43 Commits
v2.7 ... v2.8

Author SHA1 Message Date
Esther Le Rouzic
28871c6f2d Merge pull request #480 from jktjkt/python-3.12
CI: Python 3.12 and extended platform coverage
2023-11-23 17:54:02 +01:00
EstherLerouzic
5a5bed56c2 Add test on _check_one_request function
Add the call to the function, and creates additional test cases to raise the
different situations related to spectrum slots:
- M value too small
- total nb of channels too small
- overlapping

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7ab3923deef2ff154ee1be21dcaeb3d9e4b84375
2023-11-17 16:26:12 +01:00
EstherLerouzic
22de1b1281 Add tests on aggregation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5409d847657fbe14f7963ff56546d0bedbf6c941
2023-11-17 16:26:12 +01:00
EstherLerouzic
73e1485b47 aggregate demands with defined mode and spectrum
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id9fc2e0fe6f6ff5a3996700f6db7dfa6222dc3ca
2023-11-17 16:26:12 +01:00
EstherLerouzic
22ee05ea6f Add more tests for multiple slots spectrum assignment
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id773f0f14cfe80b7ebcf07370170ad425faf0919
2023-11-17 16:23:48 +01:00
EstherLerouzic
31824f318d Enable multiple slots assignment
list of slot may include (N, M) values such as
(int, uint>0)
(int, None)
(None, uint>0)
(None, None)

Demands will be splitted into requested slots according to first fit strategy.
For example, if request is for 32 slots corresponding to 8 x 4slots 32Gbauds
channels, the following frequency slots will result in the following
assignments:
example 1
N = 0, 8,    16, 32           -> 0,   8,   16,   32
M = 8, None, 8,  None         -> 8,   8,    8,    8
example 2
N = 0,    8,    16, 32        -> 0,   , 16
M = None, None, 8,  None      -> 24,  , 8

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ice9bb4b5700d23bcf30db25aa4882e74853169ac
2023-11-17 16:23:48 +01:00
EstherLerouzic
b0cb604e91 Remove old commented code
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idd2fcca0fe757eb801ab575953828c6df0521bb4
2023-11-17 16:23:48 +01:00
EstherLerouzic
79102e283a Refactor function to simplify the process
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I362d23a969c338ccd70caecc4e59e991d2a8d8a2
2023-11-17 16:23:48 +01:00
EstherLerouzic
db5e63d51b Refactor spectrum selection function
Cut some functions into smaller pieces to be easily re-used afterwards.
This step to prepare multiple slots assignment.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0fa2df7f6174e54405f92a57d60289d560c1166
2023-11-17 16:23:48 +01:00
EstherLerouzic
af42699133 Enable the loading of a bitmap
OMS are currently built with a brand new spectrum bitmap using f_min, f_max,
guard band and grid values. This changes enables to load an existing bitmap.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0547bc337c863a3510ad9e43928e6f64701d295
2023-11-17 16:23:48 +01:00
EstherLerouzic
4ba77d0a0a Change rq.N and rq.M from scalar to list
Prepare for the next step, to be able to handle lists of candidate assignment

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2bd78606ce4502f68efb60f85892df5f76d52bb5
2023-11-17 16:23:48 +01:00
EstherLerouzic
064d3af8e0 Remove line number from invocation logs
line numbers are useful for debugging, but the benefit does not
compensate for the painful update of lines in files at each commit
that changes line numbers.
So I have removed those lines only for the test_invocation logs case.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic1f628d80b204a9a098f3902ebdfd10b480c7613
2023-11-17 11:56:06 +01:00
AndreaDAmico
4ab5bac45f EDFA Parameters restructuring
The parameters of the EDFA are explicitely retrieved in the EDFAParams class.
All the defaults are set instead in the gnpy.tool.json_io.AMP class.
Where required, the AMP.default_values are used instead of an empty dictionary.

Change-Id: Iba80a6a56bc89feb7e959b54b9bd424ec9b0bf06
Co-authored-by: Vittorio Gatto <vittoriogatto98@gmail.com>
2023-11-17 09:08:00 +01:00
AndreaDAmico
bbe5fb7821 Chromatic Dispersion scaling along frequency
The chromatic dispersion and dispersion slope can be provided as a single values evaluated at the fiber reference frequency or in a dictionary containing the dispersion values evaluated at multiple frequencies:
"dispersion": {"value": [], "frequency": []}

Change-Id: I81429484dd373cc49bd9baf013247782ba1912fd
2023-11-17 09:04:44 +01:00
AndreaDAmico
edf1eec072 Nonlinear coefficient scaling along frequency
The nonlinear coefficient can be expressed at the reference frequency and will be scaled in frequency using the scaling rule of the effective area

Change-Id: Id103b227472702776bda17ab0a2a120ecfbf7473
2023-11-17 08:53:58 +01:00
AndreaDAmico
88ac41f721 Seprating the eta matrix evaluation in compute nli
The evaluation of the eta matrix is reintroduced for nli evaluation and validation purposes. Also, the parameters for cut and pump are separated explicitelly.

Change-Id: Id3844fa8ba41a5d4f5a72d281d758136ee983f45
2023-11-17 08:51:35 +01:00
AndreaDAmico
c20e6fb320 Effective Area and Raman Gain Coefficient Scaling
1. Effective area scaling along frequency is implemented by means of a technological model.
2. Raman gain coefficient is extended coherently, including the scaling due to the pump frequency.

Change-Id: I4e8b79697500ef0f73ba2f969713d9bdb3e9949c
Co-authored-by: Giacomo Borraccini <giacomo.borraccini@polito.it>
2023-11-17 08:51:26 +01:00
Jan Kundrát
05500c7047 CI: run tests on Apple M1 CPUs as well (64bit ARM)
Note that on GitHub, this currently targets a "runner" that's behind a
paywall. TIP does have a payment setup in place AFAICT, so we make sure
that this job does not run on forks.

Change-Id: I50c556424d86a1ce47e59911b9e39f336df34ce5
2023-11-15 20:37:26 +01:00
Jan Kundrát
86a39f4b5e packaging: mark Python 3.12 as supported
Change-Id: If3c8ea7d5a7651b71379a71e5dfde6b464aa5b4a
2023-11-15 20:06:55 +01:00
Jan Kundrát
2b25609255 CI: test on Python 3.12 and some new platforms
Change-Id: Ice5c3ca21245c4ac87cb2bf4f0fd062596615a2e
2023-11-15 20:06:55 +01:00
Jan Kundrát
7e0b95bcfd Bump all dependencies
Change-Id: Id08b7722880b992b1bb70f53ad243d4f40ffe387
2023-11-15 20:06:54 +01:00
Jan Kundrát
f0a52dcc8a tests: upgrade pandas
There are no binary wheels for Python 3.12 prior to pandas v2.1.1. Our
previous pin requested the 1.x branch, and that resulted in building
Pandas from source, which takes time. We cannot pin to 2.1.1 because
they removed support of Python 3.8 in 2.1, so 2.0.3 it is.

Change-Id: Ia9a567e54f4dda19a0a6b67d0c295a9a079892de
2023-11-15 20:05:54 +01:00
EstherLerouzic
3bea4b3c9f Feat: improve sanity check for eqpt sheet
add cases of wrong sheets that were not captured and
generate errors later in propagation:
- if the eqpt line is duplicated
- if the eqpt contains a link that is not present in Links sheet,
  but Nodes are OK
- if the same link is defined but with opposite directions
- if the ila is defined twice with opposite directions
- if the service type or mode are not in the library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4715886e19f07380bf02ed0e664559972bb39b71
2023-11-02 10:14:03 +01:00
EstherLerouzic
f2cc9f7225 Add more logs
and test them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I05ffc3a75354fa8d8f3a668973ab7f4cbcfa1a98
2023-11-02 10:01:38 +01:00
Esther Le Rouzic
e79f9f51b6 Merge "Feat: add offset power option for transceivers" 2023-10-31 08:30:13 +00:00
Esther Le Rouzic
7fd7f94efe Merge "Refactor error message" 2023-10-31 08:29:58 +00:00
Esther Le Rouzic
0acdf9d9f6 Merge "docs: rename the Matrix channel" 2023-10-27 15:09:16 +00:00
EstherLerouzic
a3edb20142 Feat: add offset power option for transceivers
Offset power is used for equalization purpose to correct for the
generic equalization target set in ROADM for this particular transceiver.
This is usefull to handle exception to the general equalization rule.
For example in the case of constant power equalization, the user might
want to apply particular power offsets unrelated to slot width or baudrate.
or in constant PSW, the user might want to have a given mode equalized for
a different value than the one computed based on the request bandwidth.

For example consider that a transceiver mode is meant to be equalized with
75 GHz whatever the spacing specified in request. then the user may specify
2 flavours depending on used spacing:

  service 1 : mode 3, spacing 75GHz
  service 2 : mode 4, spacing 87.5Ghz
avec
  {
    "format": "mode 3",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 75e9,
    "cost": 1
  }

  {
    "format": "mode 4",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 87.5e9,
    "equalization_offset_db": -0.67,
    "cost": 1
  }

then the same target power would be considered for mode3 and mode4
despite using a different slot width

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I437f75c42f257b88b24207260ef9ec9b1ab7066e
2023-10-24 13:20:00 +02:00
EstherLerouzic
33cc11b85c Refactor error message
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie8fc6bedcdbce26e2e80759c6c56d2c7429bf560
2023-10-24 13:20:00 +02:00
Jan Kundrát
5d079ab261 docs: rename the Matrix channel
It seems that the Matrix server at `foss.wtf` disappeared some time ago
with no details posted anywhere. I've marked the long-existing channel
alias `#oopt-gnpy:matrix.org` as the primary one, so let's adjust the
docs so that new people can actually join this channel.

This should have no consequences on people who have already joined.

Change-Id: Idee9c050ff5cb1c3926e5d4cf751002ad1541e71
2023-10-03 01:50:11 +02:00
AndreaDAmico
a3b1157e38 Fiber latency calculation
Fiber latency evaluated during propagation. The speed of ligth in fiber is evaluated as the vacuum speed of ligth  divided by the core reflective index n1.
The latency in the transceiver is evaluated in ms.

Change-Id: I7a3638c49f346aecaf1d4897cecf96d345fdb26c
2023-08-07 18:29:03 +02:00
AndreaDAmico
70731b64d6 fix: include position of lumped losses in Raman profile
In the previous version, the position of the lumped losses were not
included in the result Raman profile. As the latter is then used to
evaluate the NLI, including the lumped loss positions is required for
accurate estimations.

Change-Id: I683f48ceb7139d1a8be03d2e7ca7e3abffecbe85
2023-07-24 17:13:15 +02:00
AndreaDAmico
4ea0180caf tests: prefer pandas.read_csv over numpy.genfromtext
Change-Id: Icc9618afc4cad0c7a07f3a785c99b6b438e0c6cc
2023-07-24 17:12:25 +02:00
AndreaDAmico
eb2363a3d4 Fix: lumped losses included in total fiber loss
In previous version, the lumped losses where not included in the fiber loss, creating an inaccurate overall power balance.

Change-Id: I98a4d37b9cc0526218fe3c6f2b9318b6fa797901
2023-07-06 15:19:07 +02:00
EstherLerouzic
41b94cc888 fix: don't crash if PMD, PDL or CD penalties are missing in transceivers
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iafc248af3ecfcd4da4c1135fd3a37da796cdfb5f
2023-05-09 10:11:26 +02:00
Jan Kundrát
1eeb6a0583 Merge changes Icd0b4fbd,I3ca81bcd,Ia33315f0
* changes:
  docs: docstring formatting
  SimParams: less boilerplate
  python: prefer isinstance(foo, Bar) over type(foo) == Bar
2023-04-18 23:01:30 +00:00
Jan Kundrát
215c20e245 Merge "fix: add missing PSW case for power computation" 2023-04-18 00:41:45 +00:00
Jan Kundrát
76e9146043 docs: docstring formatting
Let's use the pythonic indenting, quoting and structure in general as
specified in PEP 0257.

Change-Id: Icd0b4fbd94dabd9a163ae3f6887b236e76c486ab
2023-04-18 01:34:19 +02:00
Jan Kundrát
2a07eec966 SimParams: less boilerplate
The code look as if it was trying to prevent direct instantiation of the
SimParams class. However, instance *creation* in Python is actually
handled via `__new__` which was not overridden. In addition, the
`get()` accessor was invoking `SimParams.__new__()` directly, which
meant that this class was instantiated each time it was needed.

Let's cut the boilerplate by getting rid of the extra step and just use
the regular constructor.

This patch doesn't change anything in actual observable behavior. I
still do not like this implicit singleton design pattern, but nuking
that will have to wait until some other time.

Change-Id: I3ca81bcd0042e91b4f6b7581879922611f18febe
2023-04-17 23:06:31 +02:00
Jan Kundrát
cc994bf118 python: prefer isinstance(foo, Bar) over type(foo) == Bar
Use of isinstance() is more Python and it also allows inheritance to
work properly.

Change-Id: Ia33315f0e3faf6638334bec85d0fa92ea8ac81f0
2023-04-17 23:02:51 +02:00
EstherLerouzic
37e70e622c fix: add missing PSW case for power computation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5fa9135cdde1735ec142bc88d8fdf0aa03b13a41
2023-04-13 16:48:21 +02:00
Florian FRANK
7d9a508955 Fix 2 minor typos in docs/model.rst
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: Ic2160f554b120b011c941aca36b69a0f032cf45f
2023-04-13 09:33:19 +02:00
Florian FRANK
185adabd77 Fix bug of comparison dimension when Raman is allowed and loss_coef is a vector instead of a scalar
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: I0b39d102b9200ec25ed62e6f53b1e0addcc66f67
2023-04-11 17:30:24 +02:00
73 changed files with 4158 additions and 2038 deletions

View File

@@ -29,7 +29,8 @@ jobs:
- py38
- py39
- py310
- py311-cover
- py311
- py312-cover
include:
- tox_env: docs
dnf_install: graphviz
@@ -46,7 +47,7 @@ jobs:
- uses: actions/setup-python@v4
name: Install Python
with:
python-version: '3.11'
python-version: '3.12'
- uses: casperdcl/deploy-pypi@bb869aafd89f657ceaafe9561d3b5584766c0f95
with:
password: ${{ secrets.PYPI_API_TOKEN }}
@@ -116,5 +117,31 @@ jobs:
python_version: "3.10"
- os: windows-2022
python_version: "3.11"
- os: windows-2022
python_version: "3.12"
- os: macos-12
python_version: "3.11"
- os: macos-13
python_version: "3.12"
paywalled-platforms:
name: Tests on paywalled platforms
if: github.repository_owner == 'Telecominfraproject'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- run: |
pip install -r tests/requirements.txt
pip install --editable .
pytest -vv
strategy:
fail-fast: false
matrix:
include:
- os: macos-13-xlarge # Apple M1 CPU
python_version: "3.12"

View File

@@ -8,7 +8,7 @@
[![Contributors](https://img.shields.io/github/contributors-anon/Telecominfraproject/oopt-gnpy)](https://github.com/Telecominfraproject/oopt-gnpy/graphs/contributors)
[![Code Coverage via codecov](https://img.shields.io/codecov/c/github/Telecominfraproject/oopt-gnpy)](https://codecov.io/gh/Telecominfraproject/oopt-gnpy)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3458319.svg)](https://doi.org/10.5281/zenodo.3458319)
[![Matrix chat](https://img.shields.io/matrix/oopt-gnpy:matrix.org)](https://matrix.to/#/%23oopt-gnpy%3Afoss.wtf?via=matrix.org&via=foss.wtf)
[![Matrix chat](https://img.shields.io/matrix/oopt-gnpy:matrix.org)](https://matrix.to/#/%23oopt-gnpy%3Amatrix.org?via=matrix.org)
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks.
We are a consortium of operators, vendors, and academic researchers sponsored via the [Telecom Infra Project](http://telecominfraproject.com)'s [OOPT/PSE](https://telecominfraproject.com/open-optical-packet-transport) working group.

