,5.976641508193571e-05,3.774501241228877e-05,2.38246942217421e-05
0.001,0.0007389763302186035,0.0005769921349085269,0.00036924189214444916,0.00023497302950733012,0.00014901796055883247,9.4306383300876e-05,5.960356376224896e-05,3.763969616788547e-05,2.37572356829714e-05
0.001,0.000738329973009011,0.0005763343882557762,0.00036857732657886674,0.00023445223185895243,0.00014864849677321228,9.40569245366171e-05,5.943966431343476e-05,3.753370952478887e-05,2.3689350732036766e-05
0.001,0.0007376782088319843,0.0005756713289449496,0.0003679078688863157,0.00023392783529630037,0.00014827658488585004,9.38058575472753e-05,5.927472675087035e-05,3.7427059131368685e-05,2.362104369630353e-05
0.001,0.0007370210446325295,0.0005750029691304239,0.000367233543593211,0.00023339986479263558,0.00014790224510292775,9.355319701349314e-05,5.910876114408311e-05,3.7319751670569666e-05,2.3552318925085614e-05
0.001,0.0007363584874940915,0.0005743293211369546,0.0003665543754437431,0.00023286834549865966,0.00014752549775524457,9.329895769838934e-05,5.8941777615809794e-05,3.721179385927125e-05,2.348318078922229e-05
0.001,0.0007356906659117175,0.0005736505214206793,0.00036587051603697917,0.00023233340267585003,0.00014714643450378646,9.30432026577021e-05,5.8773818072131705e-05,3.710321298927822e-05,2.3413646846771747e-05
0.001,0.0007350175870680764,0.0005729665823498456,0.00036518198995355594,0.00023179506120909636,0.00014676507541963834,9.278594644638945e-05,5.8604892484780656e-05,3.699401567385024e-05,2.3343721399750524e-05
0.001,0.000734339258284937,0.0005722775164633901,0.0003644888219905243,0.00023125334615855053,0.0001463814406964208,9.252720370024704e-05,5.8435010877524154e-05,3.688420855938328e-05,2.327340877117354e-05
0.001,0.0007336556870231954,0.0005715833364706749,0.00036379103715988533,0.00023070828275766533,0.00014599555064848363,9.226698913450141e-05,5.82641833251609e-05,3.677379832472749e-05,2.320271330460301e-05
0.001,0.0007329668808828947,0.0005708840552512191,0.00036308866068712113,0.00023015989641122435,0.00014560742570909416,9.200531754239911e-05,5.8092419952513674e-05,3.666279168050168e-05,2.313163936369656e-05
0.001,0.000732272847603227,0.0005701796858544125,0.000362381718009681,0.0002296082126933358,0.00014521708642859763,9.174220379377606e-05,5.791973093340874e-05,3.6551195368400524e-05,2.3060191331749373e-05
0.001,0.0007315751779154508,0.0005694718366517781,0.00036167180797618383,0.00022905447155647377,0.00014482540661409508,9.147823538482221e-05,5.774650123146614e-05,3.643925790598459e-05,2.2988528215049473e-05
0.001,0.0007308738763564251,0.0005687605159526348,0.00036095894758939165,0.00022849869020493823,0.00014443240010265552,9.121342232553745e-05,5.7572737692798364e-05,3.6326983828340116e-05,2.2916652961499898e-05
0.001,0.0007301689475478705,0.0005680457321686527,0.00036024315397386176,0.00022794088593578913,0.00014403808079282816,9.094777466478586e-05,5.739844718775089e-05,3.6214377685641065e-05,2.2844568528419092e-05
0.001,0.0007294603961963875,0.0005673274938137002,0.0003595244443750873,0.00022738107613769066,0.00014364246264358423,9.068130248947494e-05,5.72236366103174e-05,3.610144404275241e-05,2.2772277882278848e-05
0.001,0.0007287502876018436,0.0005666079096289159,0.00035880496633647314,0.00022682095171468864,0.00014324674865159545,9.041481948469436e-05,5.7048841153261715e-05,3.598852922211342e-05,2.270000293927642e-05
0.001,0.0007280386231103084,0.0005658869826353605,0.0003580847262718071,0.00022626051891339797,0.00014285094367250402,9.014832907727154e-05,5.687406312117876e-05,3.587563473352017e-05,2.2627744673782604e-05
0.001,0.0007273254041056322,0.0005651647158992671,0.00035736373064750184,0.00022569978402038908,0.00014245505258865028,8.988183471111395e-05,5.669930482943582e-05,3.5762762093538084e-05,2.2555504064421286e-05
0.001,0.0007266106320094578,0.0005644411125319691,0.00035664198598218,0.00022513875336164715,0.0001420590803085807,8.961533984682783e-05,5.652456860390248e-05,3.564991282531874e-05,2.2483282093948716e-05
0.001,0.000725894308281204,0.0005637161756897977,0.0003559194988462394,0.00022457743330201225,0.00014166303176654256,8.934884796133105e-05,5.634985678067539e-05,3.5537088458413665e-05,2.2411079749130865e-05
0.001,0.0007251764344180624,0.0005629899085739927,0.00035519627586142176,0.0002240158302446243,0.00014126691192198565,8.90823625474685e-05,5.6175171705805915e-05,3.542429052859005e-05,2.233889802062196e-05
0.001,0.0007244588135748975,0.0005622641246704724,0.00035447409591105305,0.0002234553120905153,0.00014087167955905718,8.881652603390643e-05,5.600093342830372e-05,3.531178983274928e-05,2.2266910019981595e-05
0.001,0.000723741443178776,0.000561538821268995,0.0003537529553873339,0.00022289587522719752,0.00014047733166655684,8.855133617099835e-05,5.5827140373801375e-05,3.519958531186087e-05,2.219511505192651e-05
0.001,0.0007230243206833482,0.0005608139956950427,0.00035303285074046774,0.00022233751609917817,0.00014008386527925162,8.82867907426191e-05,5.565379099102327e-05,3.508767592227262e-05,2.212351243120618e-05
0.001,0.0007223074435688039,0.0005600896453097011,0.0003523137784782074,0.00022178023120736695,0.00013969127747733319,8.802288756574066e-05,5.5480883751481105e-05,3.4976060635503277e-05,2.2052101482465692e-05
0.001,0.0007215926247557181,0.0005593676122940626,0.00035159759247597197,0.00022122546934306127,0.00013930059415776796,8.776031848020719e-05,5.5308872854303e-05,3.486503301641155e-05,2.198107017600086e-05
0.001,0.0007208798585848073,0.0005586478889723664,0.0003508842795507963,0.0002206732171528304,0.00013891180440309996,8.749907547557891e-05,5.513775276548628e-05,3.475458937431628e-05,2.1910416102241813e-05
0.001,0.0007201691394257483,0.000557930467712979,0.00035017382661216696,0.00022012346138632064,0.00013852489738482468,8.723915060881119e-05,5.49675179985075e-05,3.464472605058592e-05,2.184013687270143e-05
0.001,0.0007194604616770773,0.00055721534092818,0.00034946622066134466,0.00021957618889536463,0.00013813986236255893,8.698053600359808e-05,5.4798163113848986e-05,3.453543941831367e-05,2.177023011975932e-05
0.001,0.0007187538197660722,0.0005565025010739346,0.00034876144879066544,0.00021903138663308575,0.0001377566886832086,8.672322384971475e-05,5.462968271852315e-05,3.442672588199151e-05,2.1700693496445714e-05
0.001,0.0007180492081486484,0.0005557919406496801,0.00034805949818288173,0.0002184890416530366,0.00013737536578016266,8.646720640237894e-05,5.446207146561145e-05,3.431858187719449e-05,2.1631524676231647e-05
0.001,0.000717348639431565,0.0005550856739198547,0.00034736232071304855,0.00021795064331956514,0.00013699693247692832,8.621317757037385e-05,5.429578217858938e-05,3.421129897003673e-05,2.1562909902755936e-05
0.001,0.0007166521035756881,0.0005543836868927082,0.0003466698924934393,0.00021741616794755068,0.00013662136971116798,8.596112351100096e-05,5.413080535731451e-05,3.410487085131832e-05,2.1494845067789903e-05
0.001,0.0007159595906065037,0.0005536859656730149,0.00034598218983055497,0.0002168855920630381,0.0001362486585998701,8.571103051605296e-05,5.396713159578493e-05,3.399929127512844e-05,2.142732610463052e-05
0.001,0.0007152710906138687,0.0005529924964615861,0.00034529918922366796,0.00021635889240138666,0.0001358787804376394,8.546288501047042e-05,5.380475158117202e-05,3.389455405818364e-05,2.1360348987661796e-05
0.001,0.0007145881681833736,0.0005523048607339887,0.0003446224616264519,0.00021583728670966556,0.00013551259312919557,8.521726369129195e-05,5.364404315662281e-05,3.379090310339315e-05,2.129406976339983e-05
0.001,0.0007139108109389651,0.0005516230407004492,0.0003439519758859039,0.00021532074399295122,0.00013515007172518374,8.497414844816332e-05,5.3484993898260945e-05,3.368833016244125e-05,2.122848306212633e-05
0.001,0.0007132390066148024,0.0005509470187317473,0.00034328770115903844,0.00021480923358720733,0.0001347911915544671,8.473352137819455e-05,5.3327591526929936e-05,3.358682708410006e-05,2.1163583577742056e-05
0.001,0.0007125727430549207,0.0005502767773585094,0.000342629606910633,0.00021430272515636744,0.0001344359282214269,8.449536478383494e-05,5.317182390666476e-05,3.348638581318404e-05,2.109936606707349e-05
0.001,0.0007119120082129148,0.0005496122992705212,0.0003419776629110174,0.0002138011886894788,0.00013408425760331254,8.425966117078749e-05,5.3017679043188334e-05,3.3386998389521964e-05,2.1035825349191292e-05
0.001,0.000711256790151613,0.0005489535673160376,0.0003413318392338714,0.00021330459449785352,0.00013373615584760944,8.40263932459383e-05,5.286514508242194e-05,3.3288656946938245e-05,2.0972956304734848e-05
0.001,0.0007106071943639499,0.0005483006816957998,0.00034069221933208274,0.0002128129992904075,0.00013339165932644894,8.379558393280961e-05,5.271423641048183e-05,3.31913705135711e-05,2.091076460544407e-05
0.001,0.000709963208882901,0.0005476536252143895,0.0003400587732671483,0.0002123263734210078,0.00013305074425072359,8.356721599784782e-05,5.256494122003263e-05,3.3095131256746724e-05,2.0849245154782437e-05
0.001,0.0007093248218486061,0.0005470123808316875,0.00033943147139689077,0.0002118446875576196,0.00013271338709432742,8.334127240311385e-05,5.241724783997488e-05,3.299993143509595e-05,2.0788392916005465e-05
0.001,0.0007086920215080653,0.0005463769316622218,0.0003388102843733889,0.00021136791267964032,0.0001323795645916927,8.311773630434548e-05,5.2271144734051514e-05,3.290576339760186e-05,2.07282029115292e-05
0.001,0.0007080656480431051,0.0005457481216341828,0.0003381960373995552,0.00021089668206097172,0.0001320497200486003,8.289690449717853e-05,5.2126825862102536e-05,3.2812752146082854e-05,2.0668755034757233e-05
0.001,0.0007074456886869565,0.0005451259321489777,0.0003375886977799707,0.0002104309633113142,0.00013172382748945162,8.26787581753205e-05,5.198427834496719e-05,3.2720889139431744e-05,2.061004372929991e-05
0.001,0.0007068321308093747,0.0005445103448031184,0.0003369882331820464,0.00020997072442018424,0.00013140186125447996,8.246327876643199e-05,5.18434894660219e-05,3.2630165945308436e-05,2.055206350992823e-05
0.001,0.0007062249619162967,0.0005439013413874698,0.00033639461163356655,0.00020951593375373114,0.00013108379599680725,8.225044792981545e-05,5.170444666951808e-05,3.254057423900392e-05,2.0494808961820763e-05
0.001,0.00070562416964951,0.0005432989038865089,0.00033580780152024723,0.000209066560051587,0.00013076960667953474,8.204024755412909e-05,5.156713755893784e-05,3.2452105802317056e-05,2.0438274739819433e-05
0.001,0.0007050297417863318,0.0005427030144775926,0.0003352277715833316,0.00020862257242375786,0.00013045926857287288,8.183265975513502e-05,5.143154989537623e-05,3.236475252244954e-05,2.038245556769746e-05
0.001,0.0007044417829621171,0.000542113771820027,0.0003346546023905152,0.00020818402485557293,0.00013015281596227648,8.162770599537212e-05,5.129769708700084e-05,3.227852278867728e-05,2.032735670561579e-05
0.001,0.0007038602809995153,0.0005415311581470623,0.00033408826282687573,0.00020775088664703998,0.00012985022429639665,8.142536853201701e-05,5.116556699709043e-05,3.219340855821242e-05,2.0272972923816322e-05
0.001,0.0007032852238493367,0.0005409551558747416,0.0003335287221154158,0.00020732312745044945,0.00012955146931603386,8.122562983828357e-05,5.103514763884953e-05,3.2109401888525124e-05,2.0219299058105656e-05
0.001,0.0007027165995902542,0.0005403857476012292,0.00033297594981485264,0.00020690071726752732,0.0001292565270515082,8.102847260135871e-05,5.090642717392409e-05,3.202649493632917e-05,2.0166330009182866e-05
0.001,0.0007021546252265139,0.0005398231466905069,0.00033243014325207994,0.00020648380199548492,0.0001289654971719027,8.083396250547584e-05,5.077944809587575e-05,3.194471491165552e-05,2.0114083097018264e-05
0.001,0.0007015992888126556,0.0005392673356287205,0.0003318912717105927,0.00020607235137144977,0.0001286783555062261,8.06420820982489e-05,5.065419847368218e-05,3.186405391103787e-05,2.006255318369691e-05
0.001,0.0007010505785332368,0.0005387182970867077,0.00033135930481238495,0.00020566633548374424,0.0001283950781739038,8.04528141416734e-05,5.053066652493675e-05,3.1784504130324826e-05,2.001173519622426e-05
0.001,0.000700508482702546,0.0005381760139193414,0.00033083421251577956,0.00020526572476908743,0.000128115641582197,8.026614161010359e-05,5.040884061439589e-05,3.170605786368809e-05,1.9961624125869314e-05
0.001,0.0006999729897643184,0.0005376404691648787,0.00033031596511327947,0.00020487049000982136,0.00012784002242364822,8.008204768824872e-05,5.028870925253973e-05,3.1628707502639986e-05,1.9912215027513866e-05
0.001,0.0006994440882914515,0.0005371116460443127,0.0003298045332294241,0.0002044806023311588,0.0001275681976735486,7.990051576919067e-05,5.0170261094149856e-05,3.155244553506268e-05,1.9863503019009735e-05
0.001,0.0006989172535560769,0.0005365850419669894,0.000329295612913881,0.00020409280438264766,0.00012729790663346764,7.972004038787022e-05,5.0052515589855926e-05,3.147664135129994e-05,1.9815085586326718e-05
0.001,0.0006983924815322933,0.0005360606511477293,0.0003287891938968759,0.00020370708584067882,0.00012702914094133737,7.954061545150935e-05,4.993546855036179e-05,3.140129216611291e-05,1.9766960914662127e-05
0.001,0.0006978697681747856,0.000535538467781285,0.000328285265898271,0.00020332343638453147,0.00012676189224377013,7.936223487646896e-05,4.981911579385119e-05,3.1326395199731696e-05,1.971912719297887e-05
0.001,0.0006973491094188342,0.0005350184860423863,0.0003277838186277228,0.0002029418456965422,0.0001264961521961901,7.918489258833681e-05,4.970345314604528e-05,3.125194767789152e-05,1.967158261402843e-05
0.001,0.0006968284099289676,0.000534498597351666,0.00032728277956097635,0.00020256071739357045,0.0001262308004979493,7.900783730702533e-05,4.958798911408524e-05,3.1177632631488905e-05,1.9624124503146986e-05
0.001,0.0006963076677967887,0.0005339787996978908,0.00032678214616920946,0.00020218004908417888,0.0001259658352285323,7.883106763041168e-05,4.947272273059253e-05,3.110344941552445e-05,1.957675243920473e-05
0.001,0.0006957868810888677,0.0005334590910383602,0.00032628191587964447,0.00020179983833834103,0.00012570125443876325,7.865458213663353e-05,4.935765301510161e-05,3.102939737649859e-05,1.9529465995615212e-05
0.001,0.0006952660478468047,0.0005329394692990367,0.0003257820860759608,0.00020142008268794192,0.0001254370561512512,7.847837938443003e-05,4.924277897429975e-05,3.0955475852573814e-05,1.94822647404421e-05
0.001,0.00069474516608728,0.0005324199323746772,0.00032528265409871067,0.0002010407796272818,0.0001251732383608348,7.830245791348127e-05,4.91280996022673e-05,3.088168417373684e-05,1.943514823650581e-05
1 0.001 0.0007537739940510926 0.0005921033539224395 0.000384643453726324 0.00024710943492700773 0.00015765779381207088 0.00010015276356884663 6.345008665672524e-05 4.012925332336102e-05 2.535268958174273e-05
2 0.001 0.0007532443480762404 0.0005915606741358828 0.00038408573214392957 0.00024666764094038643 0.00015734224135307426 9.993879038586218e-05 6.330912140259024e-05 4.003794165686942e-05 2.529414108865862e-05
3 0.001 0.0007527148738848327 0.0005910183036445593 0.0003835286706438232 0.0002462265418760313 0.00015702726304657165 9.972523988324127e-05 6.316844848796591e-05 3.994682503096186e-05 2.5235719950422228e-05
4 0.001 0.0007521855703345118 0.0005904762413907948 0.00038297226807207136 0.0002457861365766504 0.00015671285789580896 9.9512111295817e-05 6.302806736731544e-05 3.985590307420444e-05 2.5177425921282973e-05
5 0.001 0.0007516564362539944 0.0005899344862777934 0.00038241652320864807 0.0002453464238190796 0.00015639902485083639 9.929940381972637e-05 6.288797746852316e-05 3.976517539750482e-05 2.511925874398998e-05
6 0.001 0.0007511274704431355 0.0005893930371697809 0.0003818614347679428 0.0002449074023149522 0.00015608576280913723 9.908711661290977e-05 6.27481781932559e-05 3.967464159435973e-05 2.5061218149955632e-05
7 0.001 0.0007505986716729718 0.0005888518928921378 0.00038130700139925517 0.0002444690707113658 0.00015577307061625246 9.887524879560432e-05 6.260866891731864e-05 3.958430124109855e-05 2.5003303859417958e-05
8 0.001 0.0007500678710880661 0.0005883088511431218 0.000380751009486411 0.0002440296996901373 0.00015545972380501664 9.866297459432463e-05 6.246890748950651e-05 3.949380391318895e-05 2.4945291488462056e-05
9 0.001 0.0007495350705096461 0.0005877639154939723 0.000380193466563788 0.00024358929686534952 0.00015514572847430736 9.8450298405315e-05 6.232889690863924e-05 3.9403151593579556e-05 2.4887182324516918e-05
10 0.001 0.0007490002717484986 0.0005872170894971442 0.00037963438011605534 0.00024314786979147204 0.00015483109067004745 9.823722458416644e-05 6.218864014470764e-05 3.931234624568946e-05 2.4828977642138712e-05
11 0.001 0.0007484634766050366 0.000586668376686434 0.0003790737575785661 0.00024270542596389042 0.0001545158163857142 9.802375744622405e-05 6.204814013916893e-05 3.9221389813611975e-05 2.4770678703146694e-05
12 0.001 0.0007479199274773811 0.0005861128912299699 0.0003785065486556895 0.00024225795000622747 0.0001541970308568484 9.780794472023814e-05 6.190610951865765e-05 3.9129447888412384e-05 2.471175028700643e-05
13 0.001 0.0007473696306726699 0.0005855506450602122 0.0003779327791658341 0.00024180546890527417 0.0001538747562360148 9.758980264023896e-05 6.176255947727244e-05 3.903652792388679e-05 2.4652197254708885e-05
