214 Commits

Author SHA1 Message Date
EstherLerouzic
4ef01d54a5 fix plot bug: do not overwrite the path used for plot
The plot function failed to recognize 'path' as part
of the network due to the reuse of the 'path' variable.
This led to errors when attempting to plot.

Solution is to use a different name for the deepcopy of
path elements used to record the propagation results
'propagated_path'.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0351c37de0d74391ebeb68e974b777b1f51572aa
2025-01-10 11:08:04 +01:00
EstherLerouzic
4b50ee0c2d fix: do not assume 0 dB default value for tilt-target
Instead keep the None value, it user has not stated anything

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I45fcff92caabbfbe514fbe30deac60426b7eb16b
2024-12-06 16:35:46 +01:00
EstherLerouzic
33a289e22b fix: restore uid info in warning logs
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2fdd29a4461b250661b1ccaa9737836fc3fe8695
2024-12-06 16:35:46 +01:00
EstherLerouzic
e593b8c9ec fix case where there are multiple multiband amps matching the sub amp type
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibe86499866f2f9e3dfd70b51a33b919d584b812b
2024-12-06 16:35:46 +01:00
EstherLerouzic
94a6f922cd fix typing
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0f1621b669b4db833d0760368cd834f3186ee2db
2024-12-06 16:35:46 +01:00
EstherLerouzic
fbe387915b fix: offset was not correctly taken into account on reversed path
TODO: write a test!

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7ac909bb9b8c9700c3841f133245f17f49ba3467
2024-12-06 16:35:46 +01:00
EstherLerouzic
fce9d1d293 chore: refactor json_io
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If764ba7b520a060deb855c0b55e17c78fa22f841
2024-12-06 16:35:46 +01:00
EstherLerouzic
a59db8fd12 fix: cli_examples linter issues
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id7e2f8b7282913b885062a01f1bd018bbc85e39c
2024-12-06 16:35:46 +01:00
EstherLerouzic
de509139b3 fix: linter issues on json_io
add docstrings, typing, small fixes

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I01d0fabe5e34103077ec2de829e96829e6202e1e
2024-12-06 16:35:46 +01:00
EstherLerouzic
bb77b3f4a8 fix: remove unused _automatic_spacing
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie3c2fc226f8a549622933cbd1ba8a6b8be213f92
2024-12-06 16:35:46 +01:00
EstherLerouzic
34c7fd1b60 fix: save autodesign file after autodesign!
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If1c82c8cb7ff9dbb8bf5c2d5c4b96beaa59dc402
2024-12-06 16:35:46 +01:00
EstherLerouzic
89a962ffaf fix remove unnecessary else after return
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I61dc58f15c8f03a686437e19a36ac0afe35904e9
2024-12-06 16:35:46 +01:00
EstherLerouzic
1722fbec13 feat: add more warnings on amplifiers
when user settings do not match library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id387b7781d9637f1d18c453dae75330962229902
2024-12-06 16:35:46 +01:00
EstherLerouzic
e48aa57c35 Improve error reporting by including uid of elements
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ief4125322e4db02765974c43159a014749cdab2e
2024-12-06 16:35:46 +01:00
EstherLerouzic
e3e37b1986 feat: skip path computation when path is explicit
and add tests for explicit path

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I95aaf5b56a7ea04f24153d5cb6612cd09401401c
2024-12-06 16:35:46 +01:00
EstherLerouzic
abf42afaf8 fix ci: The macOS-12 environment is deprecated
remove this check and add one for The macOS-14 instead

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ief1c990cbc67ec4d7912404c24d67f9f2fa6d96e
2024-12-06 16:35:46 +01:00
EstherLerouzic
310995045e fix: linter issues in convert and service_sheet
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5f7490ed61b53cea8d2923a8a54d38b3fbb5fa0a
2024-12-06 16:35:43 +01:00
EstherLerouzic
c840bb1a44 Improve test coverage on ila constraint cases
explicitely check the corrections for all cases
ila defined in eqpt or not,
ila defined on the link with same direction as request or not
constraint loose or strict
several or one ila in the OMS

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4d4b5167e7327c9aea4b13879f4e00d30e60d643
2024-11-25 17:07:36 +01:00
EstherLerouzic
4b6f4af3a5 Refactor to reduce cognitive complexity
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia9992ebbe06498ed53b3987edd4eb139d960ff75
2024-11-25 17:07:33 +01:00
EstherLerouzic
dc68d38293 fix ila names
auto design were changed long ago and these functions did not
apply the changes. Besides there was a confusion between request_element
class where loose is a string, and PathRequest from topology.requests
where loose_list is a list of strings.
This patch corrects the naming and also the tests,
because it used the wrong class to gererate xls services

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I564b77576459d6cb47767398a2db8138ba6ad1e4
2024-11-25 16:55:25 +01:00
EstherLerouzic
defe3bee5c feat: documentation for ROADM excel sheet input
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie662015c9cd0a90aff46c63fce47d678ffe1d4db
2024-11-25 12:09:14 +01:00
EstherLerouzic
32adc0fc53 feat: enables reading per degree impairment from xls input
- read per degre roadm-path impairment from roadm sheet
add additional optional columns: type_variety and 'from degrees'
and 'from degree to degree impairment id'
'from degrees' can contain a list of degrees separated with ' | ', then the
'from degree to degree impairment id' must contain a list of ids of the same
length.
Impairment ids are expected to be in the ROADM equipment spec and
from degree must be the previous node (no verification of user input).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7d326bb3d4f366835249089e9537747c7d3ec2fd
2024-11-25 12:09:09 +01:00
EstherLerouzic
4796266657 fix bug in roadm to_json: move per_degree_impairments in params
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I75ed610f201608a3cb651e8c0604de444113bc25
2024-11-25 08:55:00 +01:00
EstherLerouzic
c35104c184 Add documentation for multiband
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iadf6d9edd8c67c1389c4a0d482466a8c52198621
2024-11-21 09:26:51 +01:00
AndreaDAmico
7b1354ee24 fix: avoid using cumtrapz from scipy
cumtrapz has been replaced with cumulative_trapezoid in the scipy version currently required by GNPy.

Change-Id: I6790f7aa8d8e8d171faa48db4b20e6a93141c471
2024-11-15 22:25:27 +00:00
AndreaDAmico
39d3f0f483 Perturbative Raman Solver
Raman effect evaluation based on a perturbative solution for faster computation

Change-Id: Ie6d4ea4d9f95d8755dc8dfd004c954d4c2c5f759
2024-11-08 19:55:20 +00:00
AndreaDAmico
bbe9ef7356 Increasing precision in Raman tests
Change-Id: I7a4de449a673d2e2ac23376d7fe64399c65e1246
2024-11-08 18:12:49 +00:00
AndreaDAmico
42a8f018cd GGN approximation formula defined
An approximated version of the GGN is implemented to reduce the computational time enabling fast multi-band transmission simulations

Change-Id: I2951a878aa04b5eb4a33ba86d626a788c4cbb100
2024-11-08 18:09:44 +00:00
EstherLerouzic
29f5dd1dc4 Add frequency dependency on ROADM impairments
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icb88bf9c42c09deb0064e3299b78b080462fef79
2024-10-16 17:49:00 +00:00
EstherLerouzic
03da959724 insert multiband_amplifier if needed
the automatic add_missing_elements function is updated to insert
multiband booster, preamp or inline amplifiers based on the OMS
nature. If nothing is stated, then uses Edfas.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I968a2fc0a3da97aecb7b513ff211491b20cdd4f2
2024-10-16 17:47:29 +00:00
EstherLerouzic
f621ca6fe7 Add tilt computation for design targets
Compute the tilts only if raman-flag in sim_params is turned on.
Use actual input power in fiber (according to expected propagation
during design).
Creates a function that computes the expected tilt after propagation
in a span, and returns the normalized power difference at the center
frequency of each band, and the tilt experenced between lower and
upper frequency in each band.
Include the expected tilt when computing target gains of amplifiers.
Current function requires that the bands remain in the same order.
(ordering is ensured when creating the objects).

Change-Id: I28bdf13f2010153175e8b6d199fd8eea15d7b292
2024-10-16 17:46:59 +00:00
EstherLerouzic
24f4503020 Preselect multiband amplifiers based on band gain and power targets
To ensure that the multiband amplifier meets the required gain and
power targets for each band, this commit introduces a preselection
process for the amplifiers type variety. The preselection ensures
that only compatible amplifiers are considered, avoiding that
an amplifier is selected for one band that is not part of the same
multiband amplifier type variety of the amplifier selected for the
other band(s).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8de7e0b7c165e6edfe47d7f4cda80db23924a9c9
2024-10-16 17:46:34 +00:00
EstherLerouzic
520c3615e4 Refactor select_edfa
Objective is to reuse the functions that lists suitable type variety candidates
for each amplifier of the multiband amplifier

restrictions are processed before entering select_edfa.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8c784cef6bfed9a2e95bc39434a32191678db81f
2024-10-16 17:40:29 +00:00
EstherLerouzic
548626a9f2 preselect amplifiers based on restrictions and bands
make sure that selected amplifiers (single or multiband) have a band
that encompasses design_band.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8b66755efbe8413f32328b9e02099ffdedd4b7ed
2024-10-16 17:40:01 +00:00
EstherLerouzic
7a26833a5a Add some test on select_edfa
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia54c62fe76175f16048992ca1f67439dd32c6e5e
2024-10-16 17:39:39 +00:00
EstherLerouzic
c2f6f9c6a0 Add an invocation test with multiband case
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0a98175f0c6b4333fae6bea40dac826032a25233
2024-10-16 17:39:13 +00:00
EstherLerouzic
64a91256fc Propagate power per band during autodesign
Target setting computation is done going through each element of the OMS
and computing resulting delta power after each amplifier element. In order
to account for different delta power per band (multi band autodesign), the
computation must be made per band. The previous introduction of a standard
name for bands ("CBAND", "LBAND") ensures a stable key to index these
delta power computation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida4b2486ebde4f2a1fb21a44458d1fe34a788d1f
2024-10-16 17:37:35 +00:00
EstherLerouzic
bdcffc2a5e Refactor: define a separate function to compute targets
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5698feb059f13b90c1ab3d0843fb000c4e0b6b59
2024-10-16 17:36:52 +00:00
EstherLerouzic
c384af8062 Refactor: create a function to set one single band amplifier
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I00018c38b0cc0ceefcd21d50dd0cdc639019cc70
2024-10-16 17:36:25 +00:00
EstherLerouzic
0813332adc Enable differentiated design band per OMS
Introduce a design_band parameter in ROADM and Transceiver.
- if nothing is defined, use SI band(s)
- if design band is defined in ROADM, use this one for all degrees
- if per degree design band is defined, use this one instead

unsupported case: single band OMS with default multiband design band.
Check that these definitions are consistent with actual amplifiers

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibea4ce6e72d2b1e96ef8cf4efaf499530d24179c
2024-10-16 17:31:33 +00:00
EstherLerouzic
22fe9ead55 Introduce multi band amps
Introduce a new multi-band element that contains a list of Edfa element:
- reads multiple amps out of the element config.
- deduces frequency band from the amp in the list.

no autodesign yet: multi-band amps must have type_variety.

- checks that type variety of individual EDFAs is consistent with multiband
type variety
- demux and mux spectrum when propagate in multiband
- don't add a preamp or booster if a multiband amp is already defined.

The print of channel number is removed from equipment, since the channel number
may now depend on the path's amplifiers. This changes invocation results layout.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I44e77ff82e622cdee4021a7984d660317cb90cf9
2024-10-16 17:26:11 +00:00
EstherLerouzic
920ac30aa5 Refactor and simplify network functions
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ifa0949a8b7739036639e1a4b006ceb08804558ce
2024-10-16 17:24:52 +00:00
EstherLerouzic
ac8fd770ab Only propagates carriers that belong to Amp bandwidth
The commit introduces mux/demux functions in amps and ensures that the
propagation is only done on carriers that are in the Amp bandwitdh, ie
with all their spectrum including slot width is in bandwidth.

For consistency, default amp f_min is changed:
Objective is to use amplifiers' band to bound the possible frequencies
to be propagated. Since the current default f_min of Amp in json_io.py is
higher than the SI one, this would result in a different nb of channels
than currently used in tests, and a change in all tests. In order to
avoid this, I preferred to change this value and have consistency
between SI f_min and Amp f_min.

The commits adds a set of functions to make amps band the useable
spectrum on each OMS. Thee OMS generation is changed to use the amp band.

The commit adds filtering functions (demux and mux) to filter out spectrum
which is not in the amplifier band.

Spectrum assignment is also corrected to correctly match the amp bandwidth
constraint with guardband: center frequency index must be within the
usable part of the amp band. This changes a bit the notion of freq_index
and guardband in the functions, but this is transparent to user:
f_min, f_max represent the amp band, while self.freq_index_min/max
represent the center frequency boundary for a reference 50GHz channel.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I225b2b2dc0e1f1992c0460f6e08fa9c9bc641edf
2024-10-16 17:16:21 +00:00
EstherLerouzic
5277ae2005 Add a redesign option
redesign True means that network is redesigned using each request
as reference channel. When False it means that the design is made
once and successive propagation use the settings computed with this
design.

Default propogation is without redesign, so that path-request-script
must use the ----redesign-per-request option to behave as before this
commit.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0084185106d14659a846136620cd17791d551a7d
2024-10-16 17:15:20 +00:00
EstherLerouzic
30ead40e76 Creates a set of functions to be called by CLI and API
Instead of copying the CLI script in API code, use functions shared
by CLI and API

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3f9b30b8700b68237d0e80768db015d8dec3deb5
2024-10-16 17:13:25 +00:00
EstherLerouzic
ae858b911a fix: capture warning to show the ROADM uid
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie13bf4c3436a5a0b8ec730698920eee2c7fb81e8
2024-10-16 17:10:34 +00:00
EstherLerouzic
0d236fd31e fix: remove unused invocation test file
Wrongly added by commit #4a071c5

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I337b8d4560cd7f2634fca7d242783da327127de5
2024-10-16 16:42:09 +00:00
EstherLerouzic
9a84e29433 fix: remove freq2wavelength that is already defined
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8ef480460e689bfcb33116cd393ad92ed0e03338
2024-10-08 11:07:13 +00:00
‘Renato
143f63170e FIX: json indentation in example-data
Change-Id: If3585fc554638cb1e5f7e4564d10af29420b6159
2024-09-20 13:49:26 +00:00
EstherLerouzic
b2d7f883a1 Add documentation for topology, service and sim-params files
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0d917b742acd91aa52403f1ac96a378bb3cd8497
2024-06-02 19:26:33 +02:00
EstherLerouzic
73dbdf3042 Add documentation for the roadm impairment feature
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ief7e79ef10edf098c49ab1a0164284e5ae604961
2024-06-02 19:26:33 +02:00
EstherLerouzic
4a071c53d7 feat: transform roadm-paths into list indexed with frequency band
to be conformed with ietf + to prepare for next multiband case

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If71857ef7dff9eaaa4c16e3837d3500bcef2fa72
2024-06-02 19:26:33 +02:00
EstherLerouzic
dcde64a8db clean some leftover from previous refactor
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibd6e32090155433d7b1aa5b6572f1fe07a4cbe4a
2024-06-02 19:26:33 +02:00
EstherLerouzic
38cc0e3cc5 feat: separate span power from tx power
gnpy currently uses the same parameter for tx output power and span
input power: this prevents from modelling low tx power effect.
This patch introduces a new tx-cannel-power and uses it to
propagate in ROADM.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id3ac75e2cb617b513bdb38b51a52e05d15af46f5
2024-06-02 19:26:33 +02:00
EstherLerouzic
fb70413784 Refactor equipment and add some tests
This fixes error message for wrong trx type,  catches the case of
KeyError when trx_type is not part of the library.

removes power setting from this function: power out of transceiver or
at the input of span is nor defined in equipment Transceiver

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I15fa7cc772ab5c1a8c7637738eb83c2ddffa1219
2024-06-02 19:26:33 +02:00
EstherLerouzic
87e10c240e Add test on blocking due to PDL penalty
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d6a7f9ed0ff8ad6977bcfe1b78ed620bb0e848d
2024-06-02 19:26:33 +02:00
EstherLerouzic
43c1085be6 feat: apply per path_type ROADM OSNR
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2b0838c9a217a7f918b2cf08c233aacdbf686a72
2024-06-02 19:26:33 +02:00
EstherLerouzic
4ace60bea2 Feat: apply roadm-path loss
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I87e27d5b653bdce814f43e4c9c1183fb51fbcc1e
2024-06-02 19:26:33 +02:00
EstherLerouzic
f950a6aee8 Feat: add detailed ROADM impairments per roadm-path
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I09c55dcff53ffb264609654cde0f1d8b9dc7fe9b
2024-06-02 19:26:33 +02:00
EstherLerouzic
fb4195c775 Feat: Enable multiple type_varieties for ROADM
This commit introduces the 'type_variety' attribute for ROADM elements,
allowing the use of different types of ROADM specifications instead of
being limited to the default one.

If no type variety name is provided in the eqpt_config, the 'default'
name is used for backward compatibility with libraries. Additionally,
if no type variety is defined in the ROADM element in the topology,
the default one is used for backward compatibility with topologies.

The 'type_variety' attribute is included in the 'to_json' and
'display' methods for ROADM elements.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I61a2491f994e47ad0b08cf8eaef30d6d855aa706
2024-06-02 19:26:33 +02:00
EstherLerouzic
29f42666e5 remove whites spaces and align parentheses
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0f5f389a3cf20155ceb0e9d9f071d1334a5ad688
2024-06-02 19:26:33 +02:00
EstherLerouzic
9bf7f336e3 Update release notes of v2.9
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib949ff81fa818886a69339117bc66290dc2685b0
2024-06-02 19:26:27 +02:00
EstherLerouzic
eed6564f11 Add power sweep functionality description in documentation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic8db566bc168f120ddb0016c91bcc1d24263548c
2024-06-02 19:17:07 +02:00
EstherLerouzic
fbb2f2c587 fix missing to_json export of computed_number_of_channels
The parameter was introduced in commit 9736f7c032
but the export to_json was not added.

In the next commits, it is necessary to compute Raman gain during the design
phase. The sim-params used for this computation are updated during the
design phase for speed reasons. To ensure the proper restoration of user
settings for propagation, the export must include all parameters. Therefore,
this commit adds 'computed_number_of_channels' to the JSON export. This allows
for the accurate recording of all user settings locally and enables their
restoration.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I221a6f614010edea9cf46c3a7d43c5be064ff09c
2024-06-01 19:17:50 +02:00
EstherLerouzic
44040c4d06 fix missing description of computed_number_of_channels
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5c8d057dcdab535617eee8de3eccdd806cec403e
2024-06-01 09:11:56 +02:00
EstherLerouzic
ee9af69558 Improve doc to state when tilt is vs wavelength
add some text in the docs to explain that tilt can be expressed
vs freq or lambda depending on context:
advanced_model expresses dgt as a function of frequency,
while tilt target is still defined vs wavelength (common usage).

Change the variable to have explicit name when it is per wavelength,
or add a comment to help identifyper wavelength or per frequency
variables.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7727f00b38244152b95954e981cc9da096bb3d1d
2024-05-24 07:11:02 +00:00
Esther Le Rouzic
ce21609fec Merge "fix: image of the script and documentation" 2024-05-22 14:24:26 +00:00
Esther Le Rouzic
a1289e6a9b Merge "feat: enable different sim_param vectors for multiple requests" 2024-05-22 14:19:35 +00:00
AndreaDAmico
138115e1d7 Frequency scaling description in release notes v2.8
Change-Id: I74f3d52a3cbc087b914ff18075869d2162b693ac
2024-05-16 01:23:27 -04:00
EstherLerouzic
ed41305f55 fix: image of the script and documentation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib022320efd36a2d912f7b443686d7fee137e48b1
2024-04-26 18:19:53 +02:00
EstherLerouzic
9736f7c032 feat: enable different sim_param vectors for multiple requests
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia800a7b98b33b795cc3553500116be61c612e45c
2024-04-26 17:12:43 +02:00
EstherLerouzic
be7ae35db3 Refactor amp default in parameters
default parameters are shared between json and network function,
so it is better to have them on the parameters to avoid circular
dependency when importing modules

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib9d41852e394586d36f74992c91f67f3330cc552
2024-04-25 17:51:56 +02:00
EstherLerouzic
2b4a4ab72c fix Raman gain estimation during design
- Replaced multiple calls to the span_loss function
  with recording the span loss result in the fiber elements,
  reducing computation time.
- Updated Raman gain estimation based on design target powers to ensure
  accurate Edfa gain calculation or gain reduction during design.
- display the computed and design Raman gain in RamanFiber string output
- do not add padding on Raman fibers
- Added to_json function to preserve user input SimParams values,
  which were previously overwritten by initializing SimParams
  with fake values during design.

Next step is to allow users to balance computation time and
target accuracy of the design by inputing their own SimParams
and ref channels design values.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1ca4954d0621858cefb3d776a538131992cae3e3
2024-04-12 08:58:16 +02:00
EstherLerouzic
426c88432d fix: update README script animation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I31381ddf3e372f34836416162c080a5205ef969d
2024-04-12 08:41:27 +02:00
AndreaDAmico
2a800b781f Bug fix: Raman coefficient properly scaled in non SSMF case
Before the Raman coefficient was normalized with respect the given effective area, instead of the reference.

Change-Id: I4c0547db4fbd0f823a9058022b93c1ca37d67b51
2024-04-11 01:21:02 -04:00
Jan Kundrát
8d1d3677ed docs: fix graphs on RTD
At OFC I was talking with the OpenROADM people, and it turned out that
our docs stopped rendering properly at RTD. It turned out that the build
started skipping the bindep.txt file at some (unknown) point in time.

Reported-by: Aparaajitha G L <aparaajitha.gomathinayakamlatha@utdallas.edu>
Change-Id: Ie9a4b61f36fb979fb5c109d02de06e0b2cbf270e
2024-03-29 19:23:08 +01:00
Jan Kundrát
5b6f8c60cf docs: use the default theme on ReadTheDocs.org as well
Historically, we've been using the RTD theme on the RTD site which hosts
the docs for us, and a Sphinx-default, "Alabaster" theme for other docs
builds. Doing that however started failing:

 Traceback (most recent call last):
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 1096, in handle_page
     output = self.templates.render(templatename, ctx)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/readthedocs_ext/readthedocs.py", line 181, in rtd_render
     content = old_render(template, render_context)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/jinja2glue.py", line 194, in render
     return self.environment.get_template(template).render(context)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/environment.py", line 1301, in render
     self.environment.handle_exception()
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/environment.py", line 936, in handle_exception
     raise rewrite_traceback_stack(source=source)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/basic/page.html", line 10, in top-level template code
     {%- extends "layout.html" %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/classic/layout.html", line 10, in top-level template code
     {%- extends "basic/layout.html" %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 170, in top-level template code
     {%- block content %}
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 189, in block 'content'
     {%- block sidebar2 %}{{ sidebar() }}{% endblock %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 189, in block 'sidebar2'
     {%- block sidebar2 %}{{ sidebar() }}{% endblock %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/sandbox.py", line 393, in call
     return __context.call(__obj, *args, **kwargs)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/runtime.py", line 777, in _invoke
     rv = self._func(*arguments)
          ^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 63, in template
     {%- include sidebartemplate %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/jinja2glue.py", line 215, in get_source
     raise TemplateNotFound(template)
 jinja2.exceptions.TemplateNotFound: about.html

 The above exception was the direct cause of the following exception:

 Traceback (most recent call last):
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/cmd/build.py", line 281, in build_main
     app.build(args.force_all, args.filenames)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/application.py", line 347, in build
     self.builder.build_update()
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 310, in build_update
     self.build(to_build,
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 376, in build
     self.write(docnames, list(updated_docnames), method)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 571, in write
     self._write_serial(sorted(docnames))
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 581, in _write_serial
     self.write_doc(docname, doctree)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 672, in write_doc
     self.handle_page(docname, ctx, event_arg=doctree)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 1103, in handle_page
     raise ThemeError(__("An error happened in rendering the page %s.\nReason: %r") %
 sphinx.errors.ThemeError: An error happened in rendering the page about-project.
 Reason: TemplateNotFound('about.html')

 Theme error:
 An error happened in rendering the page about-project.
 Reason: TemplateNotFound('about.html')

I have no clue what that means because we have never requested this
`about.html`, nor do we reference that file from anywhere. Chances are
that it's "just" some version pinning/compatibility issue, but hey --
why mess with that when there's a perfectly good default theme that
we're using for other purposes already.

As a side effect, this also solves that long-standing issue that Esther
reported where the tables have overly long lines. Apparently, it's a
theme-specific misfeature (readthedocs/sphinx_rtd_theme/#117), and the
Alabaster one doesn't suffer from that.

All hail alabaster!

Change-Id: I857890f29f14b7c0f66bca201c9a9c1b1cbf8841
2024-03-13 21:30:20 +01:00
Jan Kundrát
3a733b1fd5 docs: try to unbreak the readthedocs.io build
It was failing with a message:

  Config validation error in build.os. Value os not found.

Apparently, the v2 config file is mandatory, so let's do that.

Change-Id: I267d5314db026de532b2b6644f500d25de08e343
2024-03-13 21:30:20 +01:00
Jan Kundrát
2d68b94a46 build: specify dependencies directly in setup.cfg
In tox v4, "reuse of environments" was disabled [1]. This is then later
explained [2] to refer to exactly that thing which we were using for
inheriting the dependencies from the top-level testenv all the way to
the docs build. That's why the docs build in GitHub CI started failing.

IMHO, The Correct Way™ of specifying what dependencies are used for
which feature are the so-called "extra dependencies". Once they are in
place, it is be possible to install gnpy via, e.g., `pip install
oopt-gnpy[docs]`. However, this process is (as far as I can tell)
incompatible with `requirements.txt`; all my attempts at using the
standard dependency syntax in that file have failed for me.

So, in order to make this happen, let's move all the dependencies from a
more-or-less ad-hoc collection of files to this declarative approach
right in setup.cfg. That way, the deps are listed on a single place, in
a declarative manner, and as a result, the installation is now a trivial
pip oneliner.

As a result, one can also remove that duplication of dependencies in
docs requirements.

[1] https://tox.wiki/en/4.11.4/upgrading.html#reuse-of-environments
[2] https://tox.wiki/en/4.11.4/upgrading.html#packaging-configuration-and-inheritance

Change-Id: I34aa0c71e993b39e2b805a7de40e133b4d290318
Fixes: 47c89626 fix docs requirements
2024-03-13 21:28:01 +01:00
EstherLerouzic
bc71823bd0 docs: add a release-note section and update documentation for penalties and SI
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I12a5747df3cee6df79c24dd6261f7be17aa77fcf
2024-02-09 18:59:40 +01:00
EstherLerouzic
5481b93728 Fix frequency scaling for fiber
- wrong parameter was used in parameter
- error message could not read 0-dimensional arrey for 0 and -1 element
- add a test that makes use of the feature

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id7f6d6766d5b91a4b9410ad23aaa5e472b8ebb6f
2024-01-16 09:10:31 +00:00
EstherLerouzic
05e301182d Change fedora-python in action
"Until version 0.4, this action always used the
latest fedora-python-tox image"
https://github.com/fedora-python/tox-github-action

So let's use one that supports python 3.8

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibf3e0baa715da70b4c2af6e2cde6efccfab50311
2024-01-15 20:02:13 +01:00
EstherLerouzic
47c89626e3 fix docs requirements
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9d151b842a38380b0368e099c67957ec36b78250
2024-01-15 13:53:44 +01:00
EstherLerouzic
7a032a63b5 ci change allow_whitelist which is deprecated
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic62050d351eb5bb2f8be2b8d9e0088bd965dc71d
2024-01-15 13:12:35 +01:00
EstherLerouzic
f195d5f496 fix: use ref power on transceiver to Roadm (or transceivers) links
The recent refactor removed a default pref in case of transceivers-OMS
(amplified links starting with a transceiver).
This resulted in a mismatch between input power during design
(default 0 forced in the function) and the design ref power using SI
power_dbm.

This change ensures that the same power is used for the input power
and for the design ref power, and avoid inconsistent gain computatiion.

The code has been using the same power input (SI power_dbm) to define the
power target out of a transceiver and the target out of amplifiers
(at the input of fibers). This will be changed in a future patch.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I610c8df19039bcf156a8ba77c79114b22913a538
2023-12-08 12:27:05 +01:00
Esther Le Rouzic
56569f866f Merge changes from topics "mixed-rate", "refactor_remove_pref"
* changes:
  Add a test on EOL
  add invocation test with the 3 equalization settings
  Add a test on out_voa optimisation function
  Clean a bit, add docstrings
  Remove Pref, and move ref_carrier definition
  Remove p_span0 from SI
  Remove p_spani from Pref
  Use design delta_p and gains instead of p_spani
  restore initial power sweep behaviour
  refactor cli to use a common design function
  Parametrize verbose in autodesign
  refactor build_network: create a separate function to add elements
  Computes reference input power in fiber during design
  Computes reference input power in ROADM during design
  Add a variable to hold delta_p even if gain mode is selected
  Add frequency range in default_edfa profile
  Add a test on gain mode behaviour
  Check element setting before and after propagation
  Correct design: apply saturation in all cases
  Add more tests on amp saturation
2023-12-04 16:09:37 +00:00
Esther Le Rouzic
bf1f293043 Merge "Add test in amplifier behaviour" 2023-12-04 16:08:14 +00:00
Esther Le Rouzic
28871c6f2d Merge pull request #480 from jktjkt/python-3.12
CI: Python 3.12 and extended platform coverage
2023-11-23 17:54:02 +01:00
EstherLerouzic
d7c1a6b75e Add a test on EOL
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iddce655a64623a42cdaeaa2e8c269e3a737dd935
2023-11-20 17:07:53 +01:00
EstherLerouzic
c69c2a3af2 add invocation test with the 3 equalization settings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0aee8da7bbf71991c68e163c7188efe1ddf29ff9
2023-11-20 17:07:53 +01:00
EstherLerouzic
fb29d72906 Add a test on out_voa optimisation function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I36d71d85e5837965f6d5ae47820506d06b3cb94e
2023-11-20 17:07:53 +01:00
EstherLerouzic
30a06da6b1 Clean a bit, add docstrings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8639d458ebb090761846387921f9da4fc65a9f64
2023-11-20 17:07:53 +01:00
EstherLerouzic
139c8cc1e7 Remove Pref, and move ref_carrier definition
Finally, ref_carrier is not meant to change after design since
it is the carrier used for design. So let's move its definition
to networks function. Only ROADM need the ref_carrier baud rate
so let's define a dedicated variable in ROADM to hold it.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida7e42dd534a04c8df8792b44980f3fd2165ecb6
2023-11-20 17:07:53 +01:00
EstherLerouzic
7034d4c686 Remove p_span0 from SI
reference channel is defined during design. No need to convey it
anymore during propagation.

move target_pch_out_db definition to the design phase and change
its name to be consistent with what it contains (dbm)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I350e4557e8488a614674042de26152ab89b2d245
2023-11-20 17:07:53 +01:00
EstherLerouzic
10164495b9 Remove p_spani from Pref
next step: remove Pref

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7cc17253a2d7ab3fb42e3d07c1665991cffa6222
2023-11-20 17:07:53 +01:00
EstherLerouzic
87211b35e9 Use design delta_p and gains instead of p_spani
Remove the visualisation of the effective_pch in amp because actual
and target are the relevant ones. effective_pch was artificially
related to a mix of reference channel and noisy channel (mixed between
on the fly redesign but using actual ROADM equalisation which includes noise
in its actual loss).

the change does no more rely on the target power (which is rounded)
but on the designed gain, which is not rounded.

Propagations are slightly changed for openroadm simulations because of that.
(I verified)

The gain of amp was estimated on the fly with p_spni also in case of
RamanFiber preceding elements. removing p_spani requies that an estimation
of Raman gain be done during design.

This commit also adds this estimation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I960b85e99f85a7d168ac5349e325c4928fa5673b
2023-11-20 17:07:46 +01:00
EstherLerouzic
e9f9ddb4d6 restore initial power sweep behaviour
if user define a delta_p that is reduced because of saturation,
then this initial setting is still kept for power sweep to be sure
that the full amplitude of sweep is used.

SI power = 0 dBm
max power amp1 = 20 dBm,
user_defined_delta_p set by user = 3
80 channels, so pch_max = 20 - 10log10(80) = 0.96 dBm
power_sweep -> power range [-3, 0] dBm

then for initial design,
   pref = 0 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref = 0.96

but for -3 power sweep
   pref = -3 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref =
      min(0.96,    -3 + 3) - (-3) = 3
   so the user defined delta_p is applied as much as possible

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8fd459c29aa9754ff9d4868af1d8be8642a31913
2023-11-20 11:10:07 +01:00
EstherLerouzic
8ea13bb4d6 refactor cli to use a common design function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I029d8c7fc29b1e86e1e3b2b64933bae5da134226
2023-11-20 10:27:43 +01:00
EstherLerouzic
b45829d2df Parametrize verbose in autodesign
transmission-main-example and path-request-run functions implement an
on-the-fly redesign based on p_span_i.
Since we remove p_span_i from elements, we will need to properly call
redesign several times before each propagation, to keep the same
behaviour of these functions.

in this commit we simply enable the possibility to mute warnings.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3aa3d8fc87325033ef69641078bdd7213e0409eb
2023-11-20 10:27:41 +01:00
EstherLerouzic
6ac3a517cf refactor build_network: create a separate function to add elements
separate function that adds element, from function that configure them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ica332223bdf7fc599cb007d7513d7cd62d9c5f9c
2023-11-20 10:25:07 +01:00
EstherLerouzic
2f2920a716 Computes reference input power in fiber during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for reference channel fiber loss computation.
Note that this loss parameter is only used for visualisation purpose.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I16bd792bd6079ce521aafadcf5e21922aa3b4c81
2023-11-20 10:23:21 +01:00
EstherLerouzic
07fd89351b Computes reference input power in ROADM during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for ROADM reference channel loss computation.
Note that this loss parameter is only used for visualisation purpose.
No impact on propagation.

Since this loss is computed for the reference channel used for
design, we need to record input power based on input degrees,
and indicate this information within the call function.

Note that this will be also usefull later on to implement ROADM
parameters

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I64d510fc20df72f07158f400964d592d76dc0ce4
2023-11-20 10:23:21 +01:00
EstherLerouzic
7c60b000b5 Add a variable to hold delta_p even if gain mode is selected
Let's use a clean convention to hold values that are configured,
autodesigned or resulting from propagation.

- edfa.operational.delta_p: holds the value set by the user if any.
  This is needed in case of redesign for power sweep for example.
  It is never changed.
- edfa.delta_p:
  o if power_mode is true, records the value computed by the design.
      Applies user defined value except:
      If the user has set non possible values (eg leading to saturation),
      then the value is corrected at design phase.
      If the element is propagated for different conditions than
      design, for example leading to saturation,  then delta_p might be
      different than the value initially computed during design.
  o if power_mode is False, it is set to None
- edfa._delta_p: records the value computed during design whatever
  the power mode

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4e130a3abe0a5e3f6c057d89360e50531c168123
2023-11-20 10:23:21 +01:00
EstherLerouzic
537eb017b5 Add frequency range in default_edfa profile
This range is the property of amps and is independant from user propagation range.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib89f1987910aa3121a3b8c859a0a785f7d5e27eb
2023-11-20 10:23:21 +01:00
EstherLerouzic
9c514e8086 Add a test on gain mode behaviour
This test checks that setting in gain mode forces amp to the gain settings
and ignores any power requirements. Change in SI in eqpt config and change
in req power (eg power sweep) should have no effect on the propagation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iad826f30010fe3110d105b5206d99f502fbf98ff
2023-11-20 10:23:21 +01:00
EstherLerouzic
78efb6c650 Check element setting before and after propagation
In power mode, all elements design attributes should not change except
amplifiers' gain in case of power saturation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2fec00232c80dd395e4dec20ec531c9c2e127760
2023-11-20 10:23:18 +01:00
EstherLerouzic
3510d59250 Correct design: apply saturation in all cases
Previously saturation was not checked during design if amp type was set.
This commit also applies saturation for these amplifiers.

This changes some of the autodesign result (since range for selection
is changed). For example, this changes some of the gains, or type variety
of amplifier of test files.

The commit also removes one of the rounding in the design phase, and
applies rounding only for printing purpose.

It also adds minor refactor on a function

In order to keep power sweep behaviour in case of saturation, the saturation
check in amplifier element uses initial power targets set by user instead
of a possible autodesign delta_p result.

Note that gain_mode is unchanged: design in gain mode means that delta_p
is set to None during the build process, even if the user defined a value
in operational.delta_p.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idc5cfc8263cf678473acb6ec490207d9d6ba5c0a
2023-11-20 10:21:38 +01:00
EstherLerouzic
41d9d156a6 Add more tests on amp saturation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibba18bed646748d59cfe906b403a9b100c58bb7e
2023-11-20 10:21:35 +01:00
EstherLerouzic
e9d5e748e4 Add test in amplifier behaviour
Check that amp correctly applies saturation, when there is tilt.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e7623e9d5b28bdc12eae24766588645781c2827
2023-11-20 10:21:06 +01:00
EstherLerouzic
5a5bed56c2 Add test on _check_one_request function
Add the call to the function, and creates additional test cases to raise the
different situations related to spectrum slots:
- M value too small
- total nb of channels too small
- overlapping

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7ab3923deef2ff154ee1be21dcaeb3d9e4b84375
2023-11-17 16:26:12 +01:00
EstherLerouzic
22de1b1281 Add tests on aggregation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5409d847657fbe14f7963ff56546d0bedbf6c941
2023-11-17 16:26:12 +01:00
EstherLerouzic
73e1485b47 aggregate demands with defined mode and spectrum
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id9fc2e0fe6f6ff5a3996700f6db7dfa6222dc3ca
2023-11-17 16:26:12 +01:00
EstherLerouzic
22ee05ea6f Add more tests for multiple slots spectrum assignment
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id773f0f14cfe80b7ebcf07370170ad425faf0919
2023-11-17 16:23:48 +01:00
EstherLerouzic
31824f318d Enable multiple slots assignment
list of slot may include (N, M) values such as
(int, uint>0)
(int, None)
(None, uint>0)
(None, None)

Demands will be splitted into requested slots according to first fit strategy.
For example, if request is for 32 slots corresponding to 8 x 4slots 32Gbauds
channels, the following frequency slots will result in the following
assignments:
example 1
N = 0, 8,    16, 32           -> 0,   8,   16,   32
M = 8, None, 8,  None         -> 8,   8,    8,    8
example 2
N = 0,    8,    16, 32        -> 0,   , 16
M = None, None, 8,  None      -> 24,  , 8

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ice9bb4b5700d23bcf30db25aa4882e74853169ac
2023-11-17 16:23:48 +01:00
EstherLerouzic
b0cb604e91 Remove old commented code
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idd2fcca0fe757eb801ab575953828c6df0521bb4
2023-11-17 16:23:48 +01:00
EstherLerouzic
79102e283a Refactor function to simplify the process
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I362d23a969c338ccd70caecc4e59e991d2a8d8a2
2023-11-17 16:23:48 +01:00
EstherLerouzic
db5e63d51b Refactor spectrum selection function
Cut some functions into smaller pieces to be easily re-used afterwards.
This step to prepare multiple slots assignment.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0fa2df7f6174e54405f92a57d60289d560c1166
2023-11-17 16:23:48 +01:00
EstherLerouzic
af42699133 Enable the loading of a bitmap
OMS are currently built with a brand new spectrum bitmap using f_min, f_max,
guard band and grid values. This changes enables to load an existing bitmap.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0547bc337c863a3510ad9e43928e6f64701d295
2023-11-17 16:23:48 +01:00
EstherLerouzic
4ba77d0a0a Change rq.N and rq.M from scalar to list
Prepare for the next step, to be able to handle lists of candidate assignment

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2bd78606ce4502f68efb60f85892df5f76d52bb5
2023-11-17 16:23:48 +01:00
EstherLerouzic
064d3af8e0 Remove line number from invocation logs
line numbers are useful for debugging, but the benefit does not
compensate for the painful update of lines in files at each commit
that changes line numbers.
So I have removed those lines only for the test_invocation logs case.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic1f628d80b204a9a098f3902ebdfd10b480c7613
2023-11-17 11:56:06 +01:00
AndreaDAmico
4ab5bac45f EDFA Parameters restructuring
The parameters of the EDFA are explicitely retrieved in the EDFAParams class.
All the defaults are set instead in the gnpy.tool.json_io.AMP class.
Where required, the AMP.default_values are used instead of an empty dictionary.

Change-Id: Iba80a6a56bc89feb7e959b54b9bd424ec9b0bf06
Co-authored-by: Vittorio Gatto <vittoriogatto98@gmail.com>
2023-11-17 09:08:00 +01:00
AndreaDAmico
bbe5fb7821 Chromatic Dispersion scaling along frequency
The chromatic dispersion and dispersion slope can be provided as a single values evaluated at the fiber reference frequency or in a dictionary containing the dispersion values evaluated at multiple frequencies:
"dispersion": {"value": [], "frequency": []}

Change-Id: I81429484dd373cc49bd9baf013247782ba1912fd
2023-11-17 09:04:44 +01:00
AndreaDAmico
edf1eec072 Nonlinear coefficient scaling along frequency
The nonlinear coefficient can be expressed at the reference frequency and will be scaled in frequency using the scaling rule of the effective area

Change-Id: Id103b227472702776bda17ab0a2a120ecfbf7473
2023-11-17 08:53:58 +01:00
AndreaDAmico
88ac41f721 Seprating the eta matrix evaluation in compute nli
The evaluation of the eta matrix is reintroduced for nli evaluation and validation purposes. Also, the parameters for cut and pump are separated explicitelly.

Change-Id: Id3844fa8ba41a5d4f5a72d281d758136ee983f45
2023-11-17 08:51:35 +01:00
AndreaDAmico
c20e6fb320 Effective Area and Raman Gain Coefficient Scaling
1. Effective area scaling along frequency is implemented by means of a technological model.
2. Raman gain coefficient is extended coherently, including the scaling due to the pump frequency.

Change-Id: I4e8b79697500ef0f73ba2f969713d9bdb3e9949c
Co-authored-by: Giacomo Borraccini <giacomo.borraccini@polito.it>
2023-11-17 08:51:26 +01:00
Jan Kundrát
05500c7047 CI: run tests on Apple M1 CPUs as well (64bit ARM)
Note that on GitHub, this currently targets a "runner" that's behind a
paywall. TIP does have a payment setup in place AFAICT, so we make sure
that this job does not run on forks.

Change-Id: I50c556424d86a1ce47e59911b9e39f336df34ce5
2023-11-15 20:37:26 +01:00
Jan Kundrát
86a39f4b5e packaging: mark Python 3.12 as supported
Change-Id: If3c8ea7d5a7651b71379a71e5dfde6b464aa5b4a
2023-11-15 20:06:55 +01:00
Jan Kundrát
2b25609255 CI: test on Python 3.12 and some new platforms
Change-Id: Ice5c3ca21245c4ac87cb2bf4f0fd062596615a2e
2023-11-15 20:06:55 +01:00
Jan Kundrát
7e0b95bcfd Bump all dependencies
Change-Id: Id08b7722880b992b1bb70f53ad243d4f40ffe387
2023-11-15 20:06:54 +01:00
Jan Kundrát
f0a52dcc8a tests: upgrade pandas
There are no binary wheels for Python 3.12 prior to pandas v2.1.1. Our
previous pin requested the 1.x branch, and that resulted in building
Pandas from source, which takes time. We cannot pin to 2.1.1 because
they removed support of Python 3.8 in 2.1, so 2.0.3 it is.

Change-Id: Ia9a567e54f4dda19a0a6b67d0c295a9a079892de
2023-11-15 20:05:54 +01:00
EstherLerouzic
3bea4b3c9f Feat: improve sanity check for eqpt sheet
add cases of wrong sheets that were not captured and
generate errors later in propagation:
- if the eqpt line is duplicated
- if the eqpt contains a link that is not present in Links sheet,
  but Nodes are OK
- if the same link is defined but with opposite directions
- if the ila is defined twice with opposite directions
- if the service type or mode are not in the library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4715886e19f07380bf02ed0e664559972bb39b71
2023-11-02 10:14:03 +01:00
EstherLerouzic
f2cc9f7225 Add more logs
and test them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I05ffc3a75354fa8d8f3a668973ab7f4cbcfa1a98
2023-11-02 10:01:38 +01:00
Esther Le Rouzic
e79f9f51b6 Merge "Feat: add offset power option for transceivers" 2023-10-31 08:30:13 +00:00
Esther Le Rouzic
7fd7f94efe Merge "Refactor error message" 2023-10-31 08:29:58 +00:00
Esther Le Rouzic
0acdf9d9f6 Merge "docs: rename the Matrix channel" 2023-10-27 15:09:16 +00:00
EstherLerouzic
a3edb20142 Feat: add offset power option for transceivers
Offset power is used for equalization purpose to correct for the
generic equalization target set in ROADM for this particular transceiver.
This is usefull to handle exception to the general equalization rule.
For example in the case of constant power equalization, the user might
want to apply particular power offsets unrelated to slot width or baudrate.
or in constant PSW, the user might want to have a given mode equalized for
a different value than the one computed based on the request bandwidth.

For example consider that a transceiver mode is meant to be equalized with
75 GHz whatever the spacing specified in request. then the user may specify
2 flavours depending on used spacing:

  service 1 : mode 3, spacing 75GHz
  service 2 : mode 4, spacing 87.5Ghz
avec
  {
    "format": "mode 3",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 75e9,
    "cost": 1
  }

  {
    "format": "mode 4",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 87.5e9,
    "equalization_offset_db": -0.67,
    "cost": 1
  }

then the same target power would be considered for mode3 and mode4
despite using a different slot width

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I437f75c42f257b88b24207260ef9ec9b1ab7066e
2023-10-24 13:20:00 +02:00
EstherLerouzic
33cc11b85c Refactor error message
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie8fc6bedcdbce26e2e80759c6c56d2c7429bf560
2023-10-24 13:20:00 +02:00
Jan Kundrát
5d079ab261 docs: rename the Matrix channel
It seems that the Matrix server at `foss.wtf` disappeared some time ago
with no details posted anywhere. I've marked the long-existing channel
alias `#oopt-gnpy:matrix.org` as the primary one, so let's adjust the
docs so that new people can actually join this channel.

This should have no consequences on people who have already joined.

Change-Id: Idee9c050ff5cb1c3926e5d4cf751002ad1541e71
2023-10-03 01:50:11 +02:00
AndreaDAmico
a3b1157e38 Fiber latency calculation
Fiber latency evaluated during propagation. The speed of ligth in fiber is evaluated as the vacuum speed of ligth  divided by the core reflective index n1.
The latency in the transceiver is evaluated in ms.

Change-Id: I7a3638c49f346aecaf1d4897cecf96d345fdb26c
2023-08-07 18:29:03 +02:00
AndreaDAmico
70731b64d6 fix: include position of lumped losses in Raman profile
In the previous version, the position of the lumped losses were not
included in the result Raman profile. As the latter is then used to
evaluate the NLI, including the lumped loss positions is required for
accurate estimations.

Change-Id: I683f48ceb7139d1a8be03d2e7ca7e3abffecbe85
2023-07-24 17:13:15 +02:00
AndreaDAmico
4ea0180caf tests: prefer pandas.read_csv over numpy.genfromtext
Change-Id: Icc9618afc4cad0c7a07f3a785c99b6b438e0c6cc
2023-07-24 17:12:25 +02:00
AndreaDAmico
eb2363a3d4 Fix: lumped losses included in total fiber loss
In previous version, the lumped losses where not included in the fiber loss, creating an inaccurate overall power balance.

Change-Id: I98a4d37b9cc0526218fe3c6f2b9318b6fa797901
2023-07-06 15:19:07 +02:00
EstherLerouzic
41b94cc888 fix: don't crash if PMD, PDL or CD penalties are missing in transceivers
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iafc248af3ecfcd4da4c1135fd3a37da796cdfb5f
2023-05-09 10:11:26 +02:00
Jan Kundrát
1eeb6a0583 Merge changes Icd0b4fbd,I3ca81bcd,Ia33315f0
* changes:
  docs: docstring formatting
  SimParams: less boilerplate
  python: prefer isinstance(foo, Bar) over type(foo) == Bar
2023-04-18 23:01:30 +00:00
Jan Kundrát
215c20e245 Merge "fix: add missing PSW case for power computation" 2023-04-18 00:41:45 +00:00
Jan Kundrát
76e9146043 docs: docstring formatting
Let's use the pythonic indenting, quoting and structure in general as
specified in PEP 0257.

Change-Id: Icd0b4fbd94dabd9a163ae3f6887b236e76c486ab
2023-04-18 01:34:19 +02:00
Jan Kundrát
2a07eec966 SimParams: less boilerplate
The code look as if it was trying to prevent direct instantiation of the
SimParams class. However, instance *creation* in Python is actually
handled via `__new__` which was not overridden. In addition, the
`get()` accessor was invoking `SimParams.__new__()` directly, which
meant that this class was instantiated each time it was needed.

Let's cut the boilerplate by getting rid of the extra step and just use
the regular constructor.

This patch doesn't change anything in actual observable behavior. I
still do not like this implicit singleton design pattern, but nuking
that will have to wait until some other time.

Change-Id: I3ca81bcd0042e91b4f6b7581879922611f18febe
2023-04-17 23:06:31 +02:00
Jan Kundrát
cc994bf118 python: prefer isinstance(foo, Bar) over type(foo) == Bar
Use of isinstance() is more Python and it also allows inheritance to
work properly.

Change-Id: Ia33315f0e3faf6638334bec85d0fa92ea8ac81f0
2023-04-17 23:02:51 +02:00
EstherLerouzic
37e70e622c fix: add missing PSW case for power computation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5fa9135cdde1735ec142bc88d8fdf0aa03b13a41
2023-04-13 16:48:21 +02:00
Florian FRANK
7d9a508955 Fix 2 minor typos in docs/model.rst
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: Ic2160f554b120b011c941aca36b69a0f032cf45f
2023-04-13 09:33:19 +02:00
Florian FRANK
185adabd77 Fix bug of comparison dimension when Raman is allowed and loss_coef is a vector instead of a scalar
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: I0b39d102b9200ec25ed62e6f53b1e0addcc66f67
2023-04-11 17:30:24 +02:00
Jan Kundrát
8f9cf8ccc7 docs: sync the author list from git history
I don't have a script for this because it requires some manual fixups.

Change-Id: I19f36b953c98d6bc0c09040c27b964b288360c0e
2023-03-06 01:31:41 +01:00
Sami Alavi
0c797a254c simplify type annotations
PEP 484 says that `float` also implicitly allows `int`, so there's no
need to use `Union[int | float]`.

Fixes: #450
Change-Id: Ib1aeda4c13ffabd47719c1e0886e9ebcf21a64e0
2023-03-03 21:12:57 +05:00
Jan Kundrát
2cdeeabfa6 Mark Python 3.11 as supported
Change-Id: I2dedd942c92959e1f891194f6234376b9ecad6e5
2023-03-02 14:28:12 +01:00
Jan Kundrát
5e874798cb CI: GitHub: add builds on 3.11
...and also switch various jobs to use that by default.

Change-Id: I9170fc305bfd9bea6b5dde5741f912c6ed455e3e
2023-03-02 14:28:12 +01:00
Jan Kundrát
ff8f044064 Merge changes from topic "mixed-rate"
* changes:
  complete tests with the --power option tests
  Add Roadm uid when raising error
  add equalization per constant ratio power/slot_width
2023-02-14 09:59:20 +00:00
Jan Kundrát
d84ee4e76c Merge "doc: add a link to our public chat room" 2023-02-07 17:09:15 +00:00
Jan Kundrát
521d27ffac docs: fix a nasty typo
Fixes: b1067a62 docs: flexgrid
Change-Id: I44613d8ef4a27e7791db81509a56efa7ee29b4ff
2023-02-07 00:36:14 +01:00
Jan Kundrát
35e759212e doc: add a link to our public chat room
Change-Id: Id5323ad01ff0705efb9c9335e2c1f61227e5b73b
2023-02-02 17:29:19 +01:00
Jan Kundrát
f6dede2b5f docs: remove LGTM.com code-quality badge
...which no longer works since they got acquired by GitHub. Setting up
that CodeQL will need a bit more time I'm afraid.

Change-Id: I2f2bf21d31df643b25e931b2aadf60406bba683b
2023-02-02 17:28:40 +01:00
Jan Kundrát
0d0019f627 Update my e-mail address
I was informed that my TIP-specific e-mail address won't be coming back.

Change-Id: Ic2ee4986203490d90143a89dc49d7fca71a84c73
2023-02-02 17:13:23 +01:00
EstherLerouzic
06fe1c2f63 complete tests with the --power option tests
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia7be6b86b82cc0317a5ba48086ef63f67d490990
2023-01-30 18:05:41 +01:00
EstherLerouzic
092316a9d7 Add Roadm uid when raising error
in case parameters are not correct, catch the ParameterError
and raises it again with the uid of the ROADM to ease debug

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1f85f0e9e9226fc613d35611774c739adb2104c7
2023-01-30 18:05:37 +01:00
EstherLerouzic
48e3f96967 add equalization per constant ratio power/slot_width
Constant power per slot_width uses the slot width instead of
baud rate compared to PSD.

This is the equalization used in OpenROADM

add tests for constant power per slot width equalization

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie350e4c15cb6b54c15e418556fe33e72486cb134
2023-01-30 18:03:58 +01:00
Jan Kundrát
e9e8956caf docs: fix the GitHub CI (actions) badge
Bug: https://github.com/badges/shields/issues/8671
Change-Id: I9cb15b762710cae7c3c37ed95d08aee2ca7b2457
2023-01-18 22:57:17 +01:00
Jan Kundrát
0ae341c2a5 tests: update to flake8 v5
flake8-html is now compatible with the v5 of this package, so let's use
it. Unfortunately, they killed the `--diff` option in v6, so we cannot
use it right now. I understand the reasoning as well as the fact that
it's easy to be broken, but I don't like broken CI that much.

Change-Id: I70dd686e097f411c39bfc53f83d519540687dd64
2023-01-18 22:25:48 +01:00
Jan Kundrát
0c2f6372f8 tests: switch to PEP517-compliant build process
...mainly to be in sync with oopt-gnpy-libyang that I've been working on
recently, and to allow us to modernize this infrastructure later on.

Change-Id: Id0ed1d7620762fc204300ebe8a190de8e42ae9df
2023-01-18 22:20:39 +01:00
Jan Kundrát
97e80b4445 Merge changes from topic "enable-multiple-slots-assignment"
* changes:
  record request_id as string, not integer
  support missing trx_mode in request instead of null value
2023-01-18 21:20:03 +00:00
Jan Kundrát
5e4c9b7d73 Merge "Respect fiber max_length when splitting fibers" 2023-01-18 21:19:39 +00:00
Jan Kundrát
e96f821cce CI: Switch to Fedora 36
...because Vexxhost pulled the plug on the F35 mirroring infrastructure,
and as a result, all jobs started failing.

Change-Id: Ib5d795397e907de3eff6cdb9c4145353400793ab
Depends-on: https://review.gerrithub.io/c/Telecominfraproject/oopt-zuul-jobs/+/548583
2023-01-18 21:35:08 +01:00
Jan Kundrát
5f7e61e255 CI: temporarily remove Fedora 35 jobs
...since the hosting provider pulled the plug on the mirroring
infrastructure. See the rest of these commits in this serie for
details.

Change-Id: Iac1d5f1c6f557458194deafe441564afc4851d94
2023-01-18 21:32:11 +01:00
Jonas Mårtensson
682b5c5691 Respect fiber max_length when splitting fibers
According to the documentation, auto-design will
"Split fiber lengths > max_length", which also makes sense based on the
name of the parameter but with the existing implementation fiber
length could still be longer than max_length after splitting. This
patch makes auto-design respect the specified max_length.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ifd83aa4d77206bf10796579df73632fe405e2d54
2023-01-18 11:59:06 +00:00
Jan Kundrát
11e5117505 tests: do not compare floating point numbers for equality
GitHub CI started failing with the following error:

  assert (watt2dbm(si.signal) == target - correction).all()
  assert False
   +  where False = <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0>()
   +    where <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0> = array([-25.5, -24.5, -22.5, -25. , -27.5]) == array([-25.5, -24.5, -22.5, -25. , -27.5])
        +array([-25.5, -24.5, -22.5, -25. , -27.5])
        -array([-25.5, -24.5, -22.5, -25. , -27.5])
        Full diff:
          array([-25.5, -24.5, -22.5, -25. , -27.5]).all

This is with code which has passed in the Zuul/Vexxhost CI.

It looks very similar to a regression that hit numpy 1.24.0, but the
GitHub action log shows that this happens with numpy 1.24.1. Weird, and
I'm not getting these differences locally, and also not on an ARM64
cloud VM.

Anyway, comparing floating point numbers for strict equality is futile,
so let's use this opportunity to use a proper check for these.

Change-Id: I05683f3116cad78d067bddde2780fe25b5caf768
2023-01-18 00:27:53 +01:00
EstherLerouzic
50603420fc ROADM: rework equalization
On a ROADM, the code would previously set the same per-carrier power
regardless of the channel spectrum width. With this patch, carriers are
equalized either by their:

- absolute power (same as before),
- power spectral density (PSD).

Also, it's possible to apply a per-channel power offset (in dB) which
will be applied to a specified channel on top of the selected
power-level or PSD strategy. The same offset can be also selected
through the `--spectrum` option via the `default_pdb` parameter.

The equalization policy can be set via the ROADM model (in the equipment
config) as well as on a per-instance basis.

The PSD is defined as the absolute power over a spectral bandwidth,
where the spectral bandwidth corresponds to the actual spectrum
occupation (without any applicable guard bands), as approximated by the
symbol rate. PSD is specified in mW/GHz. As an example, for a 32 GBaud
signal at 0.01 mW, the PSD is 0.01/32 = 3.125e-4 mW/GHz.

This has some implications on the power sweep and ROADM behavior. Same
as previously (with absolute power targets), the ROADM design determines
the power set points. Target power is usually the best (highest) power
that can be supported by the ROADMs, especially the Add/Drop and express
stages' losses, with the goal to maximize the power at the booster's
input. As such, the `--power` option (or the power sweep) doesn't
manipulate with ROADM's target output power, but only with the output
power of the amplifiers. With PSD equalization, the `--power` option is
interpreted as the power of the reference channel defined in equipment
config's `SI` container, and its PSD is used for propagation. Power
sweep is interpreted in the same way, e.g.:

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": 0,
            "power_range_db": [-1,1,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

...and with the PSD equalization in a ROADM:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 3.125e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

then we use the power steps of the power_range_db to compute resulting
powers of each carrier out of the booster amp:

 power_db = psd2powerdbm(target_psd_out_mWperGHz, baud_rate)
 sweep = power_db + delta_power for delta_power in power_range_db

Assuming one 32Gbaud and one 64Gbaud carriers:

                   32 Gbaud        64 Gbaud
roadmA out power
(sig+ase+nli)      -20dBm         -17dBm

EDFA out power
range[
        -1          1dBm            4dBm
         0          2dBm            5dBm
         1          3dBm            6dBm
]

Design case:

Design is performed based on the reference channel set defined in SI
in equipment config (independantly of equalization process):

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": -1,
            "power_range_db": [0,0,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

`delta_p` values of amps refer to this reference channel, but are applicable
for any baudrate during propagation, e.g.:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 2.717e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

Then the output power for a 64 Gbaud carrier will be +4 =
= lin2db(db2lin(power_dbm + delta_p)/32e9 * 64e9)
= lin2db(db2lin(power_dbm + delta_p) * 2)
= powerdbm + delta + 3 = 4 dBm

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I28bcfeb72b0e74380b087762bb92ba5d39219eb3
2023-01-17 12:26:50 +01:00
Jan Kundrát
125264f265 coding style: don't yell when using the recommended newline-vs-operator
Fun stuff -- PEP8 used to recommend against this pattern, but back in
2016 the Pythonic Truth got reversed to actually recommend the pattern
which we're using. Unfortunately, W503 is still a thing, and even though
it's supposed to be ignored, it really ain't.

Change-Id: I99f42548d236f05d1050fd78cb81b3b20a78013c
2023-01-17 12:26:50 +01:00
Jan Kundrát
b1067a6266 docs: flexgrid
Co-authored-by: Esther Lerouzic <esther.lerouzic@orange.com>
Change-Id: If38b56a39e083deec0563f25a2b575788dcedc43
2023-01-17 09:48:15 +00:00
EstherLerouzic
50d4ecd700 docs: fix power mode vs. gain mode and power sweep
Change-Id: Ibef9a49123767d6e2ce73081485833f281711e04
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2023-01-17 09:47:58 +00:00
Jan Kundrát
9f37e0371e CI: temporarily require tox 3.x
Upstream introduced some breaking changes, one of which is a different
installation process. As a result, the builds won't perform a full
package installation, which means that there are no console entry points
(shell wrappers), which means that the test suite fails.

Hotfix this by temporarily requiring an older version of tox.

Change-Id: I0466c70f2024d35d87606d9ad738284a143a574f
2023-01-17 01:31:33 +01:00
Jan Kundrát
9bd303db05 CI: github: upgrade deprecated actions
...because the GitHub infrastructure is deprecating Node 12 actions:

 https: //github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/

Change-Id: I2d4a28be37a407aa26e79a1755eb5c3b0ec36a87
2023-01-10 12:27:50 +01:00
EstherLerouzic
1bcb3ce25c JSON: ensure that node constraints use correct indexing
The program currently ignores the explicit `index` and reads the
constraints in the JSON order of the list. However in general, it is not
guaranteed that constraints are listed in order.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icefe271f5801cf9f7b43311c6666556564587c65
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2022-11-22 01:53:24 +01:00
Jan Kundrát
e381138320 move test-only dependencies from main requirements
Pandas is only used from the test suite.

Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/451
Change-Id: Iafd02c800e5b7772e180979d19b81a2eda0e588f
2022-11-15 10:01:31 +00:00
EstherLerouzic
b450677709 Minor refactor: use watt2dbm function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I09c3e923a8e1565d2ab07596c393bb5b2dc30f6c
2022-11-09 14:39:27 +01:00
EstherLerouzic
54a3725e17 Add a -spectrum option to input external file to define spectrum
The option is only set for gnpy-transmission-main.

The spectrum file is a list of spectrum objects, each defining
f_min, f_max and spectrum attributes using the same meaning as SI
in eqpt_config.json for baud_rate, roll_off, tx_osnr. slot_width is
used for the occupation of each carrier around their central frequency,
so slot_width corresponds to spacing of SI.
Unlike SI, the frequencies are defined includint f_min and f_max.
The partitions must be contiguous not overlapping.

Pref.p_span0 object records the req_power, while
ref_carrier records info that will be useful for equalization ie baud_rate.

For now, I have not integrated the possibility to directly use
transceivers type and mode in the list.

User can define sets of contiguous channels and a label to identify
the spectrum bands. If no label are defined, the program justs uses
the index + baud rate of the spectrum bands as label.

Print results per spectrum label

If propagated spectrum has mixed rates, then prints results (GSNR and OSNR)
for each propagated spectrum type according to its label.

Print per label channel power of elements

Per channel power prints were previously only showing the noiseless
reference channel power and only an average power.
With this change, we add a new information on the print:
the average total power (signal + noise + non-linear noise).
If there are several spectrum types propagating, the average per
spectrum is displayed using the label.
For this purpose, label and total power are recorded in each element
upon propagation

Note that the difference between this total power and the existing
channel power represents the added noise for the considered OMS.
Indeed ROADMs equalize per channel total power, so that power displayed
in 'actual pch (dBm)' may contain some noise contribution accumulated
with previous propagation.
Because 'reference pch out (dBm)' is for the noiseless reference,
it is exactly set to the target power and 'actual pch (dBm)' is always
matching 'reference pch out (dBm)' in ROADM prints.

Add examples and tests for -spectrum option

initial_spectrum1.json reproduces exactly the case of SI
initial_spectrum2.json sets half of the spectrum with 50GHz 32Gbauds and
half with 75GHz 64 Gbauds. Power setting is not set for the second half,
So that equalization will depend on ROADM settings.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibc01e59e461e5e933e95d23dacbc5289e275ccf7
2022-11-09 14:39:25 +01:00
Jan Kundrát
8889c2437a refactoring: ROADM: clarify effective_loss and improve the docs
Move the docs to a place where that variable is declared, not to the
place where it's computed.

Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-id: I17dff12c1e81827dfb4be869e59c9be85797dba4
2022-11-03 10:24:42 +01:00
Jan Kundrát
8bf8b2947b tests: pass the reference carrier when constructing SI
Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Fixes: 18610fb7 Add ref_carrier to Pref and remove req_power from ReferenceCarrier
Change-Id: I8ac2a7ca7c6d866170e564771c6cb78dcf3754d8
2022-11-03 10:24:38 +01:00
EstherLerouzic
cb85b8fe2b Add a test with long propagation
Existing tests only cover short distances, and effect on accumulated
noise, especially when crossing ROADMs with equalization, are not well
reported on elements power prints.
With this long path, I can catch more printing inconsistencies.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d0e8ccbbd387a2cd6c645c07f4b5f75e4617c30
2022-11-02 12:05:26 +01:00
EstherLerouzic
18610fb7a9 Add ref_carrier to Pref and remove req_power from ReferenceCarrier
ref_carrier is added in Pref conveys the reference channel type
information ie the channel that was used for design (would it be
auto-design or for a given design). Other attributes (like
slot_width or roll-off) may be added here for future equalization
types.

Pref object already records the req_power, so let's remove it
from ReferenceCarrier and only use ref_carrier to record info that
will be useful for PSD equalization ie baud_rate.

This reference baud_rate is required to compute reference target power
based on spectral density values during propagation. It is thus required
because of on-the-fly evaluation of loss for p_span_i and for printing
loss and target power of ROADM during propagation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic7441afa12ca5273ff99dea0268e439276107257
2022-11-02 12:05:26 +01:00
EstherLerouzic
bd6b278dd1 Add tx_osnr in spectral information
This change enables to use a different tx_osnr per carrier.

If tx_osnr is defined via spectrum then use it to define a tx_osnr per
carrier in si else use the tx_osnr of request to set tx_osnr of si.

Then, the propagate function for requests is changed to update OSNR with
tx_OSNR per carrier defined in si.

TODO: The tx_osnr defined in spectrum is not yet taken into account for
the propagate_and_optimize function, because the loop that optimizes
the choice for the mode only loops on baudrate.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0fcdf559d4f1f8f0047faa257076084ec7adcc77
2022-10-31 16:04:46 +01:00
EstherLerouzic
e143d25339 Add a user defined initial spectrum in propagation functions
A new function is added to build spectrum information based on
the actual mixture of channels to be simulated (baud rate, slot width,
power per frequency).

Propagation function is changed so that, if the user defines a
specific distribution, then it uses it, else it uses as before,
all identical channels based on the initial request. In this case,
as before this change, we assume full load, with same channel for
the spectral info and not the resulting mixt of channels after
routing.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icf56396837b77009e98accd27fcebd2dded6d112
2022-10-31 16:03:15 +01:00
EstherLerouzic
ffc7dbc241 Change pref from a scalar to a list of per channel delta power
The idea behind this change is to reproduce the exact same behaviour as
with the scalar, but accounting for variable levels of powers.

- delete the  neq_ch: equivalent channel count in dB because with mixed
  rates and power such a value has limited utility
- instead creates a vector that records the 'user defined' distribution
  of power.

This vector is used as a reference for channel equalization out of the
ROADM. If target_power_per_channel has some channels power above
input power, then the whole target is reduced.
For example, if user specifies delta_pdb_per_channel:
   freq1: 1dB, freq2: 3dB, freq3: -3dB, and target is -20dBm out of the
ROADM, then the target power for each channel uses the specified
delta_pdb_per_channel.
   target_power_per_channel[f1, f2, f3] = -19, -17, -23
However if input_signal = -23, -16, -26, then the target can not be
applied, because -23 < -19dBm and -26 < -23dBm, and a reduction must be
applied (ROADM can not amplify).
Then the target is only applied to signals whose power is above the
threshold. others are left unchanged and unequalized.
the new target is [-23, -17, -26]
and the attenuation to apply is [-23, -16, -26] - [-23, -17, -26] = [0, 1, 0]

Important note:
This changes the previous behaviour that equalized all identical channels
based on the one that had the min power !!

TODO: in coming refactor where transmission and design will be properly
separated, the initial behaviour may be set again as a design choice.

This change corresponds to a discussion held during coders call. Please look at this document for
a reference: https://telecominfraproject.atlassian.net/wiki/spaces/OOPT/pages/669679645/PSE+Meeting+Minutes

- in amplifier: the saturation is computed based on this vector
delta_pdb_per_channel, instead of the nb of channels.
The target of the future refactor will be to use the effective
carrier's power. I prefer to have this first step, because this is
how it is implemented today (ie based on the noiseless reference),
and I would like first to add more behaviour tests before doing
this refactor (would it be needed).

- in spectralInfo class, change pref to a Pref object to enable both
p_span0 and p_spani to be conveyed during propagation of
spectral_information in elements. No refactor of them at this point.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I591027cdd08e89098330c7d77d6f50212f4d4724
2022-10-28 09:13:24 +02:00
EstherLerouzic
b842898baf Change precision of --show-channels to 5 digits
Flexgrid precision is 6.25GHz so --show-channels should be at least 5 digits

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7de4254ab18508320133371e0d8cc8b5e08f0d2f
2022-10-28 00:38:28 +00:00
EstherLerouzic
7ea9e3b341 Fix bug when gain is not initialized
If gain is not initialized, save_networks does not work properly
trying to round a None value

Change-Id: I614859f16e0019a2f6fe680c04159398c9b1eb51
2022-10-20 15:38:12 +00:00
Jan Kundrát
fcf168b361 tests: fix flake8 and flake8-html incompatibility
Test runs (`linters-diff-ci`) end up with an error:

 Traceback (most recent call last):
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/bin/flake8", line 8, in <module>
     sys.exit(main())
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/cli.py", line 22, in main
     app.run(argv)
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 336, in run
     self._run(argv)
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 326, in _run
     self.report()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 321, in report
     self.formatter.stop()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8_html/plugin.py", line 245, in stop
     self.write_index()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8_html/plugin.py", line 281, in write_index
     versions=self.option_manager.generate_versions(),
 AttributeError: 'OptionManager' object has no attribute 'generate_versions'
 ERROR: InvocationError for command /home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/bin/flake8 --format html --htmldir linters --exit-zero (exited with code 1)

Bug: https://github.com/lordmauve/flake8-html/issues/30
Change-Id: I755877341dec2d9cd9bdcdab098e2067f783cc27
2022-10-20 15:37:12 +02:00
Jan Kundrát
a7ec7e2ed6 Merge changes from topic "mixed-rate"
* changes:
  Change saturation verification to total input power
  Prepare for Pref definition
  Add utilities
2022-09-19 09:30:59 +00:00
Jan Kundrát
00ee102b3a docs: fix RST formatting
...of a bullet list. This ain't markdown, apparently.

Change-Id: I4f7a55a4084eda6463636c1dd5c41ef43ef78921
2022-09-18 12:46:19 +02:00
EstherLerouzic
ce11524ad9 Correct dgt vector: listed in the reversed order
This was corrected for example-data but not for tests data
(in commit 3a72ce84d0, related
to issue #390)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I929beeb034166d30aa994439a1d6a26350f5c3e9
2022-09-14 05:35:15 +00:00
EstherLerouzic
74be14562a record request_id as string, not integer
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I59416a6d69a5989d0c152461ca9e264abcf09ea8
2022-08-24 16:45:56 +02:00
EstherLerouzic
16694d0a09 support missing trx_mode in request instead of null value
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5c05b17b0b134c7782a08e86015dc30c7c9b3713
2022-08-24 16:43:57 +02:00
EstherLerouzic
33c6038921 Change saturation verification to total input power
Previous check was made on reference channel computation.
Now we use the actual total input power to compute the actual gain.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e0db72fdb030a49e2b06cdcfb442b5e642c1777
2022-08-17 14:13:38 +02:00
EstherLerouzic
119c9eda90 Prepare for Pref definition
Mainly changes self.pch_out_db to self.ref_pch_out_dbm in order
to reflect real unit for the value and to remind that this value
is defined for a reference noiseless channel (whose power is recorded
in p_spani in Pref).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0e008c3efc36ce73c9df01c76cf46985543d9fa
2022-08-17 14:13:38 +02:00
EstherLerouzic
b63e146bf4 Add utilities
to convert from/to watt, mW, dBm, power spectral density ...

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9b9684c1ad096aa54d01ef3f0242ecd2dcae79aa
2022-08-17 14:13:38 +02:00
gborrach
09dba8a166 Fix: Raman pumps SRS solver
In the previous version, when the values of the counter-propagating Raman pump profiles were flipped, the pumps resulted flipped also in frequency.

Change-Id: I66f7c2aff35c72f5dcb4fb11f7a82fe1df2ee3f2
Co-authored-by: Andrea D'Amico <andrea.damico@polito.it>
2022-07-27 00:20:47 +02:00
Jan Kundrát
7f5043622b CI: GitHub: show all build failures
Change-Id: I4a5aeb123aa89a30371a36788188964ca924ca12
2022-07-07 16:32:13 +02:00
Jan Kundrát
6ad4593f41 CI: GitHub: test on Mac OS as well
Change-Id: Ifb8ba470765fc02e3367beeaf8f048da6fdad6d7
2022-07-05 13:18:37 +02:00
Jan Kundrát
706661d801 CI: GitHub: use new test-requirements
Follow-up: b86fe960 I8d2e610c91da728d72c7d19590b25bbd8713f0de tests: Easier installation of test requirements via PIP
Change-Id: I870ed27af7301829ced572214f517ca76a94a0dc
2022-07-05 13:07:18 +02:00
Jan Kundrát
a408d28911 Merge "Remove Travis-CI leftovers" 2022-07-05 11:07:08 +00:00
Jan Kundrát
b86fe96032 tests: Easier installation of test requirements via PIP
Burying these behind the tox.ini works fine on CI, but it means that
someone has to ask the users to run an extra `pip install pytest` for
the test suite. Not nice.

This will need a follow-up commit to adjust the GitHub action to use
this new simplified way. That cannot land via Gerrit due to GitHub's
permission model.

Change-Id: I8d2e610c91da728d72c7d19590b25bbd8713f0de
2022-07-05 12:45:19 +02:00
Jan Kundrát
43926518ad Remove Travis-CI leftovers
These builds have not been running for about an year. Now that we have
Zuul for day-to-day CI and GitHub actions for some auxiliary package
building, remove Travis.

Change-Id: I1dd7f70045fd24d2f73f0d2086cb49edde2093c7
2022-07-05 10:14:18 +02:00
Jan Kundrát
128a6e816b docs: better anchor for legacy JSON
Change-Id: I410a4c0cdd34dd9aa5d8e34bb859746236fffdd2
2022-07-03 01:03:26 +02:00
Jan Kundrát
44db951261 docs: show gnpy.app
Change-Id: I7ec5eec72fb0f07e277ac849da09003d376eec17
2022-04-12 11:42:06 +02:00
Jonas Mårtensson
3c3d919b77 Merge "Fix: penalties are not correctly initialized" 2022-04-11 18:55:42 +00:00
EstherLerouzic
2079d2bc5b Fix: penalties are not correctly initialized
When mode is not given and propagation is performed bidir, penalties
corresponding to automatically  selected mode are not correctly
initialized in request, and gnpy-path-request fails.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If045624ff5dad7f0dfdec93eaa05bb5eae86e643
2022-04-06 17:17:21 +02:00
Jonas Mårtensson
062e2076ed Properly initialize power profiles for Raman calculation
numpy.empty should not be used for initializing arrays without manually
setting values since it does not initialize entries. Use numpy.zeros
instead.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I4e85eb39bdce00663c0cab9582ea7ae25eb90986
2022-03-29 21:41:57 +02:00
Jonas Mårtensson
1dd1bad273 Fix bug in Raman calculation without counterpropagating pumps
The counterpropagating power profile was initialized based on number of
copropagating frequencies, which caused simulation to crash when no
counterpropagating pumps were present.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I685e5438fda06058f0757ff51fdd67bc68aa1352
2022-03-29 21:27:18 +02:00
132 changed files with 23222 additions and 5552 deletions

View File

@@ -1,47 +0,0 @@
#!/bin/bash
set -e
IMAGE_NAME=telecominfraproject/oopt-gnpy
IMAGE_TAG=$(git describe --tags)
ALREADY_FOUND=0
docker pull ${IMAGE_NAME}:${IMAGE_TAG} && ALREADY_FOUND=1
if [[ $ALREADY_FOUND == 0 ]]; then
docker build . -t ${IMAGE_NAME}
docker tag ${IMAGE_NAME} ${IMAGE_NAME}:${IMAGE_TAG}
# shared directory setup: do not clobber the real data
mkdir trash
cd trash
docker run -it --rm --volume $(pwd):/shared ${IMAGE_NAME} gnpy-transmission-example
else
echo "Image ${IMAGE_NAME}:${IMAGE_TAG} already available, will just update the other tags"
fi
docker images
do_docker_login() {
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
}
if [[ "${TRAVIS_PULL_REQUEST}" == "false" ]]; then
if [[ "${TRAVIS_BRANCH}" == "develop" || "${TRAVIS_BRANCH}" == "docker" ]]; then
echo "Publishing latest"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:latest
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:latest
elif [[ "${TRAVIS_BRANCH}" == "master" ]]; then
echo "Publishing stable"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:stable
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:stable
fi
fi

View File

@@ -11,23 +11,26 @@ jobs:
name: Tox test
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: fedora-python/tox-github-action@v0.4
- uses: fedora-python/tox-github-action@v37.0
with:
tox_env: ${{ matrix.tox_env }}
dnf_install: ${{ matrix.dnf_install }}
- uses: codecov/codecov-action@29386c70ef20e286228c72b668a06fd0e8399192
- uses: codecov/codecov-action@v3.1.1
if: ${{ endswith(matrix.tox_env, '-cover') }}
with:
files: ${{ github.workspace }}/cover/coverage.xml
strategy:
fail-fast: false
matrix:
tox_env:
- py38
- py39
- py310-cover
- py310
- py311
- py312-cover
include:
- tox_env: docs
dnf_install: graphviz
@@ -38,13 +41,13 @@ jobs:
name: PyPI packaging
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v2
- uses: actions/setup-python@v4
name: Install Python
with:
python-version: '3.10'
python-version: '3.12'
- uses: casperdcl/deploy-pypi@bb869aafd89f657ceaafe9561d3b5584766c0f95
with:
password: ${{ secrets.PYPI_API_TOKEN }}
@@ -62,7 +65,7 @@ jobs:
with:
username: jktjkt
password: ${{ secrets.DOCKERHUB_TOKEN }}
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Extract tag name
@@ -92,21 +95,51 @@ jobs:
telecominfraproject/oopt-gnpy:${{ steps.extract_tag_name.outputs.GIT_DESC }}
telecominfraproject/oopt-gnpy:latest
windows:
name: Tests on Windows
runs-on: windows-2019
other-platforms:
name: Tests on other platforms
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v2
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- run: |
pip install --editable .
pip install 'pytest>=6.2.5,<7'
pip install --editable .[tests]
pytest -vv
strategy:
fail-fast: false
matrix:
python_version:
- "3.10"
include:
- os: windows-2019
python_version: "3.10"
- os: windows-2022
python_version: "3.11"
- os: windows-2022
python_version: "3.12"
- os: macos-13
python_version: "3.12"
- os: macos-14
python_version: "3.12"
paywalled-platforms:
name: Tests on paywalled platforms
if: github.repository_owner == 'Telecominfraproject'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- run: |
pip install --editable .[tests]
pytest -vv
strategy:
fail-fast: false
matrix:
include:
- os: macos-13-xlarge # Apple M1 CPU
python_version: "3.12"

View File

@@ -1,5 +1,17 @@
version: 2
build:
image: latest
os: ubuntu-22.04
tools:
python: "3.12"
apt_packages:
- graphviz
python:
version: 3.8
requirements_file: docs/requirements.txt
install:
- method: pip
path: .
extra_requirements:
- docs
sphinx:
configuration: docs/conf.py

View File

@@ -1,27 +0,0 @@
dist: focal
os: linux
language: python
services: docker
python:
- "3.8"
- "3.9"
before_install:
- sudo apt-get -y install graphviz
install: skip
script:
- pip install --editable .
- pip install pytest-cov rstcheck
- pytest --cov-report=xml --cov=gnpy -v
- pip install -r docs/requirements.txt
- rstcheck --ignore-roles cite *.rst
- sphinx-build -W --keep-going docs/ x-throwaway-location
after_success:
- bash <(curl -s https://codecov.io/bash)
jobs:
include:
- stage: test
name: Docker image
script:
- git fetch --unshallow
- ./.docker-travis.sh
- docker images

View File

@@ -2,10 +2,18 @@
- project:
check:
jobs:
- tox-py38
- tox-py39
- tox-py310-cover
- tox-docs-f35
- tox-py38:
vars:
ensure_tox_version: '<4'
- tox-py39:
vars:
ensure_tox_version: '<4'
- tox-py310-cover:
vars:
ensure_tox_version: '<4'
- tox-docs-f36:
vars:
ensure_tox_version: '<4'
- coverage-diff:
voting: false
dependencies:
@@ -16,7 +24,11 @@
coverage_job_name_current: tox-py310-cover
- tox-linters-diff-n-report:
voting: false
- tox-py310-cover-previous
vars:
ensure_tox_version: '<4'
- tox-py310-cover-previous:
vars:
ensure_tox_version: '<4'
tag:
jobs:
- oopt-release-python:

View File

@@ -11,18 +11,21 @@ To learn how to contribute, please see CONTRIBUTING.md
- Brian Taylor (Facebook) <briantaylor@fb.com>
- David Boertjes (Ciena) <dboertje@ciena.com>
- Diego Landa (Facebook) <dlanda@fb.com>
- Emmanuelle Delfour (Orange) <WEDE7391@orange.com>
- Esther Le Rouzic (Orange) <esther.lerouzic@orange.com>
- Gabriele Galimberti (Cisco) <ggalimbe@cisco.com>
- Gert Grammel (Juniper Networks) <ggrammel@juniper.net>
- Giacomo Borraccini (Politecnico di Torino) <giacomo.borraccini@polito.it>
- Gilad Goldfarb (Facebook) <giladg@fb.com>
- James Powell (Telecom Infra Project) <james.powell@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jan.kundrat@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jkt@jankundrat.com>
- Jeanluc Augé (Orange) <jeanluc.auge@orange.com>
- Jonas Mårtensson (RISE) <jonas.martensson@ri.se>
- Mattia Cantono (Politecnico di Torino) <mattia.cantono@polito.it>
- Miguel Garrich (University Catalunya) <miquel.garrich@upct.es>
- Raj Nagarajan (Lumentum) <raj.nagarajan@lumentum.com>
- Roberts Miculens (Lattelecom) <roberts.miculens@lattelecom.lv>
- Sami Alavi (NUST) <sami.mansooralavi1999@gmail.com>
- Shengxiang Zhu (University of Arizona) <szhu@email.arizona.edu>
- Stefan Melin (Telia Company) <Stefan.Melin@teliacompany.com>
- Vittorio Curri (Politecnico di Torino) <vittorio.curri@polito.it>

View File

@@ -3,12 +3,12 @@
[![Install via pip](https://img.shields.io/pypi/v/gnpy)](https://pypi.org/project/gnpy/)
[![Python versions](https://img.shields.io/pypi/pyversions/gnpy)](https://pypi.org/project/gnpy/)
[![Documentation status](https://readthedocs.org/projects/gnpy/badge/?version=master)](http://gnpy.readthedocs.io/en/master/?badge=master)
[![GitHub Workflow Status](https://img.shields.io/github/workflow/status/Telecominfraproject/oopt-gnpy/build)](https://github.com/Telecominfraproject/oopt-gnpy/actions/workflows/main.yml)
[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/Telecominfraproject/oopt-gnpy/main.yml)](https://github.com/Telecominfraproject/oopt-gnpy/actions/workflows/main.yml)
[![Gerrit](https://img.shields.io/badge/patches-via%20Gerrit-blue)](https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+is:open)
[![Contributors](https://img.shields.io/github/contributors-anon/Telecominfraproject/oopt-gnpy)](https://github.com/Telecominfraproject/oopt-gnpy/graphs/contributors)
[![Code Quality via LGTM.com](https://img.shields.io/lgtm/grade/python/github/Telecominfraproject/oopt-gnpy)](https://lgtm.com/projects/g/Telecominfraproject/oopt-gnpy/)
[![Code Coverage via codecov](https://img.shields.io/codecov/c/github/Telecominfraproject/oopt-gnpy)](https://codecov.io/gh/Telecominfraproject/oopt-gnpy)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3458319.svg)](https://doi.org/10.5281/zenodo.3458319)
[![Matrix chat](https://img.shields.io/matrix/oopt-gnpy:matrix.org)](https://matrix.to/#/%23oopt-gnpy%3Amatrix.org?via=matrix.org)
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks.
We are a consortium of operators, vendors, and academic researchers sponsored via the [Telecom Infra Project](http://telecominfraproject.com)'s [OOPT/PSE](https://telecominfraproject.com/open-optical-packet-transport) working group.
@@ -23,7 +23,9 @@ Read our [documentation](https://gnpy.readthedocs.io/), learn from the demos, an
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
![Running a simple simulation example](https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg)
![Running a simple simulation example](docs/images/gnpy-transmission-example.svg)
GNPy can do much more, including acting as a Path Computation Engine, tracking bandwidth requests, or advising the SDN controller about a best possible path through a large DWDM network.
Learn more about this [in the documentation](https://gnpy.readthedocs.io/).
Learn more about this [in the documentation](https://gnpy.readthedocs.io/), or give it a [try online at `gnpy.app`](https://gnpy.app/):
[![Path propagation at gnpy.app](docs/images/2022-04-12-gnpy-app.png)](https://gnpy.app/)

View File

@@ -12,7 +12,7 @@ We encourage all interested people outside the TIP to [join the project](https:/
`gnpy` is looking for additional contributors, especially those with experience planning and maintaining large-scale, real-world mesh optical networks.
To get involved, please contact [Jan Kundrát](mailto:jan.kundrat@telecominfraproject.com) or [Gert Grammel](mailto:ggrammel@juniper.net).
To get involved, please contact [Jan Kundrát](mailto:jkt@jankundrat.com) or [Gert Grammel](mailto:ggrammel@juniper.net).
`gnpy` contributions are currently limited to members of [TIP](http://telecominfraproject.com).
Membership is free and open to all.