View File

@@ -1848,3 +1848,15 @@ month={Sept},}
title = {Telecom Infra Project},
url = {https://www.telecominfraproject.com},
}
@ARTICLE{DAmicoJLT2022,
author={DAmico, Andrea and Correia, Bruno and London, Elliot and Virgillito,
Emanuele and Borraccini, Giacomo and Napoli, Antonio and Curri, Vittorio},
journal={Journal of Lightwave Technology},
title={Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network},
year={2022},
volume={40},
number={11},
pages={3499-3511},
doi={10.1109/JLT.2022.3162134}
}

View File

@@ -61,40 +61,69 @@ Fiber
The fiber library currently describes SSMF and NZDF but additional fiber types can be entered by the user following the same model:
+----------------------+-----------+------------------------------------------+
| field | type | description |
+======================+===========+==========================================+
| ``type_variety`` | (string) | a unique name to ID the fiber in the |
| | | JSON or Excel template topology input |
| | | file |
+----------------------+-----------+------------------------------------------+
| ``dispersion`` | (number) | In :math:`s \times m^{-1} \times m^{-1}`.|
+----------------------+-----------+------------------------------------------+
| ``dispersion_slope`` | (number) | In :math:`s \times m^{-1} \times m^{-1} |
| | | \times m^{-1}` |
+----------------------+-----------+------------------------------------------+
| ``effective_area`` | (number) | Effective area of the fiber (not just |
| | | the MFD circle). This is the |
| | | :math:`A_{eff}`, see e.g., the |
| | | `Corning whitepaper on MFD/EA`_. |
| | | Specified in :math:`m^{2}`. |
+----------------------+-----------+------------------------------------------+
| ``gamma`` | (number) | Coefficient :math:`\gamma = 2\pi\times |
| | | n^2/(\lambda*A_{eff})`. |
| | | If not provided, this will be derived |
| | | from the ``effective_area`` |
| | | :math:`A_{eff}`. |
| | | In :math:`w^{-1} \times m^{-1}`. |
+----------------------+-----------+------------------------------------------+
| ``pmd_coef`` | (number) | Polarization mode dispersion (PMD) |
| | | coefficient. In |
| | | :math:`s\times\sqrt{m}^{-1}`. |
+----------------------+-----------+------------------------------------------+
| ``lumped_losses`` | (array) | Places along the fiber length with extra |
| | | losses. Specified as a loss in dB at |
| | | each relevant position (in km): |
| | | ``{"position": 10, "loss": 1.5}``) |
+----------------------+-----------+------------------------------------------+
+------------------------------+-----------------+------------------------------------------------+
| field | type | description |
+==============================+=================+================================================+
| ``type_variety`` | (string) | a unique name to ID the fiber in the |
| | | JSON or Excel template topology input |
| | | file |
+------------------------------+-----------------+------------------------------------------------+
| ``dispersion`` | (number) | In :math:`s \times m^{-1} \times m^{-1}`. |
+------------------------------+-----------------+------------------------------------------------+
| ``dispersion_slope`` | (number) | In :math:`s \times m^{-1} \times m^{-1} |
| | | \times m^{-1}` |
+------------------------------+-----------------+------------------------------------------------+
| ``dispersion_per_frequency`` | (dict) | Dictionary of dispersion values evaluated at |
| | | various frequencies, as follows: |
| | | ``{"value": [], "frequency": []}``. |
| | | ``value`` in |
| | | :math:`s \times m^{-1} \times m^{-1}` and |
| | | ``frequency`` in Hz. |
+------------------------------+-----------------+------------------------------------------------+
| ``effective_area`` | (number) | Effective area of the fiber (not just |
| | | the MFD circle). This is the |
| | | :math:`A_{eff}`, see e.g., the |
| | | `Corning whitepaper on MFD/EA`_. |
| | | Specified in :math:`m^{2}`. |
+------------------------------+-----------------+------------------------------------------------+
| ``gamma`` | (number) | Coefficient :math:`\gamma = 2\pi\times |
| | | n^2/(\lambda*A_{eff})`. |
| | | If not provided, this will be derived |
| | | from the ``effective_area`` |
| | | :math:`A_{eff}`. |
| | | In :math:`w^{-1} \times m^{-1}`. |
| | | This quantity is evaluated at the |
| | | reference frequency and it is scaled |
| | | along frequency accordingly to the |
| | | effective area scaling. |
+------------------------------+-----------------+------------------------------------------------+
| ``pmd_coef`` | (number) | Polarization mode dispersion (PMD) |
| | | coefficient. In |
| | | :math:`s\times\sqrt{m}^{-1}`. |
+------------------------------+-----------------+------------------------------------------------+
| ``lumped_losses`` | (array) | Places along the fiber length with extra |
| | | losses. Specified as a loss in dB at |
| | | each relevant position (in km): |
| | | ``{"position": 10, "loss": 1.5}``) |
+------------------------------+-----------------+------------------------------------------------+
| ``raman_coefficient`` | (dict) | The fundamental parameter that describes |
| | | the regulation of the power transfer |
| | | between channels during fiber propagation |
| | | is the Raman gain coefficient (see |
| | | :cite:`DAmicoJLT2022` for further |
| | | details); :math:`f_{ref}` represents the |
| | | pump reference frequency used for the |
| | | Raman gain coefficient profile |
| | | measurement ("reference_frequency"), |
| | | :math:`\Delta f` is the frequency shift |
| | | between the pump and the specific Stokes |
| | | wave, the Raman gain coefficient |
| | | in terms of optical power |
| | | :math:`g_0`, expressed in |
| | | :math:`1/(m\;W)`. |
| | | Default values measured for a SSMF are |
| | | considered when not specified. |
+------------------------------+-----------------+------------------------------------------------+
.. _Corning whitepaper on MFD/EA: https://www.corning.com/microsites/coc/oem/documents/specialty-fiber/WP7071-Mode-Field-Diam-and-Eff-Area.pdf

View File

@@ -126,9 +126,9 @@ that can be easily evaluated extending the FWM theory from a set of discrete
tones - the standard FWM theory introduced back in the 90s by Inoue
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
Signals propagating in the fiber are not equivalent to Gaussian noise, but
thanks to the absence of in-line compensation for choromatic dispersion, the
thanks to the absence of in-line compensation for chromatic dispersion, the
become so, over short distances. So, the Gaussian noise model with incoherent
accumulation of NLI has estensively proved to be a quick yet accurate and
accumulation of NLI has extensively proved to be a quick yet accurate and
conservative tool to estimate propagation impairments of fiber propagation.
Note that the GN-model has not been derived with the aim of an *exact*
performance estimation, but to pursue a conservative performance prediction.

View File

@@ -1,8 +1,8 @@
'''
"""
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks. It is based on the Gaussian Noise Model.
Signal propagation is implemented in :py:mod:`.core`.
Path finding and spectrum assignment is in :py:mod:`.topology`.
Various tools and auxiliary code, including the JSON I/O handling, is in
:py:mod:`.tools`.
'''
"""

View File

@@ -1,4 +1,4 @@
'''
"""
Simulation of signal propagation in the DWDM network
Optical signals, as defined via :class:`.info.SpectralInformation`, enter
@@ -6,4 +6,4 @@ Optical signals, as defined via :class:`.info.SpectralInformation`, enter
through the :py:mod:`.network`.
The simulation is controlled via :py:mod:`.parameters` and implemented mainly
via :py:mod:`.science_utils`.
'''
"""

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.ansi_escapes
======================
A random subset of ANSI terminal escape codes for colored messages
'''
"""
red = '\x1b[1;31;40m'
blue = '\x1b[1;34;40m'

View File

@@ -26,7 +26,7 @@ from scipy.constants import h, c
from scipy.interpolate import interp1d
from collections import namedtuple
from typing import Union
from logging import getLogger
from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum, per_label_average, pretty_summary_print, \
watt2dbm, psd2powerdbm
@@ -36,17 +36,20 @@ from gnpy.core.info import SpectralInformation, ReferenceCarrier
from gnpy.core.exceptions import NetworkTopologyError, SpectrumError, ParametersError
_logger = getLogger(__name__)
class Location(namedtuple('Location', 'latitude longitude city region')):
def __new__(cls, latitude=0, longitude=0, city=None, region=None):
return super().__new__(cls, latitude, longitude, city, region)
class _Node:
'''Convenience class for providing common functionality of all network elements
"""Convenience class for providing common functionality of all network elements
This class is just an internal implementation detail; do **not** assume that all network elements
inherit from :class:`_Node`.
'''
"""
def __init__(self, uid, name=None, params=None, metadata=None, operational=None, type_variety=None):
if name is None:
name = uid
@@ -87,12 +90,13 @@ class Transceiver(_Node):
self.chromatic_dispersion = None
self.pmd = None
self.pdl = None
self.latency = None
self.penalties = {}
self.total_penalty = 0
self.propagated_labels = [""]
def _calc_cd(self, spectral_info):
""" Updates the Transceiver property with the CD of the received channels. CD in ps/nm.
"""Updates the Transceiver property with the CD of the received channels. CD in ps/nm.
"""
self.chromatic_dispersion = spectral_info.chromatic_dispersion * 1e3
@@ -106,6 +110,11 @@ class Transceiver(_Node):
"""
self.pdl = spectral_info.pdl
def _calc_latency(self, spectral_info):
"""Updates the Transceiver property with the latency of the received channels. Latency in ms.
"""
self.latency = spectral_info.latency * 1e3
def _calc_penalty(self, impairment_value, boundary_list):
return interp(impairment_value, boundary_list['up_to_boundary'], boundary_list['penalty_value'],
left=float('inf'), right=float('inf'))
@@ -172,6 +181,7 @@ class Transceiver(_Node):
f'chromatic_dispersion={self.chromatic_dispersion!r}, '
f'pmd={self.pmd!r}, '
f'pdl={self.pdl!r}, '
f'latency={self.latency!r}, '
f'penalties={self.penalties!r})')
def __str__(self):
@@ -185,6 +195,7 @@ class Transceiver(_Node):
cd = mean(self.chromatic_dispersion)
pmd = mean(self.pmd)
pdl = mean(self.pdl)
latency = mean(self.latency)
result = '\n'.join([f'{type(self).__name__} {self.uid}',
f' GSNR (0.1nm, dB): {pretty_summary_print(snr_01nm)}',
@@ -193,7 +204,8 @@ class Transceiver(_Node):
f' OSNR ASE (signal bw, dB): {pretty_summary_print(osnr_ase)}',
f' CD (ps/nm): {cd:.2f}',
f' PMD (ps): {pmd:.2f}',
f' PDL (dB): {pdl:.2f}'])
f' PDL (dB): {pdl:.2f}',
f' Latency (ms): {latency:.2f}'])
cd_penalty = self.penalties.get('chromatic_dispersion')
if cd_penalty is not None:
@@ -212,6 +224,7 @@ class Transceiver(_Node):
self._calc_cd(spectral_info)
self._calc_pmd(spectral_info)
self._calc_pdl(spectral_info)
self._calc_latency(spectral_info)
return spectral_info
@@ -222,7 +235,8 @@ class Roadm(_Node):
try:
super().__init__(*args, params=RoadmParams(**params), **kwargs)
except ParametersError as e:
raise ParametersError(f'Config error in {kwargs["uid"]}: {e}') from e
msg = f'Config error in {kwargs["uid"]}: {e}'
raise ParametersError(msg) from e
# Target output power for the reference carrier, can only be computed on the fly, because it depends
# on the path, since it depends on the equalization definition on the degree.
@@ -336,6 +350,8 @@ class Roadm(_Node):
return self.per_degree_pch_out_dbm[degree]
elif degree in self.per_degree_pch_psd:
return psd2powerdbm(self.per_degree_pch_psd[degree], spectral_info.baud_rate)
elif degree in self.per_degree_pch_psw:
return psd2powerdbm(self.per_degree_pch_psw[degree], spectral_info.slot_width)
return self.get_roadm_target_power(spectral_info=spectral_info)
def propagate(self, spectral_info, degree):
@@ -449,21 +465,14 @@ class Fiber(_Node):
def __init__(self, *args, params=None, **kwargs):
if not params:
params = {}
super().__init__(*args, params=FiberParams(**params), **kwargs)
try:
super().__init__(*args, params=FiberParams(**params), **kwargs)
except ParametersError as e:
msg = f'Config error in {kwargs["uid"]}: {e}'
raise ParametersError(msg) from e
self.pch_out_db = None
self.passive = True
self.propagated_labels = [""]
# Raman efficiency matrix function of the delta frequency constructed such that each row is related to a
# fixed frequency: positive elements represent a gain (from higher frequency) and negative elements represent
# a loss (to lower frequency)
if self.params.raman_efficiency:
frequency_offset = self.params.raman_efficiency['frequency_offset']
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
cr = self.params.raman_efficiency['cr']
cr = append(- flip(cr[1:]), cr)
self._cr_function = lambda frequency: interp(frequency, frequency_offset, cr)
else:
self._cr_function = lambda frequency: zeros(squeeze(frequency).shape)
# Lumped losses
z_lumped_losses = array([lumped['position'] for lumped in self.params.lumped_losses]) # km
@@ -513,28 +522,32 @@ class Fiber(_Node):
f' reference pch out (dBm): {self.pch_out_db:.2f}',
f' actual pch out (dBm): {total_pch}'])
def interpolate_parameter_over_spectrum(self, parameter, ref_frequency, spectrum_frequency, name):
try:
interpolation = interp1d(ref_frequency, parameter)(spectrum_frequency)
return interpolation
except ValueError:
raise SpectrumError('The spectrum bandwidth exceeds the frequency interval used to define the fiber '
f'{name} in "{type(self).__name__} {self.uid}".'
f'\nSpectrum f_min-f_max: {round(spectrum_frequency[0] * 1e-12, 2)}-'
f'{round(spectrum_frequency[-1] * 1e-12, 2)}'
f'\n{name} f_min-f_max: {round(ref_frequency[0] * 1e-12, 2)}-'
f'{round(ref_frequency[-1] * 1e-12, 2)}')
def loss_coef_func(self, frequency):
frequency = asarray(frequency)
if self.params.loss_coef.size > 1:
try:
loss_coef = interp1d(self.params.f_loss_ref, self.params.loss_coef)(frequency)
except ValueError:
raise SpectrumError('The spectrum bandwidth exceeds the frequency interval used to define the fiber '
f'loss coefficient in "{type(self).__name__} {self.uid}".'
f'\nSpectrum f_min-f_max: {round(frequency[0]*1e-12,2)}-'
f'{round(frequency[-1]*1e-12,2)}'
f'\nLoss coefficient f_min-f_max: {round(self.params.f_loss_ref[0]*1e-12,2)}-'
f'{round(self.params.f_loss_ref[-1]*1e-12,2)}')
loss_coef = self.interpolate_parameter_over_spectrum(self.params.loss_coef, self.params.f_loss_ref,
frequency, 'Loss Coefficient')
else:
loss_coef = full(frequency.size, self.params.loss_coef)
return squeeze(loss_coef)
@property
def loss(self):
"""total loss including padding att_in: useful for polymorphism with roadm loss"""
return self.loss_coef_func(self.params.ref_frequency) * self.params.length + \
self.params.con_in + self.params.con_out + self.params.att_in
self.params.con_in + self.params.con_out + self.params.att_in + sum(lin2db(1 / self.lumped_losses))
def alpha(self, frequency):
"""Returns the linear exponent attenuation coefficient such that
@@ -545,16 +558,71 @@ class Fiber(_Node):
"""
return self.loss_coef_func(frequency) / (10 * log10(exp(1)))
def beta2(self, frequency=None):
"""Returns the beta2 chromatic dispersion coefficient as the second order term of the beta function
expanded as a Taylor series evaluated at the given frequency
:param frequency: the frequency at which alpha is computed [Hz]
:return: beta2: beta2 chromatic dispersion coefficient for f in frequency # 1/(m * Hz^2)
"""
frequency = asarray(self.params.ref_frequency if frequency is None else frequency)
if self.params.dispersion.size > 1:
dispersion = self.interpolate_parameter_over_spectrum(self.params.dispersion, self.params.f_dispersion_ref,
frequency, 'Chromatic Dispersion')
else:
if self.params.dispersion_slope is None:
dispersion = (frequency / self.params.f_dispersion_ref) ** 2 * self.params.dispersion
else:
wavelength = c / frequency
dispersion = self.params.dispersion + self.params.dispersion_slope * \
(wavelength - c / self.params.f_dispersion_ref)
beta2 = -((c / frequency) ** 2 * dispersion) / (2 * pi * c)
return beta2
def beta3(self, frequency=None):
"""Returns the beta3 chromatic dispersion coefficient as the third order term of the beta function
expanded as a Taylor series evaluated at the given frequency
:param frequency: the frequency at which alpha is computed [Hz]
:return: beta3: beta3 chromatic dispersion coefficient for f in frequency # 1/(m * Hz^3)
"""
frequency = asarray(self.params.ref_frequency if frequency is None else frequency)
if self.params.dispersion.size > 1:
beta3 = polyfit(self.params.f_dispersion_ref - self.params.ref_frequency,
self.beta2(self.params.f_dispersion_ref), 2)[1] / (2*pi)
beta3 = full(frequency.size, beta3)
else:
if self.params.dispersion_slope is None:
beta3 = zeros(frequency.size)
else:
dispersion_slope = self.params.dispersion_slope
beta2 = self.beta2(frequency)
beta3 = (dispersion_slope - (4 * pi * frequency ** 3 / c ** 2) * beta2) / (
2 * pi * frequency ** 2 / c) ** 2
return beta3
def gamma(self, frequency=None):
"""Returns the nonlinear interference coefficient such that
:math: `gamma(f) = 2 pi f n_2 c^{-1} A_{eff}^{-1}`
:param frequency: the frequency at which gamma is computed [Hz]
:return: gamma: nonlinear interference coefficient for f in frequency [1/(W m)]
"""
frequency = self.params.ref_frequency if frequency is None else frequency
return self.params.gamma_scaling(frequency)
def cr(self, frequency):
"""Returns the raman efficiency matrix including the vibrational loss
"""Returns the raman gain coefficient matrix including the vibrational loss
:param frequency: the frequency at which cr is computed [Hz]
:return: cr: raman efficiency matrix [1 / (W m)]
:return: cr: raman gain coefficient matrix [1 / (W m)]
"""
df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
cr = self._cr_function(df)
effective_area_overlap = self.params.effective_area_overlap(frequency, frequency)
cr = interp(df, self.params.raman_coefficient.frequency_offset,
self.params.raman_coefficient.normalized_gamma_raman) * frequency / effective_area_overlap
vibrational_loss = outer(frequency, ones(frequency.shape)) / outer(ones(frequency.shape), frequency)
return cr * (cr >= 0) + cr * (cr < 0) * vibrational_loss # Raman efficiency [1/(W m)]
return cr * (cr >= 0) + cr * (cr < 0) * vibrational_loss # [1/(W m)]
def chromatic_dispersion(self, freq=None):
"""Returns accumulated chromatic dispersion (CD).
@@ -563,8 +631,8 @@ class Fiber(_Node):
:return: chromatic dispersion: the accumulated dispersion [s/m]
"""
freq = self.params.ref_frequency if freq is None else freq
beta2 = self.params.beta2
beta3 = self.params.beta3
beta2 = self.beta2(freq)
beta3 = self.beta3(freq)
ref_f = self.params.ref_frequency
length = self.params.length
beta = beta2 + 2 * pi * beta3 * (freq - ref_f)
@@ -594,6 +662,9 @@ class Fiber(_Node):
spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
# latency
spectral_info.latency += self.params.latency
# apply the attenuation due to the fiber losses
attenuation_fiber = stimulated_raman_scattering.loss_profile[:, -1]
spectral_info.apply_attenuation_lin(attenuation_fiber)
@@ -667,6 +738,9 @@ class RamanFiber(Fiber):
spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
# latency
spectral_info.latency += self.params.latency
# apply the attenuation due to the fiber losses
attenuation_fiber = stimulated_raman_scattering.loss_profile[:spectral_info.number_of_channels, -1]