14 0.001 0.0007468125926679213 0.0005849816503235855 0.0003773524752207052 0.00024134800990073543 0.00015354901486124996 9.736934756691086e-05 6.161750129261558e-05 3.8942637427869684e-05 2.459202450185328e-05
15 0.001 0.0007462488201102061 0.0005844059193804029 0.00037676566322402907 0.00024088560048334876 0.0001532198292542639 9.714659598616437e-05 6.147094632476142e-05 3.884778396152801e-05 2.4531236958179027e-05
16 0.001 0.0007456783198168171 0.0005838234648047683 0.00037617236987025305 0.00024041826839299018 0.00015288722211863548 9.692156450770277e-05 6.132290601522212e-05 3.875197513865345e-05 2.4469839587096592e-05
17 0.001 0.0007451010987754332 0.0005832342993844907 0.0003755726221432343 0.0002399460416167659 0.00015255121633799497 9.66942698635831e-05 6.11733918859104e-05 3.8655218624953314e-05 2.4407837385217267e-05
18 0.001 0.0007445173992825126 0.0005826386743528757 0.00037496668540476865 0.00023946913369259697 0.00015221196586566552 9.646481704279825e-05 6.102247334575324e-05 3.85575594785277e-05 2.4345259282747418e-05
19 0.001 0.0007439272282773631 0.0005820366023339485 0.0003743545861363169 0.00023898757201912962 0.00015186949307274757 9.623322238874437e-05 6.0870161643097905e-05 3.845900518061352e-05 2.4282110155051444e-05
20 0.001 0.0007433305928659832 0.0005814280961601982 0.00037373635109929905 0.0002385013842326201 0.0001515238205025659 9.599950236146117e-05 6.071646810276464e-05 3.835956326175255e-05 2.4218394908993806e-05
21 0.001 0.0007427275003211868 0.0005808131688724332 0.0003731120073337174 0.00023801059820498021 0.0001511749708688244 9.576367353617374e-05 6.05614041249978e-05 3.825924130107498e-05 2.4154118482464792e-05
22 0.001 0.0007421180800523362 0.0005801919587229117 0.00037248171070273063 0.0002375153439047009 0.00015082303982525373 9.55258019540184e-05 6.0405013700224733e-05 3.815806798909622e-05 2.4089299350133826e-05
23 0.001 0.0007415023395254894 0.0005795644789202474 0.00037184548827748576 0.0002370156491221818 0.00015046804996987382 9.528590408468248e-05 6.0247308147258e-05 3.8056050847170796e-05 2.4023942410771268e-05
24 0.001 0.0007408802863797739 0.000578930742889133 0.00037120336741830446 0.00023651154189285886 0.00015011002407818366 9.504399651802114e-05 6.008829886368558e-05 3.7953197447440844e-05 2.395805259559495e-05
25 0.001 0.0007402519284274773 0.00057829076427012 0.0003705553757730914 0.00023600305049498863 0.0001497489851010917 9.480009596242987e-05 5.992799732470356e-05 3.784951541204015e-05 2.389163486774317e-05
26 0.001 0.0007396172736541335 0.0005776445569193926 0.0003699015412757306 0.000235490203447419 0.00014938495616282697 9.455421924320194e-05 5.976641508193571e-05 3.774501241228877e-05 2.38246942217421e-05
27 0.001 0.0007389763302186035 0.0005769921349085269 0.00036924189214444916 0.00023497302950733012 0.00014901796055883247 9.4306383300876e-05 5.960356376224896e-05 3.763969616788547e-05 2.37572356829714e-05
28 0.001 0.000738329973009011 0.0005763343882557762 0.00036857732657886674 0.00023445223185895243 0.00014864849677321228 9.40569245366171e-05 5.943966431343476e-05 3.753370952478887e-05 2.3689350732036766e-05
29 0.001 0.0007376782088319843 0.0005756713289449496 0.0003679078688863157 0.00023392783529630037 0.00014827658488585004 9.38058575472753e-05 5.927472675087035e-05 3.7427059131368685e-05 2.362104369630353e-05
30 0.001 0.0007370210446325295 0.0005750029691304239 0.000367233543593211 0.00023339986479263558 0.00014790224510292775 9.355319701349314e-05 5.910876114408311e-05 3.7319751670569666e-05 2.3552318925085614e-05
31 0.001 0.0007363584874940915 0.0005743293211369546 0.0003665543754437431 0.00023286834549865966 0.00014752549775524457 9.329895769838934e-05 5.8941777615809794e-05 3.721179385927125e-05 2.348318078922229e-05
32 0.001 0.0007356906659117175 0.0005736505214206793 0.00036587051603697917 0.00023233340267585003 0.00014714643450378646 9.30432026577021e-05 5.8773818072131705e-05 3.710321298927822e-05 2.3413646846771747e-05
33 0.001 0.0007350175870680764 0.0005729665823498456 0.00036518198995355594 0.00023179506120909636 0.00014676507541963834 9.278594644638945e-05 5.8604892484780656e-05 3.699401567385024e-05 2.3343721399750524e-05
34 0.001 0.000734339258284937 0.0005722775164633901 0.0003644888219905243 0.00023125334615855053 0.0001463814406964208 9.252720370024704e-05 5.8435010877524154e-05 3.688420855938328e-05 2.327340877117354e-05
35 0.001 0.0007336556870231954 0.0005715833364706749 0.00036379103715988533 0.00023070828275766533 0.00014599555064848363 9.226698913450141e-05 5.82641833251609e-05 3.677379832472749e-05 2.320271330460301e-05
36 0.001 0.0007329668808828947 0.0005708840552512191 0.00036308866068712113 0.00023015989641122435 0.00014560742570909416 9.200531754239911e-05 5.8092419952513674e-05 3.666279168050168e-05 2.313163936369656e-05
37 0.001 0.000732272847603227 0.0005701796858544125 0.000362381718009681 0.0002296082126933358 0.00014521708642859763 9.174220379377606e-05 5.791973093340874e-05 3.6551195368400524e-05 2.3060191331749373e-05
38 0.001 0.0007315751779154508 0.0005694718366517781 0.00036167180797618383 0.00022905447155647377 0.00014482540661409508 9.147823538482221e-05 5.774650123146614e-05 3.643925790598459e-05 2.2988528215049473e-05
39 0.001 0.0007308738763564251 0.0005687605159526348 0.00036095894758939165 0.00022849869020493823 0.00014443240010265552 9.121342232553745e-05 5.7572737692798364e-05 3.6326983828340116e-05 2.2916652961499898e-05
40 0.001 0.0007301689475478705 0.0005680457321686527 0.00036024315397386176 0.00022794088593578913 0.00014403808079282816 9.094777466478586e-05 5.739844718775089e-05 3.6214377685641065e-05 2.2844568528419092e-05
41 0.001 0.0007294603961963875 0.0005673274938137002 0.0003595244443750873 0.00022738107613769066 0.00014364246264358423 9.068130248947494e-05 5.72236366103174e-05 3.610144404275241e-05 2.2772277882278848e-05
42 0.001 0.0007287502876018436 0.0005666079096289159 0.00035880496633647314 0.00022682095171468864 0.00014324674865159545 9.041481948469436e-05 5.7048841153261715e-05 3.598852922211342e-05 2.270000293927642e-05
43 0.001 0.0007280386231103084 0.0005658869826353605 0.0003580847262718071 0.00022626051891339797 0.00014285094367250402 9.014832907727154e-05 5.687406312117876e-05 3.587563473352017e-05 2.2627744673782604e-05
44 0.001 0.0007273254041056322 0.0005651647158992671 0.00035736373064750184 0.00022569978402038908 0.00014245505258865028 8.988183471111395e-05 5.669930482943582e-05 3.5762762093538084e-05 2.2555504064421286e-05
45 0.001 0.0007266106320094578 0.0005644411125319691 0.00035664198598218 0.00022513875336164715 0.0001420590803085807 8.961533984682783e-05 5.652456860390248e-05 3.564991282531874e-05 2.2483282093948716e-05
46 0.001 0.000725894308281204 0.0005637161756897977 0.0003559194988462394 0.00022457743330201225 0.00014166303176654256 8.934884796133105e-05 5.634985678067539e-05 3.5537088458413665e-05 2.2411079749130865e-05
47 0.001 0.0007251764344180624 0.0005629899085739927 0.00035519627586142176 0.0002240158302446243 0.00014126691192198565 8.90823625474685e-05 5.6175171705805915e-05 3.542429052859005e-05 2.233889802062196e-05
48 0.001 0.0007244588135748975 0.0005622641246704724 0.00035447409591105305 0.0002234553120905153 0.00014087167955905718 8.881652603390643e-05 5.600093342830372e-05 3.531178983274928e-05 2.2266910019981595e-05
49 0.001 0.000723741443178776 0.000561538821268995 0.0003537529553873339 0.00022289587522719752 0.00014047733166655684 8.855133617099835e-05 5.5827140373801375e-05 3.519958531186087e-05 2.219511505192651e-05
50 0.001 0.0007230243206833482 0.0005608139956950427 0.00035303285074046774 0.00022233751609917817 0.00014008386527925162 8.82867907426191e-05 5.565379099102327e-05 3.508767592227262e-05 2.212351243120618e-05
51 0.001 0.0007223074435688039 0.0005600896453097011 0.0003523137784782074 0.00022178023120736695 0.00013969127747733319 8.802288756574066e-05 5.5480883751481105e-05 3.4976060635503277e-05 2.2052101482465692e-05
52 0.001 0.0007215926247557181 0.0005593676122940626 0.00035159759247597197 0.00022122546934306127 0.00013930059415776796 8.776031848020719e-05 5.5308872854303e-05 3.486503301641155e-05 2.198107017600086e-05
53 0.001 0.0007208798585848073 0.0005586478889723664 0.0003508842795507963 0.0002206732171528304 0.00013891180440309996 8.749907547557891e-05 5.513775276548628e-05 3.475458937431628e-05 2.1910416102241813e-05
54 0.001 0.0007201691394257483 0.000557930467712979 0.00035017382661216696 0.00022012346138632064 0.00013852489738482468 8.723915060881119e-05 5.49675179985075e-05 3.464472605058592e-05 2.184013687270143e-05
55 0.001 0.0007194604616770773 0.00055721534092818 0.00034946622066134466 0.00021957618889536463 0.00013813986236255893 8.698053600359808e-05 5.4798163113848986e-05 3.453543941831367e-05 2.177023011975932e-05
56 0.001 0.0007187538197660722 0.0005565025010739346 0.00034876144879066544 0.00021903138663308575 0.0001377566886832086 8.672322384971475e-05 5.462968271852315e-05 3.442672588199151e-05 2.1700693496445714e-05
57 0.001 0.0007180492081486484 0.0005557919406496801 0.00034805949818288173 0.0002184890416530366 0.00013737536578016266 8.646720640237894e-05 5.446207146561145e-05 3.431858187719449e-05 2.1631524676231647e-05
58 0.001 0.000717348639431565 0.0005550856739198547 0.00034736232071304855 0.00021795064331956514 0.00013699693247692832 8.621317757037385e-05 5.429578217858938e-05 3.421129897003673e-05 2.1562909902755936e-05
59 0.001 0.0007166521035756881 0.0005543836868927082 0.0003466698924934393 0.00021741616794755068 0.00013662136971116798 8.596112351100096e-05 5.413080535731451e-05 3.410487085131832e-05 2.1494845067789903e-05
60 0.001 0.0007159595906065037 0.0005536859656730149 0.00034598218983055497 0.0002168855920630381 0.0001362486585998701 8.571103051605296e-05 5.396713159578493e-05 3.399929127512844e-05 2.142732610463052e-05
61 0.001 0.0007152710906138687 0.0005529924964615861 0.00034529918922366796 0.00021635889240138666 0.0001358787804376394 8.546288501047042e-05 5.380475158117202e-05 3.389455405818364e-05 2.1360348987661796e-05
62 0.001 0.0007145881681833736 0.0005523048607339887 0.0003446224616264519 0.00021583728670966556 0.00013551259312919557 8.521726369129195e-05 5.364404315662281e-05 3.379090310339315e-05 2.129406976339983e-05
63 0.001 0.0007139108109389651 0.0005516230407004492 0.0003439519758859039 0.00021532074399295122 0.00013515007172518374 8.497414844816332e-05 5.3484993898260945e-05 3.368833016244125e-05 2.122848306212633e-05
64 0.001 0.0007132390066148024 0.0005509470187317473 0.00034328770115903844 0.00021480923358720733 0.0001347911915544671 8.473352137819455e-05 5.3327591526929936e-05 3.358682708410006e-05 2.1163583577742056e-05
65 0.001 0.0007125727430549207 0.0005502767773585094 0.000342629606910633 0.00021430272515636744 0.0001344359282214269 8.449536478383494e-05 5.317182390666476e-05 3.348638581318404e-05 2.109936606707349e-05
66 0.001 0.0007119120082129148 0.0005496122992705212 0.0003419776629110174 0.0002138011886894788 0.00013408425760331254 8.425966117078749e-05 5.3017679043188334e-05 3.3386998389521964e-05 2.1035825349191292e-05
67 0.001 0.000711256790151613 0.0005489535673160376 0.0003413318392338714 0.00021330459449785352 0.00013373615584760944 8.40263932459383e-05 5.286514508242194e-05 3.3288656946938245e-05 2.0972956304734848e-05
68 0.001 0.0007106071943639499 0.0005483006816957998 0.00034069221933208274 0.0002128129992904075 0.00013339165932644894 8.379558393280961e-05 5.271423641048183e-05 3.31913705135711e-05 2.091076460544407e-05
69 0.001 0.000709963208882901 0.0005476536252143895 0.0003400587732671483 0.0002123263734210078 0.00013305074425072359 8.356721599784782e-05 5.256494122003263e-05 3.3095131256746724e-05 2.0849245154782437e-05
70 0.001 0.0007093248218486061 0.0005470123808316875 0.00033943147139689077 0.0002118446875576196 0.00013271338709432742 8.334127240311385e-05 5.241724783997488e-05 3.299993143509595e-05 2.0788392916005465e-05
71 0.001 0.0007086920215080653 0.0005463769316622218 0.0003388102843733889 0.00021136791267964032 0.0001323795645916927 8.311773630434548e-05 5.2271144734051514e-05 3.290576339760186e-05 2.07282029115292e-05
72 0.001 0.0007080656480431051 0.0005457481216341828 0.0003381960373995552 0.00021089668206097172 0.0001320497200486003 8.289690449717853e-05 5.2126825862102536e-05 3.2812752146082854e-05 2.0668755034757233e-05
73 0.001 0.0007074456886869565 0.0005451259321489777 0.0003375886977799707 0.0002104309633113142 0.00013172382748945162 8.26787581753205e-05 5.198427834496719e-05 3.2720889139431744e-05 2.061004372929991e-05
74 0.001 0.0007068321308093747 0.0005445103448031184 0.0003369882331820464 0.00020997072442018424 0.00013140186125447996 8.246327876643199e-05 5.18434894660219e-05 3.2630165945308436e-05 2.055206350992823e-05
75 0.001 0.0007062249619162967 0.0005439013413874698 0.00033639461163356655 0.00020951593375373114 0.00013108379599680725 8.225044792981545e-05 5.170444666951808e-05 3.254057423900392e-05 2.0494808961820763e-05
76 0.001 0.00070562416964951 0.0005432989038865089 0.00033580780152024723 0.000209066560051587 0.00013076960667953474 8.204024755412909e-05 5.156713755893784e-05 3.2452105802317056e-05 2.0438274739819433e-05
77 0.001 0.0007050297417863318 0.0005427030144775926 0.0003352277715833316 0.00020862257242375786 0.00013045926857287288 8.183265975513502e-05 5.143154989537623e-05 3.236475252244954e-05 2.038245556769746e-05
78 0.001 0.0007044417829621171 0.000542113771820027 0.0003346546023905152 0.00020818402485557293 0.00013015281596227648 8.162770599537212e-05 5.129769708700084e-05 3.227852278867728e-05 2.032735670561579e-05
79 0.001 0.0007038602809995153 0.0005415311581470623 0.00033408826282687573 0.00020775088664703998 0.00012985022429639665 8.142536853201701e-05 5.116556699709043e-05 3.219340855821242e-05 2.0272972923816322e-05
80 0.001 0.0007032852238493367 0.0005409551558747416 0.0003335287221154158 0.00020732312745044945 0.00012955146931603386 8.122562983828357e-05 5.103514763884953e-05 3.2109401888525124e-05 2.0219299058105656e-05
81 0.001 0.0007027165995902542 0.0005403857476012292 0.00033297594981485264 0.00020690071726752732 0.0001292565270515082 8.102847260135871e-05 5.090642717392409e-05 3.202649493632917e-05 2.0166330009182866e-05
82 0.001 0.0007021546252265139 0.0005398231466905069 0.00033243014325207994 0.00020648380199548492 0.0001289654971719027 8.083396250547584e-05 5.077944809587575e-05 3.194471491165552e-05 2.0114083097018264e-05
83 0.001 0.0007015992888126556 0.0005392673356287205 0.0003318912717105927 0.00020607235137144977 0.0001286783555062261 8.06420820982489e-05 5.065419847368218e-05 3.186405391103787e-05 2.006255318369691e-05
84 0.001 0.0007010505785332368 0.0005387182970867077 0.00033135930481238495 0.00020566633548374424 0.0001283950781739038 8.04528141416734e-05 5.053066652493675e-05 3.1784504130324826e-05 2.001173519622426e-05
85 0.001 0.000700508482702546 0.0005381760139193414 0.00033083421251577956 0.00020526572476908743 0.000128115641582197 8.026614161010359e-05 5.040884061439589e-05 3.170605786368809e-05 1.9961624125869314e-05
86 0.001 0.0006999729897643184 0.0005376404691648787 0.00033031596511327947 0.00020487049000982136 0.00012784002242364822 8.008204768824872e-05 5.028870925253973e-05 3.1628707502639986e-05 1.9912215027513866e-05
87 0.001 0.0006994440882914515 0.0005371116460443127 0.0003298045332294241 0.0002044806023311588 0.0001275681976735486 7.990051576919067e-05 5.0170261094149856e-05 3.155244553506268e-05 1.9863503019009735e-05
88 0.001 0.0006989172535560769 0.0005365850419669894 0.000329295612913881 0.00020409280438264766 0.00012729790663346764 7.972004038787022e-05 5.0052515589855926e-05 3.147664135129994e-05 1.9815085586326718e-05
89 0.001 0.0006983924815322933 0.0005360606511477293 0.0003287891938968759 0.00020370708584067882 0.00012702914094133737 7.954061545150935e-05 4.993546855036179e-05 3.140129216611291e-05 1.9766960914662127e-05
90 0.001 0.0006978697681747856 0.000535538467781285 0.000328285265898271 0.00020332343638453147 0.00012676189224377013 7.936223487646896e-05 4.981911579385119e-05 3.1326395199731696e-05 1.971912719297887e-05
91 0.001 0.0006973491094188342 0.0005350184860423863 0.0003277838186277228 0.0002029418456965422 0.0001264961521961901 7.918489258833681e-05 4.970345314604528e-05 3.125194767789152e-05 1.967158261402843e-05
92 0.001 0.0006968284099289676 0.000534498597351666 0.00032728277956097635 0.00020256071739357045 0.0001262308004979493 7.900783730702533e-05 4.958798911408524e-05 3.1177632631488905e-05 1.9624124503146986e-05
93 0.001 0.0006963076677967887 0.0005339787996978908 0.00032678214616920946 0.00020218004908417888 0.0001259658352285323 7.883106763041168e-05 4.947272273059253e-05 3.110344941552445e-05 1.957675243920473e-05
94 0.001 0.0006957868810888677 0.0005334590910383602 0.00032628191587964447 0.00020179983833834103 0.00012570125443876325 7.865458213663353e-05 4.935765301510161e-05 3.102939737649859e-05 1.9529465995615212e-05
95 0.001 0.0006952660478468047 0.0005329394692990367 0.0003257820860759608 0.00020142008268794192 0.0001254370561512512 7.847837938443003e-05 4.924277897429975e-05 3.0955475852573814e-05 1.94822647404421e-05
96 0.001 0.00069474516608728 0.0005324199323746772 0.00032528265409871067 0.0002010407796272818 0.0001251732383608348 7.830245791348127e-05 4.91280996022673e-05 3.088168417373684e-05 1.943514823650581e-05