View File

@@ -1848,3 +1848,15 @@ month={Sept},}
title = {Telecom Infra Project},
url = {https://www.telecominfraproject.com},
}
@ARTICLE{DAmicoJLT2022,
author={DAmico, Andrea and Correia, Bruno and London, Elliot and Virgillito,
Emanuele and Borraccini, Giacomo and Napoli, Antonio and Curri, Vittorio},
journal={Journal of Lightwave Technology},
title={Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network},
year={2022},
volume={40},
number={11},
pages={3499-3511},
doi={10.1109/JLT.2022.3162134}
}

View File

@@ -29,7 +29,7 @@ This path is directional, and all "GNPy elements" along the path match the unidi
The network topology contains not just the physical topology of the network, but also references to the :ref:`equipment library<concepts-equipment>` and a set of *operating parameters* for each entity.
These parameters include the **fiber length** of each fiber, the connector **attenutation losses**, or an amplifier's specific **gain setting**.
The topology is specified via :ref:`XLS files<excel>` or via :ref:`JSON<json>`.
The topology is specified via :ref:`XLS files<excel>` or via :ref:`JSON<legacy-json>`.
.. _complete-vs-incomplete:

View File

@@ -65,7 +65,7 @@ author = 'Telecom Infra Project - OOPT PSE Group'
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
language = 'en'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
@@ -84,18 +84,11 @@ todo_include_todos = False
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
on_rtd = os.environ.get('READTHEDOCS') == 'True'
if on_rtd:
html_theme = 'default'
html_theme_options = {
'logo_only': True,
}
else:
html_theme = 'alabaster'
html_theme_options = {
'logo': 'images/GNPy-logo.png',
'logo_name': False,
}
html_theme = 'alabaster'
html_theme_options = {
'logo': 'images/GNPy-logo.png',
'logo_name': False,
}
html_logo = 'images/GNPy-logo.png'

View File

@@ -114,10 +114,6 @@ and a fiber span from node3 to node6::
If filled they must contain strings with the same constraint as "City" names. Its value is used to differenate links having the same end points. In this case different Id should be used. Cable Ids are not meant to be unique in general.
(in progress)
.. _excel-equipment-sheet:
Eqpt sheet
@@ -192,7 +188,42 @@ This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content ca
- **delta_p**, in dBm, is not mandatory. If filled it is used to set the output target power per channel at the output of the amplifier, if power_mode is True. The output power is then set to power_dbm + delta_power.
# to be completed #
.. _excel-roadms-sheet:
Roadms sheet
------------
The ROADM sheet (named "Roadms") is optional.
If provided, it can be used to specify:
- per channel power target on a specific ROADM degree (*per_degree_pch_out_db*),
- ROADM type variety,
- impairment ID (identifier) on a particular ROADM path (from degree - to degree).
This sheet contains six columns:
Node A ; Node Z ; per degree target power (dBm) ; type_variety ; from degrees ; from degree to degree impairment id
- **Node A** is mandatory. Name of the ROADM node (as listed in Nodes sheet).
Must be a 'ROADM' (Type attribute in Node sheet), its number of occurence may be equal to its degree.
- **Node Z** is mandatory. Egress direction from the *Node A* ROADM site. Multiple Links between the same Node A
and NodeZ is not supported.
- **per degree target power (dBm)** (optional).
If filled it must contain a value in dBm corresponding to :ref:`per_degree_pch_out_db<roadm_json_instance>` on the **Node Z** degree.
Defaults to equipment library value if not filled.
- **type_variety** (optional). Must be the same for all ROADM entries if filled,
and defined in the :ref:`equipment library<roadm>`. Defaults to 'default' if not filled.
- **from degrees** (optional): List of Node names separated by ' | '. Names must be present in Node sheet.
Together with Node Z, they define a list of internal path in ROADM for which the impairment ID applies
- **from degree to degree impairment id** (optional):List of impairment IDs separated by ' | '. Must be filled
if **from degrees** is defined.
The impairment ID must be defined in the equipment library and be of "express" type.
(in progress)

View File

@@ -91,7 +91,8 @@ Advanced Specification
**********************
The amplifier performance can be further described in terms of gain ripple, NF ripple, and the dynamic gain tilt.
When provided, the amplifier characteristic is fine-tuned as a function of carrier frequency.
When provided, the amplifier characteristic is fine-tuned as a function of carrier frequency. Note that in this advanced
specification tilt is defined vs frequency while tilt_target specified in EDFA instances is defined vs wavelength.
.. _extending-raman:
@@ -100,10 +101,10 @@ Raman Amplifiers
An accurate simulation of Raman amplification requires knowledge of:
- the *power* and *wavelength* of all Raman pumping lasers,
- the *direction*, whether it is co-propagating or counter-propagating,
- the Raman efficiency of the fiber,
- the fiber temperature.
* the *power* and *wavelength* of all Raman pumping lasers,
* the *direction*, whether it is co-propagating or counter-propagating,
* the Raman efficiency of the fiber,
* the fiber temperature.
Under certain scenarios it is useful to be able to run a simulation without an accurate Raman description.
For these purposes, it is possible to approximate a Raman amplifier via a fixed-gain EDFA with the :ref:`polynomial NF<ext-nf-model-polynomial-NF>` model using :math:`\text{a} = \text{b} = \text{c} = 0`, and a desired effective :math:`\text{d} = NF`.
@@ -119,38 +120,32 @@ A *mode* usually refers to a particular performance point that is defined by a c
The following data are required for each mode:
``bit-rate``
Data bit rate, in :math:`\text{Gbits}\times s^{-1}`.
``baud-rate``
Symbol modulation rate, in :math:`\text{Gbaud}`.
``required-osnr``
Minimal allowed OSNR for the receiver.
``bit_rate``
Data bit rate, in :math:`\text{bits}\times s^{-1}`.
``baud_rate``
Symbol modulation rate, in :math:`\text{baud}`.
``OSNR``
Minimal required OSNR for the receiver. In :math:`\text{dB}`
``tx-osnr``
Initial OSNR at the transmitter's output.
``grid-spacing``
Initial OSNR at the transmitter's output. In :math:`\text{dB}`
``min-spacing``
Minimal grid spacing, i.e., an effective channel spectral bandwidth.
In :math:`\text{Hz}`.
``tx-roll-off``
``roll-off``
Roll-off parameter (:math:`\beta`) of the TX pulse shaping filter.
This assumes a raised-cosine filter.
``rx-power-min`` and ``rx-power-max``
The allowed range of power at the receiver.
(work in progress) The allowed range of power at the receiver.
In :math:`\text{dBm}`.
``cd-max``
Maximal allowed Chromatic Dispersion (CD).
In :math:`\text{ps}/\text{nm}`.
``pmd-max``
Maximal allowed Polarization Mode Dispersion (PMD).
In :math:`\text{ps}`.
``cd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`CD (Chromatic Dispersion)` deteriorates.
``dgd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`DGD (Differential Group Delay)` deteriorates.
``pmd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`PMD (Polarization Mode Dispersion)` deteriorates.
``penalties``
Impairments such as Chromatic Dispersion (CD), Polarization Mode Dispersion (PMD), and Polarization Dispersion Loss (PDL)
result in penalties at the receiver. The receiver's ability to handle these impairments can be defined for each mode as
a list of {impairment: in defined units, 'penalty_value' in dB} (see `transceiver section here <json.rst#_transceiver>`).
Maximum allowed CD, maximum allowed PMD, and maximum allowed PDL should be listed there with corresponding penalties.
Impairments experienced during propagation are linearly interpolated between given points to obtain the corresponding penalty.
The accumulated penalties are subtracted from the path GSNR before comparing with the minimum required OSNR.
Impairments: PMD in :math:`\text{ps}`, CD in :math:`\text{ps/nm}`, PDL in :math:`\text{dB}`, penalty_value in :math:`\text{dB}`
GNPy does not directly track the FEC performance, so the type of chosen FEC is likely indicated in the *name* of the selected transponder mode alone.
@@ -168,6 +163,7 @@ The set of parameters for each ROADM model therefore includes:
Per-channel target TX power towards the egress amplifier.
Within GNPy, a ROADM is expected to attenuate any signal that enters the ROADM node to this level.
This can be overridden on a per-link in the network topology.
Targets can be set using power or power spectral density (see `roadm section here <json.rst#__roadm>`)
``pmd``
Polarization mode dispersion (PMD) penalty of the express path.
In :math:`\text{ps}`.

Binary file not shown.

After

Width:  |  Height:  |  Size: 288 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 478 KiB

View File

@@ -17,6 +17,7 @@ in real-world mesh optical networks. It is based on the Gaussian Noise Model.
about-project
model
gnpy-api
release-notes
Indices and tables
==================

View File

@@ -10,32 +10,33 @@ fully-functional programs.
**Note**: *If you are a network operator or involved in route planning and
optimization for your organization, please contact project maintainer Jan
Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking for users with
Kundrát <jkt@jankundrat.com>. gnpy is looking for users with
specific, delineated use cases to drive requirements for future
development.*
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power,
or to run a planning script to check SNR of several services:
.. image:: https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg
.. image:: images/gnpy-transmission-example.svg
:width: 100%
:align: left
:alt: Running a simple simulation example
By default, this script operates on a single span network defined in
`gnpy/example-data/edfa_example_network.json <gnpy/example-data/edfa_example_network.json>`_
By default, the gnpy-transmission-example script operates on a single span network defined in
`gnpy/example-data/edfa_example_network.json <../gnpy/example-data/edfa_example_network.json>`_
You can specify a different network at the command line as follows. For
example, to use the CORONET Global network defined in
`gnpy/example-data/CORONET_Global_Topology.json <gnpy/example-data/CORONET_Global_Topology.json>`_:
`gnpy/example-data/CORONET_Global_Topology.json <../gnpy/example-data/CORONET_Global_Topology.json>`_:
.. code-block:: shell-session
$ gnpy-transmission-example $(gnpy-example-data)/CORONET_Global_Topology.json
It is also possible to use an Excel file input (for example
`gnpy/example-data/CORONET_Global_Topology.xls <gnpy/example-data/CORONET_Global_Topology.xls>`_).
`gnpy/example-data/CORONET_Global_Topology.xls <../gnpy/example-data/CORONET_Global_Topology.xls>`_).
The Excel file will be processed into a JSON file with the same prefix.
Further details about the Excel data structure are available `in the documentation <docs/excel.rst>`__.
Further details about the Excel data structure are available `in the documentation <excel.rst>`__.
The main transmission example will calculate the average signal OSNR and SNR
across network elements (transceiver, ROADMs, fibers, and amplifiers)
@@ -56,10 +57,10 @@ interference noise.
Further Instructions for Use
----------------------------
Simulations are driven by a set of `JSON <docs/json.rst>`__ or `XLS <docs/excel.rst>`__ files.
Simulations are driven by a set of `JSON <json.rst>`__ or `XLS <excel.rst>`__ files.
The ``gnpy-transmission-example`` script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
Launch power can be overridden by using the ``--power`` argument.
Launch power in fiber spans can be overridden by using the ``--power`` argument.
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
@@ -71,8 +72,8 @@ An experimental support for Raman amplification is available:
$(gnpy-example-data)/raman_edfa_example_network.json \
--sim $(gnpy-example-data)/sim_params.json --show-channels
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <gnpy/example-data/raman_edfa_example_network.json>`_.
General numeric parameters for simulation control are provided in the `gnpy/example-data/sim_params.json <gnpy/example-data/sim_params.json>`_.
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <../gnpy/example-data/raman_edfa_example_network.json>`_.
General numeric parameters for simulation control are provided in the `gnpy/example-data/sim_params.json <../gnpy/example-data/sim_params.json>`_.
Use ``gnpy-path-request`` to request several paths at once:
@@ -82,7 +83,7 @@ Use ``gnpy-path-request`` to request several paths at once:
$ gnpy-path-request -o output_file.json \
meshTopologyExampleV2.xls meshTopologyExampleV2_services.json
This program operates on a network topology (`JSON <docs/json.rst>`__ or `Excel <docs/excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
This program operates on a network topology (`JSON <json.rst>`__ or `Excel <excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
The service requests and reply formats are based on the `draft-ietf-teas-yang-path-computation-01 <https://tools.ietf.org/html/draft-ietf-teas-yang-path-computation-01>`__ with custom extensions (e.g., for transponder modes).
An example of the JSON input is provided in file `service-template.json`, while results are shown in `path_result_template.json`.

File diff suppressed because it is too large Load Diff

View File

@@ -126,9 +126,9 @@ that can be easily evaluated extending the FWM theory from a set of discrete
tones - the standard FWM theory introduced back in the 90s by Inoue
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
Signals propagating in the fiber are not equivalent to Gaussian noise, but
thanks to the absence of in-line compensation for choromatic dispersion, the
thanks to the absence of in-line compensation for chromatic dispersion, the
become so, over short distances. So, the Gaussian noise model with incoherent
accumulation of NLI has estensively proved to be a quick yet accurate and
accumulation of NLI has extensively proved to be a quick yet accurate and
conservative tool to estimate propagation impairments of fiber propagation.
Note that the GN-model has not been derived with the aim of an *exact*
performance estimation, but to pursue a conservative performance prediction.

463
docs/release-notes.rst Normal file
View File

@@ -0,0 +1,463 @@
.. _release-notes:
Release change log
==================
Each release introduces some changes and new features.
(prepare text for next release)
v2.11
-----
**New feature**
A new type_def for amplifiers has been introduced: multi_band. This allows the definition of a
multiband amplifier site composed of several amplifiers per band (a typical application is C+L transmission). The
release also includes autodesign for links (Optical Multiplex Section, OMS) composed of multi_band amplifiers.
Multi_band autodesign includes basic tilt and tilt_target calculation when the Raman flag is enabled with the
--sim-params option. The spectrum is demultiplexed before propagation in the amplifier and multiplexed in the output
fiber at the amplifier output.
In the library:
.. code-block:: json
{
"type_variety": "std_medium_gain_C",
"f_min": 191.225e12,
"f_max": 196.125e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_L",
"f_min": 186.5e12,
"f_max": 190.1e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_medium_gain_C",
"std_medium_gain_L"
],
"allowed_for_design": false
},
In the network topology:
.. code-block:: json
{
"uid": "east edfa in Site_A to Site_B",
"type": "Multiband_amplifier",
"type_variety": "std_medium_gain_multiband",
"amplifiers": [{
"type_variety": "std_medium_gain_C",
"operational": {
"gain_target": 22.55,
"delta_p": 0.9,
"out_voa": 3.0,
"tilt_target": 0.0
}
}, {
"type_variety": "std_medium_gain_L",
"operational": {
"gain_target": 21,
"delta_p": 3.0,
"out_voa": 3.0,
"tilt_target": 0.0
}
}
]
}
**Network design**
Optionally, users can define a design target per OMS (single or multi-band), with specific frequency ranges.
Default design bands are defined in the SI.
.. code-block:: json
{
"uid": "roadm Site_A",
"type": "Roadm",
"params": {
"target_pch_out_db": -20,
"design_bands": [{"f_min": 191.3e12, "f_max": 195.1e12}]
}
}
It is possible to define a set of bands in the SI block instead of a single Spectrum Information.
In this case type_variety must be used.
Each set defines a reference channel used for design functions and autodesign.
The default design settings for the path-request-run script have been modified.
Now, design is performed once for the reference channel defined in the SI block of the eqpt_config,
and requests are propagated based on this design.
The --redesign-per-request option can be used to restore previous behaviour
(design using request channel types).
The autodesign function has been updated to insert multiband booster, preamp or inline amplifiers based on the OMS
nature. If nothing is stated (no amplifier defined in the OMS, no design_bands attribute in the ROADM), then
it uses single band Edfas.
**Propagation**
Only carriers within the amplifier bandwidth are propagated, improving system coherence. This more rigorous checking
of the spectrum to be propagated and the amplifier bandwidth may lead to changes in the total number of channels
compared to previous releases. The range can be adjusted by changing the values of ``f_min`` and ``f_max``
in the amplifier library.
``f_min`` and ``f_max`` represent the boundary frequencies of the amplification bandwidth (the entire channel must fit
within this range).
In the example below, a signal center frequency of 190.05THz with a 50GHz width cannot fit within the amplifier band.
Note that this has a different meaning in the SI or Transceiver blocks, where ``f_min`` and ``f_max`` refers to the
minimum / maximum values of the carrier center frequency.
.. code-block:: json
{
"type_variety": "std_booster_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
**Display**
The CLI output for the transmission_main_example now displays the channels used for design and simulation,
as well as the tilt target of amplifiers.
.. code-block:: text
Reference used for design: (Input optical power reference in span = 0.00dBm,
spacing = 50.00GHz
nb_channels = 76)
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 0.00dBm,
nb_channels = 76)
The CLI output displays the settings of each amplifier:
.. code-block:: text
Multiband_amplifier east edfa in Site_A to Site_B
type_variety: std_medium_gain_multiband
type_variety: std_medium_gain_C type_variety: std_medium_gain_L
effective gain(dB): 20.90 effective gain(dB): 22.19
(before att_in and before output VOA) (before att_in and before output VOA)
tilt-target(dB) 0.00 tilt-target(dB) 0.00
noise figure (dB): 6.38 noise figure (dB): 6.19
(including att_in) (including att_in)
pad att_in (dB): 0.00 pad att_in (dB): 0.00
Power In (dBm): -1.08 Power In (dBm): -1.49
Power Out (dBm): 19.83 Power Out (dBm): 20.71
Delta_P (dB): 0.90 Delta_P (dB): 2.19
target pch (dBm): 0.90 target pch (dBm): 3.00
actual pch out (dBm): -2.09 actual pch out (dBm): -0.80
output VOA (dB): 3.00 output VOA (dB): 3.00
**New feature**
The preturbative Raman and the approximated GGN models are introduced for a faster evaluation of the Raman and
Kerr effects, respectively.
These implementation are intended to reduce the computational effort required by multiband transmission scenarios.
Both the novel models have been validated with exstensive simulations
(see `arXiv:2304.11756 <https://arxiv.org/abs/2304.11756>`_ for the new Raman model and
`jlt:9741324 <https://eeexplore.ieee.org/document/9741324>`_ for the new NLI model).
Additionally, they have been experimentally validated in a laboratory setup composed of commertial equipment
(see `icton:10648172 <https://eeexplore.ieee.org/document/10648172>`_).
v2.10
-----
ROADM impairments can be defined per degree and roadm-path type (add, drop or express).
Minimum loss when crossing a ROADM is no more 0 dB. It can be set per ROADM degree with roadm-path-impairments.
The transceiver output power, which was previously set using the same parameter as the input span power (power_dbm),
can now be set using a different parameter. It can be set as:
- for all channels, with tx_power_dbm using SI similarly to tx_osnr (gnpy-transmission-example script)
.. code-block:: json
"SI": [{
"f_min": 191.35e12,
"baud_rate": 32e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 3,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 40,
"tx_power_dbm": -10,
"sys_margins": 2
}
]
- for certain channels, using -spectrum option and tx_channel_power_dbm option (gnpy-transmission-example script).
.. code-block:: json
{
"spectrum": [
{
"f_min": 191.35e12,
"f_max":193.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40
},
{
"f_min": 193.15e12,
"f_max":193.15e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"tx_power_dbm": -10
},
{
"f_min": 193.2e12,
"f_max":195.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40
}
]
}
- per service using the additional parameter ``tx_power`` which similarly to ``power`` should be defined in Watt (gnpy-path-request script)
.. code-block:: json
{
"path-request": [
{
"request-id": "0",
"source": "trx SITE1",
"destination": "trx SITE2",
"src-tp-id": "trx SITE1",
"dst-tp-id": "trx SITE2",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"spacing": 50000000000.0,
"path_bandwidth": 100000000000.0
}
}
},
{
"request-id": "0 with tx_power",
"source": "trx SITE1",
"destination": "trx SITE2",
"src-tp-id": "trx SITE1",
"dst-tp-id": "trx SITE2",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"tx_power": 0.0001,
"spacing": 50000000000.0,
"path_bandwidth": 100000000000.0
}
}
}
]
}
v2.9
----
The revision introduces a major refactor that separates design and propagation. Most of these changes have no impact
on the user experience, except the following ones:
**Network design - amplifiers**: amplifier saturation is checked during design in all cases, even if type_variety is
set; amplifier gain is no more computed on the fly but only at design phase.
Before, the design did not consider amplifier power saturation during design if amplifier type_variety was stated.
With this revision, the saturation is always applied:
If design is made for a per channel power that leads to saturation, the target are properly reduced and the design
is freezed. So that when a new simulation is performed on the same network for lower levels of power per channel
the same gain target is applied. Before these were recomputed, changing the gain targets, so the simulation was
not considering the exact same working points for amplifiers in case of saturation.
Note that this case (working with saturation settings) is not recommended.
The gain of amplifiers was estimated on the fly also in case of RamanFiber preceding elements. The refactor now
requires that an estimation of Raman gain of the RamanFiber is done during design to properly compute a gain target.
The Raman gain is estimated at design for every RamanFiber span and also during propagation instead of being only
estimated at propagation stage for those Raman Fiber spans concerned with the transmission. The auto-design is more
accurate for unpropagated spans, but this results in an increase overall computation time.
This will be improved in the future.
**Network design - ROADMs**: ROADM target power settings are verified during design.
Design checks that expected power coming from every directions ingress from a ROADM are consistent with output power
targets. The checks only considers the adjacent previous hop. If the expected power at the input of this ROADM is
lower than the target power on the out-degree of the ROADM, a warning is displayed, and user is asked to review the
input network to avoid this situation. This does not change the design or propagation behaviour.
**Propagation**: amplifier gain target is no more recomputed during propagation. It is now possible to freeze
the design and propagate without automatic changes.
In previous release, gain was recomputed during propagation based on an hypothetical reference noiseless channel
propagation. It was not possible to «freeze» the autodesign, and propagate without recomputing the gain target
of amplifiers.
With this new release, the design is freezed, so that it is possible to compare performances on same basis.
**Display**: "effective pch (dbm)" is removed. Display contains the target pch which is the target power per channel
in dBm, computed based on reference channel used for design and the amplifier delta_p in dB (and before out VOA
contribution). Note that "actual pch out (dBm)" is the actual propagated total power per channel averaged per spectrum
band definition at the output of the amplifier element, including noises and out VOA contribution.
v2.8
----
**Spectrum assignment**: requests can now support multiple slots.
The definition in service file supports multiple assignments (unchanged syntax):
.. code-block:: json
"effective-freq-slot": [
{
"N": 0,
"M": 4
}, {
"N": 50,
"M": 4
}
],
But in results, label-hop is now a list of slots and center frequency index:
.. code-block:: json
{
"path-route-object": {
"index": 4,
"label-hop": [
{
"N": 0,
"M": 4
}, {
"N": 50,
"M": 4
}
]
}
},
instead of
.. code-block:: json
{
"path-route-object": {
"index": 4,
"label-hop": {
"N": 0,
"M": 4
}
}
},
**change in display**: only warnings are displayed ; information are disabled and needs the -v (verbose)
option to be displayed on standard output.
**frequency scaling**: A more accurate description of fiber parameters is implemented, including frequency scaling of
chromatic dispersion, effective area, Raman gain coefficient, and nonlinear coefficient.
In particular:
1. Chromatic dispersion can be defined with ``'dispersion'`` and ``'dispersion_slope'``, as in previous versions, or
with ``'dispersion_per_frequency'``; the latter must be defined as a dictionary with two keys, ``'value'`` and
``'frequency'`` and it has higher priority than the entries ``'dispersion'`` and ``'dispersion_slope'``.
Essential change: In previous versions, when it was not provided the ``'dispersion_slope'`` was calculated in an
involute manner to get a vanishing beta3 , and this was a mere artifact for NLI evaluation purposes (namely to evaluate
beta2 and beta3, not for total dispersion accumulation). Now, the evaluation of beta2 and beta3 is performed explicitly
in the element.py module.
2. The effective area is provided as a scalar value evaluated at the Fiber reference frequency and properly scaled
considering the Fiber refractive indices n1 and n2, and the core radius. These quantities are assumed to be fixed and
are hard coded in the parameters.py module. Essential change: The effective area is always scaled along the frequency.
3. The Raman gain coefficient is properly scaled considering the overlapping of fiber effective area values scaled at
the interacting frequencies. Essential change: In previous version the Raman gain coefficient depends only on
the frequency offset.
4. The nonlinear coefficient ``'gamma'`` is properly scaled considering the refractive index n2 and the scaling
effective area. Essential change: As the effective area, the nonlinear coefficient is always scaled along the
frequency.
**power offset**: Power equalization now enables defining a power offset in transceiver library to represent
the deviation from the general equalisation strategy defined in ROADMs.
.. code-block:: json
"mode": [{
"format": "100G",
"baud_rate": 32.0e9,
"tx_osnr": 35.0,
"min_spacing": 50.0e9,
"cost": 1,
"OSNR": 10.0,
"bit_rate": 100.0e9,
"roll_off": 0.2,
"equalization_offset_db": 0.0
}, {
"format": "200G",
"baud_rate": 64.0e9,
"tx_osnr": 35.0,
"min_spacing": 75.0e9,
"cost": 1,
"OSNR": 13.0,
"bit_rate": 200.0e9,
"roll_off": 0.2,
"equalization_offset_db": 1.76
}
]
v2.7
----

View File

@@ -1,7 +0,0 @@
alabaster>=0.7.12,<1
docutils>=0.17.1,<1
myst-parser>=0.16.1,<1
Pygments>=2.11.2,<3
rstcheck
Sphinx>=4.4.0,<5
sphinxcontrib-bibtex>=2.4.1,<3

View File

@@ -1,8 +1,8 @@
'''
"""
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks. It is based on the Gaussian Noise Model.
Signal propagation is implemented in :py:mod:`.core`.
Path finding and spectrum assignment is in :py:mod:`.topology`.
Various tools and auxiliary code, including the JSON I/O handling, is in
:py:mod:`.tools`.
'''
"""

View File

@@ -1,4 +1,4 @@
'''
"""
Simulation of signal propagation in the DWDM network
Optical signals, as defined via :class:`.info.SpectralInformation`, enter
@@ -6,4 +6,4 @@ Optical signals, as defined via :class:`.info.SpectralInformation`, enter
through the :py:mod:`.network`.
The simulation is controlled via :py:mod:`.parameters` and implemented mainly
via :py:mod:`.science_utils`.
'''
"""

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.ansi_escapes
======================
A random subset of ANSI terminal escape codes for colored messages
'''
"""
red = '\x1b[1;31;40m'
blue = '\x1b[1;34;40m'

File diff suppressed because it is too large Load Diff

View File

@@ -1,75 +1,132 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.equipment
===================
This module contains functionality for specifying equipment.
'''
"""
from collections import defaultdict
from functools import reduce
from typing import List
from gnpy.core.utils import automatic_nch, db2lin
from gnpy.core.exceptions import EquipmentConfigError
from gnpy.core.exceptions import EquipmentConfigError, ConfigurationError
def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=False):
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)"""
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)
if the type or mode do no match an existing transceiver in the library, then the function
raises an error if error_message is True else returns a default mode based on equipment['SI']['default']
If trx_mode is None (but type is valid), it returns an undetermined mode whatever the error message:
this is a special case for automatic mode selection.
"""
trx_params = {}
default_si_data = equipment['SI']['default']
# default transponder characteristics
# mainly used with transmission_main_example.py
default_trx_params = {
'f_min': default_si_data.f_min,
'f_max': default_si_data.f_max,
'baud_rate': default_si_data.baud_rate,
'spacing': default_si_data.spacing,
'OSNR': None,
'penalties': {},
'bit_rate': None,
'cost': None,
'roll_off': default_si_data.roll_off,
'tx_osnr': default_si_data.tx_osnr,
'min_spacing': None,
'equalization_offset_db': 0
}
# Undetermined transponder characteristics
# mainly used with path_request_run.py for the automatic mode computation case
undetermined_trx_params = {
"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"penalties": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr": None,
"min_spacing": None,
"cost": None,
"equalization_offset_db": 0
}
try:
trxs = equipment['Transceiver']
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
# if called from transmission_main.py, trx_mode is ''
if trx_mode is not None:
mode_params = next(mode for trx in trxs
if trx == trx_type_variety
for mode in trxs[trx].mode
if mode['format'] == trx_mode)
trx_params = {**mode_params}
# sanity check: spacing baudrate must be smaller than min spacing
trxs = equipment['Transceiver']
if trx_type_variety in trxs:
modes = {mode['format']: mode for mode in trxs[trx_type_variety].mode}
trx_frequencies = {'f_min': trxs[trx_type_variety].frequency['min'],
'f_max': trxs[trx_type_variety].frequency['max']}
if trx_mode in modes:
# if called from transmission_main.py, trx_mode is ''
trx_params = {**modes[trx_mode], **trx_frequencies}
if trx_params['baud_rate'] > trx_params['min_spacing']:
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" ' +
f'has baud rate {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
else:
mode_params = {"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"penalties": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr": None,
"min_spacing": None,
"cost": None}
trx_params = {**mode_params}
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
# TODO: novel automatic feature maybe unwanted if spacing is specified
# trx_params['spacing'] = _automatic_spacing(trx_params['baud_rate'])
# temp = trx_params['spacing']
# print(f'spacing {temp}')
except StopIteration:
if error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" in equipment library')
else:
# default transponder charcteristics
# mainly used with transmission_main_example.py
trx_params['f_min'] = default_si_data.f_min
trx_params['f_max'] = default_si_data.f_max
trx_params['baud_rate'] = default_si_data.baud_rate
trx_params['spacing'] = default_si_data.spacing
trx_params['OSNR'] = None
trx_params['penalties'] = {}
trx_params['bit_rate'] = None
trx_params['cost'] = None
trx_params['roll_off'] = default_si_data.roll_off
trx_params['tx_osnr'] = default_si_data.tx_osnr
trx_params['min_spacing'] = None
nch = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
trx_params['nb_channel'] = nch
print(f'There are {nch} channels propagating')
trx_params['power'] = db2lin(default_si_data.power_dbm) * 1e-3
# sanity check: baudrate must be smaller than min spacing
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transponder "{trx_type_variety}" '
+ f'mode "{trx_params["format"]}" has baud rate '
+ f'{trx_params["baud_rate"] * 1e-9:.2f} GHz greater than min_spacing '
+ f'{trx_params["min_spacing"] * 1e-9:.2f}.')
trx_params['equalization_offset_db'] = trx_params.get('equalization_offset_db', 0)
return trx_params
if trx_mode is None:
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
trx_params = {**undetermined_trx_params, **trx_frequencies}
return trx_params
if trx_type_variety in trxs and error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" '
+ 'in equipment library')
if error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" in equipment library')
trx_params = {**default_trx_params}
return trx_params
def find_type_variety(amps: List[str], equipment: dict) -> List[str]:
"""Returns the multiband type_variety associated with a list of single band type_varieties
Args:
amps (List[str]): A list of single band type_varieties.
equipment (dict): A dictionary containing equipment information.
Returns:
str: an amplifier type variety
"""
listes = find_type_varieties(amps, equipment)
_found_type = list(reduce(lambda x, y: set(x) & set(y), listes))
# Given a list of single band amplifiers, find the multiband amplifier whose multi_band group
# matches. For example, if amps list contains ["a1_LBAND", "a2_CBAND"], with a1.multi_band = [a1_LBAND, a1_CBAND]
# and a2.multi_band = [a1_LBAND, a2_CBAND], then:
# possible_type_varieties = {"a1_LBAND": ["a1", "a2"], "a2_CBAND": ["a2"]}
# listes = [["a1", "a2"], ["a2"]]
# and _found_type = [a2]
if not _found_type:
msg = f'{amps} amps do not belong to the same amp type {listes}'
raise ConfigurationError(msg)
return _found_type
def find_type_varieties(amps: List[str], equipment: dict) -> List[List[str]]:
"""Returns the multiband list of type_varieties associated with a list of single band type_varieties
Args:
amps (List[str]): A list of single band type_varieties.
equipment (dict): A dictionary containing equipment information.
Returns:
List[List[str]]: A list of lists containing the multiband type_varieties
associated with each single band type_variety.
"""
possible_type_varieties = defaultdict(list)
for amp_name, amp in equipment['Edfa'].items():
if amp.multi_band is not None:
for elem in amp.multi_band:
# possible_type_varieties stores the list of multiband amp names that list this elem as
# a possible amplifier of the multiband group. For example, if "std_medium_gain_multiband"
# and "std_medium_gain_multiband_new" contain "std_medium_gain_C" in their "multi_band" list, then:
# possible_type_varieties["std_medium_gain_C"] =
# ["std_medium_gain_multiband", "std_medium_gain_multiband_new"]
possible_type_varieties[elem].append(amp_name)
return [possible_type_varieties[a] for a in amps]

View File

@@ -11,10 +11,11 @@ This module contains classes for modelling :class:`SpectralInformation`.
from __future__ import annotations
from collections import namedtuple
from collections.abc import Iterable
from typing import Union
from typing import Union, List, Optional
from dataclasses import dataclass
from numpy import argsort, mean, array, append, ones, ceil, any, zeros, outer, full, ndarray, asarray
from gnpy.core.utils import automatic_nch, lin2db, db2lin
from gnpy.core.utils import automatic_nch, db2lin, watt2dbm
from gnpy.core.exceptions import SpectrumError
DEFAULT_SLOT_WIDTH_STEP = 12.5e9 # Hz
@@ -26,33 +27,32 @@ class Power(namedtuple('Power', 'signal nli ase')):
"""carriers power in W"""
class Channel(namedtuple('Channel',
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl')):
""" Class containing the parameters of a WDM signal.
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param slot_width: the slot width (Hz)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param pdl: polarization dependent loss (dB)
class Channel(
namedtuple('Channel',
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl latency')):
"""Class containing the parameters of a WDM signal.
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param slot_width: the slot width (Hz)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param pdl: polarization dependent loss (dB)
:param latency: propagation latency (s)
"""
class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
"""noiseless reference power in dBm:
p_span0: inital target carrier power
p_spani: carrier power after element i
neq_ch: equivalent channel count in dB"""
class SpectralInformation(object):
""" Class containing the parameters of the entire WDM comb."""
"""Class containing the parameters of the entire WDM comb.
delta_pdb_per_channel: (per frequency) per channel delta power in dbm for the actual mix of channels"""
def __init__(self, frequency: array, baud_rate: array, slot_width: array, signal: array, nli: array, ase: array,
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array):
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array, latency: array,
delta_pdb_per_channel: array, tx_osnr: array, tx_power: array, label: array):
indices = argsort(frequency)
self._frequency = frequency[indices]
self._df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
@@ -77,17 +77,11 @@ class SpectralInformation(object):
self._chromatic_dispersion = chromatic_dispersion[indices]
self._pmd = pmd[indices]
self._pdl = pdl[indices]
pref = lin2db(mean(signal) * 1e3)
self._pref = Pref(pref, pref, lin2db(self._number_of_channels))
@property
def pref(self):
"""Instance of gnpy.info.Pref"""
return self._pref
@pref.setter
def pref(self, pref: Pref):
self._pref = pref
self._latency = latency[indices]
self._delta_pdb_per_channel = delta_pdb_per_channel[indices]
self._tx_osnr = tx_osnr[indices]
self._tx_power = tx_power[indices]
self._label = label[indices]
@property
def frequency(self):
@@ -155,6 +149,10 @@ class SpectralInformation(object):
def pmd(self):
return self._pmd
@property
def label(self):
return self._label
@pmd.setter
def pmd(self, pmd):
self._pmd = pmd
@@ -167,6 +165,38 @@ class SpectralInformation(object):
def pdl(self, pdl):
self._pdl = pdl
@property
def latency(self):
return self._latency
@latency.setter
def latency(self, latency):
self._latency = latency
@property
def delta_pdb_per_channel(self):
return self._delta_pdb_per_channel
@delta_pdb_per_channel.setter
def delta_pdb_per_channel(self, delta_pdb_per_channel):
self._delta_pdb_per_channel = delta_pdb_per_channel
@property
def tx_osnr(self):
return self._tx_osnr
@tx_osnr.setter
def tx_osnr(self, tx_osnr):
self._tx_osnr = tx_osnr
@property
def tx_power(self):
return self._tx_power
@tx_power.setter
def tx_power(self, tx_power):
self._tx_power = tx_power
@property
def channel_number(self):
return self._channel_number
@@ -174,7 +204,7 @@ class SpectralInformation(object):
@property
def carriers(self):
entries = zip(self.channel_number, self.frequency, self.baud_rate, self.slot_width,
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl)
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl, self.latency)
return [Channel(*entry) for entry in entries]
def apply_attenuation_lin(self, attenuation_lin):
@@ -206,29 +236,40 @@ class SpectralInformation(object):
chromatic_dispersion=append(self.chromatic_dispersion,
other.chromatic_dispersion),
pmd=append(self.pmd, other.pmd),
pdl=append(self.pdl, other.pdl))
pdl=append(self.pdl, other.pdl),
latency=append(self.latency, other.latency),
delta_pdb_per_channel=append(self.delta_pdb_per_channel,
other.delta_pdb_per_channel),
tx_osnr=append(self.tx_osnr, other.tx_osnr),
tx_power=append(self.tx_power, other.tx_power),
label=append(self.label, other.label))
except SpectrumError:
raise SpectrumError('Spectra cannot be summed: channels overlapping.')
def _replace(self, carriers, pref):
def _replace(self, carriers):
self.chromatic_dispersion = array([c.chromatic_dispersion for c in carriers])
self.pmd = array([c.pmd for c in carriers])
self.pdl = array([c.pdl for c in carriers])
self.latency = array([c.latency for c in carriers])
self.signal = array([c.power.signal for c in carriers])
self.nli = array([c.power.nli for c in carriers])
self.ase = array([c.power.ase for c in carriers])
self.pref = pref
return self
def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, int, float],
signal: Union[int, float, ndarray, Iterable],
baud_rate: Union[int, float, ndarray, Iterable],
slot_width: Union[int, float, ndarray, Iterable] = None,
roll_off: Union[int, float, ndarray, Iterable] = 0.,
chromatic_dispersion: Union[int, float, ndarray, Iterable] = 0.,
pmd: Union[int, float, ndarray, Iterable] = 0.,
pdl: Union[int, float, ndarray, Iterable] = 0.):
def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, float],
signal: Union[float, ndarray, Iterable],
baud_rate: Union[float, ndarray, Iterable],
tx_osnr: Union[float, ndarray, Iterable],
tx_power: Union[float, ndarray, Iterable] = None,
delta_pdb_per_channel: Union[float, ndarray, Iterable] = 0.,
slot_width: Union[float, ndarray, Iterable] = None,
roll_off: Union[float, ndarray, Iterable] = 0.,
chromatic_dispersion: Union[float, ndarray, Iterable] = 0.,
pmd: Union[float, ndarray, Iterable] = 0.,
pdl: Union[float, ndarray, Iterable] = 0.,
latency: Union[float, ndarray, Iterable] = 0.,
label: Union[str, ndarray, Iterable] = None):
"""This is just a wrapper around the SpectralInformation.__init__() that simplifies the creation of
a non-uniform spectral information with NLI and ASE powers set to zero."""
frequency = asarray(frequency)
@@ -242,13 +283,20 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, in
chromatic_dispersion = full(number_of_channels, chromatic_dispersion)
pmd = full(number_of_channels, pmd)
pdl = full(number_of_channels, pdl)
latency = full(number_of_channels, latency)
nli = zeros(number_of_channels)
ase = zeros(number_of_channels)
delta_pdb_per_channel = full(number_of_channels, delta_pdb_per_channel)
tx_osnr = full(number_of_channels, tx_osnr)
tx_power = full(number_of_channels, tx_power)
label = full(number_of_channels, label)
return SpectralInformation(frequency=frequency, slot_width=slot_width,
signal=signal, nli=nli, ase=ase,
baud_rate=baud_rate, roll_off=roll_off,
chromatic_dispersion=chromatic_dispersion,
pmd=pmd, pdl=pdl)
pmd=pmd, pdl=pdl, latency=latency,
delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
except ValueError as e:
if 'could not broadcast' in str(e):
raise SpectrumError('Dimension mismatch in input fields.')
@@ -256,9 +304,125 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, in
raise
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
""" Creates a fixed slot width spectral information with flat power """
nb_channel = automatic_nch(f_min, f_max, spacing)
frequency = [(f_min + spacing * i) for i in range(1, nb_channel + 1)]
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=power, baud_rate=baud_rate,
roll_off=roll_off)
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, spacing, tx_osnr, tx_power,
delta_pdb=0):
"""Creates a fixed slot width spectral information with flat power.
all arguments are scalar values"""
number_of_channels = automatic_nch(f_min, f_max, spacing)
frequency = [(f_min + spacing * i) for i in range(1, number_of_channels + 1)]
delta_pdb_per_channel = delta_pdb * ones(number_of_channels)
label = [f'{baud_rate * 1e-9 :.2f}G' for i in range(number_of_channels)]
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=tx_power, baud_rate=baud_rate,
roll_off=roll_off, delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
def is_in_band(frequency: float, band: dict) -> bool:
"""band has {"f_min": value, "f_max": value} format
"""
if frequency >= band['f_min'] and frequency <= band['f_max']:
return True
return False
def demuxed_spectral_information(input_si: SpectralInformation, band: dict) -> Optional[SpectralInformation]:
"""extract a si based on band
"""
filtered_indices = [i for i, f in enumerate(input_si.frequency)
if is_in_band(f - input_si.slot_width[i] / 2, band)
and is_in_band(f + input_si.slot_width[i] / 2, band)]
if filtered_indices:
frequency = input_si.frequency[filtered_indices]
baud_rate = input_si.baud_rate[filtered_indices]
slot_width = input_si.slot_width[filtered_indices]
signal = input_si.signal[filtered_indices]
nli = input_si.nli[filtered_indices]
ase = input_si.ase[filtered_indices]
roll_off = input_si.roll_off[filtered_indices]
chromatic_dispersion = input_si.chromatic_dispersion[filtered_indices]
pmd = input_si.pmd[filtered_indices]
pdl = input_si.pdl[filtered_indices]
latency = input_si.latency[filtered_indices]
delta_pdb_per_channel = input_si.delta_pdb_per_channel[filtered_indices]
tx_osnr = input_si.tx_osnr[filtered_indices]
tx_power = input_si.tx_power[filtered_indices]
label = input_si.label[filtered_indices]
return SpectralInformation(frequency=frequency, baud_rate=baud_rate, slot_width=slot_width, signal=signal,
nli=nli, ase=ase, roll_off=roll_off, chromatic_dispersion=chromatic_dispersion,
pmd=pmd, pdl=pdl, latency=latency, delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
return None
def muxed_spectral_information(input_si_list: List[SpectralInformation]) -> SpectralInformation:
"""return the assembled spectrum
"""
if input_si_list and len(input_si_list) > 1:
si = input_si_list[0] + muxed_spectral_information(input_si_list[1:])
return si
elif input_si_list and len(input_si_list) == 1:
return input_si_list[0]
else:
raise ValueError('liste vide')
def carriers_to_spectral_information(initial_spectrum: dict[float, Carrier],
power: float) -> SpectralInformation:
"""Initial spectrum is a dict with key = carrier frequency, and value a Carrier object.
:param initial_spectrum: indexed by frequency in Hz, with power offset (delta_pdb), baudrate, slot width,
tx_osnr, tx_power and roll off.
:param power: power of the request
"""
frequency = list(initial_spectrum.keys())
signal = [c.tx_power for c in initial_spectrum.values()]
roll_off = [c.roll_off for c in initial_spectrum.values()]
baud_rate = [c.baud_rate for c in initial_spectrum.values()]
delta_pdb_per_channel = [c.delta_pdb for c in initial_spectrum.values()]
slot_width = [c.slot_width for c in initial_spectrum.values()]
tx_osnr = [c.tx_osnr for c in initial_spectrum.values()]
tx_power = [c.tx_power for c in initial_spectrum.values()]
label = [c.label for c in initial_spectrum.values()]
return create_arbitrary_spectral_information(frequency=frequency, signal=signal, baud_rate=baud_rate,
slot_width=slot_width, roll_off=roll_off,
delta_pdb_per_channel=delta_pdb_per_channel, tx_osnr=tx_osnr,
tx_power=tx_power, label=label)
@dataclass
class Carrier:
"""One channel in the initial mixed-type spectrum definition, each type being defined by
its delta_pdb (power offset with respect to reference power), baud rate, slot_width, roll_off
tx_power, and tx_osnr. delta_pdb offset is applied to target power out of Roadm.
Label is used to group carriers which belong to the same partition when printing results.
"""
delta_pdb: float
baud_rate: float
slot_width: float
roll_off: float
tx_osnr: float
tx_power: float
label: str
@dataclass
class ReferenceCarrier:
"""Reference channel type is used to determine target power out of ROADM for the reference channel when
constant power spectral density (PSD) equalization is set. Reference channel is the type that has been defined
in SI block and used for the initial design of the network.
Computing the power out of ROADM for the reference channel is required to correctly compute the loss
experienced by reference channel in Roadm element.
Baud rate is required to find the target power in constant PSD: power = PSD_target * baud_rate.
For example, if target PSD is 3.125e4mW/GHz and reference carrier type a 32 GBaud channel then
output power should be -20 dBm and for a 64 GBaud channel power target would need 3 dB more: -17 dBm.
Slot width is required to find the target power in constant PSW (constant power per slot width equalization):
power = PSW_target * slot_width.
For example, if target PSW is 2e4mW/GHz and reference carrier type a 32 GBaud channel in a 50GHz slot width then
output power should be -20 dBm and for a 64 GBaud channel in a 75 GHz slot width, power target would be -18.24 dBm.
Other attributes (like roll-off) may be added there for future equalization purpose.
"""
baud_rate: float
slot_width: float

File diff suppressed because it is too large Load Diff

View File

@@ -7,9 +7,11 @@ gnpy.core.parameters
This module contains all parameters to configure standard network elements.
"""
from collections import namedtuple
from copy import deepcopy
from dataclasses import dataclass
from scipy.constants import c, pi
from numpy import asarray, array
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
from gnpy.core.utils import convert_length
from gnpy.core.exceptions import ParametersError
@@ -34,49 +36,64 @@ class PumpParams(Parameters):
class RamanParams(Parameters):
def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
""" Simulation parameters used within the Raman Solver
def __init__(self, flag=False, method='perturbative', order=2, result_spatial_resolution=10e3,
solver_spatial_resolution=10e3):
"""Simulation parameters used within the Raman Solver
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
:params method: Raman solver method
:params order: solution order for perturbative method
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
"""
self.flag = flag
self.method = method
self.order = order
self.result_spatial_resolution = result_spatial_resolution # [m]
self.solver_spatial_resolution = solver_spatial_resolution # [m]
def to_json(self):
return {"flag": self.flag,
"method": self.method,
"order": self.order,
"result_spatial_resolution": self.result_spatial_resolution,
"solver_spatial_resolution": self.solver_spatial_resolution}
class NLIParams(Parameters):
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
computed_channels=None):
""" Simulation parameters used within the Nli Solver
def __init__(self, method='gn_model_analytic', dispersion_tolerance=4, phase_shift_tolerance=0.1,
computed_channels=None, computed_number_of_channels=None):
"""Simulation parameters used within the Nli Solver
:params method: formula for NLI calculation
:params dispersion_tolerance: tuning parameter for ggn model solution
:params phase_shift_tolerance: tuning parameter for ggn model solution
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
:params computed_number_of_channels: the NLI is evaluated for this number of channels equally distributed
in the spectrum and extrapolated for the others
"""
self.method = method.lower()
self.dispersion_tolerance = dispersion_tolerance
self.phase_shift_tolerance = phase_shift_tolerance
self.computed_channels = computed_channels
self.computed_number_of_channels = computed_number_of_channels
def to_json(self):
return {"method": self.method,
"dispersion_tolerance": self.dispersion_tolerance,
"phase_shift_tolerance": self.phase_shift_tolerance,
"computed_channels": self.computed_channels,
"computed_number_of_channels": self.computed_number_of_channels}
class SimParams(Parameters):
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
def __init__(self):
if type(self) == SimParams:
raise NotImplementedError('Instances of SimParams cannot be generated')
@classmethod
def set_params(cls, sim_params):
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
@classmethod
def get(cls):
self = cls.__new__(cls)
return self
@property
def nli_params(self):
return self._shared_dict['nli_params']
@@ -88,15 +105,84 @@ class SimParams(Parameters):
class RoadmParams(Parameters):
def __init__(self, **kwargs):
self.target_pch_out_db = kwargs.get('target_pch_out_db')
self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
temp = [kwargs.get(k) is not None for k in equalisation_type]
if sum(temp) > 1:
raise ParametersError('ROADM config contains more than one equalisation type.'
+ 'Please choose only one', kwargs)
self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
try:
self.target_pch_out_db = kwargs['target_pch_out_db']
self.add_drop_osnr = kwargs['add_drop_osnr']
self.pmd = kwargs['pmd']
self.pdl = kwargs['pdl']
self.restrictions = kwargs['restrictions']
self.per_degree_pch_out_db = kwargs['per_degree_pch_out_db'] if 'per_degree_pch_out_db' in kwargs else {}
self.roadm_path_impairments = self.get_roadm_path_impairments(kwargs['roadm-path-impairments'])
except KeyError as e:
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
self.per_degree_impairments = kwargs.get('per_degree_impairments', [])
self.design_bands = kwargs.get('design_bands', [])
self.per_degree_design_bands = kwargs.get('per_degree_design_bands', {})
def get_roadm_path_impairments(self, path_impairments_list):
"""Get the ROADM list of profiles for impairments definition
transform the ietf model into gnpy internal model: add a path-type in the attributes
"""
if not path_impairments_list:
return {}
authorized_path_types = {
'roadm-express-path': 'express',
'roadm-add-path': 'add',
'roadm-drop-path': 'drop',
}
roadm_path_impairments = {}
for path_impairment in path_impairments_list:
index = path_impairment['roadm-path-impairments-id']
path_type = next(key for key in path_impairment if key in authorized_path_types.keys())
impairment_dict = {'path-type': authorized_path_types[path_type], 'impairment': path_impairment[path_type]}
roadm_path_impairments[index] = RoadmImpairment(impairment_dict)
return roadm_path_impairments
class RoadmPath:
def __init__(self, from_degree, to_degree, path_type, impairment_id=None, impairment=None):
"""Records roadm internal paths, types and impairment
path_type must be in "express", "add", "drop"
impairment_id must be one of the id detailed in equipement
"""
self.from_degree = from_degree
self.to_degree = to_degree
self.path_type = path_type
self.impairment_id = impairment_id
self.impairment = impairment
class RoadmImpairment:
"""Generic definition of impairments for express, add and drop"""
default_values = {
'roadm-pmd': None,
'roadm-cd': None,
'roadm-pdl': None,
'roadm-inband-crosstalk': None,
'roadm-maxloss': 0,
'roadm-osnr': None,
'roadm-pmax': None,
'roadm-noise-figure': None,
'minloss': None,
'typloss': None,
'pmin': None,
'ptyp': None
}
def __init__(self, params):
self.path_type = params.get('path-type')
self.impairments = params['impairment']
class FusedParams(Parameters):
@@ -104,26 +190,75 @@ class FusedParams(Parameters):
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
# SSMF Raman coefficient profile normalized with respect to the effective area (Cr * A_eff)
CR_NORM = array([
0., 7.802e-16, 2.4236e-15, 4.0504e-15, 5.6606e-15, 6.8973e-15, 7.802e-15, 8.4162e-15, 8.8727e-15, 9.2877e-15,
1.01011e-14, 1.05244e-14, 1.13295e-14, 1.2367e-14, 1.3695e-14, 1.5023e-14, 1.64091e-14, 1.81936e-14, 2.04927e-14,
2.28167e-14, 2.48917e-14, 2.66098e-14, 2.82615e-14, 2.98136e-14, 3.1042e-14, 3.17558e-14, 3.18803e-14, 3.17558e-14,
3.15566e-14, 3.11748e-14, 2.94567e-14, 3.14985e-14, 2.8552e-14, 2.43439e-14, 1.67992e-14, 9.6114e-15, 7.02180e-15,
5.9262e-15, 5.6938e-15, 7.055e-15, 7.4119e-15, 7.4783e-15, 6.7645e-15, 5.5361e-15, 3.6271e-15, 2.7224e-15,
2.4568e-15, 2.1995e-15, 2.1331e-15, 2.3323e-15, 2.5564e-15, 3.0461e-15, 4.8555e-15, 5.5029e-15, 5.2788e-15,
4.565e-15, 3.3698e-15, 2.2991e-15, 2.0086e-15, 1.5521e-15, 1.328e-15, 1.162e-15, 9.379e-16, 8.715e-16, 8.134e-16,
8.134e-16, 9.379e-16, 1.3612e-15, 1.6185e-15, 1.9754e-15, 1.8758e-15, 1.6849e-15, 1.2284e-15, 9.047e-16, 8.134e-16,
8.715e-16, 9.711e-16, 1.0375e-15, 1.0043e-15, 9.047e-16, 8.134e-16, 6.806e-16, 5.478e-16, 3.901e-16, 2.241e-16,
1.577e-16, 9.96e-17, 3.32e-17, 1.66e-17, 8.3e-18])
DEFAULT_RAMAN_COEFFICIENT = {
# SSMF Raman coefficient profile in terms of mode intensity (g0 * A_ff_overlap)
'gamma_raman': array(
[0.0, 8.524419934705497e-16, 2.643567866245371e-15, 4.410548410941305e-15, 6.153422961291078e-15,
7.484924703044943e-15, 8.452060808349209e-15, 9.101549322698156e-15, 9.57837595158966e-15,
1.0008642675474562e-14, 1.0865773569905647e-14, 1.1300776305865833e-14, 1.2143238647099625e-14,
1.3231065750676068e-14, 1.4624900971525384e-14, 1.6013330554840492e-14, 1.7458119359310242e-14,
1.9320241330434762e-14, 2.1720395392873534e-14, 2.4137337406734775e-14, 2.628163218460466e-14,
2.8041019963285974e-14, 2.9723155447089933e-14, 3.129353531005888e-14, 3.251796163324624e-14,
3.3198839487612773e-14, 3.329527690685666e-14, 3.313155691238456e-14, 3.289013852154548e-14,
3.2458917188506916e-14, 3.060684277937575e-14, 3.2660349473783173e-14, 2.957419109657689e-14,
2.518894321396672e-14, 1.734560485857344e-14, 9.902860761605233e-15, 7.219176385099358e-15,
6.079565990401311e-15, 5.828373065963427e-15, 7.20580801091692e-15, 7.561924351387493e-15,
7.621152352332206e-15, 6.8859886780643254e-15, 5.629181047471162e-15, 3.679727598966185e-15,
2.7555869742500355e-15, 2.4810133942597675e-15, 2.2160080532403624e-15, 2.1440626024765557e-15,
2.33873070799544e-15, 2.557317929858713e-15, 3.039839048226572e-15, 4.8337165515610065e-15,
5.4647431818257436e-15, 5.229187813711269e-15, 4.510768525811313e-15, 3.3213473130607794e-15,
2.2602577027996455e-15, 1.969576495866441e-15, 1.5179853954188527e-15, 1.2953988551200156e-15,
1.1304672156251838e-15, 9.10004390675213e-16, 8.432919922183503e-16, 7.849224069008326e-16,
7.827568196032024e-16, 9.000514440646232e-16, 1.3025926460013665e-15, 1.5444108938497558e-15,
1.8795594063060786e-15, 1.7796130169921014e-15, 1.5938159865046653e-15, 1.1585522355108287e-15,
8.507044444633358e-16, 7.625404663756823e-16, 8.14510750925789e-16, 9.047944693473188e-16,
9.636431901702084e-16, 9.298633899602105e-16, 8.349739503637023e-16, 7.482901278066085e-16,
6.240794767134268e-16, 5.00652535687506e-16, 3.553373263685851e-16, 2.0344217706119682e-16,
1.4267522642294203e-16, 8.980016576743517e-17, 2.9829068181832594e-17, 1.4861959129014824e-17,
7.404482113326137e-18]
), # m/W
# SSMF Raman coefficient profile
'g0': array(
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
), # [1 / (W m)]
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
FREQ_OFFSET = array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75, 19.,
19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5, 29., 29.5,
30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5, 39., 39.5, 40.,
40.5, 41., 41.5, 42.]) * 1e12
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
'frequency_offset': array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
12., 12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75,
19., 19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5,
29., 29.5, 30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5,
39., 39.5, 40., 40.5, 41., 41.5, 42.]) * 1e12, # [Hz]
# Raman profile reference frequency
'reference_frequency': 206.184634112792e12, # [Hz] (1454 nm)
# Raman profile reference effective area
'reference_effective_area': 75.74659443542413e-12 # [m^2] (@1454 nm)
}
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
""" Raman Gain Coefficient Parameters
Based on:
Andrea DAmico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
J. Lightwave Technol. 40, 3499-3511 (2022)
Section III.D
"""
class FiberParams(Parameters):
@@ -137,6 +272,8 @@ class FiberParams(Parameters):
# with default values from eqpt_config.json[Spans]
self._con_in = kwargs.get('con_in')
self._con_out = kwargs.get('con_out')
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
if 'ref_wavelength' in kwargs:
self._ref_wavelength = kwargs['ref_wavelength']
self._ref_frequency = c / self._ref_wavelength
@@ -146,35 +283,77 @@ class FiberParams(Parameters):
else:
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
self._ref_frequency = c / self._ref_wavelength
self._dispersion = kwargs['dispersion'] # s/m/m
self._dispersion_slope = \
kwargs.get('dispersion_slope', -2 * self._dispersion / self.ref_wavelength) # s/m/m/m
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
# (accessed on 25 March 2018) (2005).
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
(2*pi*c/self.ref_wavelength**2)**2)
# Chromatic Dispersion
if 'dispersion_per_frequency' in kwargs:
# Frequency-dependent dispersion
self._dispersion = asarray(kwargs['dispersion_per_frequency']['value']) # s/m/m
self._f_dispersion_ref = asarray(kwargs['dispersion_per_frequency']['frequency']) # Hz
self._dispersion_slope = None
elif 'dispersion' in kwargs:
# Single value dispersion
self._dispersion = asarray(kwargs['dispersion']) # s/m/m
self._dispersion_slope = kwargs.get('dispersion_slope') # s/m/m/m
self._f_dispersion_ref = asarray(self._ref_frequency) # Hz
else:
# Default single value dispersion
self._dispersion = asarray(1.67e-05) # s/m/m
self._dispersion_slope = None
self._f_dispersion_ref = asarray(self.ref_frequency) # Hz
# Effective Area and Nonlinear Coefficient
self._effective_area = kwargs.get('effective_area') # m^2
n2 = 2.6e-20 # m^2/W
if self._effective_area:
self._gamma = kwargs.get('gamma', 2 * pi * n2 / (self.ref_wavelength * self._effective_area)) # 1/W/m
self._n1 = 1.468
self._core_radius = 4.2e-6 # m
self._n2 = 2.6e-20 # m^2/W
if self._effective_area is not None:
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
elif 'gamma' in kwargs:
self._gamma = kwargs['gamma'] # 1/W/m
self._effective_area = 2 * pi * n2 / (self.ref_wavelength * self._gamma) # m^2
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
else:
self._gamma = 0 # 1/W/m
self._effective_area = 83e-12 # m^2
default_raman_efficiency = {'cr': CR_NORM / self._effective_area, 'frequency_offset': FREQ_OFFSET}
self._raman_efficiency = kwargs.get('raman_efficiency', default_raman_efficiency)
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
pi * self._core_radius ** 2 / self._effective_area)) ** 2
# Raman Gain Coefficient
raman_coefficient = kwargs.get('raman_coefficient')
if raman_coefficient is None:
self._raman_reference_frequency = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
frequency_offset = asarray(DEFAULT_RAMAN_COEFFICIENT['frequency_offset'])
gamma_raman = asarray(DEFAULT_RAMAN_COEFFICIENT['gamma_raman'])
stokes_wave = self._raman_reference_frequency - frequency_offset
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
self._g0 = gamma_raman / self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
else:
self._raman_reference_frequency = raman_coefficient['reference_frequency']
frequency_offset = asarray(raman_coefficient['frequency_offset'])
stokes_wave = self._raman_reference_frequency - frequency_offset
self._g0 = asarray(raman_coefficient['g0'])
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
# represent a positive power transfer from higher frequency and vice versa
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
# Polarization Mode Dispersion
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
if type(kwargs['loss_coef']) == dict:
# Loss Coefficient
if isinstance(kwargs['loss_coef'], dict):
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
else:
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(self._ref_frequency) # Hz
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else []
# Lumped Losses
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
self._latency = self._length / (c / self._n1) # s
except KeyError as e:
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
@@ -219,6 +398,10 @@ class FiberParams(Parameters):
def dispersion(self):
return self._dispersion
@property
def f_dispersion_ref(self):
return self._f_dispersion_ref
@property
def dispersion_slope(self):
return self._dispersion_slope
@@ -227,6 +410,20 @@ class FiberParams(Parameters):
def gamma(self):
return self._gamma
def effective_area_scaling(self, frequency):
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
w = self._core_radius / sqrt(log(V))
return asarray(pi * w ** 2)
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
effective_area_pump = self.effective_area_scaling(frequency_pump)
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
def gamma_scaling(self, frequency):
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
@property
def pmd_coef(self):
return self._pmd_coef
@@ -239,14 +436,6 @@ class FiberParams(Parameters):
def ref_frequency(self):
return self._ref_frequency
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def loss_coef(self):
return self._loss_coef
@@ -256,40 +445,163 @@ class FiberParams(Parameters):
return self._f_loss_ref
@property
def raman_efficiency(self):
return self._raman_efficiency
def raman_coefficient(self):
return self._raman_coefficient
@property
def latency(self):
return self._latency
def asdict(self):
dictionary = super().asdict()
dictionary['loss_coef'] = self.loss_coef * 1e3
dictionary['length_units'] = 'm'
if not self.lumped_losses:
if len(self.lumped_losses) == 0:
dictionary.pop('lumped_losses')
if not self.raman_efficiency:
dictionary.pop('raman_efficiency')
if not self.raman_coefficient:
dictionary.pop('raman_coefficient')
else:
raman_frequency_offset = \
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
'frequency_offset': raman_frequency_offset.tolist(),
'reference_frequency': self._raman_reference_frequency}
return dictionary
class EdfaParams:
default_values = {
'f_min': None,
'f_max': None,
'multi_band': None,
'bands': None,
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'preamp_variety': None,
'booster_variety': None,
'nf_min': None,
'nf_max': None,
'nf_coef': None,
'nf0': None,
'nf_fit_coeff': None,
'nf_ripple': 0,
'dgt': None,
'gain_ripple': 0,
'tilt_ripple': 0,
'f_ripple_ref': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False,
'pmd': 0,
'pdl': 0,
'advance_configurations_from_json': None
}
def __init__(self, **params):
self.update_params(params)
if params == {}:
self.type_variety = ''
self.type_def = ''
# self.gain_flatmax = 0
# self.gain_min = 0
# self.p_max = 0
# self.nf_model = None
# self.nf_fit_coeff = None
# self.nf_ripple = None
# self.dgt = None
# self.gain_ripple = None
# self.out_voa_auto = False
# self.allowed_for_design = None
try:
self.type_variety = params['type_variety']
self.type_def = params['type_def']
# Bandwidth
self.f_min = params['f_min']
self.f_max = params['f_max']
self.bandwidth = self.f_max - self.f_min if self.f_max and self.f_min else None
self.f_cent = (self.f_max + self.f_min) / 2 if self.f_max and self.f_min else None
self.f_ripple_ref = params['f_ripple_ref']
self.bands = [{'f_min': params['f_min'],
'f_max': params['f_max']}]
# Gain
self.gain_flatmax = params['gain_flatmax']
self.gain_min = params['gain_min']
gain_ripple = params['gain_ripple']
if gain_ripple == 0:
self.gain_ripple = asarray([0, 0])
self.f_ripple_ref = asarray([self.f_min, self.f_max])
else:
self.gain_ripple = asarray(gain_ripple)
if self.f_ripple_ref is not None:
if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
"with the EDFA frequency maximum and minimum.")
elif self.gain_ripple.size != self.f_ripple_ref.size:
raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
"size.")
else:
self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
tilt_ripple = params['tilt_ripple']
if tilt_ripple == 0:
self.tilt_ripple = full(self.gain_ripple.size, 0)
else:
self.tilt_ripple = asarray(tilt_ripple)
if self.tilt_ripple.size != self.gain_ripple.size:
raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
# Power
self.p_max = params['p_max']
# Noise Figure
self.nf_model = params['nf_model']
self.nf_min = params['nf_min']
self.nf_max = params['nf_max']
self.nf_coef = params['nf_coef']
self.nf0 = params['nf0']
self.nf_fit_coeff = params['nf_fit_coeff']
nf_ripple = params['nf_ripple']
if nf_ripple == 0:
self.nf_ripple = full(self.gain_ripple.size, 0)
else:
self.nf_ripple = asarray(nf_ripple)
if self.nf_ripple.size != self.gain_ripple.size:
raise ParametersError("The noise figure ripple and the gain ripple must have the same size.")
# VOA
self.out_voa_auto = params['out_voa_auto']
# Dual Stage
self.dual_stage_model = params['dual_stage_model']
if self.dual_stage_model is not None:
# Preamp
self.preamp_variety = params['preamp_variety']
self.preamp_type_def = params['preamp_type_def']
self.preamp_nf_model = params['preamp_nf_model']
self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
self.preamp_gain_min = params['preamp_gain_min']
self.preamp_gain_flatmax = params['preamp_gain_flatmax']
# Booster
self.booster_variety = params['booster_variety']
self.booster_type_def = params['booster_type_def']
self.booster_nf_model = params['booster_nf_model']
self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
self.booster_gain_min = params['booster_gain_min']
self.booster_gain_flatmax = params['booster_gain_flatmax']
# Others
self.pmd = params['pmd']
self.pdl = params['pdl']
self.raman = params['raman']
self.dgt = params['dgt']
self.advance_configurations_from_json = params['advance_configurations_from_json']
# Design
self.allowed_for_design = params['allowed_for_design']
except KeyError as e:
raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
def update_params(self, kwargs):
for k, v in kwargs.items():
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
setattr(self, k, v)
class EdfaOperational:
@@ -297,7 +609,7 @@ class EdfaOperational:
'gain_target': None,
'delta_p': None,
'out_voa': None,
'tilt_target': 0
'tilt_target': None
}
def __init__(self, **operational):
@@ -312,3 +624,62 @@ class EdfaOperational:
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')
class MultiBandParams:
default_values = {
'bands': [],
'type_variety': '',
'type_def': None,
'allowed_for_design': False
}
def __init__(self, **params):
try:
self.update_attr(params)
except KeyError as e:
raise ParametersError(f'Multiband configurations json must include {e}. Configuration: {params}')
def update_attr(self, kwargs):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in self.default_values.items():
# use deepcopy to avoid sharing same object amongst all instance when v is a list or a dict!
if isinstance(v, (list, dict)):
setattr(self, k, clean_kwargs.get(k, deepcopy(v)))
else:
setattr(self, k, clean_kwargs.get(k, v))
class TransceiverParams:
def __init__(self, **params):
self.design_bands = params.get('design_bands', [])
self.per_degree_design_bands = params.get('per_degree_design_bands', {})
@dataclass
class FrequencyBand:
"""Frequency band
"""
f_min: float
f_max: float
DEFAULT_BANDS_DEFINITION = {
"LBAND": FrequencyBand(f_min=187e12, f_max=189e12),
"CBAND": FrequencyBand(f_min=191.3e12, f_max=196.0e12)
}
# use this definition to index amplifiers'element of a multiband amplifier.
# this is not the design band
def find_band_name(band: FrequencyBand) -> str:
"""return the default band name (CBAND, LBAND, ...) that corresponds to the band frequency range
Use the band center frequency: if center frequency is inside the band then returns CBAND.
This is to flexibly encompass all kind of bands definitions.
returns the first matching band name.
"""
for band_name, frequency_range in DEFAULT_BANDS_DEFINITION.items():
center_frequency = (band.f_min + band.f_max) / 2
if center_frequency >= frequency_range.f_min and center_frequency <= frequency_range.f_max:
return band_name
return 'unknown_band'

View File

@@ -10,45 +10,44 @@ Solver definitions to calculate the Raman effect and the nonlinear interference
The solvers take as input instances of the spectral information, the fiber and the simulation parameters
"""
from numpy import interp, pi, zeros, shape, where, cos, array, append, ones, exp, arange, sqrt, empty, trapz, arcsinh, \
clip, abs, sum, concatenate, flip, outer, inner, transpose, max, format_float_scientific, diag, prod, argwhere, \
unique, argsort, cumprod
from numpy import interp, pi, zeros, cos, array, append, ones, exp, arange, sqrt, trapz, arcsinh, clip, abs, sum, \
concatenate, flip, outer, inner, transpose, max, format_float_scientific, diag, sort, unique, argsort, cumprod, \
polyfit, log, reshape, swapaxes, full, nan, cumsum
from logging import getLogger
from scipy.constants import k, h
from scipy.interpolate import interp1d
from math import isclose
from math import isclose, factorial
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.exceptions import EquipmentConfigError
from gnpy.core.exceptions import EquipmentConfigError, ParametersError
from gnpy.core.parameters import SimParams
from gnpy.core.info import SpectralInformation
logger = getLogger(__name__)
sim_params = SimParams.get()
sim_params = SimParams()
def raised_cosine_comb(f, *carriers):
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
channels at the input frequencies defined in array f
:param f: numpy array of frequencies in Hz
:param carriers: namedtuple describing the WDM comb
:return: PSD of the WDM comb evaluated over f
def raised_cosine(frequency, channel_frequency, channel_baud_rate, channel_roll_off):
"""Returns a unitary raised cosine profile for the given parame
:param frequency: numpy array of frequencies in Hz for the resulting raised cosine
:param channel_frequency: channel frequencies in Hz
:param channel_baud_rate: channel baud rate in Hz
:param channel_roll_off: channel roll off
"""
psd = zeros(shape(f))
for carrier in carriers:
f_nch = carrier.frequency
g_ch = carrier.power.signal / carrier.baud_rate
ts = 1 / carrier.baud_rate
pass_band = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
stop_band = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
ff = abs(f - f_nch)
tf = ff - pass_band
if carrier.roll_off == 0:
psd = where(tf <= 0, g_ch, 0.) + psd
else:
psd = g_ch * (where(tf <= 0, 1., 0.) + 1 / 2 * (1 + cos(pi * ts / carrier.roll_off * tf)) *
where(tf > 0, 1., 0.) * where(abs(ff) <= stop_band, 1., 0.)) + psd
return psd
raised_cosine_mask = zeros(frequency.size)
base_frequency = frequency - channel_frequency
ts = 1 / channel_baud_rate
pass_band = (1 - channel_roll_off) * channel_baud_rate / 2
stop_band = (1 + channel_roll_off) * channel_baud_rate / 2
flat_condition = (abs(base_frequency) <= pass_band) == 1
cosine_condition = (pass_band < abs(base_frequency)) * (abs(base_frequency) < stop_band) == 1
raised_cosine_mask[flat_condition] = 1
raised_cosine_mask[cosine_condition] = \
0.5 * (1 + cos(pi * ts / channel_roll_off * (abs(base_frequency[cosine_condition]) - pass_band)))
return raised_cosine_mask
class StimulatedRamanScattering:
@@ -110,6 +109,7 @@ class RamanSolver:
z_step = sim_params.raman_params.solver_spatial_resolution
z = append(arange(0, fiber.params.length, z_step), fiber.params.length)
z_final = append(arange(0, fiber.params.length, z_resolution), fiber.params.length)
z_final = sort(unique(concatenate((fiber.z_lumped_losses, z_final))))
# Lumped losses array definition
z, lumped_losses = RamanSolver._create_lumped_losses(z, fiber.lumped_losses, fiber.z_lumped_losses)
@@ -131,20 +131,22 @@ class RamanSolver:
cnt_frequency = array([pump.frequency for pump in fiber.raman_pumps
if pump.propagation_direction == 'counterprop'])
# Co-propagating profile initialization
co_power_profile = empty([co_frequency.size, z.size])
co_power_profile = zeros([co_frequency.size, z.size])
if co_frequency.size:
co_cr = fiber.cr(co_frequency)
co_alpha = fiber.alpha(co_frequency)
co_power_profile = \
RamanSolver.first_order_derivative_solution(co_power, co_alpha, co_cr, z, lumped_losses)
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(co_power, co_alpha, co_cr, z,
lumped_losses)
# Counter-propagating profile initialization
cnt_power_profile = empty([co_frequency.size, z.size])
cnt_power_profile = zeros([cnt_frequency.size, z.size])
if cnt_frequency.size:
cnt_cr = fiber.cr(cnt_frequency)
cnt_alpha = fiber.alpha(cnt_frequency)
cnt_power_profile = \
flip(RamanSolver.first_order_derivative_solution(cnt_power, cnt_alpha, cnt_cr,
z[-1] - flip(z), flip(lumped_losses)))
cnt_power_profile = flip(
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(cnt_power, cnt_alpha, cnt_cr,
z[-1] - flip(z),
flip(lumped_losses)), axis=1)
# Co-propagating and Counter-propagating Profile Computation
if co_frequency.size and cnt_frequency.size:
co_power_profile, cnt_power_profile = \
@@ -163,8 +165,9 @@ class RamanSolver:
alpha = fiber.alpha(spectral_info.frequency)
cr = fiber.cr(spectral_info.frequency)
# Power profile
power_profile = \
RamanSolver.first_order_derivative_solution(spectral_info.signal, alpha, cr, z, lumped_losses)
power_profile = (
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(spectral_info.signal, alpha, cr, z,
lumped_losses))
# Loss profile
loss_profile = power_profile / outer(spectral_info.signal, ones(z.size))
frequency = spectral_info.frequency
@@ -190,18 +193,18 @@ class RamanSolver:
# calculate ase power
ase = zeros(spectral_info.number_of_channels)
cr = fiber.cr(srs.frequency)[:spectral_info.number_of_channels, spectral_info.number_of_channels:]
for i, pump in enumerate(fiber.raman_pumps):
pump_power = srs.power_profile[spectral_info.number_of_channels + i, :]
df = pump.frequency - frequency
eta = - 1 / (1 - exp(h * df / (k * fiber.temperature)))
cr = fiber._cr_function(df)
integral = trapz(pump_power / channels_loss, z, axis=1)
ase += 2 * h * baud_rate * frequency * (1 + eta) * cr * (df > 0) * integral # 2 factor for double pol
ase += 2 * h * baud_rate * frequency * (1 + eta) * cr[:, i] * (df > 0) * integral # 2 factor for double pol
return ase
@staticmethod
def first_order_derivative_solution(power_in, alpha, cr, z, lumped_losses):
"""Solves the Raman first order derivative equation
def calculate_unidirectional_stimulated_raman_scattering(power_in, alpha, cr, z, lumped_losses):
"""Solves the Raman equation
:param power_in: launch power array
:param alpha: loss coefficient array
@@ -210,18 +213,66 @@ class RamanSolver:
:param lumped_losses: concentrated losses array along the fiber span
:return: power profile matrix
"""
dz = z[1:] - z[:-1]
power = outer(power_in, ones(z.size))
for i in range(1, z.size):
power[:, i] = \
power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) * lumped_losses[i - 1]
if sim_params.raman_params.method == 'perturbative':
if sim_params.raman_params.order > 4:
raise ValueError(f'Order {sim_params.raman_params.order} not implemented in Raman Solver.')
z_lumped_losses = append(z[lumped_losses != 1], z[-1])
llumped_losses = append(1, lumped_losses[lumped_losses != 1])
power = outer(power_in, ones(z.size))
last_position = 0
z_indices = arange(0, z.size)
for z_lumped_loss, lumped_loss in zip(z_lumped_losses, llumped_losses):
if last_position < z[-1]:
interval = z_indices[(z >= last_position) * (z <= z_lumped_loss) == 1]
z_interval = z[interval] - last_position
dz = z_interval[1:] - z_interval[:-1]
last_position = z[interval][-1]
p0 = power_in * lumped_loss
power_interval = outer(p0, ones(z_interval.size))
alphaz = outer(alpha, z_interval)
expz = exp(- alphaz)
eff_length = 1 / outer(alpha, ones(z_interval.size)) * (1 - expz)
crpz = transpose(ones([z_interval.size, cr.shape[0], cr.shape[1]]) * cr * p0, (1, 2, 0))
exponent = - alphaz
if sim_params.raman_params.order >= 1:
gamma1 = sum(crpz * eff_length, 1)
exponent += gamma1
if sim_params.raman_params.order >= 2:
z_integrand = expz * gamma1
z_integral = cumsum((z_integrand[:, :-1] + z_integrand[:, 1:]) / 2 * dz, 1)
gamma2 = zeros(gamma1.shape)
gamma2[:, 1:] = sum(crpz[:, :, 1:] * z_integral, 1)
exponent += gamma2
if sim_params.raman_params.order >= 3:
z_integrand = expz * (gamma2 + 1/2 * gamma1**2)
z_integral = cumsum((z_integrand[:, :-1] + z_integrand[:, 1:]) / 2 * dz, 1)
gamma3 = zeros(gamma1.shape)
gamma3[:, 1:] = sum(crpz[:, :, 1:] * z_integral, 1)
exponent += gamma3
if sim_params.raman_params.order >= 4:
z_integrand = expz * (gamma3 + gamma1 * gamma2 + 1/factorial(3) * gamma1**3)
z_integral = cumsum((z_integrand[:, :-1] + z_integrand[:, 1:]) / 2 * dz, 1)
gamma4 = zeros(gamma1.shape)
gamma4[:, 1:] = sum(crpz[:, :, 1:] * z_integral, 1)
exponent += gamma4
power_interval *= exp(exponent)
power[:, interval[1:]] = power_interval[:, 1:]
power_in = power_interval[:, -1]
elif sim_params.raman_params.method == 'numerical':
dz = z[1:] - z[:-1]
power = outer(power_in, ones(z.size))
for i in range(1, z.size):
power[:, i] = (power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) *
lumped_losses[i - 1])
else:
raise ValueError(f'Method {sim_params.raman_params.method} not implemented in Raman Solver.')
return power
@staticmethod
def iterative_algorithm(co_initial_guess_power, cnt_initial_guess_power, co_frequency, cnt_frequency, z, fiber,
lumped_losses):
"""Solves the Raman first order derivative equation in case of both co- and counter-propagating
frequencies
"""Solves the Raman equation in case of both co- and counter-propagating frequencies
:param co_initial_guess_power: co-propagationg Raman first order derivative equation solution
:param cnt_initial_guess_power: counter-propagationg Raman first order derivative equation solution
@@ -271,13 +322,17 @@ class RamanSolver:
class NliSolver:
""" This class implements the NLI models.
Model and method can be specified in `sim_params.nli_params.method`.
List of implemented methods:
'gn_model_analytic': eq. 120 from arXiv:1209.0394
'ggn_spectrally_separated': eq. 21 from arXiv: 1710.02225 spectrally separated
"""This class implements the NLI models.
Model and method can be specified in `sim_params.nli_params.method`.
List of implemented methods:
'gn_model_analytic': eq. 120 from arXiv:1209.0394
'ggn_spectrally_separated': eq. 21 from arXiv: 1710.02225
'ggn_approx': eq. 24-25 jlt:9741324
"""
SPM_WEIGHT = (16.0 / 27.0)
XPM_WEIGHT = 2 * (16.0 / 27.0)
@staticmethod
def effective_length(alpha, length):
"""The effective length identify the region in which the NLI has a significant contribution to
@@ -287,58 +342,107 @@ class NliSolver:
@staticmethod
def compute_nli(spectral_info: SpectralInformation, srs: StimulatedRamanScattering, fiber):
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
"""Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
at the end of the fiber span.
"""
logger.debug('Start computing fiber NLI noise')
# Physical fiber parameters
alpha = fiber.alpha(spectral_info.frequency)
beta2 = fiber.params.beta2
beta3 = fiber.params.beta3
f_ref_beta = fiber.params.ref_frequency
gamma = fiber.params.gamma
length = fiber.params.length
if 'gn_model_analytic' == sim_params.nli_params.method:
nli = NliSolver._gn_analytic(spectral_info, alpha, beta2, gamma, length)
eta = NliSolver._gn_analytic(spectral_info, fiber)
cut_power = outer(spectral_info.signal, ones(spectral_info.number_of_channels))
pump_power = outer(ones(spectral_info.number_of_channels), spectral_info.signal)
nli_matrix = cut_power * pump_power ** 2 * eta
nli = sum(nli_matrix, 1)
elif 'ggn_spectrally_separated' in sim_params.nli_params.method:
nli = NliSolver._ggn_spectrally_separated(spectral_info, srs, alpha, beta2, beta3, f_ref_beta, gamma)
if sim_params.nli_params.computed_channels is not None:
cut_indices = array(sim_params.nli_params.computed_channels) - 1
elif sim_params.nli_params.computed_number_of_channels is not None:
nb_ch_computed = sim_params.nli_params.computed_number_of_channels
nb_ch = len(spectral_info.channel_number)
cut_indices = array([round(i * (nb_ch - 1) / (nb_ch_computed - 1)) for i in range(0, nb_ch_computed)])
else:
cut_indices = array(spectral_info.channel_number) - 1
eta = NliSolver._ggn_spectrally_separated(cut_indices, spectral_info, fiber, srs)
# Interpolation over the channels not indicated as compted channels in simulation parameters
cut_power = outer(spectral_info.signal[cut_indices], ones(spectral_info.number_of_channels))
cut_frequency = spectral_info.frequency[cut_indices]
pump_power = outer(ones(cut_indices.size), spectral_info.signal)
cut_baud_rate = outer(spectral_info.baud_rate[cut_indices], ones(spectral_info.number_of_channels))
g_nli = eta * cut_power * pump_power**2 / cut_baud_rate
g_nli = sum(g_nli, 1)
g_nli = interp(spectral_info.frequency, cut_frequency, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
elif 'ggn_approx' in sim_params.nli_params.method:
if sim_params.nli_params.computed_channels is not None:
cut_indices = array(sim_params.nli_params.computed_channels) - 1
elif sim_params.nli_params.computed_number_of_channels is not None:
nb_ch_computed = sim_params.nli_params.computed_number_of_channels
nb_ch = len(spectral_info.channel_number)
cut_indices = array([round(i * (nb_ch - 1) / (nb_ch_computed - 1)) for i in range(0, nb_ch_computed)])
else:
cut_indices = array(spectral_info.channel_number) - 1
eta = NliSolver._ggn_approx(cut_indices, spectral_info, fiber, srs)
# Interpolation over the channels not indicated as computed channels in simulation parameters
cut_power = outer(spectral_info.signal[cut_indices], ones(spectral_info.number_of_channels))
cut_frequency = spectral_info.frequency[cut_indices]
pump_power = outer(ones(cut_indices.size), spectral_info.signal)
cut_baud_rate = outer(spectral_info.baud_rate[cut_indices], ones(spectral_info.number_of_channels))
g_nli = eta * cut_power * pump_power ** 2 / cut_baud_rate
g_nli = sum(g_nli, 1)
g_nli = interp(spectral_info.frequency, cut_frequency, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
else:
raise ValueError(f'Method {sim_params.nli_params.method} not implemented.')
return nli
# Methods for computing GN-model
# Methods for computing GN-model eta matrix
@staticmethod
def _gn_analytic(spectral_info: SpectralInformation, alpha, beta2, gamma, length):
""" Computes the nonlinear interference power evaluated at the fiber input.
def _gn_analytic(spectral_info, fiber, spm_weight=SPM_WEIGHT, xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 120 from arXiv:1209.0394
"""
spm_weight = (16.0 / 27.0) * gamma ** 2
xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
delta_frequency = spectral_info.df
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency), ones(nch))
length = fiber.params.length
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
effective_length = NliSolver.effective_length(alpha, length)
asymptotic_length = 1 / alpha
df = spectral_info.df
baud_rate = spectral_info.baud_rate
cut_baud_rate = outer(baud_rate, ones(nch))
pump_baud_rate = outer(ones(nch), baud_rate)
psd = spectral_info.signal / baud_rate
ggg = outer(psd, psd**2)
psi = NliSolver._psi(df, baud_rate, beta2, effective_length, asymptotic_length)
g_nli = sum(weight * ggg * psi, 1)
nli = spectral_info.baud_rate * g_nli # Local white noise
return nli
psi = NliSolver._psi(delta_frequency, baud_rate, beta2, effective_length, asymptotic_length)
eta_cut_central_frequency = gamma ** 2 * weight * psi / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _psi(df, baud_rate, beta2, effective_length, asymptotic_length):
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
cut_baud_rate = outer(baud_rate, ones(baud_rate.size))
cut_beta = outer(beta2, ones(baud_rate.size))
pump_baud_rate = baud_rate
pump_beta = outer(ones(baud_rate.size), beta2)
beta2 = (cut_beta + pump_beta) / 2
right_extreme = df + pump_baud_rate / 2
left_extreme = df - pump_baud_rate / 2
psi = (arcsinh(pi ** 2 * asymptotic_length * abs(beta2) * cut_baud_rate * right_extreme) -
@@ -346,112 +450,133 @@ class NliSolver:
psi *= effective_length ** 2 / (2 * pi * abs(beta2) * asymptotic_length)
return psi
# Methods for computing the GGN-model
# Methods for computing the GGN-model eta matrix
@staticmethod
def _ggn_spectrally_separated(spectral_info: SpectralInformation, srs: StimulatedRamanScattering,
alpha, beta2, beta3, f_ref_beta, gamma):
""" Computes the nonlinear interference power evaluated at the fiber input.
def _ggn_spectrally_separated(cut_indices, spectral_info, fiber, srs, spm_weight=SPM_WEIGHT, xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 21 from arXiv: 1710.02225
"""
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
slot_width = spectral_info.slot_width
roll_off = spectral_info.roll_off
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency[cut_indices]), ones(nch))
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
weight = weight[cut_indices, :]
dispersion_tolerance = sim_params.nli_params.dispersion_tolerance
phase_shift_tolerance = sim_params.nli_params.phase_shift_tolerance
slot_width = max(spectral_info.slot_width)
max_slot_width = max(slot_width)
delta_z = sim_params.raman_params.result_spatial_resolution
spm_weight = (16.0 / 27.0) * gamma ** 2
xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2
cuts = [carrier for carrier in spectral_info.carriers if carrier.channel_number
in sim_params.nli_params.computed_channels] if sim_params.nli_params.computed_channels \
else spectral_info.carriers
g_nli = array([])
f_nli = array([])
for cut_carrier in cuts:
logger.debug(f'Start computing fiber NLI noise of cut: {cut_carrier}')
f_eval = cut_carrier.frequency
g_nli_computed = 0
g_cut = (cut_carrier.power.signal / cut_carrier.baud_rate)
for j, pump_carrier in enumerate(spectral_info.carriers):
dn = abs(pump_carrier.channel_number - cut_carrier.channel_number)
delta_f = abs(cut_carrier.frequency - pump_carrier.frequency)
k_tol = dispersion_tolerance * abs(alpha[j])
psi_cut_central_frequency = zeros([cut_indices.size, nch])
for i, cut_index in enumerate(cut_indices):
logger.debug(f'Start computing fiber NLI noise of cut: {cut_index + 1}')
cut_frequency = frequency[cut_index]
cut_baud_rate = baud_rate[cut_index]
cut_roll_off = roll_off[cut_index]
cut_number = cut_index + 1
cut_beta2 = beta2[cut_index]
cut_base_frequency = frequency - cut_frequency
cut_beta_coefficients = polyfit(cut_base_frequency, beta2, 2)
cut_beta3 = cut_beta_coefficients[1] / (2 * pi)
for pump_index in range(nch):
pump_frequency = frequency[pump_index]
pump_baud_rate = baud_rate[pump_index]
pump_roll_off = roll_off[pump_index]
pump_number = pump_index + 1
pump_alpha = alpha[pump_index]
dn = abs(pump_number - cut_number)
delta_f = abs(cut_frequency - pump_frequency)
k_tol = dispersion_tolerance * abs(alpha[pump_index])
phi_tol = phase_shift_tolerance / delta_z
f_cut_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * (1 + dn) * slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * slot_width)
if dn == 0: # SPM
ggg = g_cut ** 3
g_nli_computed += \
spm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, f_pump_resolution,
srs, alpha[j], beta2, beta3, f_ref_beta)
f_cut_resolution = min(k_tol, phi_tol) / abs(cut_beta2) / (4 * pi ** 2 * (1 + dn) * max_slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(cut_beta2) / (4 * pi ** 2 * max_slot_width)
if cut_index == pump_index: # SPM
psi_cut_central_frequency[i, pump_index] = \
NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off, f_cut_resolution,
f_pump_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
else: # XPM
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
ggg = g_cut * g_pump ** 2
frequency_offset_threshold = NliSolver._frequency_offset_threshold(beta2, pump_carrier.baud_rate)
frequency_offset_threshold = NliSolver._frequency_offset_threshold(cut_beta2, pump_baud_rate)
if abs(delta_f) <= frequency_offset_threshold:
g_nli_computed += \
xpm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, f_pump_resolution,
srs, alpha[j], beta2, beta3, f_ref_beta)
psi_cut_central_frequency[i, pump_index] = \
NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off, f_cut_resolution,
f_pump_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
else:
g_nli_computed += \
xpm_weight * ggg * NliSolver._fast_generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, srs, alpha[j], beta2,
beta3, f_ref_beta)
f_nli = append(f_nli, cut_carrier.frequency)
g_nli = append(g_nli, g_nli_computed)
g_nli = interp(spectral_info.frequency, f_nli, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
return nli
psi_cut_central_frequency[i, pump_index] = \
NliSolver._fast_generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off,
f_cut_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
cut_baud_rate = outer(baud_rate[cut_indices], ones(nch))
pump_baud_rate = outer(ones(cut_indices.size), baud_rate)
eta_cut_central_frequency = \
gamma ** 2 * weight * psi_cut_central_frequency / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _fast_generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, srs, alpha, beta2, beta3,
f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha/2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency)
f1_array = array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)])
f2_array = arange(cut_carrier.frequency,
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = zeros(len(f1_array))
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * pi ** 2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate
return generalized_psi
@staticmethod
def _generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, f_pump_resolution, srs, alpha, beta2,
beta3, f_ref_beta):
def _fast_generalized_psi(f_eval, cut_frequency, cut_baud_rate, cut_roll_off, pump_frequency, pump_baud_rate,
pump_roll_off, f_cut_resolution, srs, alpha, beta2, beta3, f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha / 2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency)
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_frequency)
f1_array = arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
f1_array = array([pump_frequency - (pump_baud_rate * (1 + pump_roll_off) / 2),
pump_frequency + (pump_baud_rate * (1 + pump_roll_off) / 2)])
f2_array = arange(cut_frequency, cut_frequency + (cut_baud_rate * (1 + cut_roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = zeros(f1_array.size)
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * pi ** 2 * (f1 - f_eval) * (f2_array - f_eval) * (
beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_baud_rate
return generalized_psi
@staticmethod
def _generalized_psi(f_eval, cut_frequency, cut_baud_rate, cut_roll_off, pump_frequency, pump_baud_rate,
pump_roll_off, f_cut_resolution, f_pump_resolution, srs, alpha, beta2, beta3, f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha / 2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_frequency)
f1_array = arange(pump_frequency - (pump_baud_rate * (1 + pump_roll_off) / 2),
pump_frequency + (pump_baud_rate * (1 + pump_roll_off) / 2),
f_pump_resolution)
f2_array = arange(cut_carrier.frequency - (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
f2_array = arange(cut_frequency - (cut_baud_rate * (1 + cut_roll_off) / 2),
cut_frequency + (cut_baud_rate * (1 + cut_roll_off) / 2),
f_cut_resolution)
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
rc1 = raised_cosine(f1_array, pump_frequency, pump_baud_rate, pump_roll_off)
integrand_f1 = zeros(len(f1_array))
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
f3_array = f1 + f2_array - f_eval
psd2 = raised_cosine_comb(f2_array, cut_carrier) * (cut_carrier.baud_rate / cut_carrier.power.signal)
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
ggg = psd1_sample * psd2 * psd3
delta_beta = 4 * pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = ggg * NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = trapz(integrand_f2, f2_array)
integrand_f1 = zeros(f1_array.size)
for i in range(f1_array.size):
f3_array = f1_array[i] + f2_array - f_eval
rc2 = raised_cosine(f2_array, cut_frequency, cut_baud_rate, cut_roll_off)
rc3 = raised_cosine(f3_array, pump_frequency, pump_baud_rate, pump_roll_off)
delta_beta = 4 * pi ** 2 * (f1_array[i] - f_eval) * (f2_array - f_eval) * (
beta2 + pi * beta3 * (f1_array[i] + f2_array - 2 * f_ref_beta))
integrand_f2 = rc1[i] * rc2 * rc3 * NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[i] = trapz(integrand_f2, f2_array)
generalized_psi = trapz(integrand_f1, f1_array)
return generalized_psi
@@ -475,6 +600,89 @@ class NliSolver:
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (beta2 * symbol_rate)
return freq_offset_th
@staticmethod
def _ggn_approx(cut_indices, spectral_info: SpectralInformation, fiber, srs, spm_weight=SPM_WEIGHT,
xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 24-25 of https://ieeexplore.ieee.org/document/9741324
"""
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
slot_width = spectral_info.slot_width
roll_off = spectral_info.roll_off
df = spectral_info.df + diag(full(nch, nan))
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency[cut_indices]), ones(nch))
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
weight = weight[cut_indices, :]
dispersion_tolerance = sim_params.nli_params.dispersion_tolerance
phase_shift_tolerance = sim_params.nli_params.phase_shift_tolerance
max_slot_width = max(slot_width)
max_beta2 = max(abs(beta2))
delta_z = sim_params.raman_params.result_spatial_resolution
# Approximation psi
loss_profile = srs.loss_profile[:nch]
z = srs.z
psi = NliSolver._approx_psi(df=df, frequency=frequency, beta2=beta2, baud_rate=baud_rate,
loss_profile=loss_profile, z=z)
# GGN for SPM
for cut_index in cut_indices:
dn = 0
cut_frequency = frequency[cut_index]
cut_baud_rate = baud_rate[cut_index]
cut_roll_off = roll_off[cut_index]
cut_beta2 = beta2[cut_index]
cut_alpha = alpha[cut_index]
k_tol = dispersion_tolerance * abs(cut_alpha)
phi_tol = phase_shift_tolerance / delta_z
f_cut_resolution = min(k_tol, phi_tol) / abs(max_beta2) / (4 * pi ** 2 * (1 + dn) * max_slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(max_beta2) / (4 * pi ** 2 * max_slot_width)
psi[cut_index, cut_index] = NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate,
cut_roll_off, cut_frequency, cut_baud_rate,
cut_roll_off, f_cut_resolution, f_pump_resolution,
srs, cut_alpha, cut_beta2, 0, cut_frequency)
psi = psi[cut_indices, :]
cut_baud_rate = outer(baud_rate[cut_indices], ones(nch))
pump_baud_rate = outer(ones(cut_indices.size), baud_rate)
eta_cut_central_frequency = \
gamma ** 2 * weight * psi / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _approx_psi(df, frequency, baud_rate, beta2, loss_profile, z):
"""Computes the approximated psi function similarly to the one used in the GN model.
The method uses eq. 25 of https://ieeexplore.ieee.org/document/9741324"""
pump_baud_rate = outer(ones(frequency.size), baud_rate)
cut_beta = outer(beta2, ones(frequency.size))
pump_beta = outer(ones(frequency.size), beta2)
delta_z = abs(z[:-1] - z[1:])
loss_lin = log(loss_profile)
pump_alpha = (loss_lin[:, 1:] - loss_lin[:, :-1]) / delta_z
leff = abs((loss_profile[:, 1:] - loss_profile[:, :-1]) / sqrt(abs(pump_alpha))) * pump_alpha / abs(pump_alpha)
leff = reshape(outer(leff, ones(z.size - 1)), newshape=[leff.shape[0], leff.shape[1], leff.shape[1]])
leff2 = leff * swapaxes(leff, 2, 1)
leff2 = sum(leff2, axis=(1, 2))
z_int = outer(ones(frequency.size), leff2)
delta_beta = (cut_beta + pump_beta) / 2
psi = z_int * pump_baud_rate / (4 * pi * abs(delta_beta * df))
return psi
def estimate_nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
if nf_min < -10:

View File

@@ -9,8 +9,10 @@ This module contains utility functions that are used with gnpy.
"""
from csv import writer
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and, mean, array
from scipy import constants
from copy import deepcopy
from typing import List, Union
from gnpy.core.exceptions import ConfigurationError
@@ -106,6 +108,69 @@ def db2lin(value):
return 10**(value / 10)
def watt2dbm(value):
"""Convert Watt units to dBm
>>> round(watt2dbm(0.001), 1)
0.0
>>> round(watt2dbm(0.02), 1)
13.0
"""
return lin2db(value * 1e3)
def dbm2watt(value):
"""Convert dBm units to Watt
>>> round(dbm2watt(0), 4)
0.001
>>> round(dbm2watt(-3), 4)
0.0005
>>> round(dbm2watt(13), 4)
0.02
"""
return db2lin(value) * 1e-3
def psd2powerdbm(psd_mwperghz, baudrate_baud):
"""computes power in dBm based on baudrate in bauds and psd in mW/GHz
>>> round(psd2powerdbm(0.031176, 64e9),3)
3.0
>>> round(psd2powerdbm(0.062352, 32e9),3)
3.0
>>> round(psd2powerdbm(0.015625, 64e9),3)
0.0
"""
return lin2db(baudrate_baud * psd_mwperghz * 1e-9)
def power_dbm_to_psd_mw_ghz(power_dbm, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in dBm
>>> power_dbm_to_psd_mw_ghz(0, 64e9)
0.015625
>>> round(power_dbm_to_psd_mw_ghz(3, 64e9), 6)
0.031176
>>> round(power_dbm_to_psd_mw_ghz(3, 32e9), 6)
0.062352
"""
return db2lin(power_dbm) / (baudrate_baud * 1e-9)
def psd_mw_per_ghz(power_watt, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in W
>>> psd_mw_per_ghz(2e-3, 32e9)
0.0625
>>> psd_mw_per_ghz(1e-3, 64e9)
0.015625
>>> psd_mw_per_ghz(0.5e-3, 32e9)
0.015625
"""
return power_watt * 1e3 / (baudrate_baud * 1e-9)
def round2float(number, step):
"""Round a floating point number so that its "resolution" is not bigger than 'step'
@@ -149,25 +214,39 @@ wavelength2freq = constants.lambda2nu
freq2wavelength = constants.nu2lambda
def freq2wavelength(value):
""" Converts frequency units to wavelength units.
>>> round(freq2wavelength(191.35e12) * 1e9, 3)
1566.723
>>> round(freq2wavelength(196.1e12) * 1e9, 3)
1528.773
"""
return constants.c / value
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
snr_added = snr_added - lin2db(bw / bw_added)
snr = -lin2db(db2lin(-snr) + db2lin(-snr_added))
return snr
def per_label_average(values, labels):
"""computes the average per defined spectrum band, using labels
>>> labels = ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'D', 'D', 'D', 'D']
>>> values = [28.51, 28.23, 28.15, 28.17, 28.36, 28.53, 28.64, 28.68, 28.7, 28.71, 28.72, 28.73, 28.74, 28.91, 27.96, 27.85, 27.87, 28.02]
>>> per_label_average(values, labels)
{'A': 28.28, 'B': 28.68, 'C': 28.91, 'D': 27.92}
"""
label_set = sorted(set(labels))
summary = {}
for label in label_set:
vals = [val for val, lab in zip(values, labels) if lab == label]
summary[label] = round(mean(vals), 2)
return summary
def pretty_summary_print(summary):
"""Build a prettty string that shows the summary dict values per label with 2 digits"""
if len(summary) == 1:
return f'{list(summary.values())[0]:.2f}'
text = ', '.join([f'{label}: {value:.2f}' for label, value in summary.items()])
return text
def deltawl2deltaf(delta_wl, wavelength):
""" deltawl2deltaf(delta_wl, wavelength):
"""deltawl2deltaf(delta_wl, wavelength):
delta_wl is BW in wavelength units
wavelength is the center wl
units for delta_wl and wavelength must be same
@@ -185,9 +264,9 @@ def deltawl2deltaf(delta_wl, wavelength):
def deltaf2deltawl(delta_f, frequency):
""" deltawl2deltaf(delta_f, frequency):
converts delta frequency to delta wavelength
units for delta_wl and wavelength must be same
"""convert delta frequency to delta wavelength
Units for delta_wl and wavelength must be same.
:param delta_f: delta frequency in same units as frequency
:param frequency: frequency BW is relevant for
@@ -202,8 +281,7 @@ def deltaf2deltawl(delta_f, frequency):
def rrc(ffs, baud_rate, alpha):
""" rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
function.
"""compute the root-raised cosine filter function
:param ffs: A numpy array of frequencies
:param baud_rate: The Baud Rate of the System
@@ -229,7 +307,7 @@ def rrc(ffs, baud_rate, alpha):
def merge_amplifier_restrictions(dict1, dict2):
"""Updates contents of dicts recursively
"""Update contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
@@ -324,3 +402,159 @@ def convert_length(value, units):
return value * 1e3
else:
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
def replace_none(dictionary):
""" Replaces None with inf values in a frequency slots dict
>>> replace_none({'N': 3, 'M': None})
{'N': 3, 'M': inf}
"""
for key, val in dictionary.items():
if val is None:
dictionary[key] = float('inf')
if val == float('inf'):
dictionary[key] = None
return dictionary
def order_slots(slots):
""" Order frequency slots from larger slots to smaller ones up to None
>>> l = [{'N': 3, 'M': None}, {'N': 2, 'M': 1}, {'N': None, 'M': None},{'N': 7, 'M': 2},{'N': None, 'M': 1} , {'N': None, 'M': 0}]
>>> order_slots(l)
([7, 2, None, None, 3, None], [2, 1, 1, 0, None, None], [3, 1, 4, 5, 0, 2])
"""
slots_list = deepcopy(slots)
slots_list = [replace_none(e) for e in slots_list]
for i, e in enumerate(slots_list):
e['i'] = i
slots_list = sorted(slots_list, key=lambda x: (-x['M'], x['N']) if x['M'] != float('inf') else (x['M'], x['N']))
slots_list = [replace_none(e) for e in slots_list]
return [e['N'] for e in slots_list], [e['M'] for e in slots_list], [e['i'] for e in slots_list]
def restore_order(elements, order):
""" Use order to re-order the element of the list, and ignore None values
>>> restore_order([7, 2, None, None, 3, None], [3, 1, 4, 5, 0, 2])
[3, 2, 7]
"""
return [elements[i[0]] for i in sorted(enumerate(order), key=lambda x:x[1]) if elements[i[0]] is not None]
def unique_ordered(elements):
"""
"""
unique_elements = []
for element in elements:
if element not in unique_elements:
unique_elements.append(element)
return unique_elements
def calculate_absolute_min_or_zero(x: array) -> array:
"""Calculates the element-wise absolute minimum between the x and zero.
Parameters:
x (array): The first input array.
Returns:
array: The element-wise absolute minimum between x and zero.
Example:
>>> x = array([-1, 2, -3])
>>> calculate_absolute_min_or_zero(x)
array([1., 0., 3.])
"""
return (abs(x) - x) / 2
def nice_column_str(data: List[List[str]], max_length: int = 30, padding: int = 1) -> str:
"""data is a list of rows, creates strings with nice alignment per colum and padding with spaces
letf justified
>>> table_data = [['aaa', 'b', 'c'], ['aaaaaaaa', 'bbb', 'c'], ['a', 'bbbbbbbbbb', 'c']]
>>> print(nice_column_str(table_data))
aaa b c
aaaaaaaa bbb c
a bbbbbbbbbb c
"""
# transpose data to determine size of columns
transposed_data = list(map(list, zip(*data)))
column_width = [max(len(word) for word in column) + padding for column in transposed_data]
nice_str = []
for row in data:
column = ''.join(word[0:max_length].ljust(min(width, max_length)) for width, word in zip(column_width, row))
nice_str.append(f'{column}')
return '\n'.join(nice_str)
def find_common_range(amp_bands: List[List[dict]], default_band_f_min: float, default_band_f_max: float) \
-> List[dict]:
"""Find the common frequency range of bands
If there are no amplifiers in the path, then use default band
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
[{'f_min': 186e12, 'f_max': 193e12}]]
>>> find_common_range(amp_bands, 190e12, 195e12)
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}, {'f_min': 192000000000000.0, 'f_max': 193000000000000.0}]
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
[{'f_min': 186e12, 'f_max': 192e12}]]
>>> find_common_range(amp_bands, 190e12, 195e12)
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}]
"""
_amp_bands = [sorted(amp, key=lambda x: x['f_min']) for amp in amp_bands]
_temp = []
# remove None bands
for amp in _amp_bands:
is_band = True
for band in amp:
if not (is_band and band['f_min'] and band['f_max']):
is_band = False
if is_band:
_temp.append(amp)
# remove duplicate
unique_amp_bands = []
for amp in _temp:
if amp not in unique_amp_bands:
unique_amp_bands.append(amp)
if unique_amp_bands:
common_range = unique_amp_bands[0]
else:
if default_band_f_min is None or default_band_f_max is None:
return []
common_range = [{'f_min': default_band_f_min, 'f_max': default_band_f_max}]
for bands in unique_amp_bands:
common_range = [{'f_min': max(first['f_min'], second['f_min']), 'f_max': min(first['f_max'], second['f_max'])}
for first in common_range for second in bands
if max(first['f_min'], second['f_min']) < min(first['f_max'], second['f_max'])]
return sorted(common_range, key=lambda x: x['f_min'])
def transform_data(data: str) -> Union[List[int], None]:
"""Transforms a float into an list of one integer or a string separated by "|" into a list of integers.
Args:
data (float or str): The data to transform.
Returns:
list of int: The transformed data as a list of integers.
Examples:
>>> transform_data(5.0)
[5]
>>> transform_data('1 | 2 | 3')
[1, 2, 3]
"""
if isinstance(data, float):
return [int(data)]
if isinstance(data, str):
return [int(x) for x in data.split(' | ')]
return None

View File

@@ -1,160 +1,160 @@
{
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.4e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
-0.15656302345061,
-0.22244242043552,
-0.25188965661642,
-0.23575900335007,
-0.20897508375209,
-0.19440221943049,
-0.18324644053602,
-0.18053287269681,
-0.17113588777219,
-0.15460322445561,
-0.13550774706866,
-0.10606051088777,
-0.0765630234506,
-0.04962835008375,
-0.01319618927973,
0.01027114740367,
0.03378873534338,
0.04961788107202,
0.04494451423784,
0.0399193886097,
0.01584903685091,
-0.00420121440538,
-0.01847257118928,
-0.02475397822447,
-0.01053287269681,
0.01509526800668,
0.05921587102177,
0.1191656197655,
0.18147717755444,
0.23579878559464,
0.26941687604691,
0.27836159966498,
0.26956762981574,
0.23826109715241,
0.18936662479061,
0.1204721524288,
0.0453465242881,
-0.00877407872698,
-0.02199015912898,
0.00107516750419,
0.02795958961474,
0.02740682579566,
-0.01028161641541,
-0.05982935510889,
-0.06701528475711,
0.00223094639866,
0.14157768006701,
0.15017064489112
],
"dgt": [
1.0,
1.03941448941778,
1.07773189112355,
1.11575888725852,
1.15209185089701,
1.18632744096844,
1.21911100318577,
1.24931318255134,
1.27657903892303,
1.30069883494415,
1.32210817897091,
1.3405812000038,
1.35690844654118,
1.3710092503689,
1.38430337205545,
1.3966294751726,
1.40864903907609,
1.42089447397912,
1.43476940680732,
1.44977369463316,
1.46637521309853,
1.48420288841848,
1.50335352244996,
1.5242627235492,
1.54578500307573,
1.56750088631614,
1.58973304612691,
1.61073904908309,
1.63068023161292,
1.64799163036252,
1.66286684904577,
1.6761448370895,
1.68845480656382,
1.70379790088896,
1.72461030013125,
1.75428006928365,
1.79748596476494,
1.85543800978691,
1.92915262384742,
2.01414465424155,
2.10336369905543,
2.19013043016015,
2.26678136721453,
2.33147727493671,
2.38192717604575,
2.41879254989742,
2.44342862248888,
2.4553191172498
]
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.4e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
-0.15656302345061,
-0.22244242043552,
-0.25188965661642,
-0.23575900335007,
-0.20897508375209,
-0.19440221943049,
-0.18324644053602,
-0.18053287269681,
-0.17113588777219,
-0.15460322445561,
-0.13550774706866,
-0.10606051088777,
-0.0765630234506,
-0.04962835008375,
-0.01319618927973,
0.01027114740367,
0.03378873534338,
0.04961788107202,
0.04494451423784,
0.0399193886097,
0.01584903685091,
-0.00420121440538,
-0.01847257118928,
-0.02475397822447,
-0.01053287269681,
0.01509526800668,
0.05921587102177,
0.1191656197655,
0.18147717755444,
0.23579878559464,
0.26941687604691,
0.27836159966498,
0.26956762981574,
0.23826109715241,
0.18936662479061,
0.1204721524288,
0.0453465242881,
-0.00877407872698,
-0.02199015912898,
0.00107516750419,
0.02795958961474,
0.02740682579566,
-0.01028161641541,
-0.05982935510889,
-0.06701528475711,
0.00223094639866,
0.14157768006701,
0.15017064489112
],
"dgt": [
1.0,
1.03941448941778,
1.07773189112355,
1.11575888725852,
1.15209185089701,
1.18632744096844,
1.21911100318577,
1.24931318255134,
1.27657903892303,
1.30069883494415,
1.32210817897091,
1.3405812000038,
1.35690844654118,
1.3710092503689,
1.38430337205545,
1.3966294751726,
1.40864903907609,
1.42089447397912,
1.43476940680732,
1.44977369463316,
1.46637521309853,
1.48420288841848,
1.50335352244996,
1.5242627235492,
1.54578500307573,
1.56750088631614,
1.58973304612691,
1.61073904908309,
1.63068023161292,
1.64799163036252,
1.66286684904577,
1.6761448370895,
1.68845480656382,
1.70379790088896,
1.72461030013125,
1.75428006928365,
1.79748596476494,
1.85543800978691,
1.92915262384742,
2.01414465424155,
2.10336369905543,
2.19013043016015,
2.26678136721453,
2.33147727493671,
2.38192717604575,
2.41879254989742,
2.44342862248888,
2.4553191172498
]
}

View File

@@ -1,106 +1,108 @@
{
"nf_ripple": [
0.0
],
"gain_ripple": [
0.0
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
]
"nf_ripple": [
0.0
],
"gain_ripple": [
0.0
],
"f_min": 191.275e12,
"f_max": 196.125e12,
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
]
}

View File

@@ -1,80 +1,80 @@
{
"network_name": "EDFA Example Network - P2P",
"elements": [{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 17,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 2,
"longitude": 0
}
}
"network_name": "EDFA Example Network - P2P",
"elements": [
{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
],
"connections": [{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
]
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 17,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 2,
"longitude": 0
}
}
}
],
"connections": [
{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
]
}

View File

@@ -1,323 +1,443 @@
{ "Edfa":[{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}, {
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,27.99],
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
{
"Edfa": [
{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"RamanFiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [-2,3,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
27.99
],
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}],
"Transceiver":[
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
-2,
3,
0.5
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
},
{
"type_variety": "roadm_type_1",
"target_pch_out_db": -18,
"add_drop_osnr": 35,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": []
},
{
"type_variety": "detailed_impairments",
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": [
{
"roadm-path-impairments-id": 0,
"roadm-express-path": [
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
},
{
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 16.5
}
]
},
{
"roadm-path-impairments-id": 1,
"roadm-add-path": [
{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-pmax": 2.5,
"roadm-osnr": 41,
"roadm-noise-figure": 23
}
]
},
{
"roadm-path-impairments-id": 2,
"roadm-drop-path": [
{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-minloss": 7.5,
"roadm-typloss": 10,
"roadm-pmin": -13.5,
"roadm-pmax": -9.5,
"roadm-ptyp": -12,
"roadm-osnr": 41,
"roadm-noise-figure": 15
}
]
}
]
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max": 195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [
0,
0,
1
],
"tx_power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,479 @@
{
"Edfa": [
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_C",
"f_min": 191.225e12,
"f_max": 196.125e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_L",
"f_min": 186.5e12,
"f_max": 190.1e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_reduced_band",
"f_min": 192.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_bis",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L_ter",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 16,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L_reduced_band",
"f_min": 187.3e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
},
{
"type_variety": "std_booster_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
},
{
"type_variety": "std_booster_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_booster",
"std_booster_L"
],
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_medium_gain_C",
"std_medium_gain_L"
],
"allowed_for_design": false
},
{
"type_variety": "std_low_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain",
"std_low_gain_L"
],
"allowed_for_design": false
},
{
"type_variety": "std_low_gain_multiband_ter",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain",
"std_low_gain_L_ter"
],
"allowed_for_design": false
},
{
"type_variety": "std_low_gain_multiband_bis",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_bis",
"std_low_gain_L"
],
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_multiband_reduced",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_reduced",
"std_low_gain_L"
],
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_multiband_reduced",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_bis",
"std_low_gain_L_reduced_band"
],
"allowed_for_design": true
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
-2,
3,
0.5
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max": 195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
},
{
"type_variety": "lband",
"f_min": 186.3e12,
"baud_rate": 32e9,
"f_max": 190.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -1,349 +1,371 @@
{
"Edfa": [
"Edfa": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
0,
0,
0
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 30,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": [
"openroadm_mw_mw_preamp"
],
"booster_variety_list": [
"openroadm_mw_mw_booster"
]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 4.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4, -6.221e-2, -5.889e-1, 37.62],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [0, 0, 0],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 30,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": ["openroadm_mw_mw_preamp"],
"booster_variety_list": ["openroadm_mw_mw_booster"]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 4.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
"mode": [
{
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 35,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 40e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 35,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 40e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
]
}
]
}

View File

@@ -1,409 +1,441 @@
{
"Edfa": [
"Edfa": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
27.99
],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
0,
0,
0
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 33,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": [
"openroadm_mw_mw_preamp_worstcase_ver5"
],
"booster_variety_list": [
"openroadm_mw_mw_booster"
]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 5.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4, -6.221e-2, -5.889e-1, 37.62],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 27.99],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [0, 0, 0],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 33,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": ["openroadm_mw_mw_preamp_worstcase_ver5"],
"booster_variety_list": ["openroadm_mw_mw_booster"]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 5.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
"mode": [
{
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 48e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
"baud_rate": 31.57e9,
"OSNR": 20.5,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 48e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
"baud_rate": 31.57e9,
"OSNR": 20.5,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
]
}
]
}

View File

@@ -0,0 +1,12 @@
{
"spectrum": [
{
"f_min": 191.35e12,
"f_max": 195.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"roll_off": 0.15,
"tx_osnr": 40
}
]
}

View File

@@ -0,0 +1,23 @@
{
"spectrum": [
{
"f_min": 191.4e12,
"f_max": 193.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"delta_pdb": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "mode_1"
},
{
"f_min": 193.1625e12,
"f_max": 195e12,
"baud_rate": 64e9,
"slot_width": 75e9,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "mode_2"
}
]
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,24 @@
{
"spectrum": [
{
"f_min": 191.25e12,
"baud_rate": 32e9,
"f_max": 195.1e12,
"slot_width": 50e9,
"delta_pdb": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "cband"
},
{
"f_min": 186.3e12,
"baud_rate": 32e9,
"f_max": 190.1e12,
"slot_width": 50e9,
"delta_pdb": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "lband"
}
]
}

View File

@@ -8,6 +8,12 @@
"method": "ggn_spectrally_separated",
"dispersion_tolerance": 1,
"phase_shift_tolerance": 0.1,
"computed_channels": [1, 18, 37, 56, 75]
"computed_channels": [
1,
18,
37,
56,
75
]
}
}

View File

@@ -1,304 +1,304 @@
{
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
0.4372876328262819,
0.4372876328262819,
0.41270842850729195,
0.38814205928193013,
0.36358851509924695,
0.3390191214858807,
0.30474360397422756,
0.27048596623174515,
0.23624619427167134,
0.202035284929368,
0.1694483010211072,
0.13687829834471027,
0.1043252636301016,
0.07184040799914815,
0.061288823415841555,
0.050742731588695494,
0.04020212822983975,
0.029667009055877668,
0.01913736978785662,
0.00861320615127981,
-0.010157321677553965,
-0.028982516728038848,
-0.04779792991567815,
-0.06660356886269536,
-0.06256260169582961,
-0.05832916277634124,
-0.05409792133358102,
-0.04990610405914272,
-0.05078533294804249,
-0.05166410580536087,
-0.05254242298580185,
-0.05342028484370278,
-0.051742390657545205,
-0.050039429413028365,
-0.048337350303318156,
-0.04663615264317309,
-0.04493583574805963,
-0.043236398934156144,
-0.035622012697103154,
-0.027999803010447587,
-0.02038153550619876,
-0.012779471908040341,
-0.006436207679519103,
-9.622162373026585e-05,
0.006240488799898697,
0.012573926129294415,
0.021418708618354456,
0.030289222542492025,
0.03915515813685565,
0.047899419704645264,
0.04256372893215024,
0.03723078993416436,
0.03190060058247842,
0.02657315875107553,
0.021248462316134083,
0.01605877647020772,
0.02326948274513522,
0.03047647598902483,
0.037679759069084225,
0.044883315610536455,
0.052470799141237305,
0.06005437964543287,
0.0676340601339394,
0.07521193198077789,
0.08415906712621996,
0.09310160456603413,
0.1020395478432815,
0.11079585523492333,
0.1018180306253394,
0.09284481475528361,
0.0838762040768461,
0.07482015390297145,
0.05670549786742816,
0.03860013139908377,
0.020504047353947653,
0.0024172385953583004,
-0.015660302006048,
-0.03372858157230583,
-0.07037375788020579,
-0.10709599992470213,
-0.14379944379052215,
-0.18048410390821285,
-0.20911178784023846,
-0.23772399031437283,
-0.26632156113294336,
-0.2949045115165272,
-0.30206775396360075,
-0.30915729645781326,
-0.31624321721895354,
-0.3233255190215882,
-0.32037911876162584,
-0.3172854168606314,
-0.31419329378173544,
-0.31110274831665313,
-0.3110761646066259,
-0.3110761646066259
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
],
"gain_ripple": [
0.07704745697916238,
0.06479749697916048,
0.05257029697916238,
0.040326236979161934,
0.028098946979159933,
0.01393231697916164,
-0.0021726530208390216,
-0.01819858302084043,
-0.03218106302083967,
-0.042428283020839785,
-0.05095282302083959,
-0.05947139302083926,
-0.06968090302083851,
-0.07844600302084004,
-0.08407607302083875,
-0.0865687230208394,
-0.08906007302083907,
-0.0913487130208388,
-0.09343261302083761,
-0.09717347302083823,
-0.1027863830208382,
-0.11089282302084058,
-0.11963431302083904,
-0.1279646530208396,
-0.13525493302083902,
-0.1409032730208395,
-0.14591937302083835,
-0.14823350302084037,
-0.1484450830208388,
-0.1455411330208385,
-0.14160178302083892,
-0.1353792530208402,
-0.12789859302083784,
-0.11916081302083725,
-0.11041488302083735,
-0.10103437302083762,
-0.09101254302083817,
-0.07868024302083754,
-0.06468462302083822,
-0.051112303020840244,
-0.039618433020837784,
-0.028748483020837767,
-0.016475303020840215,
-0.006936193020838033,
-0.0015763130208377163,
0.0007104669791608842,
0.0040435869791615175,
0.006965146979162284,
0.00842583697916055,
0.00874012697916271,
0.00936596697916059,
0.01030063697916006,
0.011234826979162449,
0.013321846979160057,
0.01659282697915998,
0.023488786979161347,
0.03285456697916089,
0.04072968697916224,
0.04467697697916151,
0.04551704697916037,
0.04717897697916129,
0.04946107697915991,
0.05154489697916276,
0.05447361697916264,
0.05848224697916038,
0.06916723697916183,
0.08548825697916129,
0.10802383697916085,
0.13114358697916018,
0.15216302697916007,
0.17037189697916233,
0.1767381569791624,
0.1739275269791598,
0.15945681697916214,
0.14239527697916188,
0.12276252697916235,
0.10313984697916112,
0.08731066697916035,
0.07533675697916209,
0.07114372697916238,
0.07094413697916124,
0.07091459697916136,
0.0670723869791594,
0.054956336979159914,
0.038328296979159404,
0.017572956979162058,
-0.0028138630208403015,
-0.016792253020838643,
-0.0246928330208398,
-0.018326963020840026,
-0.0036199830208403228,
0.02602813697916062,
0.06245819697916133,
0.09542181697916163,
0.11822862697916037,
0.1359703369791596
]
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"f_min": 191.275e12,
"f_max": 196.125e12,
"nf_ripple": [
0.4372876328262819,
0.4372876328262819,
0.41270842850729195,
0.38814205928193013,
0.36358851509924695,
0.3390191214858807,
0.30474360397422756,
0.27048596623174515,
0.23624619427167134,
0.202035284929368,
0.1694483010211072,
0.13687829834471027,
0.1043252636301016,
0.07184040799914815,
0.061288823415841555,
0.050742731588695494,
0.04020212822983975,
0.029667009055877668,
0.01913736978785662,
0.00861320615127981,
-0.010157321677553965,
-0.028982516728038848,
-0.04779792991567815,
-0.06660356886269536,
-0.06256260169582961,
-0.05832916277634124,
-0.05409792133358102,
-0.04990610405914272,
-0.05078533294804249,
-0.05166410580536087,
-0.05254242298580185,
-0.05342028484370278,
-0.051742390657545205,
-0.050039429413028365,
-0.048337350303318156,
-0.04663615264317309,
-0.04493583574805963,
-0.043236398934156144,
-0.035622012697103154,
-0.027999803010447587,
-0.02038153550619876,
-0.012779471908040341,
-0.006436207679519103,
-9.622162373026585e-05,
0.006240488799898697,
0.012573926129294415,
0.021418708618354456,
0.030289222542492025,
0.03915515813685565,
0.047899419704645264,
0.04256372893215024,
0.03723078993416436,
0.03190060058247842,
0.02657315875107553,
0.021248462316134083,
0.01605877647020772,
0.02326948274513522,
0.03047647598902483,
0.037679759069084225,
0.044883315610536455,
0.052470799141237305,
0.06005437964543287,
0.0676340601339394,
0.07521193198077789,
0.08415906712621996,
0.09310160456603413,
0.1020395478432815,
0.11079585523492333,
0.1018180306253394,
0.09284481475528361,
0.0838762040768461,
0.07482015390297145,
0.05670549786742816,
0.03860013139908377,
0.020504047353947653,
0.0024172385953583004,
-0.015660302006048,
-0.03372858157230583,
-0.07037375788020579,
-0.10709599992470213,
-0.14379944379052215,
-0.18048410390821285,
-0.20911178784023846,
-0.23772399031437283,
-0.26632156113294336,
-0.2949045115165272,
-0.30206775396360075,
-0.30915729645781326,
-0.31624321721895354,
-0.3233255190215882,
-0.32037911876162584,
-0.3172854168606314,
-0.31419329378173544,
-0.31110274831665313,
-0.3110761646066259,
-0.3110761646066259
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
],
"gain_ripple": [
0.07704745697916238,
0.06479749697916048,
0.05257029697916238,
0.040326236979161934,
0.028098946979159933,
0.01393231697916164,
-0.0021726530208390216,
-0.01819858302084043,
-0.03218106302083967,
-0.042428283020839785,
-0.05095282302083959,
-0.05947139302083926,
-0.06968090302083851,
-0.07844600302084004,
-0.08407607302083875,
-0.0865687230208394,
-0.08906007302083907,
-0.0913487130208388,
-0.09343261302083761,
-0.09717347302083823,
-0.1027863830208382,
-0.11089282302084058,
-0.11963431302083904,
-0.1279646530208396,
-0.13525493302083902,
-0.1409032730208395,
-0.14591937302083835,
-0.14823350302084037,
-0.1484450830208388,
-0.1455411330208385,
-0.14160178302083892,
-0.1353792530208402,
-0.12789859302083784,
-0.11916081302083725,
-0.11041488302083735,
-0.10103437302083762,
-0.09101254302083817,
-0.07868024302083754,
-0.06468462302083822,
-0.051112303020840244,
-0.039618433020837784,
-0.028748483020837767,
-0.016475303020840215,
-0.006936193020838033,
-0.0015763130208377163,
0.0007104669791608842,
0.0040435869791615175,
0.006965146979162284,
0.00842583697916055,
0.00874012697916271,
0.00936596697916059,
0.01030063697916006,
0.011234826979162449,
0.013321846979160057,
0.01659282697915998,
0.023488786979161347,
0.03285456697916089,
0.04072968697916224,
0.04467697697916151,
0.04551704697916037,
0.04717897697916129,
0.04946107697915991,
0.05154489697916276,
0.05447361697916264,
0.05848224697916038,
0.06916723697916183,
0.08548825697916129,
0.10802383697916085,
0.13114358697916018,
0.15216302697916007,
0.17037189697916233,
0.1767381569791624,
0.1739275269791598,
0.15945681697916214,
0.14239527697916188,
0.12276252697916235,
0.10313984697916112,
0.08731066697916035,
0.07533675697916209,
0.07114372697916238,
0.07094413697916124,
0.07091459697916136,
0.0670723869791594,
0.054956336979159914,
0.038328296979159404,
0.017572956979162058,
-0.0028138630208403015,
-0.016792253020838643,
-0.0246928330208398,
-0.018326963020840026,
-0.0036199830208403228,
0.02602813697916062,
0.06245819697916133,
0.09542181697916163,
0.11822862697916037,
0.1359703369791596
]
}

View File

@@ -1,5 +1,5 @@
'''
"""
Processing of data via :py:mod:`.json_io`.
Utilities for Excel conversion in :py:mod:`.convert` and :py:mod:`.service_sheet`.
Example code in :py:mod:`.cli_examples` and :py:mod:`.plots`.
'''
"""

View File

@@ -1,34 +1,31 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.cli_examples
=======================
Common code for CLI examples
'''
"""
import argparse
import logging
import sys
from math import ceil
from numpy import linspace, mean
from pathlib import Path
import gnpy.core.ansi_escapes as ansi_escapes
from math import ceil
from numpy import mean
from gnpy.core import ansi_escapes
from gnpy.core.elements import Transceiver, Fiber, RamanFiber
from gnpy.core.equipment import trx_mode_params
import gnpy.core.exceptions as exceptions
from gnpy.core.network import build_network
from gnpy.core import exceptions
from gnpy.core.parameters import SimParams
from gnpy.core.utils import db2lin, lin2db, automatic_nch
from gnpy.topology.request import (ResultElement, jsontocsv, compute_path_dsjctn, requests_aggregation,
BLOCKING_NOPATH, correct_json_route_list,
deduplicate_disjunctions, compute_path_with_disjunction,
PathRequest, compute_constrained_path, propagate)
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum
from gnpy.tools.json_io import load_equipment, load_network, load_json, load_requests, save_network, \
requests_from_json, disjunctions_from_json, save_json
from gnpy.core.utils import lin2db, pretty_summary_print, per_label_average, watt2dbm
from gnpy.topology.request import (ResultElement, jsontocsv, BLOCKING_NOPATH)
from gnpy.tools.json_io import (load_equipment, load_network, load_json, load_requests, save_network,
requests_from_json, save_json, load_initial_spectrum)
from gnpy.tools.plots import plot_baseline, plot_results
from gnpy.tools.worker_utils import designed_network, transmission_simulation, planning
_logger = logging.getLogger(__name__)
_examples_dir = Path(__file__).parent.parent / 'example-data'
@@ -47,7 +44,7 @@ def show_example_data_dir():
def load_common_data(equipment_filename, topology_filename, simulation_filename, save_raw_network_filename):
'''Load common configuration from JSON files'''
"""Load common configuration from JSON files"""
try:
equipment = load_equipment(equipment_filename)
@@ -84,7 +81,7 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
def _setup_logging(args):
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.CRITICAL}.get(args.verbose, logging.DEBUG))
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.WARNING}.get(args.verbose, logging.DEBUG))
def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
@@ -108,16 +105,20 @@ def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
def transmission_main_example(args=None):
"""Main script running a single simulation. It returns the detailed power across crossed elements and
average performance accross all channels.
"""
parser = argparse.ArgumentParser(
description='Send a full spectrum load through the network from point A to point B',
epilog=_help_footer,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
)
_add_common_options(parser, network_default=_examples_dir / 'edfa_example_network.json')
parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR and GSNR summary')
parser.add_argument('-pl', '--plot', action='store_true')
parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes')
parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm')
parser.add_argument('--spectrum', type=Path, help='user defined mixed rate spectrum JSON file')
parser.add_argument('source', nargs='?', help='source node')
parser.add_argument('destination', nargs='?', help='destination node')
@@ -142,19 +143,17 @@ def transmission_main_example(args=None):
sys.exit()
# First try to find exact match if source/destination provided
source = None
if args.source:
source = transceivers.pop(args.source, None)
valid_source = True if source else False
else:
source = None
_logger.info('No source node specified: picking random transceiver')
valid_source = bool(source)
destination = None
nodes_list = []
loose_list = []
if args.destination:
destination = transceivers.pop(args.destination, None)
valid_destination = True if destination else False
else:
destination = None
_logger.info('No destination node specified: picking random transceiver')
valid_destination = bool(destination)
# If no exact match try to find partial match
if args.source and not source:
@@ -171,79 +170,77 @@ def transmission_main_example(args=None):
if not source:
source = list(transceivers.values())[0]
del transceivers[source.uid]
_logger.info('No source node specified: picking random transceiver')
if not destination:
destination = list(transceivers.values())[0]
nodes_list = [destination.uid]
loose_list = ['STRICT']
_logger.info('No destination node specified: picking random transceiver')
_logger.info(f'source = {args.source!r}')
_logger.info(f'destination = {args.destination!r}')
params = {}
params['request_id'] = 0
params['trx_type'] = ''
params['trx_mode'] = ''
params['source'] = source.uid
params['destination'] = destination.uid
params['bidir'] = False
params['nodes_list'] = [destination.uid]
params['loose_list'] = ['strict']
params['format'] = ''
params['path_bandwidth'] = 0
params['effective_freq_slot'] = None
trx_params = trx_mode_params(equipment)
if args.power:
trx_params['power'] = db2lin(float(args.power)) * 1e-3
params.update(trx_params)
req = PathRequest(**params)
_logger.info(f'source = {source.uid!r}')
_logger.info(f'destination = {destination.uid!r}')
initial_spectrum = None
if args.spectrum:
# use the spectrum defined by user for the propagation.
# the nb of channel for design remains the one of the reference channel
initial_spectrum = load_initial_spectrum(args.spectrum)
print('User input for spectrum used for propagation instead of SI')
power_mode = equipment['Span']['default'].power_mode
print('\n'.join([f'Power mode is set to {power_mode}',
f'=> it can be modified in eqpt_config.json - Span']))
'=> it can be modified in eqpt_config.json - Span']))
pref_ch_db = lin2db(req.power * 1e3) # reference channel power / span (SL=20dB)
pref_total_db = pref_ch_db + lin2db(req.nb_channel) # reference total power / span (SL=20dB)
# Simulate !
try:
build_network(network, equipment, pref_ch_db, pref_total_db, args.no_insert_edfas)
network, req, ref_req = designed_network(equipment, network, source.uid, destination.uid,
nodes_list=nodes_list, loose_list=loose_list,
args_power=args.power,
initial_spectrum=initial_spectrum,
no_insert_edfas=args.no_insert_edfas)
path, propagations_for_path, powers_dbm, infos = transmission_simulation(equipment, network, req, ref_req)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
path = compute_constrained_path(network, req)
spans = [s.params.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} '
except exceptions.ServiceError as e:
print(f'Service error: {e}')
sys.exit(1)
except ValueError:
sys.exit(1)
# print or export results
spans = [s.params.length for s in path if isinstance(s, (Fiber, RamanFiber))]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans) / 1000:.0f} km between {source.uid} '
f'and {destination.uid}')
print(f'\nNow propagating between {source.uid} and {destination.uid}:')
power_range = [0]
if power_mode:
# power cannot be changed in gain mode
try:
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
power_range = list(linspace(p_start, p_stop, p_num))
except TypeError:
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
for dp_db in power_range:
req.power = db2lin(pref_ch_db + dp_db) * 1e-3
print(f'Reference used for design: (Input optical power reference in span = {watt2dbm(ref_req.power):.2f}dBm,\n'
+ f' spacing = {ref_req.spacing * 1e-9:.2f}GHz\n'
+ f' nb_channels = {ref_req.nb_channel})')
print('\nChannels propagating: (Input optical power deviation in span = '
+ f'{pretty_summary_print(per_label_average(infos.delta_pdb_per_channel, infos.label))}dB,\n'
+ ' spacing = '
+ f'{pretty_summary_print(per_label_average(infos.slot_width * 1e-9, infos.label))}GHz,\n'
+ ' transceiver output power = '
+ f'{pretty_summary_print(per_label_average(watt2dbm(infos.tx_power), infos.label))}dBm,\n'
+ f' nb_channels = {infos.number_of_channels})')
for mypath, power_dbm in zip(propagations_for_path, powers_dbm):
if power_mode:
print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:')
print(f'Input optical power reference in span = {ansi_escapes.cyan}{power_dbm:.2f} '
+ f'dBm{ansi_escapes.reset}:')
else:
print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
infos = propagate(path, req, equipment)
if len(power_range) == 1:
for elem in path:
print('\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
if len(powers_dbm) == 1:
for elem in mypath:
print(elem)
if power_mode:
print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f} dBm:')
print(f'\nTransmission result for input optical power reference in span = {power_dbm:.2f} dBm:')
else:
print(f'\nTransmission results:')
print('\nTransmission results:')
print(f' Final GSNR (0.1 nm): {ansi_escapes.cyan}{mean(destination.snr_01nm):.02f} dB{ansi_escapes.reset}')
else:
print(path[-1])
print(mypath[-1])
if args.save_network is not None:
save_network(network, args.save_network)
@@ -264,9 +261,9 @@ def transmission_main_example(args=None):
ch_freq = final_carrier.frequency * 1e-12
ch_power = lin2db(final_carrier.power.signal * 1e3)
print(
'{:5}{:26.2f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
'{:5}{:26.5f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
final_carrier.channel_number, round(
ch_freq, 2), round(
ch_freq, 5), round(
ch_power, 2), round(
ch_osnr, 2), round(
ch_snr_nl, 2), round(
@@ -291,11 +288,14 @@ def _path_result_json(pathresult):
def path_requests_run(args=None):
"""Main script running several services simulations. It returns a summary of the average performance
for each service.
"""
parser = argparse.ArgumentParser(
description='Compute performance for a list of services provided in a json file or an excel sheet',
epilog=_help_footer,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
)
_add_common_options(parser, network_default=_examples_dir / 'meshTopologyExampleV2.xls')
parser.add_argument('service_filename', nargs='?', type=Path, metavar='SERVICES-REQUESTS.(json|xls|xlsx)',
default=_examples_dir / 'meshTopologyExampleV2.xls',
@@ -304,84 +304,48 @@ def path_requests_run(args=None):
help='considers that all demands are bidir')
parser.add_argument('-o', '--output', type=Path, metavar=_help_fname_json_csv,
help='Store satisifed requests into a JSON or CSV file')
parser.add_argument('--redesign-per-request', action='store_true', help='Redesign the network at each request'
+ ' computation using the request as the reference channel')
args = parser.parse_args(args if args is not None else sys.argv[1:])
_setup_logging(args)
_logger.info(f'Computing path requests {args.service_filename} into JSON format')
_logger.info(f'Computing path requests {args.service_filename.name} into JSON format')
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
(equipment, network) = \
load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
# Build the network once using the default power defined in SI in eqpt config
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
try:
build_network(network, equipment, p_db, p_total_db, args.no_insert_edfas)
network, _, _ = designed_network(equipment, network, no_insert_edfas=args.no_insert_edfas)
data = load_requests(args.service_filename, equipment, bidir=args.bidir,
network=network, network_filename=args.topology)
_data = requests_from_json(data, equipment)
_, propagatedpths, reversed_propagatedpths, rqs, dsjn, result = \
planning(network, equipment, data, redesign=args.redesign_per_request)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
if args.save_network is not None:
save_network(network, args.save_network)
print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}')
oms_list = build_oms_list(network, equipment)
try:
data = load_requests(args.service_filename, equipment, bidir=args.bidir,
network=network, network_filename=args.topology)
rqs = requests_from_json(data, equipment)
except exceptions.ServiceError as e:
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}')
sys.exit(1)
# check that request ids are unique. Non unique ids, may
# mess the computation: better to stop the computation
all_ids = [r.request_id for r in rqs]
if len(all_ids) != len(set(all_ids)):
for item in list(set(all_ids)):
all_ids.remove(item)
msg = f'Requests id {all_ids} are not unique'
_logger.critical(msg)
sys.exit()
rqs = correct_json_route_list(network, rqs)
# pths = compute_path(network, equipment, rqs)
dsjn = disjunctions_from_json(data)
print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}')
print(dsjn)
# need to warn or correct in case of wrong disjunction form
# disjunction must not be repeated with same or different ids
dsjn = deduplicate_disjunctions(dsjn)
# Aggregate demands with same exact constraints
print(f'{ansi_escapes.blue}Aggregating similar requests{ansi_escapes.reset}')
rqs, dsjn = requests_aggregation(rqs, dsjn)
# TODO export novel set of aggregated demands in a json file
print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}')
print(rqs)
print(f'{ansi_escapes.blue}Computing all paths with constraints{ansi_escapes.reset}')
try:
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
except exceptions.DisjunctionError as this_e:
print(f'{ansi_escapes.red}Disjunction error:{ansi_escapes.reset} {this_e}')
sys.exit(1)
except exceptions.ServiceError as e:
print(f'Service error: {e}')
sys.exit(1)
except ValueError:
sys.exit(1)
print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}')
print(dsjn)
print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}')
print(_data)
print(f'{ansi_escapes.blue}Propagating on selected path{ansi_escapes.reset}')
propagatedpths, reversed_pths, reversed_propagatedpths = compute_path_with_disjunction(network, equipment, rqs, pths)
# Note that deepcopy used in compute_path_with_disjunction returns
# a list of nodes which are not belonging to network (they are copies of the node objects).
# so there can not be propagation on these nodes.
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
if args.save_network is not None:
save_network(network, args.save_network)
print(f'Network (after autodesign) saved to {args.save_network}')
print(f'{ansi_escapes.blue}Result summary{ansi_escapes.reset}')
header = ['req id', ' demand', ' GSNR@bandwidth A-Z (Z-A)', ' GSNR@0.1nm A-Z (Z-A)',
@@ -392,27 +356,27 @@ def path_requests_run(args=None):
for i, this_p in enumerate(propagatedpths):
rev_pth = reversed_propagatedpths[i]
if rev_pth and this_p:
psnrb = f'{round(mean(this_p[-1].snr),2)} ({round(mean(rev_pth[-1].snr),2)})'
psnrb = f'{round(mean(this_p[-1].snr), 2)} ({round(mean(rev_pth[-1].snr), 2)})'
psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}' +\
f' ({round(mean(rev_pth[-1].snr_01nm),2)})'
f' ({round(mean(rev_pth[-1].snr_01nm), 2)})'
elif this_p:
psnrb = f'{round(mean(this_p[-1].snr),2)}'
psnr = f'{round(mean(this_p[-1].snr_01nm),2)}'
psnrb = f'{round(mean(this_p[-1].snr), 2)}'
psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}'
try:
if rqs[i].blocking_reason in BLOCKING_NOPATH:
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} :',
f'-', f'-', f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
f'-', f'{rqs[i].blocking_reason}']
'-', '-', '-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
'-', '{rqs[i].blocking_reason}']
else:
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
psnr, f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
f'-', f'{rqs[i].blocking_reason}']
psnr, '-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
'-', f'{rqs[i].blocking_reason}']
except AttributeError:
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
psnr, f'{rqs[i].OSNR + equipment["SI"]["default"].sys_margins}',
f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate) }', f'({rqs[i].N},{rqs[i].M})']
f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate)}', f'({rqs[i].N},{rqs[i].M})']
data.append(line)
col_width = max(len(word) for row in data for word in row[2:]) # padding

View File

@@ -20,26 +20,37 @@ In the "Links" sheet, only the first three columns ("Node A", "Node Z" and
the "east" information so that it is possible to input undirected data.
"""
from xlrd import open_workbook
from logging import getLogger
from argparse import ArgumentParser
from collections import namedtuple, Counter, defaultdict
from itertools import chain
from json import dumps
from pathlib import Path
from copy import copy
from gnpy.core import ansi_escapes
from gnpy.core.utils import silent_remove
from typing import Dict, List, Tuple, DefaultDict
from xlrd import open_workbook
from xlrd.biffh import XLRDError
from networkx import DiGraph
from gnpy.core.utils import silent_remove, transform_data
from gnpy.core.exceptions import NetworkTopologyError
from gnpy.core.elements import Edfa, Fused, Fiber
_logger = getLogger(__name__)
def all_rows(sh, start=0):
"""Returns all rows of the xls(x) sheet starting from start row
"""
return (sh.row(x) for x in range(start, sh.nrows))
class Node(object):
class Node:
"""Node data class
"""
def __init__(self, **kwargs):
super(Node, self).__init__()
super().__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
@@ -61,13 +72,13 @@ class Node(object):
}
class Link(object):
class Link:
"""attribtes from west parse_ept_headers dict
+node_a, node_z, west_fiber_con_in, east_fiber_con_in
"""
def __init__(self, **kwargs):
super(Link, self).__init__()
super().__init__()
self.update_attr(kwargs)
self.distance_units = 'km'
@@ -76,7 +87,7 @@ class Link(object):
for k, v in self.default_values.items():
v = clean_kwargs.get(k, v)
setattr(self, k, v)
k = 'west' + k.split('east')[-1]
k = 'west' + k.rsplit('east', maxsplit=1)[-1]
v = clean_kwargs.get(k, v)
setattr(self, k, v)
@@ -97,9 +108,11 @@ class Link(object):
}
class Eqpt(object):
class Eqpt:
"""
"""
def __init__(self, **kwargs):
super(Eqpt, self).__init__()
super().__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
@@ -107,7 +120,7 @@ class Eqpt(object):
for k, v in self.default_values.items():
v_east = clean_kwargs.get(k, v)
setattr(self, k, v_east)
k = 'west' + k.split('east')[-1]
k = 'west' + k.rsplit('east', maxsplit=1)[-1]
v_west = clean_kwargs.get(k, v)
setattr(self, k, v_west)
@@ -115,17 +128,18 @@ class Eqpt(object):
'from_city': '',
'to_city': '',
'east_amp_type': '',
'east_att_in': 0,
'east_amp_gain': None,
'east_amp_dp': None,
'east_tilt': 0,
'east_tilt_vs_wavelength': None,
'east_att_out': None
}
class Roadm(object):
class Roadm:
"""
"""
def __init__(self, **kwargs):
super(Roadm, self).__init__()
super().__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
@@ -136,7 +150,10 @@ class Roadm(object):
default_values = {'from_node': '',
'to_node': '',
'target_pch_out_db': None
'target_pch_out_db': None,
'type_variety': None,
'from_degrees': None,
'impairment_ids': None
}
@@ -149,7 +166,7 @@ def read_header(my_sheet, line, slice_):
try:
header = [x.value.strip() for x in my_sheet.row_slice(line, slice_[0], slice_[1])]
header_i = [Param_header(header, i + slice_[0]) for i, header in enumerate(header) if header != '']
except Exception:
except (AttributeError, IndexError):
header_i = []
if header_i != [] and header_i[-1].colindex != slice_[1]:
header_i.append(Param_header('', slice_[1]))
@@ -165,7 +182,7 @@ def read_slice(my_sheet, line, slice_, header):
try:
slice_range = next((h.colindex, header_i[i + 1].colindex)
for i, h in enumerate(header_i) if header in h.header)
except Exception:
except StopIteration:
pass
return slice_range
@@ -183,76 +200,123 @@ def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
slice_out = read_slice(my_sheet, start_line + iteration, slice_in, h0)
iteration += 1
if slice_out == (-1, -1):
msg = f'missing header {h0}'
if h0 in ('east', 'Node A', 'Node Z', 'City'):
print(f'{ansi_escapes.red}CRITICAL{ansi_escapes.reset}: missing _{h0}_ header: EXECUTION ENDS')
raise NetworkTopologyError(f'Missing _{h0}_ header')
else:
print(f'missing header {h0}')
raise NetworkTopologyError(msg)
_logger.warning(msg)
elif not isinstance(input_headers_dict[h0], dict):
headers[slice_out[0]] = input_headers_dict[h0]
else:
headers = parse_headers(my_sheet, input_headers_dict[h0], headers, start_line + 1, slice_out)
if headers == {}:
print(f'{ansi_escapes.red}CRITICAL ERROR{ansi_escapes.reset}: could not find any header to read _ ABORT')
raise NetworkTopologyError('Could not find any header to read')
msg = 'CRITICAL ERROR: could not find any header to read _ ABORT'
raise NetworkTopologyError(msg)
return headers
def parse_row(row, headers):
"""
"""
return {f: r.value for f, r in
zip([label for label in headers.values()], [row[i] for i in headers])}
zip(list(headers.values()), [row[i] for i in headers])}
def parse_sheet(my_sheet, input_headers_dict, header_line, start_line, column):
"""
"""
headers = parse_headers(my_sheet, input_headers_dict, {}, header_line, (0, column))
for row in all_rows(my_sheet, start=start_line):
yield parse_row(row[0: column], headers)
def _format_items(items):
def _format_items(items: List[str]):
"""formating utils
"""
return '\n'.join(f' - {item}' for item in items)
def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
def sanity_check(nodes: List[Node], links: List[Link],
nodes_by_city: Dict[str, Node], links_by_city: DefaultDict[str, List[Link]],
eqpts_by_city: DefaultDict[str, List[Eqpt]]) -> Tuple[List[Node], List[Link]]:
"""Raise correct issues if xls(x) is not correct, Correct type to ROADM if more tha 2-degrees
checks duplicate links, unreferenced nodes in links, in eqpts, unreferenced link in eqpts,
duplicate items
"""
duplicate_links = []
for l1 in links:
for l2 in links:
if l1 is not l2 and l1 == l2 and l2 not in duplicate_links:
print(f'\nWARNING\n \
_logger.warning(f'\nWARNING\n \
link {l1.from_city}-{l1.to_city} is duplicate \
\nthe 1st duplicate link will be removed but you should check Links sheet input')
duplicate_links.append(l1)
for l in duplicate_links:
links.remove(l)
links_by_city[l.from_city].remove(l)
links_by_city[l.to_city].remove(l)
if duplicate_links:
msg = 'XLS error: ' \
+ f'links {_format_items([(d.from_city, d.to_city) for d in duplicate_links])} are duplicate'
raise NetworkTopologyError(msg)
unreferenced_nodes = [n for n in nodes_by_city if n not in links_by_city]
if unreferenced_nodes:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} The following nodes are not '
f'referenced from the {ansi_escapes.cyan}Links{ansi_escapes.reset} sheet. '
f'If unused, remove them from the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} '
f'sheet:\n'
+ _format_items(unreferenced_nodes))
msg = 'XLS error: The following nodes are not ' \
+ 'referenced from the Links sheet. ' \
+ 'If unused, remove them from the Nodes sheet:\n' \
+ _format_items(unreferenced_nodes)
raise NetworkTopologyError(msg)
# no need to check "Links" for invalid nodes because that's already in parse_excel()
wrong_eqpt_from = [n for n in eqpts_by_city if n not in nodes_by_city]
wrong_eqpt_to = [n.to_city for destinations in eqpts_by_city.values()
for n in destinations if n.to_city not in nodes_by_city]
wrong_eqpt = wrong_eqpt_from + wrong_eqpt_to
if wrong_eqpt:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} '
f'The {ansi_escapes.cyan}Eqpt{ansi_escapes.reset} sheet refers to nodes that '
f'are not defined in the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} sheet:\n'
+ _format_items(wrong_eqpt))
msg = 'XLS error: ' \
+ 'The Eqpt sheet refers to nodes that ' \
+ 'are not defined in the Nodes sheet:\n'\
+ _format_items(wrong_eqpt)
raise NetworkTopologyError(msg)
# Now check links that are not listed in Links sheet, and duplicates
bad_eqpt = []
possible_links = [f'{e.from_city}|{e.to_city}' for e in links] + [f'{e.to_city}|{e.from_city}' for e in links]
possible_eqpt = []
duplicate_eqpt = []
duplicate_ila = []
for city, eqpts in eqpts_by_city.items():
for eqpt in eqpts:
# Check that each node_A-node_Z exists in links
nodea_nodez = f'{eqpt.from_city}|{eqpt.to_city}'
nodez_nodea = f'{eqpt.to_city}|{eqpt.from_city}'
if nodea_nodez not in possible_links \
or nodez_nodea not in possible_links:
bad_eqpt.append([eqpt.from_city, eqpt.to_city])
else:
# Check that there are no duplicate lines in the Eqpt sheet
if nodea_nodez in possible_eqpt:
duplicate_eqpt.append([eqpt.from_city, eqpt.to_city])
else:
possible_eqpt.append(nodea_nodez)
# check that there are no two lines defining an ILA with different directions
if nodes_by_city[city].node_type == 'ILA' and len(eqpts) > 1:
duplicate_ila.append(city)
if bad_eqpt:
msg = 'XLS error: ' \
+ 'The Eqpt sheet references links that ' \
+ 'are not defined in the Links sheet:\n' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_eqpt)
raise NetworkTopologyError(msg)
if duplicate_eqpt:
msg = 'XLS error: Duplicate lines in Eqpt sheet:' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in duplicate_eqpt)
raise NetworkTopologyError(msg)
if duplicate_ila:
msg = 'XLS error: Duplicate ILA eqpt definition in Eqpt sheet:' \
+ _format_items(duplicate_ila)
raise NetworkTopologyError(msg)
for city, link in links_by_city.items():
if nodes_by_city[city].node_type.lower() == 'ila' and len(link) != 2:
# wrong input: ILA sites can only be Degree 2
# => correct to make it a ROADM and remove entry in links_by_city
# TODO: put in log rather than print
print(f'invalid node type ({nodes_by_city[city].node_type})\
specified in {city}, replaced by ROADM')
_logger.warning(f'invalid node type ({nodes_by_city[city].node_type}) '
+ f'specified in {city}, replaced by ROADM')
nodes_by_city[city].node_type = 'ROADM'
for n in nodes:
if n.city == city:
@@ -275,13 +339,29 @@ def create_roadm_element(node, roadms_by_city):
'booster_variety_list': silent_remove(node.booster_restriction.split(' | '), '')}
}
if node.city in roadms_by_city.keys():
if 'params' not in roadm.keys():
if 'params' not in roadm:
roadm['params'] = {}
roadm['params']['per_degree_pch_out_db'] = {}
for elem in roadms_by_city[node.city]:
to_node = f'east edfa in {node.city} to {elem.to_node}'
if elem.target_pch_out_db is not None:
roadm['params']['per_degree_pch_out_db'][to_node] = elem.target_pch_out_db
if elem.from_degrees is not None and elem.impairment_ids is not None:
# only set per degree impairment if there is an entry (reduce verbose)
if roadm['params'].get('per_degree_impairments') is None:
roadm['params']['per_degree_impairments'] = []
fromdegrees = elem.from_degrees.split(' | ')
impairment_ids = transform_data(elem.impairment_ids)
if len(fromdegrees) != len(impairment_ids):
msg = f'Roadm {node.city} per degree impairment id do not match with from degree definition'
raise NetworkTopologyError(msg)
for from_degree, impairment_id in zip(fromdegrees, impairment_ids):
from_node = f'west edfa in {node.city} to {from_degree}'
roadm['params']['per_degree_impairments'].append({'from_degree': from_node,
'to_degree': to_node,
'impairment_id': impairment_id})
if elem.type_variety is not None:
roadm['type_variety'] = elem.type_variety
roadm['metadata'] = {'location': {'city': node.city,
'region': node.region,
'latitude': node.latitude,
@@ -290,7 +370,7 @@ def create_roadm_element(node, roadms_by_city):
return roadm
def create_east_eqpt_element(node):
def create_east_eqpt_element(node: Node, nodes_by_city: Dict[str, Node]) -> dict:
""" create amplifiers json elements for the east direction.
this includes the case where the case of a fused element defined instead of an
ILA in eqpt sheet
@@ -305,13 +385,13 @@ def create_east_eqpt_element(node):
eqpt['type_variety'] = f'{node.east_amp_type}'
eqpt['operational'] = {'gain_target': node.east_amp_gain,
'delta_p': node.east_amp_dp,
'tilt_target': node.east_tilt,
'tilt_target': node.east_tilt_vs_wavelength,
'out_voa': node.east_att_out}
elif node.east_amp_type.lower() == '':
eqpt['type'] = 'Edfa'
eqpt['operational'] = {'gain_target': node.east_amp_gain,
'delta_p': node.east_amp_dp,
'tilt_target': node.east_tilt,
'tilt_target': node.east_tilt_vs_wavelength,
'out_voa': node.east_att_out}
elif node.east_amp_type.lower() == 'fused':
# fused edfa variety is a hack to indicate that there should not be
@@ -323,7 +403,7 @@ def create_east_eqpt_element(node):
return eqpt
def create_west_eqpt_element(node):
def create_west_eqpt_element(node: Node, nodes_by_city: Dict[str, Node]) -> dict:
""" create amplifiers json elements for the west direction.
this includes the case where the case of a fused element defined instead of an
ILA in eqpt sheet
@@ -338,19 +418,25 @@ def create_west_eqpt_element(node):
eqpt['type_variety'] = f'{node.west_amp_type}'
eqpt['operational'] = {'gain_target': node.west_amp_gain,
'delta_p': node.west_amp_dp,
'tilt_target': node.west_tilt,
'tilt_target': node.west_tilt_vs_wavelength,
'out_voa': node.west_att_out}
elif node.west_amp_type.lower() == '':
eqpt['operational'] = {'gain_target': node.west_amp_gain,
'delta_p': node.west_amp_dp,
'tilt_target': node.west_tilt,
'tilt_target': node.west_tilt_vs_wavelength,
'out_voa': node.west_att_out}
elif node.west_amp_type.lower() == 'fused':
eqpt['type'] = 'Fused'
eqpt['params'] = {'loss': 0}
return eqpt
def xls_to_json_data(input_filename, filter_region=[]):
def xls_to_json_data(input_filename: Path, filter_region: List[str] = None) -> Dict:
"""Read the excel sheets and produces the json dict in GNPy format (legacy)
returns json dict
"""
if filter_region is None:
filter_region = []
nodes, links, eqpts, roadms = parse_excel(input_filename)
if filter_region:
nodes = [n for n in nodes if n.region.lower() in filter_region]
@@ -360,16 +446,13 @@ def xls_to_json_data(input_filename, filter_region=[]):
cities = {lnk.from_city for lnk in links} | {lnk.to_city for lnk in links}
nodes = [n for n in nodes if n.city in cities]
global nodes_by_city
nodes_by_city = {n.city: n for n in nodes}
global links_by_city
links_by_city = defaultdict(list)
for link in links:
links_by_city[link.from_city].append(link)
links_by_city[link.to_city].append(link)
global eqpts_by_city
eqpts_by_city = defaultdict(list)
for eqpt in eqpts:
eqpts_by_city[eqpt.from_city].append(eqpt)
@@ -435,7 +518,7 @@ def xls_to_json_data(input_filename, filter_region=[]):
'longitude': x.longitude}},
'type': 'Edfa',
'operational': {'gain_target': None,
'tilt_target': 0}
'tilt_target': None}
} for x in nodes_by_city.values() if x.node_type.lower() == 'ila' and x.city not in eqpts_by_city] +
[{'uid': f'east edfa in {x.city}',
'metadata': {'location': {'city': x.city,
@@ -444,25 +527,26 @@ def xls_to_json_data(input_filename, filter_region=[]):
'longitude': x.longitude}},
'type': 'Edfa',
'operational': {'gain_target': None,
'tilt_target': 0}
} for x in nodes_by_city.values() if x.node_type.lower() == 'ila' and x.city not in eqpts_by_city] +
[create_east_eqpt_element(e) for e in eqpts] +
[create_west_eqpt_element(e) for e in eqpts],
'tilt_target': None}
} for x in nodes_by_city.values() if x.node_type.lower() == 'ila' and x.city not in eqpts_by_city]
+ [create_east_eqpt_element(e, nodes_by_city) for e in eqpts]
+ [create_west_eqpt_element(e, nodes_by_city) for e in eqpts],
'connections':
list(chain.from_iterable([eqpt_connection_by_city(n.city)
list(chain.from_iterable([eqpt_connection_by_city(n.city, eqpts_by_city, links_by_city, nodes_by_city)
for n in nodes]))
+
list(chain.from_iterable(zip(
[{'from_node': f'trx {x.city}',
'to_node': f'roadm {x.city}'}
+ list(chain.from_iterable(zip(
[{'from_node': f'trx {x.city}', 'to_node': f'roadm {x.city}'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'],
[{'from_node': f'roadm {x.city}',
'to_node': f'trx {x.city}'}
[{'from_node': f'roadm {x.city}', 'to_node': f'trx {x.city}'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'])))
}
def convert_file(input_filename, filter_region=[], output_json_file_name=None):
def convert_file(input_filename: Path, filter_region: List[str] = None, output_json_file_name: Path = None):
"""Save the conversion into
"""
if filter_region is None:
filter_region = []
data = xls_to_json_data(input_filename, filter_region)
if output_json_file_name is None:
output_json_file_name = input_filename.with_suffix('.json')
@@ -472,79 +556,77 @@ def convert_file(input_filename, filter_region=[], output_json_file_name=None):
return output_json_file_name
def corresp_names(input_filename, network):
def corresp_names(input_filename: Path, network: DiGraph):
""" a function that builds the correspondance between names given in the excel,
and names used in the json, and created by the autodesign.
All names are listed
"""
nodes, links, eqpts, roadms = parse_excel(input_filename)
nodes, links, eqpts, _ = parse_excel(input_filename)
fused = [n.uid for n in network.nodes() if isinstance(n, Fused)]
ila = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
corresp_roadm = {x.city: [f'roadm {x.city}'] for x in nodes
if x.node_type.lower() == 'roadm'}
corresp_fused = {x.city: [f'west fused spans in {x.city}', f'east fused spans in {x.city}']
for x in nodes if x.node_type.lower() == 'fused' and
f'west fused spans in {x.city}' in fused and
f'east fused spans in {x.city}' in fused}
for x in nodes if x.node_type.lower() == 'fused'
and f'west fused spans in {x.city}' in fused
and f'east fused spans in {x.city}' in fused}
corresp_ila = defaultdict(list)
# add the special cases when an ila is changed into a fused
for my_e in eqpts:
name = f'east edfa in {my_e.from_city} to {my_e.to_city}'
if my_e.east_amp_type.lower() == 'fused' and name in fused:
if my_e.from_city in corresp_fused.keys():
corresp_fused[my_e.from_city].append(name)
else:
corresp_fused[my_e.from_city] = [name]
corresp_fused.get(my_e.from_city, []).append(name)
name = f'west edfa in {my_e.from_city} to {my_e.to_city}'
if my_e.west_amp_type.lower() == 'fused' and name in fused:
if my_e.from_city in corresp_fused.keys():
corresp_fused[my_e.from_city].append(name)
else:
corresp_fused[my_e.from_city] = [name]
corresp_fused.get(my_e.from_city, []).append(name)
# build corresp ila based on eqpt sheet
# start with east direction
corresp_ila = {e.from_city: [f'east edfa in {e.from_city} to {e.to_city}']
for e in eqpts if f'east edfa in {e.from_city} to {e.to_city}' in ila}
# west direction, append name or create a new item in dict
for my_e in eqpts:
name = f'west edfa in {my_e.from_city} to {my_e.to_city}'
if name in ila:
if my_e.from_city in corresp_ila.keys():
for name in [f'east edfa in {my_e.from_city} to {my_e.to_city}',
f'west edfa in {my_e.from_city} to {my_e.to_city}']:
if name in ila:
corresp_ila[my_e.from_city].append(name)
else:
corresp_ila[my_e.from_city] = [name]
# complete with potential autodesign names: amplifiers
for my_l in links:
name = f'Edfa0_fiber ({my_l.to_city} \u2192 {my_l.from_city})-{my_l.west_cable}'
if name in ila:
if my_l.from_city in corresp_ila.keys():
# create names whatever the type and filter them out
# from-to direction
names = [f'Edfa_preamp_roadm {my_l.from_city}_from_fiber ({my_l.to_city} \u2192 {my_l.from_city})-{my_l.west_cable}',
f'Edfa_booster_roadm {my_l.from_city}_to_fiber ({my_l.from_city} \u2192 {my_l.to_city})-{my_l.east_cable}']
for name in names:
if name in ila:
# "east edfa in Stbrieuc to Rennes_STA" is equivalent name as
# "Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056"
# "Edfa_booster_roadm Stbrieuc_to_fiber (Lannion_CAS → Stbrieuc)-F056"
# "west edfa in Stbrieuc to Rennes_STA" is equivalent name as
# "Edfa0_fiber (Rennes_STA → Stbrieuc)-F057"
# does not filter names: all types (except boosters) are created.
# in case fibers are splitted the name here is a prefix
# "Edfa_preamp_roadm Stbrieuc_to_fiber (Rennes_STA → Stbrieuc)-F057"
# in case fibers are splitted the name here is a
corresp_ila[my_l.from_city].append(name)
else:
corresp_ila[my_l.from_city] = [name]
name = f'Edfa0_fiber ({my_l.from_city} \u2192 {my_l.to_city})-{my_l.east_cable}'
if name in ila:
if my_l.to_city in corresp_ila.keys():
# to-from direction
names = [f'Edfa_preamp_roadm {my_l.to_city}_from_fiber ({my_l.from_city} \u2192 {my_l.to_city})-{my_l.east_cable}',
f'Edfa_booster_roadm {my_l.to_city}_to_fiber ({my_l.to_city} \u2192 {my_l.from_city})-{my_l.west_cable}']
for name in names:
if name in ila:
corresp_ila[my_l.to_city].append(name)
else:
corresp_ila[my_l.to_city] = [name]
for node in nodes:
names = [f'east edfa in {node.city}', f'west edfa in {node.city}']
for name in names:
if name in ila:
# "east edfa in Stbrieuc to Rennes_STA" (created with Eqpt) is equivalent name as
# "east edfa in Stbrieuc" or "west edfa in Stbrieuc" (created with Links sheet)
# depending on link node order
corresp_ila[node.city].append(name)
# merge fused with ila:
for key, val in corresp_fused.items():
if key in corresp_ila.keys():
corresp_ila[key].extend(val)
else:
corresp_ila[key] = val
corresp_ila[key].extend(val)
# no need of roadm booster
return corresp_roadm, corresp_fused, corresp_ila
def parse_excel(input_filename):
def parse_excel(input_filename: Path) -> Tuple[List[Node], List[Link], List[Eqpt], List[Roadm]]:
"""reads xls(x) sheets among Nodes, Eqpts, Links, Roadms and parse the data in the sheets
into internal data structure Node, Link, Eqpt, Roadm, classes
"""
link_headers = {
'Node A': 'from_city',
'Node Z': 'to_city',
@@ -583,7 +665,6 @@ def parse_excel(input_filename):
'Node Z': 'to_city',
'east': {
'amp type': 'east_amp_type',
'att_in': 'east_att_in',
'amp gain': 'east_amp_gain',
'delta p': 'east_amp_dp',
'tilt': 'east_tilt',
@@ -591,7 +672,6 @@ def parse_excel(input_filename):
},
'west': {
'amp type': 'west_amp_type',
'att_in': 'west_att_in',
'amp gain': 'west_amp_gain',
'delta p': 'west_amp_dp',
'tilt': 'west_tilt',
@@ -600,7 +680,10 @@ def parse_excel(input_filename):
}
roadm_headers = {'Node A': 'from_node',
'Node Z': 'to_node',
'per degree target power (dBm)': 'target_pch_out_db'
'per degree target power (dBm)': 'target_pch_out_db',
'type_variety': 'type_variety',
'from degrees': 'from_degrees',
'from degree to degree impairment id': 'impairment_ids'
}
with open_workbook(input_filename) as wb:
@@ -608,81 +691,84 @@ def parse_excel(input_filename):
links_sheet = wb.sheet_by_name('Links')
try:
eqpt_sheet = wb.sheet_by_name('Eqpt')
except Exception:
except XLRDError:
# eqpt_sheet is optional
eqpt_sheet = None
try:
roadm_sheet = wb.sheet_by_name('Roadms')
except Exception:
except XLRDError:
# roadm_sheet is optional
roadm_sheet = None
nodes = []
for node in parse_sheet(nodes_sheet, node_headers, NODES_LINE, NODES_LINE + 1, NODES_COLUMN):
nodes.append(Node(**node))
nodes = [Node(**node) for node in parse_sheet(nodes_sheet, node_headers,
NODES_LINE, NODES_LINE + 1, NODES_COLUMN)]
expected_node_types = {'ROADM', 'ILA', 'FUSED'}
for n in nodes:
if n.node_type not in expected_node_types:
n.node_type = 'ILA'
links = []
for link in parse_sheet(links_sheet, link_headers, LINKS_LINE, LINKS_LINE + 2, LINKS_COLUMN):
links.append(Link(**link))
links = [Link(**link) for link in parse_sheet(links_sheet, link_headers,
LINKS_LINE, LINKS_LINE + 2, LINKS_COLUMN)]
eqpts = []
if eqpt_sheet is not None:
for eqpt in parse_sheet(eqpt_sheet, eqpt_headers, EQPTS_LINE, EQPTS_LINE + 2, EQPTS_COLUMN):
eqpts.append(Eqpt(**eqpt))
eqpts = [Eqpt(**eqpt) for eqpt in parse_sheet(eqpt_sheet, eqpt_headers,
EQPTS_LINE, EQPTS_LINE + 2, EQPTS_COLUMN)]
roadms = []
if roadm_sheet is not None:
for roadm in parse_sheet(roadm_sheet, roadm_headers, ROADMS_LINE, ROADMS_LINE+2, ROADMS_COLUMN):
roadms.append(Roadm(**roadm))
roadms = [Roadm(**roadm) for roadm in parse_sheet(roadm_sheet, roadm_headers,
ROADMS_LINE, ROADMS_LINE + 2, ROADMS_COLUMN)]
# sanity check
all_cities = Counter(n.city for n in nodes)
if len(all_cities) != len(nodes):
raise ValueError(f'Duplicate city: {all_cities}')
msg = f'Duplicate city: {all_cities}'
raise NetworkTopologyError(msg)
bad_links = []
for lnk in links:
if lnk.from_city not in all_cities or lnk.to_city not in all_cities:
bad_links.append([lnk.from_city, lnk.to_city])
if bad_links:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} '
f'The {ansi_escapes.cyan}Links{ansi_escapes.reset} sheet references nodes that '
f'are not defined in the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} sheet:\n'
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_links))
msg = 'XLS error: ' \
+ 'The Links sheet references nodes that ' \
+ 'are not defined in the Nodes sheet:\n' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_links)
raise NetworkTopologyError(msg)
return nodes, links, eqpts, roadms
def eqpt_connection_by_city(city_name):
other_cities = fiber_dest_from_source(city_name)
def eqpt_connection_by_city(city_name: str, eqpts_by_city: DefaultDict[str, List[Eqpt]],
links_by_city: DefaultDict[str, List[Link]], nodes_by_city: Dict[str, Node]) -> list:
"""
"""
other_cities = fiber_dest_from_source(city_name, links_by_city)
subdata = []
if nodes_by_city[city_name].node_type.lower() in {'ila', 'fused'}:
# Then len(other_cities) == 2
direction = ['west', 'east']
for i in range(2):
from_ = fiber_link(other_cities[i], city_name)
in_ = eqpt_in_city_to_city(city_name, other_cities[0], direction[i])
to_ = fiber_link(city_name, other_cities[1 - i])
from_ = fiber_link(other_cities[i], city_name, links_by_city)
in_ = eqpt_in_city_to_city(city_name, other_cities[0], eqpts_by_city, nodes_by_city, direction[i])
to_ = fiber_link(city_name, other_cities[1 - i], links_by_city)
subdata += connect_eqpt(from_, in_, to_)
elif nodes_by_city[city_name].node_type.lower() == 'roadm':
for other_city in other_cities:
from_ = f'roadm {city_name}'
in_ = eqpt_in_city_to_city(city_name, other_city)
to_ = fiber_link(city_name, other_city)
in_ = eqpt_in_city_to_city(city_name, other_city, eqpts_by_city, nodes_by_city)
to_ = fiber_link(city_name, other_city, links_by_city)
subdata += connect_eqpt(from_, in_, to_)
from_ = fiber_link(other_city, city_name)
in_ = eqpt_in_city_to_city(city_name, other_city, "west")
from_ = fiber_link(other_city, city_name, links_by_city)
in_ = eqpt_in_city_to_city(city_name, other_city, eqpts_by_city, nodes_by_city, "west")
to_ = f'roadm {city_name}'
subdata += connect_eqpt(from_, in_, to_)
return subdata
def connect_eqpt(from_, in_, to_):
def connect_eqpt(from_: str, in_: str, to_: str) -> List[dict]:
"""Utils: create the topology connection json dict between in and to
"""
connections = []
if in_ != '':
connections = [{'from_node': from_, 'to_node': in_},
@@ -692,7 +778,11 @@ def connect_eqpt(from_, in_, to_):
return connections
def eqpt_in_city_to_city(in_city, to_city, direction='east'):
def eqpt_in_city_to_city(in_city: str, to_city: str,
eqpts_by_city: DefaultDict[str, List[Eqpt]], nodes_by_city: Dict[str, Node],
direction: str = 'east') -> str:
"""Utils: returns the formatted dtring corresponding to in_city types and direction
"""
rev_direction = 'west' if direction == 'east' else 'east'
return_eqpt = ''
if in_city in eqpts_by_city:
@@ -711,22 +801,25 @@ def eqpt_in_city_to_city(in_city, to_city, direction='east'):
return return_eqpt
def corresp_next_node(network, corresp_ila, corresp_roadm):
def corresp_next_node(network: DiGraph, corresp_ila: dict, corresp_roadm: dict) -> Tuple[dict, dict]:
""" for each name in corresp dictionnaries find the next node in network and its name
given by user in excel. for meshTopology_exampleV2.xls:
user ILA name Stbrieuc covers the two direction. convert.py creates 2 different ILA
with possible names (depending on the direction and if the eqpt was defined in eqpt
sheet)
for an ILA and if it is defined in eqpt:
- east edfa in Stbrieuc to Rennes_STA
- west edfa in Stbrieuc to Rennes_STA
- Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056
- Edfa0_fiber (Rennes_STA → Stbrieuc)-F057
for an ILA and if it is not defined in eqpt:
- east edfa in Stbrieuc
- west edfa in Stbrieuc
for a roadm
"Edfa_preamp_roadm node1_from_fiber (siteE → node1)-CABLES#19"
"Edfa_booster_roadm node1_to_fiber (node1 → siteE)-CABLES#19"
next_nodes finds the user defined name of next node to be able to map the path constraints
- east edfa in Stbrieuc to Rennes_STA next node = Rennes_STA
- west edfa in Stbrieuc to Rennes_STA next node Lannion_CAS
Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056 and Edfa0_fiber (Rennes_STA → Stbrieuc)-F057
do not exist
the function supports fiber splitting, fused nodes and shall only be called if
excel format is used for both network and service
"""
@@ -737,8 +830,8 @@ def corresp_next_node(network, corresp_ila, corresp_roadm):
for ila_elem in ila_list:
# find the node with ila_elem string _in_ the node uid. 'in' is used instead of
# '==' to find composed nodes due to fiber splitting in autodesign.
# eg if elem_ila is 'Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056',
# node uid 'Edfa0_fiber (Lannion_CAS → Stbrieuc)-F056_(1/2)' is possible
# eg if elem_ila is 'east edfa in Stbrieuc to Rennes_STA',
# node uid 'east edfa in Stbrieuc to Rennes_STA-_(1/2)' is possible
correct_ila_name = next(n.uid for n in network.nodes() if ila_elem in n.uid)
temp.remove(ila_elem)
temp.append(correct_ila_name)
@@ -755,7 +848,7 @@ def corresp_next_node(network, corresp_ila, corresp_roadm):
break
# if next_nd was not already added in the dict with the previous loop,
# add the first found correspondance in ila names
if correct_ila_name not in next_node.keys():
if correct_ila_name not in next_node:
for key, val in corresp_ila.items():
# in case of splitted fibers the ila name might not be exact match
if [e for e in val if e in next_nd.uid]:
@@ -766,7 +859,9 @@ def corresp_next_node(network, corresp_ila, corresp_roadm):
return corresp_ila, next_node
def fiber_dest_from_source(city_name):
def fiber_dest_from_source(city_name: str, links_by_city: DefaultDict[str, List[Link]]) -> List[str]:
"""Returns the list of cities city_name is connected to
"""
destinations = []
links_from_city = links_by_city[city_name]
for l in links_from_city:
@@ -777,7 +872,9 @@ def fiber_dest_from_source(city_name):
return destinations
def fiber_link(from_city, to_city):
def fiber_link(from_city: str, to_city: str, links_by_city: DefaultDict[str, List[Link]]) -> str:
"""utils: returns formatted uid for fibers between from_city and to_city
"""
source_dest = (from_city, to_city)
links = links_by_city[from_city]
link = next(l for l in links if l.from_city in source_dest and l.to_city in source_dest)
@@ -788,7 +885,9 @@ def fiber_link(from_city, to_city):
return fiber
def midpoint(city_a, city_b):
def midpoint(city_a: Node, city_b:Node) -> dict:
"""Computes mipoint coordinates
"""
lats = city_a.latitude, city_b.latitude
longs = city_a.longitude, city_b.longitude
try:
@@ -813,10 +912,12 @@ LINKS_LINE = 3
EQPTS_LINE = 3
EQPTS_COLUMN = 14
ROADMS_LINE = 3
ROADMS_COLUMN = 3
ROADMS_COLUMN = 6
def _do_convert():
"""Main function for xls(x) topology conversion to JSON format
"""
parser = ArgumentParser()
parser.add_argument('workbook', type=Path)
parser.add_argument('-f', '--filter-region', action='append', default=[])