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.equipment
===================
This module contains functionality for specifying equipment.
'''
"""
from gnpy.core.utils import automatic_nch, db2lin
from gnpy.core.exceptions import EquipmentConfigError
@@ -29,8 +29,11 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
trx_params = {**mode_params}
# sanity check: spacing baudrate must be smaller than min spacing
if trx_params['baud_rate'] > trx_params['min_spacing']:
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" ' +
f'has baud rate {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transponder "{trx_type_variety}"'
+ f' mode "{trx_params["format"]}" has baud rate'
+ f' {trx_params["baud_rate"] * 1e-9:.3f} GHz greater than min_spacing'
+ f' {trx_params["min_spacing"] * 1e-9:.3f}.')
trx_params['equalization_offset_db'] = trx_params.get('equalization_offset_db', 0)
else:
mode_params = {"format": "undetermined",
"baud_rate": None,
@@ -40,7 +43,8 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
"roll_off": None,
"tx_osnr": None,
"min_spacing": None,
"cost": None}
"cost": None,
"equalization_offset_db": 0}
trx_params = {**mode_params}
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
@@ -66,6 +70,7 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
trx_params['roll_off'] = default_si_data.roll_off
trx_params['tx_osnr'] = default_si_data.tx_osnr
trx_params['min_spacing'] = None
trx_params['equalization_offset_db'] = 0
trx_params['power'] = db2lin(default_si_data.power_dbm) * 1e-3

View File

@@ -27,23 +27,27 @@ class Power(namedtuple('Power', 'signal nli ase')):
"""carriers power in W"""
class Channel(namedtuple('Channel',
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl')):
""" Class containing the parameters of a WDM signal.
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param slot_width: the slot width (Hz)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param pdl: polarization dependent loss (dB)
class Channel(
namedtuple('Channel',
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl latency')):
"""Class containing the parameters of a WDM signal.
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param slot_width: the slot width (Hz)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param pdl: polarization dependent loss (dB)
:param latency: propagation latency (s)
"""
class Pref(namedtuple('Pref', 'p_span0, p_spani, ref_carrier')):
"""noiseless reference power in dBm:
p_span0: inital target carrier power for a reference channel defined by user
p_spani: carrier power after element i for a reference channel defined by user
ref_carrier records the baud rate of the reference channel
@@ -51,12 +55,13 @@ class Pref(namedtuple('Pref', 'p_span0, p_spani, ref_carrier')):
class SpectralInformation(object):
""" Class containing the parameters of the entire WDM comb.
"""Class containing the parameters of the entire WDM comb.
delta_pdb_per_channel: (per frequency) per channel delta power in dbm for the actual mix of channels"""
def __init__(self, frequency: array, baud_rate: array, slot_width: array, signal: array, nli: array, ase: array,
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array, delta_pdb_per_channel: array,
tx_osnr: array, ref_power: Pref, label: array):
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array, latency: array,
delta_pdb_per_channel: array, tx_osnr: array, ref_power: Pref, label: array):
indices = argsort(frequency)
self._frequency = frequency[indices]
self._df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
@@ -81,6 +86,7 @@ class SpectralInformation(object):
self._chromatic_dispersion = chromatic_dispersion[indices]
self._pmd = pmd[indices]
self._pdl = pdl[indices]
self._latency = latency[indices]
self._delta_pdb_per_channel = delta_pdb_per_channel[indices]
self._tx_osnr = tx_osnr[indices]
self._pref = ref_power
@@ -177,6 +183,14 @@ class SpectralInformation(object):
def pdl(self, pdl):
self._pdl = pdl
@property
def latency(self):
return self._latency
@latency.setter
def latency(self, latency):
self._latency = latency
@property
def delta_pdb_per_channel(self):
return self._delta_pdb_per_channel
@@ -200,7 +214,7 @@ class SpectralInformation(object):
@property
def carriers(self):
entries = zip(self.channel_number, self.frequency, self.baud_rate, self.slot_width,
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl)
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl, self.latency)
return [Channel(*entry) for entry in entries]
def apply_attenuation_lin(self, attenuation_lin):
@@ -239,6 +253,7 @@ class SpectralInformation(object):
other.chromatic_dispersion),
pmd=append(self.pmd, other.pmd),
pdl=append(self.pdl, other.pdl),
latency=append(self.latency, other.latency),
delta_pdb_per_channel=append(self.delta_pdb_per_channel,
other.delta_pdb_per_channel),
tx_osnr=append(self.tx_osnr, other.tx_osnr),
@@ -252,6 +267,7 @@ class SpectralInformation(object):
self.chromatic_dispersion = array([c.chromatic_dispersion for c in carriers])
self.pmd = array([c.pmd for c in carriers])
self.pdl = array([c.pdl for c in carriers])
self.latency = array([c.latency for c in carriers])
self.signal = array([c.power.signal for c in carriers])
self.nli = array([c.power.nli for c in carriers])
self.ase = array([c.power.ase for c in carriers])
@@ -269,6 +285,7 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, fl
chromatic_dispersion: Union[float, ndarray, Iterable] = 0.,
pmd: Union[float, ndarray, Iterable] = 0.,
pdl: Union[float, ndarray, Iterable] = 0.,
latency: Union[float, ndarray, Iterable] = 0.,
ref_power: Pref = None,
label: Union[str, ndarray, Iterable] = None):
"""This is just a wrapper around the SpectralInformation.__init__() that simplifies the creation of
@@ -284,6 +301,7 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, fl
chromatic_dispersion = full(number_of_channels, chromatic_dispersion)
pmd = full(number_of_channels, pmd)
pdl = full(number_of_channels, pdl)
latency = full(number_of_channels, latency)
nli = zeros(number_of_channels)
ase = zeros(number_of_channels)
delta_pdb_per_channel = full(number_of_channels, delta_pdb_per_channel)
@@ -293,7 +311,7 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, fl
signal=signal, nli=nli, ase=ase,
baud_rate=baud_rate, roll_off=roll_off,
chromatic_dispersion=chromatic_dispersion,
pmd=pmd, pdl=pdl,
pmd=pmd, pdl=pdl, latency=latency,
delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr,
ref_power=ref_power, label=label)
@@ -304,14 +322,15 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, fl
raise
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing, tx_osnr, ref_carrier=None):
""" Creates a fixed slot width spectral information with flat power.
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing, tx_osnr, delta_pdb=0,
ref_carrier=None):
"""Creates a fixed slot width spectral information with flat power.
all arguments are scalar values"""
number_of_channels = automatic_nch(f_min, f_max, spacing)
frequency = [(f_min + spacing * i) for i in range(1, number_of_channels + 1)]
p_span0 = watt2dbm(power)
p_spani = watt2dbm(power)
delta_pdb_per_channel = zeros(number_of_channels)
delta_pdb_per_channel = delta_pdb * ones(number_of_channels)
label = [f'{baud_rate * 1e-9 :.2f}G' for i in range(number_of_channels)]
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=power, baud_rate=baud_rate,
roll_off=roll_off, delta_pdb_per_channel=delta_pdb_per_channel,

View File

@@ -1,19 +1,25 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.core.network
=================
Working with networks which consist of network elements
'''
"""
from operator import attrgetter
from gnpy.core import ansi_escapes, elements
from collections import namedtuple
from logging import getLogger
from gnpy.core import elements
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
from gnpy.core.utils import round2float, convert_length
from gnpy.core.info import ReferenceCarrier
from collections import namedtuple
from gnpy.tools.json_io import Amp
logger = getLogger(__name__)
def edfa_nf(gain_target, variety_type, equipment):
@@ -104,10 +110,9 @@ def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restri
please increase span fiber padding')
else:
# TODO: convert to logging
print(
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain in node {uid} is below all available amplifiers min gain: \
amplifier input padding will be assumed, consider increase span fiber padding instead'
)
logger.warning(f'\n\tWARNING: target gain in node {uid} is below all available amplifiers min gain: '
+ '\n\tamplifier input padding will be assumed, consider increase span fiber padding '
+ 'instead.\n')
acceptable_gain_min_list = edfa_list
# filter on gain+power limitation:
@@ -129,12 +134,9 @@ def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restri
# check what are the gain and power limitations of this amp
power_reduction = round(min(selected_edfa.power, 0), 2)
if power_reduction < -0.5:
print(
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain and power in node {uid}\n \
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
a power reduction of {power_reduction} is applied\n'
)
logger.warning(f'\n\tWARNING: target gain and power in node {uid}\n'
+ '\tis beyond all available amplifiers capabilities and/or extended_gain_range:\n'
+ f'\ta power reduction of {power_reduction} is applied\n')
return selected_edfa.variety, power_reduction
@@ -235,8 +237,7 @@ def set_amplifier_voa(amp, power_target, power_mode):
def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_db):
""" this node can be a transceiver or a ROADM (same function called in both cases)
"""
"""this node can be a transceiver or a ROADM (same function called in both cases)"""
power_mode = equipment['Span']['default'].power_mode
ref_carrier = ReferenceCarrier(baud_rate=equipment['SI']['default'].baud_rate,
slot_width=equipment['SI']['default'].spacing)
@@ -283,7 +284,7 @@ def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_d
if isinstance(prev_node, elements.Fiber):
max_fiber_lineic_loss_for_raman = \
equipment['Span']['default'].max_fiber_lineic_loss_for_raman * 1e-3 # dB/m
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
raman_allowed = (prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman).all()
else:
raman_allowed = False
@@ -306,21 +307,21 @@ def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_d
else:
if node.params.raman and not raman_allowed:
if isinstance(prev_node, elements.Fiber):
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n '
'but fiber lineic loss is above threshold\n')
logger.warning(f'\n\tWARNING: raman is used in node {node.uid}\n '
+ '\tbut fiber lineic loss is above threshold\n')
else:
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n '
'but previous node is not a fiber\n')
logger.critical(f'\n\tWARNING: raman is used in node {node.uid}\n '
+ '\tbut previous node is not a fiber\n')
# if variety is imposed by user, and if the gain_target (computed or imposed) is also above
# variety max gain + extended range, then warn that gain > max_gain + extended range
if gain_target - equipment['Edfa'][node.params.type_variety].gain_flatmax - \
equipment['Span']['default'].target_extended_gain > 1e-2:
# 1e-2 to allow a small margin according to round2float min step
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: '
f'WARNING: effective gain in Node {node.uid} is above user '
f'specified amplifier {node.params.type_variety}\n'
f'max flat gain: {equipment["Edfa"][node.params.type_variety].gain_flatmax}dB ; '
f'required gain: {gain_target}dB. Please check amplifier type.')
logger.warning(f'\n\tWARNING: effective gain in Node {node.uid}\n'
+ f'\tis above user specified amplifier {node.params.type_variety}\n'
+ '\tmax flat gain: '
+ f'{equipment["Edfa"][node.params.type_variety].gain_flatmax}dB ; '
+ f'required gain: {gain_target}dB. Please check amplifier type.\n')
node.delta_p = dp if power_mode else None
node.effective_gain = gain_target
@@ -362,7 +363,7 @@ def add_roadm_booster(network, roadm):
network.remove_edge(roadm, next_node)
amp = elements.Edfa(
uid=f'Edfa_booster_{roadm.uid}_to_{next_node.uid}',
params={},
params=Amp.default_values,
metadata={
'location': {
'latitude': roadm.lat,
@@ -388,7 +389,7 @@ def add_roadm_preamp(network, roadm):
network.remove_edge(prev_node, roadm)
amp = elements.Edfa(
uid=f'Edfa_preamp_{roadm.uid}_from_{prev_node.uid}',
params={},
params=Amp.default_values,
metadata={
'location': {
'latitude': roadm.lat,
@@ -417,7 +418,7 @@ def add_inline_amplifier(network, fiber):
network.remove_edge(fiber, next_node)
amp = elements.Edfa(
uid=f'Edfa_{fiber.uid}',
params={},
params=Amp.default_values,
metadata={
'location': {
'latitude': (fiber.lat + next_node.lat) / 2,