View File

@@ -0,0 +1,96 @@
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1.000000000000000021e-03,6.456542290346556703e-04,2.238721138568339957e-05
1 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
2 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
3 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
4 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
5 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
6 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
7 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
8 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
9 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
10 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
11 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
12 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
13 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
14 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
15 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
16 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
17 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
18 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
19 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
20 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
21 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
22 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
23 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
24 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
25 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
26 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
27 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
28 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
29 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
30 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
31 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
32 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
33 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
34 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
35 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
36 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
37 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
38 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
39 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
40 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
41 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
42 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
43 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
44 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
45 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
46 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
47 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
48 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
49 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
50 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
51 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
52 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
53 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
54 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
55 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
56 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
57 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
58 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
59 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
60 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
61 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
62 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
63 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
64 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
65 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
66 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
67 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
68 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
69 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
70 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
71 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
72 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
73 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
74 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
75 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
76 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
77 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
78 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
79 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
80 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
81 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
82 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
83 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
84 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
85 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
86 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
87 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
88 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
89 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
90 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
91 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
92 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
93 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
94 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
95 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05
96 1.000000000000000021e-03 6.456542290346556703e-04 2.238721138568339957e-05

View File

@@ -0,0 +1,98 @@
0.001,0.0007651928200015371,0.0006070713937965498,0.00041423535558437785,0.0002897888610631573,0.00021340907299884933,0.00017198131811953097,0.00016127923791982795,0.00019503601408127412,0.00036549739730595273
0.001,0.0007645995806173374,0.0006064422887178694,0.00041349144049413134,0.00028906380160320487,0.00021270693331134475,0.0001712438796411692,0.0001603765556252246,0.00019363496213474675,0.00036239423700181427
0.001,0.0007640065772643761,0.0006058136176614386,0.00041274866023030733,0.0002883403899406645,0.0002120069527025505,0.00017050944162049183,0.000159478716966613,0.00019224364342300643,0.0003593168093314386
0.001,0.0007634138087852742,0.000605185379478,0.0004120070127662441,0.0002876186224176594,0.00021130912485491145,0.00016977799240843955,0.0001585856969223786,0.00019086199210672448,0.0003562649023666937
0.001,0.0007628028346998721,0.0006045332187986192,0.0004112166712442958,0.0002868226029691562,0.00021050564591298308,0.0001688917074786142,0.00015743651373617922,0.00018893812235512526,0.0003514029291704815
0.001,0.0007621921143131398,0.0006038815297458003,0.00041042762231867933,0.00028602858816935265,0.00020970502628600424,0.00016800982241073787,0.00015629534163924753,0.00018703308452519017,0.00034660591682276115
0.001,0.0007615816463554626,0.0006032303109890501,0.0004096398633263614,0.0002852365728026657,0.00020890725596775628,0.00016713231600712825,0.00015516212643578583,0.00018514669874176095,0.00034187301148734186
0.001,0.0007609692265548555,0.000602577299493926,0.0004088509941253184,0.00028444450359523985,0.00020811064471691694,0.00016625772561605027,0.00015403541161623416,0.00018327705284413884,0.00033720006213702974
0.001,0.0007603548574442921,0.0006019224999904981,0.0004080610253035772,0.00028365239238410656,0.0002073152021201705,0.00016538605339556675,0.00015291517504370476,0.00018142402424673905,0.0003325863766610152
0.001,0.0007597350402439383,0.0006012612395706585,0.0004072600935672035,0.0002828447987841907,0.00020649842223713097,0.00016448344741808307,0.00015174362495246272,0.00017946021794659197,0.00032758319657592714
0.001,0.0007591132829776185,0.0006005982088110791,0.0004064581175876688,0.00028203726728774387,0.00020568299547110922,0.00016358411213968798,0.00015057934813125987,0.00017751539893581778,0.00032265060787650516
0.001,0.000758484736453085,0.0005999283660908604,0.0004056495676510805,0.00028122495212139567,0.00020486486304104927,0.00016268449575399985,0.00014941879820841596,0.00017558496339953558,0.0003177787884410679
0.001,0.0007578494094215417,0.0005992517275730322,0.0004048344831924046,0.000280407904430663,0.00020404408117776887,0.0001617846565020927,0.00014826202727426984,0.00017366890284920263,0.0003129672376410902
0.001,0.0007572073108060312,0.0005985683096346821,0.0004040129039083478,0.0002795861755026316,0.00020322070604404603,0.00016088465224596546,0.00014710908652278506,0.00017176720707727308,0.00030821545426856767
0.001,0.0007565575890478602,0.00059787696153193,0.0004031823074325593,0.00027875567967892653,0.00020238859856737548,0.00015997497741322437,0.00014594324831107206,0.00016984173084389243,0.0003033838449669414
0.001,0.0007559011152632264,0.0005971788697390111,0.00040234530612592536,0.0002779206290242912,0.00020155405878687617,0.00015906535701622418,0.0001447815990558725,0.00016793142878541938,0.0002986152551090434
0.001,0.000755237898986442,0.000596474051424026,0.00040150194087318277,0.00027708107588917086,0.00020071714346489746,0.00015815584855490808,0.00014362418708307366,0.00016603627832169687,0.00029390910930431773
0.001,0.0007545681886825906,0.0005957627683701927,0.00040065250958751827,0.00027623729012494873,0.00019987808563904174,0.00015724665811831285,0.0001424712015659587,0.00016415642490307197,0.0002892651425802985
0.001,0.0007538919937536639,0.0005950450374279253,0.0003997970520738093,0.0002753893223189692,0.00019903693960802692,0.00015633783972296886,0.0001413226854400146,0.00016229183664828758,0.0002846827650697017
0.001,0.0007532045557665671,0.0005943145247994342,0.0003989223236188871,0.00027451662339635243,0.0001981640806362608,0.00015538551594067732,0.00014010540813129958,0.00016028630721570607,0.00027963581042999
0.001,0.0007525106592079478,0.0005935776116184588,0.00039804170193550713,0.0002736399653899091,0.00019728948692008958,0.00015443417816766013,0.00013889388158999866,0.0001582996284854468,0.0002746667454821644
0.001,0.0007518104383956622,0.000592834444449282,0.0003971553683797481,0.0002727595219957832,0.00019641331428482412,0.00015348396557824612,0.00013768822268133468,0.000156331819705631,0.00026977480754699626
0.001,0.0007511039033537896,0.0005920850408658466,0.0003962633635582371,0.00027187534416274955,0.00019553561634171146,0.00015253492870981108,0.00013648846139846028,0.00015438279270990136,0.0002649590347362105
0.001,0.0007503910642803073,0.0005913294186556257,0.0003953657283217157,0.0002709874829437419,0.00019465644657888978,0.0001515871176567501,0.0001352946268320504,0.0001524524582210848,0.0002602184722292356
0.001,0.0007496855573046408,0.0005905851062898704,0.00039449552403657745,0.00027014241927282736,0.0001938361803657908,0.0001507194393001951,0.00013421767536698768,0.000150722476765932,0.0002559376038022294
0.001,0.0007489737467556278,0.0005898345737440663,0.000393619635985906,0.00026929349394052985,0.00019301404332913125,0.00014985216957655317,0.00013314488789598826,0.00014900672746282064,0.00025171693602497907
0.001,0.0007482556429977025,0.0005890778388714725,0.00039273810426086416,0.0002684407562332248,0.0001921900867993824,0.00014898535811302548,0.00013207630234912348,0.00014730517414690737,0.000247555825445753
0.001,0.000747532135526673,0.0005883158165865031,0.0003918519024244402,0.00026758503804540166,0.0001913649895279964,0.00014811957577380352,0.00013101244041258906,0.0001456183389249714,0.00024345460151209766
0.001,0.0007468032330641541,0.0005875485221384682,0.0003909610648762846,0.00026672638132361175,0.0001905387943939666,0.00014725486211264363,0.00012995332641946747,0.00014394616337354944,0.00023941257691738652
0.001,0.0007460689444707028,0.0005867759709451519,0.0003900656262003575,0.00026586482808789615,0.00018971154418348472,0.00014639125636754904,0.00012889898406950181,0.00014228858823944247,0.00023542906884335907
0.001,0.0007453292787585437,0.0005859981786120694,0.0003891656212152682,0.00026500042051039684,0.000188883281693472,0.0001455287975953345,0.000127849436626481,0.0001406455538271199,0.00023150340029334736
0.001,0.0007445843685250069,0.0005852152884984452,0.0003882612223549495,0.00026413331906842847,0.00018805414639063353,0.00014466760638632992,0.00012680478406473458,0.00013901709088191773,0.00022763506393382832
0.001,0.0007438342228409441,0.0005844273161744179,0.0003873524639441998,0.00026326356496406687,0.00018722417962072503,0.0001438077197030893,0.00012576504647438162,0.00013740313489262333,0.00022382338328436597
0.001,0.0007430788509165626,0.0005836342773781009,0.0003864393804873395,0.0002623911994661588,0.00018639342263244998,0.00014294917419819004,0.000124730243348245,0.00013580362065026603,0.00022006768669446508
0.001,0.000742327254060605,0.0005828476385639736,0.00038554300530339766,0.00026154496076193957,0.00018559797011481673,0.0001421370333657246,0.00012375932796391997,0.00013430279846409174,0.00021649152387618443
0.001,0.0007415704350109161,0.0005820559385468977,0.00038464228372291103,0.0002606960153281244,0.00018480150743526303,0.00014132579578003348,0.000122792459010487,0.0001328143978658426,0.0002129659469511457
0.001,0.0007408084031449065,0.0005812591931755618,0.00038373724983374976,0.00025984440338310303,0.0001840040745362742,0.0001405154975809745,0.00012182965960439977,0.00013133837476817992,0.00020949038404752677
0.001,0.0007400427720784002,0.0005804590496942265,0.00038282961864956994,0.0002589915613698488,0.00018320681873232144,0.00013970708155515462,0.00012087177639736769,0.00012987560432955444,0.00020606578076074432
0.001,0.0007392735475065714,0.0005796555183614057,0.00038191941292656456,0.0002581375157328154,0.0001824097650442608,0.00013890056717630873,0.00011991881140841177,0.0001284260094133047,0.00020269149646849757
0.001,0.0007385007352097838,0.0005788486095364762,0.00038100665551987393,0.00025728229294257515,0.00018161293842329387,0.00013809597373520515,0.00011897076635433426,0.0001269895128043655,0.00019936689671873207
0.001,0.0007377243410529983,0.0005780383336785572,0.0003800913693799712,0.0002564259194903244,0.00018081636374445108,0.00013729332033271256,0.00011802764264291933,0.00012556603720150224,0.00019609135315036536
0.001,0.0007369464655998592,0.0005772268587748353,0.0003791758785432219,0.0002555703831979673,0.00018002165393456068,0.00013649394990366146,0.00011709066577140669,0.00012415690240967774,0.0001928666431485617
0.001,0.0007361671107233329,0.000576414188654825,0.000378260191109379,0.00025471569177879693,0.0001792288130669198,0.00013569785799734456,0.00011615980704210183,0.00012276198311838844,0.00018969202938803596
0.001,0.0007353862783344302,0.000575600327192691,0.00037734431522203,0.00025386185296321013,0.00017843784520433673,0.00013490504014296103,0.00011523503783001357,0.00012138115492992521,0.0001865667844236815
0.001,0.0007346027258369329,0.0005747835721418604,0.00037642443290667116,0.0002530026346493095,0.000177639416207763,0.0001341012793025371,0.0001142922256260196,0.00011996295037667013,0.00018332302768968173
0.001,0.0007338177018431625,0.0005739656376861859,0.00037550439543261463,0.0002521443237629474,0.00017684294734265143,0.00013330094534015117,0.00011335582519792064,0.00011855974750452474,0.00018013280630154984
0.001,0.0007330312083387708,0.0005731465277735759,0.000374584210907019,0.00025128692777751636,0.0001760484420635206,0.00013250403238709868,0.00011242580398299235,0.00011717140625198769,0.000176995286763841