View File

@@ -1,24 +1,32 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.json_io
==================
Loading and saving data from JSON files in GNPy's internal data format
'''
"""
from networkx import DiGraph
from logging import getLogger
from pathlib import Path
import json
from collections import namedtuple
from gnpy.core import ansi_escapes, elements
from gnpy.core.equipment import trx_mode_params
from copy import deepcopy
from typing import Union, Dict, List
from networkx import DiGraph
from numpy import arange
from gnpy.core import elements
from gnpy.core.equipment import trx_mode_params, find_type_variety
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError, ServiceError
from gnpy.core.science_utils import estimate_nf_model
from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions
from gnpy.core.info import Carrier
from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions, dbm2watt
from gnpy.core.parameters import DEFAULT_RAMAN_COEFFICIENT, EdfaParams, MultiBandParams
from gnpy.topology.request import PathRequest, Disjunction, compute_spectrum_slot_vs_bandwidth
from gnpy.topology.spectrum_assignment import mvalue_to_slots
from gnpy.tools.convert import xls_to_json_data
from gnpy.tools.service_sheet import read_service_sheet
@@ -34,26 +42,34 @@ Model_dual_stage = namedtuple('Model_dual_stage', 'preamp_variety booster_variet
class Model_openroadm_preamp:
pass
"""class to hold nf model specific to OpenROADM preamp
"""
class Model_openroadm_booster:
pass
"""class to hold nf model specific to OpenROADM booster
"""
class _JsonThing:
"""Base class for json equipment
"""
def update_attr(self, default_values, kwargs, name):
"""Build the attributes based on kwargs dict
"""
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
if k not in clean_kwargs and name != 'Amp':
print(ansi_escapes.red +
f'\n WARNING missing {k} attribute in eqpt_config.json[{name}]' +
f'\n default value is {k} = {v}' +
ansi_escapes.reset)
if k not in clean_kwargs and name != 'Amp' and v is not None and v != []:
# do not show this warning if the default value is None
msg = f'\n\tWARNING missing {k} attribute in eqpt_config.json[{name}]' \
+ f'\n\tdefault value is {k} = {v}\n'
_logger.warning(msg)
class SI(_JsonThing):
"""Spectrum Information
"""
default_values = {
"f_min": 191.35e12,
"f_max": 196.1e12,
@@ -63,7 +79,8 @@ class SI(_JsonThing):
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 45,
"sys_margins": 0
"sys_margins": 0,
"tx_power_dbm": None # optional value in SI
}
def __init__(self, **kwargs):
@@ -71,6 +88,8 @@ class SI(_JsonThing):
class Span(_JsonThing):
"""Span simulations definition
"""
default_values = {
'power_mode': True,
'delta_power_range_db': None,
@@ -90,22 +109,42 @@ class Span(_JsonThing):
class Roadm(_JsonThing):
"""List of ROADM and their specs
"""
default_values = {
'target_pch_out_db': -17,
'type_variety': 'default',
'add_drop_osnr': 100,
'pmd': 0,
'pdl': 0,
'restrictions': {
'preamp_variety_list': [],
'booster_variety_list': []
}
},
'roadm-path-impairments': []
}
def __init__(self, **kwargs):
# If equalization is not defined in equipment, then raise an error.
# Only one type of equalization must be defined.
allowed_equalisations = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
requested_eq_mask = [eq in kwargs for eq in allowed_equalisations]
if sum(requested_eq_mask) > 1:
msg = 'Only one equalization type should be set in ROADM, found: ' \
+ ', '.join(eq for eq in allowed_equalisations if eq in kwargs)
raise EquipmentConfigError(msg)
if not any(requested_eq_mask):
msg = 'No equalization type set in ROADM'
raise EquipmentConfigError(msg)
for key in allowed_equalisations:
if key in kwargs:
setattr(self, key, kwargs[key])
break
self.update_attr(self.default_values, kwargs, 'Roadm')
class Transceiver(_JsonThing):
"""List of transceivers and their modes
"""
default_values = {
'type_variety': None,
'frequency': None,
@@ -117,6 +156,7 @@ class Transceiver(_JsonThing):
for mode_params in self.mode:
penalties = mode_params.get('penalties')
mode_params['penalties'] = {}
mode_params['equalization_offset_db'] = mode_params.get('equalization_offset_db', 0)
if not penalties:
continue
for impairment in ('chromatic_dispersion', 'pmd', 'pdl'):
@@ -137,6 +177,8 @@ class Transceiver(_JsonThing):
class Fiber(_JsonThing):
"""Fiber default settings
"""
default_values = {
'type_variety': '',
'dispersion': None,
@@ -146,54 +188,47 @@ class Fiber(_JsonThing):
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, self.__class__.__name__)
for optional in ['gamma', 'raman_efficiency']:
if optional in kwargs:
setattr(self, optional, kwargs[optional])
if 'gamma' in kwargs:
setattr(self, 'gamma', kwargs['gamma'])
if 'raman_efficiency' in kwargs:
raman_coefficient = kwargs['raman_efficiency']
cr = raman_coefficient.pop('cr')
raman_coefficient['g0'] = cr
raman_coefficient['reference_frequency'] = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
setattr(self, 'raman_coefficient', raman_coefficient)
class RamanFiber(Fiber):
pass
"""Raman Fiber default settings
"""
class Amp(_JsonThing):
default_values = {
'f_min': 191.35e12,
'f_max': 196.1e12,
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'nf_fit_coeff': None,
'nf_ripple': None,
'dgt': None,
'gain_ripple': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False,
'pmd': 0,
'pdl': 0
}
"""List of amplifiers with their specs
"""
default_values = EdfaParams.default_values
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Amp')
@classmethod
def from_json(cls, filename, **kwargs):
"""
"""
config = Path(filename).parent / 'default_edfa_config.json'
# default_edfa_config.json assumes a DGT profile independantly from fmin/fmax, that's a generic profile
type_variety = kwargs['type_variety']
type_def = kwargs.get('type_def', 'variable_gain') # default compatibility with older json eqpt files
nf_def = None
dual_stage_def = None
amplifiers = None
if type_def == 'fixed_gain':
try:
nf0 = kwargs.pop('nf0')
except KeyError: # nf0 is expected for a fixed gain amp
raise EquipmentConfigError(f'missing nf0 value input for amplifier: {type_variety} in equipment config')
except KeyError as exc: # nf0 is expected for a fixed gain amp
msg = f'missing nf0 value input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg) from exc
for k in ('nf_min', 'nf_max'):
try:
del kwargs[k]
@@ -207,8 +242,9 @@ class Amp(_JsonThing):
try: # nf_min and nf_max are expected for a variable gain amp
nf_min = kwargs.pop('nf_min')
nf_max = kwargs.pop('nf_max')
except KeyError:
raise EquipmentConfigError(f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config')
except KeyError as exc:
msg = f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg) from exc
try: # remove all remaining nf inputs
del kwargs['nf0']
except KeyError:
@@ -218,8 +254,8 @@ class Amp(_JsonThing):
elif type_def == 'openroadm':
try:
nf_coef = kwargs.pop('nf_coef')
except KeyError: # nf_coef is expected for openroadm amp
raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config')
except KeyError as exc: # nf_coef is expected for openroadm amp
raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config') from exc
nf_def = Model_openroadm_ila(nf_coef)
elif type_def == 'openroadm_preamp':
nf_def = Model_openroadm_preamp()
@@ -229,32 +265,122 @@ class Amp(_JsonThing):
try: # nf_ram and gain_ram are expected for a hybrid amp
preamp_variety = kwargs.pop('preamp_variety')
booster_variety = kwargs.pop('booster_variety')
except KeyError:
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config')
except KeyError as exc:
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety}'
+ ' in equipment config') from exc
dual_stage_def = Model_dual_stage(preamp_variety, booster_variety)
elif type_def == 'multi_band':
amplifiers = kwargs['amplifiers']
else:
raise EquipmentConfigError(f'Edfa type_def {type_def} does not exist')
json_data = load_json(config)
# raise an error if config does not contain f_min, f_max
if 'f_min' not in json_data or 'f_max' not in json_data:
raise EquipmentConfigError('default Edfa config does not contain f_min and f_max values.'
+ ' Please correct file.')
# use f_min, f_max from kwargs
if 'f_min' in kwargs:
json_data.pop('f_min', None)
json_data.pop('f_max', None)
return cls(**{**kwargs, **json_data,
'nf_model': nf_def, 'dual_stage_model': dual_stage_def})
'nf_model': nf_def, 'dual_stage_model': dual_stage_def, 'multi_band': amplifiers})
def _automatic_spacing(baud_rate):
"""return the min possible channel spacing for a given baud rate"""
# TODO : this should parametrized in a cfg file
# list of possible tuples [(max_baud_rate, spacing_for_this_baud_rate)]
spacing_list = [(33e9, 37.5e9), (38e9, 50e9), (50e9, 62.5e9), (67e9, 75e9), (92e9, 100e9)]
return min((s[1] for s in spacing_list if s[0] > baud_rate), default=baud_rate * 1.2)
def _spectrum_from_json(json_data: dict):
"""JSON_data is a list of spectrum partitions each with
{f_min, f_max, baud_rate, roll_off, delta_pdb, slot_width, tx_osnr, label}
Creates the per freq Carrier's dict.
f_min, f_max, baud_rate, slot_width and roll_off are mandatory
label, tx_osnr and delta_pdb are created if not present
label should be different for each partition
>>> json_data = {'spectrum': \
[{'f_min': 193.2e12, 'f_max': 193.4e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15, \
'delta_pdb': 1, 'tx_osnr': 45, 'tx_power_dbm': -7},\
{'f_min': 193.4625e12, 'f_max': 193.9875e12, 'slot_width': 75e9, 'baud_rate': 64e9, 'roll_off': 0.15},\
{'f_min': 194.075e12, 'f_max': 194.075e12, 'slot_width': 100e9, 'baud_rate': 90e9, 'roll_off': 0.15},\
{'f_min': 194.2e12, 'f_max': 194.35e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15}]}
>>> spectrum = _spectrum_from_json(json_data['spectrum'])
>>> for k, v in spectrum.items():
... print(f'{k}: {v}')
...
193200000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193250000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193300000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193350000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193400000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G')
193462500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193537500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193612500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193687500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193762500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193837500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193912500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
193987500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G')
194075000000000.0: Carrier(delta_pdb=0, baud_rate=90000000000.0, slot_width=100000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='2-90.00G')
194200000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
194250000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
194300000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
194350000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G')
"""
spectrum = {}
json_data = sorted(json_data, key=lambda x: x['f_min'])
# min freq of occupation is f_min - slot_width/2 (numbering starts at 0)
previous_part_max_freq = 0.0
for index, part in enumerate(json_data):
# default delta_pdb is 0 dB
part.setdefault('delta_pdb', 0)
# add a label to the partition for the printings
part.setdefault('label', f'{index}-{part["baud_rate"] * 1e-9:.2f}G')
# default tx_osnr is set to 40 dB
part.setdefault('tx_osnr', 40)
# default tx_power_dbm is set to 0 dBn
part.setdefault('tx_power_dbm', 0)
# starting freq is exactly f_min to be consistent with utils.automatic_nch
# first partition min occupation is f_min - slot_width / 2 (central_frequency is f_min)
# supposes that carriers are centered on frequency
if previous_part_max_freq > (part['f_min'] - part['slot_width'] / 2):
# check that previous part last channel does not overlap on next part first channel
# max center of the part should be below part['f_max'] and aligned on the slot_width
msg = 'Not a valid initial spectrum definition:\nprevious spectrum last carrier max occupation ' +\
f'{previous_part_max_freq * 1e-12:.5f}GHz ' +\
'overlaps on next spectrum first carrier occupation ' +\
f'{(part["f_min"] - part["slot_width"] / 2) * 1e-12:.5f}GHz'
raise ValueError(msg)
max_range = ((part['f_max'] - part['f_min']) // part['slot_width'] + 1) * part['slot_width']
previous_part_max_freq = None
for current_freq in arange(part['f_min'],
part['f_min'] + max_range,
part['slot_width']):
spectrum[current_freq] = Carrier(delta_pdb=part['delta_pdb'], baud_rate=part['baud_rate'],
slot_width=part['slot_width'], roll_off=part['roll_off'],
tx_osnr=part['tx_osnr'], tx_power=dbm2watt(part['tx_power_dbm']),
label=part['label'])
previous_part_max_freq = current_freq + part['slot_width'] / 2
return spectrum
def load_equipment(filename):
def load_equipment(filename: Path) -> dict:
"""Load equipment, returns equipment dict
"""
json_data = load_json(filename)
return _equipment_from_json(json_data, filename)
def _update_dual_stage(equipment):
def load_initial_spectrum(filename: Path) -> dict:
"""Load spectrum to propagate, returns spectrum dict
"""
json_data = load_json(filename)
return _spectrum_from_json(json_data['spectrum'])
def _update_dual_stage(equipment: dict) -> dict:
"""Update attributes of all dual stage amps with the preamp and booster attributes
(defined in the equipment dictionary)
Returns the updated equiment dictionary
"""
edfa_dict = equipment['Edfa']
for edfa in edfa_dict.values():
if edfa.type_def == 'dual_stage':
@@ -273,18 +399,43 @@ def _update_dual_stage(equipment):
return equipment
def _roadm_restrictions_sanity_check(equipment):
""" verifies that booster and preamp restrictions specified in roadm equipment are listed
in the edfa.
def _update_band(equipment: dict) -> dict:
"""Creates a list of bands for this amplifier, and remove other parameters which are not applicable
"""
restrictions = equipment['Roadm']['default'].restrictions['booster_variety_list'] + \
equipment['Roadm']['default'].restrictions['preamp_variety_list']
for amp_name in restrictions:
if amp_name not in equipment['Edfa']:
raise EquipmentConfigError(f'ROADM restriction {amp_name} does not refer to a defined EDFA name')
amp_dict = equipment['Edfa']
for amplifier in amp_dict.values():
if amplifier.type_def != 'multi_band':
amplifier.bands = [{'f_min': amplifier.f_min,
'f_max': amplifier.f_max}]
# updates band parameter
else:
_bands = [{'f_min': amp_dict[a].f_min,
'f_max': amp_dict[a].f_max} for a in amp_dict[amplifier.type_variety].multi_band]
# remove duplicates
amplifier.bands = []
for b in _bands:
if b not in amplifier.bands:
amplifier.bands.append(b)
# remove non applicable parameters
for key in ['f_min', 'f_max', 'gain_flatmax', 'gain_min', 'p_max', 'nf_model', 'dual_stage_model',
'nf_fit_coeff', 'nf_ripple', 'dgt', 'gain_ripple']:
delattr(amplifier, key)
return equipment
def _check_fiber_vs_raman_fiber(equipment):
def _roadm_restrictions_sanity_check(equipment: dict):
"""verifies that booster and preamp restrictions specified in roadm equipment are listed in the edfa."""
for roadm_type, roadm_eqpt in equipment['Roadm'].items():
restrictions = roadm_eqpt.restrictions['booster_variety_list'] + \
roadm_eqpt.restrictions['preamp_variety_list']
for amp_name in restrictions:
if amp_name not in equipment['Edfa']:
raise EquipmentConfigError(f'ROADM {roadm_type} restriction {amp_name} does not refer to a '
+ 'defined EDFA name')
def _check_fiber_vs_raman_fiber(equipment: dict):
"""Ensure that Fiber and RamanFiber with the same name define common properties equally"""
if 'RamanFiber' not in equipment:
return
@@ -299,7 +450,7 @@ def _check_fiber_vs_raman_fiber(equipment):
f'disagrees for "{attr}": {a} != {b}')
def _equipment_from_json(json_data, filename):
def _equipment_from_json(json_data: dict, filename: Path) -> dict:
"""build global dictionnary eqpt_library that stores all eqpt characteristics:
edfa type type_variety, fiber type_variety
from the eqpt_config.json (filename parameter)
@@ -322,6 +473,9 @@ def _equipment_from_json(json_data, filename):
elif key == 'Roadm':
equipment[key][subkey] = Roadm(**entry)
elif key == 'SI':
# use power_dbm value for tx_power_dbm if the key is not in 'SI'
# if 'tx_power_dbm' not in entry.keys():
# entry['tx_power_dbm'] = entry['power_dbm']
equipment[key][subkey] = SI(**entry)
elif key == 'Transceiver':
equipment[key][subkey] = Transceiver(**entry)
@@ -331,11 +485,22 @@ def _equipment_from_json(json_data, filename):
raise EquipmentConfigError(f'Unrecognized network element type "{key}"')
_check_fiber_vs_raman_fiber(equipment)
equipment = _update_dual_stage(equipment)
equipment = _update_band(equipment)
_roadm_restrictions_sanity_check(equipment)
possible_SI = list(equipment['SI'].keys())
if 'default' not in possible_SI:
# Use "default" key in the equipment, using the first listed keys
equipment['SI']['default'] = equipment['SI'][possible_SI[0]]
del equipment['SI'][possible_SI[0]]
return equipment
def load_network(filename, equipment):
def load_network(filename: Path, equipment: dict) -> DiGraph:
"""load network json or excel
:param filename: input file to read from
:param equipment: equipment library
"""
if filename.suffix.lower() in ('.xls', '.xlsx'):
json_data = xls_to_json_data(filename)
elif filename.suffix.lower() == '.json':
@@ -346,11 +511,11 @@ def load_network(filename, equipment):
def save_network(network: DiGraph, filename: str):
'''Dump the network into a JSON file
"""Dump the network into a JSON file
:param network: network to work on
:param filename: file to write to
'''
"""
save_json(network_to_json(network), filename)
@@ -359,19 +524,22 @@ def _cls_for(equipment_type):
return elements.Edfa
if equipment_type == 'Fused':
return elements.Fused
elif equipment_type == 'Roadm':
if equipment_type == 'Roadm':
return elements.Roadm
elif equipment_type == 'Transceiver':
if equipment_type == 'Transceiver':
return elements.Transceiver
elif equipment_type == 'Fiber':
if equipment_type == 'Fiber':
return elements.Fiber
elif equipment_type == 'RamanFiber':
if equipment_type == 'RamanFiber':
return elements.RamanFiber
else:
raise ConfigurationError(f'Unknown network equipment "{equipment_type}"')
if equipment_type == 'Multiband_amplifier':
return elements.Multiband_amplifier
raise ConfigurationError(f'Unknown network equipment "{equipment_type}"')
def network_from_json(json_data, equipment):
def network_from_json(json_data: dict, equipment: dict) -> DiGraph:
"""create digraph based on json input dict and using equipment library to fill in the gaps
"""
# NOTE|dutc: we could use the following, but it would tie our data format
# too closely to the graph library
# from networkx import node_link_graph
@@ -380,18 +548,80 @@ def network_from_json(json_data, equipment):
typ = el_config.pop('type')
variety = el_config.pop('type_variety', 'default')
cls = _cls_for(typ)
if typ == 'Fused':
if typ == 'Transceiver':
temp = el_config.setdefault('params', {})
if typ == 'Multiband_amplifier':
if variety in ['default', '']:
extra_params = None
temp = el_config.setdefault('params', {})
temp = merge_amplifier_restrictions(temp, deepcopy(MultiBandParams.default_values))
el_config['params'] = temp
else:
extra_params = equipment['Edfa'][variety]
temp = el_config.setdefault('params', {})
# use config params preferably to library params, only use library params to fill in
# the missing attribute
temp = merge_amplifier_restrictions(temp, deepcopy(extra_params.__dict__))
el_config['params'] = temp
el_config['type_variety'] = variety
# if config does not contain any amp list create one
amps = el_config.setdefault('amplifiers', [])
for amp in amps:
amp_variety = amp['type_variety'] # juste pour essayer
amp_extra_params = equipment['Edfa'][amp_variety]
temp = amp.setdefault('params', {})
temp = merge_amplifier_restrictions(temp, amp_extra_params.__dict__)
amp['params'] = temp
amp['type_variety'] = amp_variety
# check type_variety consistant with amps type_variety
if amps:
try:
multiband_type_variety = find_type_variety([a['type_variety'] for a in amps], equipment)
except ConfigurationError as e:
msg = f'Node {el_config["uid"]}: {e}'
raise ConfigurationError(msg)
if variety is not None and variety not in multiband_type_variety:
raise ConfigurationError(f'In node {el_config["uid"]}: multiband amplifier type_variety is not '
+ 'consistent with its amps type varieties.')
if not amps and extra_params is not None:
# the amp config does not contain the amplifiers operational settings, but has a type_variety
# defined so that it is possible to create the template of amps for design for each band. This
# defines the default design bands.
# This lopp populates each amp with default values, for each band
for band in extra_params.bands:
params = {k: v for k, v in Amp.default_values.items()}
# update frequencies with band values
params['f_min'] = band['f_min']
params['f_max'] = band['f_max']
amps.append({'params': params})
# without type_variety, it is not possible to set the amplifier dict at this point: need to wait
# for design, and use user defined design-bands
elif typ == 'Fused':
# well, there's no variety for the 'Fused' node type
pass
elif variety in equipment[typ]:
extra_params = equipment[typ][variety]
extra_params = equipment[typ][variety].__dict__
temp = el_config.setdefault('params', {})
temp = merge_amplifier_restrictions(temp, extra_params.__dict__)
if typ == 'Roadm':
# if equalization is defined, remove default equalization from the extra_params
# If equalisation is not defined in the element config, then use the default one from equipment
# if more than one equalization was defined in element config, then raise an error
extra_params = merge_equalization(temp, extra_params)
if not extra_params:
msg = f'ROADM {el_config["uid"]}: invalid equalization settings'
raise ConfigurationError(msg)
temp = merge_amplifier_restrictions(temp, extra_params)
el_config['params'] = temp
el_config['type_variety'] = variety
elif (typ in ['Fiber', 'RamanFiber']) or (typ == 'Edfa' and variety not in ['default', '']):
elif (typ in ['Fiber', 'RamanFiber', 'Roadm']):
raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
elif typ == 'Edfa':
if variety in ['default', '']:
el_config['params'] = Amp.default_values
else:
raise ConfigurationError(f'The Edfa of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
el = cls(**el_config)
g.add_node(el)
@@ -405,13 +635,16 @@ def network_from_json(json_data, equipment):
else:
edge_length = 0.01
g.add_edge(nodes[from_node], nodes[to_node], weight=edge_length)
except KeyError:
raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}')
except KeyError as exc:
msg = f'can not find {from_node} or {to_node} defined in {cx}'
raise NetworkTopologyError(msg) from exc
return g
def network_to_json(network):
def network_to_json(network: DiGraph) -> dict:
"""Export network graph as a json dict
"""
data = {
'elements': [n.to_json for n in network]
}
@@ -425,65 +658,74 @@ def network_to_json(network):
return data
def load_json(filename):
def load_json(filename: Path) -> dict:
"""load json data, convert from the yang to the legacy
supports both legacy ang yang formatted inputs based on yang models
"""
with open(filename, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def save_json(obj, filename):
def save_json(obj: Dict, filename: Path):
"""Save in json format. Use yang formatted data for Topo and Services
"""
with open(filename, 'w', encoding='utf-8') as f:
json.dump(obj, f, indent=2, ensure_ascii=False)
def load_requests(filename, eqpt, bidir, network, network_filename):
""" loads the requests from a json or an excel file into a data string
"""
def load_requests(filename: Path, eqpt: dict, bidir: bool, network: DiGraph, network_filename: str) -> dict:
"""loads the requests from a json or an excel file into a data string"""
if filename.suffix.lower() in ('.xls', '.xlsx'):
_logger.info('Automatically converting requests from XLS to JSON')
try:
return convert_service_sheet(filename, eqpt, network, network_filename=network_filename, bidir=bidir)
except ServiceError as this_e:
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {this_e}')
exit(1)
raise ServiceError(f'Service error: {this_e}') from this_e
else:
return load_json(filename)
def requests_from_json(json_data, equipment):
def requests_from_json(json_data: dict, equipment: dict) -> List[PathRequest]:
"""Extract list of requests from data parsed from JSON"""
requests_list = []
for req in json_data['path-request']:
# init all params from request
params = {}
params['request_id'] = req['request-id']
params['source'] = req['source']
params['bidir'] = req['bidirectional']
params['destination'] = req['destination']
params['trx_type'] = req['path-constraints']['te-bandwidth']['trx_type']
params['trx_mode'] = req['path-constraints']['te-bandwidth']['trx_mode']
params['format'] = params['trx_mode']
params['spacing'] = req['path-constraints']['te-bandwidth']['spacing']
trx_type = req['path-constraints']['te-bandwidth']['trx_type']
trx_mode = req['path-constraints']['te-bandwidth'].get('trx_mode', None)
if trx_type is None:
msg = f'Request {req["request-id"]} has no transceiver type defined.'
raise ServiceError(msg)
try:
nd_list = req['explicit-route-objects']['route-object-include-exclude']
nd_list = sorted(req['explicit-route-objects']['route-object-include-exclude'], key=lambda x: x['index'])
except KeyError:
nd_list = []
params['nodes_list'] = [n['num-unnum-hop']['node-id'] for n in nd_list]
params['loose_list'] = [n['num-unnum-hop']['hop-type'] for n in nd_list]
params = {
'request_id': f'{req["request-id"]}',
'source': req['source'],
'destination': req['destination'],
'bidir': req['bidirectional'],
'trx_type': trx_type,
'trx_mode': trx_mode,
'format': trx_mode,
'spacing': req['path-constraints']['te-bandwidth']['spacing'],
'nodes_list': [n['num-unnum-hop']['node-id'] for n in nd_list],
'loose_list': [n['num-unnum-hop']['hop-type'] for n in nd_list]
}
# recover trx physical param (baudrate, ...) from type and mode
# in trx_mode_params optical power is read from equipment['SI']['default'] and
# nb_channel is computed based on min max frequency and spacing
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
params.update(trx_params)
# print(trx_params['min_spacing'])
# optical power might be set differently in the request. if it is indicated then the
# params['power'] is updated
try:
if req['path-constraints']['te-bandwidth']['output-power']:
params['power'] = req['path-constraints']['te-bandwidth']['output-power']
except KeyError:
pass
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
except EquipmentConfigError as e:
msg = f'Equipment Config error in {req["request-id"]}: {e}'
raise EquipmentConfigError(msg) from e
params.update(trx_params)
params['power'] = req['path-constraints']['te-bandwidth'].get('output-power')
# params must not be None, but user can set to None: catch this case
if params['power'] is None:
params['power'] = dbm2watt(equipment['SI']['default'].power_dbm)
# same process for nb-channel
f_min = params['f_min']
f_max_from_si = params['f_max']
@@ -497,58 +739,89 @@ def requests_from_json(json_data, equipment):
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
except KeyError:
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
params['effective_freq_slot'] = req['path-constraints']['te-bandwidth'].get('effective-freq-slot', [None])[0]
params['effective_freq_slot'] = \
req['path-constraints']['te-bandwidth'].get('effective-freq-slot', [{'N': None, 'M': None}])
try:
params['path_bandwidth'] = req['path-constraints']['te-bandwidth']['path_bandwidth']
except KeyError:
pass
params['tx_power'] = req['path-constraints']['te-bandwidth'].get('tx_power')
default_tx_power_dbm = equipment['SI']['default'].tx_power_dbm
if params['tx_power'] is None:
# use request's input power in span instead
params['tx_power'] = params['power']
if default_tx_power_dbm is not None:
# use default tx power
params['tx_power'] = dbm2watt(default_tx_power_dbm)
_check_one_request(params, f_max_from_si)
requests_list.append(PathRequest(**params))
return requests_list
def _check_one_request(params, f_max_from_si):
def _check_one_request(params: dict, f_max_from_si: float):
"""Checks that the requested parameters are consistant (spacing vs nb channel vs transponder mode...)"""
f_min = params['f_min']
f_max = params['f_max']
max_recommanded_nb_channels = automatic_nch(f_min, f_max, params['spacing'])
max_recommanded_nb_channels = automatic_nch(f_min, f_max_from_si, params['spacing'])
if params['baud_rate'] is not None:
# implicitly means that a mode is defined with min_spacing
if params['min_spacing'] > params['spacing']:
msg = f'Request {params["request_id"]} has spacing below transponder ' +\
f'{params["trx_type"]} {params["trx_mode"]} min spacing value ' +\
f'{params["min_spacing"]*1e-9}GHz.\nComputation stopped'
print(msg)
_logger.critical(msg)
f'{params["min_spacing"] * 1e-9}GHz.\nComputation stopped'
raise ServiceError(msg)
if f_max > f_max_from_si:
msg = f'''Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"]} GHz
and requested spacing {params["spacing"]*1e-9}GHz is not consistent with frequency range
{f_min*1e-12} THz, {f_max*1e-12} THz, min recommanded spacing {params["min_spacing"]*1e-9}GHz.
max recommanded nb of channels is {max_recommanded_nb_channels}.'''
_logger.critical(msg)
msg = f'Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"] * 1e-9} GHz' \
+ f' and requested spacing {params["spacing"] * 1e-9}GHz is not consistent with frequency range' \
+ f' {f_min * 1e-12} THz, {f_max_from_si * 1e-12} THz.' \
+ f' Max recommanded nb of channels is {max_recommanded_nb_channels}.'
raise ServiceError(msg)
# Transponder mode already selected; will it fit to the requested bandwidth?
if params['trx_mode'] is not None and params['effective_freq_slot'] is not None \
and params['effective_freq_slot']['M'] is not None:
_, requested_m = compute_spectrum_slot_vs_bandwidth(params['path_bandwidth'],
params['spacing'],
params['bit_rate'])
# params['effective_freq_slot']['M'] value should be bigger than the computed requested_m (simple estimate)
if params['trx_mode'] is not None and params['effective_freq_slot'] is not None:
required_nb_of_channels, _ = compute_spectrum_slot_vs_bandwidth(params['path_bandwidth'],
params['spacing'],
params['bit_rate'])
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(params['bit_rate'],
params['spacing'],
params['bit_rate'])
# each M should fit one or more channels if it is not None
# spectrum slots should not overlap
# resulting nb of channels should be bigger than the nb computed with path_bandwidth
# without being splitted
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
# superchannel closed packing.
if requested_m > params['effective_freq_slot']['M']:
msg = f'requested M {params["effective_freq_slot"]["M"]} number of slots for request' +\
f'{params["request_id"]} should be greater than {requested_m} to support request' +\
f'{params["path_bandwidth"] * 1e-9} Gbit/s with {params["trx_type"]} {params["trx_mode"]}'
_logger.critical(msg)
nb_of_channels = 0
# order slots
slots = sorted(params['effective_freq_slot'], key=lambda x: float('inf') if x['N'] is None else x['N'])
for slot in slots:
nb_of_channels = nb_of_channels + slot['M'] // per_channel_m if slot['M'] is not None \
and nb_of_channels is not None else None
if slot['M'] is not None and slot['M'] < per_channel_m:
msg = f'Requested M {slot} number of slots for request' +\
f' {params["request_id"]} should be greater than {per_channel_m} to support request' +\
f'with {params["trx_type"]} {params["trx_mode"]}'
_logger.critical(msg)
if nb_of_channels is not None and nb_of_channels < required_nb_of_channels:
msg = f'Requested M {slots} number of slots for request {params["request_id"]} support {nb_of_channels}' +\
f' nb of channels while {required_nb_of_channels} are required to support request' +\
f' {params["path_bandwidth"] * 1e-9} Gbit/s with {params["trx_type"]} {params["trx_mode"]}'
raise ServiceError(msg)
if nb_of_channels is not None:
_, stop0n = mvalue_to_slots(slots[0]['N'], slots[0]['M'])
i = 1
while i < len(slots):
slot = slots[i]
startn, stopn = mvalue_to_slots(slot['N'], slot['M'])
if startn <= stop0n:
msg = f'Requested M {slots} for request {params["request_id"]} overlap'
raise ServiceError(msg)
_, stop0n = startn, stopn
i += 1
def disjunctions_from_json(json_data):
""" reads the disjunction requests from the json dict and create the list
of requested disjunctions for this set of requests
def disjunctions_from_json(json_data: dict) -> List[Disjunction]:
"""reads the disjunction requests from the json dict and create the list
of requested disjunctions for this set of requests
"""
disjunctions_list = []
if 'synchronization' in json_data:
@@ -565,14 +838,63 @@ def disjunctions_from_json(json_data):
def convert_service_sheet(
input_filename,
eqpt,
network,
network_filename=None,
output_filename='',
bidir=False):
input_filename: Path,
eqpt: dict,
network: DiGraph,
network_filename: Union[Path, None] = None,
output_filename: str = '',
bidir: bool = False):
"""Converts xls into json format services
:param input_filename: xls(x) file containing the service sheet
:param eqpt: equipment library
:param network: network for which these services apply (required for xls inputs to correct names)
:param network_filename: optional network file name that was used for network creation
(required for xls inputs to correct names)
:param output_filename: name of the file where converted data are savec
:param bidir: set all services bidir attribute with this bool
"""
if output_filename == '':
output_filename = f'{str(input_filename)[0:len(str(input_filename))-len(str(input_filename.suffixes[0]))]}_services.json'
output_filename = f'{str(input_filename)[0:len(str(input_filename)) - len(str(input_filename.suffixes[0]))]}_services.json'
data = read_service_sheet(input_filename, eqpt, network, network_filename, bidir)
save_json(data, output_filename)
return data
def find_equalisation(params: Dict, equalization_types: List[str]):
"""Find the equalization(s) defined in params. params can be a dict or a Roadm object.
>>> roadm = {'add_drop_osnr': 100, 'pmd': 1, 'pdl': 0.5,
... 'restrictions': {'preamp_variety_list': ['a'], 'booster_variety_list': ['b']},
... 'target_psd_out_mWperGHz': 4e-4}
>>> equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz']
>>> find_equalisation(roadm, equalization_types)
{'target_pch_out_db': False, 'target_psd_out_mWperGHz': True}
"""
equalization = {e: False for e in equalization_types}
for equ in equalization_types:
if equ in params:
equalization[equ] = True
return equalization
def merge_equalization(params: dict, extra_params: dict) -> Union[dict, None]:
"""params contains ROADM element config and extra_params default values from equipment library.
If equalization is not defined in ROADM element use the one defined in equipment library.
Only one type of equalization must be defined: power (target_pch_out_db) or PSD (target_psd_out_mWperGHz)
or PSW (target_out_mWperSlotWidth)
params and extra_params are dict
"""
equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
roadm_equalizations = find_equalisation(params, equalization_types)
if sum(roadm_equalizations.values()) > 1:
# if ROADM config contains more than one equalization type then this is an error
return None
if sum(roadm_equalizations.values()) == 1:
# if ROADM config contains one equalization
# don't use the default equalization
return {k: v for k, v in extra_params.items() if k not in equalization_types}
if sum(roadm_equalizations.values()) == 0:
# If ROADM config doesn't contain any equalization type, keep the default one
return extra_params
return None

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.plots
================
Graphs and plots usable from a CLI application
'''
"""
from matplotlib.pyplot import show, axis, figure, title, text
from networkx import draw_networkx

View File

@@ -11,109 +11,150 @@ Yang model for requesting path computation.
See: draft-ietf-teas-yang-path-computation-01.txt
"""
from xlrd import open_workbook, XL_CELL_EMPTY
from collections import namedtuple
from logging import getLogger
from copy import deepcopy
from pathlib import Path
from typing import Dict, List
from networkx import DiGraph
from xlrd import open_workbook, XL_CELL_EMPTY
from gnpy.core.utils import db2lin
from gnpy.core.exceptions import ServiceError
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fiber
import gnpy.core.ansi_escapes as ansi_escapes
from gnpy.tools.convert import corresp_names, corresp_next_node
from gnpy.tools.convert import corresp_names, corresp_next_node, all_rows
SERVICES_COLUMN = 12
def all_rows(sheet, start=0):
return (sheet.row(x) for x in range(start, sheet.nrows))
logger = getLogger(__name__)
class Request(namedtuple('Request', 'request_id source destination trx_type mode \
spacing power nb_channel disjoint_from nodes_list is_loose path_bandwidth')):
def __new__(cls, request_id, source, destination, trx_type, mode=None, spacing=None, power=None, nb_channel=None, disjoint_from='', nodes_list=None, is_loose='', path_bandwidth=None):
return super().__new__(cls, request_id, source, destination, trx_type, mode, spacing, power, nb_channel, disjoint_from, nodes_list, is_loose, path_bandwidth)
class Request(namedtuple('request_param', 'request_id source destination trx_type mode \
spacing power nb_channel disjoint_from nodes_list is_loose path_bandwidth')):
"""DATA class for a request.
:params request_id (int): The unique identifier for the request.
:params source (str): The source node for the communication.
:params destination (str): The destination node for the communication.
:params trx_type (str): The type of transmission for the communication.
:params mode (str, optional): The mode of transmission. Defaults to None.
:params spacing (float, optional): The spacing between channels. Defaults to None.
:params power (float, optional): The power level for the communication. Defaults to None.
:params nb_channel (int, optional): The number of channels required for the communication. Defaults to None.
:params disjoint_from (str, optional): The node to be disjoint from. Defaults to ''.
:params nodes_list (list, optional): The list of nodes involved in the communication. Defaults to None.
:params is_loose (str, optional): Indicates if the communication is loose. Defaults to ''.
:params path_bandwidth (float, optional): The bandwidth required for the communication. Defaults to None.
"""
def __new__(cls, request_id, source, destination, trx_type, mode=None, spacing=None, power=None, nb_channel=None,
disjoint_from='', nodes_list=None, is_loose='', path_bandwidth=None):
return super().__new__(cls, request_id, source, destination, trx_type, mode, spacing, power, nb_channel,
disjoint_from, nodes_list, is_loose, path_bandwidth)
class Element:
"""
"""
def __init__(self, uid):
self.uid = uid
def __eq__(self, other):
return type(self) == type(other) and self.uid == other.uid
return isinstance(other, type(self)) and self.uid == other.ui
def __hash__(self):
return hash((type(self), self.uid))
class Request_element(Element):
def __init__(self, Request, equipment, bidir):
"""Class that generate the request in the json format
:params request_param (Request): The request object containing the information for the element.
:params equipment (dict): The equipment configuration for the communication.
:params bidir (bool): Indicates if the communication is bidirectional.
Attributes:
request_id (str): The unique identifier for the request.
source (str): The source node for the communication.
destination (str): The destination node for the communication.
srctpid (str): The source TP ID for the communication.
dsttpid (str): The destination TP ID for the communication.
bidir (bool): Indicates if the communication is bidirectional.
trx_type (str): The type of transmission for the communication.
mode (str): The mode of transmission for the communication.
spacing (float): The spacing between channels for the communication.
power (float): The power level for the communication.
nb_channel (int): The number of channels required for the communication.
disjoint_from (list): The list of nodes to be disjoint from.
nodes_list (list): The list of nodes involved in the communication.
loose (str): Indicates if the communication is loose or strict.
path_bandwidth (float): The bandwidth required for the communication.
"""
def __init__(self, request_param: Request, equipment: Dict, bidir: bool):
"""
"""
super().__init__(uid=request_param.request_id)
# request_id is str
# excel has automatic number formatting that adds .0 on integer values
# the next lines recover the pure int value, assuming this .0 is unwanted
self.request_id = correct_xlrd_int_to_str_reading(Request.request_id)
self.source = f'trx {Request.source}'
self.destination = f'trx {Request.destination}'
self.request_id = correct_xlrd_int_to_str_reading(request_param.request_id)
self.source = f'trx {request_param.source}'
self.destination = f'trx {request_param.destination}'
# TODO: the automatic naming generated by excel parser requires that source and dest name
# be a string starting with 'trx' : this is manually added here.
self.srctpid = f'trx {Request.source}'
self.dsttpid = f'trx {Request.destination}'
self.srctpid = f'trx {request_param.source}'
self.dsttpid = f'trx {request_param.destination}'
self.bidir = bidir
# test that trx_type belongs to eqpt_config.json
# if not replace it with a default
try:
if equipment['Transceiver'][Request.trx_type]:
self.trx_type = correct_xlrd_int_to_str_reading(Request.trx_type)
if Request.mode is not None:
Requestmode = correct_xlrd_int_to_str_reading(Request.mode)
if [mode for mode in equipment['Transceiver'][Request.trx_type].mode if mode['format'] == Requestmode]:
self.mode = Requestmode
if equipment['Transceiver'][request_param.trx_type]:
self.trx_type = correct_xlrd_int_to_str_reading(request_param.trx_type)
if request_param.mode is not None:
request_mode = correct_xlrd_int_to_str_reading(request_param.mode)
if [mode for mode in equipment['Transceiver'][request_param.trx_type].mode
if mode['format'] == request_mode]:
self.mode = request_mode
else:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
msg = f'Request Id: {self.request_id} - could not find tsp : \'{request_param.trx_type}\' ' \
+ f'with mode: \'{request_mode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg)
else:
Requestmode = None
self.mode = Request.mode
except KeyError:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
raise ServiceError(msg)
request_mode = None
self.mode = request_param.mode
except KeyError as e:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{request_param.trx_type}\' with mode: ' \
+ f'\'{request_param.mode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg) from e
# excel input are in GHz and dBm
if Request.spacing is not None:
self.spacing = Request.spacing * 1e9
if request_param.spacing is not None:
self.spacing = request_param.spacing * 1e9
else:
msg = f'Request {self.request_id} missing spacing: spacing is mandatory.\ncomputation stopped'
logger.critical(msg)
raise ServiceError(msg)
if Request.power is not None:
self.power = db2lin(Request.power) * 1e-3
else:
self.power = None
if Request.nb_channel is not None:
self.nb_channel = int(Request.nb_channel)
else:
self.nb_channel = None
self.power = None
if request_param.power is not None:
self.power = db2lin(request_param.power) * 1e-3
self.nb_channel = None
if request_param.nb_channel is not None:
self.nb_channel = int(request_param.nb_channel)
value = correct_xlrd_int_to_str_reading(Request.disjoint_from)
value = correct_xlrd_int_to_str_reading(request_param.disjoint_from)
self.disjoint_from = [n for n in value.split(' | ') if value]
self.nodes_list = []
if Request.nodes_list:
self.nodes_list = Request.nodes_list.split(' | ')
if request_param.nodes_list:
self.nodes_list = request_param.nodes_list.split(' | ')
self.loose = 'LOOSE'
if Request.is_loose.lower() == 'no':
if request_param.is_loose.lower() == 'no':
self.loose = 'STRICT'
self.path_bandwidth = None
if Request.path_bandwidth is not None:
self.path_bandwidth = Request.path_bandwidth * 1e9
else:
self.path_bandwidth = 0
uid = property(lambda self: repr(self))
self.path_bandwidth = 0
if request_param.path_bandwidth is not None:
self.path_bandwidth = request_param.path_bandwidth * 1e9
@property
def pathrequest(self):
"""Creates json dictionnary for the request
"""
# Default assumption for bidir is False
req_dictionnary = {
'request-id': self.request_id,
@@ -156,29 +197,32 @@ class Request_element(Element):
@property
def pathsync(self):
"""Creates json dictionnary for disjunction list (synchronization vector)
"""
if self.disjoint_from:
return {'synchronization-id': self.request_id,
'svec': {
'relaxable': 'false',
'disjointness': 'node link',
'request-id-number': [self.request_id] + [n for n in self.disjoint_from]
'request-id-number': [self.request_id] + list(self.disjoint_from)
}
}
else:
return None
return None
# TO-DO: avoid multiple entries with same synchronisation vectors
@property
def json(self):
"""Returns the json dictionnary for requests and for synchronisation vector
"""
return self.pathrequest, self.pathsync
def read_service_sheet(
input_filename,
eqpt,
network,
network_filename=None,
bidir=False):
input_filename: Path,
eqpt: Dict,
network: DiGraph,
network_filename: Path = None,
bidir: bool = False) -> Dict:
""" converts a service sheet into a json structure
"""
if network_filename is None:
@@ -188,19 +232,16 @@ def read_service_sheet(
req = correct_xls_route_list(network_filename, network, req)
# if there is no sync vector , do not write any synchronization
synchro = [n.json[1] for n in req if n.json[1] is not None]
data = {'path-request': [n.json[0] for n in req]}
if synchro:
data = {
'path-request': [n.json[0] for n in req],
'synchronization': synchro
}
else:
data = {
'path-request': [n.json[0] for n in req]
}
data['synchronization'] = synchro
return data
def correct_xlrd_int_to_str_reading(v):
"""Utils: ensure that int values in id are read as strings containing the int and
do not use the automatic float conversion from xlrd
"""
if not isinstance(v, str):
value = str(int(v))
if value.endswith('.0'):
@@ -210,22 +251,27 @@ def correct_xlrd_int_to_str_reading(v):
return value
def parse_row(row, fieldnames):
def parse_row(row: List, fieldnames: List[str]) -> Dict:
"""Reads each values in a row and creates a dict using field names
"""
return {f: r.value for f, r in zip(fieldnames, row[0:SERVICES_COLUMN])
if r.ctype != XL_CELL_EMPTY}
def parse_excel(input_filename):
def parse_excel(input_filename: Path) -> List[Request]:
"""Opens xls_file and reads 'Service' sheet
Returns the list of services data in Request class
"""
with open_workbook(input_filename) as wb:
service_sheet = wb.sheet_by_name('Service')
services = list(parse_service_sheet(service_sheet))
return services
def parse_service_sheet(service_sheet):
def parse_service_sheet(service_sheet) -> Request:
""" reads each column according to authorized fieldnames. order is not important.
"""
logger.info(f'Validating headers on {service_sheet.name!r}')
logger.debug('Validating headers on %r', service_sheet.name)
# add a test on field to enable the '' field case that arises when columns on the
# right hand side are used as comments or drawing in the excel sheet
header = [x.value.strip() for x in service_sheet.row(4)[0:SERVICES_COLUMN]
@@ -243,15 +289,52 @@ def parse_service_sheet(service_sheet):
'routing: is loose?': 'is_loose', 'path bandwidth': 'path_bandwidth'}
try:
service_fieldnames = [authorized_fieldnames[e] for e in header]
except KeyError:
except KeyError as e:
msg = f'Malformed header on Service sheet: {header} field not in {authorized_fieldnames}'
logger.critical(msg)
raise ValueError(msg)
raise ValueError(msg) from e
for row in all_rows(service_sheet, start=5):
yield Request(**parse_row(row[0:SERVICES_COLUMN], service_fieldnames))
def correct_xls_route_list(network_filename, network, pathreqlist):
def check_end_points(pathreq: Request_element, network: DiGraph):
"""Raise error if end point is not correct
"""
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
if pathreq.source not in transponders:
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.'
logger.critical(msg)
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.'
logger.critical(msg)
raise ServiceError(msg)
def find_node_sugestion(n_id, corresp_roadm, corresp_fused, corresp_ila, network):
"""
"""
roadmtype = [n.uid for n in network.nodes() if isinstance(n, Roadm)]
edfatype = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
# check that n_id is in the node list, if not find a correspondance name
if n_id in roadmtype + edfatype:
return [n_id]
# checks first roadm, fused, and ila in this order, because ila automatic name
# contains roadm names. If it is a fused node, next ila names might be correct
# suggestions, especially if following fibers were splitted and ila names
# created with the name of the fused node
if n_id in corresp_roadm.keys():
return corresp_roadm[n_id]
if n_id in corresp_fused.keys():
return corresp_fused[n_id] + corresp_ila[n_id]
if n_id in corresp_ila.keys():
return corresp_ila[n_id]
return []
def correct_xls_route_list(network_filename: Path, network: DiGraph,
pathreqlist: List[Request_element]) -> List[Request_element]:
""" prepares the format of route list of nodes to be consistant with nodes names:
remove wrong names, find correct names for ila, roadm and fused if the entry was
xls.
@@ -265,32 +348,17 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
corresp_ila, next_node = corresp_next_node(network, corresp_ila, corresp_roadm)
# finally correct constraints based on these dict
trxfibertype = [n.uid for n in network.nodes() if isinstance(n, (Transceiver, Fiber))]
roadmtype = [n.uid for n in network.nodes() if isinstance(n, Roadm)]
edfatype = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
# TODO there is a problem of identification of fibers in case of parallel
# fibers between two adjacent roadms so fiber constraint is not supported
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
for pathreq in pathreqlist:
# first check that source and dest are transceivers
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.{ansi_escapes.reset}'
logger.critical(msg)
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.{ansi_escapes.reset}'
logger.critical(msg)
raise ServiceError(msg)
check_end_points(pathreq, network)
# silently pop source and dest nodes from the list if they were added by the user as first
# and last elem in the constraints respectively. Other positions must lead to an error
# caught later on
if pathreq.nodes_list and pathreq.source == pathreq.nodes_list[0]:
pathreq.loose_list.pop(0)
pathreq.nodes_list.pop(0)
if pathreq.nodes_list and pathreq.destination == pathreq.nodes_list[-1]:
pathreq.loose_list.pop(-1)
pathreq.nodes_list.pop(-1)
# Then process user defined constraints with respect to automatic namings
temp = deepcopy(pathreq)
@@ -300,79 +368,57 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
# n_id must not be a transceiver and must not be a fiber (non supported, user
# can not enter fiber names in excel)
if n_id not in trxfibertype:
# check that n_id is in the node list, if not find a correspondance name
if n_id in roadmtype + edfatype:
nodes_suggestion = [n_id]
else:
# checks first roadm, fused, and ila in this order, because ila automatic name
# contain roadm names. If it is a fused node, next ila names might be correct
# suggestions, especially if following fibers were splitted and ila names
# created with the name of the fused node
if n_id in corresp_roadm.keys():
nodes_suggestion = corresp_roadm[n_id]
elif n_id in corresp_fused.keys():
nodes_suggestion = corresp_fused[n_id] + corresp_ila[n_id]
elif n_id in corresp_ila.keys():
nodes_suggestion = corresp_ila[n_id]
nodes_suggestion = find_node_sugestion(n_id, corresp_roadm, corresp_fused, corresp_ila, network)
try:
if len(nodes_suggestion) > 1:
# if there is more than one suggestion, we need to choose the direction
# we rely on the next node provided by the user for this purpose
new_n = next(n for n in nodes_suggestion
if n in next_node
and next_node[n] in temp.nodes_list[i:] + [pathreq.destination]
and next_node[n] not in temp.nodes_list[:i])
elif len(nodes_suggestion) == 1:
new_n = nodes_suggestion[0]
else:
nodes_suggestion = []
if nodes_suggestion:
try:
if len(nodes_suggestion) > 1:
# if there is more than one suggestion, we need to choose the direction
# we rely on the next node provided by the user for this purpose
new_n = next(n for n in nodes_suggestion
if n in next_node.keys() and next_node[n]
in temp.nodes_list[i:] + [pathreq.destination] and
next_node[n] not in temp.nodes_list[:i])
else:
new_n = nodes_suggestion[0]
if new_n != n_id:
# warns the user when the correct name is used only in verbose mode,
# eg 'a' is a roadm and correct name is 'roadm a' or when there was
# too much ambiguity, 'b' is an ila, its name can be:
# Edfa0_fiber (a → b)-xx if next node is c or
# Edfa0_fiber (c → b)-xx if next node is a
msg = f'{ansi_escapes.yellow}Invalid route node specified:' +\
f'\n\t\'{n_id}\', replaced with \'{new_n}\'{ansi_escapes.reset}'
if temp.loose == 'LOOSE':
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{pathreq.request_id}: Invalid node specified:\n\t\'{n_id}\'' \
+ ', could not use it as constraint, skipped!'
print(msg)
logger.info(msg)
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
except StopIteration:
# shall not come in this case, unless requested direction does not exist
msg = f'{ansi_escapes.yellow}Invalid route specified {n_id}: could' +\
f' not decide on direction, skipped!.\nPlease add a valid' +\
f' direction in constraints (next neighbour node){ansi_escapes.reset}'
print(msg)
logger.info(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
if temp.loose_list[i] == 'LOOSE':
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}Invalid node specified:\n\t\'{n_id}\'' +\
f', could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
logger.info(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Could not find node:\n\t\'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
pathreq.nodes_list.remove(n_id)
continue
msg = f'{pathreq.request_id}: Could not find node:\n\t\'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
if new_n != n_id:
# warns the user when the correct name is used only in verbose mode,
# eg 'a' is a roadm and correct name is 'roadm a' or when there was
# too much ambiguity, 'b' is an ila, its name can be:
# "east edfa in b to c", or "west edfa in b to a" if next node is c or
# "west edfa in b to c", or "east edfa in b to a" if next node is a
msg = f'{pathreq.request_id}: Invalid route node specified:' \
+ f'\n\t\'{n_id}\', replaced with \'{new_n}\''
logger.info(msg)
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
except StopIteration:
# shall not come in this case, unless requested direction does not exist
msg = f'{pathreq.request_id}: Invalid route specified {n_id}: could' \
+ ' not decide on direction, skipped!.\nPlease add a valid' \
+ ' direction in constraints (next neighbour node)'
logger.info(msg)
pathreq.nodes_list.remove(n_id)
else:
if temp.loose_list[i] == 'LOOSE':
print(f'{ansi_escapes.yellow}Invalid route node specified:\n\t\'{n_id}\'' +
f' type is not supported as constraint with xls network input,' +
f' skipped!{ansi_escapes.reset}')
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
if temp.loose == 'LOOSE':
msg = f'{pathreq.request_id}: Invalid route node specified:\n\t\'{n_id}\'' \
+ ' type is not supported as constraint with xls network input, skipped!'
logger.warning(msg)
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Invalid route node specified \n\t\'{n_id}\'' +\
f' type is not supported as constraint with xls network input,' +\
f', Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'{pathreq.request_id}: Invalid route node specified \n\t\'{n_id}\'' \
+ ' type is not supported as constraint with xls network input,' \
+ ', Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist

248
gnpy/tools/worker_utils.py Normal file
View File

@@ -0,0 +1,248 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.tools.worker_utils
=======================
Common code for CLI examples and API
'''
import logging
from copy import deepcopy
from typing import Union, List, Tuple
from numpy import linspace
from networkx import DiGraph
from gnpy.core.utils import automatic_nch, watt2dbm, dbm2watt, pretty_summary_print, per_label_average
from gnpy.core.equipment import trx_mode_params
from gnpy.core.network import add_missing_elements_in_network, design_network
from gnpy.core import exceptions
from gnpy.core.info import SpectralInformation
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum, OMS
from gnpy.topology.request import correct_json_route_list, deduplicate_disjunctions, requests_aggregation, \
compute_path_dsjctn, compute_path_with_disjunction, ResultElement, PathRequest, Disjunction, \
compute_constrained_path, propagate
from gnpy.tools.json_io import requests_from_json, disjunctions_from_json
logger = logging.getLogger(__name__)
def designed_network(equipment: dict, network: DiGraph, source: str = None, destination: str = None,
nodes_list: List[str] = None, loose_list: List[str] = None,
initial_spectrum: dict = None, no_insert_edfas: bool = False,
args_power: Union[str, float, int] = None,
service_req: PathRequest = None) -> Tuple[DiGraph, PathRequest, PathRequest]:
"""Build the reference channels based on inputs and design the network for this reference channel, and build the
channel to be propagated for the single transmission script.
Reference channel (target input power in spans, nb of channels, transceiver output power) is built using
equipment['SI'] information. If indicated, with target input power in spans is updated with args_power.
Channel to be propagated is using the same channel reference, except if different settings are provided
with service_req and initial_spectrum. The service to be propagated uses specified source, destination
and list nodes_list of include nodes constraint except if the service_req is specified.
Args:
- equipment: a dictionary containing equipment information.
- network: a directed graph representing the initial network.
- no_insert_edfas: a boolean indicating whether to insert EDFAs in the network.
- args_power: the power to be used for the network design.
- service_req: the service request the user wants to propagate.
- source: the source node for the channel to be propagated if no service_req is specified.
- destination: the destination node for the channel to be propagated if no service_req is specified.
- nodes_list: a list of nodes to be included ifor the channel to be propagated if no service_req is specified.
- loose_list: a list of loose nodes to be included in the network design.
- initial_spectrum: a dictionary representing the initial spectrum to propagate.
Returns:
- The designed network.
- The channel to propagate.
- The reference channel used for the design.
"""
if loose_list is None:
loose_list = []
if nodes_list is None:
nodes_list = []
if not no_insert_edfas:
add_missing_elements_in_network(network, equipment)
if not nodes_list:
if destination:
nodes_list = [destination]
loose_list = ['STRICT']
else:
nodes_list = []
loose_list = []
params = {
'request_id': 'reference',
'trx_type': '',
'trx_mode': '',
'source': source,
'destination': destination,
'bidir': False,
'nodes_list': nodes_list,
'loose_list': loose_list,
'format': '',
'path_bandwidth': 0,
'effective_freq_slot': None,
'nb_channel': automatic_nch(equipment['SI']['default'].f_min, equipment['SI']['default'].f_max,
equipment['SI']['default'].spacing),
'power': dbm2watt(equipment['SI']['default'].power_dbm),
'tx_power': None
}
params['tx_power'] = dbm2watt(equipment['SI']['default'].power_dbm)
if equipment['SI']['default'].tx_power_dbm is not None:
# use SI tx_power if present
params['tx_power'] = dbm2watt(equipment['SI']['default'].tx_power_dbm)
trx_params = trx_mode_params(equipment)
params.update(trx_params)
# use args_power instead of si
if args_power:
params['power'] = dbm2watt(float(args_power))
if equipment['SI']['default'].tx_power_dbm is None:
params['tx_power'] = params['power']
# use si as reference channel
reference_channel = PathRequest(**params)
# temporary till multiband design feat is available: do not design for L band
reference_channel.nb_channel = min(params['nb_channel'], automatic_nch(191.2e12, 196.0e12, params['spacing']))
if service_req:
# use service_req as reference channel with si tx_power if service_req tx_power is None
if service_req.tx_power is None:
service_req.tx_power = params['tx_power']
reference_channel = service_req
design_network(reference_channel, network, equipment, set_connector_losses=True, verbose=True)
if initial_spectrum:
params['nb_channel'] = len(initial_spectrum)
req = PathRequest(**params)
if service_req:
req = service_req
req.initial_spectrum = initial_spectrum
return network, req, reference_channel
def check_request_path_ids(rqs: List[PathRequest]):
"""check that request ids are unique. Non unique ids, may
mess the computation: better to stop the computation
"""
all_ids = [r.request_id for r in rqs]
if len(all_ids) != len(set(all_ids)):
for item in list(set(all_ids)):
all_ids.remove(item)
msg = f'Requests id {all_ids} are not unique'
logger.error(msg)
raise ValueError(msg)
def planning(network: DiGraph, equipment: dict, data: dict, redesign: bool = False) \
-> Tuple[List[OMS], list, list, List[PathRequest], List[Disjunction], List[ResultElement]]:
"""Run planning
data contain the service dict from json
redesign True means that network is redesign using each request as reference channel
when False it means that the design is made once and successive propagation use the settings
computed with this design.
"""
oms_list = build_oms_list(network, equipment)
rqs = requests_from_json(data, equipment)
# check that request ids are unique.
check_request_path_ids(rqs)
rqs = correct_json_route_list(network, rqs)
dsjn = disjunctions_from_json(data)
logger.info('List of disjunctions:\n%s', dsjn)
# need to warn or correct in case of wrong disjunction form
# disjunction must not be repeated with same or different ids
dsjn = deduplicate_disjunctions(dsjn)
logger.info('Aggregating similar requests')
rqs, dsjn = requests_aggregation(rqs, dsjn)
logger.info('The following services have been requested:\n%s', rqs)
# logger.info('Computing all paths with constraints for request %s', optical_path_result_id)
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
logger.info('Propagating on selected path')
propagatedpths, reversed_pths, reversed_propagatedpths = \
compute_path_with_disjunction(network, equipment, rqs, pths, redesign=redesign)
# Note that deepcopy used in compute_path_with_disjunction returns
# a list of nodes which are not belonging to network (they are copies of the node objects).
# so there can not be propagation on these nodes.
# Allowed user_policy are first_fit and 2partition
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
for i, rq in enumerate(rqs):
if hasattr(rq, 'OSNR') and rq.OSNR:
rq.osnr_with_sys_margin = rq.OSNR + equipment["SI"]["default"].sys_margins
# assumes that list of rqs and list of propgatedpths have same order
result = [ResultElement(rq, pth, rpth) for rq, pth, rpth in zip(rqs, propagatedpths, reversed_propagatedpths)]
return oms_list, propagatedpths, reversed_propagatedpths, rqs, dsjn, result
def transmission_simulation(equipment: dict, network: DiGraph, req: PathRequest, ref_req: PathRequest) \
-> Tuple[list, List[list], List[Union[float, int]], SpectralInformation]:
"""Run simulation and returms the propagation result for each power sweep iteration.
Args:
- equipment: a dictionary containing equipment information.
- network: network after being designed using ref_req. Any missing information (amp gain or delta_p) must have
been filled using ref_req as reference channel previuos to this function.
- req: channel to be propagated.
- ref_req: the reference channel used for filling missing information in the network.
In case of power sweep, network is redesigned using ref_req whose target input power in span is
updated with the power step.
Returns a tuple containing:
- path: last propagated path. Power sweep is not possible with gain mode (as gain targets are used)
- propagations: list of propagated path for each power iteration
- powers_dbm: list of power used for the power sweep
- infos: last propagated spectral information
"""
power_mode = equipment['Span']['default'].power_mode
logger.info('Power mode is set to %s=> it can be modified in eqpt_config.json - Span', power_mode)
# initial network is designed using ref_req. that is that any missing information (amp gain or delta_p) is filled
# using this ref_req.power, previous to any sweep requested later on.
pref_ch_db = watt2dbm(ref_req.power)
p_ch_db = watt2dbm(req.power)
path = compute_constrained_path(network, req)
power_range = [0]
if power_mode:
# power cannot be changed in gain mode
try:
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
power_range = list(linspace(p_start, p_stop, p_num))
except TypeError as e:
msg = 'invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]'
logger.error(msg)
raise exceptions.EquipmentConfigError(msg) from e
logger.info('Now propagating between %s and %s', req.source, req.destination)
propagations = []
powers_dbm = []
for dp_db in power_range:
ref_req.power = dbm2watt(pref_ch_db + dp_db)
req.power = dbm2watt(p_ch_db + dp_db)
# Power sweep is made to evaluate different span input powers, so redesign is mandatory for each power,
# but no need to redesign if there are no power sweep
if len(power_range) > 1:
design_network(ref_req, network.subgraph(path), equipment, set_connector_losses=False, verbose=False)
infos = propagate(path, req, equipment)
propagations.append(deepcopy(path))
powers_dbm.append(pref_ch_db + dp_db)
logger.info('\nChannels propagating: (Input optical power deviation in span = '
+ f'{pretty_summary_print(per_label_average(infos.delta_pdb_per_channel, infos.label))}dB,\n'
+ ' spacing = '
+ f'{pretty_summary_print(per_label_average(infos.slot_width * 1e-9, infos.label))}GHz,\n'
+ ' transceiver output power = '
+ f'{pretty_summary_print(per_label_average(watt2dbm(infos.tx_power), infos.label))}dBm,\n'
+ f' nb_channels = {infos.number_of_channels})')
if not power_mode:
logger.info('\n\tPropagating using gain targets: Input optical power deviation in span ignored')
return path, propagations, powers_dbm, infos

View File

@@ -1,3 +1,3 @@
'''
"""
Tracking :py:mod:`.request` for spectrum and their :py:mod:`.spectrum_assignment`.
'''
"""

View File

@@ -16,16 +16,19 @@ See: draft-ietf-teas-yang-path-computation-01.txt
"""
from collections import namedtuple, OrderedDict
from typing import List
from logging import getLogger
from networkx import (dijkstra_path, NetworkXNoPath,
all_simple_paths, shortest_simple_paths)
from networkx.utils import pairwise
from numpy import mean, argmin
from gnpy.core.elements import Transceiver, Roadm
from gnpy.core.utils import lin2db
from gnpy.core.info import create_input_spectral_information
from gnpy.core.elements import Transceiver, Roadm, Edfa, Multiband_amplifier
from gnpy.core.utils import lin2db, unique_ordered, find_common_range
from gnpy.core.info import create_input_spectral_information, carriers_to_spectral_information, \
demuxed_spectral_information, muxed_spectral_information, SpectralInformation
from gnpy.core import network as network_module
from gnpy.core.exceptions import ServiceError, DisjunctionError
import gnpy.core.ansi_escapes as ansi_escapes
from copy import deepcopy
from csv import writer
from math import ceil
@@ -35,15 +38,14 @@ LOGGER = getLogger(__name__)
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type'
' trx_mode nodes_list loose_list spacing power nb_channel f_min'
' f_max format baud_rate OSNR penalties bit_rate'
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot')
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot'
' equalization_offset_db, tx_power')
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link_diverse'
' node_diverse disjunctions_req')
class PathRequest:
""" the class that contains all attributes related to a request
"""
"""the class that contains all attributes related to a request"""
def __init__(self, *args, **params):
params = RequestParams(**params)
self.request_id = params.request_id
@@ -66,12 +68,15 @@ class PathRequest:
self.bit_rate = params.bit_rate
self.roll_off = params.roll_off
self.tx_osnr = params.tx_osnr
self.tx_power = params.tx_power
self.min_spacing = params.min_spacing
self.cost = params.cost
self.path_bandwidth = params.path_bandwidth
if params.effective_freq_slot is not None:
self.N = params.effective_freq_slot['N']
self.M = params.effective_freq_slot['M']
self.N = [s['N'] for s in params.effective_freq_slot]
self.M = [s['M'] for s in params.effective_freq_slot]
self.initial_spectrum = None
self.offset_db = params.equalization_offset_db
def __str__(self):
return '\n\t'.join([f'{type(self).__name__} {self.request_id}',
@@ -94,7 +99,8 @@ class PathRequest:
f'baud_rate:\t{temp} Gbaud',
f'bit_rate:\t{temp2} Gb/s',
f'spacing:\t{self.spacing * 1e-9} GHz',
f'power: \t{round(lin2db(self.power)+30, 2)} dBm',
f'power: \t{round(lin2db(self.power) + 30, 2)} dBm',
f'tx_power_dbm: \t{round(lin2db(self.tx_power) + 30, 2)} dBm',
f'nb channels: \t{self.nb_channel}',
f'path_bandwidth: \t{round(self.path_bandwidth * 1e-9, 2)} Gbit/s',
f'nodes-list:\t{self.nodes_list}',
@@ -103,8 +109,7 @@ class PathRequest:
class Disjunction:
""" the class that contains all attributes related to disjunction constraints
"""
"""the class that contains all attributes related to disjunction constraints"""
def __init__(self, *args, **params):
params = DisjunctionParams(**params)
@@ -149,8 +154,7 @@ class ResultElement:
@property
def detailed_path_json(self):
""" a function that builds path object for normal and blocking cases
"""
"""a function that builds path object for normal and blocking cases"""
index = 0
pro_list = []
for element in self.computed_path:
@@ -174,10 +178,10 @@ class ResultElement:
temp = {
'path-route-object': {
'index': index,
"label-hop": {
"N": self.path_request.N,
"M": self.path_request.M
},
"label-hop": [{
"N": n,
"M": m
} for n, m in zip(self.path_request.N, self.path_request.M)],
}
}
pro_list.append(temp)
@@ -206,11 +210,9 @@ class ResultElement:
@property
def path_properties(self):
""" a function that returns the path properties (metrics, crossed elements) into a dict
"""
"""a function that returns the path properties (metrics, crossed elements) into a dict"""
def path_metric(pth, req):
""" creates the metrics dictionary
"""
"""creates the metrics dictionary"""
return [
{
'metric-type': 'SNR-bandwidth',
@@ -252,8 +254,7 @@ class ResultElement:
@property
def pathresult(self):
""" create the result dictionnary (response for a request)
"""
"""create the result dictionnary (response for a request)"""
try:
if self.path_request.blocking_reason in BLOCKING_NOPATH:
response = {
@@ -291,7 +292,6 @@ def compute_constrained_path(network, req):
# been corrected and harmonized before
msg = (f'Request {req.request_id} malformed list of nodes: last node should '
'be destination trx')
LOGGER.critical(msg)
raise ValueError()
trx = [n for n in network if isinstance(n, Transceiver)]
@@ -301,15 +301,16 @@ def compute_constrained_path(network, req):
nodes_list = []
for node in req.nodes_list[:-1]:
nodes_list.append(next(el for el in network if el.uid == node))
total_path = explicit_path(nodes_list, source, destination, network)
if total_path is not None:
return total_path
try:
path_generator = shortest_simple_paths(network, source, destination, weight='weight')
total_path = next(path for path in path_generator if ispart(nodes_list, path))
except NetworkXNoPath:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH'
total_path = []
except StopIteration:
@@ -318,82 +319,115 @@ def compute_constrained_path(network, req):
# last node which is the transceiver)
# if all nodes i n node_list are LOOSE constraint, skip the constraints and find
# a path w/o constraints, else there is no possible path
print(f'{ansi_escapes.yellow}Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology{ansi_escapes.reset}')
LOGGER.warning(f'Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology')
if 'STRICT' not in req.loose_list[:-1]:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user_'
f'include node constraints{ansi_escapes.reset}')
LOGGER.info(msg)
print(f'constraint ignored')
msg = (f'Request {req.request_id} could not find a path with user_'
f'include node constraints. Constraint ignored')
LOGGER.warning(msg)
total_path = dijkstra_path(network, source, destination, weight='weight')
else:
# one STRICT makes the whole list STRICT
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH_WITH_CONSTRAINT'
total_path = []
return total_path
def filter_si(path: list, equipment: dict, si: SpectralInformation) -> SpectralInformation:
"""Filter spectral information based on the amplifiers common range"""
# First retrieve f_min, f_max spectrum according to amplifiers' spectrum on the path
common_range = find_elements_common_range(path, equipment)
# filter out frequencies that should not be created
filtered_si = []
for band in common_range:
temp = demuxed_spectral_information(si, band)
if temp:
filtered_si.append(temp)
if not filtered_si:
raise ValueError('Defined propagation band does not match amplifiers band.')
return muxed_spectral_information(filtered_si)
def propagate(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
"""propagates signals in each element according to initial spectrum set by user
Spectrum is specified in request through f_min, f_max and spacing, or initial_spectrum
and amps frequency band on the path is used to filter out frequencies"""
# generates spectrum based on request
if req.initial_spectrum is not None:
si = carriers_to_spectral_information(initial_spectrum=req.initial_spectrum, power=req.power)
else:
si = create_input_spectral_information(
f_min=req.f_min, f_max=req.f_max, roll_off=req.roll_off, baud_rate=req.baud_rate,
spacing=req.spacing, tx_osnr=req.tx_osnr, tx_power=req.tx_power, delta_pdb=req.offset_db)
# filter out frequencies that should not be created
si = filter_si(path, equipment, si)
roadm_osnr = []
for i, el in enumerate(path):
if isinstance(el, Roadm):
si = el(si, degree=path[i+1].uid)
si = el(si, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
roadm_osnr.append(el.get_impairment('roadm-osnr', si.frequency,
from_degree=path[i - 1].uid, degree=path[i + 1].uid))
else:
si = el(si)
path[0].update_snr(req.tx_osnr)
path[0].update_snr(si.tx_osnr)
path[0].calc_penalties(req.penalties)
if any(isinstance(el, Roadm) for el in path):
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
else:
path[-1].update_snr(req.tx_osnr)
roadm_osnr.append(si.tx_osnr)
path[-1].update_snr(*roadm_osnr)
path[-1].calc_penalties(req.penalties)
return si
def propagate_and_optimize_mode(path, req, equipment):
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
# step 1: create an ordered list of modes based on baudrate
baudrate_to_explore = list(set([this_mode['baud_rate']
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# step 1: create an ordered list of modes based on baudrate and power offset
# order higher baudrate with higher power offset first
baudrate_offset_to_explore = list(set([(this_mode['baud_rate'], this_mode['equalization_offset_db'])
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# TODO be carefull on limits cases if spacing very close to req spacing eg 50.001 50.000
baudrate_to_explore = sorted(baudrate_to_explore, reverse=True)
if baudrate_to_explore:
baudrate_offset_to_explore = sorted(baudrate_offset_to_explore, reverse=True)
if baudrate_offset_to_explore:
# at least 1 baudrate can be tested wrt spacing
for this_br in baudrate_to_explore:
for (this_br, this_offset) in baudrate_offset_to_explore:
modes_to_explore = [this_mode for this_mode in equipment['Transceiver'][req.tsp].mode
if this_mode['baud_rate'] == this_br and
float(this_mode['min_spacing']) <= req.spacing]
if this_mode['baud_rate'] == this_br
and float(this_mode['min_spacing']) <= req.spacing]
modes_to_explore = sorted(modes_to_explore,
key=lambda x: x['bit_rate'], reverse=True)
# print(modes_to_explore)
key=lambda x: (x['bit_rate'], x['equalization_offset_db']), reverse=True)
# step2: computes propagation for each baudrate: stop and select the first that passes
# TODO: the case of roll of is not included: for now use SI one
# TODO: the case of roll off is not included: for now use SI one
# TODO: if the loop in mode optimization does not have a feasible path, then bugs
spc_info = create_input_spectral_information(req.f_min, req.f_max,
equipment['SI']['default'].roll_off,
this_br, req.power, req.spacing)
if req.initial_spectrum is not None:
# this case is not yet handled: spectrum can not be defined for the path-request-run function
# and this function is only called in this case. so coming here should not be considered yet.
msg = f'Request: {req.request_id} contains a unexpected initial_spectrum.'
raise ServiceError(msg)
spc_info = create_input_spectral_information(f_min=req.f_min, f_max=req.f_max,
roll_off=equipment['SI']['default'].roll_off,
baud_rate=this_br, spacing=req.spacing,
delta_pdb=this_offset, tx_osnr=req.tx_osnr,
tx_power=req.tx_power)
spc_info = filter_si(path, equipment, spc_info)
roadm_osnr = []
for i, el in enumerate(path):
if isinstance(el, Roadm):
spc_info = el(spc_info, degree=path[i+1].uid)
spc_info = el(spc_info, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
roadm_osnr.append(el.get_impairment('roadm-osnr', spc_info.frequency,
from_degree=path[i - 1].uid, degree=path[i + 1].uid))
else:
spc_info = el(spc_info)
for this_mode in modes_to_explore:
if path[-1].snr is not None:
path[0].update_snr(this_mode['tx_osnr'])
path[0].calc_penalties(this_mode['penalties'])
if any(isinstance(el, Roadm) for el in path):
path[-1].update_snr(this_mode['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
else:
path[-1].update_snr(this_mode['tx_osnr'])
roadm_osnr.append(this_mode['tx_osnr'])
path[-1].update_snr(*roadm_osnr)
# remove the tx_osnr from roadm_osnr list for the next iteration
del roadm_osnr[-1]
path[-1].calc_penalties(this_mode['penalties'])
if round(min(path[-1].snr_01nm - path[-1].total_penalty), 2) \
> this_mode['OSNR'] + equipment['SI']['default'].sys_margins:
@@ -407,22 +441,19 @@ def propagate_and_optimize_mode(path, req, equipment):
# returns the last propagated path and mode
msg = f'\tWarning! Request {req.request_id}: no mode satisfies path SNR requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_MODE'
return path, last_explored_mode
else:
# no baudrate satisfying spacing
msg = f'\tWarning! Request {req.request_id}: no baudrate satisfies spacing requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_BAUDRATE_WITH_SPACING'
return [], None
def jsontopath_metric(path_metric):
""" a functions that reads resulting metric from json string
"""
"""a functions that reads resulting metric from json string"""
output_snr = next(e['accumulative-value']
for e in path_metric if e['metric-type'] == 'SNR-0.1nm')
output_snrbandwidth = next(e['accumulative-value']
@@ -440,9 +471,7 @@ def jsontopath_metric(path_metric):
def jsontoparams(my_p, tsp, mode, equipment):
""" a function that derives optical params from transponder type and mode
supports the no mode case
"""
"""a function that derives optical params from transponder type and mode supports the no mode case"""
temp = []
for elem in my_p['path-properties']['path-route-objects']:
if 'num-unnum-hop' in elem['path-route-object']:
@@ -452,8 +481,8 @@ def jsontoparams(my_p, tsp, mode, equipment):
temp2 = []
for elem in my_p['path-properties']['path-route-objects']:
if 'label-hop' in elem['path-route-object'].keys():
temp2.append(f'{elem["path-route-object"]["label-hop"]["N"]}, ' +
f'{elem["path-route-object"]["label-hop"]["M"]}')
temp2.append(f'{[e["N"] for e in elem["path-route-object"]["label-hop"]]}, '
+ f'{[e["M"] for e in elem["path-route-object"]["label-hop"]]}')
# OrderedDict.fromkeys returns the unique set of strings.
# TODO: if spectrum changes along the path, we should be able to give the segments
# eg for regeneration case
@@ -477,10 +506,10 @@ def jsontoparams(my_p, tsp, mode, equipment):
def jsontocsv(json_data, equipment, fileout):
""" reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""
mywriter = writer(fileout)
mywriter.writerow(('response-id', 'source', 'destination', 'path_bandwidth', 'Pass?',
@@ -815,13 +844,13 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
if not ispart(allpaths[id(pth)].req.nodes_list, pth):
testispartok = False
if 'STRICT' in allpaths[id(pth)].req.loose_list:
LOGGER.info(f'removing solution from candidate paths\n{pth}')
LOGGER.debug(f'removing solution from candidate paths\n{pth}')
testispartnokloose = False
break
if testispartok:
temp.append(sol)
elif testispartnokloose:
LOGGER.info(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
LOGGER.debug(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
alternatetemp.append(sol)
if temp:
candidates[this_d.disjunction_id] = temp
@@ -843,9 +872,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# remove duplicated candidates
candidates = remove_candidate(candidates, allpaths, allpaths[id(pth)].req, pth)
else:
msg = f'No disjoint path found with added constraint'
LOGGER.critical(msg)
print(f'{msg}\nComputation stopped.')
msg = 'No disjoint path found with added constraint\nComputation stopped.'
# TODO in this case: replay step 5 with the candidate without constraints
raise DisjunctionError(msg)
@@ -866,8 +893,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
def isdisjoint(pth1, pth2):
""" returns 0 if disjoint
"""
"""returns 0 if disjoint"""
edge1 = list(pairwise(pth1))
edge2 = list(pairwise(pth2))
for edge in edge1:
@@ -877,9 +903,9 @@ def isdisjoint(pth1, pth2):
def find_reversed_path(pth):
""" select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""
# TODO add some indication on elements to indicate from which other they
# are the reversed direction. This is partly done with oms indication
@@ -902,9 +928,8 @@ def find_reversed_path(pth):
# concatenation should be [roadma el1 el2 roadmb el3 el4 roadmc]
reversed_path = list(OrderedDict.fromkeys(reversed_path))
else:
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' +\
' can not handle unidir topology. TO DO.'
LOGGER.critical(msg)
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' \
+ ' can not handle unidir topology. TO DO.'
raise ValueError(msg)
reversed_path.append(pth[0])
@@ -912,9 +937,7 @@ def find_reversed_path(pth):
def ispart(ptha, pthb):
""" the functions takes two paths a and b and retrns True
if all a elements are part of b and in the same order
"""
"""the functions takes two paths a and b and retrns True if all a elements are part of b and in the same order"""
j = 0
for elem in ptha:
if elem in pthb:
@@ -928,8 +951,7 @@ def ispart(ptha, pthb):
def remove_candidate(candidates, allpaths, rqst, pth):
""" filter duplicate candidates
"""
"""filter duplicate candidates"""
# print(f'coucou {rqst.request_id}')
for key, candidate in candidates.items():
temp = candidate.copy()
@@ -944,8 +966,7 @@ def remove_candidate(candidates, allpaths, rqst, pth):
def compare_reqs(req1, req2, disjlist):
""" compare two requests: returns True or False
"""
"""compare two requests: returns True or False"""
dis1 = [d for d in disjlist if req1.request_id in d.disjunctions_req]
dis2 = [d for d in disjlist if req2.request_id in d.disjunctions_req]
same_disj = False
@@ -978,28 +999,32 @@ def compare_reqs(req1, req2, disjlist):
req1.format == req2.format and \
req1.OSNR == req2.OSNR and \
req1.roll_off == req2.roll_off and \
same_disj and \
getattr(req1, 'N', None) is None and getattr(req2, 'N', None) is None and \
getattr(req1, 'M', None) is None and getattr(req2, 'M', None) is None:
req1.tx_power == req2.tx_power and \
same_disj:
return True
else:
return False
def requests_aggregation(pathreqlist, disjlist):
""" this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
"""this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
If transponder mode is defined and identical, then also agregates demands.
"""
# todo maybe add conditions on mode ??, spacing ...
# currently if undefined takes the default values
local_list = pathreqlist.copy()
for req in pathreqlist:
for this_r in local_list:
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist):
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist) and\
this_r.tsp_mode is not None:
# aggregate
this_r.path_bandwidth += req.path_bandwidth
this_r.N = this_r.N + req.N
this_r.M = this_r.M + req.M
temp_r_id = this_r.request_id
this_r.request_id = ' | '.join((this_r.request_id, req.request_id))
# remove request from list
local_list.remove(req)
# todo change also disjunction req with new demand
@@ -1016,23 +1041,22 @@ def requests_aggregation(pathreqlist, disjlist):
def correct_json_route_list(network, pathreqlist):
""" all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""
all_uid = [n.uid for n in network.nodes()]
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
for pathreq in pathreqlist:
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' source : {pathreq.source}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' source : {pathreq.source}.'
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' destination : {pathreq.destination}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' destination : {pathreq.destination}.'
raise ServiceError(msg)
# silently remove source and dest nodes from the list
@@ -1051,24 +1075,21 @@ def correct_json_route_list(network, pathreqlist):
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}invalid route node specified:\n\t\'{n_id}\',' +\
f' could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
LOGGER.info(msg)
msg = f'invalid route node specified:\n\t\'{n_id}\',' \
+ ' could not use it as constraint, skipped!'
LOGGER.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}could not find node:\n\t \'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'could not find node:\n\t \'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist
def deduplicate_disjunctions(disjn):
""" clean disjunctions to remove possible repetition
"""
"""clean disjunctions to remove possible repetition"""
local_disjn = disjn.copy()
for elem in local_disjn:
for dis_elem in local_disjn:
@@ -1078,23 +1099,28 @@ def deduplicate_disjunctions(disjn):
return local_disjn
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
""" use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist, redesign=False):
"""use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
"""
path_res_list = []
reversed_path_res_list = []
propagated_reversed_path_res_list = []
total_nb_requests = len(pathreqlist)
if redesign:
LOGGER.warning('Redesign the network for each request channel, '
+ 'using the request channel as the reference channel for the design.')
for i, pathreq in enumerate(pathreqlist):
# use the power specified in requests but might be different from the one
# specified for design the power is an optional parameter for requests
# definition if optional, use the one defines in eqt_config.json
print(f'request {pathreq.request_id}')
print(f'Computing path from {pathreq.source} to {pathreq.destination}')
# adding first node to be clearer on the output
print(f'with path constraint: {[pathreq.source] + pathreq.nodes_list}')
msg = f'\n\trequest {pathreq.request_id}\n' \
+ f'\tComputing path from {pathreq.source} to {pathreq.destination}\n' \
+ f'\twith path constraint: {[pathreq.source] + pathreq.nodes_list}'
# # adding first node to be clearer on the output
# pathlist[i] contains the whole path information for request i
# last element is a transciver and where the result of the propagation is
@@ -1103,8 +1129,19 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# elements to simulate performance, several demands having the same destination
# may use the same transponder for the performance simulation. This is why
# we use deepcopy: to ensure that each propagation is recorded and not overwritten
# reversed path is needed for correct spectrum assignment
if redesign:
# this is the legacy case where network was automatically redesigned using the
# request channel as reference (nb and power used for amplifiers total power out)
reversed_path = []
if pathlist[i]:
reversed_path = find_reversed_path(pathlist[i])
network_nodes_for_redesign = pathlist[i] + reversed_path
network_module.design_network(pathreq, network.subgraph(network_nodes_for_redesign), equipment,
set_connector_losses=False, verbose=False)
total_path = deepcopy(pathlist[i])
print(f'Computed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}')
msg = msg + f'\n\tComputed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}'
LOGGER.info(msg)
# for debug
# print(f'{pathreq.baud_rate} {pathreq.power} {pathreq.spacing} {pathreq.nb_channel}')
if total_path:
@@ -1115,14 +1152,12 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
snr01nm_with_penalty = total_path[-1].snr_01nm - total_path[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}' +\
f'\n\tCD penalty = {round(total_path[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
f'\n\tPMD penalty = {round(total_path[-1].penalties["pmd"][min_ind], 2)}' +\
f'\n\trequired osnr = {pathreq.OSNR}' +\
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
print(msg)
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(total_path, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
else:
@@ -1142,6 +1177,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
pathreq.OSNR = mode['OSNR']
pathreq.tx_osnr = mode['tx_osnr']
pathreq.bit_rate = mode['bit_rate']
pathreq.penalties = mode['penalties']
pathreq.offset_db = mode['equalization_offset_db']
# other blocking reason should not appear at this point
except AttributeError:
pathreq.baud_rate = mode['baud_rate']
@@ -1150,28 +1187,28 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
pathreq.OSNR = mode['OSNR']
pathreq.tx_osnr = mode['tx_osnr']
pathreq.bit_rate = mode['bit_rate']
pathreq.penalties = mode['penalties']
pathreq.offset_db = mode['equalization_offset_db']
# reversed path is needed for correct spectrum assignment
reversed_path = find_reversed_path(pathlist[i])
if pathreq.bidir and pathreq.baud_rate is not None:
# Both directions requested, and a feasible mode was found
rev_p = deepcopy(reversed_path)
print(f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}')
print(f'\tPath (roadsm) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n')
msg = f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}\n' \
+ f'\tPath (roadms) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n'
LOGGER.info(msg)
propagate(rev_p, pathreq, equipment)
propagated_reversed_path = rev_p
snr01nm_with_penalty = rev_p[-1].snr_01nm - rev_p[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}' +\
f'\n\tCD penalty = {round(rev_p[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
f'\n\tPMD penalty = {round(rev_p[-1].penalties["pmd"][min_ind], 2)}' +\
f'\n\trequired osnr = {pathreq.OSNR}' +\
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
print(msg)
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.destination} to {pathreq.source} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(rev_p, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
# TODO selection of mode should also be on reversed direction !!
if not hasattr(pathreq, 'blocking_reason'):
@@ -1179,9 +1216,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
else:
propagated_reversed_path = []
else:
msg = 'Total path is empty. No propagation'
print(msg)
LOGGER.info(msg)
msg = f'Request {pathreq.request_id}: Total path is empty. No propagation'
LOGGER.warning(msg)
reversed_path = []
propagated_reversed_path = []
@@ -1189,12 +1225,12 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
reversed_path_res_list.append(reversed_path)
propagated_reversed_path_res_list.append(propagated_reversed_path)
# print to have a nice output
print('')
return path_res_list, reversed_path_res_list, propagated_reversed_path_res_list
def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=0.0125e12):
""" Compute the number of required wavelengths and the M value (number of consumed slots)
"""Compute the number of required wavelengths and the M value (number of consumed slots)
Each wavelength consumes one `spacing`, and the result is rounded up to consume a natural number of slots.
>>> compute_spectrum_slot_vs_bandwidth(400e9, 50e9, 200e9)
@@ -1203,3 +1239,65 @@ def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=
number_of_wavelengths = ceil(bandwidth / bit_rate)
total_number_of_slots = ceil(spacing / slot_width) * number_of_wavelengths
return number_of_wavelengths, total_number_of_slots
def _penalty_msg(total_path, msg, min_ind):
"""formatting helper for reporting unfeasible paths
The penalty info are optional, so this checks that penalty exists before creating a message."""
penalty_dict = {
'pdl': 'PDL',
'chromatic_dispersion': 'CD',
'pmd': 'PMD'}
for key, pretty in penalty_dict.items():
if key in total_path[-1].penalties:
msg += f'\n\t{pretty} penalty = {round(total_path[-1].penalties[key][min_ind], 2)}'
else:
msg += f'\n\t{pretty} penalty not evaluated'
return msg
def is_adjacent(oms1, oms2):
""" oms1's egress ROADM is oms2's ingress ROADM
"""
return oms1.el_list[-1] == oms2.el_list[0]
def explicit_path(node_list, source, destination, network):
""" if list of nodes leads to adjacent oms, then means that the path is explicit, and no need to compute
the function returns the explicit path (including source and destination ROADMs)
"""
path_oms = []
for elem in node_list:
if hasattr(elem, 'oms'):
path_oms.append(elem.oms)
if not path_oms:
return None
path_oms = unique_ordered(path_oms)
try:
next_node = next(network.successors(source))
source_roadm = next_node if isinstance(next_node, Roadm) else source
previous_node = next(network.predecessors(destination))
destination_roadm = previous_node if isinstance(previous_node, Roadm) else destination
if not (path_oms[0].el_list[0] == source_roadm and path_oms[-1].el_list[-1] == destination_roadm):
return None
except StopIteration:
return None
oms0 = path_oms[0]
path = [source] + oms0.el_list
for oms in path_oms[1:]:
if not is_adjacent(oms0, oms):
return None
oms0 = oms
path.extend(oms.el_list)
path.append(destination)
return unique_ordered(path)
def find_elements_common_range(el_list: list, equipment: dict) -> List[dict]:
"""Find the common frequency range of amps of a given list of elements (for example an OMS or a path)
If there are no amplifiers in the path, then use the SI
"""
amp_bands = [n.params.bands for n in el_list if isinstance(n, (Edfa, Multiband_amplifier))]
return find_common_range(amp_bands, equipment['SI']['default'].f_min, equipment['SI']['default'].f_max)