View File

@@ -7,9 +7,10 @@ gnpy.core.parameters
This module contains all parameters to configure standard network elements.
"""
from collections import namedtuple
from scipy.constants import c, pi
from numpy import asarray, array
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
from gnpy.core.utils import convert_length
from gnpy.core.exceptions import ParametersError
@@ -35,7 +36,8 @@ class PumpParams(Parameters):
class RamanParams(Parameters):
def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
""" Simulation parameters used within the Raman Solver
"""Simulation parameters used within the Raman Solver
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
@@ -48,7 +50,8 @@ class RamanParams(Parameters):
class NLIParams(Parameters):
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
computed_channels=None):
""" Simulation parameters used within the Nli Solver
"""Simulation parameters used within the Nli Solver
:params method: formula for NLI calculation
:params dispersion_tolerance: tuning parameter for ggn model solution
:params phase_shift_tolerance: tuning parameter for ggn model solution
@@ -63,20 +66,11 @@ class NLIParams(Parameters):
class SimParams(Parameters):
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
def __init__(self):
if type(self) == SimParams:
raise NotImplementedError('Instances of SimParams cannot be generated')
@classmethod
def set_params(cls, sim_params):
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
@classmethod
def get(cls):
self = cls.__new__(cls)
return self
@property
def nli_params(self):
return self._shared_dict['nli_params']
@@ -113,26 +107,50 @@ class FusedParams(Parameters):
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
# SSMF Raman coefficient profile normalized with respect to the effective area (Cr * A_eff)
CR_NORM = array([
0., 7.802e-16, 2.4236e-15, 4.0504e-15, 5.6606e-15, 6.8973e-15, 7.802e-15, 8.4162e-15, 8.8727e-15, 9.2877e-15,
1.01011e-14, 1.05244e-14, 1.13295e-14, 1.2367e-14, 1.3695e-14, 1.5023e-14, 1.64091e-14, 1.81936e-14, 2.04927e-14,
2.28167e-14, 2.48917e-14, 2.66098e-14, 2.82615e-14, 2.98136e-14, 3.1042e-14, 3.17558e-14, 3.18803e-14, 3.17558e-14,
3.15566e-14, 3.11748e-14, 2.94567e-14, 3.14985e-14, 2.8552e-14, 2.43439e-14, 1.67992e-14, 9.6114e-15, 7.02180e-15,
5.9262e-15, 5.6938e-15, 7.055e-15, 7.4119e-15, 7.4783e-15, 6.7645e-15, 5.5361e-15, 3.6271e-15, 2.7224e-15,
2.4568e-15, 2.1995e-15, 2.1331e-15, 2.3323e-15, 2.5564e-15, 3.0461e-15, 4.8555e-15, 5.5029e-15, 5.2788e-15,
4.565e-15, 3.3698e-15, 2.2991e-15, 2.0086e-15, 1.5521e-15, 1.328e-15, 1.162e-15, 9.379e-16, 8.715e-16, 8.134e-16,
8.134e-16, 9.379e-16, 1.3612e-15, 1.6185e-15, 1.9754e-15, 1.8758e-15, 1.6849e-15, 1.2284e-15, 9.047e-16, 8.134e-16,
8.715e-16, 9.711e-16, 1.0375e-15, 1.0043e-15, 9.047e-16, 8.134e-16, 6.806e-16, 5.478e-16, 3.901e-16, 2.241e-16,
1.577e-16, 9.96e-17, 3.32e-17, 1.66e-17, 8.3e-18])
DEFAULT_RAMAN_COEFFICIENT = {
# SSMF Raman coefficient profile normalized with respect to the effective area overlap (g0 * A_eff(f_probe, f_pump))
'g0': array(
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
), # [m/W]
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
FREQ_OFFSET = array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75, 19.,
19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5, 29., 29.5,
30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5, 39., 39.5, 40.,
40.5, 41., 41.5, 42.]) * 1e12
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
'frequency_offset': array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
12.,
12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75, 19.,
19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5, 29.,
29.5,
30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5, 39., 39.5,
40.,
40.5, 41., 41.5, 42.]
) * 1e12, # [Hz]
# Raman profile reference frequency
'reference_frequency': 206184634112792 # [Hz] (1454 nm)}
}
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
""" Raman Gain Coefficient Parameters
Based on:
Andrea DAmico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
J. Lightwave Technol. 40, 3499-3511 (2022)
Section III.D
"""
class FiberParams(Parameters):
@@ -146,6 +164,8 @@ class FiberParams(Parameters):
# with default values from eqpt_config.json[Spans]
self._con_in = kwargs.get('con_in')
self._con_out = kwargs.get('con_out')
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
if 'ref_wavelength' in kwargs:
self._ref_wavelength = kwargs['ref_wavelength']
self._ref_frequency = c / self._ref_wavelength
@@ -155,35 +175,70 @@ class FiberParams(Parameters):
else:
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
self._ref_frequency = c / self._ref_wavelength
self._dispersion = kwargs['dispersion'] # s/m/m
self._dispersion_slope = \
kwargs.get('dispersion_slope', -2 * self._dispersion / self.ref_wavelength) # s/m/m/m
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
# (accessed on 25 March 2018) (2005).
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
(2*pi*c/self.ref_wavelength**2)**2)
# Chromatic Dispersion
if 'dispersion_per_frequency' in kwargs:
# Frequency-dependent dispersion
self._dispersion = asarray(kwargs['dispersion']['value']) # s/m/m
self._f_dispersion_ref = asarray(kwargs['dispersion']['frequency']) # Hz
self._dispersion_slope = None
elif 'dispersion' in kwargs:
# Single value dispersion
self._dispersion = asarray(kwargs['dispersion']) # s/m/m
self._dispersion_slope = kwargs.get('dispersion_slope') # s/m/m/m
self._f_dispersion_ref = asarray(self._ref_frequency) # Hz
else:
# Default single value dispersion
self._dispersion = asarray(1.67e-05) # s/m/m
self._dispersion_slope = None
self._f_dispersion_ref = asarray(self.ref_frequency) # Hz
# Effective Area and Nonlinear Coefficient
self._effective_area = kwargs.get('effective_area') # m^2
n2 = 2.6e-20 # m^2/W
if self._effective_area:
self._gamma = kwargs.get('gamma', 2 * pi * n2 / (self.ref_wavelength * self._effective_area)) # 1/W/m
self._n1 = 1.468
self._core_radius = 4.2e-6 # m
self._n2 = 2.6e-20 # m^2/W
if self._effective_area is not None:
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
elif 'gamma' in kwargs:
self._gamma = kwargs['gamma'] # 1/W/m
self._effective_area = 2 * pi * n2 / (self.ref_wavelength * self._gamma) # m^2
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
else:
self._gamma = 0 # 1/W/m
self._effective_area = 83e-12 # m^2
default_raman_efficiency = {'cr': CR_NORM / self._effective_area, 'frequency_offset': FREQ_OFFSET}
self._raman_efficiency = kwargs.get('raman_efficiency', default_raman_efficiency)
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
pi * self._core_radius ** 2 / self._effective_area)) ** 2
# Raman Gain Coefficient
raman_coefficient = kwargs.get('raman_coefficient', DEFAULT_RAMAN_COEFFICIENT)
self._g0 = asarray(raman_coefficient['g0'])
raman_reference_frequency = raman_coefficient['reference_frequency']
frequency_offset = asarray(raman_coefficient['frequency_offset'])
stokes_wave = raman_reference_frequency - frequency_offset
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, raman_reference_frequency)
normalized_gamma_raman = gamma_raman / raman_reference_frequency # 1 / m / W / Hz
self._raman_reference_frequency = raman_reference_frequency
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
# represent a positive power transfer from higher frequency and vice versa
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
# Polarization Mode Dispersion
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
if type(kwargs['loss_coef']) == dict:
# Loss Coefficient
if isinstance(kwargs['loss_coef'], dict):
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
else:
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(self._ref_frequency) # Hz
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else []
# Lumped Losses
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
self._latency = self._length / (c / self._n1) # s
except KeyError as e:
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
@@ -228,6 +283,10 @@ class FiberParams(Parameters):
def dispersion(self):
return self._dispersion
@property
def f_dispersion_ref(self):
return self._f_dispersion_ref
@property
def dispersion_slope(self):
return self._dispersion_slope
@@ -236,6 +295,20 @@ class FiberParams(Parameters):
def gamma(self):
return self._gamma
def effective_area_scaling(self, frequency):
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
w = self._core_radius / sqrt(log(V))
return asarray(pi * w ** 2)
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
effective_area_pump = self.effective_area_scaling(frequency_pump)
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
def gamma_scaling(self, frequency):
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
@property
def pmd_coef(self):
return self._pmd_coef
@@ -248,14 +321,6 @@ class FiberParams(Parameters):
def ref_frequency(self):
return self._ref_frequency
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def loss_coef(self):
return self._loss_coef
@@ -265,36 +330,125 @@ class FiberParams(Parameters):
return self._f_loss_ref
@property
def raman_efficiency(self):
return self._raman_efficiency
def raman_coefficient(self):
return self._raman_coefficient
@property
def latency(self):
return self._latency
def asdict(self):
dictionary = super().asdict()
dictionary['loss_coef'] = self.loss_coef * 1e3
dictionary['length_units'] = 'm'
if not self.lumped_losses:
if len(self.lumped_losses) == 0:
dictionary.pop('lumped_losses')
if not self.raman_efficiency:
dictionary.pop('raman_efficiency')
if not self.raman_coefficient:
dictionary.pop('raman_coefficient')
else:
raman_frequency_offset = \
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
'frequency_offset': raman_frequency_offset.tolist(),
'reference_frequency': self._raman_reference_frequency}
return dictionary
class EdfaParams:
def __init__(self, **params):
self.update_params(params)
if params == {}:
self.type_variety = ''
self.type_def = ''
# self.gain_flatmax = 0
# self.gain_min = 0
# self.p_max = 0
# self.nf_model = None
# self.nf_fit_coeff = None
# self.nf_ripple = None
# self.dgt = None
# self.gain_ripple = None
# self.out_voa_auto = False
# self.allowed_for_design = None
try:
self.type_variety = params['type_variety']
self.type_def = params['type_def']
# Bandwidth
self.f_min = params['f_min']
self.f_max = params['f_max']
self.bandwidth = self.f_max - self.f_min
self.f_cent = (self.f_max + self.f_min) / 2
self.f_ripple_ref = params['f_ripple_ref']
# Gain
self.gain_flatmax = params['gain_flatmax']
self.gain_min = params['gain_min']
gain_ripple = params['gain_ripple']
if gain_ripple == 0:
self.gain_ripple = asarray([0, 0])
self.f_ripple_ref = asarray([self.f_min, self.f_max])
else:
self.gain_ripple = asarray(gain_ripple)
if self.f_ripple_ref is not None:
if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
"with the EDFA frequency maximum and minimum.")
elif self.gain_ripple.size != self.f_ripple_ref.size:
raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
"size.")
else:
self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
tilt_ripple = params['tilt_ripple']
if tilt_ripple == 0:
self.tilt_ripple = full(self.gain_ripple.size, 0)
else:
self.tilt_ripple = asarray(tilt_ripple)
if self.tilt_ripple.size != self.gain_ripple.size:
raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
# Power
self.p_max = params['p_max']
# Noise Figure
self.nf_model = params['nf_model']
self.nf_min = params['nf_min']
self.nf_max = params['nf_max']
self.nf_coef = params['nf_coef']
self.nf0 = params['nf0']
self.nf_fit_coeff = params['nf_fit_coeff']
nf_ripple = params['nf_ripple']
if nf_ripple == 0:
self.nf_ripple = full(self.gain_ripple.size, 0)
else:
self.nf_ripple = asarray(nf_ripple)
if self.nf_ripple.size != self.gain_ripple.size:
raise ParametersError("The noise figure ripple and the gain ripple must have the same size.")
# VOA
self.out_voa_auto = params['out_voa_auto']
# Dual Stage
self.dual_stage_model = params['dual_stage_model']
if self.dual_stage_model is not None:
# Preamp
self.preamp_variety = params['preamp_variety']
self.preamp_type_def = params['preamp_type_def']
self.preamp_nf_model = params['preamp_nf_model']
self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
self.preamp_gain_min = params['preamp_gain_min']
self.preamp_gain_flatmax = params['preamp_gain_flatmax']
# Booster
self.booster_variety = params['booster_variety']
self.booster_type_def = params['booster_type_def']
self.booster_nf_model = params['booster_nf_model']
self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
self.booster_gain_min = params['booster_gain_min']
self.booster_gain_flatmax = params['booster_gain_flatmax']
# Others
self.pmd = params['pmd']
self.pdl = params['pdl']
self.raman = params['raman']
self.dgt = params['dgt']
self.advance_configurations_from_json = params['advance_configurations_from_json']
# Design
self.allowed_for_design = params['allowed_for_design']
except KeyError as e:
raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
def update_params(self, kwargs):
for k, v in kwargs.items():