0.001,0.0007322450716827681,0.0005723280950701311,0.00037366577307640326,0.00025043200586833656,0.00017525712146802507,0.00013171151729665014,0.00011150300328069361,0.00011579873047427355,0.00017391111613739919
0.001,0.0007314592892342591,0.0005715103366354928,0.0003727490765712826,0.00024957954955556494,0.0001744689721973381,0.00013092337604814113,0.00011058736861417956,0.00011444154833756723,0.0001708794064250159
0.001,0.0007306738583803173,0.0005706932495677312,0.00037183411609277345,0.00024872955044744495,0.00017368398100343736,0.0001301395848004509,0.00010967884595770732,0.00011309968990727626,0.00016789928423747183
0.001,0.0007298887765314699,0.0005698768309963597,0.00037092088639398746,0.0002478820002115871,0.00017290213471209804,0.00012936011984533696,0.0001087773816703527,0.00011177298701463364,0.00016496989019036454
0.001,0.0007291058850619836,0.0005690629705872476,0.0003700113801847071,0.0002470385774678141,0.00017212477134492983,0.0001285860674779147,0.00010788392632853856,0.00011046237940908493,0.00016209217355659912
0.001,0.0007283251776795193,0.0005682516594285885,0.0003691055790623401,0.0002461992575642169,0.00017135185999287266,0.00012781738439880834,0.00010699840217906239,0.00010916766306641233,0.00015926520709064215
0.001,0.000727546648123048,0.000567442888658507,0.0003682034647519281,0.00024536401604150686,0.00017058337001160307,0.00012705402771768452,0.00010612073231230378,0.0001078886367084761,0.00015648808062028533
0.001,0.0007267691175258129,0.0005666351120658079,0.00036730194585451363,0.00024452825978826814,0.00016981299319253088,0.00012628722374912656,0.00010523753204397677,0.00010660034638564814,0.00015369233245141463
0.001,0.0007259937543683618,0.0005658298620581495,0.00036640409142867466,0.00024369656281803695,0.0001690470312136919,0.00012552576286196436,0.00010436224908854787,0.00010532792661952348,0.00015094700928094292
0.001,0.0007252205525006216,0.0005650271299429238,0.0003655098835814395,0.0002428689011484816,0.0001682854538881413,0.00012476960247399048,0.00010349480634605481,0.00010407117393308648,0.00014825118806841486
0.001,0.0007244515476870691,0.0005642289688561167,0.00036462138604045246,0.00024204694758546622,0.00016752954803985582,0.00012401974721449815,0.00010263603739686231,0.00010283083470852359,0.0001456053538142381
0.001,0.0007236867286572494,0.0005634353625294562,0.0003637385663464586,0.00024123066115747858,0.00016677926586679636,0.00012327613591461942,0.00010178584352378332,0.00010160667618634935,0.0001430085413998934
0.001,0.0007229260842094953,0.0005626462948017631,0.0003628613922977866,0.00024042000126051454,0.00016603456004153966,0.00012253870808207087,0.0001009441272602465,0.00010039846917127745,0.000140459805170444
0.001,0.0007221696032014468,0.000561861749604344,0.00036198983191176377,0.0002396149275989645,0.00016529538363567852,0.00012180740380654271,0.00010011079225737115,9.920598777483068e-05,0.00013795821792425024
0.001,0.0007214188723728384,0.00056108334509554,0.0003611255610840681,0.0002388168283348348,0.00016456282140960994,0.00012108307905286178,9.928655238677393e-05,9.802986918413655e-05,0.0001355041849544529
0.001,0.0007206738776295639,0.0005603110603628828,0.0003602685373417506,0.00023802565027806571,0.00016383681258690845,0.00012036565891864721,9.847129356381268e-05,9.686986333449523e-05,0.0001330967445342526
0.001,0.0007199346049934109,0.0005595448746691314,0.00035941871861020354,0.00023724134078502595,0.00016311729706930416,0.00011965506942237431,9.7664903298557e-05,9.57257243308077e-05,0.00013073495556510661
0.001,0.0007192103057281418,0.0005587965882928195,0.000358597914203722,0.00023649404923234267,0.0001624426539507404,0.00011900000933912548,9.693290327537121e-05,9.469853254875163e-05,0.0001286228242214262
0.001,0.0007184916860834766,0.000558054333130965,0.0003577841401235257,0.0002357533416394368,0.00016177407584741055,0.00011835110239617177,9.620855295571759e-05,9.368449216343134e-05,0.0001265476735456528
0.001,0.000717778732645577,0.0005573180893469085,0.0003569773567342285,0.0002350191694371068,0.0001611115088719043,0.00011770828481211398,9.549176022876216e-05,9.268341301362701e-05,0.00012450880618841231
0.001,0.0007170715507844816,0.0005565879566941514,0.0003561776441627035,0.00023429158098135867,0.00016045497378223205,0.00011707155159443024,9.47824835635146e-05,9.169515755193108e-05,0.00012250560759307665
0.001,0.0007163701270344053,0.0005558639152622166,0.0003553849627325309,0.00023357052778616886,0.00015980441694230793,0.00011644083951173604,9.408063218207804e-05,9.071953997714039e-05,0.00012053740486430812
0.001,0.0007156744480415676,0.0005551459453084167,0.00035459927313802623,0.00023285596185845654,0.00015915978530381373,0.00011581608608941654,9.338611653058621e-05,8.975637744384618e-05,0.00011860353870291344
0.001,0.0007149845005557793,0.0005544340272448129,0.0003538205364097734,0.0002321478356456351,0.0001585210263398076,0.00011519722952770958,9.269884816673769e-05,8.880548985453175e-05,0.00011670336266552508
0.001,0.0007143011352806332,0.0005537290222260827,0.0003530496254918224,0.00023144685778402562,0.00015788868071804074,0.00011458468167101622,9.20191492389152e-05,8.786712068874325e-05,0.00011483685132763588
0.001,0.0007136243377311475,0.0005530309085687206,0.00035228649684153725,0.0002307529751854999,0.00015726269010384348,0.00011397837465469773,9.134692457668887e-05,8.694108196461404e-05,0.00011300335424584403
0.001,0.0007129540935643617,0.0005523396647985742,0.000351531107363628,0.0002300661353432777,0.0001566429968410848,0.00011337824146720777,9.06820803490277e-05,8.602718880727694e-05,0.00011120223452206596
0.001,0.0007122949300063586,0.0005516609446370161,0.0003507932546232374,0.0002293990178082647,0.00015604454205901748,0.00011280134646728481,9.004396195380538e-05,8.514641523915274e-05,0.00010944396621311202
0.001,0.0007116422850379047,0.0005509890404263221,0.00035006301886912226,0.00022873877079420107,0.00015545216193435095,0.00011223032450910806,8.941277122627028e-05,8.427699754143763e-05,0.00010771649233683978
0.001,0.0007109961448775265,0.0005503239315436604,0.00034934035900275196,0.00022808534468017605,0.00015486580256638324,0.00011166511373672321,8.878842266662507e-05,8.341876815036907e-05,0.00010601922394974779
0.001,0.0007103566138672342,0.0005496657159311855,0.0003486253516297722,0.00022743878433373037,0.00015428548213839886,0.00011110570832676001,8.81708780194749e-05,8.25716070442755e-05,0.00010435164299643007
0.001,0.0007097236782517396,0.0005490143729973408,0.0003479179557857281,0.0002267990403962617,0.0001537111471536449,0.00011055204708289399,8.756005313455197e-05,8.173535064610718e-05,0.0001027131817052566
0.001,0.0007090973244087274,0.0005483698823458906,0.00034721813091834777,0.000226166064037726,0.00015314274472297157,0.00011000406955950422,8.695586501935841e-05,8.090983803329783e-05,0.00010110328401062253
0.001,0.0007084775388425413,0.0005477322237660661,0.0003465258368613831,0.00022553980691704316,0.00015258022251510344,0.00010946171600087524,8.635823175652435e-05,8.00949107862898e-05,9.952140501322636e-05
0.001,0.0007078645400735427,0.0005471016129101978,0.0003458412757255009,0.00022492042013778988,0.00015202368335334558,0.00010892504915290583,8.57671759148139e-05,7.929051589048381e-05,9.796715152670613e-05
0.001,0.0007072583145347741,0.0005464780293804963,0.00034516440688163317,0.00022430785483116316,0.0001514730744232032,0.00010839400891826328,8.518261565996433e-05,7.84964968569563e-05,9.643999410136803e-05
0.001,0.0007066588487940405,0.000545861452976259,0.0003444951901125997,0.00022370206265319418,0.00015092834351042303,0.00010786853593723236,8.460447028623623e-05,7.771269974698105e-05,9.493941424410264e-05
0.001,0.0007060768113835355,0.0005452653567881146,0.00034385780916102886,0.0002231355522451839,0.0001504295746545273,0.00010739737531972382,8.409424224945842e-05,7.702434963545377e-05,9.360618912201228e-05
0.001,0.0007055014939207988,0.0005446762036784223,0.00034322791998477503,0.0002225755642266546,0.00014993632274793293,0.00010693123855410087,8.358951092264173e-05,7.634435339541097e-05,9.22944227993744e-05
0.001,0.0007049328836329239,0.0005440939744776738,0.0003426054850001757,0.00022202205441602206,0.000149448541485554,0.00010647007505716636,8.309021096715739e-05,7.567259318109089e-05,9.100372969350909e-05
0.001,0.0007043664108869901,0.0005435140913972429,0.00034198598587466614,0.00022147141590047654,0.00014896349766232102,0.00010601178096740148,8.259459730216135e-05,7.500736724232048e-05,8.973176442333615e-05
0.001,0.0007038020712072354,0.0005429365478183962,0.00034136940918446675,0.0002209236320980648,0.00014848117283038098,0.00010555633431743894,8.210263744821714e-05,7.434860458126827e-05,8.847824135377829e-05
0.001,0.0007032398600991381,0.0005423613371043419,0.00034075574151016483,0.0002203786864681782,0.00014800154862415601,0.00010510371328265478,8.161429921011451e-05,7.369623501807121e-05,8.724287943554497e-05
0.001,0.0007026797730466592,0.0005417884525961108,0.00034014496942632764,0.0002198365624959981,0.00014752460674093983,0.00010465389615779026,8.112955064604149e-05,7.305018913687007e-05,8.602540201539488e-05
0.001,0.0007021196874055633,0.0005412157406692665,0.0003395348927353949,0.00021929545761274023,0.00014704895219343257,0.00010420578859113516,8.064746506639534e-05,7.240953347459202e-05,8.482441661675139e-05
0.001,0.0007015596012323657,0.0005406431992153213,0.0003389255082691921,0.00021875536780717296,0.00014657457987728414,0.00010375938295149973,8.016802726693694e-05,7.17742234562459e-05,8.363970356449741e-05
0.001,0.0007009995125587165,0.0005400708260946051,0.0003383168128172846,0.00021821628903476192,0.00014610148467187763,0.0001033146716169485,7.969122211456026e-05,7.114421486558773e-05,8.247104609297546e-05
0.001,0.000700426120570031,0.0005394817717340144,0.00033767827777106695,0.00021763678242090514,0.00014557802543177205,0.00010280805245363877,7.913535785684264e-05,7.040274681183516e-05,8.111172191387726e-05
0.001,0.0006998527383823768,0.0005388929110101418,0.0003370405259007354,0.00021705847496470142,0.00014505616500334602,0.00010230367256069614,7.858312049704058e-05,6.966868896041247e-05,7.977423771714316e-05
0.0010496228983614124,0.002020602352332682,0.0024834354692445607,0.004712247621156641,0.00854174709233096,0.015197203876184536,0.027142477151470907,0.049749449744480465,0.09589624880110185,0.2
0.004235602571438949,0.007336805952289255,0.008714058005603317,0.015024716476258112,0.025061770718850837,0.04079161627542227,0.0649508755581543,0.10074574737193842,0.14993445055894863,0.206
1 0.001 0.0007651928200015371 0.0006070713937965498 0.00041423535558437785 0.0002897888610631573 0.00021340907299884933 0.00017198131811953097 0.00016127923791982795 0.00019503601408127412 0.00036549739730595273
2 0.001 0.0007645995806173374 0.0006064422887178694 0.00041349144049413134 0.00028906380160320487 0.00021270693331134475 0.0001712438796411692 0.0001603765556252246 0.00019363496213474675 0.00036239423700181427
3 0.001 0.0007640065772643761 0.0006058136176614386 0.00041274866023030733 0.0002883403899406645 0.0002120069527025505 0.00017050944162049183 0.000159478716966613 0.00019224364342300643 0.0003593168093314386
4 0.001 0.0007634138087852742 0.000605185379478 0.0004120070127662441 0.0002876186224176594 0.00021130912485491145 0.00016977799240843955 0.0001585856969223786 0.00019086199210672448 0.0003562649023666937
5 0.001 0.0007628028346998721 0.0006045332187986192 0.0004112166712442958 0.0002868226029691562 0.00021050564591298308 0.0001688917074786142 0.00015743651373617922 0.00018893812235512526 0.0003514029291704815
6 0.001 0.0007621921143131398 0.0006038815297458003 0.00041042762231867933 0.00028602858816935265 0.00020970502628600424 0.00016800982241073787 0.00015629534163924753 0.00018703308452519017 0.00034660591682276115
7 0.001 0.0007615816463554626 0.0006032303109890501 0.0004096398633263614 0.0002852365728026657 0.00020890725596775628 0.00016713231600712825 0.00015516212643578583 0.00018514669874176095 0.00034187301148734186
8 0.001 0.0007609692265548555 0.000602577299493926 0.0004088509941253184 0.00028444450359523985 0.00020811064471691694 0.00016625772561605027 0.00015403541161623416 0.00018327705284413884 0.00033720006213702974
9 0.001 0.0007603548574442921 0.0006019224999904981 0.0004080610253035772 0.00028365239238410656 0.0002073152021201705 0.00016538605339556675 0.00015291517504370476 0.00018142402424673905 0.0003325863766610152
10 0.001 0.0007597350402439383 0.0006012612395706585 0.0004072600935672035 0.0002828447987841907 0.00020649842223713097 0.00016448344741808307 0.00015174362495246272 0.00017946021794659197 0.00032758319657592714
11 0.001 0.0007591132829776185 0.0006005982088110791 0.0004064581175876688 0.00028203726728774387 0.00020568299547110922 0.00016358411213968798 0.00015057934813125987 0.00017751539893581778 0.00032265060787650516
12 0.001 0.000758484736453085 0.0005999283660908604 0.0004056495676510805 0.00028122495212139567 0.00020486486304104927 0.00016268449575399985 0.00014941879820841596 0.00017558496339953558 0.0003177787884410679
13 0.001 0.0007578494094215417 0.0005992517275730322 0.0004048344831924046 0.000280407904430663 0.00020404408117776887 0.0001617846565020927 0.00014826202727426984 0.00017366890284920263 0.0003129672376410902
14 0.001 0.0007572073108060312 0.0005985683096346821 0.0004040129039083478 0.0002795861755026316 0.00020322070604404603 0.00016088465224596546 0.00014710908652278506 0.00017176720707727308 0.00030821545426856767
15 0.001 0.0007565575890478602 0.00059787696153193 0.0004031823074325593 0.00027875567967892653 0.00020238859856737548 0.00015997497741322437 0.00014594324831107206 0.00016984173084389243 0.0003033838449669414
16 0.001 0.0007559011152632264 0.0005971788697390111 0.00040234530612592536 0.0002779206290242912 0.00020155405878687617 0.00015906535701622418 0.0001447815990558725 0.00016793142878541938 0.0002986152551090434
17 0.001 0.000755237898986442 0.000596474051424026 0.00040150194087318277 0.00027708107588917086 0.00020071714346489746 0.00015815584855490808 0.00014362418708307366 0.00016603627832169687 0.00029390910930431773
18 0.001 0.0007545681886825906 0.0005957627683701927 0.00040065250958751827 0.00027623729012494873 0.00019987808563904174 0.00015724665811831285 0.0001424712015659587 0.00016415642490307197 0.0002892651425802985
19 0.001 0.0007538919937536639 0.0005950450374279253 0.0003997970520738093 0.0002753893223189692 0.00019903693960802692 0.00015633783972296886 0.0001413226854400146 0.00016229183664828758 0.0002846827650697017
20 0.001 0.0007532045557665671 0.0005943145247994342 0.0003989223236188871 0.00027451662339635243 0.0001981640806362608 0.00015538551594067732 0.00014010540813129958 0.00016028630721570607 0.00027963581042999
21 0.001 0.0007525106592079478 0.0005935776116184588 0.00039804170193550713 0.0002736399653899091 0.00019728948692008958 0.00015443417816766013 0.00013889388158999866 0.0001582996284854468 0.0002746667454821644
22 0.001 0.0007518104383956622 0.000592834444449282 0.0003971553683797481 0.0002727595219957832 0.00019641331428482412 0.00015348396557824612 0.00013768822268133468 0.000156331819705631 0.00026977480754699626
23 0.001 0.0007511039033537896 0.0005920850408658466 0.0003962633635582371 0.00027187534416274955 0.00019553561634171146 0.00015253492870981108 0.00013648846139846028 0.00015438279270990136 0.0002649590347362105
24 0.001 0.0007503910642803073 0.0005913294186556257 0.0003953657283217157 0.0002709874829437419 0.00019465644657888978 0.0001515871176567501 0.0001352946268320504 0.0001524524582210848 0.0002602184722292356