View File

@@ -15,28 +15,31 @@ element/oms correspondace
from collections import namedtuple
from logging import getLogger
from gnpy.core.elements import Roadm, Transceiver
from gnpy.core.elements import Roadm, Transceiver, Edfa, Multiband_amplifier
from gnpy.core.exceptions import ServiceError, SpectrumError
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth
from gnpy.core.utils import order_slots, restore_order
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth, find_elements_common_range
LOGGER = getLogger(__name__)
GUARDBAND = 25e9
class Bitmap:
""" records the spectrum occupation
"""
"""records the spectrum occupation"""
def __init__(self, f_min, f_max, grid, guardband=0.15e12, bitmap=None):
# n is the min index including guardband. Guardband is require to be sure
def __init__(self, f_min, f_max, grid, guardband=GUARDBAND, bitmap=None):
# n is the min index including guardband. Guardband is required to be sure
# that a channel can be assigned with center frequency fmin (means that its
# slot occupation goes below freq_index_min
n_min = frequency_to_n(f_min - guardband, grid)
n_max = frequency_to_n(f_max + guardband, grid) - 1
n_min = frequency_to_n(f_min, grid)
n_max = frequency_to_n(f_max, grid)
self.n_min = n_min
self.n_max = n_max
self.freq_index_min = frequency_to_n(f_min)
self.freq_index_max = frequency_to_n(f_max)
self.freq_index_min = frequency_to_n(f_min + guardband)
self.freq_index_max = frequency_to_n(f_max - guardband)
self.freq_index = list(range(n_min, n_max + 1))
self.guardband = guardband
if bitmap is None:
self.bitmap = [1] * (n_max - n_min + 1)
elif len(bitmap) == len(self.freq_index):
@@ -45,26 +48,22 @@ class Bitmap:
raise SpectrumError(f'bitmap is not consistant with f_min{f_min} - n: {n_min} and f_max{f_max}- n :{n_max}')
def getn(self, i):
""" converts the n (itu grid) into a local index
"""
"""converts the n (itu grid) into a local index"""
return self.freq_index[i]
def geti(self, nvalue):
""" converts the local index into n (itu grid)
"""
"""converts the local index into n (itu grid)"""
return self.freq_index.index(nvalue)
def insert_left(self, newbitmap):
""" insert bitmap on the left to align oms bitmaps if their start frequencies are different
"""
"""insert bitmap on the left to align oms bitmaps if their start frequencies are different"""
self.bitmap = newbitmap + self.bitmap
temp = list(range(self.n_min - len(newbitmap), self.n_min))
self.freq_index = temp + self.freq_index
self.n_min = self.freq_index[0]
def insert_right(self, newbitmap):
""" insert bitmap on the right to align oms bitmaps if their stop frequencies are different
"""
"""insert bitmap on the right to align oms bitmaps if their stop frequencies are different"""
self.bitmap = self.bitmap + newbitmap
self.freq_index = self.freq_index + list(range(self.n_max, self.n_max + len(newbitmap)))
self.n_max = self.freq_index[-1]
@@ -75,8 +74,8 @@ OMSParams = namedtuple('OMSParams', 'oms_id el_id_list el_list')
class OMS:
""" OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""
def __init__(self, *args, **params):
@@ -87,7 +86,6 @@ class OMS:
self.spectrum_bitmap = []
self.nb_channels = 0
self.service_list = []
# TODO
def __str__(self):
return '\n\t'.join([f'{type(self).__name__} {self.oms_id}',
@@ -98,36 +96,28 @@ class OMS:
f'{self.el_id_list[0]} - {self.el_id_list[-1]}', '\n'])
def add_element(self, elem):
""" records oms elements
"""
"""records oms elements"""
self.el_id_list.append(elem.uid)
self.el_list.append(elem)
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None,
grid=0.00625e12):
""" frequencies expressed in Hz
def update_spectrum(self, f_min, f_max, guardband=GUARDBAND, existing_spectrum=None, grid=0.00625e12):
"""Frequencies expressed in Hz.
Add 150 GHz margin to enable a center channel on f_min
Use ITU-T G694.1 Flexible DWDM grid definition
For the flexible DWDM grid, the allowed frequency slots have a nominal central frequency (in THz) defined by:
193.1 + n × 0.00625 where n is a positive or negative integer including 0
and 0.00625 is the nominal central frequency granularity in THz
and a slot width defined by:
12.5 × m where m is a positive integer and 12.5 is the slot width granularity in GHz.
Any combination of frequency slots is allowed as long as no two frequency slots overlap.
If bitmap is not None, then use it: Bitmap checks its consistency with f_min f_max
else a brand new bitmap is created
"""
if existing_spectrum is None:
# add some 150 GHz margin to enable a center channel on f_min
# use ITU-T G694.1
# Flexible DWDM grid definition
# For the flexible DWDM grid, the allowed frequency slots have a nominal
# central frequency (in THz) defined by:
# 193.1 + n × 0.00625 where n is a positive or negative integer including 0
# and 0.00625 is the nominal central frequency granularity in THz
# and a slot width defined by:
# 12.5 × m where m is a positive integer and 12.5 is the slot width granularity in
# GHz.
# Any combination of frequency slots is allowed as long as no two frequency
# slots overlap.
# TODO : add explaination on that / parametrize ....
self.spectrum_bitmap = Bitmap(f_min, f_max, grid, guardband)
# print(len(self.spectrum_bitmap.bitmap))
self.spectrum_bitmap = Bitmap(f_min=f_min, f_max=f_max, grid=grid, guardband=guardband,
bitmap=existing_spectrum)
def assign_spectrum(self, nvalue, mvalue):
""" change oms spectrum to mark spectrum assigned
"""
"""change oms spectrum to mark spectrum assigned"""
if not isinstance(nvalue, int):
raise SpectrumError(f'N must be a signed integer, got {nvalue}')
if not isinstance(mvalue, int):
@@ -146,16 +136,16 @@ class OMS:
self.spectrum_bitmap.bitmap[self.spectrum_bitmap.geti(startn):self.spectrum_bitmap.geti(stopn) + 1] = [0] * (stopn - startn + 1)
def add_service(self, service_id, nb_wl):
""" record service and mark spectrum as occupied
"""
"""record service and mark spectrum as occupied"""
self.service_list.append(service_id)
self.nb_channels += nb_wl
def frequency_to_n(freq, grid=0.00625e12):
""" converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> frequency_to_n(193.1375e12)
6
@@ -167,9 +157,10 @@ def frequency_to_n(freq, grid=0.00625e12):
def nvalue_to_frequency(nvalue, grid=0.00625e12):
""" converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nvalue_to_frequency(6)
193137500000000.0
@@ -181,17 +172,17 @@ def nvalue_to_frequency(nvalue, grid=0.00625e12):
def mvalue_to_slots(nvalue, mvalue):
""" convert center n an m into start and stop n
"""
"""convert center n an m into start and stop n"""
startn = nvalue - mvalue
stopn = nvalue + mvalue - 1
return startn, stopn
def slots_to_m(startn, stopn):
""" converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nval, mval = slots_to_m(6, 20)
>>> nval
@@ -206,10 +197,11 @@ def slots_to_m(startn, stopn):
def m_to_freq(nvalue, mvalue, grid=0.00625e12):
""" converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> fstart, fstop = m_to_freq(13, 7)
>>> fstart
@@ -225,9 +217,7 @@ def m_to_freq(nvalue, mvalue, grid=0.00625e12):
def align_grids(oms_list):
""" used to apply same grid to all oms : same starting n, stop n and slot size
out of grid slots are set to 0
"""
"""Used to apply same grid to all oms : same starting n, stop n and slot size. Out of grid slots are set to 0."""
n_min = min([o.spectrum_bitmap.n_min for o in oms_list])
n_max = max([o.spectrum_bitmap.n_max for o in oms_list])
for this_o in oms_list:
@@ -238,17 +228,60 @@ def align_grids(oms_list):
return oms_list
def find_network_freq_range(network, equipment):
"""Find the lowest freq from amps and highest freq among all amps to determine the resulting bitmap
"""
amp_bands = [band for n in network.nodes() if isinstance(n, (Edfa, Multiband_amplifier)) for band in n.params.bands]
min_frequencies = [a['f_min'] for a in amp_bands]
max_frequencies = [a['f_max'] for a in amp_bands]
return min(min_frequencies), max(max_frequencies)
def create_oms_bitmap(oms, equipment, f_min, f_max, guardband, grid):
"""Find the highest low freq from oms amps and lowest high freq among oms amps to determine
the possible bitmap window.
f_min and f_max represent the useable spectrum (not the useable center frequencies)
ie n smaller than frequency_to_n(min_freq, grid) are not useable
"""
n_min = frequency_to_n(f_min, grid)
n_max = frequency_to_n(f_max, grid) - 1
common_range = find_elements_common_range(oms.el_list, equipment)
band0 = common_range[0]
band0_n_min = frequency_to_n(band0['f_min'], grid)
band0_n_max = frequency_to_n(band0['f_max'], grid)
bitmap = [0] * (band0_n_min - n_min) + [1] * (band0_n_max - band0_n_min + 1)
i = 1
while i < len(common_range):
band = common_range[i]
band_n_min = frequency_to_n(band['f_min'], grid)
band_n_max = frequency_to_n(band['f_max'], grid)
bitmap = bitmap + [0] * (band_n_min - band0_n_max - 1) + [1] * (band_n_max - band_n_min + 1)
band0_n_max = band_n_max
i += 1
bitmap = bitmap + [0] * (n_max - band0_n_max)
return bitmap
def build_oms_list(network, equipment):
""" initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""
oms_id = 0
oms_list = []
for node in [n for n in network.nodes() if isinstance(n, Roadm)]:
# identify all vertices of OMS: of course ROADM, but aso links to external chassis transponders
oms_vertices = [n for n in network.nodes() if isinstance(n, Roadm)] +\
[n for n in network.nodes() if isinstance(n, Transceiver)
and not isinstance(next(network.successors(n)), Roadm)]
# determine the size of the bitmap common to all the omses: find min and max frequencies of all amps
# in the network. These gives the band not the center frequency. Thhen we use a reference channel
# slot width (50GHz) to set the f_min, f_max
f_min, f_max = find_network_freq_range(network, equipment)
for node in oms_vertices:
for edge in network.edges([node]):
if not isinstance(edge[1], Transceiver):
nd_in = edge[0] # nd_in is a Roadm
@@ -282,8 +315,9 @@ def build_oms_list(network, equipment):
nd_out.oms_list = []
nd_out.oms_list.append(oms_id)
oms.update_spectrum(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, grid=0.00625e12)
bitmap = create_oms_bitmap(oms, equipment, f_min=f_min, f_max=f_max, guardband=GUARDBAND,
grid=0.00625e12)
oms.update_spectrum(f_min, f_max, guardband=GUARDBAND, grid=0.00625e12, existing_spectrum=bitmap)
# oms.assign_spectrum(13,7) gives back (193137500000000.0, 193225000000000.0)
# as in the example in the standard
# oms.assign_spectrum(13,7)
@@ -296,8 +330,9 @@ def build_oms_list(network, equipment):
def reversed_oms(oms_list):
""" identifies reversed OMS
only applicable for non parallel OMS
"""identifies reversed OMS
only applicable for non parallel OMS
"""
for oms in oms_list:
has_reversed = False
@@ -322,28 +357,42 @@ def bitmap_sum(band1, band2):
return res
def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
# use indexes instead of ITU-T n values
def build_path_oms_id_list(pth):
path_oms = []
for elem in pth:
if not isinstance(elem, Roadm) and not isinstance(elem, Transceiver):
# only edfa, fused and fibers have oms_id attribute
path_oms.append(elem.oms_id)
# remove duplicate oms_id, order is not important
path_oms = list(set(path_oms))
# assuming all oms have same freq index
if not path_oms:
candidate = (None, None, None)
return candidate, path_oms
freq_index = oms_list[path_oms[0]].spectrum_bitmap.freq_index
freq_index_min = oms_list[path_oms[0]].spectrum_bitmap.freq_index_min
freq_index_max = oms_list[path_oms[0]].spectrum_bitmap.freq_index_max
return list(set(path_oms))
freq_availability = oms_list[path_oms[0]].spectrum_bitmap.bitmap
def aggregate_oms_bitmap(path_oms, oms_list):
spectrum = oms_list[path_oms[0]].spectrum_bitmap
bitmap = spectrum.bitmap
# assuming all oms have same freq indices
for oms in path_oms[1:]:
freq_availability = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, freq_availability)
bitmap = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, bitmap)
params = {
'oms_id': 0,
'el_id_list': 0,
'el_list': []
}
freq_min = nvalue_to_frequency(spectrum.n_min)
freq_max = nvalue_to_frequency(spectrum.n_max)
aggregate_oms = OMS(**params)
aggregate_oms.update_spectrum(freq_min, freq_max, grid=0.00625e12, guardband=spectrum.guardband,
existing_spectrum=bitmap)
return aggregate_oms
def spectrum_selection(test_oms, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
freq_index = test_oms.spectrum_bitmap.freq_index
freq_index_min = test_oms.spectrum_bitmap.freq_index_min
freq_index_max = test_oms.spectrum_bitmap.freq_index_max
freq_availability = test_oms.spectrum_bitmap.bitmap
if requested_n is None:
# avoid slots reserved on the edge 0.15e-12 on both sides -> 24
candidates = [(freq_index[i] + requested_m, freq_index[i], freq_index[i] + 2 * requested_m - 1)
@@ -354,29 +403,36 @@ def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
candidate = select_candidate(candidates, policy='first_fit')
else:
i = oms_list[path_oms[0]].spectrum_bitmap.geti(requested_n)
# print(f'N {requested_n} i {i}')
# print(freq_availability[i-m:i+m] )
# print(freq_index[i-m:i+m])
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m) and
freq_index[i - requested_m] >= freq_index_min
i = test_oms.spectrum_bitmap.geti(requested_n)
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m)
and freq_index[i - requested_m] >= freq_index_min
and freq_index[i + requested_m - 1] <= freq_index_max):
# candidate is the triplet center_n, startn and stopn
candidate = (requested_n, requested_n - requested_m, requested_n + requested_m - 1)
else:
candidate = (None, None, None)
# print("coucou11")
# print(candidate)
# print(freq_availability[321:321+2*m])
# a = [i+321 for i in range(2*m)]
# print(a)
# print(candidate)
return candidate, path_oms
return candidate
def determine_slot_numbers(test_oms, requested_n, required_m, per_channel_m):
"""determines max availability around requested_n. requested_n should not be None"""
bitmap = test_oms.spectrum_bitmap
freq_index = bitmap.freq_index
freq_index_min = bitmap.freq_index_min
freq_index_max = bitmap.freq_index_max
freq_availability = bitmap.bitmap
center_i = bitmap.geti(requested_n)
i = per_channel_m
while (freq_availability[center_i - i:center_i + i] == [1] * (2 * i)
and freq_index[center_i - i] >= freq_index_min
and freq_index[center_i + i - 1] <= freq_index_max
and i <= required_m):
i += per_channel_m
return i - per_channel_m
def select_candidate(candidates, policy):
""" selects a candidate among all available spectrum
"""
"""selects a candidate among all available spectrum"""
if policy == 'first_fit':
if candidates:
return candidates[0]
@@ -386,44 +442,112 @@ def select_candidate(candidates, policy):
raise ServiceError('Only first_fit spectrum assignment policy is implemented.')
def compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m, policy='first_fit'):
""" based on requested path_bandwidth fill in M=None values with uint values, using per_channel_m
and center frequency, with first fit strategy. The function checks the available spectrum but check
consistencies among M values of the request, but not with other requests.
For example, if request is for 32 slots corresponding to 8 x 4 slots of 32Gbauds channels,
the following frequency slots will result in the following assignment
N = 0, 8, 16, 32 -> 0, 8, 16, 32
M = 8, None, 8, None -> 8, 8, 8, 8
N = 0, 8, 16, 32 -> 0, , 16
M = None, None, 8, None -> 24, , 8
"""
selected_m = []
selected_n = []
remaining_slots_to_serve = required_m
# order slots for the computation: assign biggest m first
rq_N, rq_M, order = order_slots([{'N': n, 'M': m} for n, m in zip(rq.N, rq.M)])
# Create an oms that represents current assignments of all oms listed in path_oms, and test N and M on it.
# If M is defined, checks that proposed N, M is free
test_oms = aggregate_oms_bitmap(path_oms, oms_list)
for n, m in zip(rq_N, rq_M):
if m is not None and n is not None:
# check availabilityfor this n, m
available_slots = determine_slot_numbers(test_oms, n, m, m)
if available_slots == 0:
# if n, m are not feasible, break at this point no have non zero remaining_slots_to_serve
# in order to blocks the request (even is other N,M where feasible)
break
elif m is not None and n is None:
# find a candidate n
n, _, _ = spectrum_selection(test_oms, m, None)
if n is None:
# if no n is feasible for the m, block the request
break
elif m is None and n is not None:
# find a feasible m for this n. If None is found, then block the request
m = determine_slot_numbers(test_oms, n, remaining_slots_to_serve, per_channel_m)
if m == 0 or remaining_slots_to_serve == 0:
break
else:
# if n and m are not defined, try to find a single assignment to fits the remaining slots to serve
# (first fit strategy)
n, _, _ = spectrum_selection(test_oms, remaining_slots_to_serve, None)
if n is None or remaining_slots_to_serve == 0:
break
else:
m = remaining_slots_to_serve
selected_m.append(m)
selected_n.append(n)
test_oms.assign_spectrum(n, m)
remaining_slots_to_serve = remaining_slots_to_serve - m
# re-order selected_m and selected_n according to initial request N, M order, ignoring None values
not_selected = [None for i in range(len(rq_N) - len(selected_n))]
selected_m = restore_order(selected_m + not_selected, order)
selected_n = restore_order(selected_n + not_selected, order)
return selected_n, selected_m, remaining_slots_to_serve
def pth_assign_spectrum(pths, rqs, oms_list, rpths):
""" basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""
for pth, rq, rpth in zip(pths, rqs, rpths):
# computes the number of channels required
if hasattr(rq, 'blocking_reason'):
rq.N = None
rq.M = None
else:
nb_wl, requested_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
rq.spacing, rq.bit_rate)
if getattr(rq, 'M', None) is not None:
# Consistency check between the requested M and path_bandwidth
# M value should be bigger than the computed requested_m (simple estimate)
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
# computes the number of channels required for path_bandwidth and the min required nb of slots
# for one channel (corresponds to the spacing)
nb_wl, required_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
rq.spacing, rq.bit_rate)
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(rq.bit_rate,
rq.spacing, rq.bit_rate)
# find oms ids that are concerned both by pth and rpth
path_oms = build_path_oms_id_list(pth + rpth)
if getattr(rq, 'M', None) is not None and all(rq.M):
# if all M are well defined: Consistency check that the requested M are enough to carry the nb_wl:
# check that the integer number of per_channel_m carried in each M value is enough to carry nb_wl.
# if not, blocks the demand
nb_channels_of_request = sum([m // per_channel_m for m in rq.M])
# TODO: elaborate a more accurate estimate with nb_wl * min_spacing + possibly guardbands in case of
# superchannel closed packing.
if requested_m > rq.M:
if nb_wl > nb_channels_of_request:
rq.N = None
rq.M = None
rq.blocking_reason = 'NOT_ENOUGH_RESERVED_SPECTRUM'
# need to stop here for this request and not go though spectrum selection process with requested_m
# need to stop here for this request and not go though spectrum selection process
continue
# use the req.M even if requested_m is smaller
requested_m = rq.M
requested_n = getattr(rq, 'N', None)
(center_n, startn, stopn), path_oms = spectrum_selection(pth + rpth, oms_list, requested_m,
requested_n)
# if requested n and m concern already occupied spectrum the previous function returns a None candidate
# if not None, center_n and start, stop frequencies are applicable to all oms of pth
# checks that spectrum is not None else indicate blocking reason
if center_n is not None:
for oms_elem in path_oms:
oms_list[oms_elem].assign_spectrum(center_n, requested_m)
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
rq.N = center_n
rq.M = requested_m
else:
# Use the req.M even if nb_wl and required_m are smaller.
# first fit strategy: assign as many lambda as possible in the None remaining N, M values
selected_n, selected_m, remaining_slots_to_serve = \
compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m)
# if there are some remaining_slots_to_serve, this means that provided rq.M and rq.N values were
# not possible. Then do not go though spectrum assignment process and blocks the demand
if remaining_slots_to_serve > 0:
rq.N = None
rq.M = None
rq.blocking_reason = 'NO_SPECTRUM'
continue
for oms_elem in path_oms:
for this_n, this_m in zip(selected_n, selected_m):
if this_m is not None:
oms_list[oms_elem].assign_spectrum(this_n, this_m)
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
rq.N = selected_n
rq.M = selected_m

View File

@@ -1,7 +0,0 @@
matplotlib>=3.5.1,<4
networkx>=2.6,<3
numpy>=1.22.0,<2
pandas>=1.3.5,<2
pbr>=5.7.0,<6
scipy>=1.7.3,<2
xlrd>=1.2.0,<2

View File

@@ -3,7 +3,7 @@ name = gnpy
description-file = README.md
description-content-type = text/markdown; variant=GFM
author = Telecom Infra Project
author-email = jan.kundrat@telecominfraproject.com
author-email = jkt@jankundrat.com
license = BSD-3-Clause
home-page = https://github.com/Telecominfraproject/oopt-gnpy
project_urls =
@@ -22,6 +22,8 @@ classifier =
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
Programming Language :: Python :: 3.12
Programming Language :: Python :: Implementation :: CPython
Topic :: Scientific/Engineering
Topic :: Scientific/Engineering :: Physics
@@ -47,3 +49,35 @@ console_scripts =
gnpy-transmission-example = gnpy.tools.cli_examples:transmission_main_example
gnpy-path-request = gnpy.tools.cli_examples:path_requests_run
gnpy-convert-xls = gnpy.tools.convert:_do_convert
[options]
install_requires =
# matplotlib 3.8 removed support for Python 3.8
matplotlib>=3.7.3,<4
# networkx 3.2 removed support for Python 3.8
networkx>=3.1,<4
# numpy 1.25 removed support for Python 3.8
numpy>=1.24.4,<2
pbr>=6.0.0,<7
# scipy 1.11 removed support for Python 3.8
scipy>=1.10.1,<2
# xlrd 2.x removed support for .xlsx, it's only .xls now
xlrd>=1.2.0,<2
[options.extras_require]
tests =
build>=1.0.3,<2
pytest>=7.4.3,<8
# pandas 2.1 removed support for Python 3.8
pandas>=2.0.3,<3
# flake v6 killed the --diff option
flake8>=5.0.4,<6
docs =
alabaster>=0.7.12,<1
docutils>=0.17.1,<1
myst-parser>=0.16.1,<1
Pygments>=2.11.2,<3
rstcheck
Sphinx>=5.3.0,<6
sphinxcontrib-bibtex>=2.4.1,<3

View File

@@ -1203,6 +1203,7 @@
{
"uid": "roadm Abilene",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1226,6 +1227,7 @@
{
"uid": "roadm Albany",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1249,6 +1251,7 @@
{
"uid": "roadm Albuquerque",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1274,6 +1277,7 @@
{
"uid": "roadm Atlanta",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1298,6 +1302,7 @@
{
"uid": "roadm Austin",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1321,6 +1326,7 @@
{
"uid": "roadm Baltimore",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1345,6 +1351,7 @@
{
"uid": "roadm Baton_Rouge",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1368,6 +1375,7 @@
{
"uid": "roadm Billings",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1392,6 +1400,7 @@
{
"uid": "roadm Birmingham",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1416,6 +1425,7 @@
{
"uid": "roadm Bismarck",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1439,6 +1449,7 @@
{
"uid": "roadm Boston",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1462,6 +1473,7 @@
{
"uid": "roadm Buffalo",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1485,6 +1497,7 @@
{
"uid": "roadm Charleston",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1508,6 +1521,7 @@
{
"uid": "roadm Charlotte",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1531,6 +1545,7 @@
{
"uid": "roadm Chicago",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1555,6 +1570,7 @@
{
"uid": "roadm Cincinnati",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1579,6 +1595,7 @@
{
"uid": "roadm Cleveland",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1603,6 +1620,7 @@
{
"uid": "roadm Columbus",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1627,6 +1645,7 @@
{
"uid": "roadm Dallas",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1653,6 +1672,7 @@
{
"uid": "roadm Denver",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1678,6 +1698,7 @@
{
"uid": "roadm Detroit",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1701,6 +1722,7 @@
{
"uid": "roadm El_Paso",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1726,6 +1748,7 @@
{
"uid": "roadm Fresno",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1750,6 +1773,7 @@
{
"uid": "roadm Greensboro",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1775,6 +1799,7 @@
{
"uid": "roadm Hartford",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1798,6 +1823,7 @@
{
"uid": "roadm Houston",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1822,6 +1848,7 @@
{
"uid": "roadm Jacksonville",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1846,6 +1873,7 @@
{
"uid": "roadm Kansas_City",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1870,6 +1898,7 @@
{
"uid": "roadm Las_Vegas",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1895,6 +1924,7 @@
{
"uid": "roadm Little_Rock",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1918,6 +1948,7 @@
{
"uid": "roadm Long_Island",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1941,6 +1972,7 @@
{
"uid": "roadm Los_Angeles",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1966,6 +1998,7 @@
{
"uid": "roadm Louisville",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1991,6 +2024,7 @@
{
"uid": "roadm Memphis",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2014,6 +2048,7 @@
{
"uid": "roadm Miami",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2038,6 +2073,7 @@
{
"uid": "roadm Milwaukee",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2061,6 +2097,7 @@
{
"uid": "roadm Minneapolis",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2085,6 +2122,7 @@
{
"uid": "roadm Nashville",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2109,6 +2147,7 @@
{
"uid": "roadm New_Orleans",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2133,6 +2172,7 @@
{
"uid": "roadm New_York",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2159,6 +2199,7 @@
{
"uid": "roadm Newark",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2182,6 +2223,7 @@
{
"uid": "roadm Norfolk",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2205,6 +2247,7 @@
{
"uid": "roadm Oakland",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2231,6 +2274,7 @@
{
"uid": "roadm Oklahoma_City",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2254,6 +2298,7 @@
{
"uid": "roadm Omaha",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2278,6 +2323,7 @@
{
"uid": "roadm Orlando",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2301,6 +2347,7 @@
{
"uid": "roadm Philadelphia",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2325,6 +2372,7 @@
{
"uid": "roadm Phoenix",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2349,6 +2397,7 @@
{
"uid": "roadm Pittsburgh",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2373,6 +2422,7 @@
{
"uid": "roadm Portland",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2398,6 +2448,7 @@
{
"uid": "roadm Providence",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2421,6 +2472,7 @@
{
"uid": "roadm Raleigh",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2445,6 +2497,7 @@
{
"uid": "roadm Richmond",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2468,6 +2521,7 @@
{
"uid": "roadm Rochester",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2491,6 +2545,7 @@
{
"uid": "roadm Sacramento",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2514,6 +2569,7 @@
{
"uid": "roadm Salt_Lake_City",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2539,6 +2595,7 @@
{
"uid": "roadm San_Antonio",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2562,6 +2619,7 @@
{
"uid": "roadm San_Diego",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2585,6 +2643,7 @@
{
"uid": "roadm San_Francisco",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2608,6 +2667,7 @@
{
"uid": "roadm San_Jose",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2631,6 +2691,7 @@
{
"uid": "roadm Santa_Barbara",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2654,6 +2715,7 @@
{
"uid": "roadm Scranton",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2679,6 +2741,7 @@
{
"uid": "roadm Seattle",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2702,6 +2765,7 @@
{
"uid": "roadm Spokane",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2725,6 +2789,7 @@
{
"uid": "roadm Springfield",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2748,6 +2813,7 @@
{
"uid": "roadm St_Louis",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2772,6 +2838,7 @@
{
"uid": "roadm Syracuse",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2796,6 +2863,7 @@
{
"uid": "roadm Tallahassee",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2819,6 +2887,7 @@
{
"uid": "roadm Tampa",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2842,6 +2911,7 @@
{
"uid": "roadm Toledo",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2865,6 +2935,7 @@
{
"uid": "roadm Tucson",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2888,6 +2959,7 @@
{
"uid": "roadm Tulsa",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2911,6 +2983,7 @@
{
"uid": "roadm Washington_DC",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2936,6 +3009,7 @@
{
"uid": "roadm West_Palm_Beach",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2959,6 +3033,7 @@
{
"uid": "roadm Wilmington",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -2982,6 +3057,7 @@
{
"uid": "roadm Amsterdam",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3007,6 +3083,7 @@
{
"uid": "roadm Berlin",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3030,6 +3107,7 @@
{
"uid": "roadm Brussels",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3053,6 +3131,7 @@
{
"uid": "roadm Bucharest",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3076,6 +3155,7 @@
{
"uid": "roadm Frankfurt",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3099,6 +3179,7 @@
{
"uid": "roadm Istanbul",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3123,6 +3204,7 @@
{
"uid": "roadm London",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3147,6 +3229,7 @@
{
"uid": "roadm Madrid",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3170,6 +3253,7 @@
{
"uid": "roadm Paris",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3194,6 +3278,7 @@
{
"uid": "roadm Rome",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3219,6 +3304,7 @@
{
"uid": "roadm Vienna",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3243,6 +3329,7 @@
{
"uid": "roadm Warsaw",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3267,6 +3354,7 @@
{
"uid": "roadm Zurich",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3290,6 +3378,7 @@
{
"uid": "roadm Bangkok",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3313,6 +3402,7 @@
{
"uid": "roadm Beijing",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3336,6 +3426,7 @@
{
"uid": "roadm Delhi",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3360,6 +3451,7 @@
{
"uid": "roadm Hong_Kong",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3385,6 +3477,7 @@
{
"uid": "roadm Honolulu",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3409,6 +3502,7 @@
{
"uid": "roadm Mumbai",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3433,6 +3527,7 @@
{
"uid": "roadm Seoul",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3456,6 +3551,7 @@
{
"uid": "roadm Shanghai",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3479,6 +3575,7 @@
{
"uid": "roadm Singapore",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3502,6 +3599,7 @@
{
"uid": "roadm Sydney",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3526,6 +3624,7 @@
{
"uid": "roadm Taipei",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -3551,6 +3650,7 @@
{
"uid": "roadm Tokyo",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -83375,7 +83475,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 28.5006,
"gain_target": 28.5,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -88752,7 +88852,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 28.5032,
"gain_target": 28.5,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -89037,7 +89137,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 28.5006,
"gain_target": 28.5,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -89721,7 +89821,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 28.502,
"gain_target": 28.5,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -89797,7 +89897,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 28.502,
"gain_target": 28.5,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -89911,7 +90011,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 28.5032,
"gain_target": 28.5,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -193159,4 +193259,4 @@
"to_node": "fiber (Warsaw → Vienna)-_(7/7)"
}
]
}
}

View File

@@ -0,0 +1,21 @@
{
"path-request": [
{
"request-id": "0",
"source": "trx Abilene",
"destination": "trx Albany",
"src-tp-id": "trx Abilene",
"dst-tp-id": "trx Albany",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 3",
"spacing": 62500000000.0,
"path_bandwidth": 100000000000.0
}
}
}
]
}

View File

@@ -1,4 +1,6 @@
{
"f_min": 191.275e12,
"f_max": 196.125e12,
"nf_ripple": [
0.0,
0.0,
@@ -196,101 +198,101 @@
0.0
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.0,
1.017807767853702,
1.0
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
]
}
}

View File

@@ -1,4 +1,5 @@
{ "Edfa":[{
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
@@ -7,10 +8,9 @@
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
@@ -18,10 +18,9 @@
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
@@ -29,8 +28,7 @@
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
@@ -40,8 +38,7 @@
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
}, {
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
@@ -49,8 +46,7 @@
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
}, {
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
@@ -58,18 +54,18 @@
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber":[{
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
}
],
"Span": [{
"power_mode": true,
"delta_power_range_db": [0, 0, 0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
@@ -79,157 +75,232 @@
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm":[{
}
],
"Roadm": [{
"type_variety": "example_test",
"target_pch_out_db": -18,
"add_drop_osnr": 35,
"pmd": 1e-12,
"pdl": 0.5,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": []
}, {
"type_variety": "example_detailed_impairments",
"target_pch_out_db": -20,
"add_drop_osnr": 35,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
},
"roadm-path-impairments": [
{
"roadm-path-impairments-id": 0,
"roadm-express-path": [{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 16.5
}
]
}, {
"roadm-path-impairments-id": 1,
"roadm-add-path": [{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-pmax": 2.5,
"roadm-osnr": 41,
"roadm-noise-figure": 23
}, {
"frequency-range": {
"lower-frequency": 186.3e12,
"upper-frequency": 190.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0.5,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 5,
"roadm-pmax": 0,
"roadm-osnr": 35,
"roadm-noise-figure": 6
}]
}, {
"roadm-path-impairments-id": 2,
"roadm-drop-path": [{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-minloss": 7.5,
"roadm-typloss": 10,
"roadm-pmin": -13.5,
"roadm-pmax": -9.5,
"roadm-ptyp": -12,
"roadm-osnr": 41,
"roadm-noise-figure": 15
}]
}]
}, {
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [{
"type_variety": "default",
"f_min": 191.3e12,
"f_max":196.1e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,0.5],
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}],
"sys_margins": 0
}],
"Transceiver":[
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
}
]
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
{
"mode": [{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager_16QAM",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
}
]
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
{
"mode": [{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
}
]
}
]
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,396 @@
{ "Edfa":[{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_reduced_band",
"f_min": 192.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_reduced",
"f_min": 192.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_bis",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_low_gain_L_ter",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 16,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L_reduced_band",
"f_min": 187.3e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}, {
"type_variety": "std_booster_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}, {
"type_variety": "std_booster_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_booster",
"std_booster_L"
],
"allowed_for_design": false
}, {
"type_variety": "std_medium_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_medium_gain",
"std_medium_gain_L"
],
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain",
"std_low_gain_L"
],
"allowed_for_design": false
}, {
"type_variety": "std_low_gain_multiband_ter",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain",
"std_low_gain_L_ter"
],
"allowed_for_design": false
}, {
"type_variety": "std_low_gain_multiband_bis",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_bis",
"std_low_gain_L"
],
"allowed_for_design": true
}, {
"type_variety": "std_low_gain_multiband_reduced_bis",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_reduced",
"std_low_gain_L"
],
"allowed_for_design": true
}, {
"type_variety": "std_low_gain_multiband_reduced",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_bis",
"std_low_gain_L_reduced_band"
],
"allowed_for_design": true
}
],
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
"f_max":196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}],
"Transceiver":[
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
}
]
},
{
"type_variety": "Voyager_16QAM",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
}
]
},
{
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
}
]
}
]
}

View File

@@ -0,0 +1,220 @@
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
}, {
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [{
"power_mode": true,
"delta_power_range_db": [0, 0, 0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [{
"target_psd_out_mWperGHz": 3.125e-4,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}
],
"Transceiver": [{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager_16QAM",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,220 @@
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
}, {
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [{
"power_mode": true,
"delta_power_range_db": [0, 0, 0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [{
"target_out_mWperSlotWidth": 2.0e-4,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}
],
"Transceiver": [{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager_16QAM",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
}, {
"type_variety": "Voyager",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
}, {
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
}, {
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}, {
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,238 @@
{
"Edfa": [{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}
],
"SI": [{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [-6,0,0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}
],
"Transceiver":[
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.4e12,
"max": 196.1e12
},
"mode":[
{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
},
{
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager_16QAM",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [
{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager",
"frequency": {
"min": 191.4e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

BIN
tests/data/ila_constraint.xlsx Executable file

Binary file not shown.

View File

@@ -63,6 +63,7 @@
{
"uid": "roadm Lannion_CAS",
"type": "Roadm",
"type_variety": "example_detailed_impairments",
"params": {
"target_pch_out_db": -18.6,
"restrictions": {
@@ -73,7 +74,14 @@
"east edfa in Lannion_CAS to Corlay": -18.6,
"east edfa in Lannion_CAS to Morlaix": -23.0,
"east edfa in Lannion_CAS to Stbrieuc": -20
}
},
"per_degree_impairments": [
{
"from_degree": "west edfa in Lannion_CAS to Morlaix",
"to_degree": "east edfa in Lannion_CAS to Stbrieuc",
"impairment_id": 0
}
]
},
"metadata": {
"location": {
@@ -87,6 +95,7 @@
{
"uid": "roadm Lorient_KMA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -111,6 +120,7 @@
{
"uid": "roadm Vannes_KBE",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -134,6 +144,7 @@
{
"uid": "roadm Rennes_STA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -157,6 +168,7 @@
{
"uid": "roadm Brest_KLA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1668,4 +1680,4 @@
"to_node": "fiber (Ploermel → Vannes_KBE)-"
}
]
}
}

View File

@@ -62,7 +62,12 @@
},
{
"uid": "roadm Lannion_CAS",
"type_variety": "example_detailed_impairments",
"params": {
"per_degree_impairments": [{
"from_degree": "west edfa in Lannion_CAS to Morlaix",
"impairment_id": 0,
"to_degree": "east edfa in Lannion_CAS to Stbrieuc"}],
"per_degree_pch_out_db": {
"east edfa in Lannion_CAS to Corlay": -18.6,
"east edfa in Lannion_CAS to Morlaix": -23.0
@@ -661,7 +666,7 @@
"type": "Edfa",
"operational": {
"gain_target": null,
"tilt_target": 0
"tilt_target": null
}
},
{
@@ -677,7 +682,7 @@
"type": "Edfa",
"operational": {
"gain_target": null,
"tilt_target": 0
"tilt_target": null
}
},
{
@@ -693,7 +698,7 @@
"type": "Edfa",
"operational": {
"gain_target": null,
"tilt_target": 0
"tilt_target": null
}
},
{
@@ -709,7 +714,7 @@
"type": "Edfa",
"operational": {
"gain_target": null,
"tilt_target": 0
"tilt_target": null
}
},
{
@@ -727,7 +732,7 @@
"operational": {
"gain_target": 20.0,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -761,7 +766,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -779,7 +784,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -797,7 +802,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -815,7 +820,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -833,7 +838,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -851,7 +856,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -869,7 +874,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -887,7 +892,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -905,7 +910,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -923,7 +928,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -941,7 +946,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -959,7 +964,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -978,7 +983,7 @@
"operational": {
"gain_target": 18.0,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -996,7 +1001,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1014,7 +1019,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1032,7 +1037,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
}

View File

@@ -2,7 +2,7 @@
"raman_params": {
"flag": true,
"result_spatial_resolution": 10e3,
"solver_spatial_resolution": 50
"solver_spatial_resolution": 10e3
},
"nli_params": {
"method": "ggn_spectrally_separated",

View File

@@ -1,4 +1,7 @@
{ "nf_fit_coeff": [
{
"f_min": 191.275e12,
"f_max": 196.125e12,
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,

View File

@@ -159,6 +159,7 @@
{
"uid": "roadm Lannion_CAS",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -183,6 +184,7 @@
{
"uid": "roadm Lorient_KMA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -207,6 +209,7 @@
{
"uid": "roadm Vannes_KBE",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -230,6 +233,7 @@
{
"uid": "roadm Rennes_STA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -240,7 +244,6 @@
"east edfa in Rennes_STA to Stbrieuc": -20,
"east edfa in Rennes_STA to Ploermel": -20
}
},
"metadata": {
"location": {
@@ -254,6 +257,7 @@
{
"uid": "roadm Brest_KLA",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -277,6 +281,7 @@
{
"uid": "roadm a",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -302,6 +307,7 @@
{
"uid": "roadm b",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -310,7 +316,7 @@
],
"booster_variety_list": []
},
"per_degree_pch_out_db":{
"per_degree_pch_out_db": {
"east edfa in b to a": -20,
"east edfa in b to f": -20
}
@@ -327,13 +333,14 @@
{
"uid": "roadm c",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"per_degree_pch_out_db":{
"per_degree_pch_out_db": {
"east edfa in c to a": -20,
"east edfa in c to d": -20,
"east edfa in c to f": -20
@@ -351,6 +358,7 @@
{
"uid": "roadm d",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -374,6 +382,7 @@
{
"uid": "roadm e",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -397,6 +406,7 @@
{
"uid": "roadm f",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -421,6 +431,7 @@
{
"uid": "roadm g",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -430,7 +441,7 @@
"per_degree_pch_out_db": {
"east edfa in g to e": -20,
"east edfa in g to h": -20
}
}
},
"metadata": {
"location": {
@@ -444,6 +455,7 @@
{
"uid": "roadm h",
"type": "Roadm",
"type_variety": "default",
"params": {
"target_pch_out_db": -20,
"restrictions": {
@@ -1593,7 +1605,7 @@
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 18.5,
"gain_target": 13.177288,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -2235,7 +2247,7 @@
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 6.5,
"gain_target": 11.822712,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -2292,7 +2304,7 @@
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 13.82,
"gain_target": 13.822712,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0
@@ -2311,7 +2323,7 @@
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 15.18,
"gain_target": 15.177288,
"delta_p": null,
"tilt_target": 0,
"out_voa": 0

View File

@@ -1171,7 +1171,7 @@
"operational": {
"gain_target": 19.0,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1190,7 +1190,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1209,7 +1209,7 @@
"operational": {
"gain_target": 18.0,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": 0.5
}
},
@@ -1227,7 +1227,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1245,7 +1245,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1263,7 +1263,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1281,7 +1281,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1299,7 +1299,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1318,7 +1318,7 @@
"operational": {
"gain_target": 18.5,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1336,7 +1336,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1354,7 +1354,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1372,7 +1372,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1391,7 +1391,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1409,7 +1409,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1428,7 +1428,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1446,7 +1446,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1464,7 +1464,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1482,7 +1482,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1500,7 +1500,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1518,7 +1518,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1551,7 +1551,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1569,7 +1569,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1587,7 +1587,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1605,7 +1605,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1623,7 +1623,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1641,7 +1641,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1659,7 +1659,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1677,7 +1677,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1695,7 +1695,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1713,7 +1713,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1731,7 +1731,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1749,7 +1749,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1768,7 +1768,7 @@
"operational": {
"gain_target": 18.0,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1786,7 +1786,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1805,7 +1805,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1823,7 +1823,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1841,7 +1841,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1859,7 +1859,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1877,7 +1877,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1895,7 +1895,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1913,7 +1913,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1931,7 +1931,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1949,7 +1949,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1967,7 +1967,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -1985,7 +1985,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2003,7 +2003,7 @@
"operational": {
"gain_target": 19.0,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2021,7 +2021,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2039,7 +2039,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2057,7 +2057,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2075,7 +2075,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2093,7 +2093,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2111,7 +2111,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2129,7 +2129,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2147,7 +2147,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2165,7 +2165,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2183,7 +2183,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2201,7 +2201,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2219,7 +2219,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2237,7 +2237,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2255,7 +2255,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2273,7 +2273,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2291,7 +2291,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2309,7 +2309,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2327,7 +2327,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
},
@@ -2345,7 +2345,7 @@
"operational": {
"gain_target": null,
"delta_p": null,
"tilt_target": 0,
"tilt_target": null,
"out_voa": null
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
response-id,source,destination,path_bandwidth,Pass?,nb of tsp pairs,total cost,transponder-type,transponder-mode,OSNR-0.1nm,SNR-0.1nm,SNR-bandwidth,baud rate (Gbaud),input power (dBm),path,"spectrum (N,M)",reversed path OSNR-0.1nm,reversed path SNR-0.1nm,reversed path SNR-bandwidth
0,trx Lorient_KMA,trx Vannes_KBE,100.0,True,1,1,Voyager,mode 1,30.84,30.84,26.75,32.0,0.0,trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"-284, 4",,,
1,trx Brest_KLA,trx Vannes_KBE,10.0,True,1,1,Voyager,mode 1,22.65,22.11,18.03,32.0,1.0,trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"-276, 4",,,
3,trx Lannion_CAS,trx Rennes_STA,60.0,True,1,1,vendorA_trx-type1,mode 1,28.29,25.85,21.77,32.0,1.0,trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA,"-284, 4",,,
4,trx Rennes_STA,trx Lannion_CAS,150.0,True,1,1,vendorA_trx-type1,mode 2,22.27,22.15,15.05,64.0,0.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS,"-266, 6",,,
5,trx Rennes_STA,trx Lannion_CAS,20.0,True,1,1,vendorA_trx-type1,mode 2,30.79,28.77,21.68,64.0,3.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS,"-274, 6",,,
0,trx Lorient_KMA,trx Vannes_KBE,100.0,True,1,1,Voyager,mode 1,30.84,30.84,26.75,32.0,0.0,trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"[-284], [4]",,,
1,trx Brest_KLA,trx Vannes_KBE,10.0,True,1,1,Voyager,mode 1,22.65,22.11,18.03,32.0,1.0,trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"[-276], [4]",,,
3,trx Lannion_CAS,trx Rennes_STA,60.0,True,1,1,vendorA_trx-type1,mode 1,28.29,25.85,21.77,32.0,1.0,trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA,"[-284], [4]",,,
4,trx Rennes_STA,trx Lannion_CAS,150.0,True,1,1,vendorA_trx-type1,mode 2,22.27,22.14,15.05,64.0,0.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS,"[-266], [6]",,,
5,trx Rennes_STA,trx Lannion_CAS,20.0,True,1,1,vendorA_trx-type1,mode 2,30.79,28.76,21.67,64.0,3.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS,"[-274], [6]",,,
6,,,,NO_PATH,,,,,,,,,,,,,,
1 response-id source destination path_bandwidth Pass? nb of tsp pairs total cost transponder-type transponder-mode OSNR-0.1nm SNR-0.1nm SNR-bandwidth baud rate (Gbaud) input power (dBm) path spectrum (N,M) reversed path OSNR-0.1nm reversed path SNR-0.1nm reversed path SNR-bandwidth
2 0 trx Lorient_KMA trx Vannes_KBE 100.0 True 1 1 Voyager mode 1 30.84 30.84 26.75 32.0 0.0 trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE -284, 4 [-284], [4]
3 1 trx Brest_KLA trx Vannes_KBE 10.0 True 1 1 Voyager mode 1 22.65 22.11 18.03 32.0 1.0 trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE -276, 4 [-276], [4]
4 3 trx Lannion_CAS trx Rennes_STA 60.0 True 1 1 vendorA_trx-type1 mode 1 28.29 25.85 21.77 32.0 1.0 trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA -284, 4 [-284], [4]
5 4 trx Rennes_STA trx Lannion_CAS 150.0 True 1 1 vendorA_trx-type1 mode 2 22.27 22.15 22.14 15.05 64.0 0.0 trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS -266, 6 [-266], [6]
6 5 trx Rennes_STA trx Lannion_CAS 20.0 True 1 1 vendorA_trx-type1 mode 2 30.79 28.77 28.76 21.68 21.67 64.0 3.0 trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS -274, 6 [-274], [6]
7 6 NO_PATH

View File

@@ -1,97 +1,97 @@
signal,nli
1.9952623149688793e-05,1.1158426495504604e-08
1.9952623149688793e-05,1.263949624403159e-08
1.9952623149688793e-05,1.3358478621325285e-08
1.9952623149688793e-05,1.3830775406251184e-08
1.9952623149688793e-05,1.4180462471172083e-08
1.9952623149688793e-05,1.4456701012984246e-08
1.9952623149688793e-05,1.4683973899785875e-08
1.9952623149688793e-05,1.487624147046227e-08
1.9952623149688793e-05,1.5042217041806274e-08
1.9952623149688793e-05,1.5187703614492153e-08
1.9952623149688793e-05,1.5316759790785317e-08
1.9952623149688793e-05,1.543233485150211e-08
1.9952623149688793e-05,1.553663885878994e-08
1.9952623149688793e-05,1.5631370249579246e-08
1.9952623149688793e-05,1.5717862065800704e-08
1.9952623149688793e-05,1.57971793985894e-08
1.9952623149688793e-05,1.5870186356579704e-08
1.9952623149688793e-05,1.593759332223716e-08
1.9952623149688793e-05,1.5999991070923486e-08
1.9952623149688793e-05,1.6057875903450682e-08
1.9952623149688793e-05,1.6111668489205982e-08
1.9952623149688793e-05,1.6161728217386366e-08
1.9952623149688793e-05,1.6208364281630228e-08
1.9952623149688793e-05,1.6251844350226973e-08
1.9952623149688793e-05,1.629240142540359e-08
1.9952623149688793e-05,1.6330239326114482e-08
1.9952623149688793e-05,1.6365537111728e-08
1.9952623149688793e-05,1.6398452681655655e-08
1.9952623149688793e-05,1.642912572715412e-08
1.9952623149688793e-05,1.6457680168940455e-08
1.9952623149688793e-05,1.6484226183026747e-08
1.9952623149688793e-05,1.6508861894003893e-08
1.9952623149688793e-05,1.6531674797617433e-08
1.9952623149688793e-05,1.655274296130114e-08
1.9952623149688793e-05,1.657213604125123e-08
1.9952623149688793e-05,1.6589916146838222e-08
1.9952623149688793e-05,1.660613857708963e-08
1.9952623149688793e-05,1.6620852449214096e-08
1.9952623149688793e-05,1.6634101235366932e-08
1.9952623149688793e-05,1.664592322084737e-08
1.9952623149688793e-05,1.6656351894496074e-08
1.9952623149688793e-05,1.666541628009631e-08
1.9952623149688793e-05,1.6673141215973025e-08
1.9952623149688793e-05,1.6679547588653583e-08
1.9952623149688793e-05,1.6684652525341145e-08
1.9952623149688793e-05,1.668846954900963e-08
1.9952623149688793e-05,1.66910086991187e-08
1.9952623149688793e-05,1.6692276620238304e-08
1.9952623149688793e-05,1.6692276620238304e-08
1.9952623149688793e-05,1.6691008699118703e-08
1.9952623149688793e-05,1.6688469549009633e-08
1.9952623149688793e-05,1.6684652525341148e-08
1.9952623149688793e-05,1.6679547588653586e-08
1.9952623149688793e-05,1.6673141215973028e-08
1.9952623149688793e-05,1.666541628009631e-08
1.9952623149688793e-05,1.6656351894496084e-08
1.9952623149688793e-05,1.6645923220847374e-08
1.9952623149688793e-05,1.6634101235366935e-08
1.9952623149688793e-05,1.66208524492141e-08
1.9952623149688793e-05,1.6606138577089633e-08
1.9952623149688793e-05,1.6589916146838225e-08
1.9952623149688793e-05,1.6572136041251237e-08
1.9952623149688793e-05,1.6552742961301146e-08
1.9952623149688793e-05,1.653167479761744e-08
1.9952623149688793e-05,1.6508861894003893e-08
1.9952623149688793e-05,1.648422618302675e-08
1.9952623149688793e-05,1.645768016894046e-08
1.9952623149688793e-05,1.6429125727154126e-08
1.9952623149688793e-05,1.6398452681655658e-08
1.9952623149688793e-05,1.6365537111728004e-08
1.9952623149688793e-05,1.6330239326114482e-08
1.9952623149688793e-05,1.6292401425403594e-08
1.9952623149688793e-05,1.6251844350226973e-08
1.9952623149688793e-05,1.6208364281630228e-08
1.9952623149688793e-05,1.616172821738637e-08
1.9952623149688793e-05,1.6111668489205982e-08
1.9952623149688793e-05,1.605787590345069e-08
1.9952623149688793e-05,1.5999991070923493e-08
1.9952623149688793e-05,1.5937593322237167e-08
1.9952623149688793e-05,1.5870186356579704e-08
1.9952623149688793e-05,1.5797179398589402e-08
1.9952623149688793e-05,1.571786206580071e-08
1.9952623149688793e-05,1.5631370249579252e-08
1.9952623149688793e-05,1.5536638858789946e-08
1.9952623149688793e-05,1.5432334851502114e-08
1.9952623149688793e-05,1.531675979078532e-08
1.9952623149688793e-05,1.5187703614492156e-08
1.9952623149688793e-05,1.5042217041806274e-08
1.9952623149688793e-05,1.4876241470462273e-08
1.9952623149688793e-05,1.4683973899785879e-08
1.9952623149688793e-05,1.4456701012984246e-08
1.9952623149688793e-05,1.4180462471172086e-08
1.9952623149688793e-05,1.3830775406251184e-08
1.9952623149688793e-05,1.3358478621325285e-08
1.9952623149688793e-05,1.2639496244031593e-08
1.9952623149688793e-05,1.1158426495504613e-08
1.9952623149688796e-05,1.0570305869494063e-08
1.9952623149688796e-05,1.1989102199581664e-08
1.9952623149688796e-05,1.2687787891259665e-08
1.9952623149688796e-05,1.3153676763101585e-08
1.9952623149688796e-05,1.3504001312414315e-08
1.9952623149688796e-05,1.378517965356758e-08
1.9952623149688796e-05,1.4020312829929705e-08
1.9952623149688796e-05,1.4222564206194578e-08
1.9952623149688796e-05,1.440014394542033e-08
1.9952623149688796e-05,1.4558516068269932e-08
1.9952623149688796e-05,1.4701499315172012e-08
1.9952623149688796e-05,1.4831866587815758e-08
1.9952623149688796e-05,1.4951694168451522e-08
1.9952623149688796e-05,1.506257639956634e-08
1.9952623149688796e-05,1.5165763570833366e-08
1.9952623149688796e-05,1.5262253772723937e-08
1.9952623149688796e-05,1.535285600134073e-08
1.9952623149688796e-05,1.543823467328411e-08
1.9952623149688796e-05,1.551894175425445e-08
1.9952623149688796e-05,1.5595440417063968e-08
1.9952623149688796e-05,1.5668122772822936e-08
1.9952623149688796e-05,1.5737323370281063e-08
1.9952623149688796e-05,1.5803329618444796e-08
1.9952623149688796e-05,1.5866389935670908e-08
1.9952623149688796e-05,1.592672019391794e-08
1.9952623149688796e-05,1.598450886742589e-08
1.9952623149688796e-05,1.6039921184766554e-08
1.9952623149688796e-05,1.609310250559421e-08
1.9952623149688796e-05,1.61441810880001e-08
1.9952623149688796e-05,1.6193270372246937e-08
1.9952623149688796e-05,1.6240470877236143e-08
1.9952623149688796e-05,1.6285871784230113e-08
1.9952623149688796e-05,1.6329552265978812e-08
1.9952623149688796e-05,1.6371582606990462e-08
1.9952623149688796e-05,1.641202515119326e-08
1.9952623149688796e-05,1.6450935105904177e-08
1.9952623149688796e-05,1.6488361225310858e-08
1.9952623149688796e-05,1.6524346392188574e-08
1.9952623149688796e-05,1.6558928113022246e-08
1.9952623149688796e-05,1.6592138938867027e-08
1.9952623149688796e-05,1.6624006821997905e-08
1.9952623149688796e-05,1.665455541654349e-08
1.9952623149688796e-05,1.668380432977811e-08
1.9952623149688796e-05,1.6711769329485368e-08
1.9952623149688796e-05,1.6738462511750264e-08
1.9952623149688796e-05,1.6763892432637406e-08
1.9952623149688796e-05,1.6788064206436675e-08
1.9952623149688796e-05,1.681097957247311e-08
1.9952623149688796e-05,1.6832636931862217e-08
1.9952623149688796e-05,1.6853031355021186e-08
1.9952623149688796e-05,1.687215456020574e-08
1.9952623149688796e-05,1.688999486281053e-08
1.9952623149688796e-05,1.690653709463382e-08
1.9952623149688796e-05,1.6921762491746848e-08
1.9952623149688796e-05,1.6935648549006222e-08
1.9952623149688796e-05,1.6948168838584662e-08
1.9952623149688796e-05,1.695929278914847e-08
1.9952623149688796e-05,1.696898542145055e-08
1.9952623149688796e-05,1.6977207035104874e-08
1.9952623149688796e-05,1.6983912840119302e-08
1.9952623149688796e-05,1.6989052525338295e-08
1.9952623149688796e-05,1.699256975421989e-08
1.9952623149688796e-05,1.6994401576260005e-08
1.9952623149688796e-05,1.6994477739772384e-08
1.9952623149688796e-05,1.699271988849318e-08
1.9952623149688796e-05,1.6989040620420942e-08
1.9952623149688796e-05,1.6983342382173362e-08
1.9952623149688796e-05,1.6975516165613388e-08
1.9952623149688796e-05,1.6965439965112504e-08
1.9952623149688796e-05,1.6952976942961452e-08
1.9952623149688796e-05,1.693797323625088e-08
1.9952623149688796e-05,1.6920255319826076e-08
1.9952623149688796e-05,1.6899626814970685e-08
1.9952623149688796e-05,1.6875864599859146e-08
1.9952623149688796e-05,1.6848714031984708e-08
1.9952623149688796e-05,1.6817883029489423e-08
1.9952623149688796e-05,1.6783034669737056e-08
1.9952623149688796e-05,1.674377783759437e-08
1.9952623149688796e-05,1.669965527407164e-08
1.9952623149688796e-05,1.6650128108596616e-08
1.9952623149688796e-05,1.6594555557112625e-08
1.9952623149688796e-05,1.6532167853144137e-08
1.9952623149688796e-05,1.6462029512327026e-08
1.9952623149688796e-05,1.6382988469074245e-08
1.9952623149688796e-05,1.6293604020234886e-08
1.9952623149688796e-05,1.619204201130206e-08
1.9952623149688796e-05,1.607591759753518e-08
1.9952623149688796e-05,1.5942050594874486e-08
1.9952623149688796e-05,1.578606776895102e-08
1.9952623149688796e-05,1.5601720601345105e-08
1.9952623149688796e-05,1.5379633197361104e-08
1.9952623149688796e-05,1.5104793671989548e-08
1.9952623149688796e-05,1.4750892345803154e-08
1.9952623149688796e-05,1.4265134295425351e-08
1.9952623149688796e-05,1.3514359541675816e-08
1.9952623149688796e-05,1.194579997186553e-08
1 signal nli
2 1.9952623149688793e-05 1.9952623149688796e-05 1.1158426495504604e-08 1.0570305869494063e-08
3 1.9952623149688793e-05 1.9952623149688796e-05 1.263949624403159e-08 1.1989102199581664e-08
4 1.9952623149688793e-05 1.9952623149688796e-05 1.3358478621325285e-08 1.2687787891259665e-08
5 1.9952623149688793e-05 1.9952623149688796e-05 1.3830775406251184e-08 1.3153676763101585e-08
6 1.9952623149688793e-05 1.9952623149688796e-05 1.4180462471172083e-08 1.3504001312414315e-08
7 1.9952623149688793e-05 1.9952623149688796e-05 1.4456701012984246e-08 1.378517965356758e-08
8 1.9952623149688793e-05 1.9952623149688796e-05 1.4683973899785875e-08 1.4020312829929705e-08
9 1.9952623149688793e-05 1.9952623149688796e-05 1.487624147046227e-08 1.4222564206194578e-08
10 1.9952623149688793e-05 1.9952623149688796e-05 1.5042217041806274e-08 1.440014394542033e-08
11 1.9952623149688793e-05 1.9952623149688796e-05 1.5187703614492153e-08 1.4558516068269932e-08
12 1.9952623149688793e-05 1.9952623149688796e-05 1.5316759790785317e-08 1.4701499315172012e-08
13 1.9952623149688793e-05 1.9952623149688796e-05 1.543233485150211e-08 1.4831866587815758e-08
14 1.9952623149688793e-05 1.9952623149688796e-05 1.553663885878994e-08 1.4951694168451522e-08
15 1.9952623149688793e-05 1.9952623149688796e-05 1.5631370249579246e-08 1.506257639956634e-08
16 1.9952623149688793e-05 1.9952623149688796e-05 1.5717862065800704e-08 1.5165763570833366e-08
17 1.9952623149688793e-05 1.9952623149688796e-05 1.57971793985894e-08 1.5262253772723937e-08
18 1.9952623149688793e-05 1.9952623149688796e-05 1.5870186356579704e-08 1.535285600134073e-08
19 1.9952623149688793e-05 1.9952623149688796e-05 1.593759332223716e-08 1.543823467328411e-08
20 1.9952623149688793e-05 1.9952623149688796e-05 1.5999991070923486e-08 1.551894175425445e-08
21 1.9952623149688793e-05 1.9952623149688796e-05 1.6057875903450682e-08 1.5595440417063968e-08
22 1.9952623149688793e-05 1.9952623149688796e-05 1.6111668489205982e-08 1.5668122772822936e-08
23 1.9952623149688793e-05 1.9952623149688796e-05 1.6161728217386366e-08 1.5737323370281063e-08
24 1.9952623149688793e-05 1.9952623149688796e-05 1.6208364281630228e-08 1.5803329618444796e-08
25 1.9952623149688793e-05 1.9952623149688796e-05 1.6251844350226973e-08 1.5866389935670908e-08
26 1.9952623149688793e-05 1.9952623149688796e-05 1.629240142540359e-08 1.592672019391794e-08
27 1.9952623149688793e-05 1.9952623149688796e-05 1.6330239326114482e-08 1.598450886742589e-08
28 1.9952623149688793e-05 1.9952623149688796e-05 1.6365537111728e-08 1.6039921184766554e-08
29 1.9952623149688793e-05 1.9952623149688796e-05 1.6398452681655655e-08 1.609310250559421e-08
30 1.9952623149688793e-05 1.9952623149688796e-05 1.642912572715412e-08 1.61441810880001e-08
31 1.9952623149688793e-05 1.9952623149688796e-05 1.6457680168940455e-08 1.6193270372246937e-08
32 1.9952623149688793e-05 1.9952623149688796e-05 1.6484226183026747e-08 1.6240470877236143e-08
33 1.9952623149688793e-05 1.9952623149688796e-05 1.6508861894003893e-08 1.6285871784230113e-08
34 1.9952623149688793e-05 1.9952623149688796e-05 1.6531674797617433e-08 1.6329552265978812e-08
35 1.9952623149688793e-05 1.9952623149688796e-05 1.655274296130114e-08 1.6371582606990462e-08
36 1.9952623149688793e-05 1.9952623149688796e-05 1.657213604125123e-08 1.641202515119326e-08
37 1.9952623149688793e-05 1.9952623149688796e-05 1.6589916146838222e-08 1.6450935105904177e-08
38 1.9952623149688793e-05 1.9952623149688796e-05 1.660613857708963e-08 1.6488361225310858e-08
39 1.9952623149688793e-05 1.9952623149688796e-05 1.6620852449214096e-08 1.6524346392188574e-08
40 1.9952623149688793e-05 1.9952623149688796e-05 1.6634101235366932e-08 1.6558928113022246e-08
41 1.9952623149688793e-05 1.9952623149688796e-05 1.664592322084737e-08 1.6592138938867027e-08
42 1.9952623149688793e-05 1.9952623149688796e-05 1.6656351894496074e-08 1.6624006821997905e-08
43 1.9952623149688793e-05 1.9952623149688796e-05 1.666541628009631e-08 1.665455541654349e-08
44 1.9952623149688793e-05 1.9952623149688796e-05 1.6673141215973025e-08 1.668380432977811e-08
45 1.9952623149688793e-05 1.9952623149688796e-05 1.6679547588653583e-08 1.6711769329485368e-08
46 1.9952623149688793e-05 1.9952623149688796e-05 1.6684652525341145e-08 1.6738462511750264e-08
47 1.9952623149688793e-05 1.9952623149688796e-05 1.668846954900963e-08 1.6763892432637406e-08
48 1.9952623149688793e-05 1.9952623149688796e-05 1.66910086991187e-08 1.6788064206436675e-08
49 1.9952623149688793e-05 1.9952623149688796e-05 1.6692276620238304e-08 1.681097957247311e-08
50 1.9952623149688793e-05 1.9952623149688796e-05 1.6692276620238304e-08 1.6832636931862217e-08
51 1.9952623149688793e-05 1.9952623149688796e-05 1.6691008699118703e-08 1.6853031355021186e-08
52 1.9952623149688793e-05 1.9952623149688796e-05 1.6688469549009633e-08 1.687215456020574e-08
53 1.9952623149688793e-05 1.9952623149688796e-05 1.6684652525341148e-08 1.688999486281053e-08
54 1.9952623149688793e-05 1.9952623149688796e-05 1.6679547588653586e-08 1.690653709463382e-08
55 1.9952623149688793e-05 1.9952623149688796e-05 1.6673141215973028e-08 1.6921762491746848e-08
56 1.9952623149688793e-05 1.9952623149688796e-05 1.666541628009631e-08 1.6935648549006222e-08
57 1.9952623149688793e-05 1.9952623149688796e-05 1.6656351894496084e-08 1.6948168838584662e-08
58 1.9952623149688793e-05 1.9952623149688796e-05 1.6645923220847374e-08 1.695929278914847e-08
59 1.9952623149688793e-05 1.9952623149688796e-05 1.6634101235366935e-08 1.696898542145055e-08
60 1.9952623149688793e-05 1.9952623149688796e-05 1.66208524492141e-08 1.6977207035104874e-08
61 1.9952623149688793e-05 1.9952623149688796e-05 1.6606138577089633e-08 1.6983912840119302e-08
62 1.9952623149688793e-05 1.9952623149688796e-05 1.6589916146838225e-08 1.6989052525338295e-08
63 1.9952623149688793e-05 1.9952623149688796e-05 1.6572136041251237e-08 1.699256975421989e-08
64 1.9952623149688793e-05 1.9952623149688796e-05 1.6552742961301146e-08 1.6994401576260005e-08
65 1.9952623149688793e-05 1.9952623149688796e-05 1.653167479761744e-08 1.6994477739772384e-08
66 1.9952623149688793e-05 1.9952623149688796e-05 1.6508861894003893e-08 1.699271988849318e-08
67 1.9952623149688793e-05 1.9952623149688796e-05 1.648422618302675e-08 1.6989040620420942e-08
68 1.9952623149688793e-05 1.9952623149688796e-05 1.645768016894046e-08 1.6983342382173362e-08
69 1.9952623149688793e-05 1.9952623149688796e-05 1.6429125727154126e-08 1.6975516165613388e-08
70 1.9952623149688793e-05 1.9952623149688796e-05 1.6398452681655658e-08 1.6965439965112504e-08
71 1.9952623149688793e-05 1.9952623149688796e-05 1.6365537111728004e-08 1.6952976942961452e-08
72 1.9952623149688793e-05 1.9952623149688796e-05 1.6330239326114482e-08 1.693797323625088e-08
73 1.9952623149688793e-05 1.9952623149688796e-05 1.6292401425403594e-08 1.6920255319826076e-08
74 1.9952623149688793e-05 1.9952623149688796e-05 1.6251844350226973e-08 1.6899626814970685e-08
75 1.9952623149688793e-05 1.9952623149688796e-05 1.6208364281630228e-08 1.6875864599859146e-08
76 1.9952623149688793e-05 1.9952623149688796e-05 1.616172821738637e-08 1.6848714031984708e-08
77 1.9952623149688793e-05 1.9952623149688796e-05 1.6111668489205982e-08 1.6817883029489423e-08
78 1.9952623149688793e-05 1.9952623149688796e-05 1.605787590345069e-08 1.6783034669737056e-08
79 1.9952623149688793e-05 1.9952623149688796e-05 1.5999991070923493e-08 1.674377783759437e-08
80 1.9952623149688793e-05 1.9952623149688796e-05 1.5937593322237167e-08 1.669965527407164e-08
81 1.9952623149688793e-05 1.9952623149688796e-05 1.5870186356579704e-08 1.6650128108596616e-08
82 1.9952623149688793e-05 1.9952623149688796e-05 1.5797179398589402e-08 1.6594555557112625e-08
83 1.9952623149688793e-05 1.9952623149688796e-05 1.571786206580071e-08 1.6532167853144137e-08
84 1.9952623149688793e-05 1.9952623149688796e-05 1.5631370249579252e-08 1.6462029512327026e-08
85 1.9952623149688793e-05 1.9952623149688796e-05 1.5536638858789946e-08 1.6382988469074245e-08
86 1.9952623149688793e-05 1.9952623149688796e-05 1.5432334851502114e-08 1.6293604020234886e-08
87 1.9952623149688793e-05 1.9952623149688796e-05 1.531675979078532e-08 1.619204201130206e-08
88 1.9952623149688793e-05 1.9952623149688796e-05 1.5187703614492156e-08 1.607591759753518e-08
89 1.9952623149688793e-05 1.9952623149688796e-05 1.5042217041806274e-08 1.5942050594874486e-08
90 1.9952623149688793e-05 1.9952623149688796e-05 1.4876241470462273e-08 1.578606776895102e-08
91 1.9952623149688793e-05 1.9952623149688796e-05 1.4683973899785879e-08 1.5601720601345105e-08
92 1.9952623149688793e-05 1.9952623149688796e-05 1.4456701012984246e-08 1.5379633197361104e-08
93 1.9952623149688793e-05 1.9952623149688796e-05 1.4180462471172086e-08 1.5104793671989548e-08
94 1.9952623149688793e-05 1.9952623149688796e-05 1.3830775406251184e-08 1.4750892345803154e-08
95 1.9952623149688793e-05 1.9952623149688796e-05 1.3358478621325285e-08 1.4265134295425351e-08
96 1.9952623149688793e-05 1.9952623149688796e-05 1.2639496244031593e-08 1.3514359541675816e-08
97 1.9952623149688793e-05 1.9952623149688796e-05 1.1158426495504613e-08 1.194579997186553e-08

View File

@@ -1,6 +1,6 @@
signal,nli
1.9952623149688793e-05,5.522326183599433e-09
1.7957360834719913e-05,4.5606601423111315e-09
2.593841009459543e-05,6.633717697038881e-09
1.5962098519751036e-05,4.3237017878447286e-09
2.3943147779626553e-05,8.311382502260195e-09
1.9952623149688796e-05,5.183134799604202e-09
1.7957360834719913e-05,4.286200408629989e-09
2.593841009459543e-05,6.2510001955285065e-09
1.5962098519751036e-05,4.082332034495425e-09
2.3943147779626556e-05,7.857762167195498e-09
1 signal nli
2 1.9952623149688793e-05 1.9952623149688796e-05 5.522326183599433e-09 5.183134799604202e-09
3 1.7957360834719913e-05 4.5606601423111315e-09 4.286200408629989e-09
4 2.593841009459543e-05 6.633717697038881e-09 6.2510001955285065e-09
5 1.5962098519751036e-05 4.3237017878447286e-09 4.082332034495425e-09
6 2.3943147779626553e-05 2.3943147779626556e-05 8.311382502260195e-09 7.857762167195498e-09

View File

@@ -0,0 +1,6 @@
,signal,nli
0,3.9807550201531427e-07,1.0345007661598643e-10
1,3.582672964406964e-07,8.554802579711129e-11
2,5.174953110822109e-07,1.2476289414924814e-10
3,3.1845777742391393e-07,8.147850636202276e-11
4,4.776857897651456e-07,1.5683132697931042e-10
1 signal nli
2 0 3.9807550201531427e-07 1.0345007661598643e-10
3 1 3.582672964406964e-07 8.554802579711129e-11
4 2 5.174953110822109e-07 1.2476289414924814e-10
5 3 3.1845777742391393e-07 8.147850636202276e-11
6 4 4.776857897651456e-07 1.5683132697931042e-10

View File

@@ -0,0 +1,809 @@
{
"network_name": "Example Network - long path",
"elements": [{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "roadm Site A",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster A",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span2",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa2",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span3",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa3",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span4",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa4",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span5",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa5",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site C",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster C",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span6",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa6",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span7",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa7",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span8",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa8",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span9",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa9",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span10",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa10",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site D",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster D",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span11",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa11",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span12",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa12",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site E",
"metadata": {
"location": {
"city": "Site A",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "booster E",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span13",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa13",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span14",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa14",
"type": "Edfa",
"type_variety": "test_fixed_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Span15",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km"
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa15",
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "roadm Site B",
"metadata": {
"location": {
"city": "Site B",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 3,
"longitude": 0
}
}
}
],
"connections": [{
"from_node": "Site_A",
"to_node": "roadm Site A"
},
{
"from_node": "roadm Site A",
"to_node": "booster A"
},
{
"from_node": "booster A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Span2"
},
{
"from_node": "Span2",
"to_node": "Edfa2"
},
{
"from_node": "Edfa2",
"to_node": "Span3"
},
{
"from_node": "Span3",
"to_node": "Edfa3"
},
{
"from_node": "Edfa3",
"to_node": "Span4"
},
{
"from_node": "Span4",
"to_node": "Edfa4"
},
{
"from_node": "Edfa4",
"to_node": "Span5"
},
{
"from_node": "Span5",
"to_node": "Edfa5"
},
{
"from_node": "Edfa5",
"to_node": "roadm Site C"
},
{
"from_node": "roadm Site C",
"to_node": "booster C"
},
{
"from_node": "booster C",
"to_node": "Span6"
},
{
"from_node": "Span6",
"to_node": "Edfa6"
},
{
"from_node": "Edfa6",
"to_node": "Span7"
},
{
"from_node": "Span7",
"to_node": "Edfa7"
},
{
"from_node": "Edfa7",
"to_node": "Span8"
},
{
"from_node": "Span8",
"to_node": "Edfa8"
},
{
"from_node": "Edfa8",
"to_node": "Span9"
},
{
"from_node": "Span9",
"to_node": "Edfa9"
},
{
"from_node": "Edfa9",
"to_node": "Span10"
},
{
"from_node": "Span10",
"to_node": "Edfa10"
},
{
"from_node": "Edfa10",
"to_node": "roadm Site D"
},
{
"from_node": "roadm Site D",
"to_node": "booster D"
},
{
"from_node": "booster D",
"to_node": "Span11"
},
{
"from_node": "Span11",
"to_node": "Edfa11"
},
{
"from_node": "Edfa11",
"to_node": "Span12"
},
{
"from_node": "Span12",
"to_node": "Edfa12"
},
{
"from_node": "Edfa12",
"to_node": "roadm Site E"
},
{
"from_node": "roadm Site E",
"to_node": "booster E"
},
{
"from_node": "booster E",
"to_node": "Span13"
},
{
"from_node": "Span13",
"to_node": "Edfa13"
},
{
"from_node": "Edfa13",
"to_node": "Span14"
},
{
"from_node": "Span14",
"to_node": "Edfa14"
},
{
"from_node": "Edfa14",
"to_node": "Span15"
},
{
"from_node": "Span15",
"to_node": "Edfa15"
},
{
"from_node": "Edfa15",
"to_node": "roadm Site B"
},
{
"from_node": "roadm Site B",
"to_node": "Site_B"
}
]
}