View File

@@ -10,9 +10,9 @@ Solver definitions to calculate the Raman effect and the nonlinear interference
The solvers take as input instances of the spectral information, the fiber and the simulation parameters
"""
from numpy import interp, pi, zeros, shape, where, cos, array, append, ones, exp, arange, sqrt, trapz, arcsinh, \
clip, abs, sum, concatenate, flip, outer, inner, transpose, max, format_float_scientific, diag, prod, argwhere, \
unique, argsort, cumprod
from numpy import interp, pi, zeros, cos, array, append, ones, exp, arange, sqrt, trapz, arcsinh, clip, abs, sum, \
concatenate, flip, outer, inner, transpose, max, format_float_scientific, diag, sort, unique, argsort, cumprod, \
polyfit
from logging import getLogger
from scipy.constants import k, h
from scipy.interpolate import interp1d
@@ -24,31 +24,30 @@ from gnpy.core.parameters import SimParams
from gnpy.core.info import SpectralInformation
logger = getLogger(__name__)
sim_params = SimParams.get()
sim_params = SimParams()
def raised_cosine_comb(f, *carriers):
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
channels at the input frequencies defined in array f
:param f: numpy array of frequencies in Hz
:param carriers: namedtuple describing the WDM comb
:return: PSD of the WDM comb evaluated over f
def raised_cosine(frequency, channel_frequency, channel_baud_rate, channel_roll_off):
"""Returns a unitary raised cosine profile for the given parame
:param frequency: numpy array of frequencies in Hz for the resulting raised cosine
:param channel_frequency: channel frequencies in Hz
:param channel_baud_rate: channel baud rate in Hz
:param channel_roll_off: channel roll off
"""
psd = zeros(shape(f))
for carrier in carriers:
f_nch = carrier.frequency
g_ch = carrier.power.signal / carrier.baud_rate
ts = 1 / carrier.baud_rate
pass_band = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
stop_band = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
ff = abs(f - f_nch)
tf = ff - pass_band
if carrier.roll_off == 0:
psd = where(tf <= 0, g_ch, 0.) + psd
else:
psd = g_ch * (where(tf <= 0, 1., 0.) + 1 / 2 * (1 + cos(pi * ts / carrier.roll_off * tf)) *
where(tf > 0, 1., 0.) * where(abs(ff) <= stop_band, 1., 0.)) + psd
return psd
raised_cosine_mask = zeros(frequency.size)
base_frequency = frequency - channel_frequency
ts = 1 / channel_baud_rate
pass_band = (1 - channel_roll_off) * channel_baud_rate / 2
stop_band = (1 + channel_roll_off) * channel_baud_rate / 2
flat_condition = (abs(base_frequency) <= pass_band) == 1
cosine_condition = (pass_band < abs(base_frequency)) * (abs(base_frequency) < stop_band) == 1
raised_cosine_mask[flat_condition] = 1
raised_cosine_mask[cosine_condition] = \
0.5 * (1 + cos(pi * ts / channel_roll_off * (abs(base_frequency[cosine_condition]) - pass_band)))
return raised_cosine_mask
class StimulatedRamanScattering:
@@ -110,6 +109,7 @@ class RamanSolver:
z_step = sim_params.raman_params.solver_spatial_resolution
z = append(arange(0, fiber.params.length, z_step), fiber.params.length)
z_final = append(arange(0, fiber.params.length, z_resolution), fiber.params.length)
z_final = sort(unique(concatenate((fiber.z_lumped_losses, z_final))))
# Lumped losses array definition
z, lumped_losses = RamanSolver._create_lumped_losses(z, fiber.lumped_losses, fiber.z_lumped_losses)
@@ -190,13 +190,13 @@ class RamanSolver:
# calculate ase power
ase = zeros(spectral_info.number_of_channels)
cr = fiber.cr(srs.frequency)[:spectral_info.number_of_channels, spectral_info.number_of_channels:]
for i, pump in enumerate(fiber.raman_pumps):
pump_power = srs.power_profile[spectral_info.number_of_channels + i, :]
df = pump.frequency - frequency
eta = - 1 / (1 - exp(h * df / (k * fiber.temperature)))
cr = fiber._cr_function(df)
integral = trapz(pump_power / channels_loss, z, axis=1)
ase += 2 * h * baud_rate * frequency * (1 + eta) * cr * (df > 0) * integral # 2 factor for double pol
ase += 2 * h * baud_rate * frequency * (1 + eta) * cr[:, i] * (df > 0) * integral # 2 factor for double pol
return ase
@staticmethod
@@ -271,13 +271,16 @@ class RamanSolver:
class NliSolver:
""" This class implements the NLI models.
Model and method can be specified in `sim_params.nli_params.method`.
List of implemented methods:
'gn_model_analytic': eq. 120 from arXiv:1209.0394
'ggn_spectrally_separated': eq. 21 from arXiv: 1710.02225 spectrally separated
"""This class implements the NLI models.
Model and method can be specified in `sim_params.nli_params.method`.
List of implemented methods:
'gn_model_analytic': eq. 120 from arXiv:1209.0394
'ggn_spectrally_separated': eq. 21 from arXiv: 1710.02225
"""
SPM_WEIGHT = (16.0 / 27.0)
XPM_WEIGHT = 2 * (16.0 / 27.0)
@staticmethod
def effective_length(alpha, length):
"""The effective length identify the region in which the NLI has a significant contribution to
@@ -287,58 +290,81 @@ class NliSolver:
@staticmethod
def compute_nli(spectral_info: SpectralInformation, srs: StimulatedRamanScattering, fiber):
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
"""Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
at the end of the fiber span.
"""
logger.debug('Start computing fiber NLI noise')
# Physical fiber parameters
alpha = fiber.alpha(spectral_info.frequency)
beta2 = fiber.params.beta2
beta3 = fiber.params.beta3
f_ref_beta = fiber.params.ref_frequency
gamma = fiber.params.gamma
length = fiber.params.length
if 'gn_model_analytic' == sim_params.nli_params.method:
nli = NliSolver._gn_analytic(spectral_info, alpha, beta2, gamma, length)
eta = NliSolver._gn_analytic(spectral_info, fiber)
cut_power = outer(spectral_info.signal, ones(spectral_info.number_of_channels))
pump_power = outer(ones(spectral_info.number_of_channels), spectral_info.signal)
nli_matrix = cut_power * pump_power ** 2 * eta
nli = sum(nli_matrix, 1)
elif 'ggn_spectrally_separated' in sim_params.nli_params.method:
nli = NliSolver._ggn_spectrally_separated(spectral_info, srs, alpha, beta2, beta3, f_ref_beta, gamma)
if sim_params.nli_params.computed_channels is not None:
cut_indices = array(sim_params.nli_params.computed_channels) - 1
else:
cut_indices = array(spectral_info.channel_number) - 1
eta = NliSolver._ggn_spectrally_separated(cut_indices, spectral_info, fiber, srs)
# Interpolation over the channels not indicated as compted channels in simulation parameters
cut_power = outer(spectral_info.signal[cut_indices], ones(spectral_info.number_of_channels))
cut_frequency = spectral_info.frequency[cut_indices]
pump_power = outer(ones(cut_indices.size), spectral_info.signal)
cut_baud_rate = outer(spectral_info.baud_rate[cut_indices], ones(spectral_info.number_of_channels))
g_nli = eta * cut_power * pump_power**2 / cut_baud_rate
g_nli = sum(g_nli, 1)
g_nli = interp(spectral_info.frequency, cut_frequency, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
else:
raise ValueError(f'Method {sim_params.nli_params.method} not implemented.')
return nli
# Methods for computing GN-model
# Methods for computing GN-model eta matrix
@staticmethod
def _gn_analytic(spectral_info: SpectralInformation, alpha, beta2, gamma, length):
""" Computes the nonlinear interference power evaluated at the fiber input.
def _gn_analytic(spectral_info, fiber, spm_weight=SPM_WEIGHT, xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 120 from arXiv:1209.0394
"""
spm_weight = (16.0 / 27.0) * gamma ** 2
xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
delta_frequency = spectral_info.df
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency), ones(nch))
length = fiber.params.length
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
effective_length = NliSolver.effective_length(alpha, length)
asymptotic_length = 1 / alpha
df = spectral_info.df
baud_rate = spectral_info.baud_rate
cut_baud_rate = outer(baud_rate, ones(nch))
pump_baud_rate = outer(ones(nch), baud_rate)
psd = spectral_info.signal / baud_rate
ggg = outer(psd, psd**2)
psi = NliSolver._psi(df, baud_rate, beta2, effective_length, asymptotic_length)
g_nli = sum(weight * ggg * psi, 1)
nli = spectral_info.baud_rate * g_nli # Local white noise
return nli
psi = NliSolver._psi(delta_frequency, baud_rate, beta2, effective_length, asymptotic_length)
eta_cut_central_frequency = gamma ** 2 * weight * psi / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _psi(df, baud_rate, beta2, effective_length, asymptotic_length):
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
cut_baud_rate = outer(baud_rate, ones(baud_rate.size))
cut_beta = outer(beta2, ones(baud_rate.size))
pump_baud_rate = baud_rate
pump_beta = outer(ones(baud_rate.size), beta2)
beta2 = (cut_beta + pump_beta) / 2
right_extreme = df + pump_baud_rate / 2
left_extreme = df - pump_baud_rate / 2
psi = (arcsinh(pi ** 2 * asymptotic_length * abs(beta2) * cut_baud_rate * right_extreme) -
@@ -346,112 +372,133 @@ class NliSolver:
psi *= effective_length ** 2 / (2 * pi * abs(beta2) * asymptotic_length)
return psi
# Methods for computing the GGN-model
# Methods for computing the GGN-model eta matrix
@staticmethod
def _ggn_spectrally_separated(spectral_info: SpectralInformation, srs: StimulatedRamanScattering,
alpha, beta2, beta3, f_ref_beta, gamma):
""" Computes the nonlinear interference power evaluated at the fiber input.
def _ggn_spectrally_separated(cut_indices, spectral_info, fiber, srs, spm_weight=SPM_WEIGHT, xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 21 from arXiv: 1710.02225
"""
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
slot_width = spectral_info.slot_width
roll_off = spectral_info.roll_off
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency[cut_indices]), ones(nch))
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
weight = weight[cut_indices, :]
dispersion_tolerance = sim_params.nli_params.dispersion_tolerance
phase_shift_tolerance = sim_params.nli_params.phase_shift_tolerance
slot_width = max(spectral_info.slot_width)
max_slot_width = max(slot_width)
delta_z = sim_params.raman_params.result_spatial_resolution
spm_weight = (16.0 / 27.0) * gamma ** 2
xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2
cuts = [carrier for carrier in spectral_info.carriers if carrier.channel_number
in sim_params.nli_params.computed_channels] if sim_params.nli_params.computed_channels \
else spectral_info.carriers
g_nli = array([])
f_nli = array([])
for cut_carrier in cuts:
logger.debug(f'Start computing fiber NLI noise of cut: {cut_carrier}')
f_eval = cut_carrier.frequency
g_nli_computed = 0
g_cut = (cut_carrier.power.signal / cut_carrier.baud_rate)
for j, pump_carrier in enumerate(spectral_info.carriers):
dn = abs(pump_carrier.channel_number - cut_carrier.channel_number)
delta_f = abs(cut_carrier.frequency - pump_carrier.frequency)
k_tol = dispersion_tolerance * abs(alpha[j])
psi_cut_central_frequency = zeros([cut_indices.size, nch])
for i, cut_index in enumerate(cut_indices):
logger.debug(f'Start computing fiber NLI noise of cut: {cut_index + 1}')
cut_frequency = frequency[cut_index]
cut_baud_rate = baud_rate[cut_index]
cut_roll_off = roll_off[cut_index]
cut_number = cut_index + 1
cut_beta2 = beta2[cut_index]
cut_base_frequency = frequency - cut_frequency
cut_beta_coefficients = polyfit(cut_base_frequency, beta2, 2)
cut_beta3 = cut_beta_coefficients[1] / (2 * pi)
for pump_index in range(nch):
pump_frequency = frequency[pump_index]
pump_baud_rate = baud_rate[pump_index]
pump_roll_off = roll_off[pump_index]
pump_number = pump_index + 1
pump_alpha = alpha[pump_index]
dn = abs(pump_number - cut_number)
delta_f = abs(cut_frequency - pump_frequency)
k_tol = dispersion_tolerance * abs(alpha[pump_index])
phi_tol = phase_shift_tolerance / delta_z
f_cut_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * (1 + dn) * slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * slot_width)
if dn == 0: # SPM
ggg = g_cut ** 3
g_nli_computed += \
spm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, f_pump_resolution,
srs, alpha[j], beta2, beta3, f_ref_beta)
f_cut_resolution = min(k_tol, phi_tol) / abs(cut_beta2) / (4 * pi ** 2 * (1 + dn) * max_slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(cut_beta2) / (4 * pi ** 2 * max_slot_width)
if cut_index == pump_index: # SPM
psi_cut_central_frequency[i, pump_index] = \
NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off, f_cut_resolution,
f_pump_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
else: # XPM
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
ggg = g_cut * g_pump ** 2
frequency_offset_threshold = NliSolver._frequency_offset_threshold(beta2, pump_carrier.baud_rate)
frequency_offset_threshold = NliSolver._frequency_offset_threshold(cut_beta2, pump_baud_rate)
if abs(delta_f) <= frequency_offset_threshold:
g_nli_computed += \
xpm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, f_pump_resolution,
srs, alpha[j], beta2, beta3, f_ref_beta)
psi_cut_central_frequency[i, pump_index] = \
NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off, f_cut_resolution,
f_pump_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
else:
g_nli_computed += \
xpm_weight * ggg * NliSolver._fast_generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, srs, alpha[j], beta2,
beta3, f_ref_beta)
f_nli = append(f_nli, cut_carrier.frequency)
g_nli = append(g_nli, g_nli_computed)
g_nli = interp(spectral_info.frequency, f_nli, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
return nli
psi_cut_central_frequency[i, pump_index] = \
NliSolver._fast_generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off,
f_cut_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
cut_baud_rate = outer(baud_rate[cut_indices], ones(nch))
pump_baud_rate = outer(ones(cut_indices.size), baud_rate)
eta_cut_central_frequency = \
gamma ** 2 * weight * psi_cut_central_frequency / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _fast_generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, srs, alpha, beta2, beta3,
f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha/2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency)
f1_array = array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)])
f2_array = arange(cut_carrier.frequency,
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = zeros(len(f1_array))
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * pi ** 2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate
return generalized_psi
@staticmethod
def _generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, f_pump_resolution, srs, alpha, beta2,
beta3, f_ref_beta):
def _fast_generalized_psi(f_eval, cut_frequency, cut_baud_rate, cut_roll_off, pump_frequency, pump_baud_rate,
pump_roll_off, f_cut_resolution, srs, alpha, beta2, beta3, f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha / 2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency)
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_frequency)
f1_array = arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
f1_array = array([pump_frequency - (pump_baud_rate * (1 + pump_roll_off) / 2),
pump_frequency + (pump_baud_rate * (1 + pump_roll_off) / 2)])
f2_array = arange(cut_frequency, cut_frequency + (cut_baud_rate * (1 + cut_roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = zeros(f1_array.size)
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * pi ** 2 * (f1 - f_eval) * (f2_array - f_eval) * (
beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_baud_rate
return generalized_psi
@staticmethod
def _generalized_psi(f_eval, cut_frequency, cut_baud_rate, cut_roll_off, pump_frequency, pump_baud_rate,
pump_roll_off, f_cut_resolution, f_pump_resolution, srs, alpha, beta2, beta3, f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha / 2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_frequency)
f1_array = arange(pump_frequency - (pump_baud_rate * (1 + pump_roll_off) / 2),
pump_frequency + (pump_baud_rate * (1 + pump_roll_off) / 2),
f_pump_resolution)
f2_array = arange(cut_carrier.frequency - (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
f2_array = arange(cut_frequency - (cut_baud_rate * (1 + cut_roll_off) / 2),
cut_frequency + (cut_baud_rate * (1 + cut_roll_off) / 2),
f_cut_resolution)
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
rc1 = raised_cosine(f1_array, pump_frequency, pump_baud_rate, pump_roll_off)
integrand_f1 = zeros(len(f1_array))
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
f3_array = f1 + f2_array - f_eval
psd2 = raised_cosine_comb(f2_array, cut_carrier) * (cut_carrier.baud_rate / cut_carrier.power.signal)
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
ggg = psd1_sample * psd2 * psd3
delta_beta = 4 * pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = ggg * NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = trapz(integrand_f2, f2_array)
integrand_f1 = zeros(f1_array.size)
for i in range(f1_array.size):
f3_array = f1_array[i] + f2_array - f_eval
rc2 = raised_cosine(f2_array, cut_frequency, cut_baud_rate, cut_roll_off)
rc3 = raised_cosine(f3_array, pump_frequency, pump_baud_rate, pump_roll_off)
delta_beta = 4 * pi ** 2 * (f1_array[i] - f_eval) * (f2_array - f_eval) * (
beta2 + pi * beta3 * (f1_array[i] + f2_array - 2 * f_ref_beta))
integrand_f2 = rc1[i] * rc2 * rc3 * NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[i] = trapz(integrand_f2, f2_array)
generalized_psi = trapz(integrand_f1, f1_array)
return generalized_psi

View File

@@ -11,6 +11,7 @@ This module contains utility functions that are used with gnpy.
from csv import writer
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and, mean
from scipy import constants
from copy import deepcopy
from gnpy.core.exceptions import ConfigurationError
@@ -213,7 +214,7 @@ freq2wavelength = constants.nu2lambda
def freq2wavelength(value):
""" Converts frequency units to wavelength units.
"""Converts frequency units to wavelength units.
>>> round(freq2wavelength(191.35e12) * 1e9, 3)
1566.723
@@ -247,8 +248,7 @@ def per_label_average(values, labels):
def pretty_summary_print(summary):
"""Build a prettty string that shows the summary dict values per label with 2 digits
"""
"""Build a prettty string that shows the summary dict values per label with 2 digits"""
if len(summary) == 1:
return f'{list(summary.values())[0]:.2f}'
text = ', '.join([f'{label}: {value:.2f}' for label, value in summary.items()])
@@ -256,7 +256,7 @@ def pretty_summary_print(summary):
def deltawl2deltaf(delta_wl, wavelength):
""" deltawl2deltaf(delta_wl, wavelength):
"""deltawl2deltaf(delta_wl, wavelength):
delta_wl is BW in wavelength units
wavelength is the center wl
units for delta_wl and wavelength must be same
@@ -274,9 +274,9 @@ def deltawl2deltaf(delta_wl, wavelength):
def deltaf2deltawl(delta_f, frequency):
""" deltawl2deltaf(delta_f, frequency):
converts delta frequency to delta wavelength
units for delta_wl and wavelength must be same
"""convert delta frequency to delta wavelength
Units for delta_wl and wavelength must be same.
:param delta_f: delta frequency in same units as frequency
:param frequency: frequency BW is relevant for
@@ -291,8 +291,7 @@ def deltaf2deltawl(delta_f, frequency):
def rrc(ffs, baud_rate, alpha):
""" rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
function.
"""compute the root-raised cosine filter function
:param ffs: A numpy array of frequencies
:param baud_rate: The Baud Rate of the System
@@ -318,7 +317,7 @@ def rrc(ffs, baud_rate, alpha):
def merge_amplifier_restrictions(dict1, dict2):
"""Updates contents of dicts recursively
"""Update contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
@@ -413,3 +412,43 @@ def convert_length(value, units):
return value * 1e3
else:
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
def replace_none(dictionary):
""" Replaces None with inf values in a frequency slots dict
>>> replace_none({'N': 3, 'M': None})
{'N': 3, 'M': inf}
"""
for key, val in dictionary.items():
if val is None:
dictionary[key] = float('inf')
if val == float('inf'):
dictionary[key] = None
return dictionary
def order_slots(slots):
""" Order frequency slots from larger slots to smaller ones up to None
>>> l = [{'N': 3, 'M': None}, {'N': 2, 'M': 1}, {'N': None, 'M': None},{'N': 7, 'M': 2},{'N': None, 'M': 1} , {'N': None, 'M': 0}]
>>> order_slots(l)
([7, 2, None, None, 3, None], [2, 1, 1, 0, None, None], [3, 1, 4, 5, 0, 2])
"""
slots_list = deepcopy(slots)
slots_list = [replace_none(e) for e in slots_list]
for i, e in enumerate(slots_list):
e['i'] = i
slots_list = sorted(slots_list, key=lambda x: (-x['M'], x['N']) if x['M'] != float('inf') else (x['M'], x['N']))
slots_list = [replace_none(e) for e in slots_list]
return [e['N'] for e in slots_list], [e['M'] for e in slots_list], [e['i'] for e in slots_list]
def restore_order(elements, order):
""" Use order to re-order the element of the list, and ignore None values
>>> restore_order([7, 2, None, None, 3, None], [3, 1, 4, 5, 0, 2])
[3, 2, 7]
"""
return [elements[i[0]] for i in sorted(enumerate(order), key=lambda x:x[1]) if elements[i[0]] is not None]