25 0.001 0.0007496855573046408 0.0005905851062898704 0.00039449552403657745 0.00027014241927282736 0.0001938361803657908 0.0001507194393001951 0.00013421767536698768 0.000150722476765932 0.0002559376038022294
26 0.001 0.0007489737467556278 0.0005898345737440663 0.000393619635985906 0.00026929349394052985 0.00019301404332913125 0.00014985216957655317 0.00013314488789598826 0.00014900672746282064 0.00025171693602497907
27 0.001 0.0007482556429977025 0.0005890778388714725 0.00039273810426086416 0.0002684407562332248 0.0001921900867993824 0.00014898535811302548 0.00013207630234912348 0.00014730517414690737 0.000247555825445753
28 0.001 0.000747532135526673 0.0005883158165865031 0.0003918519024244402 0.00026758503804540166 0.0001913649895279964 0.00014811957577380352 0.00013101244041258906 0.0001456183389249714 0.00024345460151209766
29 0.001 0.0007468032330641541 0.0005875485221384682 0.0003909610648762846 0.00026672638132361175 0.0001905387943939666 0.00014725486211264363 0.00012995332641946747 0.00014394616337354944 0.00023941257691738652
30 0.001 0.0007460689444707028 0.0005867759709451519 0.0003900656262003575 0.00026586482808789615 0.00018971154418348472 0.00014639125636754904 0.00012889898406950181 0.00014228858823944247 0.00023542906884335907
31 0.001 0.0007453292787585437 0.0005859981786120694 0.0003891656212152682 0.00026500042051039684 0.000188883281693472 0.0001455287975953345 0.000127849436626481 0.0001406455538271199 0.00023150340029334736
32 0.001 0.0007445843685250069 0.0005852152884984452 0.0003882612223549495 0.00026413331906842847 0.00018805414639063353 0.00014466760638632992 0.00012680478406473458 0.00013901709088191773 0.00022763506393382832
33 0.001 0.0007438342228409441 0.0005844273161744179 0.0003873524639441998 0.00026326356496406687 0.00018722417962072503 0.0001438077197030893 0.00012576504647438162 0.00013740313489262333 0.00022382338328436597
34 0.001 0.0007430788509165626 0.0005836342773781009 0.0003864393804873395 0.0002623911994661588 0.00018639342263244998 0.00014294917419819004 0.000124730243348245 0.00013580362065026603 0.00022006768669446508
35 0.001 0.000742327254060605 0.0005828476385639736 0.00038554300530339766 0.00026154496076193957 0.00018559797011481673 0.0001421370333657246 0.00012375932796391997 0.00013430279846409174 0.00021649152387618443
36 0.001 0.0007415704350109161 0.0005820559385468977 0.00038464228372291103 0.0002606960153281244 0.00018480150743526303 0.00014132579578003348 0.000122792459010487 0.0001328143978658426 0.0002129659469511457
37 0.001 0.0007408084031449065 0.0005812591931755618 0.00038373724983374976 0.00025984440338310303 0.0001840040745362742 0.0001405154975809745 0.00012182965960439977 0.00013133837476817992 0.00020949038404752677
38 0.001 0.0007400427720784002 0.0005804590496942265 0.00038282961864956994 0.0002589915613698488 0.00018320681873232144 0.00013970708155515462 0.00012087177639736769 0.00012987560432955444 0.00020606578076074432
39 0.001 0.0007392735475065714 0.0005796555183614057 0.00038191941292656456 0.0002581375157328154 0.0001824097650442608 0.00013890056717630873 0.00011991881140841177 0.0001284260094133047 0.00020269149646849757
40 0.001 0.0007385007352097838 0.0005788486095364762 0.00038100665551987393 0.00025728229294257515 0.00018161293842329387 0.00013809597373520515 0.00011897076635433426 0.0001269895128043655 0.00019936689671873207
41 0.001 0.0007377243410529983 0.0005780383336785572 0.0003800913693799712 0.0002564259194903244 0.00018081636374445108 0.00013729332033271256 0.00011802764264291933 0.00012556603720150224 0.00019609135315036536
42 0.001 0.0007369464655998592 0.0005772268587748353 0.0003791758785432219 0.0002555703831979673 0.00018002165393456068 0.00013649394990366146 0.00011709066577140669 0.00012415690240967774 0.0001928666431485617
43 0.001 0.0007361671107233329 0.000576414188654825 0.000378260191109379 0.00025471569177879693 0.0001792288130669198 0.00013569785799734456 0.00011615980704210183 0.00012276198311838844 0.00018969202938803596
44 0.001 0.0007353862783344302 0.000575600327192691 0.00037734431522203 0.00025386185296321013 0.00017843784520433673 0.00013490504014296103 0.00011523503783001357 0.00012138115492992521 0.0001865667844236815
45 0.001 0.0007346027258369329 0.0005747835721418604 0.00037642443290667116 0.0002530026346493095 0.000177639416207763 0.0001341012793025371 0.0001142922256260196 0.00011996295037667013 0.00018332302768968173
46 0.001 0.0007338177018431625 0.0005739656376861859 0.00037550439543261463 0.0002521443237629474 0.00017684294734265143 0.00013330094534015117 0.00011335582519792064 0.00011855974750452474 0.00018013280630154984
47 0.001 0.0007330312083387708 0.0005731465277735759 0.000374584210907019 0.00025128692777751636 0.0001760484420635206 0.00013250403238709868 0.00011242580398299235 0.00011717140625198769 0.000176995286763841
48 0.001 0.0007322450716827681 0.0005723280950701311 0.00037366577307640326 0.00025043200586833656 0.00017525712146802507 0.00013171151729665014 0.00011150300328069361 0.00011579873047427355 0.00017391111613739919
49 0.001 0.0007314592892342591 0.0005715103366354928 0.0003727490765712826 0.00024957954955556494 0.0001744689721973381 0.00013092337604814113 0.00011058736861417956 0.00011444154833756723 0.0001708794064250159
50 0.001 0.0007306738583803173 0.0005706932495677312 0.00037183411609277345 0.00024872955044744495 0.00017368398100343736 0.0001301395848004509 0.00010967884595770732 0.00011309968990727626 0.00016789928423747183
51 0.001 0.0007298887765314699 0.0005698768309963597 0.00037092088639398746 0.0002478820002115871 0.00017290213471209804 0.00012936011984533696 0.0001087773816703527 0.00011177298701463364 0.00016496989019036454
52 0.001 0.0007291058850619836 0.0005690629705872476 0.0003700113801847071 0.0002470385774678141 0.00017212477134492983 0.0001285860674779147 0.00010788392632853856 0.00011046237940908493 0.00016209217355659912
53 0.001 0.0007283251776795193 0.0005682516594285885 0.0003691055790623401 0.0002461992575642169 0.00017135185999287266 0.00012781738439880834 0.00010699840217906239 0.00010916766306641233 0.00015926520709064215
54 0.001 0.000727546648123048 0.000567442888658507 0.0003682034647519281 0.00024536401604150686 0.00017058337001160307 0.00012705402771768452 0.00010612073231230378 0.0001078886367084761 0.00015648808062028533
55 0.001 0.0007267691175258129 0.0005666351120658079 0.00036730194585451363 0.00024452825978826814 0.00016981299319253088 0.00012628722374912656 0.00010523753204397677 0.00010660034638564814 0.00015369233245141463
56 0.001 0.0007259937543683618 0.0005658298620581495 0.00036640409142867466 0.00024369656281803695 0.0001690470312136919 0.00012552576286196436 0.00010436224908854787 0.00010532792661952348 0.00015094700928094292
57 0.001 0.0007252205525006216 0.0005650271299429238 0.0003655098835814395 0.0002428689011484816 0.0001682854538881413 0.00012476960247399048 0.00010349480634605481 0.00010407117393308648 0.00014825118806841486
58 0.001 0.0007244515476870691 0.0005642289688561167 0.00036462138604045246 0.00024204694758546622 0.00016752954803985582 0.00012401974721449815 0.00010263603739686231 0.00010283083470852359 0.0001456053538142381
59 0.001 0.0007236867286572494 0.0005634353625294562 0.0003637385663464586 0.00024123066115747858 0.00016677926586679636 0.00012327613591461942 0.00010178584352378332 0.00010160667618634935 0.0001430085413998934
60 0.001 0.0007229260842094953 0.0005626462948017631 0.0003628613922977866 0.00024042000126051454 0.00016603456004153966 0.00012253870808207087 0.0001009441272602465 0.00010039846917127745 0.000140459805170444
61 0.001 0.0007221696032014468 0.000561861749604344 0.00036198983191176377 0.0002396149275989645 0.00016529538363567852 0.00012180740380654271 0.00010011079225737115 9.920598777483068e-05 0.00013795821792425024
62 0.001 0.0007214188723728384 0.00056108334509554 0.0003611255610840681 0.0002388168283348348 0.00016456282140960994 0.00012108307905286178 9.928655238677393e-05 9.802986918413655e-05 0.0001355041849544529
63 0.001 0.0007206738776295639 0.0005603110603628828 0.0003602685373417506 0.00023802565027806571 0.00016383681258690845 0.00012036565891864721 9.847129356381268e-05 9.686986333449523e-05 0.0001330967445342526
64 0.001 0.0007199346049934109 0.0005595448746691314 0.00035941871861020354 0.00023724134078502595 0.00016311729706930416 0.00011965506942237431 9.7664903298557e-05 9.57257243308077e-05 0.00013073495556510661
65 0.001 0.0007192103057281418 0.0005587965882928195 0.000358597914203722 0.00023649404923234267 0.0001624426539507404 0.00011900000933912548 9.693290327537121e-05 9.469853254875163e-05 0.0001286228242214262
66 0.001 0.0007184916860834766 0.000558054333130965 0.0003577841401235257 0.0002357533416394368 0.00016177407584741055 0.00011835110239617177 9.620855295571759e-05 9.368449216343134e-05 0.0001265476735456528
67 0.001 0.000717778732645577 0.0005573180893469085 0.0003569773567342285 0.0002350191694371068 0.0001611115088719043 0.00011770828481211398 9.549176022876216e-05 9.268341301362701e-05 0.00012450880618841231
68 0.001 0.0007170715507844816 0.0005565879566941514 0.0003561776441627035 0.00023429158098135867 0.00016045497378223205 0.00011707155159443024 9.47824835635146e-05 9.169515755193108e-05 0.00012250560759307665
69 0.001 0.0007163701270344053 0.0005558639152622166 0.0003553849627325309 0.00023357052778616886 0.00015980441694230793 0.00011644083951173604 9.408063218207804e-05 9.071953997714039e-05 0.00012053740486430812
70 0.001 0.0007156744480415676 0.0005551459453084167 0.00035459927313802623 0.00023285596185845654 0.00015915978530381373 0.00011581608608941654 9.338611653058621e-05 8.975637744384618e-05 0.00011860353870291344
71 0.001 0.0007149845005557793 0.0005544340272448129 0.0003538205364097734 0.0002321478356456351 0.0001585210263398076 0.00011519722952770958 9.269884816673769e-05 8.880548985453175e-05 0.00011670336266552508
72 0.001 0.0007143011352806332 0.0005537290222260827 0.0003530496254918224 0.00023144685778402562 0.00015788868071804074 0.00011458468167101622 9.20191492389152e-05 8.786712068874325e-05 0.00011483685132763588
73 0.001 0.0007136243377311475 0.0005530309085687206 0.00035228649684153725 0.0002307529751854999 0.00015726269010384348 0.00011397837465469773 9.134692457668887e-05 8.694108196461404e-05 0.00011300335424584403
74 0.001 0.0007129540935643617 0.0005523396647985742 0.000351531107363628 0.0002300661353432777 0.0001566429968410848 0.00011337824146720777 9.06820803490277e-05 8.602718880727694e-05 0.00011120223452206596
75 0.001 0.0007122949300063586 0.0005516609446370161 0.0003507932546232374 0.0002293990178082647 0.00015604454205901748 0.00011280134646728481 9.004396195380538e-05 8.514641523915274e-05 0.00010944396621311202
76 0.001 0.0007116422850379047 0.0005509890404263221 0.00035006301886912226 0.00022873877079420107 0.00015545216193435095 0.00011223032450910806 8.941277122627028e-05 8.427699754143763e-05 0.00010771649233683978
77 0.001 0.0007109961448775265 0.0005503239315436604 0.00034934035900275196 0.00022808534468017605 0.00015486580256638324 0.00011166511373672321 8.878842266662507e-05 8.341876815036907e-05 0.00010601922394974779
78 0.001 0.0007103566138672342 0.0005496657159311855 0.0003486253516297722 0.00022743878433373037 0.00015428548213839886 0.00011110570832676001 8.81708780194749e-05 8.25716070442755e-05 0.00010435164299643007
79 0.001 0.0007097236782517396 0.0005490143729973408 0.0003479179557857281 0.0002267990403962617 0.0001537111471536449 0.00011055204708289399 8.756005313455197e-05 8.173535064610718e-05 0.0001027131817052566
80 0.001 0.0007090973244087274 0.0005483698823458906 0.00034721813091834777 0.000226166064037726 0.00015314274472297157 0.00011000406955950422 8.695586501935841e-05 8.090983803329783e-05 0.00010110328401062253
81 0.001 0.0007084775388425413 0.0005477322237660661 0.0003465258368613831 0.00022553980691704316 0.00015258022251510344 0.00010946171600087524 8.635823175652435e-05 8.00949107862898e-05 9.952140501322636e-05
82 0.001 0.0007078645400735427 0.0005471016129101978 0.0003458412757255009 0.00022492042013778988 0.00015202368335334558 0.00010892504915290583 8.57671759148139e-05 7.929051589048381e-05 9.796715152670613e-05
83 0.001 0.0007072583145347741 0.0005464780293804963 0.00034516440688163317 0.00022430785483116316 0.0001514730744232032 0.00010839400891826328 8.518261565996433e-05 7.84964968569563e-05 9.643999410136803e-05
84 0.001 0.0007066588487940405 0.000545861452976259 0.0003444951901125997 0.00022370206265319418 0.00015092834351042303 0.00010786853593723236 8.460447028623623e-05 7.771269974698105e-05 9.493941424410264e-05
85 0.001 0.0007060768113835355 0.0005452653567881146 0.00034385780916102886 0.0002231355522451839 0.0001504295746545273 0.00010739737531972382 8.409424224945842e-05 7.702434963545377e-05 9.360618912201228e-05
86 0.001 0.0007055014939207988 0.0005446762036784223 0.00034322791998477503 0.0002225755642266546 0.00014993632274793293 0.00010693123855410087 8.358951092264173e-05 7.634435339541097e-05 9.22944227993744e-05
87 0.001 0.0007049328836329239 0.0005440939744776738 0.0003426054850001757 0.00022202205441602206 0.000149448541485554 0.00010647007505716636 8.309021096715739e-05 7.567259318109089e-05 9.100372969350909e-05
88 0.001 0.0007043664108869901 0.0005435140913972429 0.00034198598587466614 0.00022147141590047654 0.00014896349766232102 0.00010601178096740148 8.259459730216135e-05 7.500736724232048e-05 8.973176442333615e-05
89 0.001 0.0007038020712072354 0.0005429365478183962 0.00034136940918446675 0.0002209236320980648 0.00014848117283038098 0.00010555633431743894 8.210263744821714e-05 7.434860458126827e-05 8.847824135377829e-05
90 0.001 0.0007032398600991381 0.0005423613371043419 0.00034075574151016483 0.0002203786864681782 0.00014800154862415601 0.00010510371328265478 8.161429921011451e-05 7.369623501807121e-05 8.724287943554497e-05
91 0.001 0.0007026797730466592 0.0005417884525961108 0.00034014496942632764 0.0002198365624959981 0.00014752460674093983 0.00010465389615779026 8.112955064604149e-05 7.305018913687007e-05 8.602540201539488e-05
92 0.001 0.0007021196874055633 0.0005412157406692665 0.0003395348927353949 0.00021929545761274023 0.00014704895219343257 0.00010420578859113516 8.064746506639534e-05 7.240953347459202e-05 8.482441661675139e-05
93 0.001 0.0007015596012323657 0.0005406431992153213 0.0003389255082691921 0.00021875536780717296 0.00014657457987728414 0.00010375938295149973 8.016802726693694e-05 7.17742234562459e-05 8.363970356449741e-05
94 0.001 0.0007009995125587165 0.0005400708260946051 0.0003383168128172846 0.00021821628903476192 0.00014610148467187763 0.0001033146716169485 7.969122211456026e-05 7.114421486558773e-05 8.247104609297546e-05
95 0.001 0.000700426120570031 0.0005394817717340144 0.00033767827777106695 0.00021763678242090514 0.00014557802543177205 0.00010280805245363877 7.913535785684264e-05 7.040274681183516e-05 8.111172191387726e-05
96 0.001 0.0006998527383823768 0.0005388929110101418 0.0003370405259007354 0.00021705847496470142 0.00014505616500334602 0.00010230367256069614 7.858312049704058e-05 6.966868896041247e-05 7.977423771714316e-05
97 0.0010496228983614124 0.002020602352332682 0.0024834354692445607 0.004712247621156641 0.00854174709233096 0.015197203876184536 0.027142477151470907 0.049749449744480465 0.09589624880110185 0.2
98 0.004235602571438949 0.007336805952289255 0.008714058005603317 0.015024716476258112 0.025061770718850837 0.04079161627542227 0.0649508755581543 0.10074574737193842 0.14993445055894863 0.206