View File

@@ -1,96 +1,97 @@
1.000000000000000021e-03,5.915557166626927424e-04,3.840877221245049653e-04,2.466727384040633977e-04,1.573474629975438242e-04,9.994300566924636483e-05,6.331217828438720550e-05,4.004003600460594289e-05,2.529553013238426405e-05
1.000000000000000021e-03,5.910087140881509866e-04,3.835259923737136521e-04,2.462279833344210639e-04,1.570298910751132091e-04,9.972770370845923681e-05,6.317035443958771254e-05,3.994817502675088248e-05,2.523663218966317481e-05
1.000000000000000021e-03,5.904624672772724710e-04,3.829653846278134621e-04,2.457842903404500092e-04,1.567131560243821098e-04,9.951300275831494635e-05,6.302894048828063141e-05,3.985658526347281646e-05,2.517791045472703461e-05
1.000000000000000021e-03,5.899169734839467818e-04,3.824058950962419133e-04,2.453416557234028707e-04,1.563972548287988369e-04,9.929890059644241613e-05,6.288793488850426760e-05,3.976526568300959219e-05,2.511936425240675192e-05
1.000000000000000021e-03,5.893722299298780965e-04,3.818475199355363483e-04,2.449000757332959262e-04,1.560821844312877747e-04,9.908539497140619857e-05,6.274733607851797545e-05,3.967421524053715842e-05,2.506099289905929403e-05
1.000000000000000021e-03,5.888282338048204554e-04,3.812902552499899305e-04,2.444595465697163919e-04,1.557679417349789946e-04,9.887248360327203632e-05,6.260714247720703990e-05,3.958343287844485109e-05,2.500279570274922987e-05
1.000000000000000021e-03,5.882849822668304897e-04,3.807340970923119234e-04,2.440200643826254091e-04,1.554545236039297650e-04,9.866016418416755746e-05,6.246735248448248958e-05,3.949291752660743311e-05,2.494477196342878550e-05
1.000000000000000021e-03,5.877403241312353140e-04,3.801768826891299322e-04,2.435799392795756472e-04,1.551407333476893054e-04,9.844762961169771281e-05,6.232743618144160702e-05,3.940232665622856909e-05,2.488670234861411131e-05
1.000000000000000021e-03,5.871942634186000593e-04,3.796186190022559433e-04,2.431391779090945110e-04,1.548265761463755335e-04,9.823488356157069126e-05,6.218739605181586088e-05,3.931166190013138108e-05,2.482858791458364441e-05
1.000000000000000021e-03,5.866468041173980141e-04,3.790593129257516128e-04,2.426977868451053722e-04,1.545120571165502460e-04,9.802192966180839372e-05,6.204723454596646772e-05,3.922092486871354988e-05,2.477042970290643410e-05
1.000000000000000021e-03,5.860979501842715923e-04,3.784989712866057847e-04,2.422557725877665796e-04,1.541971813119806349e-04,9.780877149334107738e-05,6.190695408131255699e-05,3.913011715023943305e-05,2.471222874063606835e-05
1.000000000000000021e-03,5.855428054911818777e-04,3.779325362214322600e-04,2.418091152720060536e-04,1.538790714407033914e-04,9.759345536126727376e-05,6.176526646718061210e-05,3.903840385562048950e-05,2.465344951928800295e-05
1.000000000000000021e-03,5.849813875456967485e-04,3.773600382625630725e-04,2.413578451141304101e-04,1.535577517356502032e-04,9.737599881379701964e-05,6.162218372343696363e-05,3.894579295722817337e-05,2.459409722576532997e-05
1.000000000000000021e-03,5.844137140093277807e-04,3.767815081401627831e-04,2.409019924922280132e-04,1.532332465435331354e-04,9.715641947446165209e-05,6.147771791853056712e-05,3.885229245840823961e-05,2.453417706661341544e-05
1.000000000000000021e-03,5.838398026969793654e-04,3.761969767804803125e-04,2.404415879440078890e-04,1.529055803229076760e-04,9.693473504062415536e-05,6.133188116843621776e-05,3.875791039276530608e-05,2.447369426754818325e-05
1.000000000000000021e-03,5.832596715764015120e-04,3.756064753041117783e-04,2.399766621646476654e-04,1.525747776422469490e-04,9.671096328199675835e-05,6.118468563560254894e-05,3.866265482344967213e-05,2.441265407298631344e-05
1.000000000000000021e-03,5.826733387676383139e-04,3.750100350242446291e-04,2.395072460046293692e-04,1.522408631780071723e-04,9.648512203915507620e-05,6.103614352789890607e-05,3.856653384244465896e-05,2.435106174557538284e-05
1.000000000000000021e-03,5.820810441807425326e-04,3.744079089136845458e-04,2.390335428197917333e-04,1.519039834472631588e-04,9.625731118926498641e-05,6.088632085792882825e-05,3.846959029618343478e-05,2.428894479270876788e-05
1.000000000000000021e-03,5.814828054675655030e-04,3.738001274474016776e-04,2.385555825972570808e-04,1.515641624143126585e-04,9.602754804766522702e-05,6.073522946956701240e-05,3.837183203343020677e-05,2.422630831805138899e-05
1.000000000000000021e-03,5.808786404289665358e-04,3.731867212872194738e-04,2.380733954737781241e-04,1.512214241469207320e-04,9.579584999731260704e-05,6.058288124990010364e-05,3.827326693032387752e-05,2.416315744255338838e-05
1.000000000000000021e-03,5.802685670142343878e-04,3.725677212800349654e-04,2.375870117335689917e-04,1.508757928143868079e-04,9.556223448729982074e-05,6.042928812817623899e-05,3.817390288966712009e-05,2.409949730398197492e-05
1.000000000000000021e-03,5.796526968519212725e-04,3.719432545624587992e-04,2.370965379259533010e-04,1.505273470495264228e-04,9.532675589286383365e-05,6.027448635812982831e-05,3.807376356963088358e-05,2.403534314190221437e-05
1.000000000000000021e-03,5.790310479093865609e-04,3.713133518665244839e-04,2.366020041460938778e-04,1.501761108339581341e-04,9.508943151110322721e-05,6.011848775803337427e-05,3.797285679655886708e-05,2.397070004317041725e-05
1.000000000000000021e-03,5.784036383121742876e-04,3.706780441238009577e-04,2.361034406501071276e-04,1.498221082613785163e-04,9.485027871279472060e-05,5.996130419345521918e-05,3.787119042685209972e-05,2.390557311366359151e-05
1.000000000000000021e-03,5.777704863433433301e-04,3.700373624633735868e-04,2.356008778526011383e-04,1.494653635353745394e-04,9.460931494071504256e-05,5.980294757607067669e-05,3.776877234616485572e-05,2.383996747774973522e-05
1.000000000000000021e-03,5.771316104427772061e-04,3.693913382097967039e-04,2.350943463241932639e-04,1.491059009672212558e-04,9.436655770795449559e-05,5.964342986246977532e-05,3.766561046859827219e-05,2.377388827775711285e-05
1.000000000000000021e-03,5.764870292064976651e-04,3.687400028810397501e-04,2.345838767890191692e-04,1.487437449736715462e-04,9.412202459622686095e-05,5.948276305296108525e-05,3.756171273589169023e-05,2.370734067344167480e-05
1.000000000000000021e-03,5.758375946234993610e-04,3.680842155919215072e-04,2.340701414876563216e-04,1.483793719498717782e-04,9.387603703510192111e-05,5.932115823520561543e-05,3.745721560837426419e-05,2.364041205155829344e-05
1.000000000000000021e-03,5.751833223951592329e-04,3.674240032104748388e-04,2.335531666416808738e-04,1.480128027327277474e-04,9.362861002461524574e-05,5.915862564500113025e-05,3.735212585887714390e-05,2.357310681190604310e-05
1.000000000000000021e-03,5.745242283439769499e-04,3.667593927483133397e-04,2.330329785818580578e-04,1.476440582313571256e-04,9.337975861033522300e-05,5.899517554647101613e-05,3.724645027783519551e-05,2.350542936525477225e-05
1.000000000000000021e-03,5.738603284130473379e-04,3.660904113590355527e-04,2.325096037462197861e-04,1.472731594253864234e-04,9.312949788206356194e-05,5.883081823114703288e-05,3.714019567266727830e-05,2.343738413293735195e-05
1.000000000000000021e-03,5.731917314000997948e-04,3.654171810067180655e-04,2.319831433530600859e-04,1.469001805571756218e-04,9.287787898176902846e-05,5.866558771451522606e-05,3.703338420706373603e-05,2.336898537810763873e-05
1.000000000000000021e-03,5.725184531760584700e-04,3.647397285916569422e-04,2.314536235223777264e-04,1.465251423190001693e-04,9.262491677678542706e-05,5.849949412959568328e-05,3.692602258076439168e-05,2.330023745100291859e-05
1.000000000000000021e-03,5.718405097346714646e-04,3.640580811583470273e-04,2.309210704829702432e-04,1.461480654746279682e-04,9.237062617930094123e-05,5.833254763720848617e-05,3.681811751074023914e-05,2.323114471257928647e-05
1.000000000000000021e-03,5.711579171919053044e-04,3.633722658937428313e-04,2.303855105703487465e-04,1.457689708574830614e-04,9.211502214495855044e-05,5.816475842498649012e-05,3.670967573052717390e-05,2.316171153407365905e-05
1.000000000000000021e-03,5.704706917853448337e-04,3.626823101255147543e-04,2.298469702246577707e-04,1.453878793688169360e-04,9.185811967146480901e-05,5.799613670639434487e-05,3.660070398956385041e-05,2.309194229656875218e-05
1.000000000000000021e-03,5.697788498735841109e-04,3.619882413202942504e-04,2.293054759885765847e-04,1.450048119758659754e-04,9.159993379718755254e-05,5.782669271974067121e-05,3.649120905252569737e-05,2.302184139055488024e-05
1.000000000000000021e-03,5.690839249361781711e-04,3.612915831986411477e-04,2.287622092282637863e-04,1.446206010588695675e-04,9.134102410651873409e-05,5.765679311500335815e-05,3.638142760462866287e-05,2.295156024783083523e-05
1.000000000000000021e-03,5.683859273133331363e-04,3.605923537461036641e-04,2.282171874164802170e-04,1.442352604283837097e-04,9.108140050118301682e-05,5.748644463023418617e-05,3.627136409615889481e-05,2.288110175599186700e-05
1.000000000000000021e-03,5.676848674169825831e-04,3.598905710243090802e-04,2.276704280772651710e-04,1.438488039249314222e-04,9.082107289971861372e-05,5.731565401294060850e-05,3.616102298282374168e-05,2.281046880581413228e-05
1.000000000000000021e-03,5.669807557304629327e-04,3.591862531699841626e-04,2.271219487847658911e-04,1.434612454179789358e-04,9.056005123670258442e-05,5.714442801953895405e-05,3.605040872538299508e-05,2.273966429101268041e-05
1.000000000000000021e-03,5.662756696284717943e-04,3.584815135619230891e-04,2.265734124911083147e-04,1.430737675597642188e-04,9.029913524493678829e-05,5.697329258726415482e-05,3.593986162522089478e-05,2.266890625682277028e-05
1.000000000000000021e-03,5.655696121370722921e-04,3.577763576655677066e-04,2.260248242651153531e-04,1.426863741861267136e-04,9.003832758694041048e-05,5.680224948786493348e-05,3.582938283523433764e-05,2.259819544408493697e-05
1.000000000000000021e-03,5.648625863181645518e-04,3.570707909872514684e-04,2.254761892066869196e-04,1.422990691538204475e-04,8.977763093872482745e-05,5.663130050166089515e-05,3.571897351373497692e-05,2.252753259705453904e-05
1.000000000000000021e-03,5.641545952693012783e-04,3.563648190736888295e-04,2.249275124461922067e-04,1.419118563399853763e-04,8.951704798938974166e-05,5.646044741725799208e-05,3.560863482425828067e-05,2.245691846327665519e-05
1.000000000000000021e-03,5.634456421235028989e-04,3.556584475114634488e-04,2.243787991438712611e-04,1.415247396416227112e-04,8.925658144072659398e-05,5.628969203126926030e-05,3.549836793537420297e-05,2.238635379346144160e-05
1.000000000000000021e-03,5.627357300490819225e-04,3.549516819265270164e-04,2.238300544892383743e-04,1.411377229750731741e-04,8.899623400682166435e-05,5.611903614803531905e-05,3.538817402049950172e-05,2.231583934136070575e-05
1.000000000000000021e-03,5.620265745740795878e-04,3.542462045793823072e-04,2.232825718355581747e-04,1.407517127660701999e-04,8.873661298955798349e-05,5.594887683102661642e-05,3.527830905094599801e-05,2.224553873809700179e-05
1.000000000000000021e-03,5.613181716914067464e-04,3.535420099674467737e-04,2.227363458317740963e-04,1.403667046661989041e-04,8.847771519474716161e-05,5.577921186868756777e-05,3.516877154903826080e-05,2.217545101761858074e-05
1.000000000000000021e-03,5.606105174362018646e-04,3.528390926567629869e-04,2.221913711948466166e-04,1.399826943822104249e-04,8.821953746856249804e-05,5.561003907731979445e-05,3.505956005567386572e-05,2.210557522599888898e-05
1.000000000000000021e-03,5.599036078855734169e-04,3.521374472813410678e-04,2.216476427089692435e-04,1.395996776753266513e-04,8.796207669700402236e-05,5.544135630070159596e-05,3.495067313006486022e-05,2.203591042126611129e-05
1.000000000000000021e-03,5.591992581819900257e-04,3.514388991464684675e-04,2.211065862108586844e-04,1.392186639199167455e-04,8.770601346645835294e-05,5.527361030479937100e-05,3.484239951455165907e-05,2.196664147854661471e-05
1.000000000000000021e-03,5.584974577369657654e-04,3.507434317312190116e-04,2.205681855748304113e-04,1.388396401724235928e-04,8.745133837595373525e-05,5.510679463338290224e-05,3.473473491875524963e-05,2.189776560286087024e-05
1.000000000000000021e-03,5.577981960279812567e-04,3.500510286412654524e-04,2.200324248112712805e-04,1.384625936044855835e-04,8.719804211084999142e-05,5.494090289064881491e-05,3.462767509292537455e-05,2.182928002589032757e-05
1.000000000000000021e-03,5.571014625980537805e-04,3.493616736077873519e-04,2.194992880653100025e-04,1.380875115017372141e-04,8.694611544190507637e-05,5.477592874055209164e-05,3.452121582748434684e-05,2.176118200567564087e-05
1.000000000000000021e-03,5.564072470552914543e-04,3.486753504863699662e-04,2.189687596154907018e-04,1.377143812626113696e-04,8.669554922434540153e-05,5.461186590614181566e-05,3.441535295257522900e-05,2.169346882631773742e-05
1.000000000000000021e-03,5.557155390724777657e-04,3.479920432559456848e-04,2.184408238724854000e-04,1.373431903971786034e-04,8.644633439696230146e-05,5.444870816891464747e-05,3.431008233762035268e-05,2.162613779768559453e-05
1.000000000000000021e-03,5.550282308874212147e-04,3.473135853761227104e-04,2.179168797741835634e-04,1.369749146289257855e-04,8.619912270820690987e-05,5.428688083545962664e-05,3.420567782931384528e-05,2.155936384410790980e-05
1.000000000000000021e-03,5.543453044039096641e-04,3.466399489498413807e-04,2.173969005859271932e-04,1.366095327799803094e-04,8.595389890905566596e-05,5.412637349122350694e-05,3.410213253115887156e-05,2.149314248283782383e-05
1.000000000000000021e-03,5.536667416543260278e-04,3.459711063207645686e-04,2.168808598269340415e-04,1.362470238846985658e-04,8.571064790824490891e-05,5.396717583150281386e-05,3.399943962027434491e-05,2.142746927933548718e-05
1.000000000000000021e-03,5.529925247987736454e-04,3.453070300711248903e-04,2.163687312677279435e-04,1.358873671873677324e-04,8.546935477049620155e-05,5.380927766017944798e-05,3.389759234653519571e-05,2.136233984669994517e-05
1.000000000000000021e-03,5.523242123557685823e-04,3.446492679875326503e-04,2.158617145497228296e-04,1.355314077800207832e-04,8.523058755788532964e-05,5.365305115434923267e-05,3.379683095199963850e-05,2.129790788796336886e-05
1.000000000000000021e-03,5.516617811459008413e-04,3.439977838203789025e-04,2.153597748770509342e-04,1.351791181086447731e-04,8.499432644189092710e-05,5.349848277838686991e-05,3.369714647650299112e-05,2.123416758034315385e-05
1.000000000000000021e-03,5.510052081904127453e-04,3.433525416882428740e-04,2.148628778379304833e-04,1.348304709382760146e-04,8.476055183025699440e-05,5.334555916079864168e-05,3.359853006971443923e-05,2.117111317291617240e-05
1.000000000000000021e-03,5.503544707098636342e-04,3.427135060745518090e-04,2.143709894006651793e-04,1.344854393494213974e-04,8.452924436422564868e-05,5.319426709225049006e-05,3.350097298979682009e-05,2.110873898573355285e-05
1.000000000000000021e-03,5.497095461228062706e-04,3.420806418242862412e-04,2.138840759097000895e-04,1.341439967345312348e-04,8.430038491581448882e-05,5.304459352362807473e-05,3.340446660208796169e-05,2.104703940894962140e-05
1.000000000000000021e-03,5.490704120444732210e-04,3.414539141407250565e-04,2.134021040817290626e-04,1.338061167945246396e-04,8.407395458513211085e-05,5.289652556412503305e-05,3.330900237780223545e-05,2.098600890196449472e-05
1.000000000000000021e-03,5.484371298422446297e-04,3.408333692467681113e-04,2.129251024270059081e-04,1.334718163299163942e-04,8.384996326436759272e-05,5.275006911363530105e-05,3.321458388816914869e-05,2.092564965374723430e-05
1.000000000000000021e-03,5.478096771889333057e-04,3.402189725469309967e-04,2.124530379214265854e-04,1.331410692793207290e-04,8.362839223924152716e-05,5.260521141428185532e-05,3.312120269498457291e-05,2.086595618361951373e-05
1.000000000000000021e-03,5.471880319478338028e-04,3.396106897916775086e-04,2.119858778995733334e-04,1.328138498781884043e-04,8.340922301478033581e-05,5.246193986031627375e-05,3.302885046175365648e-05,2.080692307740899109e-05
1.000000000000000021e-03,5.465721721714859958e-04,3.390084870743713592e-04,2.115235900510876890e-04,1.324901326555763298e-04,8.319243731282516567e-05,5.232024199634728476e-05,3.293751895248773966e-05,2.074854498665493433e-05
1.000000000000000021e-03,5.459629241404544706e-04,3.384131725428774743e-04,2.110667946787101129e-04,1.321703518944146796e-04,8.297832591380873519e-05,5.218030786215170435e-05,3.284733064718059383e-05,2.069090019482566404e-05
1.000000000000000021e-03,5.453602635114507746e-04,3.378247083723790616e-04,2.106154557101209946e-04,1.318544791589579420e-04,8.276686841524559784e-05,5.204212355675735553e-05,3.275827635494999894e-05,2.063398273378693265e-05
1.000000000000000021e-03,5.447641661727002649e-04,3.372430571518834691e-04,2.101695374983407439e-04,1.315424863636820575e-04,8.255804467261116894e-05,5.190567535780167048e-05,3.267034700418964161e-05,2.057778671334094953e-05
1.000000000000000021e-03,5.441746082424759419e-04,3.366681818805845774e-04,2.097290048174083239e-04,1.312343457694375884e-04,8.235183479637930588e-05,5.177094971942625129e-05,3.258353364113958107e-05,2.052230632028256941e-05
1.000000000000000021e-03,5.435915660676414983e-04,3.361000459642789163e-04,2.092938228581225045e-04,1.309300299796617602e-04,8.214821914910500468e-05,5.163793327020207291e-05,3.249782742847867687e-05,2.046753581747058517e-05
1.000000000000000021e-03,5.430150162222109568e-04,3.355386132118161487e-04,2.088639572238308215e-04,1.306295119366350911e-04,8.194717834254394587e-05,5.150661281108238069e-05,3.241321964393507540e-05,2.041346954291065543e-05
1.000000000000000021e-03,5.424450181544462771e-04,3.349839271155603902e-04,2.084394340599780252e-04,1.303328067075743425e-04,8.174872108664715700e-05,5.137699346328779477e-05,3.232971335519106785e-05,2.036010936323692981e-05
1.000000000000000021e-03,5.418815485793469040e-04,3.344359518126675877e-04,2.080202193468776877e-04,1.300398875631312602e-04,8.155282824274543232e-05,5.124906220377890154e-05,3.224729995882103797e-05,2.030744969463951815e-05
1.000000000000000021e-03,5.413245844265015877e-04,3.338946518213946552e-04,2.076062794549138172e-04,1.297507280942760690e-04,8.135948090770286575e-05,5.112280617242197348e-05,3.216597096011364272e-05,2.025548502431296445e-05
1.000000000000000021e-03,5.407741028387587183e-04,3.333599920378552692e-04,2.071975811406991498e-04,1.294653022088876294e-04,8.116866041129419294e-05,5.099821267012491396e-05,3.208571797180734118e-05,2.020420990962221080e-05
1.000000000000000021e-03,5.402303025747014556e-04,3.328321561526745862e-04,2.067942601549091974e-04,1.291837026153304184e-04,8.098042783792958120e-05,5.087532120941394917e-05,3.200656629292941073e-05,2.015364045325785942e-05
1.000000000000000021e-03,5.396931605409548225e-04,3.323111087173311550e-04,2.063962829591101838e-04,1.289059030082810651e-04,8.079476437365657295e-05,5.075411899733799342e-05,3.192850747587867838e-05,2.010377117411100997e-05
1.000000000000000021e-03,5.391626538584482192e-04,3.317968146613820609e-04,2.060036164003212873e-04,1.286318773981824648e-04,8.061165143636152362e-05,5.063459340114707095e-05,3.185153317990099749e-05,2.005459666083220688e-05
1.000000000000000021e-03,5.386387598611086340e-04,3.312892392892789490e-04,2.056162277072543561e-04,1.283616001079104806e-04,8.043107067321031531e-05,5.051673194647494236e-05,3.177563516985718072e-05,2.000611157101859271e-05
1.000000000000000021e-03,5.381214560945620949e-04,3.307883482772016118e-04,2.052340844865845515e-04,1.280950457694747437e-04,8.025300395811590449e-05,5.040052231554306949e-05,3.170080531500530551e-05,1.995831063041139523e-05
1.000000000000000021e-03,5.376107203148404326e-04,3.302941076699326679e-04,2.048571547192701043e-04,1.278321893207613302e-04,8.007743338923888358e-05,5.028595234538581714e-05,3.162703558779804923e-05,1.991118863210237610e-05
1.000000000000000021e-03,5.371022748594453389e-04,3.298024246812891291e-04,2.044823390252625600e-04,1.275708788891961756e-04,7.990292563076895462e-05,5.017208832604374468e-05,3.155372544493714152e-05,1.986436223028797206e-05
1.000000000000000021e-03,5.365961117498912114e-04,3.293132869081722108e-04,2.041096254707852251e-04,1.273111050031557620e-04,7.972947385597059739e-05,5.005892559260894715e-05,3.148087179640124731e-05,1.981782941609088261e-05
1.000000000000000021e-03,5.360922230056120808e-04,3.288266819633119922e-04,2.037390021489647173e-04,1.270528582181514683e-04,7.955707126027152540e-05,4.994645949643470906e-05,3.140847156340457124e-05,1.977158818812822943e-05
1.000000000000000021e-03,5.355906006439992324e-04,3.283425974753378354e-04,2.033704571798752555e-04,1.267961291168465381e-04,7.938571106126265876e-05,4.983468540512894492e-05,3.133652167839010846e-05,1.972563655250571181e-05
1.000000000000000021e-03,5.350891259362026411e-04,3.278589502113704612e-04,2.030023855884717748e-04,1.265397912200834861e-04,7.921463777328526478e-05,4.972310904903239575e-05,3.126470337114675132e-05,1.967977067875568528e-05
1.000000000000000021e-03,5.345877966909636306e-04,3.273757374134148111e-04,2.026347848040474173e-04,1.262838424862170036e-04,7.904384991646645146e-05,4.961172941171763403e-05,3.119301596587686584e-05,1.963399012641590455e-05
1.000000000000000021e-03,5.340866106918126799e-04,3.268929562877650259e-04,2.022676522245876859e-04,1.260282808504260116e-04,7.887334599501782170e-05,4.950054546622813158e-05,3.112145877995456692e-05,1.958829445064508602e-05
1.000000000000000021e-03,5.335855656972701092e-04,3.264106040054970534e-04,2.019009852173301103e-04,1.257731042251948573e-04,7.870312449759831505e-05,4.938955617533215942e-05,3.105003112409614148e-05,1.954268320233478379e-05
1.000000000000000021e-03,5.330846594410641130e-04,3.259286777029715004e-04,2.015347811193284109e-04,1.255183105007985753e-04,7.853318389767883849e-05,4.927876049177821896e-05,3.097873230253197569e-05,1.949715592822227211e-05
0 km,7 km,10 km,20 km,30 km,40 km,50 km,60 km,70 km,80 km
0.001,0.0007539177767305848,0.0005922648034750569,0.00038490617279658137,0.000247392320543982,0.00015791555306607623,0.0001003671566373715,6.361853747449743e-05,4.0256607010916584e-05,2.5446360651215025e-05
0.001,0.0007533902419958185,0.0005917244917926066,0.0003843504806873478,0.0002469518485683003,0.0001576007478372822,0.00010015356028336005,6.347773727057954e-05,4.016534974386181e-05,2.5387814123899557e-05
0.001,0.0007528628792251897,0.0005911844879166931,0.0003837954443648265,0.0002465120671477305,0.00015728651344926157,9.994038442151031e-05,6.333722806950528e-05,4.007428674216739e-05,2.5329394519652018e-05
0.001,0.0007523356872805944,0.0005906447907925071,0.0003832410626787123,0.0002460729751307637,0.00015697284891103737,9.972762829117227e-05,6.319700932883725e-05,3.9983417636365086e-05,2.5271101593906498e-05
0.001,0.0007518086649950493,0.0005901053993262767,0.0003826873344129807,0.000245634571300401,0.00015665975317873245,9.95152910932062e-05,6.305708047968383e-05,3.9892742039402306e-05,2.5212935090640287e-05
0.001,0.0007512818111727442,0.0005895663123854124,0.00038213425828639575,0.0002451968543747938,0.0001563472251561599,9.930337199043154e-05,6.291744092702573e-05,3.980225954686196e-05,2.5154894742516358e-05
0.001,0.0007507551245890757,0.0005890275287986403,0.0003815818329529933,0.00024475982300791935,0.00015603526369546326,9.909187010814736e-05,6.277809005009466e-05,3.9711969737226656e-05,2.5096980271060998e-05
0.001,0.0007502264452226824,0.0005884868559085152,0.00038102785262825065,0.00024432175277214066,0.00015572264698517112,9.88799609470651e-05,6.26384862087587e-05,3.9621522312922004e-05,2.5038967246912867e-05
0.001,0.000749695774901522,0.0005879442972710813,0.00038047232480109013,0.00024388265123925605,0.00015540938109456906,9.866764888521257e-05,6.249863239143498e-05,3.953091925128679e-05,2.498085695464162e-05
0.001,0.0007491631154430714,0.0005873998564236413,0.00037991525691100856,0.00024344252592185564,0.00015509547204033507,9.845493826021018e-05,6.235853155787194e-05,3.944016251022327e-05,2.4922650665997884e-05
0.001,0.0007486284686543365,0.0005868535368848297,0.00037935665634847824,0.00024300138427382333,0.00015478092578703268,9.824183336966692e-05,6.2218186639435e-05,3.9349254028404254e-05,2.4864349640052216e-05
0.001,0.0007480870957031576,0.000586300474032492,0.00037879149123861057,0.0002425552230413961,0.00015446287448415177,9.80263854642033e-05,6.207631182945079e-05,3.925735993392708e-05,2.4805418700342044e-05
0.001,0.0007475390029192987,0.0005857406797529387,0.0003782197872436036,0.00024210406905347345,0.00015414134016629157,9.780861070114894e-05,6.193291827596257e-05,3.9164487654400794e-05,2.4745862693628148e-05
0.001,0.0007469841968019674,0.0005851741661454001,0.0003776415703174324,0.00024164794939077438,0.0001538163450528885,9.758852536415706e-05,6.178801721036571e-05,3.907064467141267e-05,2.4685686501265697e-05
0.001,0.0007464226840200367,0.0005846009455219824,0.00037705686670463337,0.0002411868913840224,0.0001534879115464833,9.736614586183658e-05,6.164161994641891e-05,3.897583851984993e-05,2.462489503874857e-05
0.001,0.0007458544714121565,0.0005840210304075477,0.00037646570293897594,0.00024072092261200308,0.00015315606223087128,9.714148872627883e-05,6.149373787917076e-05,3.888007678716513e-05,2.45634932552282e-05
0.001,0.0007452795659868886,0.0005834344335395587,0.00037586810584214404,0.0002402500708997022,0.000152820819869329,9.691457061165131e-05,6.134438248396139e-05,3.878336711269497e-05,2.450148613305654e-05
0.001,0.0007446982091229053,0.0005828414050804809,0.00037526433980072227,0.0002397745491251193,0.0001524823380310375,9.668549630724793e-05,6.119362307821724e-05,3.868575452092861e-05,2.4438902597094615e-05
0.001,0.0007441104077793266,0.0005822419576041865,0.000374654431136991,0.00023929438452844706,0.0001521406389697796,9.645428208068799e-05,6.10414708650461e-05,3.858724646752558e-05,2.4375747508899864e-05
0.001,0.0007435161690815189,0.0005816361038919765,0.0003740384064517259,0.00023880960458647735,0.00015179574511101,9.622094431596755e-05,6.0887937123913e-05,3.848785045741014e-05,2.4312025761525238e-05
0.001,0.0007429155003212045,0.0005810238569324259,0.0003734162926228523,0.00023832023701067176,0.00015144767905002232,9.598549951201614e-05,6.073303320960556e-05,3.83875740440667e-05,2.42477422790523e-05
0.001,0.0007423085305088799,0.0005804053544492479,0.00037278824495395505,0.0002378264113599139,0.00015109653618969462,9.574801357389848e-05,6.057680304696976e-05,3.828644589147927e-05,2.4182915529390252e-05
0.001,0.0007416952671281527,0.0005797806095975203,0.0003721542903540935,0.000237328155265129,0.00015074233901078615,9.550850289594038e-05,6.041925791001213e-05,3.8184473495775654e-05,2.411755039775751e-05
0.001,0.0007410757178351933,0.0005791496357472955,0.0003715144560199718,0.00023682549660121693,0.00015038511017095082,9.526698399235154e-05,6.026040915139781e-05,3.8081664403831414e-05,2.4051651801815565e-05
0.001,0.0007404498904588522,0.0005785124464833875,0.0003708687694343879,0.00023631846348487102,0.00015002487250269267,9.502347349561174e-05,6.0100268201280124e-05,3.797802621247342e-05,2.3985224691142176e-05
0.001,0.000739817793000736,0.0005778690556051271,0.0003702172583646133,0.00023580708427235972,0.00014966164901128063,9.477798815483971e-05,5.9938846566140114e-05,3.787356656768574e-05,2.3918274046705576e-05
0.001,0.0007391794336352683,0.0005772194771261406,0.00036955995086080306,0.00023529138755728292,0.00014929546287266413,9.453054483414699e-05,5.977615582759686e-05,3.776829316380097e-05,2.385080488032797e-05
0.001,0.0007385356837401969,0.0005765645972068202,0.00036889774196575574,0.0002347720745464529,0.00014892681149659162,9.42814794200372e-05,5.9612416728092556e-05,3.7662348796962334e-05,2.378290869241134e-05
0.001,0.0007378865501365786,0.0005759044277808471,0.0003682306558404449,0.0002342491698918279,0.00014855571485941296,9.403080644324396e-05,5.944763924389705e-05,3.755574009362634e-05,2.371458979861065e-05
0.001,0.0007372320397833855,0.0005752389809515306,0.00036755871686373843,0.00023372269842386576,0.0001481821930634036,9.377854051813779e-05,5.92818334053861e-05,3.74484737148236e-05,2.364585253654512e-05
0.001,0.0007365721597776102,0.0005745682689916729,0.0003668819496311701,0.00023319268514975972,0.00014780626633511263,9.352469634142839e-05,5.911500929610015e-05,3.734055635551828e-05,2.35767012653732e-05
0.001,0.0007359070382096695,0.0005738924278329212,0.00036620050520582223,0.0002326592549483615,0.00014742802610623578,9.326933684741753e-05,5.8947208765596136e-05,3.723201528626343e-05,2.3507153539330125e-05
0.001,0.0007352366822744919,0.0005732114697907263,0.0003655144080205807,0.0002321224325628545,0.00014704749234532768,9.30124765259338e-05,5.877844174725213e-05,3.712285709891949e-05,2.3437213649054356e-05
0.001,0.0007345610993055855,0.0005725254073502257,0.0003648236827235576,0.00023158224291094424,0.00014666468514311576,9.275412994749425e-05,5.860871822644595e-05,3.701308841848994e-05,2.336688590620212e-05
0.001,0.0007338802967751745,0.0005718342531661053,0.0003641283541767086,0.00023103871108296522,0.00014627962471074844,9.249431176193324e-05,5.843804823954878e-05,3.690271590243443e-05,2.32961746429929e-05
0.001,0.0007331942822941306,0.0005711380200622195,0.000363428447454292,0.00023049186233985435,0.00014589233137793237,9.223303669696582e-05,5.826644187292669e-05,3.679174623998899e-05,2.3225084211761806e-05
0.001,0.0007325030636119942,0.000570436721031382,0.0003627239878414387,0.00022994172211121704,0.00014550282559116622,9.197031955679165e-05,5.809390926192732e-05,3.66801861514784e-05,2.3153618984504423e-05
0.001,0.0007318082249846354,0.000569731957456593,0.0003620165686744435,0.0002293895269980944,0.0001451119793900387,9.170674702405544e-05,5.792083507086079e-05,3.656828410642266e-05,2.3081938026911105e-05
0.001,0.0007311097709589727,0.0005690237376093709,0.0003613062068501535,0.00022883529410468975,0.00014471980653999792,9.14423290636205e-05,5.774722611940683e-05,3.6456044625219865e-05,2.3010044279099164e-05
0.001,0.0007304077061664716,0.0005683120698629669,0.00036059291938656614,0.00022827904062761942,0.00014432632086784533,9.117707567918865e-05,5.757308925149413e-05,3.6343472243382366e-05,2.293794069062729e-05
0.001,0.0007297020353231152,0.0005675969626922158,0.0003598767234219355,0.00022772078385475435,0.00014393153626068395,9.091099691249356e-05,5.739843133472259e-05,3.6230571511141116e-05,2.2865630220232028e-05
0.001,0.0007289948155254126,0.0005668805157203741,0.00035915975887038315,0.00022716220982550104,0.00014353665302637602,9.064490513205597e-05,5.722378701487135e-05,3.611768859725593e-05,2.279333481077374e-05
0.001,0.0007282860481242219,0.0005661627319510184,0.0003584420321019746,0.00022660332474955334,0.0001431416759965279,9.037880375071969e-05,5.7049158588914064e-05,3.6004825007582225e-05,2.2721055434706506e-05
0.001,0.0007275757345080665,0.0005654436144326382,0.00035772354953912867,0.0002260441348764214,0.00014274661002939483,9.011269619839399e-05,5.687454836459578e-05,3.5891982254752056e-05,2.2648793068745655e-05
0.001,0.0007268638761030398,0.0005647231662585116,0.0003570043176561602,0.0002254846464948739,0.0001423514600093734,8.984658592167178e-05,5.6699958660169715e-05,3.5779161857992474e-05,2.2576548693746487e-05
0.001,0.0007261504743729061,0.0005640013905666712,0.00035628434297892044,0.0002249248659324104,0.00014195623084652692,8.958047638345721e-05,5.652539180412445e-05,3.5666365342942064e-05,2.250432329458613e-05
0.001,0.0007254355308190145,0.0005632782905397587,0.00035556363208430486,0.00022436479955468554,0.0001415609274760624,8.931437106256734e-05,5.635085013490999e-05,3.5553594241465086e-05,2.2432117860037706e-05
0.001,0.0007247208411865314,0.0005625556717890254,0.0003548439578507697,0.00022380581171795803,0.00014116650687104502,8.904891159204534e-05,5.61767534392646e-05,3.544111934056619e-05,2.2360105593797506e-05
0.001,0.00072400640290786,0.000561833531609933,0.00035412531668185007,0.00022324789882467925,0.00014077296603347102,8.878409573173543e-05,5.600310014889176e-05,3.5328939584811035e-05,2.228828580259237e-05
0.001,0.0007232922134419361,0.000561111867333509,0.00035340770503880037,0.00022269105733400152,0.00014038030201108317,8.8519921274859e-05,5.5829888718494674e-05,3.521705393409239e-05,2.221665780315407e-05
0.001,0.0007225782702742098,0.0005603906763262448,0.0003526911194401051,0.00022213528376118449,0.00013998851189683077,8.825638604758897e-05,5.5657117625479614e-05,3.510546136342301e-05,2.214522092208301e-05
0.001,0.0007218663790349207,0.0005596717927826706,0.0003519774072686018,0.00022158202285215626,0.0001395986194011808,8.79941808494171e-05,5.5485240659247415e-05,3.499445534348073e-05,2.207416317565271e-05
0.001,0.0007211565340671307,0.000558955209053062,0.0003512665554090523,0.0002210312613239567,0.0001392106136609281,8.773329770591506e-05,5.531425230770577e-05,3.4884032196140665e-05,2.200348216114185e-05
0.001,0.0007204487297429265,0.0005582409175317231,0.00035055855083818805,0.00022048298599609717,0.00013882448390129787,8.747372870968443e-05,5.514414710600884e-05,3.477418827518741e-05,2.1933175496831414e-05
0.001,0.0007197429604633029,0.0005575289106567639,0.00034985338062403464,0.00021993718378969884,0.00013844021943515845,8.721546601972457e-05,5.497491963609735e-05,3.466491996599965e-05,2.1863240821795316e-05
0.001,0.0007190392206580874,0.0005568191809099186,0.0003491510319252488,0.00021939384172660586,0.00013805780966217872,8.695850186076947e-05,5.480656452622117e-05,3.455622368522282e-05,2.1793675795681418e-05
0.001,0.0007183375047857581,0.0005561117208162645,0.0003484514919904163,0.00021885294692850114,0.00013767724406801954,8.670282852265318e-05,5.463907645048003e-05,3.444809588045186e-05,2.172447809850241e-05
0.001,0.0007176398171146462,0.0005554085359032386,0.00034775670623974134,0.0002183159850558065,0.00013729955964329822,8.644913914890404e-05,5.447290801376681e-05,3.4340828149382966e-05,2.165583410030806e-05
0.001,0.0007169461476104001,0.0005547096122322624,0.0003470666509123452,0.00021778293254731739,0.00013692473741724035,8.61974199558567e-05,5.430804975101775e-05,3.423441420247442e-05,2.15877397033261e-05
0.001,0.0007162564863033777,0.0005540149359610161,0.00034638130244054916,0.00021725376605180745,0.00013655275859741984,8.594765729366703e-05,5.4144492290891566e-05,3.412884781322755e-05,2.152019085117201e-05
0.001,0.0007155708232884887,0.0005533244933430584,0.0003457006374485156,0.00021672846242622396,0.00013618360456808432,8.569983764497563e-05,5.3982226354801364e-05,3.40241228175218e-05,2.1453183528407172e-05
0.001,0.0007148907167777357,0.0005526398589811358,0.0003450262214786548,0.00021620823613271921,0.00013581813150424676,8.545453691240582e-05,5.3821629494988794e-05,3.392048307301558e-05,2.1386873841072776e-05
0.001,0.0007142161543980302,0.0005519610151552632,0.0003443580235484482,0.00021569305634208547,0.00013545631457844443,8.521173706397784e-05,5.366268933409295e-05,3.381792035746172e-05,2.1321256433336487e-05
0.001,0.0007135471238866448,0.0005512879443055973,0.0003436960129838173,0.0002151828925541902,0.0001350981292399717,8.497142027417112e-05,5.350539363884576e-05,3.371642654533412e-05,2.1256326012778444e-05
0.001,0.0007128836130908273,0.0005506206290316834,0.00034304015941680915,0.00021467771459500972,0.00013474355121214092,8.473356892178238e-05,5.3349730318534455e-05,3.361599360677474e-05,2.1192077349695405e-05
0.001,0.0007122256099675188,0.0005499590520918091,0.0003423904327834519,0.00021417749261385993,0.00013439255648970008,8.449816558787534e-05,5.319568742351694e-05,3.35166136065783e-05,2.1128505276425763e-05
0.001,0.0007115731025829938,0.0005493031964022937,0.0003417468033215544,0.0002136821970805245,0.000134045121336186,8.426519305371512e-05,5.304325314373989e-05,3.341827870317759e-05,2.106560468667675e-05
0.001,0.0007109261960066054,0.0005486531617838624,0.0003411093543337103,0.00021319188469384628,0.00013370128216574169,8.403467429429362e-05,5.289244191063335e-05,3.3320997960119286e-05,2.1003381278303992e-05
0.001,0.0007102848782749661,0.0005480089311096272,0.00034047805604549785,0.00021270652596543237,0.00013336101530442401,8.380659214968773e-05,5.274324196034732e-05,3.3224763568979684e-05,2.0941829967612013e-05
0.001,0.0007096491375319776,0.0005473704874075498,0.00033985287897724074,0.00021222609171923644,0.00013302429733989257,8.358092965463258e-05,5.25956416646764e-05,3.312956781229619e-05,2.088094573050621e-05
0.001,0.0007090189620285115,0.0005467378138598193,0.00033923379394201156,0.00021175055308892372,0.0001326911051189623,8.335767003660405e-05,5.244962952967474e-05,3.3035403062615115e-05,2.0820723601860106e-05
0.001,0.0007083951884833238,0.0005461117507284293,0.0003386216233705354,0.00021128054172409337,0.00013236188112429926,8.31371097341464e-05,5.230539940125761e-05,3.294239432192892e-05,2.076124352066865e-05
0.001,0.0007077778041323896,0.000545492279490185,0.00033801633474888146,0.00021081602540817874,0.00013203659950671687,8.291923002160208e-05,5.216293844781483e-05,3.285053307562121e-05,2.0702499944560498e-05
0.001,0.0007071667963482699,0.0005448793818164008,0.0003374178959240363,0.00021035697230232543,0.00013171523473119512,8.270401240613943e-05,5.202223399957759e-05,3.2759810917439646e-05,2.064448740210184e-05
0.001,0.0007065621526397901,0.000544273039572169,0.0003368262751014692,0.00020990335094223987,0.0001313977615739679,8.249143862546502e-05,5.188327354697137e-05,3.267021954836586e-05,2.0587200492045967e-05
0.001,0.0007059638606517004,0.0005436732348155853,0.0003362414408426963,0.00020945513023505862,0.00013108415511962746,8.228149064554578e-05,5.174604473897535e-05,3.258175077549588e-05,2.053063388259103e-05
0.001,0.0007053719081643225,0.0005430799497970297,0.00033566336206289793,0.00020901227945626015,0.00013077439075827684,8.20741506583782e-05,5.161053538152209e-05,3.249439651094783e-05,2.047478231065629e-05
0.001,0.0007047863993885064,0.0005424932828039034,0.0003350921191971394,0.0002085748525953015,0.00013046850282623395,8.186944018288875e-05,5.147675893062123e-05,3.240816518060804e-05,2.0419651063027786e-05
0.001,0.0007042073221500205,0.000541913216142546,0.0003345276813035574,0.00020814281911618103,0.00013016646689064054,8.166734155142674e-05,5.134470329367606e-05,3.232304876615549e-05,2.0365234922821375e-05
0.001,0.0007036346644028755,0.0005413397323015136,0.0003339700177764314,0.00020771614883326046,0.00012986825880927205,8.146783731136239e-05,5.121435652738549e-05,3.2239039349161415e-05,2.0311528738515718e-05
0.001,0.0007030684142289592,0.0005407728139509093,0.00033341909834398085,0.00020729481190839792,0.00012957385472790145,8.12709102230124e-05,5.1085706836262186e-05,3.215612911007561e-05,2.0258527423278803e-05
0.001,0.0007025087877125606,0.0005402126735385767,0.0003328751197405316,0.00020687895394469412,0.00012928335419699167,8.107662593993734e-05,5.095879672189383e-05,3.2074345280702784e-05,2.0206248321016987e-05
0.001,0.0007019557729111361,0.0005396592936234858,0.0003323380514212155,0.00020646854484108668,0.0001289967331620245,8.088496708343894e-05,5.083361429641059e-05,3.1993679981452625e-05,2.0154686306347033e-05
0.001,0.0007014093580122255,0.0005391126569487217,0.00033180786317787807,0.00020606355484577673,0.00012871396785738722,8.069591648818549e-05,5.071014781993386e-05,3.191412543168724e-05,2.010383631860697e-05
0.001,0.0007008695313331482,0.0005385727464408199,0.0003312845251369297,0.00020566395455347188,0.0001284350348038258,8.050945720021523e-05,5.058838569914163e-05,3.1835673948741706e-05,2.0053693361205354e-05
0.001,0.0007003362813206957,0.0005380395452091099,0.00033076800775717,0.00020526971490259695,0.00012815991080588224,8.032557247492852e-05,5.046831648582724e-05,3.175831794694013e-05,2.0004252500969603e-05
0.001,0.0006998095965508554,0.0005375130365450592,0.00033025828182767485,0.00020488080717254625,0.00012788857294937395,8.014424577511121e-05,5.0349928875481843e-05,3.168204993662801e-05,1.9955508867504938e-05
0.001,0.0006992849713647436,0.000536988737498668,0.0003297510574308719,0.00020449398184933928,0.0001276187643023316,7.996397313508213e-05,5.023224268320585e-05,3.160623916862529e-05,1.9907059627792014e-05
0.001,0.0006987624017369506,0.0005364666423066755,0.0003292463243531191,0.00020410922866516542,0.000127350476544274,7.978474848904117e-05,5.011525373583123e-05,3.153088286679667e-05,1.985890297191875e-05
0.001,0.0006982418836227756,0.0005359467451858974,0.000328744072370431,0.00020372653735498857,0.00012708370136324496,7.960656578019794e-05,4.9998957867578574e-05,3.1455978260416835e-05,1.9811037093701456e-05
0.001,0.0006977234129582083,0.0005354290403332512,0.00032824429124863073,0.00020334589765671668,0.0001268184304559618,7.942941896086744e-05,4.988335092011608e-05,3.138152258420484e-05,1.976346019070644e-05
0.001,0.0006972049031024503,0.0005349114284143175,0.00032774491556384407,0.00020296571741865816,0.00012655354571184963,7.925255773427056e-05,4.976794174339877e-05,3.130719890433304e-05,1.971596949574029e-05
0.001,0.0006966863521517465,0.000534393907423076,0.000327245942795149,0.00020258599425811892,0.00012628904521745982,7.907598070306232e-05,4.965272937294146e-05,3.123300657741713e-05,1.966856458850977e-05
0.001,0.000696167758177353,0.0005338764753221901,0.0003267473703778833,0.00020220672575398438,0.00012602492703077633,7.889968645020544e-05,4.95377128311886e-05,3.1158944951577065e-05,1.9621245043263798e-05
0.001,0.0006956491192256274,0.0005333591300431401,0.0003262491957040711,0.00020182790944721542,0.00012576118918167348,7.872367353931904e-05,4.942289112776892e-05,3.108501336660957e-05,1.957401042890837e-05
0.001,0.0006951304333180151,0.0005328418694862771,0.0003257514161227785,0.00020144954284132072,0.00012549782967232552,7.854794051499734e-05,4.9308263259716635e-05,3.1011211154138606e-05,1.9526860309103978e-05
1 1.000000000000000021e-03 0 km 5.915557166626927424e-04 7 km 3.840877221245049653e-04 10 km 2.466727384040633977e-04 20 km 1.573474629975438242e-04 30 km 9.994300566924636483e-05 40 km 6.331217828438720550e-05 50 km 4.004003600460594289e-05 60 km 2.529553013238426405e-05 70 km 80 km
2 1.000000000000000021e-03 0.001 5.910087140881509866e-04 0.0007539177767305848 3.835259923737136521e-04 0.0005922648034750569 2.462279833344210639e-04 0.00038490617279658137 1.570298910751132091e-04 0.000247392320543982 9.972770370845923681e-05 0.00015791555306607623 6.317035443958771254e-05 0.0001003671566373715 3.994817502675088248e-05 6.361853747449743e-05 2.523663218966317481e-05 4.0256607010916584e-05 2.5446360651215025e-05
3 1.000000000000000021e-03 0.001 5.904624672772724710e-04 0.0007533902419958185 3.829653846278134621e-04 0.0005917244917926066 2.457842903404500092e-04 0.0003843504806873478 1.567131560243821098e-04 0.0002469518485683003 9.951300275831494635e-05 0.0001576007478372822 6.302894048828063141e-05 0.00010015356028336005 3.985658526347281646e-05 6.347773727057954e-05 2.517791045472703461e-05 4.016534974386181e-05 2.5387814123899557e-05
4 1.000000000000000021e-03 0.001 5.899169734839467818e-04 0.0007528628792251897 3.824058950962419133e-04 0.0005911844879166931 2.453416557234028707e-04 0.0003837954443648265 1.563972548287988369e-04 0.0002465120671477305 9.929890059644241613e-05 0.00015728651344926157 6.288793488850426760e-05 9.994038442151031e-05 3.976526568300959219e-05 6.333722806950528e-05 2.511936425240675192e-05 4.007428674216739e-05 2.5329394519652018e-05
5 1.000000000000000021e-03 0.001 5.893722299298780965e-04 0.0007523356872805944 3.818475199355363483e-04 0.0005906447907925071 2.449000757332959262e-04 0.0003832410626787123 1.560821844312877747e-04 0.0002460729751307637 9.908539497140619857e-05 0.00015697284891103737 6.274733607851797545e-05 9.972762829117227e-05 3.967421524053715842e-05 6.319700932883725e-05 2.506099289905929403e-05 3.9983417636365086e-05 2.5271101593906498e-05
6 1.000000000000000021e-03 0.001 5.888282338048204554e-04 0.0007518086649950493 3.812902552499899305e-04 0.0005901053993262767 2.444595465697163919e-04 0.0003826873344129807 1.557679417349789946e-04 0.000245634571300401 9.887248360327203632e-05 0.00015665975317873245 6.260714247720703990e-05 9.95152910932062e-05 3.958343287844485109e-05 6.305708047968383e-05 2.500279570274922987e-05 3.9892742039402306e-05 2.5212935090640287e-05
7 1.000000000000000021e-03 0.001 5.882849822668304897e-04 0.0007512818111727442 3.807340970923119234e-04 0.0005895663123854124 2.440200643826254091e-04 0.00038213425828639575 1.554545236039297650e-04 0.0002451968543747938 9.866016418416755746e-05 0.0001563472251561599 6.246735248448248958e-05 9.930337199043154e-05 3.949291752660743311e-05 6.291744092702573e-05 2.494477196342878550e-05 3.980225954686196e-05 2.5154894742516358e-05
8 1.000000000000000021e-03 0.001 5.877403241312353140e-04 0.0007507551245890757 3.801768826891299322e-04 0.0005890275287986403 2.435799392795756472e-04 0.0003815818329529933 1.551407333476893054e-04 0.00024475982300791935 9.844762961169771281e-05 0.00015603526369546326 6.232743618144160702e-05 9.909187010814736e-05 3.940232665622856909e-05 6.277809005009466e-05 2.488670234861411131e-05 3.9711969737226656e-05 2.5096980271060998e-05
9 1.000000000000000021e-03 0.001 5.871942634186000593e-04 0.0007502264452226824 3.796186190022559433e-04 0.0005884868559085152 2.431391779090945110e-04 0.00038102785262825065 1.548265761463755335e-04 0.00024432175277214066 9.823488356157069126e-05 0.00015572264698517112 6.218739605181586088e-05 9.88799609470651e-05 3.931166190013138108e-05 6.26384862087587e-05 2.482858791458364441e-05 3.9621522312922004e-05 2.5038967246912867e-05
10 1.000000000000000021e-03 0.001 5.866468041173980141e-04 0.000749695774901522 3.790593129257516128e-04 0.0005879442972710813 2.426977868451053722e-04 0.00038047232480109013 1.545120571165502460e-04 0.00024388265123925605 9.802192966180839372e-05 0.00015540938109456906 6.204723454596646772e-05 9.866764888521257e-05 3.922092486871354988e-05 6.249863239143498e-05 2.477042970290643410e-05 3.953091925128679e-05 2.498085695464162e-05
11 1.000000000000000021e-03 0.001 5.860979501842715923e-04 0.0007491631154430714 3.784989712866057847e-04 0.0005873998564236413 2.422557725877665796e-04 0.00037991525691100856 1.541971813119806349e-04 0.00024344252592185564 9.780877149334107738e-05 0.00015509547204033507 6.190695408131255699e-05 9.845493826021018e-05 3.913011715023943305e-05 6.235853155787194e-05 2.471222874063606835e-05 3.944016251022327e-05 2.4922650665997884e-05
12 1.000000000000000021e-03 0.001 5.855428054911818777e-04 0.0007486284686543365 3.779325362214322600e-04 0.0005868535368848297 2.418091152720060536e-04 0.00037935665634847824 1.538790714407033914e-04 0.00024300138427382333 9.759345536126727376e-05 0.00015478092578703268 6.176526646718061210e-05 9.824183336966692e-05 3.903840385562048950e-05 6.2218186639435e-05 2.465344951928800295e-05 3.9349254028404254e-05 2.4864349640052216e-05
13 1.000000000000000021e-03 0.001 5.849813875456967485e-04 0.0007480870957031576 3.773600382625630725e-04 0.000586300474032492 2.413578451141304101e-04 0.00037879149123861057 1.535577517356502032e-04 0.0002425552230413961 9.737599881379701964e-05 0.00015446287448415177 6.162218372343696363e-05 9.80263854642033e-05 3.894579295722817337e-05 6.207631182945079e-05 2.459409722576532997e-05 3.925735993392708e-05 2.4805418700342044e-05
14 1.000000000000000021e-03 0.001 5.844137140093277807e-04 0.0007475390029192987 3.767815081401627831e-04 0.0005857406797529387 2.409019924922280132e-04 0.0003782197872436036 1.532332465435331354e-04 0.00024210406905347345 9.715641947446165209e-05 0.00015414134016629157 6.147771791853056712e-05 9.780861070114894e-05 3.885229245840823961e-05 6.193291827596257e-05 2.453417706661341544e-05 3.9164487654400794e-05 2.4745862693628148e-05
15 1.000000000000000021e-03 0.001 5.838398026969793654e-04 0.0007469841968019674 3.761969767804803125e-04 0.0005851741661454001 2.404415879440078890e-04 0.0003776415703174324 1.529055803229076760e-04 0.00024164794939077438 9.693473504062415536e-05 0.0001538163450528885 6.133188116843621776e-05 9.758852536415706e-05 3.875791039276530608e-05 6.178801721036571e-05 2.447369426754818325e-05 3.907064467141267e-05 2.4685686501265697e-05
16 1.000000000000000021e-03 0.001 5.832596715764015120e-04 0.0007464226840200367 3.756064753041117783e-04 0.0005846009455219824 2.399766621646476654e-04 0.00037705686670463337 1.525747776422469490e-04 0.0002411868913840224 9.671096328199675835e-05 0.0001534879115464833 6.118468563560254894e-05 9.736614586183658e-05 3.866265482344967213e-05 6.164161994641891e-05 2.441265407298631344e-05 3.897583851984993e-05 2.462489503874857e-05
17 1.000000000000000021e-03 0.001 5.826733387676383139e-04 0.0007458544714121565 3.750100350242446291e-04 0.0005840210304075477 2.395072460046293692e-04 0.00037646570293897594 1.522408631780071723e-04 0.00024072092261200308 9.648512203915507620e-05 0.00015315606223087128 6.103614352789890607e-05 9.714148872627883e-05 3.856653384244465896e-05 6.149373787917076e-05 2.435106174557538284e-05 3.888007678716513e-05 2.45634932552282e-05
18 1.000000000000000021e-03 0.001 5.820810441807425326e-04 0.0007452795659868886 3.744079089136845458e-04 0.0005834344335395587 2.390335428197917333e-04 0.00037586810584214404 1.519039834472631588e-04 0.0002402500708997022 9.625731118926498641e-05 0.000152820819869329 6.088632085792882825e-05 9.691457061165131e-05 3.846959029618343478e-05 6.134438248396139e-05 2.428894479270876788e-05 3.878336711269497e-05 2.450148613305654e-05
19 1.000000000000000021e-03 0.001 5.814828054675655030e-04 0.0007446982091229053 3.738001274474016776e-04 0.0005828414050804809 2.385555825972570808e-04 0.00037526433980072227 1.515641624143126585e-04 0.0002397745491251193 9.602754804766522702e-05 0.0001524823380310375 6.073522946956701240e-05 9.668549630724793e-05 3.837183203343020677e-05 6.119362307821724e-05 2.422630831805138899e-05 3.868575452092861e-05 2.4438902597094615e-05
20 1.000000000000000021e-03 0.001 5.808786404289665358e-04 0.0007441104077793266 3.731867212872194738e-04 0.0005822419576041865 2.380733954737781241e-04 0.000374654431136991 1.512214241469207320e-04 0.00023929438452844706 9.579584999731260704e-05 0.0001521406389697796 6.058288124990010364e-05 9.645428208068799e-05 3.827326693032387752e-05 6.10414708650461e-05 2.416315744255338838e-05 3.858724646752558e-05 2.4375747508899864e-05
21 1.000000000000000021e-03 0.001 5.802685670142343878e-04 0.0007435161690815189 3.725677212800349654e-04 0.0005816361038919765 2.375870117335689917e-04 0.0003740384064517259 1.508757928143868079e-04 0.00023880960458647735 9.556223448729982074e-05 0.00015179574511101 6.042928812817623899e-05 9.622094431596755e-05 3.817390288966712009e-05 6.0887937123913e-05 2.409949730398197492e-05 3.848785045741014e-05 2.4312025761525238e-05
22 1.000000000000000021e-03 0.001 5.796526968519212725e-04 0.0007429155003212045 3.719432545624587992e-04 0.0005810238569324259 2.370965379259533010e-04 0.0003734162926228523 1.505273470495264228e-04 0.00023832023701067176 9.532675589286383365e-05 0.00015144767905002232 6.027448635812982831e-05 9.598549951201614e-05 3.807376356963088358e-05 6.073303320960556e-05 2.403534314190221437e-05 3.83875740440667e-05 2.42477422790523e-05
23 1.000000000000000021e-03 0.001 5.790310479093865609e-04 0.0007423085305088799 3.713133518665244839e-04 0.0005804053544492479 2.366020041460938778e-04 0.00037278824495395505 1.501761108339581341e-04 0.0002378264113599139 9.508943151110322721e-05 0.00015109653618969462 6.011848775803337427e-05 9.574801357389848e-05 3.797285679655886708e-05 6.057680304696976e-05 2.397070004317041725e-05 3.828644589147927e-05 2.4182915529390252e-05
24 1.000000000000000021e-03 0.001 5.784036383121742876e-04 0.0007416952671281527 3.706780441238009577e-04 0.0005797806095975203 2.361034406501071276e-04 0.0003721542903540935 1.498221082613785163e-04 0.000237328155265129 9.485027871279472060e-05 0.00015074233901078615 5.996130419345521918e-05 9.550850289594038e-05 3.787119042685209972e-05 6.041925791001213e-05 2.390557311366359151e-05 3.8184473495775654e-05 2.411755039775751e-05
25 1.000000000000000021e-03 0.001 5.777704863433433301e-04 0.0007410757178351933 3.700373624633735868e-04 0.0005791496357472955 2.356008778526011383e-04 0.0003715144560199718 1.494653635353745394e-04 0.00023682549660121693 9.460931494071504256e-05 0.00015038511017095082 5.980294757607067669e-05 9.526698399235154e-05 3.776877234616485572e-05 6.026040915139781e-05 2.383996747774973522e-05 3.8081664403831414e-05 2.4051651801815565e-05
26 1.000000000000000021e-03 0.001 5.771316104427772061e-04 0.0007404498904588522 3.693913382097967039e-04 0.0005785124464833875 2.350943463241932639e-04 0.0003708687694343879 1.491059009672212558e-04 0.00023631846348487102 9.436655770795449559e-05 0.00015002487250269267 5.964342986246977532e-05 9.502347349561174e-05 3.766561046859827219e-05 6.0100268201280124e-05 2.377388827775711285e-05 3.797802621247342e-05 2.3985224691142176e-05
27 1.000000000000000021e-03 0.001 5.764870292064976651e-04 0.000739817793000736 3.687400028810397501e-04 0.0005778690556051271 2.345838767890191692e-04 0.0003702172583646133 1.487437449736715462e-04 0.00023580708427235972 9.412202459622686095e-05 0.00014966164901128063 5.948276305296108525e-05 9.477798815483971e-05 3.756171273589169023e-05 5.9938846566140114e-05 2.370734067344167480e-05 3.787356656768574e-05 2.3918274046705576e-05
28 1.000000000000000021e-03 0.001 5.758375946234993610e-04 0.0007391794336352683 3.680842155919215072e-04 0.0005772194771261406 2.340701414876563216e-04 0.00036955995086080306 1.483793719498717782e-04 0.00023529138755728292 9.387603703510192111e-05 0.00014929546287266413 5.932115823520561543e-05 9.453054483414699e-05 3.745721560837426419e-05 5.977615582759686e-05 2.364041205155829344e-05 3.776829316380097e-05 2.385080488032797e-05
29 1.000000000000000021e-03 0.001 5.751833223951592329e-04 0.0007385356837401969 3.674240032104748388e-04 0.0005765645972068202 2.335531666416808738e-04 0.00036889774196575574 1.480128027327277474e-04 0.0002347720745464529 9.362861002461524574e-05 0.00014892681149659162 5.915862564500113025e-05 9.42814794200372e-05 3.735212585887714390e-05 5.9612416728092556e-05 2.357310681190604310e-05 3.7662348796962334e-05 2.378290869241134e-05
30 1.000000000000000021e-03 0.001 5.745242283439769499e-04 0.0007378865501365786 3.667593927483133397e-04 0.0005759044277808471 2.330329785818580578e-04 0.0003682306558404449 1.476440582313571256e-04 0.0002342491698918279 9.337975861033522300e-05 0.00014855571485941296 5.899517554647101613e-05 9.403080644324396e-05 3.724645027783519551e-05 5.944763924389705e-05 2.350542936525477225e-05 3.755574009362634e-05 2.371458979861065e-05
31 1.000000000000000021e-03 0.001 5.738603284130473379e-04 0.0007372320397833855 3.660904113590355527e-04 0.0005752389809515306 2.325096037462197861e-04 0.00036755871686373843 1.472731594253864234e-04 0.00023372269842386576 9.312949788206356194e-05 0.0001481821930634036 5.883081823114703288e-05 9.377854051813779e-05 3.714019567266727830e-05 5.92818334053861e-05 2.343738413293735195e-05 3.74484737148236e-05 2.364585253654512e-05
32 1.000000000000000021e-03 0.001 5.731917314000997948e-04 0.0007365721597776102 3.654171810067180655e-04 0.0005745682689916729 2.319831433530600859e-04 0.0003668819496311701 1.469001805571756218e-04 0.00023319268514975972 9.287787898176902846e-05 0.00014780626633511263 5.866558771451522606e-05 9.352469634142839e-05 3.703338420706373603e-05 5.911500929610015e-05 2.336898537810763873e-05 3.734055635551828e-05 2.35767012653732e-05
33 1.000000000000000021e-03 0.001 5.725184531760584700e-04 0.0007359070382096695 3.647397285916569422e-04 0.0005738924278329212 2.314536235223777264e-04 0.00036620050520582223 1.465251423190001693e-04 0.0002326592549483615 9.262491677678542706e-05 0.00014742802610623578 5.849949412959568328e-05 9.326933684741753e-05 3.692602258076439168e-05 5.8947208765596136e-05 2.330023745100291859e-05 3.723201528626343e-05 2.3507153539330125e-05
34 1.000000000000000021e-03 0.001 5.718405097346714646e-04 0.0007352366822744919 3.640580811583470273e-04 0.0005732114697907263 2.309210704829702432e-04 0.0003655144080205807 1.461480654746279682e-04 0.0002321224325628545 9.237062617930094123e-05 0.00014704749234532768 5.833254763720848617e-05 9.30124765259338e-05 3.681811751074023914e-05 5.877844174725213e-05 2.323114471257928647e-05 3.712285709891949e-05 2.3437213649054356e-05
35 1.000000000000000021e-03 0.001 5.711579171919053044e-04 0.0007345610993055855 3.633722658937428313e-04 0.0005725254073502257 2.303855105703487465e-04 0.0003648236827235576 1.457689708574830614e-04 0.00023158224291094424 9.211502214495855044e-05 0.00014666468514311576 5.816475842498649012e-05 9.275412994749425e-05 3.670967573052717390e-05 5.860871822644595e-05 2.316171153407365905e-05 3.701308841848994e-05 2.336688590620212e-05
36 1.000000000000000021e-03 0.001 5.704706917853448337e-04 0.0007338802967751745 3.626823101255147543e-04 0.0005718342531661053 2.298469702246577707e-04 0.0003641283541767086 1.453878793688169360e-04 0.00023103871108296522 9.185811967146480901e-05 0.00014627962471074844 5.799613670639434487e-05 9.249431176193324e-05 3.660070398956385041e-05 5.843804823954878e-05 2.309194229656875218e-05 3.690271590243443e-05 2.32961746429929e-05
37 1.000000000000000021e-03 0.001 5.697788498735841109e-04 0.0007331942822941306 3.619882413202942504e-04 0.0005711380200622195 2.293054759885765847e-04 0.000363428447454292 1.450048119758659754e-04 0.00023049186233985435 9.159993379718755254e-05 0.00014589233137793237 5.782669271974067121e-05 9.223303669696582e-05 3.649120905252569737e-05 5.826644187292669e-05 2.302184139055488024e-05 3.679174623998899e-05 2.3225084211761806e-05
38 1.000000000000000021e-03 0.001 5.690839249361781711e-04 0.0007325030636119942 3.612915831986411477e-04 0.000570436721031382 2.287622092282637863e-04 0.0003627239878414387 1.446206010588695675e-04 0.00022994172211121704 9.134102410651873409e-05 0.00014550282559116622 5.765679311500335815e-05 9.197031955679165e-05 3.638142760462866287e-05 5.809390926192732e-05 2.295156024783083523e-05 3.66801861514784e-05 2.3153618984504423e-05
39 1.000000000000000021e-03 0.001 5.683859273133331363e-04 0.0007318082249846354 3.605923537461036641e-04 0.000569731957456593 2.282171874164802170e-04 0.0003620165686744435 1.442352604283837097e-04 0.0002293895269980944 9.108140050118301682e-05 0.0001451119793900387 5.748644463023418617e-05 9.170674702405544e-05 3.627136409615889481e-05 5.792083507086079e-05 2.288110175599186700e-05 3.656828410642266e-05 2.3081938026911105e-05
40 1.000000000000000021e-03 0.001 5.676848674169825831e-04 0.0007311097709589727 3.598905710243090802e-04 0.0005690237376093709 2.276704280772651710e-04 0.0003613062068501535 1.438488039249314222e-04 0.00022883529410468975 9.082107289971861372e-05 0.00014471980653999792 5.731565401294060850e-05 9.14423290636205e-05 3.616102298282374168e-05 5.774722611940683e-05 2.281046880581413228e-05 3.6456044625219865e-05 2.3010044279099164e-05
41 1.000000000000000021e-03 0.001 5.669807557304629327e-04 0.0007304077061664716 3.591862531699841626e-04 0.0005683120698629669 2.271219487847658911e-04 0.00036059291938656614 1.434612454179789358e-04 0.00022827904062761942 9.056005123670258442e-05 0.00014432632086784533 5.714442801953895405e-05 9.117707567918865e-05 3.605040872538299508e-05 5.757308925149413e-05 2.273966429101268041e-05 3.6343472243382366e-05 2.293794069062729e-05
42 1.000000000000000021e-03 0.001 5.662756696284717943e-04 0.0007297020353231152 3.584815135619230891e-04 0.0005675969626922158 2.265734124911083147e-04 0.0003598767234219355 1.430737675597642188e-04 0.00022772078385475435 9.029913524493678829e-05 0.00014393153626068395 5.697329258726415482e-05 9.091099691249356e-05 3.593986162522089478e-05 5.739843133472259e-05 2.266890625682277028e-05 3.6230571511141116e-05 2.2865630220232028e-05
43 1.000000000000000021e-03 0.001 5.655696121370722921e-04 0.0007289948155254126 3.577763576655677066e-04 0.0005668805157203741 2.260248242651153531e-04 0.00035915975887038315 1.426863741861267136e-04 0.00022716220982550104 9.003832758694041048e-05 0.00014353665302637602 5.680224948786493348e-05 9.064490513205597e-05 3.582938283523433764e-05 5.722378701487135e-05 2.259819544408493697e-05 3.611768859725593e-05 2.279333481077374e-05
44 1.000000000000000021e-03 0.001 5.648625863181645518e-04 0.0007282860481242219 3.570707909872514684e-04 0.0005661627319510184 2.254761892066869196e-04 0.0003584420321019746 1.422990691538204475e-04 0.00022660332474955334 8.977763093872482745e-05 0.0001431416759965279 5.663130050166089515e-05 9.037880375071969e-05 3.571897351373497692e-05 5.7049158588914064e-05 2.252753259705453904e-05 3.6004825007582225e-05 2.2721055434706506e-05
45 1.000000000000000021e-03 0.001 5.641545952693012783e-04 0.0007275757345080665 3.563648190736888295e-04 0.0005654436144326382 2.249275124461922067e-04 0.00035772354953912867 1.419118563399853763e-04 0.0002260441348764214 8.951704798938974166e-05 0.00014274661002939483 5.646044741725799208e-05 9.011269619839399e-05 3.560863482425828067e-05 5.687454836459578e-05 2.245691846327665519e-05 3.5891982254752056e-05 2.2648793068745655e-05
46 1.000000000000000021e-03 0.001 5.634456421235028989e-04 0.0007268638761030398 3.556584475114634488e-04 0.0005647231662585116 2.243787991438712611e-04 0.0003570043176561602 1.415247396416227112e-04 0.0002254846464948739 8.925658144072659398e-05 0.0001423514600093734 5.628969203126926030e-05 8.984658592167178e-05 3.549836793537420297e-05 5.6699958660169715e-05 2.238635379346144160e-05 3.5779161857992474e-05 2.2576548693746487e-05
47 1.000000000000000021e-03 0.001 5.627357300490819225e-04 0.0007261504743729061 3.549516819265270164e-04 0.0005640013905666712 2.238300544892383743e-04 0.00035628434297892044 1.411377229750731741e-04 0.0002249248659324104 8.899623400682166435e-05 0.00014195623084652692 5.611903614803531905e-05 8.958047638345721e-05 3.538817402049950172e-05 5.652539180412445e-05 2.231583934136070575e-05 3.5666365342942064e-05 2.250432329458613e-05
48 1.000000000000000021e-03 0.001 5.620265745740795878e-04 0.0007254355308190145 3.542462045793823072e-04 0.0005632782905397587 2.232825718355581747e-04 0.00035556363208430486 1.407517127660701999e-04 0.00022436479955468554 8.873661298955798349e-05 0.0001415609274760624 5.594887683102661642e-05 8.931437106256734e-05 3.527830905094599801e-05 5.635085013490999e-05 2.224553873809700179e-05 3.5553594241465086e-05 2.2432117860037706e-05
49 1.000000000000000021e-03 0.001 5.613181716914067464e-04 0.0007247208411865314 3.535420099674467737e-04 0.0005625556717890254 2.227363458317740963e-04 0.0003548439578507697 1.403667046661989041e-04 0.00022380581171795803 8.847771519474716161e-05 0.00014116650687104502 5.577921186868756777e-05 8.904891159204534e-05 3.516877154903826080e-05 5.61767534392646e-05 2.217545101761858074e-05 3.544111934056619e-05 2.2360105593797506e-05
50 1.000000000000000021e-03 0.001 5.606105174362018646e-04 0.00072400640290786 3.528390926567629869e-04 0.000561833531609933 2.221913711948466166e-04 0.00035412531668185007 1.399826943822104249e-04 0.00022324789882467925 8.821953746856249804e-05 0.00014077296603347102 5.561003907731979445e-05 8.878409573173543e-05 3.505956005567386572e-05 5.600310014889176e-05 2.210557522599888898e-05 3.5328939584811035e-05 2.228828580259237e-05
51 1.000000000000000021e-03 0.001 5.599036078855734169e-04 0.0007232922134419361 3.521374472813410678e-04 0.000561111867333509 2.216476427089692435e-04 0.00035340770503880037 1.395996776753266513e-04 0.00022269105733400152 8.796207669700402236e-05 0.00014038030201108317 5.544135630070159596e-05 8.8519921274859e-05 3.495067313006486022e-05 5.5829888718494674e-05 2.203591042126611129e-05 3.521705393409239e-05 2.221665780315407e-05
52 1.000000000000000021e-03 0.001 5.591992581819900257e-04 0.0007225782702742098 3.514388991464684675e-04 0.0005603906763262448 2.211065862108586844e-04 0.0003526911194401051 1.392186639199167455e-04 0.00022213528376118449 8.770601346645835294e-05 0.00013998851189683077 5.527361030479937100e-05 8.825638604758897e-05 3.484239951455165907e-05 5.5657117625479614e-05 2.196664147854661471e-05 3.510546136342301e-05 2.214522092208301e-05
53 1.000000000000000021e-03 0.001 5.584974577369657654e-04 0.0007218663790349207 3.507434317312190116e-04 0.0005596717927826706 2.205681855748304113e-04 0.0003519774072686018 1.388396401724235928e-04 0.00022158202285215626 8.745133837595373525e-05 0.0001395986194011808 5.510679463338290224e-05 8.79941808494171e-05 3.473473491875524963e-05 5.5485240659247415e-05 2.189776560286087024e-05 3.499445534348073e-05 2.207416317565271e-05
54 1.000000000000000021e-03 0.001 5.577981960279812567e-04 0.0007211565340671307 3.500510286412654524e-04 0.000558955209053062 2.200324248112712805e-04 0.0003512665554090523 1.384625936044855835e-04 0.0002210312613239567 8.719804211084999142e-05 0.0001392106136609281 5.494090289064881491e-05 8.773329770591506e-05 3.462767509292537455e-05 5.531425230770577e-05 2.182928002589032757e-05 3.4884032196140665e-05 2.200348216114185e-05
55 1.000000000000000021e-03 0.001 5.571014625980537805e-04 0.0007204487297429265 3.493616736077873519e-04 0.0005582409175317231 2.194992880653100025e-04 0.00035055855083818805 1.380875115017372141e-04 0.00022048298599609717 8.694611544190507637e-05 0.00013882448390129787 5.477592874055209164e-05 8.747372870968443e-05 3.452121582748434684e-05 5.514414710600884e-05 2.176118200567564087e-05 3.477418827518741e-05 2.1933175496831414e-05
56 1.000000000000000021e-03 0.001 5.564072470552914543e-04 0.0007197429604633029 3.486753504863699662e-04 0.0005575289106567639 2.189687596154907018e-04 0.00034985338062403464 1.377143812626113696e-04 0.00021993718378969884 8.669554922434540153e-05 0.00013844021943515845 5.461186590614181566e-05 8.721546601972457e-05 3.441535295257522900e-05 5.497491963609735e-05 2.169346882631773742e-05 3.466491996599965e-05 2.1863240821795316e-05
57 1.000000000000000021e-03 0.001 5.557155390724777657e-04 0.0007190392206580874 3.479920432559456848e-04 0.0005568191809099186 2.184408238724854000e-04 0.0003491510319252488 1.373431903971786034e-04 0.00021939384172660586 8.644633439696230146e-05 0.00013805780966217872 5.444870816891464747e-05 8.695850186076947e-05 3.431008233762035268e-05 5.480656452622117e-05 2.162613779768559453e-05 3.455622368522282e-05 2.1793675795681418e-05
58 1.000000000000000021e-03 0.001 5.550282308874212147e-04 0.0007183375047857581 3.473135853761227104e-04 0.0005561117208162645 2.179168797741835634e-04 0.0003484514919904163 1.369749146289257855e-04 0.00021885294692850114 8.619912270820690987e-05 0.00013767724406801954 5.428688083545962664e-05 8.670282852265318e-05 3.420567782931384528e-05 5.463907645048003e-05 2.155936384410790980e-05 3.444809588045186e-05 2.172447809850241e-05
59 1.000000000000000021e-03 0.001 5.543453044039096641e-04 0.0007176398171146462 3.466399489498413807e-04 0.0005554085359032386 2.173969005859271932e-04 0.00034775670623974134 1.366095327799803094e-04 0.0002183159850558065 8.595389890905566596e-05 0.00013729955964329822 5.412637349122350694e-05 8.644913914890404e-05 3.410213253115887156e-05 5.447290801376681e-05 2.149314248283782383e-05 3.4340828149382966e-05 2.165583410030806e-05
60 1.000000000000000021e-03 0.001 5.536667416543260278e-04 0.0007169461476104001 3.459711063207645686e-04 0.0005547096122322624 2.168808598269340415e-04 0.0003470666509123452 1.362470238846985658e-04 0.00021778293254731739 8.571064790824490891e-05 0.00013692473741724035 5.396717583150281386e-05 8.61974199558567e-05 3.399943962027434491e-05 5.430804975101775e-05 2.142746927933548718e-05 3.423441420247442e-05 2.15877397033261e-05
61 1.000000000000000021e-03 0.001 5.529925247987736454e-04 0.0007162564863033777 3.453070300711248903e-04 0.0005540149359610161 2.163687312677279435e-04 0.00034638130244054916 1.358873671873677324e-04 0.00021725376605180745 8.546935477049620155e-05 0.00013655275859741984 5.380927766017944798e-05 8.594765729366703e-05 3.389759234653519571e-05 5.4144492290891566e-05 2.136233984669994517e-05 3.412884781322755e-05 2.152019085117201e-05
62 1.000000000000000021e-03 0.001 5.523242123557685823e-04 0.0007155708232884887 3.446492679875326503e-04 0.0005533244933430584 2.158617145497228296e-04 0.0003457006374485156 1.355314077800207832e-04 0.00021672846242622396 8.523058755788532964e-05 0.00013618360456808432 5.365305115434923267e-05 8.569983764497563e-05 3.379683095199963850e-05 5.3982226354801364e-05 2.129790788796336886e-05 3.40241228175218e-05 2.1453183528407172e-05
63 1.000000000000000021e-03 0.001 5.516617811459008413e-04 0.0007148907167777357 3.439977838203789025e-04 0.0005526398589811358 2.153597748770509342e-04 0.0003450262214786548 1.351791181086447731e-04 0.00021620823613271921 8.499432644189092710e-05 0.00013581813150424676 5.349848277838686991e-05 8.545453691240582e-05 3.369714647650299112e-05 5.3821629494988794e-05 2.123416758034315385e-05 3.392048307301558e-05 2.1386873841072776e-05
64 1.000000000000000021e-03 0.001 5.510052081904127453e-04 0.0007142161543980302 3.433525416882428740e-04 0.0005519610151552632 2.148628778379304833e-04 0.0003443580235484482 1.348304709382760146e-04 0.00021569305634208547 8.476055183025699440e-05 0.00013545631457844443 5.334555916079864168e-05 8.521173706397784e-05 3.359853006971443923e-05 5.366268933409295e-05 2.117111317291617240e-05 3.381792035746172e-05 2.1321256433336487e-05
65 1.000000000000000021e-03 0.001 5.503544707098636342e-04 0.0007135471238866448 3.427135060745518090e-04 0.0005512879443055973 2.143709894006651793e-04 0.0003436960129838173 1.344854393494213974e-04 0.0002151828925541902 8.452924436422564868e-05 0.0001350981292399717 5.319426709225049006e-05 8.497142027417112e-05 3.350097298979682009e-05 5.350539363884576e-05 2.110873898573355285e-05 3.371642654533412e-05 2.1256326012778444e-05
66 1.000000000000000021e-03 0.001 5.497095461228062706e-04 0.0007128836130908273 3.420806418242862412e-04 0.0005506206290316834 2.138840759097000895e-04 0.00034304015941680915 1.341439967345312348e-04 0.00021467771459500972 8.430038491581448882e-05 0.00013474355121214092 5.304459352362807473e-05 8.473356892178238e-05 3.340446660208796169e-05 5.3349730318534455e-05 2.104703940894962140e-05 3.361599360677474e-05 2.1192077349695405e-05
67 1.000000000000000021e-03 0.001 5.490704120444732210e-04 0.0007122256099675188 3.414539141407250565e-04 0.0005499590520918091 2.134021040817290626e-04 0.0003423904327834519 1.338061167945246396e-04 0.00021417749261385993 8.407395458513211085e-05 0.00013439255648970008 5.289652556412503305e-05 8.449816558787534e-05 3.330900237780223545e-05 5.319568742351694e-05 2.098600890196449472e-05 3.35166136065783e-05 2.1128505276425763e-05
68 1.000000000000000021e-03 0.001 5.484371298422446297e-04 0.0007115731025829938 3.408333692467681113e-04 0.0005493031964022937 2.129251024270059081e-04 0.0003417468033215544 1.334718163299163942e-04 0.0002136821970805245 8.384996326436759272e-05 0.000134045121336186 5.275006911363530105e-05 8.426519305371512e-05 3.321458388816914869e-05 5.304325314373989e-05 2.092564965374723430e-05 3.341827870317759e-05 2.106560468667675e-05
69 1.000000000000000021e-03 0.001 5.478096771889333057e-04 0.0007109261960066054 3.402189725469309967e-04 0.0005486531617838624 2.124530379214265854e-04 0.0003411093543337103 1.331410692793207290e-04 0.00021319188469384628 8.362839223924152716e-05 0.00013370128216574169 5.260521141428185532e-05 8.403467429429362e-05 3.312120269498457291e-05 5.289244191063335e-05 2.086595618361951373e-05 3.3320997960119286e-05 2.1003381278303992e-05
70 1.000000000000000021e-03 0.001 5.471880319478338028e-04 0.0007102848782749661 3.396106897916775086e-04 0.0005480089311096272 2.119858778995733334e-04 0.00034047805604549785 1.328138498781884043e-04 0.00021270652596543237 8.340922301478033581e-05 0.00013336101530442401 5.246193986031627375e-05 8.380659214968773e-05 3.302885046175365648e-05 5.274324196034732e-05 2.080692307740899109e-05 3.3224763568979684e-05 2.0941829967612013e-05
71 1.000000000000000021e-03 0.001 5.465721721714859958e-04 0.0007096491375319776 3.390084870743713592e-04 0.0005473704874075498 2.115235900510876890e-04 0.00033985287897724074 1.324901326555763298e-04 0.00021222609171923644 8.319243731282516567e-05 0.00013302429733989257 5.232024199634728476e-05 8.358092965463258e-05 3.293751895248773966e-05 5.25956416646764e-05 2.074854498665493433e-05 3.312956781229619e-05 2.088094573050621e-05
72 1.000000000000000021e-03 0.001 5.459629241404544706e-04 0.0007090189620285115 3.384131725428774743e-04 0.0005467378138598193 2.110667946787101129e-04 0.00033923379394201156 1.321703518944146796e-04 0.00021175055308892372 8.297832591380873519e-05 0.0001326911051189623 5.218030786215170435e-05 8.335767003660405e-05 3.284733064718059383e-05 5.244962952967474e-05 2.069090019482566404e-05 3.3035403062615115e-05 2.0820723601860106e-05
73 1.000000000000000021e-03 0.001 5.453602635114507746e-04 0.0007083951884833238 3.378247083723790616e-04 0.0005461117507284293 2.106154557101209946e-04 0.0003386216233705354 1.318544791589579420e-04 0.00021128054172409337 8.276686841524559784e-05 0.00013236188112429926 5.204212355675735553e-05 8.31371097341464e-05 3.275827635494999894e-05 5.230539940125761e-05 2.063398273378693265e-05 3.294239432192892e-05 2.076124352066865e-05
74 1.000000000000000021e-03 0.001 5.447641661727002649e-04 0.0007077778041323896 3.372430571518834691e-04 0.000545492279490185 2.101695374983407439e-04 0.00033801633474888146 1.315424863636820575e-04 0.00021081602540817874 8.255804467261116894e-05 0.00013203659950671687 5.190567535780167048e-05 8.291923002160208e-05 3.267034700418964161e-05 5.216293844781483e-05 2.057778671334094953e-05 3.285053307562121e-05 2.0702499944560498e-05
75 1.000000000000000021e-03 0.001 5.441746082424759419e-04 0.0007071667963482699 3.366681818805845774e-04 0.0005448793818164008 2.097290048174083239e-04 0.0003374178959240363 1.312343457694375884e-04 0.00021035697230232543 8.235183479637930588e-05 0.00013171523473119512 5.177094971942625129e-05 8.270401240613943e-05 3.258353364113958107e-05 5.202223399957759e-05 2.052230632028256941e-05 3.2759810917439646e-05 2.064448740210184e-05
76 1.000000000000000021e-03 0.001 5.435915660676414983e-04 0.0007065621526397901 3.361000459642789163e-04 0.000544273039572169 2.092938228581225045e-04 0.0003368262751014692 1.309300299796617602e-04 0.00020990335094223987 8.214821914910500468e-05 0.0001313977615739679 5.163793327020207291e-05 8.249143862546502e-05 3.249782742847867687e-05 5.188327354697137e-05 2.046753581747058517e-05 3.267021954836586e-05 2.0587200492045967e-05
77 1.000000000000000021e-03 0.001 5.430150162222109568e-04 0.0007059638606517004 3.355386132118161487e-04 0.0005436732348155853 2.088639572238308215e-04 0.0003362414408426963 1.306295119366350911e-04 0.00020945513023505862 8.194717834254394587e-05 0.00013108415511962746 5.150661281108238069e-05 8.228149064554578e-05 3.241321964393507540e-05 5.174604473897535e-05 2.041346954291065543e-05 3.258175077549588e-05 2.053063388259103e-05
78 1.000000000000000021e-03 0.001 5.424450181544462771e-04 0.0007053719081643225 3.349839271155603902e-04 0.0005430799497970297 2.084394340599780252e-04 0.00033566336206289793 1.303328067075743425e-04 0.00020901227945626015 8.174872108664715700e-05 0.00013077439075827684 5.137699346328779477e-05 8.20741506583782e-05 3.232971335519106785e-05 5.161053538152209e-05 2.036010936323692981e-05 3.249439651094783e-05 2.047478231065629e-05
79 1.000000000000000021e-03 0.001 5.418815485793469040e-04 0.0007047863993885064 3.344359518126675877e-04 0.0005424932828039034 2.080202193468776877e-04 0.0003350921191971394 1.300398875631312602e-04 0.0002085748525953015 8.155282824274543232e-05 0.00013046850282623395 5.124906220377890154e-05 8.186944018288875e-05 3.224729995882103797e-05 5.147675893062123e-05 2.030744969463951815e-05 3.240816518060804e-05 2.0419651063027786e-05
80 1.000000000000000021e-03 0.001 5.413245844265015877e-04 0.0007042073221500205 3.338946518213946552e-04 0.000541913216142546 2.076062794549138172e-04 0.0003345276813035574 1.297507280942760690e-04 0.00020814281911618103 8.135948090770286575e-05 0.00013016646689064054 5.112280617242197348e-05 8.166734155142674e-05 3.216597096011364272e-05 5.134470329367606e-05 2.025548502431296445e-05 3.232304876615549e-05 2.0365234922821375e-05
81 1.000000000000000021e-03 0.001 5.407741028387587183e-04 0.0007036346644028755 3.333599920378552692e-04 0.0005413397323015136 2.071975811406991498e-04 0.0003339700177764314 1.294653022088876294e-04 0.00020771614883326046 8.116866041129419294e-05 0.00012986825880927205 5.099821267012491396e-05 8.146783731136239e-05 3.208571797180734118e-05 5.121435652738549e-05 2.020420990962221080e-05 3.2239039349161415e-05 2.0311528738515718e-05
82 1.000000000000000021e-03 0.001 5.402303025747014556e-04 0.0007030684142289592 3.328321561526745862e-04 0.0005407728139509093 2.067942601549091974e-04 0.00033341909834398085 1.291837026153304184e-04 0.00020729481190839792 8.098042783792958120e-05 0.00012957385472790145 5.087532120941394917e-05 8.12709102230124e-05 3.200656629292941073e-05 5.1085706836262186e-05 2.015364045325785942e-05 3.215612911007561e-05 2.0258527423278803e-05
83 1.000000000000000021e-03 0.001 5.396931605409548225e-04 0.0007025087877125606 3.323111087173311550e-04 0.0005402126735385767 2.063962829591101838e-04 0.0003328751197405316 1.289059030082810651e-04 0.00020687895394469412 8.079476437365657295e-05 0.00012928335419699167 5.075411899733799342e-05 8.107662593993734e-05 3.192850747587867838e-05 5.095879672189383e-05 2.010377117411100997e-05 3.2074345280702784e-05 2.0206248321016987e-05
84 1.000000000000000021e-03 0.001 5.391626538584482192e-04 0.0007019557729111361 3.317968146613820609e-04 0.0005396592936234858 2.060036164003212873e-04 0.0003323380514212155 1.286318773981824648e-04 0.00020646854484108668 8.061165143636152362e-05 0.0001289967331620245 5.063459340114707095e-05 8.088496708343894e-05 3.185153317990099749e-05 5.083361429641059e-05 2.005459666083220688e-05 3.1993679981452625e-05 2.0154686306347033e-05
85 1.000000000000000021e-03 0.001 5.386387598611086340e-04 0.0007014093580122255 3.312892392892789490e-04 0.0005391126569487217 2.056162277072543561e-04 0.00033180786317787807 1.283616001079104806e-04 0.00020606355484577673 8.043107067321031531e-05 0.00012871396785738722 5.051673194647494236e-05 8.069591648818549e-05 3.177563516985718072e-05 5.071014781993386e-05 2.000611157101859271e-05 3.191412543168724e-05 2.010383631860697e-05
86 1.000000000000000021e-03 0.001 5.381214560945620949e-04 0.0007008695313331482 3.307883482772016118e-04 0.0005385727464408199 2.052340844865845515e-04 0.0003312845251369297 1.280950457694747437e-04 0.00020566395455347188 8.025300395811590449e-05 0.0001284350348038258 5.040052231554306949e-05 8.050945720021523e-05 3.170080531500530551e-05 5.058838569914163e-05 1.995831063041139523e-05 3.1835673948741706e-05 2.0053693361205354e-05
87 1.000000000000000021e-03 0.001 5.376107203148404326e-04 0.0007003362813206957 3.302941076699326679e-04 0.0005380395452091099 2.048571547192701043e-04 0.00033076800775717 1.278321893207613302e-04 0.00020526971490259695 8.007743338923888358e-05 0.00012815991080588224 5.028595234538581714e-05 8.032557247492852e-05 3.162703558779804923e-05 5.046831648582724e-05 1.991118863210237610e-05 3.175831794694013e-05 2.0004252500969603e-05
88 1.000000000000000021e-03 0.001 5.371022748594453389e-04 0.0006998095965508554 3.298024246812891291e-04 0.0005375130365450592 2.044823390252625600e-04 0.00033025828182767485 1.275708788891961756e-04 0.00020488080717254625 7.990292563076895462e-05 0.00012788857294937395 5.017208832604374468e-05 8.014424577511121e-05 3.155372544493714152e-05 5.0349928875481843e-05 1.986436223028797206e-05 3.168204993662801e-05 1.9955508867504938e-05
89 1.000000000000000021e-03 0.001 5.365961117498912114e-04 0.0006992849713647436 3.293132869081722108e-04 0.000536988737498668 2.041096254707852251e-04 0.0003297510574308719 1.273111050031557620e-04 0.00020449398184933928 7.972947385597059739e-05 0.0001276187643023316 5.005892559260894715e-05 7.996397313508213e-05 3.148087179640124731e-05 5.023224268320585e-05 1.981782941609088261e-05 3.160623916862529e-05 1.9907059627792014e-05
90 1.000000000000000021e-03 0.001 5.360922230056120808e-04 0.0006987624017369506 3.288266819633119922e-04 0.0005364666423066755 2.037390021489647173e-04 0.0003292463243531191 1.270528582181514683e-04 0.00020410922866516542 7.955707126027152540e-05 0.000127350476544274 4.994645949643470906e-05 7.978474848904117e-05 3.140847156340457124e-05 5.011525373583123e-05 1.977158818812822943e-05 3.153088286679667e-05 1.985890297191875e-05
91 1.000000000000000021e-03 0.001 5.355906006439992324e-04 0.0006982418836227756 3.283425974753378354e-04 0.0005359467451858974 2.033704571798752555e-04 0.000328744072370431 1.267961291168465381e-04 0.00020372653735498857 7.938571106126265876e-05 0.00012708370136324496 4.983468540512894492e-05 7.960656578019794e-05 3.133652167839010846e-05 4.9998957867578574e-05 1.972563655250571181e-05 3.1455978260416835e-05 1.9811037093701456e-05
92 1.000000000000000021e-03 0.001 5.350891259362026411e-04 0.0006977234129582083 3.278589502113704612e-04 0.0005354290403332512 2.030023855884717748e-04 0.00032824429124863073 1.265397912200834861e-04 0.00020334589765671668 7.921463777328526478e-05 0.0001268184304559618 4.972310904903239575e-05 7.942941896086744e-05 3.126470337114675132e-05 4.988335092011608e-05 1.967977067875568528e-05 3.138152258420484e-05 1.976346019070644e-05
93 1.000000000000000021e-03 0.001 5.345877966909636306e-04 0.0006972049031024503 3.273757374134148111e-04 0.0005349114284143175 2.026347848040474173e-04 0.00032774491556384407 1.262838424862170036e-04 0.00020296571741865816 7.904384991646645146e-05 0.00012655354571184963 4.961172941171763403e-05 7.925255773427056e-05 3.119301596587686584e-05 4.976794174339877e-05 1.963399012641590455e-05 3.130719890433304e-05 1.971596949574029e-05
94 1.000000000000000021e-03 0.001 5.340866106918126799e-04 0.0006966863521517465 3.268929562877650259e-04 0.000534393907423076 2.022676522245876859e-04 0.000327245942795149 1.260282808504260116e-04 0.00020258599425811892 7.887334599501782170e-05 0.00012628904521745982 4.950054546622813158e-05 7.907598070306232e-05 3.112145877995456692e-05 4.965272937294146e-05 1.958829445064508602e-05 3.123300657741713e-05 1.966856458850977e-05
95 1.000000000000000021e-03 0.001 5.335855656972701092e-04 0.000696167758177353 3.264106040054970534e-04 0.0005338764753221901 2.019009852173301103e-04 0.0003267473703778833 1.257731042251948573e-04 0.00020220672575398438 7.870312449759831505e-05 0.00012602492703077633 4.938955617533215942e-05 7.889968645020544e-05 3.105003112409614148e-05 4.95377128311886e-05 1.954268320233478379e-05 3.1158944951577065e-05 1.9621245043263798e-05
96 1.000000000000000021e-03 0.001 5.330846594410641130e-04 0.0006956491192256274 3.259286777029715004e-04 0.0005333591300431401 2.015347811193284109e-04 0.0003262491957040711 1.255183105007985753e-04 0.00020182790944721542 7.853318389767883849e-05 0.00012576118918167348 4.927876049177821896e-05 7.872367353931904e-05 3.097873230253197569e-05 4.942289112776892e-05 1.949715592822227211e-05 3.108501336660957e-05 1.957401042890837e-05
97 0.001 0.0006951304333180151 0.0005328418694862771 0.0003257514161227785 0.00020144954284132072 0.00012549782967232552 7.854794051499734e-05 4.9308263259716635e-05 3.1011211154138606e-05 1.9526860309103978e-05