View File

@@ -1,5 +1,5 @@
'''
"""
Processing of data via :py:mod:`.json_io`.
Utilities for Excel conversion in :py:mod:`.convert` and :py:mod:`.service_sheet`.
Example code in :py:mod:`.cli_examples` and :py:mod:`.plots`.
'''
"""

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.cli_examples
=======================
Common code for CLI examples
'''
"""
import argparse
import logging
@@ -48,7 +48,7 @@ def show_example_data_dir():
def load_common_data(equipment_filename, topology_filename, simulation_filename, save_raw_network_filename):
'''Load common configuration from JSON files'''
"""Load common configuration from JSON files"""
try:
equipment = load_equipment(equipment_filename)
@@ -85,7 +85,7 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
def _setup_logging(args):
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.CRITICAL}.get(args.verbose, logging.DEBUG))
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.WARNING}.get(args.verbose, logging.DEBUG))
def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
@@ -323,7 +323,7 @@ def path_requests_run(args=None):
args = parser.parse_args(args if args is not None else sys.argv[1:])
_setup_logging(args)
_logger.info(f'Computing path requests {args.service_filename} into JSON format')
_logger.info(f'Computing path requests {args.service_filename.name} into JSON format')
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
@@ -331,7 +331,6 @@ def path_requests_run(args=None):
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
try:

View File

@@ -21,18 +21,22 @@ the "east" information so that it is possible to input undirected data.
"""
from xlrd import open_workbook
from logging import getLogger
from argparse import ArgumentParser
from collections import namedtuple, Counter, defaultdict
from itertools import chain
from json import dumps
from pathlib import Path
from copy import copy
from gnpy.core import ansi_escapes
from gnpy.core.utils import silent_remove
from gnpy.core.exceptions import NetworkTopologyError
from gnpy.core.elements import Edfa, Fused, Fiber
_logger = getLogger(__name__)
def all_rows(sh, start=0):
return (sh.row(x) for x in range(start, sh.nrows))
@@ -183,18 +187,18 @@ def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
slice_out = read_slice(my_sheet, start_line + iteration, slice_in, h0)
iteration += 1
if slice_out == (-1, -1):
msg = f'missing header {h0}'
if h0 in ('east', 'Node A', 'Node Z', 'City'):
print(f'{ansi_escapes.red}CRITICAL{ansi_escapes.reset}: missing _{h0}_ header: EXECUTION ENDS')
raise NetworkTopologyError(f'Missing _{h0}_ header')
raise NetworkTopologyError(msg)
else:
print(f'missing header {h0}')
_logger.warning(msg)
elif not isinstance(input_headers_dict[h0], dict):
headers[slice_out[0]] = input_headers_dict[h0]
else:
headers = parse_headers(my_sheet, input_headers_dict[h0], headers, start_line + 1, slice_out)
if headers == {}:
print(f'{ansi_escapes.red}CRITICAL ERROR{ansi_escapes.reset}: could not find any header to read _ ABORT')
raise NetworkTopologyError('Could not find any header to read')
msg = 'CRITICAL ERROR: could not find any header to read _ ABORT'
raise NetworkTopologyError(msg)
return headers
@@ -219,40 +223,76 @@ def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
for l1 in links:
for l2 in links:
if l1 is not l2 and l1 == l2 and l2 not in duplicate_links:
print(f'\nWARNING\n \
_logger.warning(f'\nWARNING\n \
link {l1.from_city}-{l1.to_city} is duplicate \
\nthe 1st duplicate link will be removed but you should check Links sheet input')
duplicate_links.append(l1)
for l in duplicate_links:
links.remove(l)
links_by_city[l.from_city].remove(l)
links_by_city[l.to_city].remove(l)
if duplicate_links:
msg = 'XLS error: ' \
+ f'links {_format_items([(d.from_city, d.to_city) for d in duplicate_links])} are duplicate'
raise NetworkTopologyError(msg)
unreferenced_nodes = [n for n in nodes_by_city if n not in links_by_city]
if unreferenced_nodes:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} The following nodes are not '
f'referenced from the {ansi_escapes.cyan}Links{ansi_escapes.reset} sheet. '
f'If unused, remove them from the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} '
f'sheet:\n'
+ _format_items(unreferenced_nodes))
msg = 'XLS error: The following nodes are not ' \
+ 'referenced from the Links sheet. ' \
+ 'If unused, remove them from the Nodes sheet:\n' \
+ _format_items(unreferenced_nodes)
raise NetworkTopologyError(msg)
# no need to check "Links" for invalid nodes because that's already in parse_excel()
wrong_eqpt_from = [n for n in eqpts_by_city if n not in nodes_by_city]
wrong_eqpt_to = [n.to_city for destinations in eqpts_by_city.values()
for n in destinations if n.to_city not in nodes_by_city]
wrong_eqpt = wrong_eqpt_from + wrong_eqpt_to
if wrong_eqpt:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} '
f'The {ansi_escapes.cyan}Eqpt{ansi_escapes.reset} sheet refers to nodes that '
f'are not defined in the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} sheet:\n'
+ _format_items(wrong_eqpt))
msg = 'XLS error: ' \
+ 'The Eqpt sheet refers to nodes that ' \
+ 'are not defined in the Nodes sheet:\n'\
+ _format_items(wrong_eqpt)
raise NetworkTopologyError(msg)
# Now check links that are not listed in Links sheet, and duplicates
bad_eqpt = []
possible_links = [f'{e.from_city}|{e.to_city}' for e in links] + [f'{e.to_city}|{e.from_city}' for e in links]
possible_eqpt = []
duplicate_eqpt = []
duplicate_ila = []
for city, eqpts in eqpts_by_city.items():
for eqpt in eqpts:
# Check that each node_A-node_Z exists in links
nodea_nodez = f'{eqpt.from_city}|{eqpt.to_city}'
nodez_nodea = f'{eqpt.to_city}|{eqpt.from_city}'
if nodea_nodez not in possible_links \
or nodez_nodea not in possible_links:
bad_eqpt.append([eqpt.from_city, eqpt.to_city])
else:
# Check that there are no duplicate lines in the Eqpt sheet
if nodea_nodez in possible_eqpt:
duplicate_eqpt.append([eqpt.from_city, eqpt.to_city])
else:
possible_eqpt.append(nodea_nodez)
# check that there are no two lines defining an ILA with different directions
if nodes_by_city[city].node_type == 'ILA' and len(eqpts) > 1:
duplicate_ila.append(city)
if bad_eqpt:
msg = 'XLS error: ' \
+ 'The Eqpt sheet references links that ' \
+ 'are not defined in the Links sheet:\n' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_eqpt)
raise NetworkTopologyError(msg)
if duplicate_eqpt:
msg = 'XLS error: Duplicate lines in Eqpt sheet:' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in duplicate_eqpt)
raise NetworkTopologyError(msg)
if duplicate_ila:
msg = 'XLS error: Duplicate ILA eqpt definition in Eqpt sheet:' \
+ _format_items(duplicate_ila)
raise NetworkTopologyError(msg)
for city, link in links_by_city.items():
if nodes_by_city[city].node_type.lower() == 'ila' and len(link) != 2:
# wrong input: ILA sites can only be Degree 2
# => correct to make it a ROADM and remove entry in links_by_city
# TODO: put in log rather than print
print(f'invalid node type ({nodes_by_city[city].node_type})\
specified in {city}, replaced by ROADM')
_logger.warning(f'invalid node type ({nodes_by_city[city].node_type}) '
+ f'specified in {city}, replaced by ROADM')
nodes_by_city[city].node_type = 'ROADM'
for n in nodes:
if n.city == city:
@@ -642,17 +682,19 @@ def parse_excel(input_filename):
# sanity check
all_cities = Counter(n.city for n in nodes)
if len(all_cities) != len(nodes):
raise ValueError(f'Duplicate city: {all_cities}')
msg = f'Duplicate city: {all_cities}'
raise NetworkTopologyError(msg)
bad_links = []
for lnk in links:
if lnk.from_city not in all_cities or lnk.to_city not in all_cities:
bad_links.append([lnk.from_city, lnk.to_city])
if bad_links:
raise NetworkTopologyError(f'{ansi_escapes.red}XLS error:{ansi_escapes.reset} '
f'The {ansi_escapes.cyan}Links{ansi_escapes.reset} sheet references nodes that '
f'are not defined in the {ansi_escapes.cyan}Nodes{ansi_escapes.reset} sheet:\n'
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_links))
msg = 'XLS error: ' \
+ 'The Links sheet references nodes that ' \
+ 'are not defined in the Nodes sheet:\n' \
+ _format_items(f'{item[0]} -> {item[1]}' for item in bad_links)
raise NetworkTopologyError(msg)
return nodes, links, eqpts, roadms