View File

@@ -0,0 +1,36 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.0,
"lumped_losses": [
{
"position": 7,
"loss": 0.5
}
],
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 0.2,
"frequency": 205000000000000,
"propagation_direction": "counterprop"
},
{
"power": 0.206,
"frequency": 201000000000000,
"propagation_direction": "counterprop"
}
]
}
}

View File

@@ -0,0 +1,224 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15,
"raman_efficiency": {
"cr": [
0.00000000e+00,
1.12351610e-05,
3.47838074e-05,
5.79356636e-05,
8.06921680e-05,
9.79845709e-05,
1.10454361e-04,
1.18735302e-04,
1.24736889e-04,
1.30110053e-04,
1.41001273e-04,
1.46383247e-04,
1.57011792e-04,
1.70765865e-04,
1.88408911e-04,
2.05914127e-04,
2.24074028e-04,
2.47508283e-04,
2.77729174e-04,
3.08044243e-04,
3.34764439e-04,
3.56481704e-04,
3.77127256e-04,
3.96269124e-04,
4.10955175e-04,
4.18718761e-04,
4.19511263e-04,
4.17025384e-04,
4.13565369e-04,
4.07726048e-04,
3.83671291e-04,
4.08564283e-04,
3.69571936e-04,
3.14442090e-04,
2.16074535e-04,
1.23097823e-04,
8.95457457e-05,
7.52470400e-05,
7.19806145e-05,
8.87961158e-05,
9.30812065e-05,
9.37058268e-05,
8.45719619e-05,
6.90585286e-05,
4.50407159e-05,
3.36521245e-05,
3.02292475e-05,
2.69376939e-05,
2.60020897e-05,
2.82958958e-05,
3.08667558e-05,
3.66024657e-05,
5.80610307e-05,
6.54797937e-05,
6.25022715e-05,
5.37806442e-05,
3.94996621e-05,
2.68120644e-05,
2.33038554e-05,
1.79140757e-05,
1.52472424e-05,
1.32707565e-05,
1.06541760e-05,
9.84649374e-06,
9.13999627e-06,
9.08971012e-06,
1.04227525e-05,
1.50419271e-05,
1.77838232e-05,
2.15810815e-05,
2.03744008e-05,
1.81939341e-05,
1.31862121e-05,
9.65352116e-06,
8.62698322e-06,
9.18688016e-06,
1.01737784e-05,
1.08017817e-05,
1.03903588e-05,
9.30040333e-06,
8.30809173e-06,
6.90650401e-06,
5.52238029e-06,
3.90648708e-06,
2.22908227e-06,
1.55796177e-06,
9.77218716e-07,
3.23477236e-07,
1.60602454e-07,
7.97306386e-08
],
"frequency_offset": [
0.0e12,
0.5e12,
1.0e12,
1.5e12,
2.0e12,
2.5e12,
3.0e12,
3.5e12,
4.0e12,
4.5e12,
5.0e12,
5.5e12,
6.0e12,
6.5e12,
7.0e12,
7.5e12,
8.0e12,
8.5e12,
9.0e12,
9.5e12,
10.0e12,
10.5e12,
11.0e12,
11.5e12,
12.0e12,
12.5e12,
12.75e12,
13.0e12,
13.25e12,
13.5e12,
14.0e12,
14.5e12,
14.75e12,
15.0e12,
15.5e12,
16.0e12,
16.5e12,
17.0e12,
17.5e12,
18.0e12,
18.25e12,
18.5e12,
18.75e12,
19.0e12,
19.5e12,
20.0e12,
20.5e12,
21.0e12,
21.5e12,
22.0e12,
22.5e12,
23.0e12,
23.5e12,
24.0e12,
24.5e12,
25.0e12,
25.5e12,
26.0e12,
26.5e12,
27.0e12,
27.5e12,
28.0e12,
28.5e12,
29.0e12,
29.5e12,
30.0e12,
30.5e12,
31.0e12,
31.5e12,
32.0e12,
32.5e12,
33.0e12,
33.5e12,
34.0e12,
34.5e12,
35.0e12,
35.5e12,
36.0e12,
36.5e12,
37.0e12,
37.5e12,
38.0e12,
38.5e12,
39.0e12,
39.5e12,
40.0e12,
40.5e12,
41.0e12,
41.5e12,
42.0e12
]
}
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

View File

@@ -0,0 +1,225 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15,
"raman_coefficient": {
"g0": [
0.00000000e+00,
1.12351610e-05,
3.47838074e-05,
5.79356636e-05,
8.06921680e-05,
9.79845709e-05,
1.10454361e-04,
1.18735302e-04,
1.24736889e-04,
1.30110053e-04,
1.41001273e-04,
1.46383247e-04,
1.57011792e-04,
1.70765865e-04,
1.88408911e-04,
2.05914127e-04,
2.24074028e-04,
2.47508283e-04,
2.77729174e-04,
3.08044243e-04,
3.34764439e-04,
3.56481704e-04,
3.77127256e-04,
3.96269124e-04,
4.10955175e-04,
4.18718761e-04,
4.19511263e-04,
4.17025384e-04,
4.13565369e-04,
4.07726048e-04,
3.83671291e-04,
4.08564283e-04,
3.69571936e-04,
3.14442090e-04,
2.16074535e-04,
1.23097823e-04,
8.95457457e-05,
7.52470400e-05,
7.19806145e-05,
8.87961158e-05,
9.30812065e-05,
9.37058268e-05,
8.45719619e-05,
6.90585286e-05,
4.50407159e-05,
3.36521245e-05,
3.02292475e-05,
2.69376939e-05,
2.60020897e-05,
2.82958958e-05,
3.08667558e-05,
3.66024657e-05,
5.80610307e-05,
6.54797937e-05,
6.25022715e-05,
5.37806442e-05,
3.94996621e-05,
2.68120644e-05,
2.33038554e-05,
1.79140757e-05,
1.52472424e-05,
1.32707565e-05,
1.06541760e-05,
9.84649374e-06,
9.13999627e-06,
9.08971012e-06,
1.04227525e-05,
1.50419271e-05,
1.77838232e-05,
2.15810815e-05,
2.03744008e-05,
1.81939341e-05,
1.31862121e-05,
9.65352116e-06,
8.62698322e-06,
9.18688016e-06,
1.01737784e-05,
1.08017817e-05,
1.03903588e-05,
9.30040333e-06,
8.30809173e-06,
6.90650401e-06,
5.52238029e-06,
3.90648708e-06,
2.22908227e-06,
1.55796177e-06,
9.77218716e-07,
3.23477236e-07,
1.60602454e-07,
7.97306386e-08
],
"frequency_offset": [
0.0e12,
0.5e12,
1.0e12,
1.5e12,
2.0e12,
2.5e12,
3.0e12,
3.5e12,
4.0e12,
4.5e12,
5.0e12,
5.5e12,
6.0e12,
6.5e12,
7.0e12,
7.5e12,
8.0e12,
8.5e12,
9.0e12,
9.5e12,
10.0e12,
10.5e12,
11.0e12,
11.5e12,
12.0e12,
12.5e12,
12.75e12,
13.0e12,
13.25e12,
13.5e12,
14.0e12,
14.5e12,
14.75e12,
15.0e12,
15.5e12,
16.0e12,
16.5e12,
17.0e12,
17.5e12,
18.0e12,
18.25e12,
18.5e12,
18.75e12,
19.0e12,
19.5e12,
20.0e12,
20.5e12,
21.0e12,
21.5e12,
22.0e12,
22.5e12,
23.0e12,
23.5e12,
24.0e12,
24.5e12,
25.0e12,
25.5e12,
26.0e12,
26.5e12,
27.0e12,
27.5e12,
28.0e12,
28.5e12,
29.0e12,
29.5e12,
30.0e12,
30.5e12,
31.0e12,
31.5e12,
32.0e12,
32.5e12,
33.0e12,
33.5e12,
34.0e12,
34.5e12,
35.0e12,
35.5e12,
36.0e12,
36.5e12,
37.0e12,
37.5e12,
38.0e12,
38.5e12,
39.0e12,
39.5e12,
40.0e12,
40.5e12,
41.0e12,
41.5e12,
42.0e12
],
"reference_frequency": 206184634112792
}
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