View File

@@ -1,98 +1,99 @@
1.000000000000000021e-03,6.059428294303585358e-04,4.124436878765448634e-04,2.874462507798667202e-04,2.103923932407651741e-04,1.678414792051835720e-04,1.547359756068614396e-04,1.816771264024174659e-04,3.223716208702616772e-04
1.000000000000000021e-03,6.053134417926274479e-04,4.117055522849718272e-04,2.867345754340725936e-04,2.097129658661858059e-04,1.671408382188599656e-04,1.538980727463440737e-04,1.804148897825019347e-04,3.196786917797407482e-04
1.000000000000000021e-03,6.046849734433535663e-04,4.109690875237402238e-04,2.860250085842350751e-04,2.090360511584246736e-04,1.664434237997556567e-04,1.530650313352837862e-04,1.791618737991747007e-04,3.170092948646618079e-04
1.000000000000000021e-03,6.040574211994215528e-04,4.102342878398261821e-04,2.853175420730359193e-04,2.083616379079277403e-04,1.657492189637676920e-04,1.522368203677859210e-04,1.779180061767344980e-04,3.143632101370558260e-04
1.000000000000000021e-03,6.034068048547004811e-04,4.094522032835132145e-04,2.845379038962591819e-04,2.075849237814657072e-04,1.649065028354379026e-04,1.511673145690444625e-04,1.761800891032866087e-04,3.101696013411107001e-04
1.000000000000000021e-03,6.027571485450614400e-04,4.086719523190792173e-04,2.837607352174946669e-04,2.068114158243908936e-04,1.640683639230874002e-04,1.501056331894667201e-04,1.744595725998800725e-04,3.060328853710948794e-04
1.000000000000000021e-03,6.021084488423111532e-04,4.078935283235860985e-04,2.829860258399657913e-04,2.060410983394430761e-04,1.632347745793864737e-04,1.490517152618393740e-04,1.727562758069566841e-04,3.019522704750103072e-04
1.000000000000000021e-03,6.014584946769776846e-04,4.071145901524401327e-04,2.822117789926256531e-04,2.052723360542508288e-04,1.624043320606193702e-04,1.480041851535097400e-04,1.710684425093964716e-04,2.979241342510260699e-04
1.000000000000000021e-03,6.008072907871274187e-04,4.063351463691671850e-04,2.814380028310788616e-04,2.045051334722086352e-04,1.615770319309204608e-04,1.469630126571907884e-04,1.693959447695294284e-04,2.939478272988644745e-04
1.000000000000000021e-03,6.001497788207915121e-04,4.055445944921290597e-04,2.806482406689155018e-04,2.037157793952982566e-04,1.607178158735042268e-04,1.458699426620449350e-04,1.676159912510077627e-04,2.896237141368235984e-04
1.000000000000000021e-03,5.994910374944025042e-04,4.047535948218318100e-04,2.798590565363265966e-04,2.029281739019909579e-04,1.598620980598530251e-04,1.447840125437445142e-04,1.658536074234625343e-04,2.853613427461420497e-04
1.000000000000000021e-03,5.988260139740232213e-04,4.039566207302157830e-04,2.790656268334378021e-04,2.021383019157014865e-04,1.590064003284783227e-04,1.437018088215471850e-04,1.641044980680633682e-04,2.811520890672289147e-04
1.000000000000000021e-03,5.981547295973556680e-04,4.031537149116132062e-04,2.782680029999613086e-04,2.013462168991827844e-04,1.581507747250400562e-04,1.426233730149128554e-04,1.623686402996199669e-04,2.769954674673250896e-04
1.000000000000000021e-03,5.974772058480589884e-04,4.023449202032754039e-04,2.774662364916018848e-04,2.005519721420980883e-04,1.572952728586730247e-04,1.415487458023807841e-04,1.606460099014084351e-04,2.728909933446289080e-04
1.000000000000000021e-03,5.967924602151245417e-04,4.015280354275974962e-04,2.766567170422079059e-04,1.997501120648868605e-04,1.564314572956195643e-04,1.404632320601022135e-04,1.589039550526354799e-04,2.687258582080010155e-04
1.000000000000000021e-03,5.961015210291329552e-04,4.007053572943599577e-04,2.758431797434220318e-04,1.989462429758611403e-04,1.555679612182393453e-04,1.393818318435550562e-04,1.571757793000612348e-04,2.646152969711955188e-04
1.000000000000000021e-03,5.954044103428367566e-04,3.998769294251378363e-04,2.750256766566040972e-04,1.981404183299118591e-04,1.547048355449558708e-04,1.383045830163869136e-04,1.554614480121203164e-04,2.605587686095252363e-04
1.000000000000000021e-03,5.947013777400173224e-04,3.990430339362700481e-04,2.742044609070656662e-04,1.973328535702731791e-04,1.538422664307762401e-04,1.372316495983985922e-04,1.537610729441031576e-04,2.565559887984316962e-04
1.000000000000000021e-03,5.939924446448691022e-04,3.982037130272156897e-04,2.733795825341983144e-04,1.965235995659166514e-04,1.529803013963573505e-04,1.361630645638145173e-04,1.520746117923915490e-04,2.526064078268458078e-04
1.000000000000000021e-03,5.932708072008613994e-04,3.973448313523968048e-04,2.725292879585060313e-04,1.956816407574392804e-04,1.520737532268283138e-04,1.350253536692922732e-04,1.502520417395671493e-04,2.482429369311983419e-04
1.000000000000000021e-03,5.925433291275937313e-04,3.964806700993557770e-04,2.716755655440644093e-04,1.948383564731119815e-04,1.511684275731327428e-04,1.338932464840604031e-04,1.484467502756363724e-04,2.439468427807235304e-04
1.000000000000000021e-03,5.918101288584805405e-04,3.956113769664689763e-04,2.708185566039283476e-04,1.939938721213093850e-04,1.502644330979066827e-04,1.327668256867655240e-04,1.466587172007617287e-04,2.397173806066686273e-04
1.000000000000000021e-03,5.910712282476807177e-04,3.947369945531709078e-04,2.699583111402765676e-04,1.931482375169864133e-04,1.493618135415682949e-04,1.316461114156967569e-04,1.448878476419733323e-04,2.355536787532183434e-04
1.000000000000000021e-03,5.903266492974269808e-04,3.938575655934699066e-04,2.690948791496987824e-04,1.923015022699072797e-04,1.484606121781560119e-04,1.305311230155930472e-04,1.431340460611192763e-04,2.314548735305102924e-04
1.000000000000000021e-03,5.895916361077759233e-04,3.930015889157450278e-04,2.682679585446747167e-04,1.915046725018171748e-04,1.476265343831741983e-04,1.295122987364192039e-04,1.415403000102364922e-04,2.277048762028301403e-04
1.000000000000000021e-03,5.888509505821538188e-04,3.921405251235485093e-04,2.674377005486313469e-04,1.907064029438769275e-04,1.467931904457939435e-04,1.284977589807231727e-04,1.399600943498011466e-04,2.240084844157824847e-04
1.000000000000000021e-03,5.881046147353881284e-04,3.912744162777674595e-04,2.666041537474170709e-04,1.899067416692393098e-04,1.459606238177286390e-04,1.274875313353729649e-04,1.383933775516596422e-04,2.203650745808937968e-04
1.000000000000000021e-03,5.873535041835053691e-04,3.904041908037584924e-04,2.657681073335506784e-04,1.891063272435359547e-04,1.451293640595985746e-04,1.264820875947550167e-04,1.368405966876043531e-04,2.167748460671411873e-04
1.000000000000000021e-03,5.865976375297720377e-04,3.895298843642901903e-04,2.649296021207307814e-04,1.883051991594097421e-04,1.442994447916011967e-04,1.254814426573682665e-04,1.353016807452276011e-04,2.132371421364682767e-04
1.000000000000000021e-03,5.858370334908887412e-04,3.886515327161476187e-04,2.640886789067201177e-04,1.875033967487228748e-04,1.434708992929061271e-04,1.244856108614830043e-04,1.337765582492128895e-04,2.097513117892475961e-04
1.000000000000000021e-03,5.850717109173866415e-04,3.877691717638952012e-04,2.632453785571107932e-04,1.867009592919541521e-04,1.426437606415217971e-04,1.234946061839636009e-04,1.322651576281378186e-04,2.063167108712882474e-04
1.000000000000000021e-03,5.843017841779564719e-04,3.868829399849727933e-04,2.623998297381095117e-04,1.858979973489535589e-04,1.418181214209275826e-04,1.225084976697060233e-04,1.307674705482058720e-04,2.029328092689827875e-04
1.000000000000000021e-03,5.835272719783185817e-04,3.859928727352694559e-04,2.615520723807220407e-04,1.850945488934469029e-04,1.409940129261724197e-04,1.215272967897141737e-04,1.292834223062770812e-04,1.995989685833853672e-04
1.000000000000000021e-03,5.827481931390192209e-04,3.850990054645316799e-04,2.607021463995574332e-04,1.842906517410432266e-04,1.401714661235729505e-04,1.205510144929276286e-04,1.278129378421479238e-04,1.963145562589016025e-04
1.000000000000000021e-03,5.819741190680906414e-04,3.842186528659996786e-04,2.598733678747139103e-04,1.835150990942780922e-04,1.393856353878371876e-04,1.196241043053028848e-04,1.264157249384978508e-04,1.931533527071859933e-04
1.000000000000000021e-03,5.811954906857532679e-04,3.833344911530978875e-04,2.590423495637437460e-04,1.827389251971546448e-04,1.386010231640464696e-04,1.187014313463915350e-04,1.250305871218520724e-04,1.900379005692562904e-04
1.000000000000000021e-03,5.804123268686601621e-04,3.824465553881609072e-04,2.582091305240798466e-04,1.819621668943112273e-04,1.378176602140172575e-04,1.177830097537161525e-04,1.236574657124121280e-04,1.869676369318762604e-04
1.000000000000000021e-03,5.796261981805348861e-04,3.815564763513873891e-04,2.573750710547324729e-04,1.811859034357266680e-04,1.370364232713841633e-04,1.168696105278517803e-04,1.222971239749574140e-04,1.839432835829867073e-04
1.000000000000000021e-03,5.788371166298537929e-04,3.806642767897665215e-04,2.565401959245502722e-04,1.804101566728638260e-04,1.362573268495191094e-04,1.159612279572367423e-04,1.209494737333099285e-04,1.809642226433420603e-04
1.000000000000000021e-03,5.780450942923127944e-04,3.797699794962239458e-04,2.557045298790712744e-04,1.796349483543752492e-04,1.354803852765658562e-04,1.150578560981921263e-04,1.196144270262388971e-04,1.780298433107154344e-04
1.000000000000000021e-03,5.772501433097143196e-04,3.788736073065085246e-04,2.548680976361037374e-04,1.788603001211915217e-04,1.347056126906417029e-04,1.141594887707218423e-04,1.182918961012392148e-04,1.751395417672447184e-04
1.000000000000000021e-03,5.764543993312114430e-04,3.779774418763772749e-04,2.540328419678222955e-04,1.780877776040980329e-04,1.339342982068885400e-04,1.132672798320007770e-04,1.169830787460522149e-04,1.722947974180976999e-04
1.000000000000000021e-03,5.756578658699793754e-04,3.770814893242558957e-04,2.531987675065141240e-04,1.773173809352787060e-04,1.331664323570320042e-04,1.123811939733057949e-04,1.156878429947367658e-04,1.694949148917899182e-04
1.000000000000000021e-03,5.748605464740858808e-04,3.761857558021953151e-04,2.523658789003789082e-04,1.765491102506614579e-04,1.324020056947932127e-04,1.115011960644554309e-04,1.144060580710201219e-04,1.667392091004694466e-04
1.000000000000000021e-03,5.740605208264367093e-04,3.752860221900411030e-04,2.515274179172670150e-04,1.757730484194969538e-04,1.316262968484167275e-04,1.106031805667756002e-04,1.130890327345630944e-04,1.638824360782746060e-04
1.000000000000000021e-03,5.732597217139582440e-04,3.743865400085843336e-04,2.506901966657434509e-04,1.749991992264989145e-04,1.308541788026545852e-04,1.097115653341001649e-04,1.117862964715498958e-04,1.610733229285059244e-04
1.000000000000000021e-03,5.724581527307928295e-04,3.734873153380866809e-04,2.498542195054800734e-04,1.742275621656188764e-04,1.300856406740597557e-04,1.088263113284397853e-04,1.104977038827086933e-04,1.583110954216201049e-04
1.000000000000000021e-03,5.716575664778975139e-04,3.725901351223118402e-04,2.490209518882956956e-04,1.734592774731394025e-04,1.293215843757922266e-04,1.079481792373105579e-04,1.092239503861538297e-04,1.555962288273640454e-04
1.000000000000000021e-03,5.708579584178212615e-04,3.716949912014026899e-04,2.481903820156593069e-04,1.726943281050015661e-04,1.285619816677677630e-04,1.070771097820554131e-04,1.079648627815312081e-04,1.529279069228532445e-04
1.000000000000000021e-03,5.700593240595020362e-04,3.708018755033176054e-04,2.473624982033243466e-04,1.719326971657234189e-04,1.278068045492097274e-04,1.062130442456755448e-04,1.067202699871894330e-04,1.503053277730467872e-04
1.000000000000000021e-03,5.692616589508734098e-04,3.699107800243283187e-04,2.465372888514933574e-04,1.711743678703278799e-04,1.270560252111956913e-04,1.053559244063845252e-04,1.054900029091859618e-04,1.477277031714797602e-04
1.000000000000000021e-03,5.684668249800580104e-04,3.690236622787805977e-04,2.457163959794073484e-04,1.704206404911772779e-04,1.263106878677109810e-04,1.045066466916437628e-04,1.042749156168111009e-04,1.451958181660296986e-04
1.000000000000000021e-03,5.676748100054150635e-04,3.681404996529084395e-04,2.448997907163580324e-04,1.696714800685054925e-04,1.255707452244580493e-04,1.036651297187654374e-04,1.030748062779383314e-04,1.427088285865420875e-04
1.000000000000000021e-03,5.668856019606317766e-04,3.672612697075048303e-04,2.440874444423345342e-04,1.689268519744038289e-04,1.248361504800705925e-04,1.028312930702206035e-04,1.018894759794533339e-04,1.402659065748177792e-04
1.000000000000000021e-03,5.660978860040193896e-04,3.663833351346186431e-04,2.432754355983019401e-04,1.681813812071888568e-04,1.240994738987429935e-04,1.019939514788640786e-04,1.006986246362622330e-04,1.378144424939918523e-04
1.000000000000000021e-03,5.653129566917403656e-04,3.655093013788168949e-04,2.424676550876819162e-04,1.674404214250226010e-04,1.233681396595080271e-04,1.011643116013039457e-04,9.952262825359122704e-05,1.354072260989254840e-04
1.000000000000000021e-03,5.645308021917731225e-04,3.646391464999218838e-04,2.416640749146854532e-04,1.667039386446287719e-04,1.226421015627000995e-04,1.003422934745905857e-04,9.836128786277046102e-05,1.330434286087782230e-04
1.000000000000000021e-03,5.637533512715803535e-04,3.637748048842355184e-04,2.408662573039999728e-04,1.659731272165147797e-04,1.219222820499958832e-04,9.952864742131557339e-05,9.721524794079934454e-05,1.307234068834026641e-04
1.000000000000000021e-03,5.629805832911210584e-04,3.629162394326295588e-04,2.400741573155354143e-04,1.652479360999081315e-04,1.212086174287677493e-04,9.872327382660381703e-05,9.608428430098295324e-05,1.284463004684426848e-04
1.000000000000000021e-03,5.622124777547171659e-04,3.620634133660168507e-04,2.392877304473862261e-04,1.645283148026117340e-04,1.205010447638324016e-04,9.792607442008048754e-05,9.496817636981473815e-05,1.262112668660531425e-04
1.000000000000000021e-03,5.614490142952067260e-04,3.612162901840461500e-04,2.385069325732311319e-04,1.638142133018547766e-04,1.197995017798251111e-04,9.713695214164584071e-05,9.386670693673759554e-05,1.240174806289624668e-04
1.000000000000000021e-03,5.606917876274927293e-04,3.603765175920537237e-04,2.377331235014221514e-04,1.631066878653574946e-04,1.191048135885559178e-04,9.635658300529022745e-05,9.278045936752733660e-05,1.218652818497198865e-04
1.000000000000000021e-03,5.599407711882442139e-04,3.595440474626148916e-04,2.369662455139816704e-04,1.624056743525901679e-04,1.184169030927857740e-04,9.558485302446070387e-05,9.170919453133945438e-05,1.197538170918552259e-04
1.000000000000000021e-03,5.591959386362445371e-04,3.587188321446053963e-04,2.362062415256148103e-04,1.617111093879153761e-04,1.177356942042864595e-04,9.482164989506947420e-05,9.065267746151001182e-05,1.176822517560764241e-04
1.000000000000000021e-03,5.584679347085343051e-04,3.579204847030152616e-04,2.354801209260217886e-04,1.610571916563278928e-04,1.171042314833950021e-04,9.412413419793498636e-05,8.969710985766721223e-05,1.158171674873524301e-04
1.000000000000000021e-03,5.577460350040716044e-04,3.571292104088583889e-04,2.347605938090600918e-04,1.604093154405005178e-04,1.164788453357124725e-04,9.343405219685640224e-05,8.875393403591714169e-05,1.139848385910069905e-04
1.000000000000000021e-03,5.570302142000897652e-04,3.563449642017089015e-04,2.340476072540025119e-04,1.597674235279283352e-04,1.158594695166401697e-04,9.275131062844492946e-05,8.782296490203555085e-05,1.121846347113116888e-04
1.000000000000000021e-03,5.563205323021954991e-04,3.555677864531773679e-04,2.333411773810724506e-04,1.591315117132938270e-04,1.152460793074575203e-04,9.207585166649024939e-05,8.690405384945894284e-05,1.104159825692847303e-04
1.000000000000000021e-03,5.556169640414684949e-04,3.547976323593042547e-04,2.326412517183593022e-04,1.585015234268918286e-04,1.146386094395640093e-04,9.140758389001004606e-05,8.599702078916069998e-05,1.086782756746748250e-04
1.000000000000000021e-03,5.549194843577821444e-04,3.540344575531629255e-04,2.319477783590319386e-04,1.578774027587701891e-04,1.140369954748351631e-04,9.074641718074756330e-05,8.510168863112195785e-05,1.069709201912467553e-04
1.000000000000000021e-03,5.542280683854123842e-04,3.532782180675540329e-04,2.312607059053527040e-04,1.572590943887706505e-04,1.134411737206307899e-04,9.009226260907148270e-05,8.421788308143062266e-05,1.052933342707317640e-04
1.000000000000000021e-03,5.535435592528614506e-04,3.525297669260542646e-04,2.305807244353639423e-04,1.566471216497641210e-04,1.128515385449576329e-04,8.944542244330133641e-05,8.334582247054855841e-05,1.036454797753234207e-04
1.000000000000000021e-03,5.528659293179593237e-04,3.517890550472092793e-04,2.299077767025847687e-04,1.560414233076215052e-04,1.122680202866636689e-04,8.880580140054516926e-05,8.248532556564376009e-05,1.020267728319692934e-04
1.000000000000000021e-03,5.521951511907441769e-04,3.510560338657343622e-04,2.292418061160320900e-04,1.554419388795865483e-04,1.116905502099227850e-04,8.817330560855271690e-05,8.163621425685595255e-05,1.004366420798761639e-04
1.000000000000000021e-03,5.515357570680511773e-04,3.503384240935171457e-04,2.285926195257032088e-04,1.548599664871607589e-04,1.111316359132737570e-04,8.756139732097920178e-05,8.081143045355856274e-05,9.887558842870256459e-05
1.000000000000000021e-03,5.508831499695134287e-04,3.496283778737561509e-04,2.279502431225978031e-04,1.542840041018178729e-04,1.105785086338880569e-04,8.695624145470242240e-05,7.999741899881025698e-05,9.734197099681332458e-05
1.000000000000000021e-03,5.502373034395177318e-04,3.489258487042028742e-04,2.273146231686837553e-04,1.537139948092133693e-04,1.100311043442569531e-04,8.635775141128424154e-05,7.919401605398894981e-05,9.583525507692383649e-05
1.000000000000000021e-03,5.495982753581815606e-04,3.482308738101717264e-04,2.266857730549029851e-04,1.531499327576744506e-04,1.094893985055618503e-04,8.576587362490598130e-05,7.840109070036870779e-05,9.435495486246966317e-05
1.000000000000000021e-03,5.489660394111083985e-04,3.475434070850742167e-04,2.260636396270461598e-04,1.525917617808240120e-04,1.089533281238570496e-04,8.518052329278025009e-05,7.761848365092111231e-05,9.290055631012179708e-05
1.000000000000000021e-03,5.483405695169031721e-04,3.468634028939242666e-04,2.254481703234268038e-04,1.520394263837190755e-04,1.084228310216190315e-04,8.460161684084565312e-05,7.684603831721497692e-05,9.147155629123523643e-05
1.000000000000000021e-03,5.477218398160970184e-04,3.461908160447295835e-04,2.248393131323322177e-04,1.514928716901747189e-04,1.078978457743454979e-04,8.402907183940372035e-05,7.608360066029366266e-05,9.006746210081428210e-05
1.000000000000000021e-03,5.471100509830739483e-04,3.455258336641454844e-04,2.242372067336963117e-04,1.509521904405796073e-04,1.073784265457052923e-04,8.346290305268591516e-05,7.533111218717854750e-05,8.868791149478115541e-05
1.000000000000000021e-03,5.465051768578450733e-04,3.448684100639811626e-04,2.236417986238402995e-04,1.504173273640432558e-04,1.068645117117092864e-04,8.290302835464549746e-05,7.458842111919879593e-05,8.733242665255502488e-05
1.000000000000000021e-03,5.459071915129861232e-04,3.442185000233075119e-04,2.230530368831633737e-04,1.498882278486614187e-04,1.063560404456327061e-04,8.234936680962616474e-05,7.385537825478157199e-05,8.600053991717240256e-05
1.000000000000000021e-03,5.453277270883248422e-04,3.435968835063559607e-04,2.224987019123045480e-04,1.493989071766017103e-04,1.058939742146122178e-04,8.185283432112488435e-05,7.320083692872619591e-05,8.480120525436834187e-05
1.000000000000000021e-03,5.447550756300442850e-04,3.429826158632724655e-04,2.219507707465509202e-04,1.489150144895505707e-04,1.054368625228528346e-04,8.136171358212484941e-05,7.255437084770181432e-05,8.362138199130290570e-05
1.000000000000000021e-03,5.441892122953419404e-04,3.423756544954533452e-04,2.214091954721005766e-04,1.484365007267826825e-04,1.049846526338566485e-04,8.087593753205775274e-05,7.191586230794716592e-05,8.246071125248328093e-05
1.000000000000000021e-03,5.436257869834306257e-04,3.417717090501741430e-04,2.208705585733095858e-04,1.479607869104501987e-04,1.045353737048878776e-04,8.039389156994272538e-05,7.128377081045688692e-05,8.131715986317171246e-05
1.000000000000000021e-03,5.430647907230928004e-04,3.411707635569704330e-04,2.203348411819341208e-04,1.474878525008424264e-04,1.040890016129762040e-04,7.991554062444546221e-05,7.065802258502740848e-05,8.019045690600123673e-05
1.000000000000000021e-03,5.425062145452035425e-04,3.405728020832017003e-04,2.198020245085192449e-04,1.470176770797095381e-04,1.036455124224165388e-04,7.944084996986793814e-05,7.003854478529189314e-05,7.908033605497744685e-05
1.000000000000000021e-03,5.419500494783734655e-04,3.399778087230425684e-04,2.192720898259863408e-04,1.465502403299397984e-04,1.032048823605461293e-04,7.896978519468913008e-05,6.942526543493823701e-05,7.798653539704048551e-05
1.000000000000000021e-03,5.413941311127808435e-04,3.393835756573481376e-04,2.187432334857416756e-04,1.460841531649274296e-04,1.027660304092932323e-04,7.850144313387483587e-05,6.881729624423716459e-05,7.690779566810491681e-05
1.000000000000000021e-03,5.408384570747234218e-04,3.387900992487282684e-04,2.182154508640741402e-04,1.456194096560940569e-04,1.023289477092565169e-04,7.803580657419308998e-05,6.821458972979072498e-05,7.584390730667668775e-05
1.000000000000000021e-03,5.402830249660243826e-04,3.381973758275843189e-04,2.176887373150658610e-04,1.451560038709627043e-04,1.018936254270842219e-04,7.757285840469518032e-05,6.761709884283491779e-05,7.479466373034050742e-05
1.000000000000000021e-03,5.397131798668998448e-04,3.375789411508863902e-04,2.171273238640323091e-04,1.446496280566233409e-04,1.014059885387841374e-04,7.704415358894297196e-05,6.692941074150365747e-05,7.359880640935691578e-05
1.000000000000000021e-03,5.391436022217508317e-04,3.369613465901344558e-04,2.165671485747253328e-04,1.441448734692186333e-04,1.009205829600201576e-04,7.651897498112265308e-05,6.624864922679121694e-05,7.242198835523922060e-05
1.223599761281599736e-03,2.870574988594920204e-03,5.410558860144323162e-03,9.740321680379944794e-03,1.718226620812626088e-02,3.032327552654904765e-02,5.460894525232919822e-02,1.025522470341594938e-01,2.059999999999999887e-01
4.083745694274921144e-03,8.369042825128880300e-03,1.439530071705045523e-02,2.397223043565064812e-02,3.897486419880552555e-02,6.202545653148217042e-02,9.626510461383173956e-02,1.437785279168776742e-01,2.000000000000000111e-01
0 km,7 km,10 km,20 km,30 km,40 km,50 km,60 km,70 km,80 km
0.001,0.0007654185419972524,0.0006073276056093792,0.0004146475603472041,0.0002902671662170687,0.00021391771777705748,0.0001725335650783217,0.0001619576961300996,0.00019613348481478226,0.00036856555154569
0.001,0.0007648265274364283,0.0006066999211698721,0.00041390447843586643,0.00028954214777674505,0.00021321488386807227,0.000171794621873672,0.00016105212098646378,0.00019472570335261124,0.00036543839103292923
0.001,0.00076423475082742,0.0006060726714187721,0.00041316253063080743,0.0002888187769396436,0.00021251421079625184,0.0001710586847350929,0.00016015140443848455,0.0001933277019274264,0.0003623371672096105
0.001,0.0007636432110143774,0.0006054458552058583,0.0004124217148997164,0.0002880970500399001,0.00021181569222935437,0.00017032574197864756,0.00015925552136261768,0.00019193941431515274,0.0003592616661738057
0.001,0.00076303338083269,0.0006047950045143256,0.0004116319711720434,0.0002873006965446473,0.00021101094555209704,0.00016943701776024394,0.00015810165194844262,0.00019000410483730154,0.00035435344277520014
0.001,0.0007624238065102939,0.0006041446264165162,0.00041084352013847123,0.0002865063493191246,0.0002102090638489634,0.00016855270795343295,0.00015695583271993784,0.000188087762219128,0.00034951092824224374
0.001,0.0007618144867783217,0.0006034947195801519,0.00041005635912737644,0.00028571400313117073,0.000209410037075066,0.00016767279125308264,0.000155818009114819,0.0001861902048930817,0.00034473325633896016
0.001,0.0007612032230964268,0.0006028430274261829,0.0004092680923152776,0.00028492160640338084,0.00020861217469969167,0.00016679580316719344,0.00015468672086849377,0.00018430951195784153,0.0003400162401556392
0.001,0.0007605900180176352,0.0006021895546863309,0.000408478730269415,0.00028412917095061395,0.00020781548628341263,0.00016592174578786424,0.0001535619455802766,0.00018244555944842464,0.000335359176825339
0.001,0.0007599713504055552,0.0006015295991965402,0.0004076783487865176,0.0002833211587561824,0.00020699731581240013,0.00016501652229006483,0.00015238542164450143,0.000180469716663273,0.00033030742335106797
0.001,0.0007593507507343548,0.0006008678808679657,0.00040687692763931326,0.0002825132124386522,0.00020618050489600874,0.00016411458466993175,0.0001512162128542595,0.00017851301079839705,0.00032532712476693115
0.001,0.0007587233815624382,0.0006001993719156019,0.00040606894689472706,0.0002817004901671922,0.0002053609939218913,0.0001632123763493078,0.00015005076311129325,0.00017657081573262424,0.0003204083683965919
0.001,0.0007580892517126006,0.0005995240885208491,0.0004052544459439752,0.0002808830430533993,0.00020453883912382008,0.0001623099555953223,0.0001488891244397257,0.00017464312199372379,0.0003155506430768726
0.001,0.000757448370179369,0.0005988420470784952,0.00040443346443882024,0.0002800609223493252,0.00020371409666633197,0.00016140738029416416,0.00014773134796391561,0.00017272991838834854,0.0003107534371554913
0.001,0.0007567998780637095,0.00059815208713495,0.0004036034596839685,0.0002792300099339312,0.0002028805779162198,0.0001604950646725177,0.00014656055358564036,0.0001707926621492761,0.00030587527063737443
0.001,0.0007561446539823046,0.0005974554049330684,0.00040276706435836743,0.0002783945504517164,0.00020204463288750894,0.00015958281494627715,0.00014539398266818048,0.00016887071348766508,0.00030106092293455183
0.001,0.0007554827075416216,0.0005967520176577599,0.00040192431930056663,0.00027755459621831854,0.00020120631834502002,0.0001586706886366497,0.00014423168344504801,0.00016696404870095068,0.0002963098069760517
0.001,0.0007548142866478835,0.0005960421864035,0.00040107552190864405,0.000276710416864016,0.00020036586735025836,0.00015775889202640647,0.00014307384532883863,0.00016507281278915244,0.00029162164835553234
0.001,0.0007541394007727726,0.0005953259280357876,0.00040022071194032425,0.0002758620629396957,0.00019952333420039184,0.0001568474791446172,0.00014192051114461952,0.000163196972716382,0.0002869958456117749
0.001,0.000753453261276124,0.0005945968692177485,0.0003993465628625302,0.0002749888554209862,0.00019864889698783253,0.00015589225679197793,0.00014069786108208423,0.00016117883466097707,0.0002818995386546663
0.001,0.0007527606830746849,0.0005938614307668164,0.00039846653446453577,0.00027411169702333635,0.00019777273283424246,0.00015493803621995225,0.00013948100714945055,0.00015917971666279146,0.00027688213338452353
0.001,0.000752061800251107,0.000593119758904669,0.0003975808078042764,0.0002732307613051971,0.00019689499757748,0.00015398495670235495,0.00013827006619590224,0.00015719963654088831,0.0002719428500764955
0.001,0.0007513566228984858,0.0005923718712186205,0.00039668942343994645,0.00027234609917798486,0.0001960157448213401,0.0001530330687596212,0.0001370650679700252,0.0001552385042294358,0.000267080708365827
0.001,0.0007506451612836396,0.000591617785508762,0.0003957924221725467,0.000271457761656054,0.00019513502804513515,0.00015208242246717618,0.00013586604131538964,0.00015329622856198138,0.00026229473523033993
0.001,0.0007499410764512782,0.0005908750616328752,0.0003949229270536377,0.00027061232560569935,0.0001943133661054677,0.00015121214860141992,0.00013478433495717895,0.0001515553239579192,0.0002579720674546429
0.001,0.0007492307077939692,0.0005901261380362599,0.0003940477612542949,0.0002697630351391033,0.0001934898396676657,0.00015034229582385722,0.00013370682839182124,0.00014982878466439454,0.0002537103994437239
0.001,0.0007485140657428474,0.0005893710325813375,0.00039316696481225496,0.0002689099395032721,0.00019266450005914697,0.0001494729137699088,0.00013263355942168804,0.00014811657325897344,0.00024950907434075407
0.001,0.0007477920374988207,0.0005886106575770754,0.00039228150952041026,0.0002680538698732277,0.00019183802609277662,0.00014860457389983926,0.00013156505071301006,0.00014641921273032577,0.00024536841469387607
0.001,0.0007470646318417684,0.000587845028280153,0.00039139142972943226,0.00026719486815718823,0.00019101046063687028,0.0001477373157547231,0.00013050132642612272,0.00014473664329931894,0.00024128771968956965
0.001,0.000746331857690334,0.0005870741601150847,0.0003904967599732611,0.0002663329763359202,0.00019018184646592208,0.0001468711785583918,0.00012944241008601634,0.0001430688043627681,0.00023726629318772418
0.001,0.000745593724114763,0.0005862980686936137,0.0003895975350198339,0.0002654682365419898,0.00018935222636504533,0.00014600620135329296,0.00012838832478192589,0.0001414156348862137,0.00023330344508078714
0.001,0.0007448503634609417,0.0005855168970231048,0.00038869392700388675,0.0002646008091121948,0.00018852173980288115,0.00014514250481571783,0.00012733917050730646,0.00013977716467553823,0.00022939865638927297
0.001,0.0007441017848559784,0.0005847306606783223,0.0003877859701983709,0.00026373073520765555,0.0001876904281105713,0.0001442801258881357,0.00012629496716723198,0.0001381533278738466,0.00022555123779529113
0.001,0.000743347997566111,0.0005839393754013221,0.00038687369905472224,0.00026285805605533836,0.00018685833252122952,0.0001434191012016364,0.000125255734067765,0.0001365440579330561,0.0002217605049922782
0.001,0.0007425980122165197,0.0005831545190886928,0.0003859781684512971,0.00026201154253776947,0.00018606159531590292,0.00014260456502787665,0.00012428053620243385,0.0001350337902936029,0.00021815009586241928
0.001,0.0007418428222422646,0.0005823646190291856,0.00038507830193089523,0.00026116232813230903,0.0001852638537460305,0.00014179094397584395,0.00012330941740530514,0.00013353605951814913,0.000214590937375532
0.001,0.0007410824370750857,0.0005815696910727474,0.00038417413352571667,0.0002603104530145326,0.00018446514774054143,0.00014097827417406666,0.00012234240064855456,0.00013205082038162874,0.00021108244611026217
0.001,0.0007403184660014679,0.0005807713776603622,0.0003832673750805624,0.0002594573523562161,0.0001836666246937272,0.00014016749938812904,0.00012138033426810311,0.00013057895028626532,0.00020762556561303502
0.001,0.0007395509147560407,0.0005799696890514251,0.0003823580493090658,0.0002586030525652665,0.00018286830960336872,0.00013935863904919696,0.00012042322007081454,0.00012912037080446074,0.00020421964337946413
0.001,0.0007387797891584386,0.0005791646356057247,0.0003814461790231548,0.0002577475800751799,0.00018207022739706005,0.00013855171240478834,0.00011947105956106815,0.0001276750034397535,0.00020086403326178727
0.001,0.0007380050951127038,0.000578356227782297,0.00038053178712941366,0.00025689096133950617,0.0001812724029256328,0.00013774673851177748,0.00011852385393388548,0.0001262427696188339,0.00019755809538624924
0.001,0.0007372289278765602,0.0005775466274590334,0.00037961719344922816,0.00025603518246549605,0.00018047644930614432,0.00013694506185961904,0.00011758283148187963,0.00012482499369662246,0.0001943036135491255
0.001,0.0007364512893389424,0.0005767358384619004,0.0003787024060562486,0.0002551802511391958,0.00017968237057615404,0.0001361466779099092,0.00011664796319397039,0.00012342154884218158,0.00019109983808810176
0.001,0.0007356721814267267,0.0005759238646613067,0.0003777874330677233,0.0002543261750635963,0.00017889017076266666,0.00013535158210437542,0.00011571922013388507,0.00012203230915507028,0.00018794602945024216
0.001,0.0007348903474707337,0.0005751089853685418,0.00037686841880625214,0.0002534666634479025,0.00017809042928748983,0.00013454542482553396,0.00011477223754870921,0.00012060527355137842,0.0001846722184263047
0.001,0.0007341070502230424,0.0005742929332546843,0.0003759492523595486,0.00025260806222015907,0.0001772926545344648,0.0001337427099649026,0.00011383170595735486,0.00011919336498115804,0.00018145260378874068
0.001,0.0007333222916846016,0.0005734757122629472,0.0003750299418068227,0.0002517503788238516,0.00017649684991694604,0.00013294343155185963,0.00011289759243683735,0.00011779644164652425,0.00017828633792123003
0.001,0.0007325378931581444,0.0005726591695542582,0.00037411237735305734,0.00025089517102575937,0.00017570423657326553,0.00013214856737581396,0.00011197073980433406,0.0001164153090011861,0.00017517406255147756
0.001,0.0007317538520017976,0.0005718433021851622,0.00037319655361857124,0.00025004243032543557,0.00017491480109484205,0.00013135809328305347,0.0001110510931582075,0.00011504979334922632,0.00017211487548789828
0.001,0.0007309701656016873,0.0005710281072505973,0.0003722824652942578,0.0002491921483105776,0.0001741285301842189,0.000130571985300518,0.00011013859805243972,0.00011369972292133188,0.00016910788945367707
0.001,0.0007301868313673829,0.0005702135818768351,0.00037137010712276296,0.0002483443166280691,0.00017334541061775574,0.0001297902195887095,0.00010923320042963165,0.00011236492773944517,0.00016615223146969552
0.001,0.0007294056858799279,0.0005694016103111181,0.00037046146816096116,0.0002475006124214696,0.00017256678052747222,0.0001290138836109195,0.0001083358528422491,0.00011104635018836138,0.0001632488500459303
0.001,0.0007286267228265342,0.0005685921836368309,0.00036955653001307385,0.0002466610110284357,0.00017179260894632618,0.00012824293390221287,0.00010744647704539295,0.00010974378427192081,0.00016039680402653037
0.001,0.0007278499359259242,0.0005677852929874075,0.0003686552744110329,0.000245825487979439,0.00017102286517266867,0.00012747732740860064,0.00010656499564424898,0.00010845702677323144,0.00015759516965436614
0.001,0.0007270741396329974,0.0005669793834682747,0.00036775459243596013,0.0002449894231786493,0.00017025120181982169,0.00012670823171859124,0.00010567792500018758,0.00010716091111285436,0.00015477474449137119
0.001,0.000726300509089127,0.0005661759961906673,0.0003668575707603942,0.00024415741777526555,0.00016948395998088835,0.00012594449635600327,0.000104798812682607,0.00010588078664841973,0.00015200532201362785
0.001,0.0007255290381246482,0.0005653751224576382,0.0003659641914980988,0.00024332944777626794,0.00016872110941070693,0.00012518607857232714,0.00010392758109688598,0.00010461644792633948,0.00014928596543342006
0.001,0.0007247617567123682,0.0005645788092050789,0.0003650765144822908,0.0002425071844547339,0.00016796393694001768,0.00012443398389681975,0.0001030650652169494,0.00010336864256044427,0.00014661715384500229
0.001,0.0007239986535454607,0.0005637870401634551,0.0003641945072810511,0.0002416905868396016,0.00016721239470100498,0.00012368815096486452,0.00010221116577265065,0.00010213713571582715,0.00014399790845116419
0.001,0.0007232397173862652,0.0005629997991705343,0.0003633181377200508,0.00024087961432750444,0.00016646643530137355,0.0001229485190910589,0.00010136578475280116,0.00010092169616032506,0.00014142727026178776
0.001,0.00072248493705675,0.0005622170701566371,0.0003624473738436701,0.00024007422662323307,0.0001657260117481481,0.0001222150281737581,0.00010052882527084345,9.972209600365954e-05,0.000138904299062937
0.001,0.0007217358950348228,0.000561440466555814,0.00036158388844431124,0.00023927581064585389,0.0001649922088518066,0.00012148853502428482,9.97010025298723e-05,9.853897375975792e-05,0.00013642939611266722
0.001,0.0007209925771752469,0.0005606699674539418,0.0003607276390906435,0.00023848431321443392,0.00016426496576549843,0.00012076896452456461,9.888220185750974e-05,9.737207727303015e-05,0.00013400158668478175
0.001,0.0007202549694492843,0.0005599055521123883,0.0003598785837495114,0.00023769968169456287,0.0001635442223215586,0.00012005624248053424,9.807231018575002e-05,9.622115859912247e-05,0.0001316199170239902
0.001,0.0007195323462520794,0.0005591590509921624,0.0003590585920958888,0.00023695215697134095,0.00016286848728581805,0.00011939925459233543,9.733714368639992e-05,9.518785816120323e-05,0.00012948993319015237
0.001,0.0007188153904868624,0.0005584185656809617,0.00035824561959240325,0.0002362112130369942,0.00016219882234612553,0.00011874843483873407,9.660966052802588e-05,9.416779973181015e-05,0.00012739732395025585
0.001,0.0007181040886926203,0.0005576840763431772,0.00035743962664792336,0.00023547680133784063,0.00016153517356182933,0.00011810371926813217,9.588976814961258e-05,9.316079161517574e-05,0.00012534138272701054
0.001,0.0007173985458519898,0.0005569556823713467,0.0003566406932084415,0.00023474897015812488,0.0001608775616408074,0.00011746510277705029,9.517742467544867e-05,9.216669491688869e-05,0.00012332148630987257
0.001,0.0007166987484521553,0.0005562333638566226,0.00035584877964252954,0.00023402767102794237,0.00016022593289484238,0.00011683252196707568,9.447253888812898e-05,9.118532235085734e-05,0.00012133695300052025
0.001,0.0007160046830928351,0.0005555171010581067,0.00035506384668924896,0.00023331285597027454,0.00015958023422419515,0.00011620591419889337,9.377502080118898e-05,9.021648961473911e-05,0.0001193871149139895
0.001,0.0007153163364777631,0.0005548068743897313,0.0003542858554234702,0.00023260447744820426,0.00015894041305074621,0.00011558521750971036,9.308478154551746e-05,8.926001517936315e-05,0.00011747131722415646
0.001,0.0007146345569433116,0.0005541035424399441,0.0003535156771553805,0.00023190324345165713,0.00015830701004295562,0.00011497084410199294,9.240214376206843e-05,8.831614266750221e-05,0.00011558953011398195
0.001,0.0007139593299513231,0.0005534070835269872,0.0003527532683936443,0.00023120910091256188,0.0001576799668132194,0.0001143627259393922,9.172701183766888e-05,8.738468264977303e-05,0.00011374109491336212
0.001,0.0007132906411062882,0.000552717476178626,0.00035199858609393853,0.00023052199734406963,0.00015705922565321226,0.00011376079584113645,9.105929150577112e-05,8.646544883197101e-05,0.0001119253667056674
0.001,0.0007126330184449588,0.0005520403753247726,0.0003512614302897459,0.0002298546155988536,0.00015645973111213718,0.0001131821199461313,9.041832213305081e-05,8.557937250804453e-05,0.00011015252685143603
0.001,0.000711981898998139,0.0005513700720769836,0.0003505318788510462,0.00022919410061472063,0.0001558663157908185,0.00011260933085632868,8.978431049296584e-05,8.47047300887107e-05,0.00010841080451458245
0.001,0.0007113372689341813,0.0005507065458152156,0.0003498098907291114,0.00022854040278969112,0.00015527892573799634,0.00011204236655473188,8.91571706762786e-05,8.384135267939557e-05,0.00010669960309782175
0.001,0.0007106992322019796,0.0005500498941226498,0.0003490955423571875,0.00022789356692450827,0.00015469757908825738,0.00011148122111140715,8.85368641132709e-05,8.298911908997276e-05,0.00010501839736063321
0.001,0.0007100677749962943,0.0005494000964108962,0.0003483887928208825,0.00022725354367970012,0.00015412222229517684,0.0001109258331719869,8.792330625417495e-05,8.214786445649906e-05,0.00010336661223747767
0.001,0.0007094428836454011,0.0005487571322870243,0.0003476896016176379,0.00022662028424420426,0.00015355280242059424,0.00011037614213504096,8.731641371338838e-05,8.131742659415625e-05,0.00010174368455214035
0.001,0.000708824544604701,0.0005481209815436059,0.0003469979286303459,0.00022599374029548395,0.00015298926708448145,0.00010983208809074389,8.671610418600222e-05,8.049764584384383e-05,0.0001001490624678555
0.001,0.0007082129757140411,0.0005474918591435615,0.0003463139755716002,0.00022537406278014643,0.00015243171907300512,0.00010929373376222763,8.612240008214866e-05,7.968846833775761e-05,9.858234685897841e-05
0.001,0.000707608163356494,0.0005468697446924577,0.00034563770186245746,0.00022476120284855867,0.000151880105523236,0.00010876101889898551,8.55352191851817e-05,7.888973637819775e-05,9.704300162684373e-05
0.001,0.0007070100940503908,0.0005462546179930401,0.0003449690673354809,0.0002241551121757662,0.0001513343741731098,0.00010823388399029377,8.495448041312896e-05,7.810129484091103e-05,9.553050179700698e-05
0.001,0.0007064294568015821,0.0005456599791780414,0.0003443323098548347,0.00022358838010950836,0.00015083471987353974,0.00010776122599922914,8.444190686735427e-05,7.7408734986085e-05,9.418640444056476e-05
0.001,0.0007058555225588962,0.0005450722639773927,0.0003437030311737585,0.0002230281662249932,0.00015034058581471813,0.00010729360256509277,8.39348527119689e-05,7.67245852554126e-05,9.28639870067709e-05
0.001,0.0007052882785030611,0.0005444914532267761,0.0003430811937591523,0.00022247442636251605,0.00014985192565331347,0.00010683096298015644,8.343325230960875e-05,7.604872690242875e-05,9.156285904414627e-05
0.001,0.0007047231683832071,0.0005439129831785586,0.00034246228783126086,0.00022192355689618922,0.00014936600614401393,0.00010637120139586071,8.293535717958106e-05,7.537945268589432e-05,9.028066182205625e-05
0.001,0.0007041601877072604,0.0005433368472132987,0.00034184629997988753,0.0002213755412469509,0.00014888280881520869,0.00010591429577334988,8.244113465160048e-05,7.471669094184598e-05,8.901710564172274e-05
0.001,0.0007035993319644686,0.0005427630386936696,0.0003412332167993905,0.00022083036287728357,0.0001484023152778868,0.00010546022421726945,8.195055234184008e-05,7.406037083397318e-05,8.777190547391773e-05
0.001,0.0007030405966226531,0.0005421915509602746,0.00034062302487816926,0.00022028800527546067,0.00014792450720603156,0.00010500896495215848,8.146357812174912e-05,7.341042229889045e-05,8.65447807653603e-05
0.001,0.000702481864866424,0.0005416202367428493,0.000340013528083159,0.00021974666745789773,0.00014744798951136416,0.00010455942245749231,8.097928325582809e-05,7.276590831707151e-05,8.53343290345859e-05
0.001,0.0007019231347536531,0.000541049093933996,0.00033940472324505365,0.0002192063454080809,0.00014697275707368812,0.00010411158905958576,8.049765241221972e-05,7.212678380437272e-05,8.414032725111873e-05
0.001,0.0007013644043173649,0.0005404781203952333,0.00033879660715245314,0.0002186670350763442,0.0001464988047567028,0.00010366545709431046,8.001867033124847e-05,7.149300404124133e-05,8.296255535497e-05
0.001,0.0007007923380838431,0.0005398904209305891,0.0003381585602637609,0.00021808716235465733,0.0001459743062317574,0.00010315717126101123,7.946027734643345e-05,7.0747191644443e-05,8.159291401029592e-05
0.001,0.0007002202839606736,0.0005393029161815334,0.0003375212965814363,0.0002175084901000057,0.0001454514108138073,0.00010265113449578299,7.890553328521924e-05,7.000884795811205e-05,8.02453392500888e-05
0.0010564983206625808,0.0020323156209598047,0.0024972245821602065,0.004735193374982383,0.008578320915529132,0.015253393937469889,0.027225142859919765,0.049861478431656114,0.09601482521493776,0.2
0.004249939542299966,0.007357791565894658,0.008737301696751656,0.01505607870396766,0.02510093603015811,0.040835074437955504,0.0649892582783015,0.10076225398432796,0.14991538310282454,0.206
1 1.000000000000000021e-03 0 km 6.059428294303585358e-04 7 km 4.124436878765448634e-04 10 km 2.874462507798667202e-04 20 km 2.103923932407651741e-04 30 km 1.678414792051835720e-04 40 km 1.547359756068614396e-04 50 km 1.816771264024174659e-04 60 km 3.223716208702616772e-04 70 km 80 km
2 1.000000000000000021e-03 0.001 6.053134417926274479e-04 0.0007654185419972524 4.117055522849718272e-04 0.0006073276056093792 2.867345754340725936e-04 0.0004146475603472041 2.097129658661858059e-04 0.0002902671662170687 1.671408382188599656e-04 0.00021391771777705748 1.538980727463440737e-04 0.0001725335650783217 1.804148897825019347e-04 0.0001619576961300996 3.196786917797407482e-04 0.00019613348481478226 0.00036856555154569
3 1.000000000000000021e-03 0.001 6.046849734433535663e-04 0.0007648265274364283 4.109690875237402238e-04 0.0006066999211698721 2.860250085842350751e-04 0.00041390447843586643 2.090360511584246736e-04 0.00028954214777674505 1.664434237997556567e-04 0.00021321488386807227 1.530650313352837862e-04 0.000171794621873672 1.791618737991747007e-04 0.00016105212098646378 3.170092948646618079e-04 0.00019472570335261124 0.00036543839103292923
4 1.000000000000000021e-03 0.001 6.040574211994215528e-04 0.00076423475082742 4.102342878398261821e-04 0.0006060726714187721 2.853175420730359193e-04 0.00041316253063080743 2.083616379079277403e-04 0.0002888187769396436 1.657492189637676920e-04 0.00021251421079625184 1.522368203677859210e-04 0.0001710586847350929 1.779180061767344980e-04 0.00016015140443848455 3.143632101370558260e-04 0.0001933277019274264 0.0003623371672096105
5 1.000000000000000021e-03 0.001 6.034068048547004811e-04 0.0007636432110143774 4.094522032835132145e-04 0.0006054458552058583 2.845379038962591819e-04 0.0004124217148997164 2.075849237814657072e-04 0.0002880970500399001 1.649065028354379026e-04 0.00021181569222935437 1.511673145690444625e-04 0.00017032574197864756 1.761800891032866087e-04 0.00015925552136261768 3.101696013411107001e-04 0.00019193941431515274 0.0003592616661738057
6 1.000000000000000021e-03 0.001 6.027571485450614400e-04 0.00076303338083269 4.086719523190792173e-04 0.0006047950045143256 2.837607352174946669e-04 0.0004116319711720434 2.068114158243908936e-04 0.0002873006965446473 1.640683639230874002e-04 0.00021101094555209704 1.501056331894667201e-04 0.00016943701776024394 1.744595725998800725e-04 0.00015810165194844262 3.060328853710948794e-04 0.00019000410483730154 0.00035435344277520014
7 1.000000000000000021e-03 0.001 6.021084488423111532e-04 0.0007624238065102939 4.078935283235860985e-04 0.0006041446264165162 2.829860258399657913e-04 0.00041084352013847123 2.060410983394430761e-04 0.0002865063493191246 1.632347745793864737e-04 0.0002102090638489634 1.490517152618393740e-04 0.00016855270795343295 1.727562758069566841e-04 0.00015695583271993784 3.019522704750103072e-04 0.000188087762219128 0.00034951092824224374
8 1.000000000000000021e-03 0.001 6.014584946769776846e-04 0.0007618144867783217 4.071145901524401327e-04 0.0006034947195801519 2.822117789926256531e-04 0.00041005635912737644 2.052723360542508288e-04 0.00028571400313117073 1.624043320606193702e-04 0.000209410037075066 1.480041851535097400e-04 0.00016767279125308264 1.710684425093964716e-04 0.000155818009114819 2.979241342510260699e-04 0.0001861902048930817 0.00034473325633896016
9 1.000000000000000021e-03 0.001 6.008072907871274187e-04 0.0007612032230964268 4.063351463691671850e-04 0.0006028430274261829 2.814380028310788616e-04 0.0004092680923152776 2.045051334722086352e-04 0.00028492160640338084 1.615770319309204608e-04 0.00020861217469969167 1.469630126571907884e-04 0.00016679580316719344 1.693959447695294284e-04 0.00015468672086849377 2.939478272988644745e-04 0.00018430951195784153 0.0003400162401556392
10 1.000000000000000021e-03 0.001 6.001497788207915121e-04 0.0007605900180176352 4.055445944921290597e-04 0.0006021895546863309 2.806482406689155018e-04 0.000408478730269415 2.037157793952982566e-04 0.00028412917095061395 1.607178158735042268e-04 0.00020781548628341263 1.458699426620449350e-04 0.00016592174578786424 1.676159912510077627e-04 0.0001535619455802766 2.896237141368235984e-04 0.00018244555944842464 0.000335359176825339
11 1.000000000000000021e-03 0.001 5.994910374944025042e-04 0.0007599713504055552 4.047535948218318100e-04 0.0006015295991965402 2.798590565363265966e-04 0.0004076783487865176 2.029281739019909579e-04 0.0002833211587561824 1.598620980598530251e-04 0.00020699731581240013 1.447840125437445142e-04 0.00016501652229006483 1.658536074234625343e-04 0.00015238542164450143 2.853613427461420497e-04 0.000180469716663273 0.00033030742335106797
12 1.000000000000000021e-03 0.001 5.988260139740232213e-04 0.0007593507507343548 4.039566207302157830e-04 0.0006008678808679657 2.790656268334378021e-04 0.00040687692763931326 2.021383019157014865e-04 0.0002825132124386522 1.590064003284783227e-04 0.00020618050489600874 1.437018088215471850e-04 0.00016411458466993175 1.641044980680633682e-04 0.0001512162128542595 2.811520890672289147e-04 0.00017851301079839705 0.00032532712476693115
13 1.000000000000000021e-03 0.001 5.981547295973556680e-04 0.0007587233815624382 4.031537149116132062e-04 0.0006001993719156019 2.782680029999613086e-04 0.00040606894689472706 2.013462168991827844e-04 0.0002817004901671922 1.581507747250400562e-04 0.0002053609939218913 1.426233730149128554e-04 0.0001632123763493078 1.623686402996199669e-04 0.00015005076311129325 2.769954674673250896e-04 0.00017657081573262424 0.0003204083683965919
14 1.000000000000000021e-03 0.001 5.974772058480589884e-04 0.0007580892517126006 4.023449202032754039e-04 0.0005995240885208491 2.774662364916018848e-04 0.0004052544459439752 2.005519721420980883e-04 0.0002808830430533993 1.572952728586730247e-04 0.00020453883912382008 1.415487458023807841e-04 0.0001623099555953223 1.606460099014084351e-04 0.0001488891244397257 2.728909933446289080e-04 0.00017464312199372379 0.0003155506430768726
15 1.000000000000000021e-03 0.001 5.967924602151245417e-04 0.000757448370179369 4.015280354275974962e-04 0.0005988420470784952 2.766567170422079059e-04 0.00040443346443882024 1.997501120648868605e-04 0.0002800609223493252 1.564314572956195643e-04 0.00020371409666633197 1.404632320601022135e-04 0.00016140738029416416 1.589039550526354799e-04 0.00014773134796391561 2.687258582080010155e-04 0.00017272991838834854 0.0003107534371554913
16 1.000000000000000021e-03 0.001 5.961015210291329552e-04 0.0007567998780637095 4.007053572943599577e-04 0.00059815208713495 2.758431797434220318e-04 0.0004036034596839685 1.989462429758611403e-04 0.0002792300099339312 1.555679612182393453e-04 0.0002028805779162198 1.393818318435550562e-04 0.0001604950646725177 1.571757793000612348e-04 0.00014656055358564036 2.646152969711955188e-04 0.0001707926621492761 0.00030587527063737443
17 1.000000000000000021e-03 0.001 5.954044103428367566e-04 0.0007561446539823046 3.998769294251378363e-04 0.0005974554049330684 2.750256766566040972e-04 0.00040276706435836743 1.981404183299118591e-04 0.0002783945504517164 1.547048355449558708e-04 0.00020204463288750894 1.383045830163869136e-04 0.00015958281494627715 1.554614480121203164e-04 0.00014539398266818048 2.605587686095252363e-04 0.00016887071348766508 0.00030106092293455183
18 1.000000000000000021e-03 0.001 5.947013777400173224e-04 0.0007554827075416216 3.990430339362700481e-04 0.0005967520176577599 2.742044609070656662e-04 0.00040192431930056663 1.973328535702731791e-04 0.00027755459621831854 1.538422664307762401e-04 0.00020120631834502002 1.372316495983985922e-04 0.0001586706886366497 1.537610729441031576e-04 0.00014423168344504801 2.565559887984316962e-04 0.00016696404870095068 0.0002963098069760517
19 1.000000000000000021e-03 0.001 5.939924446448691022e-04 0.0007548142866478835 3.982037130272156897e-04 0.0005960421864035 2.733795825341983144e-04 0.00040107552190864405 1.965235995659166514e-04 0.000276710416864016 1.529803013963573505e-04 0.00020036586735025836 1.361630645638145173e-04 0.00015775889202640647 1.520746117923915490e-04 0.00014307384532883863 2.526064078268458078e-04 0.00016507281278915244 0.00029162164835553234
20 1.000000000000000021e-03 0.001 5.932708072008613994e-04 0.0007541394007727726 3.973448313523968048e-04 0.0005953259280357876 2.725292879585060313e-04 0.00040022071194032425 1.956816407574392804e-04 0.0002758620629396957 1.520737532268283138e-04 0.00019952333420039184 1.350253536692922732e-04 0.0001568474791446172 1.502520417395671493e-04 0.00014192051114461952 2.482429369311983419e-04 0.000163196972716382 0.0002869958456117749
21 1.000000000000000021e-03 0.001 5.925433291275937313e-04 0.000753453261276124 3.964806700993557770e-04 0.0005945968692177485 2.716755655440644093e-04 0.0003993465628625302 1.948383564731119815e-04 0.0002749888554209862 1.511684275731327428e-04 0.00019864889698783253 1.338932464840604031e-04 0.00015589225679197793 1.484467502756363724e-04 0.00014069786108208423 2.439468427807235304e-04 0.00016117883466097707 0.0002818995386546663
22 1.000000000000000021e-03 0.001 5.918101288584805405e-04 0.0007527606830746849 3.956113769664689763e-04 0.0005938614307668164 2.708185566039283476e-04 0.00039846653446453577 1.939938721213093850e-04 0.00027411169702333635 1.502644330979066827e-04 0.00019777273283424246 1.327668256867655240e-04 0.00015493803621995225 1.466587172007617287e-04 0.00013948100714945055 2.397173806066686273e-04 0.00015917971666279146 0.00027688213338452353
23 1.000000000000000021e-03 0.001 5.910712282476807177e-04 0.000752061800251107 3.947369945531709078e-04 0.000593119758904669 2.699583111402765676e-04 0.0003975808078042764 1.931482375169864133e-04 0.0002732307613051971 1.493618135415682949e-04 0.00019689499757748 1.316461114156967569e-04 0.00015398495670235495 1.448878476419733323e-04 0.00013827006619590224 2.355536787532183434e-04 0.00015719963654088831 0.0002719428500764955
24 1.000000000000000021e-03 0.001 5.903266492974269808e-04 0.0007513566228984858 3.938575655934699066e-04 0.0005923718712186205 2.690948791496987824e-04 0.00039668942343994645 1.923015022699072797e-04 0.00027234609917798486 1.484606121781560119e-04 0.0001960157448213401 1.305311230155930472e-04 0.0001530330687596212 1.431340460611192763e-04 0.0001370650679700252 2.314548735305102924e-04 0.0001552385042294358 0.000267080708365827
25 1.000000000000000021e-03 0.001 5.895916361077759233e-04 0.0007506451612836396 3.930015889157450278e-04 0.000591617785508762 2.682679585446747167e-04 0.0003957924221725467 1.915046725018171748e-04 0.000271457761656054 1.476265343831741983e-04 0.00019513502804513515 1.295122987364192039e-04 0.00015208242246717618 1.415403000102364922e-04 0.00013586604131538964 2.277048762028301403e-04 0.00015329622856198138 0.00026229473523033993
26 1.000000000000000021e-03 0.001 5.888509505821538188e-04 0.0007499410764512782 3.921405251235485093e-04 0.0005908750616328752 2.674377005486313469e-04 0.0003949229270536377 1.907064029438769275e-04 0.00027061232560569935 1.467931904457939435e-04 0.0001943133661054677 1.284977589807231727e-04 0.00015121214860141992 1.399600943498011466e-04 0.00013478433495717895 2.240084844157824847e-04 0.0001515553239579192 0.0002579720674546429
27 1.000000000000000021e-03 0.001 5.881046147353881284e-04 0.0007492307077939692 3.912744162777674595e-04 0.0005901261380362599 2.666041537474170709e-04 0.0003940477612542949 1.899067416692393098e-04 0.0002697630351391033 1.459606238177286390e-04 0.0001934898396676657 1.274875313353729649e-04 0.00015034229582385722 1.383933775516596422e-04 0.00013370682839182124 2.203650745808937968e-04 0.00014982878466439454 0.0002537103994437239
28 1.000000000000000021e-03 0.001 5.873535041835053691e-04 0.0007485140657428474 3.904041908037584924e-04 0.0005893710325813375 2.657681073335506784e-04 0.00039316696481225496 1.891063272435359547e-04 0.0002689099395032721 1.451293640595985746e-04 0.00019266450005914697 1.264820875947550167e-04 0.0001494729137699088 1.368405966876043531e-04 0.00013263355942168804 2.167748460671411873e-04 0.00014811657325897344 0.00024950907434075407
29 1.000000000000000021e-03 0.001 5.865976375297720377e-04 0.0007477920374988207 3.895298843642901903e-04 0.0005886106575770754 2.649296021207307814e-04 0.00039228150952041026 1.883051991594097421e-04 0.0002680538698732277 1.442994447916011967e-04 0.00019183802609277662 1.254814426573682665e-04 0.00014860457389983926 1.353016807452276011e-04 0.00013156505071301006 2.132371421364682767e-04 0.00014641921273032577 0.00024536841469387607
30 1.000000000000000021e-03 0.001 5.858370334908887412e-04 0.0007470646318417684 3.886515327161476187e-04 0.000587845028280153 2.640886789067201177e-04 0.00039139142972943226 1.875033967487228748e-04 0.00026719486815718823 1.434708992929061271e-04 0.00019101046063687028 1.244856108614830043e-04 0.0001477373157547231 1.337765582492128895e-04 0.00013050132642612272 2.097513117892475961e-04 0.00014473664329931894 0.00024128771968956965
31 1.000000000000000021e-03 0.001 5.850717109173866415e-04 0.000746331857690334 3.877691717638952012e-04 0.0005870741601150847 2.632453785571107932e-04 0.0003904967599732611 1.867009592919541521e-04 0.0002663329763359202 1.426437606415217971e-04 0.00019018184646592208 1.234946061839636009e-04 0.0001468711785583918 1.322651576281378186e-04 0.00012944241008601634 2.063167108712882474e-04 0.0001430688043627681 0.00023726629318772418
32 1.000000000000000021e-03 0.001 5.843017841779564719e-04 0.000745593724114763 3.868829399849727933e-04 0.0005862980686936137 2.623998297381095117e-04 0.0003895975350198339 1.858979973489535589e-04 0.0002654682365419898 1.418181214209275826e-04 0.00018935222636504533 1.225084976697060233e-04 0.00014600620135329296 1.307674705482058720e-04 0.00012838832478192589 2.029328092689827875e-04 0.0001414156348862137 0.00023330344508078714
33 1.000000000000000021e-03 0.001 5.835272719783185817e-04 0.0007448503634609417 3.859928727352694559e-04 0.0005855168970231048 2.615520723807220407e-04 0.00038869392700388675 1.850945488934469029e-04 0.0002646008091121948 1.409940129261724197e-04 0.00018852173980288115 1.215272967897141737e-04 0.00014514250481571783 1.292834223062770812e-04 0.00012733917050730646 1.995989685833853672e-04 0.00013977716467553823 0.00022939865638927297
34 1.000000000000000021e-03 0.001 5.827481931390192209e-04 0.0007441017848559784 3.850990054645316799e-04 0.0005847306606783223 2.607021463995574332e-04 0.0003877859701983709 1.842906517410432266e-04 0.00026373073520765555 1.401714661235729505e-04 0.0001876904281105713 1.205510144929276286e-04 0.0001442801258881357 1.278129378421479238e-04 0.00012629496716723198 1.963145562589016025e-04 0.0001381533278738466 0.00022555123779529113
35 1.000000000000000021e-03 0.001 5.819741190680906414e-04 0.000743347997566111 3.842186528659996786e-04 0.0005839393754013221 2.598733678747139103e-04 0.00038687369905472224 1.835150990942780922e-04 0.00026285805605533836 1.393856353878371876e-04 0.00018685833252122952 1.196241043053028848e-04 0.0001434191012016364 1.264157249384978508e-04 0.000125255734067765 1.931533527071859933e-04 0.0001365440579330561 0.0002217605049922782
36 1.000000000000000021e-03 0.001 5.811954906857532679e-04 0.0007425980122165197 3.833344911530978875e-04 0.0005831545190886928 2.590423495637437460e-04 0.0003859781684512971 1.827389251971546448e-04 0.00026201154253776947 1.386010231640464696e-04 0.00018606159531590292 1.187014313463915350e-04 0.00014260456502787665 1.250305871218520724e-04 0.00012428053620243385 1.900379005692562904e-04 0.0001350337902936029 0.00021815009586241928
37 1.000000000000000021e-03 0.001 5.804123268686601621e-04 0.0007418428222422646 3.824465553881609072e-04 0.0005823646190291856 2.582091305240798466e-04 0.00038507830193089523 1.819621668943112273e-04 0.00026116232813230903 1.378176602140172575e-04 0.0001852638537460305 1.177830097537161525e-04 0.00014179094397584395 1.236574657124121280e-04 0.00012330941740530514 1.869676369318762604e-04 0.00013353605951814913 0.000214590937375532
38 1.000000000000000021e-03 0.001 5.796261981805348861e-04 0.0007410824370750857 3.815564763513873891e-04 0.0005815696910727474 2.573750710547324729e-04 0.00038417413352571667 1.811859034357266680e-04 0.0002603104530145326 1.370364232713841633e-04 0.00018446514774054143 1.168696105278517803e-04 0.00014097827417406666 1.222971239749574140e-04 0.00012234240064855456 1.839432835829867073e-04 0.00013205082038162874 0.00021108244611026217
39 1.000000000000000021e-03 0.001 5.788371166298537929e-04 0.0007403184660014679 3.806642767897665215e-04 0.0005807713776603622 2.565401959245502722e-04 0.0003832673750805624 1.804101566728638260e-04 0.0002594573523562161 1.362573268495191094e-04 0.0001836666246937272 1.159612279572367423e-04 0.00014016749938812904 1.209494737333099285e-04 0.00012138033426810311 1.809642226433420603e-04 0.00013057895028626532 0.00020762556561303502
40 1.000000000000000021e-03 0.001 5.780450942923127944e-04 0.0007395509147560407 3.797699794962239458e-04 0.0005799696890514251 2.557045298790712744e-04 0.0003823580493090658 1.796349483543752492e-04 0.0002586030525652665 1.354803852765658562e-04 0.00018286830960336872 1.150578560981921263e-04 0.00013935863904919696 1.196144270262388971e-04 0.00012042322007081454 1.780298433107154344e-04 0.00012912037080446074 0.00020421964337946413
41 1.000000000000000021e-03 0.001 5.772501433097143196e-04 0.0007387797891584386 3.788736073065085246e-04 0.0005791646356057247 2.548680976361037374e-04 0.0003814461790231548 1.788603001211915217e-04 0.0002577475800751799 1.347056126906417029e-04 0.00018207022739706005 1.141594887707218423e-04 0.00013855171240478834 1.182918961012392148e-04 0.00011947105956106815 1.751395417672447184e-04 0.0001276750034397535 0.00020086403326178727
42 1.000000000000000021e-03 0.001 5.764543993312114430e-04 0.0007380050951127038 3.779774418763772749e-04 0.000578356227782297 2.540328419678222955e-04 0.00038053178712941366 1.780877776040980329e-04 0.00025689096133950617 1.339342982068885400e-04 0.0001812724029256328 1.132672798320007770e-04 0.00013774673851177748 1.169830787460522149e-04 0.00011852385393388548 1.722947974180976999e-04 0.0001262427696188339 0.00019755809538624924
43 1.000000000000000021e-03 0.001 5.756578658699793754e-04 0.0007372289278765602 3.770814893242558957e-04 0.0005775466274590334 2.531987675065141240e-04 0.00037961719344922816 1.773173809352787060e-04 0.00025603518246549605 1.331664323570320042e-04 0.00018047644930614432 1.123811939733057949e-04 0.00013694506185961904 1.156878429947367658e-04 0.00011758283148187963 1.694949148917899182e-04 0.00012482499369662246 0.0001943036135491255
44 1.000000000000000021e-03 0.001 5.748605464740858808e-04 0.0007364512893389424 3.761857558021953151e-04 0.0005767358384619004 2.523658789003789082e-04 0.0003787024060562486 1.765491102506614579e-04 0.0002551802511391958 1.324020056947932127e-04 0.00017968237057615404 1.115011960644554309e-04 0.0001361466779099092 1.144060580710201219e-04 0.00011664796319397039 1.667392091004694466e-04 0.00012342154884218158 0.00019109983808810176
45 1.000000000000000021e-03 0.001 5.740605208264367093e-04 0.0007356721814267267 3.752860221900411030e-04 0.0005759238646613067 2.515274179172670150e-04 0.0003777874330677233 1.757730484194969538e-04 0.0002543261750635963 1.316262968484167275e-04 0.00017889017076266666 1.106031805667756002e-04 0.00013535158210437542 1.130890327345630944e-04 0.00011571922013388507 1.638824360782746060e-04 0.00012203230915507028 0.00018794602945024216
46 1.000000000000000021e-03 0.001 5.732597217139582440e-04 0.0007348903474707337 3.743865400085843336e-04 0.0005751089853685418 2.506901966657434509e-04 0.00037686841880625214 1.749991992264989145e-04 0.0002534666634479025 1.308541788026545852e-04 0.00017809042928748983 1.097115653341001649e-04 0.00013454542482553396 1.117862964715498958e-04 0.00011477223754870921 1.610733229285059244e-04 0.00012060527355137842 0.0001846722184263047
47 1.000000000000000021e-03 0.001 5.724581527307928295e-04 0.0007341070502230424 3.734873153380866809e-04 0.0005742929332546843 2.498542195054800734e-04 0.0003759492523595486 1.742275621656188764e-04 0.00025260806222015907 1.300856406740597557e-04 0.0001772926545344648 1.088263113284397853e-04 0.0001337427099649026 1.104977038827086933e-04 0.00011383170595735486 1.583110954216201049e-04 0.00011919336498115804 0.00018145260378874068
48 1.000000000000000021e-03 0.001 5.716575664778975139e-04 0.0007333222916846016 3.725901351223118402e-04 0.0005734757122629472 2.490209518882956956e-04 0.0003750299418068227 1.734592774731394025e-04 0.0002517503788238516 1.293215843757922266e-04 0.00017649684991694604 1.079481792373105579e-04 0.00013294343155185963 1.092239503861538297e-04 0.00011289759243683735 1.555962288273640454e-04 0.00011779644164652425 0.00017828633792123003
49 1.000000000000000021e-03 0.001 5.708579584178212615e-04 0.0007325378931581444 3.716949912014026899e-04 0.0005726591695542582 2.481903820156593069e-04 0.00037411237735305734 1.726943281050015661e-04 0.00025089517102575937 1.285619816677677630e-04 0.00017570423657326553 1.070771097820554131e-04 0.00013214856737581396 1.079648627815312081e-04 0.00011197073980433406 1.529279069228532445e-04 0.0001164153090011861 0.00017517406255147756
50 1.000000000000000021e-03 0.001 5.700593240595020362e-04 0.0007317538520017976 3.708018755033176054e-04 0.0005718433021851622 2.473624982033243466e-04 0.00037319655361857124 1.719326971657234189e-04 0.00025004243032543557 1.278068045492097274e-04 0.00017491480109484205 1.062130442456755448e-04 0.00013135809328305347 1.067202699871894330e-04 0.0001110510931582075 1.503053277730467872e-04 0.00011504979334922632 0.00017211487548789828
51 1.000000000000000021e-03 0.001 5.692616589508734098e-04 0.0007309701656016873 3.699107800243283187e-04 0.0005710281072505973 2.465372888514933574e-04 0.0003722824652942578 1.711743678703278799e-04 0.0002491921483105776 1.270560252111956913e-04 0.0001741285301842189 1.053559244063845252e-04 0.000130571985300518 1.054900029091859618e-04 0.00011013859805243972 1.477277031714797602e-04 0.00011369972292133188 0.00016910788945367707
52 1.000000000000000021e-03 0.001 5.684668249800580104e-04 0.0007301868313673829 3.690236622787805977e-04 0.0005702135818768351 2.457163959794073484e-04 0.00037137010712276296 1.704206404911772779e-04 0.0002483443166280691 1.263106878677109810e-04 0.00017334541061775574 1.045066466916437628e-04 0.0001297902195887095 1.042749156168111009e-04 0.00010923320042963165 1.451958181660296986e-04 0.00011236492773944517 0.00016615223146969552
53 1.000000000000000021e-03 0.001 5.676748100054150635e-04 0.0007294056858799279 3.681404996529084395e-04 0.0005694016103111181 2.448997907163580324e-04 0.00037046146816096116 1.696714800685054925e-04 0.0002475006124214696 1.255707452244580493e-04 0.00017256678052747222 1.036651297187654374e-04 0.0001290138836109195 1.030748062779383314e-04 0.0001083358528422491 1.427088285865420875e-04 0.00011104635018836138 0.0001632488500459303
54 1.000000000000000021e-03 0.001 5.668856019606317766e-04 0.0007286267228265342 3.672612697075048303e-04 0.0005685921836368309 2.440874444423345342e-04 0.00036955653001307385 1.689268519744038289e-04 0.0002466610110284357 1.248361504800705925e-04 0.00017179260894632618 1.028312930702206035e-04 0.00012824293390221287 1.018894759794533339e-04 0.00010744647704539295 1.402659065748177792e-04 0.00010974378427192081 0.00016039680402653037
55 1.000000000000000021e-03 0.001 5.660978860040193896e-04 0.0007278499359259242 3.663833351346186431e-04 0.0005677852929874075 2.432754355983019401e-04 0.0003686552744110329 1.681813812071888568e-04 0.000245825487979439 1.240994738987429935e-04 0.00017102286517266867 1.019939514788640786e-04 0.00012747732740860064 1.006986246362622330e-04 0.00010656499564424898 1.378144424939918523e-04 0.00010845702677323144 0.00015759516965436614
56 1.000000000000000021e-03 0.001 5.653129566917403656e-04 0.0007270741396329974 3.655093013788168949e-04 0.0005669793834682747 2.424676550876819162e-04 0.00036775459243596013 1.674404214250226010e-04 0.0002449894231786493 1.233681396595080271e-04 0.00017025120181982169 1.011643116013039457e-04 0.00012670823171859124 9.952262825359122704e-05 0.00010567792500018758 1.354072260989254840e-04 0.00010716091111285436 0.00015477474449137119
57 1.000000000000000021e-03 0.001 5.645308021917731225e-04 0.000726300509089127 3.646391464999218838e-04 0.0005661759961906673 2.416640749146854532e-04 0.0003668575707603942 1.667039386446287719e-04 0.00024415741777526555 1.226421015627000995e-04 0.00016948395998088835 1.003422934745905857e-04 0.00012594449635600327 9.836128786277046102e-05 0.000104798812682607 1.330434286087782230e-04 0.00010588078664841973 0.00015200532201362785
58 1.000000000000000021e-03 0.001 5.637533512715803535e-04 0.0007255290381246482 3.637748048842355184e-04 0.0005653751224576382 2.408662573039999728e-04 0.0003659641914980988 1.659731272165147797e-04 0.00024332944777626794 1.219222820499958832e-04 0.00016872110941070693 9.952864742131557339e-05 0.00012518607857232714 9.721524794079934454e-05 0.00010392758109688598 1.307234068834026641e-04 0.00010461644792633948 0.00014928596543342006
59 1.000000000000000021e-03 0.001 5.629805832911210584e-04 0.0007247617567123682 3.629162394326295588e-04 0.0005645788092050789 2.400741573155354143e-04 0.0003650765144822908 1.652479360999081315e-04 0.0002425071844547339 1.212086174287677493e-04 0.00016796393694001768 9.872327382660381703e-05 0.00012443398389681975 9.608428430098295324e-05 0.0001030650652169494 1.284463004684426848e-04 0.00010336864256044427 0.00014661715384500229
60 1.000000000000000021e-03 0.001 5.622124777547171659e-04 0.0007239986535454607 3.620634133660168507e-04 0.0005637870401634551 2.392877304473862261e-04 0.0003641945072810511 1.645283148026117340e-04 0.0002416905868396016 1.205010447638324016e-04 0.00016721239470100498 9.792607442008048754e-05 0.00012368815096486452 9.496817636981473815e-05 0.00010221116577265065 1.262112668660531425e-04 0.00010213713571582715 0.00014399790845116419
61 1.000000000000000021e-03 0.001 5.614490142952067260e-04 0.0007232397173862652 3.612162901840461500e-04 0.0005629997991705343 2.385069325732311319e-04 0.0003633181377200508 1.638142133018547766e-04 0.00024087961432750444 1.197995017798251111e-04 0.00016646643530137355 9.713695214164584071e-05 0.0001229485190910589 9.386670693673759554e-05 0.00010136578475280116 1.240174806289624668e-04 0.00010092169616032506 0.00014142727026178776
62 1.000000000000000021e-03 0.001 5.606917876274927293e-04 0.00072248493705675 3.603765175920537237e-04 0.0005622170701566371 2.377331235014221514e-04 0.0003624473738436701 1.631066878653574946e-04 0.00024007422662323307 1.191048135885559178e-04 0.0001657260117481481 9.635658300529022745e-05 0.0001222150281737581 9.278045936752733660e-05 0.00010052882527084345 1.218652818497198865e-04 9.972209600365954e-05 0.000138904299062937
63 1.000000000000000021e-03 0.001 5.599407711882442139e-04 0.0007217358950348228 3.595440474626148916e-04 0.000561440466555814 2.369662455139816704e-04 0.00036158388844431124 1.624056743525901679e-04 0.00023927581064585389 1.184169030927857740e-04 0.0001649922088518066 9.558485302446070387e-05 0.00012148853502428482 9.170919453133945438e-05 9.97010025298723e-05 1.197538170918552259e-04 9.853897375975792e-05 0.00013642939611266722
64 1.000000000000000021e-03 0.001 5.591959386362445371e-04 0.0007209925771752469 3.587188321446053963e-04 0.0005606699674539418 2.362062415256148103e-04 0.0003607276390906435 1.617111093879153761e-04 0.00023848431321443392 1.177356942042864595e-04 0.00016426496576549843 9.482164989506947420e-05 0.00012076896452456461 9.065267746151001182e-05 9.888220185750974e-05 1.176822517560764241e-04 9.737207727303015e-05 0.00013400158668478175
65 1.000000000000000021e-03 0.001 5.584679347085343051e-04 0.0007202549694492843 3.579204847030152616e-04 0.0005599055521123883 2.354801209260217886e-04 0.0003598785837495114 1.610571916563278928e-04 0.00023769968169456287 1.171042314833950021e-04 0.0001635442223215586 9.412413419793498636e-05 0.00012005624248053424 8.969710985766721223e-05 9.807231018575002e-05 1.158171674873524301e-04 9.622115859912247e-05 0.0001316199170239902
66 1.000000000000000021e-03 0.001 5.577460350040716044e-04 0.0007195323462520794 3.571292104088583889e-04 0.0005591590509921624 2.347605938090600918e-04 0.0003590585920958888 1.604093154405005178e-04 0.00023695215697134095 1.164788453357124725e-04 0.00016286848728581805 9.343405219685640224e-05 0.00011939925459233543 8.875393403591714169e-05 9.733714368639992e-05 1.139848385910069905e-04 9.518785816120323e-05 0.00012948993319015237
67 1.000000000000000021e-03 0.001 5.570302142000897652e-04 0.0007188153904868624 3.563449642017089015e-04 0.0005584185656809617 2.340476072540025119e-04 0.00035824561959240325 1.597674235279283352e-04 0.0002362112130369942 1.158594695166401697e-04 0.00016219882234612553 9.275131062844492946e-05 0.00011874843483873407 8.782296490203555085e-05 9.660966052802588e-05 1.121846347113116888e-04 9.416779973181015e-05 0.00012739732395025585
68 1.000000000000000021e-03 0.001 5.563205323021954991e-04 0.0007181040886926203 3.555677864531773679e-04 0.0005576840763431772 2.333411773810724506e-04 0.00035743962664792336 1.591315117132938270e-04 0.00023547680133784063 1.152460793074575203e-04 0.00016153517356182933 9.207585166649024939e-05 0.00011810371926813217 8.690405384945894284e-05 9.588976814961258e-05 1.104159825692847303e-04 9.316079161517574e-05 0.00012534138272701054
69 1.000000000000000021e-03 0.001 5.556169640414684949e-04 0.0007173985458519898 3.547976323593042547e-04 0.0005569556823713467 2.326412517183593022e-04 0.0003566406932084415 1.585015234268918286e-04 0.00023474897015812488 1.146386094395640093e-04 0.0001608775616408074 9.140758389001004606e-05 0.00011746510277705029 8.599702078916069998e-05 9.517742467544867e-05 1.086782756746748250e-04 9.216669491688869e-05 0.00012332148630987257
70 1.000000000000000021e-03 0.001 5.549194843577821444e-04 0.0007166987484521553 3.540344575531629255e-04 0.0005562333638566226 2.319477783590319386e-04 0.00035584877964252954 1.578774027587701891e-04 0.00023402767102794237 1.140369954748351631e-04 0.00016022593289484238 9.074641718074756330e-05 0.00011683252196707568 8.510168863112195785e-05 9.447253888812898e-05 1.069709201912467553e-04 9.118532235085734e-05 0.00012133695300052025
71 1.000000000000000021e-03 0.001 5.542280683854123842e-04 0.0007160046830928351 3.532782180675540329e-04 0.0005555171010581067 2.312607059053527040e-04 0.00035506384668924896 1.572590943887706505e-04 0.00023331285597027454 1.134411737206307899e-04 0.00015958023422419515 9.009226260907148270e-05 0.00011620591419889337 8.421788308143062266e-05 9.377502080118898e-05 1.052933342707317640e-04 9.021648961473911e-05 0.0001193871149139895
72 1.000000000000000021e-03 0.001 5.535435592528614506e-04 0.0007153163364777631 3.525297669260542646e-04 0.0005548068743897313 2.305807244353639423e-04 0.0003542858554234702 1.566471216497641210e-04 0.00023260447744820426 1.128515385449576329e-04 0.00015894041305074621 8.944542244330133641e-05 0.00011558521750971036 8.334582247054855841e-05 9.308478154551746e-05 1.036454797753234207e-04 8.926001517936315e-05 0.00011747131722415646
73 1.000000000000000021e-03 0.001 5.528659293179593237e-04 0.0007146345569433116 3.517890550472092793e-04 0.0005541035424399441 2.299077767025847687e-04 0.0003535156771553805 1.560414233076215052e-04 0.00023190324345165713 1.122680202866636689e-04 0.00015830701004295562 8.880580140054516926e-05 0.00011497084410199294 8.248532556564376009e-05 9.240214376206843e-05 1.020267728319692934e-04 8.831614266750221e-05 0.00011558953011398195
74 1.000000000000000021e-03 0.001 5.521951511907441769e-04 0.0007139593299513231 3.510560338657343622e-04 0.0005534070835269872 2.292418061160320900e-04 0.0003527532683936443 1.554419388795865483e-04 0.00023120910091256188 1.116905502099227850e-04 0.0001576799668132194 8.817330560855271690e-05 0.0001143627259393922 8.163621425685595255e-05 9.172701183766888e-05 1.004366420798761639e-04 8.738468264977303e-05 0.00011374109491336212
75 1.000000000000000021e-03 0.001 5.515357570680511773e-04 0.0007132906411062882 3.503384240935171457e-04 0.000552717476178626 2.285926195257032088e-04 0.00035199858609393853 1.548599664871607589e-04 0.00023052199734406963 1.111316359132737570e-04 0.00015705922565321226 8.756139732097920178e-05 0.00011376079584113645 8.081143045355856274e-05 9.105929150577112e-05 9.887558842870256459e-05 8.646544883197101e-05 0.0001119253667056674
76 1.000000000000000021e-03 0.001 5.508831499695134287e-04 0.0007126330184449588 3.496283778737561509e-04 0.0005520403753247726 2.279502431225978031e-04 0.0003512614302897459 1.542840041018178729e-04 0.0002298546155988536 1.105785086338880569e-04 0.00015645973111213718 8.695624145470242240e-05 0.0001131821199461313 7.999741899881025698e-05 9.041832213305081e-05 9.734197099681332458e-05 8.557937250804453e-05 0.00011015252685143603
77 1.000000000000000021e-03 0.001 5.502373034395177318e-04 0.000711981898998139 3.489258487042028742e-04 0.0005513700720769836 2.273146231686837553e-04 0.0003505318788510462 1.537139948092133693e-04 0.00022919410061472063 1.100311043442569531e-04 0.0001558663157908185 8.635775141128424154e-05 0.00011260933085632868 7.919401605398894981e-05 8.978431049296584e-05 9.583525507692383649e-05 8.47047300887107e-05 0.00010841080451458245
78 1.000000000000000021e-03 0.001 5.495982753581815606e-04 0.0007113372689341813 3.482308738101717264e-04 0.0005507065458152156 2.266857730549029851e-04 0.0003498098907291114 1.531499327576744506e-04 0.00022854040278969112 1.094893985055618503e-04 0.00015527892573799634 8.576587362490598130e-05 0.00011204236655473188 7.840109070036870779e-05 8.91571706762786e-05 9.435495486246966317e-05 8.384135267939557e-05 0.00010669960309782175
79 1.000000000000000021e-03 0.001 5.489660394111083985e-04 0.0007106992322019796 3.475434070850742167e-04 0.0005500498941226498 2.260636396270461598e-04 0.0003490955423571875 1.525917617808240120e-04 0.00022789356692450827 1.089533281238570496e-04 0.00015469757908825738 8.518052329278025009e-05 0.00011148122111140715 7.761848365092111231e-05 8.85368641132709e-05 9.290055631012179708e-05 8.298911908997276e-05 0.00010501839736063321
80 1.000000000000000021e-03 0.001 5.483405695169031721e-04 0.0007100677749962943 3.468634028939242666e-04 0.0005494000964108962 2.254481703234268038e-04 0.0003483887928208825 1.520394263837190755e-04 0.00022725354367970012 1.084228310216190315e-04 0.00015412222229517684 8.460161684084565312e-05 0.0001109258331719869 7.684603831721497692e-05 8.792330625417495e-05 9.147155629123523643e-05 8.214786445649906e-05 0.00010336661223747767
81 1.000000000000000021e-03 0.001 5.477218398160970184e-04 0.0007094428836454011 3.461908160447295835e-04 0.0005487571322870243 2.248393131323322177e-04 0.0003476896016176379 1.514928716901747189e-04 0.00022662028424420426 1.078978457743454979e-04 0.00015355280242059424 8.402907183940372035e-05 0.00011037614213504096 7.608360066029366266e-05 8.731641371338838e-05 9.006746210081428210e-05 8.131742659415625e-05 0.00010174368455214035
82 1.000000000000000021e-03 0.001 5.471100509830739483e-04 0.000708824544604701 3.455258336641454844e-04 0.0005481209815436059 2.242372067336963117e-04 0.0003469979286303459 1.509521904405796073e-04 0.00022599374029548395 1.073784265457052923e-04 0.00015298926708448145 8.346290305268591516e-05 0.00010983208809074389 7.533111218717854750e-05 8.671610418600222e-05 8.868791149478115541e-05 8.049764584384383e-05 0.0001001490624678555
83 1.000000000000000021e-03 0.001 5.465051768578450733e-04 0.0007082129757140411 3.448684100639811626e-04 0.0005474918591435615 2.236417986238402995e-04 0.0003463139755716002 1.504173273640432558e-04 0.00022537406278014643 1.068645117117092864e-04 0.00015243171907300512 8.290302835464549746e-05 0.00010929373376222763 7.458842111919879593e-05 8.612240008214866e-05 8.733242665255502488e-05 7.968846833775761e-05 9.858234685897841e-05
84 1.000000000000000021e-03 0.001 5.459071915129861232e-04 0.000707608163356494 3.442185000233075119e-04 0.0005468697446924577 2.230530368831633737e-04 0.00034563770186245746 1.498882278486614187e-04 0.00022476120284855867 1.063560404456327061e-04 0.000151880105523236 8.234936680962616474e-05 0.00010876101889898551 7.385537825478157199e-05 8.55352191851817e-05 8.600053991717240256e-05 7.888973637819775e-05 9.704300162684373e-05
85 1.000000000000000021e-03 0.001 5.453277270883248422e-04 0.0007070100940503908 3.435968835063559607e-04 0.0005462546179930401 2.224987019123045480e-04 0.0003449690673354809 1.493989071766017103e-04 0.0002241551121757662 1.058939742146122178e-04 0.0001513343741731098 8.185283432112488435e-05 0.00010823388399029377 7.320083692872619591e-05 8.495448041312896e-05 8.480120525436834187e-05 7.810129484091103e-05 9.553050179700698e-05
86 1.000000000000000021e-03 0.001 5.447550756300442850e-04 0.0007064294568015821 3.429826158632724655e-04 0.0005456599791780414 2.219507707465509202e-04 0.0003443323098548347 1.489150144895505707e-04 0.00022358838010950836 1.054368625228528346e-04 0.00015083471987353974 8.136171358212484941e-05 0.00010776122599922914 7.255437084770181432e-05 8.444190686735427e-05 8.362138199130290570e-05 7.7408734986085e-05 9.418640444056476e-05
87 1.000000000000000021e-03 0.001 5.441892122953419404e-04 0.0007058555225588962 3.423756544954533452e-04 0.0005450722639773927 2.214091954721005766e-04 0.0003437030311737585 1.484365007267826825e-04 0.0002230281662249932 1.049846526338566485e-04 0.00015034058581471813 8.087593753205775274e-05 0.00010729360256509277 7.191586230794716592e-05 8.39348527119689e-05 8.246071125248328093e-05 7.67245852554126e-05 9.28639870067709e-05
88 1.000000000000000021e-03 0.001 5.436257869834306257e-04 0.0007052882785030611 3.417717090501741430e-04 0.0005444914532267761 2.208705585733095858e-04 0.0003430811937591523 1.479607869104501987e-04 0.00022247442636251605 1.045353737048878776e-04 0.00014985192565331347 8.039389156994272538e-05 0.00010683096298015644 7.128377081045688692e-05 8.343325230960875e-05 8.131715986317171246e-05 7.604872690242875e-05 9.156285904414627e-05
89 1.000000000000000021e-03 0.001 5.430647907230928004e-04 0.0007047231683832071 3.411707635569704330e-04 0.0005439129831785586 2.203348411819341208e-04 0.00034246228783126086 1.474878525008424264e-04 0.00022192355689618922 1.040890016129762040e-04 0.00014936600614401393 7.991554062444546221e-05 0.00010637120139586071 7.065802258502740848e-05 8.293535717958106e-05 8.019045690600123673e-05 7.537945268589432e-05 9.028066182205625e-05
90 1.000000000000000021e-03 0.001 5.425062145452035425e-04 0.0007041601877072604 3.405728020832017003e-04 0.0005433368472132987 2.198020245085192449e-04 0.00034184629997988753 1.470176770797095381e-04 0.0002213755412469509 1.036455124224165388e-04 0.00014888280881520869 7.944084996986793814e-05 0.00010591429577334988 7.003854478529189314e-05 8.244113465160048e-05 7.908033605497744685e-05 7.471669094184598e-05 8.901710564172274e-05
91 1.000000000000000021e-03 0.001 5.419500494783734655e-04 0.0007035993319644686 3.399778087230425684e-04 0.0005427630386936696 2.192720898259863408e-04 0.0003412332167993905 1.465502403299397984e-04 0.00022083036287728357 1.032048823605461293e-04 0.0001484023152778868 7.896978519468913008e-05 0.00010546022421726945 6.942526543493823701e-05 8.195055234184008e-05 7.798653539704048551e-05 7.406037083397318e-05 8.777190547391773e-05
92 1.000000000000000021e-03 0.001 5.413941311127808435e-04 0.0007030405966226531 3.393835756573481376e-04 0.0005421915509602746 2.187432334857416756e-04 0.00034062302487816926 1.460841531649274296e-04 0.00022028800527546067 1.027660304092932323e-04 0.00014792450720603156 7.850144313387483587e-05 0.00010500896495215848 6.881729624423716459e-05 8.146357812174912e-05 7.690779566810491681e-05 7.341042229889045e-05 8.65447807653603e-05
93 1.000000000000000021e-03 0.001 5.408384570747234218e-04 0.000702481864866424 3.387900992487282684e-04 0.0005416202367428493 2.182154508640741402e-04 0.000340013528083159 1.456194096560940569e-04 0.00021974666745789773 1.023289477092565169e-04 0.00014744798951136416 7.803580657419308998e-05 0.00010455942245749231 6.821458972979072498e-05 8.097928325582809e-05 7.584390730667668775e-05 7.276590831707151e-05 8.53343290345859e-05
94 1.000000000000000021e-03 0.001 5.402830249660243826e-04 0.0007019231347536531 3.381973758275843189e-04 0.000541049093933996 2.176887373150658610e-04 0.00033940472324505365 1.451560038709627043e-04 0.0002192063454080809 1.018936254270842219e-04 0.00014697275707368812 7.757285840469518032e-05 0.00010411158905958576 6.761709884283491779e-05 8.049765241221972e-05 7.479466373034050742e-05 7.212678380437272e-05 8.414032725111873e-05
95 1.000000000000000021e-03 0.001 5.397131798668998448e-04 0.0007013644043173649 3.375789411508863902e-04 0.0005404781203952333 2.171273238640323091e-04 0.00033879660715245314 1.446496280566233409e-04 0.0002186670350763442 1.014059885387841374e-04 0.0001464988047567028 7.704415358894297196e-05 0.00010366545709431046 6.692941074150365747e-05 8.001867033124847e-05 7.359880640935691578e-05 7.149300404124133e-05 8.296255535497e-05
96 1.000000000000000021e-03 0.001 5.391436022217508317e-04 0.0007007923380838431 3.369613465901344558e-04 0.0005398904209305891 2.165671485747253328e-04 0.0003381585602637609 1.441448734692186333e-04 0.00021808716235465733 1.009205829600201576e-04 0.0001459743062317574 7.651897498112265308e-05 0.00010315717126101123 6.624864922679121694e-05 7.946027734643345e-05 7.242198835523922060e-05 7.0747191644443e-05 8.159291401029592e-05
97 1.223599761281599736e-03 0.001 2.870574988594920204e-03 0.0007002202839606736 5.410558860144323162e-03 0.0005393029161815334 9.740321680379944794e-03 0.0003375212965814363 1.718226620812626088e-02 0.0002175084901000057 3.032327552654904765e-02 0.0001454514108138073 5.460894525232919822e-02 0.00010265113449578299 1.025522470341594938e-01 7.890553328521924e-05 2.059999999999999887e-01 7.000884795811205e-05 8.02453392500888e-05
98 4.083745694274921144e-03 0.0010564983206625808 8.369042825128880300e-03 0.0020323156209598047 1.439530071705045523e-02 0.0024972245821602065 2.397223043565064812e-02 0.004735193374982383 3.897486419880552555e-02 0.008578320915529132 6.202545653148217042e-02 0.015253393937469889 9.626510461383173956e-02 0.027225142859919765 1.437785279168776742e-01 0.049861478431656114 2.000000000000000111e-01 0.09601482521493776 0.2
99 0.004249939542299966 0.007357791565894658 0.008737301696751656 0.01505607870396766 0.02510093603015811 0.040835074437955504 0.0649892582783015 0.10076225398432796 0.14991538310282454 0.206