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.json_io
==================
Loading and saving data from JSON files in GNPy's internal data format
'''
"""
from networkx import DiGraph
from logging import getLogger
@@ -15,13 +15,15 @@ import json
from collections import namedtuple
from numpy import arange
from gnpy.core import ansi_escapes, elements
from gnpy.core import elements
from gnpy.core.equipment import trx_mode_params
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError, ServiceError
from gnpy.core.science_utils import estimate_nf_model
from gnpy.core.info import Carrier
from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions
from gnpy.core.parameters import DEFAULT_RAMAN_COEFFICIENT
from gnpy.topology.request import PathRequest, Disjunction, compute_spectrum_slot_vs_bandwidth
from gnpy.topology.spectrum_assignment import mvalue_to_slots
from gnpy.tools.convert import xls_to_json_data
from gnpy.tools.service_sheet import read_service_sheet
@@ -50,10 +52,9 @@ class _JsonThing:
for k, v in default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
if k not in clean_kwargs and name != 'Amp':
print(ansi_escapes.red +
f'\n WARNING missing {k} attribute in eqpt_config.json[{name}]' +
f'\n default value is {k} = {v}' +
ansi_escapes.reset)
msg = f'\n WARNING missing {k} attribute in eqpt_config.json[{name}]' \
+ f'\n default value is {k} = {v}'
_logger.warning(msg)
class SI(_JsonThing):
@@ -109,11 +110,12 @@ class Roadm(_JsonThing):
allowed_equalisations = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
requested_eq_mask = [eq in kwargs for eq in allowed_equalisations]
if sum(requested_eq_mask) > 1:
raise EquipmentConfigError('Only one equalization type should be set in ROADM, found: '
+ ', '.join(eq for eq in allowed_equalisations if eq in kwargs))
msg = 'Only one equalization type should be set in ROADM, found: ' \
+ ', '.join(eq for eq in allowed_equalisations if eq in kwargs)
raise EquipmentConfigError(msg)
if not any(requested_eq_mask):
raise EquipmentConfigError('No equalization type set in ROADM')
msg = 'No equalization type set in ROADM'
raise EquipmentConfigError(msg)
for key in allowed_equalisations:
if key in kwargs:
setattr(self, key, kwargs[key])
@@ -133,6 +135,7 @@ class Transceiver(_JsonThing):
for mode_params in self.mode:
penalties = mode_params.get('penalties')
mode_params['penalties'] = {}
mode_params['equalization_offset_db'] = mode_params.get('equalization_offset_db', 0)
if not penalties:
continue
for impairment in ('chromatic_dispersion', 'pmd', 'pdl'):
@@ -162,9 +165,14 @@ class Fiber(_JsonThing):
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, self.__class__.__name__)
for optional in ['gamma', 'raman_efficiency']:
if optional in kwargs:
setattr(self, optional, kwargs[optional])
if 'gamma' in kwargs:
setattr(self, 'gamma', kwargs['gamma'])
if 'raman_efficiency' in kwargs:
raman_coefficient = kwargs['raman_efficiency']
cr = raman_coefficient.pop('cr')
raman_coefficient['g0'] = cr
raman_coefficient['reference_frequency'] = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
setattr(self, 'raman_coefficient', raman_coefficient)
class RamanFiber(Fiber):
@@ -182,15 +190,24 @@ class Amp(_JsonThing):
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'preamp_variety': None,
'booster_variety': None,
'nf_min': None,
'nf_max': None,
'nf_coef': None,
'nf0': None,
'nf_fit_coeff': None,
'nf_ripple': None,
'nf_ripple': 0,
'dgt': None,
'gain_ripple': None,
'gain_ripple': 0,
'tilt_ripple': 0,
'f_ripple_ref': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False,
'pmd': 0,
'pdl': 0
'pdl': 0,
'advance_configurations_from_json': None
}
def __init__(self, **kwargs):
@@ -209,7 +226,8 @@ class Amp(_JsonThing):
try:
nf0 = kwargs.pop('nf0')
except KeyError: # nf0 is expected for a fixed gain amp
raise EquipmentConfigError(f'missing nf0 value input for amplifier: {type_variety} in equipment config')
msg = f'missing nf0 value input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg)
for k in ('nf_min', 'nf_max'):
try:
del kwargs[k]
@@ -224,7 +242,8 @@ class Amp(_JsonThing):
nf_min = kwargs.pop('nf_min')
nf_max = kwargs.pop('nf_max')
except KeyError:
raise EquipmentConfigError(f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config')
msg = f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg)
try: # remove all remaining nf inputs
del kwargs['nf0']
except KeyError:
@@ -246,7 +265,8 @@ class Amp(_JsonThing):
preamp_variety = kwargs.pop('preamp_variety')
booster_variety = kwargs.pop('booster_variety')
except KeyError:
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config')
msg = f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config'
raise EquipmentConfigError(msg)
dual_stage_def = Model_dual_stage(preamp_variety, booster_variety)
else:
raise EquipmentConfigError(f'Edfa type_def {type_def} does not exist')
@@ -368,9 +388,7 @@ def _update_dual_stage(equipment):
def _roadm_restrictions_sanity_check(equipment):
""" verifies that booster and preamp restrictions specified in roadm equipment are listed
in the edfa.
"""
"""verifies that booster and preamp restrictions specified in roadm equipment are listed in the edfa."""
restrictions = equipment['Roadm']['default'].restrictions['booster_variety_list'] + \
equipment['Roadm']['default'].restrictions['preamp_variety_list']
for amp_name in restrictions:
@@ -440,11 +458,11 @@ def load_network(filename, equipment):
def save_network(network: DiGraph, filename: str):
'''Dump the network into a JSON file
"""Dump the network into a JSON file
:param network: network to work on
:param filename: file to write to
'''
"""
save_json(network_to_json(network), filename)
@@ -486,13 +504,20 @@ def network_from_json(json_data, equipment):
# if more than one equalization was defined in element config, then raise an error
extra_params = merge_equalization(temp, extra_params)
if not extra_params:
raise ConfigurationError(f'ROADM {el_config["uid"]}: invalid equalization settings')
msg = f'ROADM {el_config["uid"]}: invalid equalization settings'
raise ConfigurationError(msg)
temp = merge_amplifier_restrictions(temp, extra_params)
el_config['params'] = temp
el_config['type_variety'] = variety
elif (typ in ['Fiber', 'RamanFiber']) or (typ == 'Edfa' and variety not in ['default', '']):
elif (typ in ['Fiber', 'RamanFiber']):
raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
elif typ == 'Edfa':
if variety in ['default', '']:
el_config['params'] = Amp.default_values
else:
raise ConfigurationError(f'The Edfa of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
el = cls(**el_config)
g.add_node(el)
@@ -507,7 +532,8 @@ def network_from_json(json_data, equipment):
edge_length = 0.01
g.add_edge(nodes[from_node], nodes[to_node], weight=edge_length)
except KeyError:
raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}')
msg = f'can not find {from_node} or {to_node} defined in {cx}'
raise NetworkTopologyError(msg)
return g
@@ -538,15 +564,13 @@ def save_json(obj, filename):
def load_requests(filename, eqpt, bidir, network, network_filename):
""" loads the requests from a json or an excel file into a data string
"""
"""loads the requests from a json or an excel file into a data string"""
if filename.suffix.lower() in ('.xls', '.xlsx'):
_logger.info('Automatically converting requests from XLS to JSON')
try:
return convert_service_sheet(filename, eqpt, network, network_filename=network_filename, bidir=bidir)
except ServiceError as this_e:
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {this_e}')
exit(1)
raise ServiceError(f'Service error: {this_e}')
else:
return load_json(filename)
@@ -563,6 +587,9 @@ def requests_from_json(json_data, equipment):
params['bidir'] = req['bidirectional']
params['destination'] = req['destination']
params['trx_type'] = req['path-constraints']['te-bandwidth']['trx_type']
if params['trx_type'] is None:
msg = f'Request {req["request-id"]} has no transceiver type defined.'
raise ServiceError(msg)
params['trx_mode'] = req['path-constraints']['te-bandwidth'].get('trx_mode', None)
params['format'] = params['trx_mode']
params['spacing'] = req['path-constraints']['te-bandwidth']['spacing']
@@ -575,9 +602,12 @@ def requests_from_json(json_data, equipment):
# recover trx physical param (baudrate, ...) from type and mode
# in trx_mode_params optical power is read from equipment['SI']['default'] and
# nb_channel is computed based on min max frequency and spacing
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
try:
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
except EquipmentConfigError as e:
msg = f'Equipment Config error in {req["request-id"]}: {e}'
raise EquipmentConfigError(msg) from e
params.update(trx_params)
# print(trx_params['min_spacing'])
# optical power might be set differently in the request. if it is indicated then the
# params['power'] is updated
try:
@@ -598,7 +628,8 @@ def requests_from_json(json_data, equipment):
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
except KeyError:
params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing'])
params['effective_freq_slot'] = req['path-constraints']['te-bandwidth'].get('effective-freq-slot', [None])[0]
params['effective_freq_slot'] = \
req['path-constraints']['te-bandwidth'].get('effective-freq-slot', [{'N': None, 'M': None}])
try:
params['path_bandwidth'] = req['path-constraints']['te-bandwidth']['path_bandwidth']
except KeyError:
@@ -612,44 +643,66 @@ def _check_one_request(params, f_max_from_si):
"""Checks that the requested parameters are consistant (spacing vs nb channel vs transponder mode...)"""
f_min = params['f_min']
f_max = params['f_max']
max_recommanded_nb_channels = automatic_nch(f_min, f_max, params['spacing'])
max_recommanded_nb_channels = automatic_nch(f_min, f_max_from_si, params['spacing'])
if params['baud_rate'] is not None:
# implicitly means that a mode is defined with min_spacing
if params['min_spacing'] > params['spacing']:
msg = f'Request {params["request_id"]} has spacing below transponder ' +\
f'{params["trx_type"]} {params["trx_mode"]} min spacing value ' +\
f'{params["min_spacing"]*1e-9}GHz.\nComputation stopped'
print(msg)
_logger.critical(msg)
raise ServiceError(msg)
if f_max > f_max_from_si:
msg = f'''Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"]} GHz
and requested spacing {params["spacing"]*1e-9}GHz is not consistent with frequency range
{f_min*1e-12} THz, {f_max*1e-12} THz, min recommanded spacing {params["min_spacing"]*1e-9}GHz.
max recommanded nb of channels is {max_recommanded_nb_channels}.'''
_logger.critical(msg)
msg = f'Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"] * 1e-9} GHz' \
+ f' and requested spacing {params["spacing"]*1e-9}GHz is not consistent with frequency range' \
+ f' {f_min*1e-12} THz, {f_max_from_si*1e-12} THz.' \
+ f' Max recommanded nb of channels is {max_recommanded_nb_channels}.'
raise ServiceError(msg)
# Transponder mode already selected; will it fit to the requested bandwidth?
if params['trx_mode'] is not None and params['effective_freq_slot'] is not None \
and params['effective_freq_slot']['M'] is not None:
_, requested_m = compute_spectrum_slot_vs_bandwidth(params['path_bandwidth'],
params['spacing'],
params['bit_rate'])
# params['effective_freq_slot']['M'] value should be bigger than the computed requested_m (simple estimate)
if params['trx_mode'] is not None and params['effective_freq_slot'] is not None:
required_nb_of_channels, requested_m = compute_spectrum_slot_vs_bandwidth(params['path_bandwidth'],
params['spacing'],
params['bit_rate'])
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(params['bit_rate'],
params['spacing'],
params['bit_rate'])
# each M should fit one or more channels if it is not None
# spectrum slots should not overlap
# resulting nb of channels should be bigger than the nb computed with path_bandwidth
# without being splitted
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
# superchannel closed packing.
if requested_m > params['effective_freq_slot']['M']:
msg = f'requested M {params["effective_freq_slot"]["M"]} number of slots for request' +\
f'{params["request_id"]} should be greater than {requested_m} to support request' +\
f'{params["path_bandwidth"] * 1e-9} Gbit/s with {params["trx_type"]} {params["trx_mode"]}'
_logger.critical(msg)
nb_of_channels = 0
# order slots
slots = sorted(params['effective_freq_slot'], key=lambda x: float('inf') if x['N'] is None else x['N'])
for slot in slots:
nb_of_channels = nb_of_channels + slot['M'] // per_channel_m if slot['M'] is not None \
and nb_of_channels is not None else None
if slot['M'] is not None and slot['M'] < per_channel_m:
msg = f'Requested M {slot} number of slots for request' +\
f' {params["request_id"]} should be greater than {per_channel_m} to support request' +\
f'with {params["trx_type"]} {params["trx_mode"]}'
_logger.critical(msg)
if nb_of_channels is not None and nb_of_channels < required_nb_of_channels:
msg = f'Requested M {slots} number of slots for request {params["request_id"]} support {nb_of_channels}' +\
f' nb of channels while {required_nb_of_channels} are required to support request' +\
f' {params["path_bandwidth"] * 1e-9} Gbit/s with {params["trx_type"]} {params["trx_mode"]}'
raise ServiceError(msg)
if nb_of_channels is not None:
_, stop0n = mvalue_to_slots(slots[0]['N'], slots[0]['M'])
i = 1
while i < len(slots):
slot = slots[i]
startn, stopn = mvalue_to_slots(slot['N'], slot['M'])
if startn <= stop0n:
msg = f'Requested M {slots} for request {params["request_id"]} overlap'
raise ServiceError(msg)
_, stop0n = startn, stopn
i += 1
def disjunctions_from_json(json_data):
""" reads the disjunction requests from the json dict and create the list
of requested disjunctions for this set of requests
"""reads the disjunction requests from the json dict and create the list
of requested disjunctions for this set of requests
"""
disjunctions_list = []
if 'synchronization' in json_data:

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
"""
gnpy.tools.plots
================
Graphs and plots usable from a CLI application
'''
"""
from matplotlib.pyplot import show, axis, figure, title, text
from networkx import draw_networkx

View File

@@ -18,7 +18,6 @@ from copy import deepcopy
from gnpy.core.utils import db2lin
from gnpy.core.exceptions import ServiceError
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fiber
import gnpy.core.ansi_escapes as ansi_escapes
from gnpy.tools.convert import corresp_names, corresp_next_node
SERVICES_COLUMN = 12
@@ -68,24 +67,21 @@ class Request_element(Element):
if [mode for mode in equipment['Transceiver'][Request.trx_type].mode if mode['format'] == Requestmode]:
self.mode = Requestmode
else:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' ' \
+ f'with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg)
else:
Requestmode = None
self.mode = Request.mode
except KeyError:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' ' \
+ f'with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg)
# excel input are in GHz and dBm
if Request.spacing is not None:
self.spacing = Request.spacing * 1e9
else:
msg = f'Request {self.request_id} missing spacing: spacing is mandatory.\ncomputation stopped'
logger.critical(msg)
raise ServiceError(msg)
if Request.power is not None:
self.power = db2lin(Request.power) * 1e-3
@@ -225,7 +221,7 @@ def parse_excel(input_filename):
def parse_service_sheet(service_sheet):
""" reads each column according to authorized fieldnames. order is not important.
"""
logger.info(f'Validating headers on {service_sheet.name!r}')
logger.debug(f'Validating headers on {service_sheet.name!r}')
# add a test on field to enable the '' field case that arises when columns on the
# right hand side are used as comments or drawing in the excel sheet
header = [x.value.strip() for x in service_sheet.row(4)[0:SERVICES_COLUMN]
@@ -245,7 +241,6 @@ def parse_service_sheet(service_sheet):
service_fieldnames = [authorized_fieldnames[e] for e in header]
except KeyError:
msg = f'Malformed header on Service sheet: {header} field not in {authorized_fieldnames}'
logger.critical(msg)
raise ValueError(msg)
for row in all_rows(service_sheet, start=5):
yield Request(**parse_row(row[0:SERVICES_COLUMN], service_fieldnames))
@@ -273,15 +268,13 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
for pathreq in pathreqlist:
# first check that source and dest are transceivers
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.'
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.'
raise ServiceError(msg)
# silently pop source and dest nodes from the list if they were added by the user as first
# and last elem in the constraints respectively. Other positions must lead to an error
@@ -333,17 +326,16 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
# too much ambiguity, 'b' is an ila, its name can be:
# Edfa0_fiber (a → b)-xx if next node is c or
# Edfa0_fiber (c → b)-xx if next node is a
msg = f'{ansi_escapes.yellow}Invalid route node specified:' +\
f'\n\t\'{n_id}\', replaced with \'{new_n}\'{ansi_escapes.reset}'
logger.info(msg)
msg = f'Request {pathreq.request_id}: Invalid route node specified:' \
+ f'\n\t\'{n_id}\', replaced with \'{new_n}\''
logger.warning(msg)
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
except StopIteration:
# shall not come in this case, unless requested direction does not exist
msg = f'{ansi_escapes.yellow}Invalid route specified {n_id}: could' +\
f' not decide on direction, skipped!.\nPlease add a valid' +\
f' direction in constraints (next neighbour node){ansi_escapes.reset}'
print(msg)
logger.info(msg)
msg = f'Request {pathreq.request_id}: Invalid route specified {n_id}: could' \
+ ' not decide on direction, skipped!.\nPlease add a valid' \
+ ' direction in constraints (next neighbour node)'
logger.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
@@ -351,28 +343,24 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}Invalid node specified:\n\t\'{n_id}\'' +\
f', could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
logger.info(msg)
msg = f'Request {pathreq.request_id}: Invalid node specified:\n\t\'{n_id}\'' \
+ ', could not use it as constraint, skipped!'
logger.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Could not find node:\n\t\'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Request {pathreq.request_id}: Could not find node:\n\t\'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
else:
if temp.loose_list[i] == 'LOOSE':
print(f'{ansi_escapes.yellow}Invalid route node specified:\n\t\'{n_id}\'' +
f' type is not supported as constraint with xls network input,' +
f' skipped!{ansi_escapes.reset}')
logger.warning(f'Request {pathreq.request_id}: Invalid route node specified:\n\t\'{n_id}\''
+ ' type is not supported as constraint with xls network input, skipped!')
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Invalid route node specified \n\t\'{n_id}\'' +\
f' type is not supported as constraint with xls network input,' +\
f', Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'Invalid route node specified \n\t\'{n_id}\'' \
+ ' type is not supported as constraint with xls network input,' \
+ ', Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist

View File

@@ -1,3 +1,3 @@
'''
"""
Tracking :py:mod:`.request` for spectrum and their :py:mod:`.spectrum_assignment`.
'''
"""