View File

@@ -0,0 +1,97 @@
signal,ase,nli
0.000325019416624,3.8827360617812335e-08,2.397604591245591e-07
0.0003222815415358,3.8702821151814216e-08,2.4267833614138976e-07
0.0003195661748689,3.8578942925493807e-08,2.455296149641726e-07
0.000316873132879,3.8455721305309324e-08,2.483151861322029e-07
0.0003125687708988,3.815158818797417e-08,2.497308542349044e-07
0.0003083216327341,3.784989647314237e-08,2.5106122773764815e-07
0.0003041309702107,3.755062053762566e-08,2.523083160653813e-07
0.0002999931829076,3.725370771318225e-08,2.534716728592015e-07
0.0002959076621852,3.695913382975532e-08,2.545532047834699e-07
0.0002914749637887,3.6620413511505286e-08,2.5520557429118934e-07
0.0002871045786391,3.62847038107824e-08,2.557776344401253e-07
0.0002827879891071,3.5951828869209396e-08,2.5626453052593257e-07
0.0002785247470154,3.562176113110911e-08,2.5666832208790035e-07
0.0002743144039041,3.5294473123494e-08,2.569910409348857e-07
0.000270032675166,3.4954880805048256e-08,2.571167784361306e-07
0.0002658067200554,3.4618272391047544e-08,2.571652788509227e-07
0.000261636025157,3.428461757057609e-08,2.5713860104931033e-07
0.00025752034599,3.395388872366444e-08,2.570390408700655e-07
0.000253459157096,3.362605558722993e-08,2.5284986247287787e-07
0.000248983782073,3.3242702224575744e-08,2.48252059976888e-07
0.0002445773493265,3.286328176612301e-08,2.437277481862015e-07
0.0002402391773459,3.2487750441670215e-08,2.392761376865807e-07
0.0002359684123723,3.2116061418127753e-08,2.3489626905665574e-07
0.0002317642070805,3.174816817069829e-08,2.3058719110264335e-07
0.0002279695550926,3.1424928539548144e-08,2.2668986526609113e-07
0.0002242281358436,3.1104729317697146e-08,2.228495045304229e-07
0.0002205393783222,3.078753835343166e-08,2.190654562751529e-07
0.0002169035545525,3.047333197100547e-08,2.1533790605165431e-07
0.0002133200561122,3.01620779209974e-08,2.1166616520930645e-07
0.0002097882786443,2.9853744125792176e-08,2.080495504306458e-07
0.0002063076230434,2.9548298767727423e-08,2.0448738489666716e-07
0.0002028776374913,2.9245712991289203e-08,2.009791389793126e-07
0.0001994977236946,2.8945955168147914e-08,1.975241389908885e-07
0.0001961672877059,2.8648993828553545e-08,1.9412171682473827e-07
0.0001929967738963,2.8368195292008612e-08,1.9088102669437356e-07
0.0001898709450753,2.8090002575266257e-08,1.8768789971552863e-07
0.0001867892958482,2.7814389032455363e-08,1.8454176486632323e-07
0.000183752636707,2.754134148447891e-08,1.8115002092564538e-07
0.0001807604032471,2.7270832946920812e-08,1.7781492252546064e-07
0.0001778120365192,2.7002836607760232e-08,1.745356369687972e-07
0.0001749069829579,2.673732582084065e-08,1.7131134159682263e-07
0.0001720467771106,2.6474316260529432e-08,1.6814325920632144e-07
0.0001692307716138,2.6213779758633963e-08,1.6503047175593728e-07
0.0001664583277393,2.5955688359138642e-08,1.619720751255672e-07
0.0001635796256227,2.5677295228672648e-08,1.588223280583729e-07
0.0001607481963598,2.540169810843596e-08,1.557306487644946e-07
0.0001579633073114,2.512886316325068e-08,1.526960267832303e-07
0.0001552255108883,2.4858770138402143e-08,1.4971869736122287e-07
0.000152534027681,2.4591385101783997e-08,1.467976093017761e-07
0.0001498880910245,2.432667443532368e-08,1.439317302908228e-07
0.0001472869464661,2.4064604800471338e-08,1.411200462508912e-07
0.0001447314108795,2.3805175801260087e-08,1.3836305172259211e-07
0.0001422206714078,2.3548353146553164e-08,1.3565967973526553e-07
0.0001397539300508,2.3294102880186107e-08,1.3300888438790536e-07
0.0001372700286953,2.3032485432340423e-08,1.3035230831596558e-07
0.0001348306664569,2.2773547798807564e-08,1.277485195296911e-07
0.0001324350333325,2.2517253805739807e-08,1.2505815113074245e-07
0.0001300835425363,2.2263580536243144e-08,1.2242454150816991e-07
0.0001277753479236,2.2012491805819457e-08,1.1984647647989558e-07
0.0001255096202792,2.1763951788812352e-08,1.1732276843747534e-07
0.0001232855464269,2.1517924960982367e-08,1.148522552473446e-07
0.0001211034718808,2.1274400813402842e-08,1.1243486085670634e-07
0.0001189625537742,2.1033343271785093e-08,1.100694052812587e-07
0.0001168619671686,2.0794716623616593e-08,1.0775473577456182e-07
0.0001149842862687,2.0591381044652174e-08,1.056582342233035e-07
0.0001131392424142,2.038998454906055e-08,1.0360354473279054e-07
0.0001113262252932,2.0190503422606346e-08,1.0158979943539652e-07
0.0001095446965516,1.9992914861970927e-08,9.961620365200192e-08
0.0001077940670993,1.9797195630879305e-08,9.768192356581421e-08
0.0001060737596438,1.9603322741072024e-08,9.578614349620901e-08
0.0001043832080373,1.9411273409584944e-08,9.392806512410292e-08
0.0001027223865858,1.922103688152168e-08,9.210738192714242e-08
0.0001010907257366,1.9032590330084783e-08,9.032330177845482e-08
9.948766769187398e-05,1.8845911172333032e-08,8.857505025129074e-08
9.792267601599324e-05,1.8663442661346744e-08,8.687075031773093e-08
9.638489299064336e-05,1.848276820506329e-08,8.550652733411691e-08
9.48738026587305e-05,1.830386814585904e-08,8.416598440502352e-08
9.338895072626004e-05,1.8126723701740663e-08,8.284871850980459e-08
9.192983962632808e-05,1.7951315790883015e-08,8.155428823884958e-08
9.049598195913348e-05,1.7777625631449783e-08,8.028226120215297e-08
8.908690001727453e-05,1.7605634715742614e-08,7.903221360818749e-08
8.77022482135352e-05,1.743532764682425e-08,7.780383887402493e-08
8.634156228069215e-05,1.7266686393258476e-08,7.659672513140668e-08
8.50043874741986e-05,1.7099693224424935e-08,7.541046895998541e-08
8.381694660770028e-05,1.6962933489525264e-08,7.43570471865261e-08
8.26484651987276e-05,1.682764479561346e-08,7.33204450340972e-08
8.149860566615124e-05,1.6693821025332528e-08,7.230036302225977e-08
8.036532369463753e-05,1.6561436760581683e-08,7.129498756488483e-08
7.924836834130927e-05,1.6430487594212236e-08,7.030409604146297e-08
7.814749266035204e-05,1.6300969571299207e-08,6.932746937742372e-08
7.706245353522453e-05,1.6172879193985398e-08,6.836489189528336e-08
7.599203524832233e-05,1.6046190191322708e-08,6.741528508795074e-08
7.493604414299442e-05,1.5920900877281144e-08,6.647847715560108e-08
7.389428911314724e-05,1.57970100612018e-08,6.555429856110159e-08
7.268136514077581e-05,1.5628904744452727e-08,6.447826980203191e-08
7.148784598320314e-05,1.5462487634551132e-08,6.341945575654982e-08
1 signal ase nli
2 0.000325019416624 3.8827360617812335e-08 2.397604591245591e-07
3 0.0003222815415358 3.8702821151814216e-08 2.4267833614138976e-07
4 0.0003195661748689 3.8578942925493807e-08 2.455296149641726e-07
5 0.000316873132879 3.8455721305309324e-08 2.483151861322029e-07
6 0.0003125687708988 3.815158818797417e-08 2.497308542349044e-07
7 0.0003083216327341 3.784989647314237e-08 2.5106122773764815e-07
8 0.0003041309702107 3.755062053762566e-08 2.523083160653813e-07
9 0.0002999931829076 3.725370771318225e-08 2.534716728592015e-07
10 0.0002959076621852 3.695913382975532e-08 2.545532047834699e-07
11 0.0002914749637887 3.6620413511505286e-08 2.5520557429118934e-07
12 0.0002871045786391 3.62847038107824e-08 2.557776344401253e-07
13 0.0002827879891071 3.5951828869209396e-08 2.5626453052593257e-07
14 0.0002785247470154 3.562176113110911e-08 2.5666832208790035e-07
15 0.0002743144039041 3.5294473123494e-08 2.569910409348857e-07
16 0.000270032675166 3.4954880805048256e-08 2.571167784361306e-07
17 0.0002658067200554 3.4618272391047544e-08 2.571652788509227e-07
18 0.000261636025157 3.428461757057609e-08 2.5713860104931033e-07
19 0.00025752034599 3.395388872366444e-08 2.570390408700655e-07
20 0.000253459157096 3.362605558722993e-08 2.5284986247287787e-07
21 0.000248983782073 3.3242702224575744e-08 2.48252059976888e-07
22 0.0002445773493265 3.286328176612301e-08 2.437277481862015e-07
23 0.0002402391773459 3.2487750441670215e-08 2.392761376865807e-07
24 0.0002359684123723 3.2116061418127753e-08 2.3489626905665574e-07
25 0.0002317642070805 3.174816817069829e-08 2.3058719110264335e-07
26 0.0002279695550926 3.1424928539548144e-08 2.2668986526609113e-07
27 0.0002242281358436 3.1104729317697146e-08 2.228495045304229e-07
28 0.0002205393783222 3.078753835343166e-08 2.190654562751529e-07
29 0.0002169035545525 3.047333197100547e-08 2.1533790605165431e-07
30 0.0002133200561122 3.01620779209974e-08 2.1166616520930645e-07
31 0.0002097882786443 2.9853744125792176e-08 2.080495504306458e-07
32 0.0002063076230434 2.9548298767727423e-08 2.0448738489666716e-07
33 0.0002028776374913 2.9245712991289203e-08 2.009791389793126e-07
34 0.0001994977236946 2.8945955168147914e-08 1.975241389908885e-07
35 0.0001961672877059 2.8648993828553545e-08 1.9412171682473827e-07
36 0.0001929967738963 2.8368195292008612e-08 1.9088102669437356e-07
37 0.0001898709450753 2.8090002575266257e-08 1.8768789971552863e-07
38 0.0001867892958482 2.7814389032455363e-08 1.8454176486632323e-07
39 0.000183752636707 2.754134148447891e-08 1.8115002092564538e-07
40 0.0001807604032471 2.7270832946920812e-08 1.7781492252546064e-07
41 0.0001778120365192 2.7002836607760232e-08 1.745356369687972e-07
42 0.0001749069829579 2.673732582084065e-08 1.7131134159682263e-07
43 0.0001720467771106 2.6474316260529432e-08 1.6814325920632144e-07
44 0.0001692307716138 2.6213779758633963e-08 1.6503047175593728e-07
45 0.0001664583277393 2.5955688359138642e-08 1.619720751255672e-07
46 0.0001635796256227 2.5677295228672648e-08 1.588223280583729e-07
47 0.0001607481963598 2.540169810843596e-08 1.557306487644946e-07
48 0.0001579633073114 2.512886316325068e-08 1.526960267832303e-07
49 0.0001552255108883 2.4858770138402143e-08 1.4971869736122287e-07
50 0.000152534027681 2.4591385101783997e-08 1.467976093017761e-07
51 0.0001498880910245 2.432667443532368e-08 1.439317302908228e-07
52 0.0001472869464661 2.4064604800471338e-08 1.411200462508912e-07
53 0.0001447314108795 2.3805175801260087e-08 1.3836305172259211e-07
54 0.0001422206714078 2.3548353146553164e-08 1.3565967973526553e-07
55 0.0001397539300508 2.3294102880186107e-08 1.3300888438790536e-07
56 0.0001372700286953 2.3032485432340423e-08 1.3035230831596558e-07
57 0.0001348306664569 2.2773547798807564e-08 1.277485195296911e-07
58 0.0001324350333325 2.2517253805739807e-08 1.2505815113074245e-07
59 0.0001300835425363 2.2263580536243144e-08 1.2242454150816991e-07
60 0.0001277753479236 2.2012491805819457e-08 1.1984647647989558e-07
61 0.0001255096202792 2.1763951788812352e-08 1.1732276843747534e-07
62 0.0001232855464269 2.1517924960982367e-08 1.148522552473446e-07
63 0.0001211034718808 2.1274400813402842e-08 1.1243486085670634e-07
64 0.0001189625537742 2.1033343271785093e-08 1.100694052812587e-07
65 0.0001168619671686 2.0794716623616593e-08 1.0775473577456182e-07
66 0.0001149842862687 2.0591381044652174e-08 1.056582342233035e-07
67 0.0001131392424142 2.038998454906055e-08 1.0360354473279054e-07
68 0.0001113262252932 2.0190503422606346e-08 1.0158979943539652e-07
69 0.0001095446965516 1.9992914861970927e-08 9.961620365200192e-08
70 0.0001077940670993 1.9797195630879305e-08 9.768192356581421e-08
71 0.0001060737596438 1.9603322741072024e-08 9.578614349620901e-08
72 0.0001043832080373 1.9411273409584944e-08 9.392806512410292e-08
73 0.0001027223865858 1.922103688152168e-08 9.210738192714242e-08
74 0.0001010907257366 1.9032590330084783e-08 9.032330177845482e-08
75 9.948766769187398e-05 1.8845911172333032e-08 8.857505025129074e-08
76 9.792267601599324e-05 1.8663442661346744e-08 8.687075031773093e-08
77 9.638489299064336e-05 1.848276820506329e-08 8.550652733411691e-08
78 9.48738026587305e-05 1.830386814585904e-08 8.416598440502352e-08
79 9.338895072626004e-05 1.8126723701740663e-08 8.284871850980459e-08
80 9.192983962632808e-05 1.7951315790883015e-08 8.155428823884958e-08
81 9.049598195913348e-05 1.7777625631449783e-08 8.028226120215297e-08
82 8.908690001727453e-05 1.7605634715742614e-08 7.903221360818749e-08
83 8.77022482135352e-05 1.743532764682425e-08 7.780383887402493e-08
84 8.634156228069215e-05 1.7266686393258476e-08 7.659672513140668e-08
85 8.50043874741986e-05 1.7099693224424935e-08 7.541046895998541e-08
86 8.381694660770028e-05 1.6962933489525264e-08 7.43570471865261e-08
87 8.26484651987276e-05 1.682764479561346e-08 7.33204450340972e-08
88 8.149860566615124e-05 1.6693821025332528e-08 7.230036302225977e-08
89 8.036532369463753e-05 1.6561436760581683e-08 7.129498756488483e-08
90 7.924836834130927e-05 1.6430487594212236e-08 7.030409604146297e-08
91 7.814749266035204e-05 1.6300969571299207e-08 6.932746937742372e-08
92 7.706245353522453e-05 1.6172879193985398e-08 6.836489189528336e-08
93 7.599203524832233e-05 1.6046190191322708e-08 6.741528508795074e-08
94 7.493604414299442e-05 1.5920900877281144e-08 6.647847715560108e-08
95 7.389428911314724e-05 1.57970100612018e-08 6.555429856110159e-08
96 7.268136514077581e-05 1.5628904744452727e-08 6.447826980203191e-08
97 7.148784598320314e-05 1.5462487634551132e-08 6.341945575654982e-08