View File

@@ -0,0 +1,224 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15,
"raman_efficiency": {
"cr": [
0.00000000e+00,
1.12351610e-05,
3.47838074e-05,
5.79356636e-05,
8.06921680e-05,
9.79845709e-05,
1.10454361e-04,
1.18735302e-04,
1.24736889e-04,
1.30110053e-04,
1.41001273e-04,
1.46383247e-04,
1.57011792e-04,
1.70765865e-04,
1.88408911e-04,
2.05914127e-04,
2.24074028e-04,
2.47508283e-04,
2.77729174e-04,
3.08044243e-04,
3.34764439e-04,
3.56481704e-04,
3.77127256e-04,
3.96269124e-04,
4.10955175e-04,
4.18718761e-04,
4.19511263e-04,
4.17025384e-04,
4.13565369e-04,
4.07726048e-04,
3.83671291e-04,
4.08564283e-04,
3.69571936e-04,
3.14442090e-04,
2.16074535e-04,
1.23097823e-04,
8.95457457e-05,
7.52470400e-05,
7.19806145e-05,
8.87961158e-05,
9.30812065e-05,
9.37058268e-05,
8.45719619e-05,
6.90585286e-05,
4.50407159e-05,
3.36521245e-05,
3.02292475e-05,
2.69376939e-05,
2.60020897e-05,
2.82958958e-05,
3.08667558e-05,
3.66024657e-05,
5.80610307e-05,
6.54797937e-05,
6.25022715e-05,
5.37806442e-05,
3.94996621e-05,
2.68120644e-05,
2.33038554e-05,
1.79140757e-05,
1.52472424e-05,
1.32707565e-05,
1.06541760e-05,
9.84649374e-06,
9.13999627e-06,
9.08971012e-06,
1.04227525e-05,
1.50419271e-05,
1.77838232e-05,
2.15810815e-05,
2.03744008e-05,
1.81939341e-05,
1.31862121e-05,
9.65352116e-06,
8.62698322e-06,
9.18688016e-06,
1.01737784e-05,
1.08017817e-05,
1.03903588e-05,
9.30040333e-06,
8.30809173e-06,
6.90650401e-06,
5.52238029e-06,
3.90648708e-06,
2.22908227e-06,
1.55796177e-06,
9.77218716e-07,
3.23477236e-07,
1.60602454e-07,
7.97306386e-08
],
"frequency_offset": [
0.0e12,
0.5e12,
1.0e12,
1.5e12,
2.0e12,
2.5e12,
3.0e12,
3.5e12,
4.0e12,
4.5e12,
5.0e12,
5.5e12,
6.0e12,
6.5e12,
7.0e12,
7.5e12,
8.0e12,
8.5e12,
9.0e12,
9.5e12,
10.0e12,
10.5e12,
11.0e12,
11.5e12,
12.0e12,
12.5e12,
12.75e12,
13.0e12,
13.25e12,
13.5e12,
14.0e12,
14.5e12,
14.75e12,
15.0e12,
15.5e12,
16.0e12,
16.5e12,
17.0e12,
17.5e12,
18.0e12,
18.25e12,
18.5e12,
18.75e12,
19.0e12,
19.5e12,
20.0e12,
20.5e12,
21.0e12,
21.5e12,
22.0e12,
22.5e12,
23.0e12,
23.5e12,
24.0e12,
24.5e12,
25.0e12,
25.5e12,
26.0e12,
26.5e12,
27.0e12,
27.5e12,
28.0e12,
28.5e12,
29.0e12,
29.5e12,
30.0e12,
30.5e12,
31.0e12,
31.5e12,
32.0e12,
32.5e12,
33.0e12,
33.5e12,
34.0e12,
34.5e12,
35.0e12,
35.5e12,
36.0e12,
36.5e12,
37.0e12,
37.5e12,
38.0e12,
38.5e12,
39.0e12,
39.5e12,
40.0e12,
40.5e12,
41.0e12,
41.5e12,
42.0e12
]
}
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

View File

@@ -0,0 +1,225 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15,
"raman_coefficient": {
"g0": [
0.00000000e+00,
1.12351610e-05,
3.47838074e-05,
5.79356636e-05,
8.06921680e-05,
9.79845709e-05,
1.10454361e-04,
1.18735302e-04,
1.24736889e-04,
1.30110053e-04,
1.41001273e-04,
1.46383247e-04,
1.57011792e-04,
1.70765865e-04,
1.88408911e-04,
2.05914127e-04,
2.24074028e-04,
2.47508283e-04,
2.77729174e-04,
3.08044243e-04,
3.34764439e-04,
3.56481704e-04,
3.77127256e-04,
3.96269124e-04,
4.10955175e-04,
4.18718761e-04,
4.19511263e-04,
4.17025384e-04,
4.13565369e-04,
4.07726048e-04,
3.83671291e-04,
4.08564283e-04,
3.69571936e-04,
3.14442090e-04,
2.16074535e-04,
1.23097823e-04,
8.95457457e-05,
7.52470400e-05,
7.19806145e-05,
8.87961158e-05,
9.30812065e-05,
9.37058268e-05,
8.45719619e-05,
6.90585286e-05,
4.50407159e-05,
3.36521245e-05,
3.02292475e-05,
2.69376939e-05,
2.60020897e-05,
2.82958958e-05,
3.08667558e-05,
3.66024657e-05,
5.80610307e-05,
6.54797937e-05,
6.25022715e-05,
5.37806442e-05,
3.94996621e-05,
2.68120644e-05,
2.33038554e-05,
1.79140757e-05,
1.52472424e-05,
1.32707565e-05,
1.06541760e-05,
9.84649374e-06,
9.13999627e-06,
9.08971012e-06,
1.04227525e-05,
1.50419271e-05,
1.77838232e-05,
2.15810815e-05,
2.03744008e-05,
1.81939341e-05,
1.31862121e-05,
9.65352116e-06,
8.62698322e-06,
9.18688016e-06,
1.01737784e-05,
1.08017817e-05,
1.03903588e-05,
9.30040333e-06,
8.30809173e-06,
6.90650401e-06,
5.52238029e-06,
3.90648708e-06,
2.22908227e-06,
1.55796177e-06,
9.77218716e-07,
3.23477236e-07,
1.60602454e-07,
7.97306386e-08
],
"frequency_offset": [
0.0e12,
0.5e12,
1.0e12,
1.5e12,
2.0e12,
2.5e12,
3.0e12,
3.5e12,
4.0e12,
4.5e12,
5.0e12,
5.5e12,
6.0e12,
6.5e12,
7.0e12,
7.5e12,
8.0e12,
8.5e12,
9.0e12,
9.5e12,
10.0e12,
10.5e12,
11.0e12,
11.5e12,
12.0e12,
12.5e12,
12.75e12,
13.0e12,
13.25e12,
13.5e12,
14.0e12,
14.5e12,
14.75e12,
15.0e12,
15.5e12,
16.0e12,
16.5e12,
17.0e12,
17.5e12,
18.0e12,
18.25e12,
18.5e12,
18.75e12,
19.0e12,
19.5e12,
20.0e12,
20.5e12,
21.0e12,
21.5e12,
22.0e12,
22.5e12,
23.0e12,
23.5e12,
24.0e12,
24.5e12,
25.0e12,
25.5e12,
26.0e12,
26.5e12,
27.0e12,
27.5e12,
28.0e12,
28.5e12,
29.0e12,
29.5e12,
30.0e12,
30.5e12,
31.0e12,
31.5e12,
32.0e12,
32.5e12,
33.0e12,
33.5e12,
34.0e12,
34.5e12,
35.0e12,
35.5e12,
36.0e12,
36.5e12,
37.0e12,
37.5e12,
38.0e12,
38.5e12,
39.0e12,
39.5e12,
40.0e12,
40.5e12,
41.0e12,
41.5e12,
42.0e12
],
"reference_frequency": 206184634112792
}
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

View File

@@ -1,97 +1,97 @@
,signal,ase,nli
0,0.0002866683470642085,3.455694800734997e-08,2.1767706055953313e-07
1,0.0002842930902246378,3.4445260342151434e-08,2.20064716108892e-07
2,0.00028193841273409963,3.4334217950641774e-08,2.2239856929822977e-07
3,0.0002796041237984927,3.422381587730477e-08,2.2467937700272344e-07
4,0.00027589218358262,3.3956266402003705e-08,2.2576401766047814e-07
5,0.0002722303444814487,3.3690926476196685e-08,2.2678094635121413e-07
6,0.00026861791294303266,3.342777134334201e-08,2.2773179097640802e-07
7,0.00026505174756069215,3.316675429137828e-08,2.2861602718115889e-07
8,0.0002615312775878486,3.290785186664305e-08,2.294352005376256e-07
9,0.0002577007690018081,3.26092154155734e-08,2.2987401053105823e-07
10,0.00025392474812815994,3.231329178154223e-08,2.3024928325076607e-07
11,0.0002501957390130402,3.201993265117851e-08,2.3055653947072044e-07
12,0.0002465133077961936,3.172911082648897e-08,2.3079745224174315e-07
13,0.00024287702172285261,3.144079924487205e-08,2.309736700807475e-07
14,0.00023918644496802598,3.1142660565561954e-08,2.3099023972100006e-07
15,0.00023554415781363666,3.084719002003063e-08,2.3094533745656626e-07
16,0.0002319496781605366,3.0554358283826426e-08,2.3084061926161906e-07
17,0.000228402746264896,3.026413819712743e-08,2.306779372506828e-07
18,0.00022490287297566154,2.997650061885732e-08,2.2679314039447925e-07
19,0.0002210339853226993,2.9639081336421986e-08,2.225476971173533e-07
20,0.00021722472675673681,2.9305156366940595e-08,2.1837424228396343e-07
21,0.00021347443350916938,2.8974683300060073e-08,2.1427183120915025e-07
22,0.00020978233224910872,2.864761802749998e-08,2.1023941353936252e-07
23,0.0002061476568412488,2.832391679540816e-08,2.0627595093585302e-07
24,0.0002028237056285935,2.8034565895618217e-08,2.0263423697267893e-07
25,0.00019954715529254185,2.7748013284124615e-08,1.9905015325521452e-07
26,0.0001963174528000437,2.7464226779716075e-08,1.9552292765090665e-07
27,0.00019313475803109547,2.718318103861899e-08,1.920525003885138e-07
28,0.00018999848980183525,2.6904843987797665e-08,1.8863807494364378e-07
29,0.00018690807208013476,2.6629183784477213e-08,1.852788635171717e-07
30,0.00018386293497138034,2.635616888672288e-08,1.8197408797080072e-07
31,0.0001808626075954048,2.608576967648626e-08,1.7872307155753016e-07
32,0.00017790652540681915,2.5817954962418864e-08,1.7552504805064169e-07
33,0.00017499412908771533,2.5552693765056307e-08,1.723792598876346e-07
34,0.0001721914205512116,2.529821177538242e-08,1.69350416018518e-07
35,0.00016942913344260413,2.5046172734840803e-08,1.663699885487624e-07
36,0.0001667067703020692,2.4796549229968703e-08,1.6343730102750106e-07
37,0.00016402494737034808,2.4549324625938814e-08,1.602954566731582e-07
38,0.0001613831201060569,2.430447139995257e-08,1.5720933628441338e-07
39,0.00015878075021906192,2.406196225171638e-08,1.541780421866172e-07
40,0.00015621730558753943,2.3821770097360405e-08,1.5120068940449393e-07
41,0.000153694061439545,2.3583901792213434e-08,1.4827814327673852e-07
42,0.00015121040694331307,2.3348329147104765e-08,1.4540943949658482e-07
43,0.00014876574026315321,2.3115024224465226e-08,1.425936300160931e-07
44,0.00014623043935025647,2.2864250993313975e-08,1.397065102093322e-07
45,0.00014373723010448477,2.2616046400344574e-08,1.3687531950007013e-07
46,0.0001412854316913198,2.2370377299191064e-08,1.3409901704421416e-07
47,0.00013887544742801196,2.2127221340618422e-08,1.313775961274423e-07
48,0.0001365065605420479,2.1886545482453933e-08,1.2870998887773554e-07
49,0.00013417806673897108,2.164831702445933e-08,1.2609514810979993e-07
50,0.00013188927370907155,2.1412503578881085e-08,1.2353204666803017e-07
51,0.00012964085531237725,2.117909919147538e-08,1.2102094138348867e-07
52,0.00012743207116500861,2.094807084934547e-08,1.1856076487337955e-07
53,0.0001252621950917354,2.0719385892834214e-08,1.161504721855161e-07
54,0.00012308423338164536,2.0485363383535514e-08,1.1374627006340893e-07
55,0.00012094535834842106,2.0253755300794944e-08,1.1139168040879032e-07
56,0.00011884484242431182,2.0024527468430072e-08,1.0897675288127846e-07
57,0.00011678298769107047,1.9797656169961167e-08,1.0661409941810817e-07
58,0.0001147590394591346,1.9573107382367898e-08,1.0430256532408603e-07
59,0.00011277225867179729,1.935084744632288e-08,1.0204102225018314e-07
60,0.00011082192110664448,1.913084301808743e-08,9.982836715827351e-08
61,0.00010890831555726861,1.8913080844667903e-08,9.76644171489201e-08
62,0.00010703069380321927,1.8697527263494167e-08,9.554805889434612e-08
63,0.00010518832400867466,1.8484148971365717e-08,9.347820572370307e-08
64,0.00010353027948847247,1.8300360477604286e-08,9.158630538270034e-08
65,0.00010190114820620951,1.8118339508838893e-08,8.97332684173061e-08
66,0.00010030037817345079,1.7938063167097722e-08,8.791826040657302e-08
67,9.872746699919663e-05,1.775950920143011e-08,8.614049912759125e-08
68,9.718188342878233e-05,1.7582655209782296e-08,8.439918541238176e-08
69,9.566310719955732e-05,1.740747903977101e-08,8.269353818341506e-08
70,9.417062845393912e-05,1.7233958752991638e-08,8.102279372648069e-08
71,9.27044102709892e-05,1.7062082036004708e-08,7.938660156523957e-08
72,9.12639411274833e-05,1.6891826998956218e-08,7.778420731697601e-08
73,8.984872036936478e-05,1.6723171993235663e-08,7.621487408851861e-08
74,8.845926525396718e-05,1.6557077218868872e-08,7.467873241780861e-08
75,8.709405706837696e-05,1.6392620086127443e-08,7.352620174175576e-08
76,8.575262707251024e-05,1.6229781230847938e-08,7.239374499535451e-08
77,8.44345490553445e-05,1.6068541919248203e-08,7.128100236441453e-08
78,8.313937224726923e-05,1.5908883354530017e-08,7.018759330199112e-08
79,8.18666553697718e-05,1.5750787028460176e-08,6.91131452736768e-08
80,8.061596620368467e-05,1.5594234699428168e-08,6.80572933931087e-08
81,7.93869860927298e-05,1.54392105845737e-08,6.701976864553917e-08
82,7.81792957880057e-05,1.528569691328632e-08,6.600021709431229e-08
83,7.69924848842345e-05,1.5133676199095668e-08,6.499829226870119e-08
84,7.592423495462984e-05,1.5006007729453082e-08,6.40964585216171e-08
85,7.487323130273564e-05,1.4879695488874347e-08,6.320918435915818e-08
86,7.383915942693816e-05,1.475473179887786e-08,6.233620427401105e-08
87,7.282024738915393e-05,1.4631093950979863e-08,6.147602236758762e-08
88,7.181625694043332e-05,1.4508775744557438e-08,6.062843750629826e-08
89,7.082695384072487e-05,1.4387771381868581e-08,5.979325194092954e-08
90,6.985210770121701e-05,1.4268075471622408e-08,5.8970271173546604e-08
91,6.889061932028676e-05,1.414966436041678e-08,5.8158567240485706e-08
92,6.79423037538828e-05,1.4032534237451406e-08,5.7357984009008465e-08
93,6.700697867481953e-05,1.3916681725635683e-08,5.656836755557654e-08
94,6.594003301527265e-05,1.3765768410137306e-08,5.5667634894222326e-08
95,6.489000516837228e-05,1.3616343300622314e-08,5.4781184522010985e-08
signal,ase,nli
0.0003277611420723,3.899470345438449e-08,2.4249796960234704e-07
0.0003250017686895,3.88695612548288e-08,2.454439759471401e-07
0.0003222650868463,3.8745084795940443e-08,2.483227752372772e-07
0.0003195509110308,3.8621269402790665e-08,2.5113526636955305e-07
0.0003152051917212,3.831511482545576e-08,2.525571834385986e-07
0.0003109173643927,3.801142847546096e-08,2.538929936309988e-07
0.0003066866698276,3.7710184357421544e-08,2.551447305997623e-07
0.0003025094755105,3.74113291159896e-08,2.5631194688927884e-07
0.0002983851632227,3.711483823464807e-08,2.57396572290435e-07
0.0002939090370085,3.677384148134545e-08,2.580457272005108e-07
0.0002894959951166,3.6435889805735655e-08,2.586138532899247e-07
0.0002851374388563,3.6100804786136576e-08,2.590960415051975e-07
0.0002808329106728,3.5768558450009235e-08,2.594943775098954e-07
0.0002765819528091,3.543912291177373e-08,2.5981091869063053e-07
0.0002722585970856,3.509728654683229e-08,2.599278683420713e-07
0.0002679917286135,3.475846792019279e-08,2.5996691909916645e-07
0.0002637808235807,3.44226362592242e-08,2.599301554005377e-07
0.000259625629125,3.4089763516669025e-08,2.598199006832183e-07
0.0002555256094681,3.375981897519707e-08,2.555756892447018e-07
0.0002510061132968,3.3373930606403456e-08,2.509166795385623e-07
0.0002465564627785,3.299202134196193e-08,2.463324441551975e-07
0.0002421759612383,3.2614046686258965e-08,2.418221717126139e-07
0.0002378637384678,3.2239959043845714e-08,2.373848791838885e-07
0.0002336189309368,3.18697111382095e-08,2.3301959212527745e-07
0.000229786907623,3.154429519674801e-08,2.290704910449234e-07
0.0002260088301865,3.1221956560459585e-08,2.251793706228873e-07
0.0002222841156937,3.090266251951521e-08,2.213455610060874e-07
0.0002186130300924,3.058638893853768e-08,2.175692384572231e-07
0.000214994952946,3.027310301755256e-08,2.138496969887665e-07
0.0002114292680468,2.9962772135295886e-08,2.1018623618806562e-07
0.0002079153646262,2.9655363939172943e-08,2.0657816240778285e-07
0.0002044527805171,2.9350849083358333e-08,2.0302493091347645e-07
0.0002010409060047,2.904919541568693e-08,1.995258515561229e-07
0.0001976791358816,2.8750370949174832e-08,1.9608024000424985e-07
0.0001944779969388,2.8467714690234763e-08,1.9279758501200657e-07
0.0001913221363037,2.8187696076865265e-08,1.895633279917293e-07
0.0001882110383135,2.7910287978744905e-08,1.8637688328585562e-07
0.0001851455117447,2.763547687941092e-08,1.8294394600063082e-07
0.000182124981625,2.7363235313116972e-08,1.795685295609545e-07
0.0001791488786026,2.7093535992876882e-08,1.762497841686646e-07
0.0001762166388716,2.6826351803791374e-08,1.729868703567211e-07
0.0001733298028653,2.6561698509687352e-08,1.6978101465406346e-07
0.0001704877122406,2.6299547455845844e-08,1.666312813274778e-07
0.0001676897174922,2.603987020688793e-08,1.635367489137303e-07
0.0001647841340631,2.575975887106765e-08,1.603495310656704e-07
0.0001619264140112,2.5482476734612484e-08,1.57221255401216e-07
0.0001591158121254,2.520798936957748e-08,1.541508918468439e-07
0.0001563528761692,2.493627607244877e-08,1.5113866658054666e-07
0.0001536368140911,2.4667302328210823e-08,1.4818350881997277e-07
0.0001509668468559,2.4401033945674264e-08,1.452843671077152e-07
0.0001483422079002,2.4137437022238145e-08,1.4244020864846993e-07
0.0001457637135497,2.3876511018332856e-08,1.3965152374161321e-07
0.0001432305385497,2.3618221073161605e-08,1.369172264569389e-07
0.0001407418727912,2.3362532671027093e-08,1.342362523931659e-07
0.0001382358967136,2.3099449050292612e-08,1.3154948565189317e-07
0.0001357749763134,2.283907541163823e-08,1.2891625322154978e-07
0.0001333582893299,2.2581374993581207e-08,1.2619656354429104e-07
0.0001309862438042,2.232632442642508e-08,1.2353438214155152e-07
0.0001286579813897,2.2073886950323847e-08,1.2092847534724114e-07
0.000126372660974,2.182402617504561e-08,1.1837763658356932e-07
0.0001241294577704,2.1576706021416435e-08,1.1588068523754277e-07
0.0001219287137845,2.1331915734067192e-08,1.1343753674855828e-07
0.0001197695745451,2.108961868593061e-08,1.110469928559736e-07
0.0001176512038143,2.08497786224886e-08,1.0870788304064741e-07
0.0001157575507964,2.064536482973696e-08,1.0658919731348233e-07
0.0001138968874049,2.0442910777630443e-08,1.0451285530046546e-07
0.0001120685950893,2.0242392369145183e-08,1.0247797592009348e-07
0.0001102721277733,2.0043786431072003e-08,1.004837520181078e-07
0.0001085068885057,1.9847069357675e-08,9.852933720632749e-08
0.0001067722923259,1.96522177979178e-08,9.661390355735894e-08
0.0001050677655983,1.9459208611917452e-08,9.473664081358061e-08
0.0001033932787473,1.9268030831168163e-08,9.289723486055733e-08
0.000101748254869,1.9078661277163014e-08,9.109488193990664e-08
0.0001001321289996,1.8891077021770737e-08,8.932879630040843e-08
9.855410305682533e-05,1.8707685556144628e-08,8.760688138727519e-08
9.70035750524988e-05,1.8526106268805162e-08,8.622858338902384e-08
9.54800221910602e-05,1.834631916025987e-08,8.487426418079828e-08
9.398298376195116e-05,1.816830511796191e-08,8.35435142269833e-08
9.251195567959074e-05,1.7992044730451886e-08,8.223588543496443e-08
9.106644418852578e-05,1.7817518892375448e-08,8.095093889480209e-08
8.964596537975902e-05,1.7644708778076547e-08,7.968824444928503e-08
8.825016836609303e-05,1.7473598709850392e-08,7.844749018716727e-08
8.687858293497841e-05,1.7304170348281186e-08,7.722825812630736e-08
8.553074854577241e-05,1.7136405660531677e-08,7.603013888213162e-08
8.433358305815234e-05,1.6998940860777966e-08,7.496595249494088e-08
8.315557511358139e-05,1.6862959916000355e-08,7.39187956635932e-08
8.199638277812437e-05,1.6728456488525712e-08,7.28883644355918e-08
8.085394966108952e-05,1.6595404781975636e-08,7.187283084061544e-08
7.972802118918304e-05,1.6463800186495995e-08,7.087196858293762e-08
7.861834686065792e-05,1.6333638547854104e-08,6.988555498611813e-08
7.752468007410017e-05,1.6204916172056103e-08,6.891337084080734e-08
7.644579608395804e-05,1.607760634807453e-08,6.795432744410053e-08
7.538149823706338e-05,1.5951707212505497e-08,6.700824998672802e-08
7.433159248509273e-05,1.5827217400105257e-08,6.607496597492307e-08
7.310944660054646e-05,1.5658417045863033e-08,6.498857397068902e-08
7.190690836035234e-05,1.5491319571073834e-08,6.391961162711614e-08
1 signal ase nli
2 0 0.0002866683470642085 0.0003277611420723 3.455694800734997e-08 3.899470345438449e-08 2.1767706055953313e-07 2.4249796960234704e-07
3 1 0.0002842930902246378 0.0003250017686895 3.4445260342151434e-08 3.88695612548288e-08 2.20064716108892e-07 2.454439759471401e-07
4 2 0.00028193841273409963 0.0003222650868463 3.4334217950641774e-08 3.8745084795940443e-08 2.2239856929822977e-07 2.483227752372772e-07
5 3 0.0002796041237984927 0.0003195509110308 3.422381587730477e-08 3.8621269402790665e-08 2.2467937700272344e-07 2.5113526636955305e-07
6 4 0.00027589218358262 0.0003152051917212 3.3956266402003705e-08 3.831511482545576e-08 2.2576401766047814e-07 2.525571834385986e-07
7 5 0.0002722303444814487 0.0003109173643927 3.3690926476196685e-08 3.801142847546096e-08 2.2678094635121413e-07 2.538929936309988e-07
8 6 0.00026861791294303266 0.0003066866698276 3.342777134334201e-08 3.7710184357421544e-08 2.2773179097640802e-07 2.551447305997623e-07
9 7 0.00026505174756069215 0.0003025094755105 3.316675429137828e-08 3.74113291159896e-08 2.2861602718115889e-07 2.5631194688927884e-07
10 8 0.0002615312775878486 0.0002983851632227 3.290785186664305e-08 3.711483823464807e-08 2.294352005376256e-07 2.57396572290435e-07
11 9 0.0002577007690018081 0.0002939090370085 3.26092154155734e-08 3.677384148134545e-08 2.2987401053105823e-07 2.580457272005108e-07
12 10 0.00025392474812815994 0.0002894959951166 3.231329178154223e-08 3.6435889805735655e-08 2.3024928325076607e-07 2.586138532899247e-07
13 11 0.0002501957390130402 0.0002851374388563 3.201993265117851e-08 3.6100804786136576e-08 2.3055653947072044e-07 2.590960415051975e-07
14 12 0.0002465133077961936 0.0002808329106728 3.172911082648897e-08 3.5768558450009235e-08 2.3079745224174315e-07 2.594943775098954e-07
15 13 0.00024287702172285261 0.0002765819528091 3.144079924487205e-08 3.543912291177373e-08 2.309736700807475e-07 2.5981091869063053e-07
16 14 0.00023918644496802598 0.0002722585970856 3.1142660565561954e-08 3.509728654683229e-08 2.3099023972100006e-07 2.599278683420713e-07
17 15 0.00023554415781363666 0.0002679917286135 3.084719002003063e-08 3.475846792019279e-08 2.3094533745656626e-07 2.5996691909916645e-07
18 16 0.0002319496781605366 0.0002637808235807 3.0554358283826426e-08 3.44226362592242e-08 2.3084061926161906e-07 2.599301554005377e-07
19 17 0.000228402746264896 0.000259625629125 3.026413819712743e-08 3.4089763516669025e-08 2.306779372506828e-07 2.598199006832183e-07
20 18 0.00022490287297566154 0.0002555256094681 2.997650061885732e-08 3.375981897519707e-08 2.2679314039447925e-07 2.555756892447018e-07
21 19 0.0002210339853226993 0.0002510061132968 2.9639081336421986e-08 3.3373930606403456e-08 2.225476971173533e-07 2.509166795385623e-07
22 20 0.00021722472675673681 0.0002465564627785 2.9305156366940595e-08 3.299202134196193e-08 2.1837424228396343e-07 2.463324441551975e-07
23 21 0.00021347443350916938 0.0002421759612383 2.8974683300060073e-08 3.2614046686258965e-08 2.1427183120915025e-07 2.418221717126139e-07
24 22 0.00020978233224910872 0.0002378637384678 2.864761802749998e-08 3.2239959043845714e-08 2.1023941353936252e-07 2.373848791838885e-07
25 23 0.0002061476568412488 0.0002336189309368 2.832391679540816e-08 3.18697111382095e-08 2.0627595093585302e-07 2.3301959212527745e-07
26 24 0.0002028237056285935 0.000229786907623 2.8034565895618217e-08 3.154429519674801e-08 2.0263423697267893e-07 2.290704910449234e-07
27 25 0.00019954715529254185 0.0002260088301865 2.7748013284124615e-08 3.1221956560459585e-08 1.9905015325521452e-07 2.251793706228873e-07
28 26 0.0001963174528000437 0.0002222841156937 2.7464226779716075e-08 3.090266251951521e-08 1.9552292765090665e-07 2.213455610060874e-07
29 27 0.00019313475803109547 0.0002186130300924 2.718318103861899e-08 3.058638893853768e-08 1.920525003885138e-07 2.175692384572231e-07
30 28 0.00018999848980183525 0.000214994952946 2.6904843987797665e-08 3.027310301755256e-08 1.8863807494364378e-07 2.138496969887665e-07
31 29 0.00018690807208013476 0.0002114292680468 2.6629183784477213e-08 2.9962772135295886e-08 1.852788635171717e-07 2.1018623618806562e-07
32 30 0.00018386293497138034 0.0002079153646262 2.635616888672288e-08 2.9655363939172943e-08 1.8197408797080072e-07 2.0657816240778285e-07
33 31 0.0001808626075954048 0.0002044527805171 2.608576967648626e-08 2.9350849083358333e-08 1.7872307155753016e-07 2.0302493091347645e-07
34 32 0.00017790652540681915 0.0002010409060047 2.5817954962418864e-08 2.904919541568693e-08 1.7552504805064169e-07 1.995258515561229e-07
35 33 0.00017499412908771533 0.0001976791358816 2.5552693765056307e-08 2.8750370949174832e-08 1.723792598876346e-07 1.9608024000424985e-07
36 34 0.0001721914205512116 0.0001944779969388 2.529821177538242e-08 2.8467714690234763e-08 1.69350416018518e-07 1.9279758501200657e-07
37 35 0.00016942913344260413 0.0001913221363037 2.5046172734840803e-08 2.8187696076865265e-08 1.663699885487624e-07 1.895633279917293e-07
38 36 0.0001667067703020692 0.0001882110383135 2.4796549229968703e-08 2.7910287978744905e-08 1.6343730102750106e-07 1.8637688328585562e-07
39 37 0.00016402494737034808 0.0001851455117447 2.4549324625938814e-08 2.763547687941092e-08 1.602954566731582e-07 1.8294394600063082e-07
40 38 0.0001613831201060569 0.000182124981625 2.430447139995257e-08 2.7363235313116972e-08 1.5720933628441338e-07 1.795685295609545e-07
41 39 0.00015878075021906192 0.0001791488786026 2.406196225171638e-08 2.7093535992876882e-08 1.541780421866172e-07 1.762497841686646e-07
42 40 0.00015621730558753943 0.0001762166388716 2.3821770097360405e-08 2.6826351803791374e-08 1.5120068940449393e-07 1.729868703567211e-07
43 41 0.000153694061439545 0.0001733298028653 2.3583901792213434e-08 2.6561698509687352e-08 1.4827814327673852e-07 1.6978101465406346e-07
44 42 0.00015121040694331307 0.0001704877122406 2.3348329147104765e-08 2.6299547455845844e-08 1.4540943949658482e-07 1.666312813274778e-07
45 43 0.00014876574026315321 0.0001676897174922 2.3115024224465226e-08 2.603987020688793e-08 1.425936300160931e-07 1.635367489137303e-07
46 44 0.00014623043935025647 0.0001647841340631 2.2864250993313975e-08 2.575975887106765e-08 1.397065102093322e-07 1.603495310656704e-07
47 45 0.00014373723010448477 0.0001619264140112 2.2616046400344574e-08 2.5482476734612484e-08 1.3687531950007013e-07 1.57221255401216e-07
48 46 0.0001412854316913198 0.0001591158121254 2.2370377299191064e-08 2.520798936957748e-08 1.3409901704421416e-07 1.541508918468439e-07
49 47 0.00013887544742801196 0.0001563528761692 2.2127221340618422e-08 2.493627607244877e-08 1.313775961274423e-07 1.5113866658054666e-07
50 48 0.0001365065605420479 0.0001536368140911 2.1886545482453933e-08 2.4667302328210823e-08 1.2870998887773554e-07 1.4818350881997277e-07
51 49 0.00013417806673897108 0.0001509668468559 2.164831702445933e-08 2.4401033945674264e-08 1.2609514810979993e-07 1.452843671077152e-07
52 50 0.00013188927370907155 0.0001483422079002 2.1412503578881085e-08 2.4137437022238145e-08 1.2353204666803017e-07 1.4244020864846993e-07
53 51 0.00012964085531237725 0.0001457637135497 2.117909919147538e-08 2.3876511018332856e-08 1.2102094138348867e-07 1.3965152374161321e-07
54 52 0.00012743207116500861 0.0001432305385497 2.094807084934547e-08 2.3618221073161605e-08 1.1856076487337955e-07 1.369172264569389e-07
55 53 0.0001252621950917354 0.0001407418727912 2.0719385892834214e-08 2.3362532671027093e-08 1.161504721855161e-07 1.342362523931659e-07
56 54 0.00012308423338164536 0.0001382358967136 2.0485363383535514e-08 2.3099449050292612e-08 1.1374627006340893e-07 1.3154948565189317e-07
57 55 0.00012094535834842106 0.0001357749763134 2.0253755300794944e-08 2.283907541163823e-08 1.1139168040879032e-07 1.2891625322154978e-07
58 56 0.00011884484242431182 0.0001333582893299 2.0024527468430072e-08 2.2581374993581207e-08 1.0897675288127846e-07 1.2619656354429104e-07
59 57 0.00011678298769107047 0.0001309862438042 1.9797656169961167e-08 2.232632442642508e-08 1.0661409941810817e-07 1.2353438214155152e-07
60 58 0.0001147590394591346 0.0001286579813897 1.9573107382367898e-08 2.2073886950323847e-08 1.0430256532408603e-07 1.2092847534724114e-07
61 59 0.00011277225867179729 0.000126372660974 1.935084744632288e-08 2.182402617504561e-08 1.0204102225018314e-07 1.1837763658356932e-07
62 60 0.00011082192110664448 0.0001241294577704 1.913084301808743e-08 2.1576706021416435e-08 9.982836715827351e-08 1.1588068523754277e-07
63 61 0.00010890831555726861 0.0001219287137845 1.8913080844667903e-08 2.1331915734067192e-08 9.76644171489201e-08 1.1343753674855828e-07
64 62 0.00010703069380321927 0.0001197695745451 1.8697527263494167e-08 2.108961868593061e-08 9.554805889434612e-08 1.110469928559736e-07
65 63 0.00010518832400867466 0.0001176512038143 1.8484148971365717e-08 2.08497786224886e-08 9.347820572370307e-08 1.0870788304064741e-07
66 64 0.00010353027948847247 0.0001157575507964 1.8300360477604286e-08 2.064536482973696e-08 9.158630538270034e-08 1.0658919731348233e-07
67 65 0.00010190114820620951 0.0001138968874049 1.8118339508838893e-08 2.0442910777630443e-08 8.97332684173061e-08 1.0451285530046546e-07
68 66 0.00010030037817345079 0.0001120685950893 1.7938063167097722e-08 2.0242392369145183e-08 8.791826040657302e-08 1.0247797592009348e-07
69 67 9.872746699919663e-05 0.0001102721277733 1.775950920143011e-08 2.0043786431072003e-08 8.614049912759125e-08 1.004837520181078e-07
70 68 9.718188342878233e-05 0.0001085068885057 1.7582655209782296e-08 1.9847069357675e-08 8.439918541238176e-08 9.852933720632749e-08
71 69 9.566310719955732e-05 0.0001067722923259 1.740747903977101e-08 1.96522177979178e-08 8.269353818341506e-08 9.661390355735894e-08
72 70 9.417062845393912e-05 0.0001050677655983 1.7233958752991638e-08 1.9459208611917452e-08 8.102279372648069e-08 9.473664081358061e-08
73 71 9.27044102709892e-05 0.0001033932787473 1.7062082036004708e-08 1.9268030831168163e-08 7.938660156523957e-08 9.289723486055733e-08
74 72 9.12639411274833e-05 0.000101748254869 1.6891826998956218e-08 1.9078661277163014e-08 7.778420731697601e-08 9.109488193990664e-08
75 73 8.984872036936478e-05 0.0001001321289996 1.6723171993235663e-08 1.8891077021770737e-08 7.621487408851861e-08 8.932879630040843e-08
76 74 8.845926525396718e-05 9.855410305682533e-05 1.6557077218868872e-08 1.8707685556144628e-08 7.467873241780861e-08 8.760688138727519e-08
77 75 8.709405706837696e-05 9.70035750524988e-05 1.6392620086127443e-08 1.8526106268805162e-08 7.352620174175576e-08 8.622858338902384e-08
78 76 8.575262707251024e-05 9.54800221910602e-05 1.6229781230847938e-08 1.834631916025987e-08 7.239374499535451e-08 8.487426418079828e-08
79 77 8.44345490553445e-05 9.398298376195116e-05 1.6068541919248203e-08 1.816830511796191e-08 7.128100236441453e-08 8.35435142269833e-08
80 78 8.313937224726923e-05 9.251195567959074e-05 1.5908883354530017e-08 1.7992044730451886e-08 7.018759330199112e-08 8.223588543496443e-08
81 79 8.18666553697718e-05 9.106644418852578e-05 1.5750787028460176e-08 1.7817518892375448e-08 6.91131452736768e-08 8.095093889480209e-08
82 80 8.061596620368467e-05 8.964596537975902e-05 1.5594234699428168e-08 1.7644708778076547e-08 6.80572933931087e-08 7.968824444928503e-08
83 81 7.93869860927298e-05 8.825016836609303e-05 1.54392105845737e-08 1.7473598709850392e-08 6.701976864553917e-08 7.844749018716727e-08
84 82 7.81792957880057e-05 8.687858293497841e-05 1.528569691328632e-08 1.7304170348281186e-08 6.600021709431229e-08 7.722825812630736e-08
85 83 7.69924848842345e-05 8.553074854577241e-05 1.5133676199095668e-08 1.7136405660531677e-08 6.499829226870119e-08 7.603013888213162e-08
86 84 7.592423495462984e-05 8.433358305815234e-05 1.5006007729453082e-08 1.6998940860777966e-08 6.40964585216171e-08 7.496595249494088e-08
87 85 7.487323130273564e-05 8.315557511358139e-05 1.4879695488874347e-08 1.6862959916000355e-08 6.320918435915818e-08 7.39187956635932e-08
88 86 7.383915942693816e-05 8.199638277812437e-05 1.475473179887786e-08 1.6728456488525712e-08 6.233620427401105e-08 7.28883644355918e-08
89 87 7.282024738915393e-05 8.085394966108952e-05 1.4631093950979863e-08 1.6595404781975636e-08 6.147602236758762e-08 7.187283084061544e-08
90 88 7.181625694043332e-05 7.972802118918304e-05 1.4508775744557438e-08 1.6463800186495995e-08 6.062843750629826e-08 7.087196858293762e-08
91 89 7.082695384072487e-05 7.861834686065792e-05 1.4387771381868581e-08 1.6333638547854104e-08 5.979325194092954e-08 6.988555498611813e-08
92 90 6.985210770121701e-05 7.752468007410017e-05 1.4268075471622408e-08 1.6204916172056103e-08 5.8970271173546604e-08 6.891337084080734e-08
93 91 6.889061932028676e-05 7.644579608395804e-05 1.414966436041678e-08 1.607760634807453e-08 5.8158567240485706e-08 6.795432744410053e-08
94 92 6.79423037538828e-05 7.538149823706338e-05 1.4032534237451406e-08 1.5951707212505497e-08 5.7357984009008465e-08 6.700824998672802e-08
95 93 6.700697867481953e-05 7.433159248509273e-05 1.3916681725635683e-08 1.5827217400105257e-08 5.656836755557654e-08 6.607496597492307e-08
96 94 6.594003301527265e-05 7.310944660054646e-05 1.3765768410137306e-08 1.5658417045863033e-08 5.5667634894222326e-08 6.498857397068902e-08
97 95 6.489000516837228e-05 7.190690836035234e-05 1.3616343300622314e-08 1.5491319571073834e-08 5.4781184522010985e-08 6.391961162711614e-08

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_service.xlsx Executable file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_topo_eqpt.xlsx Executable file

Binary file not shown.

BIN
tests/data/wrong_topo_link.xlsx Executable file

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_topo_node.xlsx Executable file

Binary file not shown.

View File

@@ -0,0 +1,156 @@
INFO gnpy.tools.cli_examples:cli_examples.py Computing path requests meshTopologyExampleV2.xls into JSON format
WARNING gnpy.tools.json_io:json_io.py
WARNING missing type_variety attribute in eqpt_config.json[Roadm]
default value is type_variety = default
INFO gnpy.tools.json_io:json_io.py Automatically converting requests from XLS to JSON
INFO gnpy.tools.worker_utils:worker_utils.py List of disjunctions:
[Disjunction 3
relaxable: false
link-diverse: True
node-diverse: True
request-id-numbers: ['3', '1']
, Disjunction 4
relaxable: false
link-diverse: True
node-diverse: True
request-id-numbers: ['4', '5']
]
INFO gnpy.tools.worker_utils:worker_utils.py Aggregating similar requests
INFO gnpy.tools.worker_utils:worker_utils.py The following services have been requested:
[PathRequest 0
source: trx Lorient_KMA
destination: trx Vannes_KBE
trx type: Voyager
trx mode: None
baud_rate: None Gbaud
bit_rate: None Gb/s
spacing: 50.0 GHz
power: 1.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 80
path_bandwidth: 100.0 Gbit/s
nodes-list: []
loose-list: []
, PathRequest 1
source: trx Brest_KLA
destination: trx Vannes_KBE
trx type: Voyager
trx mode: mode 1
baud_rate: 32.0 Gbaud
bit_rate: 100.0 Gb/s
spacing: 50.0 GHz
power: 1.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 95
path_bandwidth: 200.0 Gbit/s
nodes-list: ['roadm Brest_KLA', 'roadm Lannion_CAS', 'roadm Lorient_KMA', 'roadm Vannes_KBE']
loose-list: ['LOOSE', 'LOOSE', 'LOOSE', 'LOOSE']
, PathRequest 3
source: trx Lannion_CAS
destination: trx Rennes_STA
trx type: vendorA_trx-type1
trx mode: mode 1
baud_rate: 32.0 Gbaud
bit_rate: 100.0 Gb/s
spacing: 50.0 GHz
power: 0.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 95
path_bandwidth: 60.0 Gbit/s
nodes-list: []
loose-list: []
, PathRequest 4
source: trx Rennes_STA
destination: trx Lannion_CAS
trx type: vendorA_trx-type1
trx mode: None
baud_rate: None Gbaud
bit_rate: None Gb/s
spacing: 75.0 GHz
power: 3.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 63
path_bandwidth: 150.0 Gbit/s
nodes-list: []
loose-list: []
, PathRequest 5
source: trx Rennes_STA
destination: trx Lannion_CAS
trx type: vendorA_trx-type1
trx mode: mode 2
baud_rate: 66.0 Gbaud
bit_rate: 200.0 Gb/s
spacing: 75.0 GHz
power: 3.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 63
path_bandwidth: 20.0 Gbit/s
nodes-list: []
loose-list: []
, PathRequest 7 | 6
source: trx Lannion_CAS
destination: trx Lorient_KMA
trx type: Voyager
trx mode: mode 1
baud_rate: 32.0 Gbaud
bit_rate: 100.0 Gb/s
spacing: 50.0 GHz
power: 0.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 76
path_bandwidth: 700.0 Gbit/s
nodes-list: []
loose-list: []
, PathRequest 7b
source: trx Lannion_CAS
destination: trx Lorient_KMA
trx type: Voyager
trx mode: mode 1
baud_rate: 32.0 Gbaud
bit_rate: 100.0 Gb/s
spacing: 75.0 GHz
power: 0.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 50
path_bandwidth: 400.0 Gbit/s
nodes-list: []
loose-list: []
]
INFO gnpy.tools.worker_utils:worker_utils.py Propagating on selected path
WARNING gnpy.topology.request:request.py Redesign the network for each request channel, using the request channel as the reference channel for the design.
INFO gnpy.topology.request:request.py
request 0
Computing path from trx Lorient_KMA to trx Vannes_KBE
with path constraint: ['trx Lorient_KMA', 'trx Vannes_KBE']
Computed path (roadms):['roadm Lorient_KMA', 'roadm Vannes_KBE']
INFO gnpy.topology.request:request.py
request 1
Computing path from trx Brest_KLA to trx Vannes_KBE
with path constraint: ['trx Brest_KLA', 'roadm Brest_KLA', 'roadm Lannion_CAS', 'roadm Lorient_KMA', 'roadm Vannes_KBE', 'trx Vannes_KBE']
Computed path (roadms):['roadm Brest_KLA', 'roadm Lannion_CAS', 'roadm Lorient_KMA', 'roadm Vannes_KBE']
INFO gnpy.topology.request:request.py
request 3
Computing path from trx Lannion_CAS to trx Rennes_STA
with path constraint: ['trx Lannion_CAS', 'trx Rennes_STA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Rennes_STA']
INFO gnpy.topology.request:request.py
request 4
Computing path from trx Rennes_STA to trx Lannion_CAS
with path constraint: ['trx Rennes_STA', 'trx Lannion_CAS']
Computed path (roadms):['roadm Rennes_STA', 'roadm Vannes_KBE', 'roadm Lorient_KMA', 'roadm Lannion_CAS']
INFO gnpy.topology.request:request.py
request 5
Computing path from trx Rennes_STA to trx Lannion_CAS
with path constraint: ['trx Rennes_STA', 'trx Lannion_CAS']
Computed path (roadms):['roadm Rennes_STA', 'roadm Lannion_CAS']
INFO gnpy.topology.request:request.py
request 7 | 6
Computing path from trx Lannion_CAS to trx Lorient_KMA
with path constraint: ['trx Lannion_CAS', 'trx Lorient_KMA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Lorient_KMA']
INFO gnpy.topology.request:request.py
request 7b
Computing path from trx Lannion_CAS to trx Lorient_KMA
with path constraint: ['trx Lannion_CAS', 'trx Lorient_KMA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Lorient_KMA']

View File

@@ -0,0 +1,37 @@
INFO gnpy.tools.cli_examples:cli_examples.py Computing path requests CORONET_services.json into JSON format
WARNING gnpy.tools.json_io:json_io.py
WARNING missing type_variety attribute in eqpt_config.json[Roadm]
default value is type_variety = default
INFO gnpy.tools.worker_utils:worker_utils.py List of disjunctions:
[]
INFO gnpy.tools.worker_utils:worker_utils.py Aggregating similar requests
INFO gnpy.tools.worker_utils:worker_utils.py The following services have been requested:
[PathRequest 0
source: trx Abilene
destination: trx Albany
trx type: Voyager
trx mode: mode 3
baud_rate: 44.0 Gbaud
bit_rate: 300.0 Gb/s
spacing: 62.50000000000001 GHz
power: 0.0 dBm
tx_power_dbm: 0.0 dBm
nb channels: 76
path_bandwidth: 100.0 Gbit/s
nodes-list: []
loose-list: []
]
INFO gnpy.tools.worker_utils:worker_utils.py Propagating on selected path
INFO gnpy.topology.request:request.py
request 0
Computing path from trx Abilene to trx Albany
with path constraint: ['trx Abilene', 'trx Albany']
Computed path (roadms):['roadm Abilene', 'roadm Dallas', 'roadm Little_Rock', 'roadm Memphis', 'roadm Nashville', 'roadm Louisville', 'roadm Cincinnati', 'roadm Columbus', 'roadm Cleveland', 'roadm Buffalo', 'roadm Rochester', 'roadm Syracuse', 'roadm Albany']
WARNING gnpy.topology.request:request.py Warning! Request 0 computed path from trx Abilene to trx Albany does not pass with mode 3
computed SNR in 0.1nm = 14.44
PDL penalty not evaluated
CD penalty not evaluated
PMD penalty not evaluated
required osnr = 18
system margin = 2

View File

@@ -0,0 +1,383 @@
WARNING gnpy.tools.json_io:json_io.py
WARNING missing type_variety attribute in eqpt_config.json[Roadm]
default value is type_variety = default
INFO gnpy.tools.cli_examples:cli_examples.py source = 'trx Brest_KLA'
INFO gnpy.tools.cli_examples:cli_examples.py destination = 'trx Rennes_STA'
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Lannion_CAS to Stbrieuc
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 21.22dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Stbrieuc to Rennes_STA
is below user specified amplifier std_medium_gain
min gain: 15dB ; required gain: 12.0dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Lannion_CAS to Morlaix
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 21.22dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node west edfa in Lannion_CAS to Corlay
is above user specified amplifier test
max flat gain: 25dB ; required gain: 28.0dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Brest_KLA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Ploermel to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Stbrieuc to Rennes_STA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lannion_CAS to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Brest_KLA to Quimper
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 21.22dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.78 is applied
INFO gnpy.tools.worker_utils:worker_utils.py Power mode is set to True=> it can be modified in eqpt_config.json - Span
INFO gnpy.tools.worker_utils:worker_utils.py Now propagating between trx Brest_KLA and trx Rennes_STA
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 95)

View File

@@ -0,0 +1,323 @@
WARNING gnpy.tools.json_io:json_io.py
WARNING missing type_variety attribute in eqpt_config.json[Roadm]
default value is type_variety = default
INFO gnpy.tools.cli_examples:cli_examples.py source = 'trx Lannion_CAS'
INFO gnpy.tools.cli_examples:cli_examples.py destination = 'trx Lorient_KMA'
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Lannion_CAS to Stbrieuc
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 21.18dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Stbrieuc to Rennes_STA
is below user specified amplifier std_medium_gain
min gain: 15dB ; required gain: 12.0dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Lannion_CAS to Morlaix
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 21.18dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node west edfa in Lannion_CAS to Corlay
is above user specified amplifier test
max flat gain: 25dB ; required gain: 28.0dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Brest_KLA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Ploermel to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Stbrieuc to Rennes_STA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lannion_CAS to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Brest_KLA to Quimper
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 21.18dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
INFO gnpy.tools.worker_utils:worker_utils.py Power mode is set to True=> it can be modified in eqpt_config.json - Span
INFO gnpy.tools.worker_utils:worker_utils.py Now propagating between trx Lannion_CAS and trx Lorient_KMA
INFO gnpy.tools.worker_utils:worker_utils.py
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 3.00dBm,
nb_channels = 96)

View File

@@ -0,0 +1,294 @@
User input for spectrum used for propagation instead of SI
Power mode is set to True
=> it can be modified in eqpt_config.json - Span
There are 3 fiber spans over 240 km between trx Site_A and trx Site_D
Now propagating between trx Site_A and trx Site_D:
Reference used for design: (Input optical power reference in span = 0.00dBm,
spacing = 50.00GHz
nb_channels = 76)
Channels propagating: (Input optical power deviation in span = cband: 0.00, lband: 0.00dB,
spacing = cband: 50.00, lband: 50.00GHz,
transceiver output power = cband: 0.00, lband: 0.00dBm,
nb_channels = 149)
Input optical power reference in span = 0.00 dBm:
Transceiver trx Site_A
GSNR (0.1nm, dB): cband: 40.00, lband: 40.00
GSNR (signal bw, dB): cband: 35.92, lband: 35.92
OSNR ASE (0.1nm, dB): cband: 40.00, lband: 40.00
OSNR ASE (signal bw, dB): cband: 35.92, lband: 35.92
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Actual pch out (dBm): cband: 0.00, lband: 0.00
Roadm roadm Site_A
Type_variety: default
Reference loss (dB): 20.00
Actual loss (dB): cband: 20.00, lband: 20.00
Reference pch out (dBm): -20.00
Actual pch out (dBm): cband: -20.00, lband: -20.00
Multiband_amplifier east edfa in Site_A to Site_B
type_variety: std_medium_gain_multiband
type_variety: std_medium_gain_C type_variety: std_medium_gain_L
effective gain(dB): 20.90 effective gain(dB): 22.19
(before att_in and before output VOA) (before att_in and before output VOA)
tilt-target(dB) 0.00 tilt-target(dB) 0.00
noise figure (dB): 6.38 noise figure (dB): 6.19
(including att_in) (including att_in)
pad att_in (dB): 0.00 pad att_in (dB): 0.00
Power In (dBm): -1.08 Power In (dBm): -1.49
Power Out (dBm): 19.83 Power Out (dBm): 20.71
Delta_P (dB): 0.90 Delta_P (dB): 2.19
target pch (dBm): 0.90 target pch (dBm): 3.00
actual pch out (dBm): -2.09 actual pch out (dBm): -0.80
output VOA (dB): 3.00 output VOA (dB): 3.00
Fiber fiber (Site_A → Site_B)-
type_variety: SSMF
length (km): 75.00
pad att_in (dB): 0.00
total loss (dB): 15.00
(includes conn loss (dB) in: 0.00 out: 0.00)
(conn loss out includes EOL margin defined in eqpt_config.json)
reference pch out (dBm): -17.10
actual pch out (dBm): cband: -17.09, lband: -15.80
Multiband_amplifier east edfa in Site_B to Site_C
type_variety: std_medium_gain_multiband
type_variety: std_medium_gain_C type_variety: std_medium_gain_L
effective gain(dB): 18.00 effective gain(dB): 18.00
(before att_in and before output VOA) (before att_in and before output VOA)
tilt-target(dB) 0.00 tilt-target(dB) 0.00
noise figure (dB): 7.38 noise figure (dB): 7.38
(including att_in) (including att_in)
pad att_in (dB): 0.00 pad att_in (dB): 0.00
Power In (dBm): 1.83 Power In (dBm): 2.71
Power Out (dBm): 19.84 Power Out (dBm): 20.72
Delta_P (dB): 0.90 Delta_P (dB): 2.19
target pch (dBm): 0.90 target pch (dBm): 3.00
actual pch out (dBm): -2.09 actual pch out (dBm): -0.79
output VOA (dB): 3.00 output VOA (dB): 3.00
Fiber fiber (Site_B → Site_C)-
type_variety: SSMF
length (km): 80.00
pad att_in (dB): 0.00
total loss (dB): 16.80
(includes conn loss (dB) in: 0.00 out: 0.00)
(conn loss out includes EOL margin defined in eqpt_config.json)
reference pch out (dBm): -18.90
actual pch out (dBm): cband: -18.88, lband: -17.59
Multiband_amplifier east edfa in Site_C to Site_D
type_variety: std_medium_gain_multiband
type_variety: std_medium_gain_C type_variety: std_medium_gain_L
effective gain(dB): 19.80 effective gain(dB): 19.80
(before att_in and before output VOA) (before att_in and before output VOA)
tilt-target(dB) 0.00 tilt-target(dB) 0.00
noise figure (dB): 6.63 noise figure (dB): 6.63
(including att_in) (including att_in)
pad att_in (dB): 0.00 pad att_in (dB): 0.00
Power In (dBm): 0.04 Power In (dBm): 0.92
Power Out (dBm): 19.84 Power Out (dBm): 20.72
Delta_P (dB): 0.90 Delta_P (dB): 2.19
target pch (dBm): 0.90 target pch (dBm): 3.00
actual pch out (dBm): -2.08 actual pch out (dBm): -0.79
output VOA (dB): 3.00 output VOA (dB): 3.00
Fiber fiber (Site_C → Site_D)-
type_variety: SSMF
length (km): 85.00
pad att_in (dB): 0.00
total loss (dB): 18.70
(includes conn loss (dB) in: 0.00 out: 0.00)
(conn loss out includes EOL margin defined in eqpt_config.json)
reference pch out (dBm): -20.80
actual pch out (dBm): cband: -20.78, lband: -19.49
Multiband_amplifier west edfa in Site_D to Site_C
type_variety: std_medium_gain_multiband
type_variety: std_medium_gain_C type_variety: std_medium_gain_L
effective gain(dB): 21.70 effective gain(dB): 21.70
(before att_in and before output VOA) (before att_in and before output VOA)
tilt-target(dB) 0.00 tilt-target(dB) 0.00
noise figure (dB): 6.25 noise figure (dB): 6.25
(including att_in) (including att_in)
pad att_in (dB): 0.00 pad att_in (dB): 0.00
Power In (dBm): -1.85 Power In (dBm): -0.97
Power Out (dBm): 19.85 Power Out (dBm): 20.73
Delta_P (dB): 0.90 Delta_P (dB): 2.19
target pch (dBm): 0.90 target pch (dBm): 3.00
actual pch out (dBm): -2.07 actual pch out (dBm): -0.78
output VOA (dB): 3.00 output VOA (dB): 3.00
Roadm roadm Site_D
Type_variety: default
Reference loss (dB): 17.90
Actual loss (dB): cband: 17.93, lband: 19.22
Reference pch out (dBm): -20.00
Actual pch out (dBm): cband: -20.00, lband: -20.00
Transceiver trx Site_D
GSNR (0.1nm, dB): cband: 24.89, lband: 25.36
GSNR (signal bw, dB): cband: 20.80, lband: 21.28
OSNR ASE (0.1nm, dB): cband: 25.55, lband: 26.51
OSNR ASE (signal bw, dB): cband: 21.47, lband: 22.43
CD (ps/nm): 4008.00
PMD (ps): 0.62
PDL (dB): 0.00
Latency (ms): 1.18
Actual pch out (dBm): cband: 0.00, lband: 0.00
Transmission result for input optical power reference in span = 0.00 dBm:
Final GSNR (0.1 nm): 25.11 dB
The GSNR per channel at the end of the line is:
Ch. # Channel frequency (THz) Channel power (dBm) OSNR ASE (signal bw, dB) SNR NLI (signal bw, dB) GSNR (signal bw, dB)
1 186.55000 -20.03 22.46 29.10 21.61
2 186.60000 -20.03 22.46 28.59 21.51
3 186.65000 -20.03 22.46 28.36 21.47
4 186.70000 -20.03 22.46 28.22 21.44
5 186.75000 -20.03 22.46 28.12 21.41
6 186.80000 -20.03 22.46 28.04 21.40
7 186.85000 -20.03 22.46 27.98 21.38
8 186.90000 -20.03 22.45 27.92 21.37
9 186.95000 -20.03 22.45 27.88 21.36
10 187.00000 -20.03 22.45 27.84 21.35
11 187.05000 -20.03 22.45 27.80 21.34
12 187.10000 -20.03 22.45 27.77 21.33
13 187.15000 -20.03 22.45 27.74 21.32
14 187.20000 -20.03 22.45 27.71 21.32
15 187.25000 -20.03 22.45 27.69 21.31
16 187.30000 -20.03 22.45 27.67 21.31
17 187.35000 -20.03 22.45 27.65 21.30
18 187.40000 -20.03 22.44 27.63 21.29
19 187.45000 -20.03 22.44 27.61 21.29
20 187.50000 -20.03 22.44 27.60 21.29
21 187.55000 -20.03 22.44 27.58 21.28
22 187.60000 -20.03 22.44 27.57 21.28
23 187.65000 -20.03 22.44 27.55 21.27
24 187.70000 -20.03 22.44 27.54 21.27
25 187.75000 -20.03 22.44 27.53 21.27
26 187.80000 -20.03 22.44 27.52 21.26
27 187.85000 -20.03 22.44 27.51 21.26
28 187.90000 -20.03 22.43 27.50 21.26
29 187.95000 -20.03 22.43 27.49 21.25
30 188.00000 -20.03 22.43 27.48 21.25
31 188.05000 -20.03 22.43 27.47 21.25
32 188.10000 -20.03 22.43 27.47 21.25
33 188.15000 -20.03 22.43 27.46 21.24
34 188.20000 -20.03 22.43 27.45 21.24
35 188.25000 -20.03 22.43 27.45 21.24
36 188.30000 -20.03 22.43 27.44 21.24
37 188.35000 -20.03 22.43 27.44 21.23
38 188.40000 -20.03 22.42 27.43 21.23
39 188.45000 -20.03 22.42 27.43 21.23
40 188.50000 -20.03 22.42 27.43 21.23
41 188.55000 -20.03 22.42 27.42 21.23
42 188.60000 -20.03 22.42 27.42 21.23
43 188.65000 -20.03 22.42 27.42 21.23
44 188.70000 -20.03 22.42 27.42 21.22
45 188.75000 -20.03 22.42 27.42 21.22
46 188.80000 -20.03 22.42 27.42 21.22
47 188.85000 -20.03 22.41 27.42 21.22
48 188.90000 -20.03 22.41 27.42 21.22
49 188.95000 -20.03 22.41 27.42 21.22
50 189.00000 -20.03 22.41 27.43 21.22
51 189.05000 -20.03 22.41 27.43 21.22
52 189.10000 -20.03 22.41 27.44 21.22
53 189.15000 -20.03 22.41 27.44 21.22
54 189.20000 -20.03 22.41 27.45 21.22
55 189.25000 -20.03 22.41 27.46 21.23
56 189.30000 -20.03 22.41 27.46 21.23
57 189.35000 -20.03 22.40 27.47 21.23
58 189.40000 -20.03 22.40 27.49 21.23
59 189.45000 -20.03 22.40 27.50 21.23
60 189.50000 -20.03 22.40 27.51 21.24
61 189.55000 -20.03 22.40 27.53 21.24
62 189.60000 -20.03 22.40 27.55 21.24
63 189.65000 -20.03 22.40 27.58 21.25
64 189.70000 -20.03 22.40 27.60 21.25
65 189.75000 -20.03 22.40 27.63 21.26
66 189.80000 -20.03 22.40 27.67 21.27
67 189.85000 -20.03 22.39 27.72 21.28
68 189.90000 -20.03 22.39 27.78 21.29
69 189.95000 -20.03 22.39 27.86 21.31
70 190.00000 -20.03 22.39 27.97 21.33
71 190.05000 -20.03 22.39 28.21 21.38
72 191.25000 -20.03 21.51 28.66 20.74
73 191.30000 -20.03 21.51 28.96 20.79
74 191.35000 -20.03 21.51 29.16 20.82
75 191.40000 -20.03 21.50 29.32 20.84
76 191.45000 -20.03 21.50 29.51 20.87
77 191.50000 -20.03 21.50 29.75 20.90
78 191.55000 -20.03 21.50 30.22 20.95
79 191.60000 -20.03 21.50 30.96 21.03
80 191.65000 -20.03 21.50 30.46 20.98
81 191.70000 -20.03 21.50 30.23 20.95
82 191.75000 -20.03 21.50 30.08 20.93
83 191.80000 -20.03 21.50 29.97 20.92
84 191.85000 -20.03 21.50 29.88 20.91
85 191.90000 -20.03 21.49 29.81 20.90
86 191.95000 -20.03 21.49 29.75 20.89
87 192.00000 -20.03 21.49 29.70 20.88
88 192.05000 -20.03 21.49 29.65 20.87
89 192.10000 -20.03 21.49 29.61 20.87
90 192.15000 -20.03 21.49 29.57 20.86
91 192.20000 -20.03 21.49 29.54 20.86
92 192.25000 -20.03 21.49 29.50 20.85
93 192.30000 -20.03 21.49 29.47 20.85
94 192.35000 -20.03 21.49 29.44 20.84
95 192.40000 -20.03 21.48 29.42 20.84
96 192.45000 -20.03 21.48 29.39 20.83
97 192.50000 -20.03 21.48 29.37 20.83
98 192.55000 -20.03 21.48 29.35 20.82
99 192.60000 -20.03 21.48 29.33 20.82
100 192.65000 -20.03 21.48 29.31 20.82
101 192.70000 -20.03 21.48 29.29 20.81
102 192.75000 -20.03 21.48 29.27 20.81
103 192.80000 -20.03 21.48 29.25 20.81
104 192.85000 -20.03 21.47 29.23 20.80
105 192.90000 -20.03 21.47 29.22 20.80
106 192.95000 -20.03 21.47 29.20 20.80
107 193.00000 -20.03 21.47 29.18 20.79
108 193.05000 -20.03 21.47 29.17 20.79
109 193.10000 -20.03 21.47 29.16 20.79
110 193.15000 -20.03 21.47 29.14 20.78
111 193.20000 -20.03 21.47 29.13 20.78
112 193.25000 -20.03 21.47 29.12 20.78
113 193.30000 -20.03 21.47 29.10 20.78
114 193.35000 -20.03 21.46 29.09 20.77
115 193.40000 -20.03 21.46 29.08 20.77
116 193.45000 -20.03 21.46 29.07 20.77
117 193.50000 -20.03 21.46 29.06 20.77
118 193.55000 -20.03 21.46 29.05 20.76
119 193.60000 -20.03 21.46 29.04 20.76
120 193.65000 -20.03 21.46 29.03 20.76
121 193.70000 -20.03 21.46 29.02 20.76
122 193.75000 -20.03 21.46 29.01 20.75
123 193.80000 -20.03 21.46 29.00 20.75
124 193.85000 -20.03 21.45 28.99 20.75
125 193.90000 -20.03 21.45 28.99 20.75
126 193.95000 -20.03 21.45 28.98 20.75
127 194.00000 -20.03 21.45 28.97 20.74
128 194.05000 -20.03 21.45 28.97 20.74
129 194.10000 -20.03 21.45 28.96 20.74
130 194.15000 -20.03 21.45 28.96 20.74
131 194.20000 -20.03 21.45 28.96 20.74
132 194.25000 -20.03 21.45 28.95 20.74
133 194.30000 -20.03 21.45 28.95 20.74
134 194.35000 -20.03 21.44 28.95 20.73
135 194.40000 -20.03 21.44 28.95 20.73
136 194.45000 -20.03 21.44 28.95 20.73
137 194.50000 -20.03 21.44 28.96 20.73
138 194.55000 -20.03 21.44 28.96 20.73
139 194.60000 -20.03 21.44 28.97 20.73
140 194.65000 -20.03 21.44 28.98 20.73
141 194.70000 -20.03 21.44 28.99 20.74
142 194.75000 -20.03 21.44 29.01 20.74
143 194.80000 -20.03 21.44 29.04 20.74
144 194.85000 -20.03 21.43 29.07 20.74
145 194.90000 -20.03 21.43 29.12 20.75
146 194.95000 -20.03 21.43 29.18 20.76
147 195.00000 -20.03 21.43 29.28 20.77
148 195.05000 -20.03 21.43 29.44 20.79
149 195.10000 -20.03 21.43 29.84 20.84
(Invalid source node 'Site_A' replaced with trx Site_A)
(Invalid destination node 'Site_D' replaced with trx Site_D)

Some files were not shown because too many files have changed in this diff Show More