View File

@@ -1,97 +0,0 @@
,signal,ase,nli
0,0.0002869472910749756,3.829244288314411e-08,2.1570435023738975e-07
1,0.0002844264441819097,3.810807396068084e-08,2.1799950841473497e-07
2,0.00028192866252406385,3.792544000755193e-08,2.2023841125047751e-07
3,0.0002794537215642667,3.7744517714620316e-08,2.2242189941355056e-07
4,0.00027562432957345563,3.739256592350871e-08,2.2343448272115905e-07
5,0.0002718482755003939,3.7044482870002475e-08,2.2437826192962336e-07
6,0.00026812479793132313,3.670020704375223e-08,2.2525495466693408e-07
7,0.000264450700138397,3.635954085714981e-08,2.2606415187873477e-07
8,0.0002608253488030976,3.602242835595967e-08,2.2680748521505387e-07
9,0.0002569046888856947,3.564392097524325e-08,2.2718285844823122e-07
10,0.0002530414048172964,3.52696660940159e-08,2.2749429758474536e-07
11,0.0002492279873569917,3.489974200864255e-08,2.277374766527899e-07
12,0.00024546394589921574,3.453407358954537e-08,2.2791414400785136e-07
13,0.00024174879169001578,3.4172586853993816e-08,2.280260208417818e-07
14,0.00023798746912554602,3.3802283179520985e-08,2.2798420759778034e-07
15,0.00023427697848580554,3.343627022987542e-08,2.2788101592695744e-07
16,0.0002306167836320285,3.307447309241581e-08,2.2771816297650914e-07
17,0.00022700656967539738,3.2716831574363364e-08,2.274975560288182e-07
18,0.00022344579480967338,3.236327278261661e-08,2.2361822442592406e-07
19,0.00021953361935365365,3.195819964288877e-08,2.1939761734541424e-07
20,0.000215683131390894,3.155821693631402e-08,2.152494588710531e-07
21,0.0002118936126056039,3.116322947665684e-08,2.1117277567387026e-07
22,0.00020816423698459974,3.0773146233359933e-08,2.0716649124095414e-07
23,0.000204494186708796,3.0387877710694614e-08,2.0322954179937734e-07
24,0.0002011608152067422,3.0044038268833097e-08,1.9963693210325328e-07
25,0.0001978756946189507,2.9704204306604607e-08,1.9610141536963302e-07
26,0.00019463824873067792,2.9368307297032184e-08,1.9262221997374404e-07
27,0.00019144860669288407,2.903632861769827e-08,1.8919927457566036e-07
28,0.00018830616497929743,2.870820070744311e-08,1.8583178406705711e-07
29,0.0001852103256336822,2.838385708911634e-08,1.8251896218718027e-07
30,0.0001821604972098109,2.8063232252848876e-08,1.7926003240910756e-07
31,0.00017915618670059162,2.774625963676283e-08,1.76054318231953e-07
32,0.00017619680881745593,2.7432875871797347e-08,1.729010553429381e-07
33,0.0001732817839023698,2.712301856538676e-08,1.6979948820365403e-07
34,0.0001704966413678542,2.6828122477482957e-08,1.6683312331765736e-07
35,0.00016775189226190024,2.6536528664560742e-08,1.639139770351803e-07
36,0.00016504703499518105,2.624818226917535e-08,1.6104139135569604e-07
37,0.00016238266779776653,2.5963117448579666e-08,1.5795381794641793e-07
38,0.0001597582427278871,2.568127942199337e-08,1.5492098715709327e-07
39,0.0001571732182027887,2.5402614261982925e-08,1.5194201541883415e-07
40,0.00015462705891567335,2.5127068868391087e-08,1.4901603171959048e-07
41,0.00015212101646395513,2.4854550603641668e-08,1.4614388817380648e-07
42,0.00014965447757985992,2.4585009902449718e-08,1.4332463586635585e-07
43,0.0001472268380950584,2.4318397887399997e-08,1.4055734193945962e-07
44,0.0001447164668892332,2.4034551917480693e-08,1.377259000826997e-07
45,0.00014224784112376056,2.3753930444781328e-08,1.3494914625940223e-07
46,0.000139820283675003,2.3476479506890216e-08,1.3222606385781202e-07
47,0.00013743418748444287,2.3202247900619965e-08,1.295566531341862e-07
48,0.00013508884015386686,2.2931181973013504e-08,1.2693987096025158e-07
49,0.00013278354172498307,2.2663228905058608e-08,1.2437469442130953e-07
50,0.00013051760419724657,2.2398336706395863e-08,1.2186012017917007e-07
51,0.00012829168984638487,2.2136423459712534e-08,1.1939640981689728e-07
52,0.00012610506317956756,2.1877440279108582e-08,1.1698252030563078e-07
53,0.00012395700285919374,2.1621338937233993e-08,1.1461743054419825e-07
54,0.00012180241033650921,2.136015630373758e-08,1.1225922783040025e-07
55,0.0001196865090578088,2.11019103466444e-08,1.0994951537260489e-07
56,0.00011760857776205185,2.0846552296319304e-08,1.0757395097863843e-07
57,0.00011556891128259512,2.0594154864038522e-08,1.0524972555992818e-07
58,0.00011356676177304645,2.0344670536408355e-08,1.0297570549834491e-07
59,0.00011160139690545148,2.009805268169949e-08,1.007507830554809e-07
60,0.00010967209909252316,1.9854255584746143e-08,9.857387536569294e-08
61,0.00010777915187088834,1.961321154131787e-08,9.644480679617587e-08
62,0.00010592181397175025,1.9374877782865603e-08,9.43624842461164e-08
63,0.00010409936038609485,1.913921236065976e-08,9.232584080120623e-08
64,0.00010246447558376296,1.8936229484424864e-08,9.046927135292076e-08
65,0.00010085803630103994,1.873544193319646e-08,8.865067925960422e-08
66,9.927950010555374e-05,1.8536821682157304e-08,8.686925127148483e-08
67,9.772837346090753e-05,1.834034757300294e-08,8.512422533827403e-08
68,9.62041343011343e-05,1.8145993316507615e-08,8.341482250640209e-08
69,9.470627135912848e-05,1.7953733512786736e-08,8.174028142913557e-08
70,9.32342835979764e-05,1.776354374489084e-08,8.009985766376519e-08
71,9.178813743816069e-05,1.757538990695628e-08,7.849321446941075e-08
72,9.036733009485282e-05,1.7389250225057777e-08,7.691961625609573e-08
73,8.897136946428169e-05,1.7205104136353174e-08,7.537834446343352e-08
74,8.760740745801088e-05,1.7025340034280735e-08,7.38751341742058e-08
75,8.626710469266231e-05,1.6847609082084475e-08,7.274492099364066e-08
76,8.495000573672366e-05,1.6671897815367364e-08,7.16342744751107e-08
77,8.365569697520734e-05,1.6498202874185357e-08,7.054284583689086e-08
78,8.238374036673638e-05,1.6326516066391613e-08,6.94702656996508e-08
79,8.11337070649851e-05,1.615683240442047e-08,6.84161724378069e-08
80,7.990517700271111e-05,1.5989150837085435e-08,6.738021182875641e-08
81,7.869784230919362e-05,1.5823472723367315e-08,6.63621242598539e-08
82,7.751129541079501e-05,1.5659808141896922e-08,6.536156604375558e-08
83,7.634513730458697e-05,1.5498175122781168e-08,6.437820072038669e-08
84,7.530262080974513e-05,1.5364277079429572e-08,6.349909645089698e-08
85,7.427675504203511e-05,1.523236493234819e-08,6.263403294276124e-08
86,7.326723873728716e-05,1.510251249079146e-08,6.178275615432246e-08
87,7.227232864620995e-05,1.4974078108462424e-08,6.094379608687809e-08
88,7.1291797553153e-05,1.4847055996011248e-08,6.011696114034367e-08
89,7.032542203609039e-05,1.4721440784517874e-08,5.930206291361685e-08
90,6.937298231673965e-05,1.4597227547292096e-08,5.849891607818969e-08
91,6.843339696762385e-05,1.447443282270653e-08,5.7706608718023645e-08
92,6.750649045006057e-05,1.4353051811356354e-08,5.6924992809748396e-08
93,6.65920896785063e-05,1.4233080214004659e-08,5.615392239860827e-08
94,6.554258932109667e-05,1.407504972937325e-08,5.5268928972034444e-08
95,6.450957734109368e-05,1.3918655180382722e-08,5.439783940506079e-08
1 signal ase nli
2 0 0.0002869472910749756 3.829244288314411e-08 2.1570435023738975e-07
3 1 0.0002844264441819097 3.810807396068084e-08 2.1799950841473497e-07
4 2 0.00028192866252406385 3.792544000755193e-08 2.2023841125047751e-07
5 3 0.0002794537215642667 3.7744517714620316e-08 2.2242189941355056e-07
6 4 0.00027562432957345563 3.739256592350871e-08 2.2343448272115905e-07
7 5 0.0002718482755003939 3.7044482870002475e-08 2.2437826192962336e-07
8 6 0.00026812479793132313 3.670020704375223e-08 2.2525495466693408e-07
9 7 0.000264450700138397 3.635954085714981e-08 2.2606415187873477e-07
10 8 0.0002608253488030976 3.602242835595967e-08 2.2680748521505387e-07
11 9 0.0002569046888856947 3.564392097524325e-08 2.2718285844823122e-07
12 10 0.0002530414048172964 3.52696660940159e-08 2.2749429758474536e-07
13 11 0.0002492279873569917 3.489974200864255e-08 2.277374766527899e-07
14 12 0.00024546394589921574 3.453407358954537e-08 2.2791414400785136e-07
15 13 0.00024174879169001578 3.4172586853993816e-08 2.280260208417818e-07
16 14 0.00023798746912554602 3.3802283179520985e-08 2.2798420759778034e-07
17 15 0.00023427697848580554 3.343627022987542e-08 2.2788101592695744e-07
18 16 0.0002306167836320285 3.307447309241581e-08 2.2771816297650914e-07
19 17 0.00022700656967539738 3.2716831574363364e-08 2.274975560288182e-07
20 18 0.00022344579480967338 3.236327278261661e-08 2.2361822442592406e-07
21 19 0.00021953361935365365 3.195819964288877e-08 2.1939761734541424e-07
22 20 0.000215683131390894 3.155821693631402e-08 2.152494588710531e-07
23 21 0.0002118936126056039 3.116322947665684e-08 2.1117277567387026e-07
24 22 0.00020816423698459974 3.0773146233359933e-08 2.0716649124095414e-07
25 23 0.000204494186708796 3.0387877710694614e-08 2.0322954179937734e-07
26 24 0.0002011608152067422 3.0044038268833097e-08 1.9963693210325328e-07
27 25 0.0001978756946189507 2.9704204306604607e-08 1.9610141536963302e-07
28 26 0.00019463824873067792 2.9368307297032184e-08 1.9262221997374404e-07
29 27 0.00019144860669288407 2.903632861769827e-08 1.8919927457566036e-07
30 28 0.00018830616497929743 2.870820070744311e-08 1.8583178406705711e-07
31 29 0.0001852103256336822 2.838385708911634e-08 1.8251896218718027e-07
32 30 0.0001821604972098109 2.8063232252848876e-08 1.7926003240910756e-07
33 31 0.00017915618670059162 2.774625963676283e-08 1.76054318231953e-07
34 32 0.00017619680881745593 2.7432875871797347e-08 1.729010553429381e-07
35 33 0.0001732817839023698 2.712301856538676e-08 1.6979948820365403e-07
36 34 0.0001704966413678542 2.6828122477482957e-08 1.6683312331765736e-07
37 35 0.00016775189226190024 2.6536528664560742e-08 1.639139770351803e-07
38 36 0.00016504703499518105 2.624818226917535e-08 1.6104139135569604e-07
39 37 0.00016238266779776653 2.5963117448579666e-08 1.5795381794641793e-07
40 38 0.0001597582427278871 2.568127942199337e-08 1.5492098715709327e-07
41 39 0.0001571732182027887 2.5402614261982925e-08 1.5194201541883415e-07
42 40 0.00015462705891567335 2.5127068868391087e-08 1.4901603171959048e-07
43 41 0.00015212101646395513 2.4854550603641668e-08 1.4614388817380648e-07
44 42 0.00014965447757985992 2.4585009902449718e-08 1.4332463586635585e-07
45 43 0.0001472268380950584 2.4318397887399997e-08 1.4055734193945962e-07
46 44 0.0001447164668892332 2.4034551917480693e-08 1.377259000826997e-07
47 45 0.00014224784112376056 2.3753930444781328e-08 1.3494914625940223e-07
48 46 0.000139820283675003 2.3476479506890216e-08 1.3222606385781202e-07
49 47 0.00013743418748444287 2.3202247900619965e-08 1.295566531341862e-07
50 48 0.00013508884015386686 2.2931181973013504e-08 1.2693987096025158e-07
51 49 0.00013278354172498307 2.2663228905058608e-08 1.2437469442130953e-07
52 50 0.00013051760419724657 2.2398336706395863e-08 1.2186012017917007e-07
53 51 0.00012829168984638487 2.2136423459712534e-08 1.1939640981689728e-07
54 52 0.00012610506317956756 2.1877440279108582e-08 1.1698252030563078e-07
55 53 0.00012395700285919374 2.1621338937233993e-08 1.1461743054419825e-07
56 54 0.00012180241033650921 2.136015630373758e-08 1.1225922783040025e-07
57 55 0.0001196865090578088 2.11019103466444e-08 1.0994951537260489e-07
58 56 0.00011760857776205185 2.0846552296319304e-08 1.0757395097863843e-07
59 57 0.00011556891128259512 2.0594154864038522e-08 1.0524972555992818e-07
60 58 0.00011356676177304645 2.0344670536408355e-08 1.0297570549834491e-07
61 59 0.00011160139690545148 2.009805268169949e-08 1.007507830554809e-07
62 60 0.00010967209909252316 1.9854255584746143e-08 9.857387536569294e-08
63 61 0.00010777915187088834 1.961321154131787e-08 9.644480679617587e-08
64 62 0.00010592181397175025 1.9374877782865603e-08 9.43624842461164e-08
65 63 0.00010409936038609485 1.913921236065976e-08 9.232584080120623e-08
66 64 0.00010246447558376296 1.8936229484424864e-08 9.046927135292076e-08
67 65 0.00010085803630103994 1.873544193319646e-08 8.865067925960422e-08
68 66 9.927950010555374e-05 1.8536821682157304e-08 8.686925127148483e-08
69 67 9.772837346090753e-05 1.834034757300294e-08 8.512422533827403e-08
70 68 9.62041343011343e-05 1.8145993316507615e-08 8.341482250640209e-08
71 69 9.470627135912848e-05 1.7953733512786736e-08 8.174028142913557e-08
72 70 9.32342835979764e-05 1.776354374489084e-08 8.009985766376519e-08
73 71 9.178813743816069e-05 1.757538990695628e-08 7.849321446941075e-08
74 72 9.036733009485282e-05 1.7389250225057777e-08 7.691961625609573e-08
75 73 8.897136946428169e-05 1.7205104136353174e-08 7.537834446343352e-08
76 74 8.760740745801088e-05 1.7025340034280735e-08 7.38751341742058e-08
77 75 8.626710469266231e-05 1.6847609082084475e-08 7.274492099364066e-08
78 76 8.495000573672366e-05 1.6671897815367364e-08 7.16342744751107e-08
79 77 8.365569697520734e-05 1.6498202874185357e-08 7.054284583689086e-08
80 78 8.238374036673638e-05 1.6326516066391613e-08 6.94702656996508e-08
81 79 8.11337070649851e-05 1.615683240442047e-08 6.84161724378069e-08
82 80 7.990517700271111e-05 1.5989150837085435e-08 6.738021182875641e-08
83 81 7.869784230919362e-05 1.5823472723367315e-08 6.63621242598539e-08
84 82 7.751129541079501e-05 1.5659808141896922e-08 6.536156604375558e-08
85 83 7.634513730458697e-05 1.5498175122781168e-08 6.437820072038669e-08
86 84 7.530262080974513e-05 1.5364277079429572e-08 6.349909645089698e-08
87 85 7.427675504203511e-05 1.523236493234819e-08 6.263403294276124e-08
88 86 7.326723873728716e-05 1.510251249079146e-08 6.178275615432246e-08
89 87 7.227232864620995e-05 1.4974078108462424e-08 6.094379608687809e-08
90 88 7.1291797553153e-05 1.4847055996011248e-08 6.011696114034367e-08
91 89 7.032542203609039e-05 1.4721440784517874e-08 5.930206291361685e-08
92 90 6.937298231673965e-05 1.4597227547292096e-08 5.849891607818969e-08
93 91 6.843339696762385e-05 1.447443282270653e-08 5.7706608718023645e-08
94 92 6.750649045006057e-05 1.4353051811356354e-08 5.6924992809748396e-08
95 93 6.65920896785063e-05 1.4233080214004659e-08 5.615392239860827e-08
96 94 6.554258932109667e-05 1.407504972937325e-08 5.5268928972034444e-08
97 95 6.450957734109368e-05 1.3918655180382722e-08 5.439783940506079e-08

View File

@@ -0,0 +1,38 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_service.xlsx Executable file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_topo_eqpt.xlsx Executable file

Binary file not shown.

BIN
tests/data/wrong_topo_link.xlsx Executable file

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More