View File

@@ -25,7 +25,6 @@ from gnpy.core.elements import Transceiver, Roadm
from gnpy.core.utils import lin2db
from gnpy.core.info import create_input_spectral_information, carriers_to_spectral_information, ReferenceCarrier
from gnpy.core.exceptions import ServiceError, DisjunctionError
import gnpy.core.ansi_escapes as ansi_escapes
from copy import deepcopy
from csv import writer
from math import ceil
@@ -35,15 +34,14 @@ LOGGER = getLogger(__name__)
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type'
' trx_mode nodes_list loose_list spacing power nb_channel f_min'
' f_max format baud_rate OSNR penalties bit_rate'
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot')
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot'
' equalization_offset_db')
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link_diverse'
' node_diverse disjunctions_req')
class PathRequest:
""" the class that contains all attributes related to a request
"""
"""the class that contains all attributes related to a request"""
def __init__(self, *args, **params):
params = RequestParams(**params)
self.request_id = params.request_id
@@ -70,9 +68,10 @@ class PathRequest:
self.cost = params.cost
self.path_bandwidth = params.path_bandwidth
if params.effective_freq_slot is not None:
self.N = params.effective_freq_slot['N']
self.M = params.effective_freq_slot['M']
self.N = [s['N'] for s in params.effective_freq_slot]
self.M = [s['M'] for s in params.effective_freq_slot]
self.initial_spectrum = None
self.offset_db = params.equalization_offset_db
def __str__(self):
return '\n\t'.join([f'{type(self).__name__} {self.request_id}',
@@ -104,8 +103,7 @@ class PathRequest:
class Disjunction:
""" the class that contains all attributes related to disjunction constraints
"""
"""the class that contains all attributes related to disjunction constraints"""
def __init__(self, *args, **params):
params = DisjunctionParams(**params)
@@ -150,8 +148,7 @@ class ResultElement:
@property
def detailed_path_json(self):
""" a function that builds path object for normal and blocking cases
"""
"""a function that builds path object for normal and blocking cases"""
index = 0
pro_list = []
for element in self.computed_path:
@@ -175,10 +172,10 @@ class ResultElement:
temp = {
'path-route-object': {
'index': index,
"label-hop": {
"N": self.path_request.N,
"M": self.path_request.M
},
"label-hop": [{
"N": n,
"M": m
} for n, m in zip(self.path_request.N, self.path_request.M)],
}
}
pro_list.append(temp)
@@ -207,11 +204,9 @@ class ResultElement:
@property
def path_properties(self):
""" a function that returns the path properties (metrics, crossed elements) into a dict
"""
"""a function that returns the path properties (metrics, crossed elements) into a dict"""
def path_metric(pth, req):
""" creates the metrics dictionary
"""
"""creates the metrics dictionary"""
return [
{
'metric-type': 'SNR-bandwidth',
@@ -253,8 +248,7 @@ class ResultElement:
@property
def pathresult(self):
""" create the result dictionnary (response for a request)
"""
"""create the result dictionnary (response for a request)"""
try:
if self.path_request.blocking_reason in BLOCKING_NOPATH:
response = {
@@ -292,7 +286,6 @@ def compute_constrained_path(network, req):
# been corrected and harmonized before
msg = (f'Request {req.request_id} malformed list of nodes: last node should '
'be destination trx')
LOGGER.critical(msg)
raise ValueError()
trx = [n for n in network if isinstance(n, Transceiver)]
@@ -307,10 +300,9 @@ def compute_constrained_path(network, req):
path_generator = shortest_simple_paths(network, source, destination, weight='weight')
total_path = next(path for path in path_generator if ispart(nodes_list, path))
except NetworkXNoPath:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH'
total_path = []
except StopIteration:
@@ -319,24 +311,21 @@ def compute_constrained_path(network, req):
# last node which is the transceiver)
# if all nodes i n node_list are LOOSE constraint, skip the constraints and find
# a path w/o constraints, else there is no possible path
print(f'{ansi_escapes.yellow}Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology{ansi_escapes.reset}')
LOGGER.warning(f'Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology')
if 'STRICT' not in req.loose_list[:-1]:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user_'
f'include node constraints{ansi_escapes.reset}')
LOGGER.info(msg)
print(f'constraint ignored')
msg = (f'Request {req.request_id} could not find a path with user_'
f'include node constraints. Constraint ignored')
LOGGER.warning(msg)
total_path = dijkstra_path(network, source, destination, weight='weight')
else:
# one STRICT makes the whole list STRICT
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH_WITH_CONSTRAINT'
total_path = []
return total_path
@@ -350,15 +339,15 @@ def ref_carrier(equipment):
def propagate(path, req, equipment):
""" propagates signals in each element according to initial spectrum set by user
"""
"""propagates signals in each element according to initial spectrum set by user"""
if req.initial_spectrum is not None:
si = carriers_to_spectral_information(initial_spectrum=req.initial_spectrum,
power=req.power, ref_carrier=ref_carrier(equipment))
else:
si = create_input_spectral_information(
f_min=req.f_min, f_max=req.f_max, roll_off=req.roll_off, baud_rate=req.baud_rate,
power=req.power, spacing=req.spacing, tx_osnr=req.tx_osnr, ref_carrier=ref_carrier(equipment))
power=req.power, spacing=req.spacing, tx_osnr=req.tx_osnr, delta_pdb=req.offset_db,
ref_carrier=ref_carrier(equipment))
for i, el in enumerate(path):
if isinstance(el, Roadm):
si = el(si, degree=path[i+1].uid)
@@ -376,20 +365,21 @@ def propagate(path, req, equipment):
def propagate_and_optimize_mode(path, req, equipment):
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
# step 1: create an ordered list of modes based on baudrate
baudrate_to_explore = list(set([this_mode['baud_rate']
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# step 1: create an ordered list of modes based on baudrate and power offset
# order higher baudrate with higher power offset first
baudrate_offset_to_explore = list(set([(this_mode['baud_rate'], this_mode['equalization_offset_db'])
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# TODO be carefull on limits cases if spacing very close to req spacing eg 50.001 50.000
baudrate_to_explore = sorted(baudrate_to_explore, reverse=True)
if baudrate_to_explore:
baudrate_offset_to_explore = sorted(baudrate_offset_to_explore, reverse=True)
if baudrate_offset_to_explore:
# at least 1 baudrate can be tested wrt spacing
for this_br in baudrate_to_explore:
for (this_br, this_offset) in baudrate_offset_to_explore:
modes_to_explore = [this_mode for this_mode in equipment['Transceiver'][req.tsp].mode
if this_mode['baud_rate'] == this_br and
float(this_mode['min_spacing']) <= req.spacing]
if this_mode['baud_rate'] == this_br
and float(this_mode['min_spacing']) <= req.spacing]
modes_to_explore = sorted(modes_to_explore,
key=lambda x: x['bit_rate'], reverse=True)
key=lambda x: (x['bit_rate'], x['equalization_offset_db']), reverse=True)
# step2: computes propagation for each baudrate: stop and select the first that passes
# TODO: the case of roll off is not included: for now use SI one
# TODO: if the loop in mode optimization does not have a feasible path, then bugs
@@ -401,6 +391,7 @@ def propagate_and_optimize_mode(path, req, equipment):
spc_info = create_input_spectral_information(f_min=req.f_min, f_max=req.f_max,
roll_off=equipment['SI']['default'].roll_off,
baud_rate=this_br, power=req.power, spacing=req.spacing,
delta_pdb=this_offset,
tx_osnr=req.tx_osnr, ref_carrier=ref_carrier(equipment))
for i, el in enumerate(path):
if isinstance(el, Roadm):
@@ -428,22 +419,19 @@ def propagate_and_optimize_mode(path, req, equipment):
# returns the last propagated path and mode
msg = f'\tWarning! Request {req.request_id}: no mode satisfies path SNR requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_MODE'
return path, last_explored_mode
else:
# no baudrate satisfying spacing
msg = f'\tWarning! Request {req.request_id}: no baudrate satisfies spacing requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_BAUDRATE_WITH_SPACING'
return [], None
def jsontopath_metric(path_metric):
""" a functions that reads resulting metric from json string
"""
"""a functions that reads resulting metric from json string"""
output_snr = next(e['accumulative-value']
for e in path_metric if e['metric-type'] == 'SNR-0.1nm')
output_snrbandwidth = next(e['accumulative-value']
@@ -461,9 +449,7 @@ def jsontopath_metric(path_metric):
def jsontoparams(my_p, tsp, mode, equipment):
""" a function that derives optical params from transponder type and mode
supports the no mode case
"""
"""a function that derives optical params from transponder type and mode supports the no mode case"""
temp = []
for elem in my_p['path-properties']['path-route-objects']:
if 'num-unnum-hop' in elem['path-route-object']:
@@ -473,8 +459,8 @@ def jsontoparams(my_p, tsp, mode, equipment):
temp2 = []
for elem in my_p['path-properties']['path-route-objects']:
if 'label-hop' in elem['path-route-object'].keys():
temp2.append(f'{elem["path-route-object"]["label-hop"]["N"]}, ' +
f'{elem["path-route-object"]["label-hop"]["M"]}')
temp2.append(f'{[e["N"] for e in elem["path-route-object"]["label-hop"]]}, '
+ f'{[e["M"] for e in elem["path-route-object"]["label-hop"]]}')
# OrderedDict.fromkeys returns the unique set of strings.
# TODO: if spectrum changes along the path, we should be able to give the segments
# eg for regeneration case
@@ -498,10 +484,10 @@ def jsontoparams(my_p, tsp, mode, equipment):
def jsontocsv(json_data, equipment, fileout):
""" reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""
mywriter = writer(fileout)
mywriter.writerow(('response-id', 'source', 'destination', 'path_bandwidth', 'Pass?',
@@ -836,13 +822,13 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
if not ispart(allpaths[id(pth)].req.nodes_list, pth):
testispartok = False
if 'STRICT' in allpaths[id(pth)].req.loose_list:
LOGGER.info(f'removing solution from candidate paths\n{pth}')
LOGGER.debug(f'removing solution from candidate paths\n{pth}')
testispartnokloose = False
break
if testispartok:
temp.append(sol)
elif testispartnokloose:
LOGGER.info(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
LOGGER.debug(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
alternatetemp.append(sol)
if temp:
candidates[this_d.disjunction_id] = temp
@@ -864,9 +850,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# remove duplicated candidates
candidates = remove_candidate(candidates, allpaths, allpaths[id(pth)].req, pth)
else:
msg = f'No disjoint path found with added constraint'
LOGGER.critical(msg)
print(f'{msg}\nComputation stopped.')
msg = 'No disjoint path found with added constraint\nComputation stopped.'
# TODO in this case: replay step 5 with the candidate without constraints
raise DisjunctionError(msg)
@@ -887,8 +871,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
def isdisjoint(pth1, pth2):
""" returns 0 if disjoint
"""
"""returns 0 if disjoint"""
edge1 = list(pairwise(pth1))
edge2 = list(pairwise(pth2))
for edge in edge1:
@@ -898,9 +881,9 @@ def isdisjoint(pth1, pth2):
def find_reversed_path(pth):
""" select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""
# TODO add some indication on elements to indicate from which other they
# are the reversed direction. This is partly done with oms indication
@@ -923,9 +906,8 @@ def find_reversed_path(pth):
# concatenation should be [roadma el1 el2 roadmb el3 el4 roadmc]
reversed_path = list(OrderedDict.fromkeys(reversed_path))
else:
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' +\
' can not handle unidir topology. TO DO.'
LOGGER.critical(msg)
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' \
+ ' can not handle unidir topology. TO DO.'
raise ValueError(msg)
reversed_path.append(pth[0])
@@ -933,9 +915,7 @@ def find_reversed_path(pth):
def ispart(ptha, pthb):
""" the functions takes two paths a and b and retrns True
if all a elements are part of b and in the same order
"""
"""the functions takes two paths a and b and retrns True if all a elements are part of b and in the same order"""
j = 0
for elem in ptha:
if elem in pthb:
@@ -949,8 +929,7 @@ def ispart(ptha, pthb):
def remove_candidate(candidates, allpaths, rqst, pth):
""" filter duplicate candidates
"""
"""filter duplicate candidates"""
# print(f'coucou {rqst.request_id}')
for key, candidate in candidates.items():
temp = candidate.copy()
@@ -965,8 +944,7 @@ def remove_candidate(candidates, allpaths, rqst, pth):
def compare_reqs(req1, req2, disjlist):
""" compare two requests: returns True or False
"""
"""compare two requests: returns True or False"""
dis1 = [d for d in disjlist if req1.request_id in d.disjunctions_req]
dis2 = [d for d in disjlist if req2.request_id in d.disjunctions_req]
same_disj = False
@@ -999,28 +977,31 @@ def compare_reqs(req1, req2, disjlist):
req1.format == req2.format and \
req1.OSNR == req2.OSNR and \
req1.roll_off == req2.roll_off and \
same_disj and \
getattr(req1, 'N', None) is None and getattr(req2, 'N', None) is None and \
getattr(req1, 'M', None) is None and getattr(req2, 'M', None) is None:
same_disj:
return True
else:
return False
def requests_aggregation(pathreqlist, disjlist):
""" this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
"""this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
If transponder mode is defined and identical, then also agregates demands.
"""
# todo maybe add conditions on mode ??, spacing ...
# currently if undefined takes the default values
local_list = pathreqlist.copy()
for req in pathreqlist:
for this_r in local_list:
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist):
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist) and\
this_r.tsp_mode is not None:
# aggregate
this_r.path_bandwidth += req.path_bandwidth
this_r.N = this_r.N + req.N
this_r.M = this_r.M + req.M
temp_r_id = this_r.request_id
this_r.request_id = ' | '.join((this_r.request_id, req.request_id))
# remove request from list
local_list.remove(req)
# todo change also disjunction req with new demand
@@ -1037,23 +1018,22 @@ def requests_aggregation(pathreqlist, disjlist):
def correct_json_route_list(network, pathreqlist):
""" all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""
all_uid = [n.uid for n in network.nodes()]
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
for pathreq in pathreqlist:
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' source : {pathreq.source}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' source : {pathreq.source}.'
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' destination : {pathreq.destination}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' destination : {pathreq.destination}.'
raise ServiceError(msg)
# silently remove source and dest nodes from the list
@@ -1072,24 +1052,21 @@ def correct_json_route_list(network, pathreqlist):
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}invalid route node specified:\n\t\'{n_id}\',' +\
f' could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
LOGGER.info(msg)
msg = f'invalid route node specified:\n\t\'{n_id}\',' \
+ ' could not use it as constraint, skipped!'
LOGGER.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}could not find node:\n\t \'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'could not find node:\n\t \'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist
def deduplicate_disjunctions(disjn):
""" clean disjunctions to remove possible repetition
"""
"""clean disjunctions to remove possible repetition"""
local_disjn = disjn.copy()
for elem in local_disjn:
for dis_elem in local_disjn:
@@ -1100,8 +1077,9 @@ def deduplicate_disjunctions(disjn):
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
""" use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
"""use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
"""
path_res_list = []
reversed_path_res_list = []
@@ -1112,10 +1090,10 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# use the power specified in requests but might be different from the one
# specified for design the power is an optional parameter for requests
# definition if optional, use the one defines in eqt_config.json
print(f'request {pathreq.request_id}')
print(f'Computing path from {pathreq.source} to {pathreq.destination}')
# adding first node to be clearer on the output
print(f'with path constraint: {[pathreq.source] + pathreq.nodes_list}')
msg = f'\n\trequest {pathreq.request_id}\n' \
+ f'\tComputing path from {pathreq.source} to {pathreq.destination}\n' \
+ f'\twith path constraint: {[pathreq.source] + pathreq.nodes_list}'
# # adding first node to be clearer on the output
# pathlist[i] contains the whole path information for request i
# last element is a transciver and where the result of the propagation is
@@ -1125,7 +1103,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# may use the same transponder for the performance simulation. This is why
# we use deepcopy: to ensure that each propagation is recorded and not overwritten
total_path = deepcopy(pathlist[i])
print(f'Computed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}')
msg = msg + f'\n\tComputed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}'
LOGGER.info(msg)
# for debug
# print(f'{pathreq.baud_rate} {pathreq.power} {pathreq.spacing} {pathreq.nb_channel}')
if total_path:
@@ -1136,14 +1115,12 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
snr01nm_with_penalty = total_path[-1].snr_01nm - total_path[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}' +\
f'\n\tCD penalty = {round(total_path[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
f'\n\tPMD penalty = {round(total_path[-1].penalties["pmd"][min_ind], 2)}' +\
f'\n\trequired osnr = {pathreq.OSNR}' +\
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
print(msg)
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(total_path, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
else:
@@ -1179,22 +1156,20 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
if pathreq.bidir and pathreq.baud_rate is not None:
# Both directions requested, and a feasible mode was found
rev_p = deepcopy(reversed_path)
print(f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}')
print(f'\tPath (roadsm) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n')
msg = f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}\n' \
+ f'\tPath (roadms) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n'
LOGGER.info(msg)
propagate(rev_p, pathreq, equipment)
propagated_reversed_path = rev_p
snr01nm_with_penalty = rev_p[-1].snr_01nm - rev_p[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}' +\
f'\n\tCD penalty = {round(rev_p[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
f'\n\tPMD penalty = {round(rev_p[-1].penalties["pmd"][min_ind], 2)}' +\
f'\n\trequired osnr = {pathreq.OSNR}' +\
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
print(msg)
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.destination} to {pathreq.source} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(rev_p, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
# TODO selection of mode should also be on reversed direction !!
if not hasattr(pathreq, 'blocking_reason'):
@@ -1202,9 +1177,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
else:
propagated_reversed_path = []
else:
msg = 'Total path is empty. No propagation'
print(msg)
LOGGER.info(msg)
msg = f'Request {pathreq.request_id}: Total path is empty. No propagation'
LOGGER.warning(msg)
reversed_path = []
propagated_reversed_path = []
@@ -1212,12 +1186,12 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
reversed_path_res_list.append(reversed_path)
propagated_reversed_path_res_list.append(propagated_reversed_path)
# print to have a nice output
print('')
return path_res_list, reversed_path_res_list, propagated_reversed_path_res_list
def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=0.0125e12):
""" Compute the number of required wavelengths and the M value (number of consumed slots)
"""Compute the number of required wavelengths and the M value (number of consumed slots)
Each wavelength consumes one `spacing`, and the result is rounded up to consume a natural number of slots.
>>> compute_spectrum_slot_vs_bandwidth(400e9, 50e9, 200e9)
@@ -1226,3 +1200,19 @@ def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=
number_of_wavelengths = ceil(bandwidth / bit_rate)
total_number_of_slots = ceil(spacing / slot_width) * number_of_wavelengths
return number_of_wavelengths, total_number_of_slots
def _penalty_msg(total_path, msg, min_ind):
"""formatting helper for reporting unfeasible paths
The penalty info are optional, so this checks that penalty exists before creating a message."""
penalty_dict = {
'pdl': 'PDL',
'chromatic_dispersion': 'CD',
'pmd': 'PMD'}
for key, pretty in penalty_dict.items():
if key in total_path[-1].penalties:
msg += f'\n\t{pretty} penalty = {round(total_path[-1].penalties[key][min_ind], 2)}'
else:
msg += f'\n\t{pretty} penalty not evaluated'
return msg

View File

@@ -17,14 +17,14 @@ from collections import namedtuple
from logging import getLogger
from gnpy.core.elements import Roadm, Transceiver
from gnpy.core.exceptions import ServiceError, SpectrumError
from gnpy.core.utils import order_slots, restore_order
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth
LOGGER = getLogger(__name__)
class Bitmap:
""" records the spectrum occupation
"""
"""records the spectrum occupation"""
def __init__(self, f_min, f_max, grid, guardband=0.15e12, bitmap=None):
# n is the min index including guardband. Guardband is require to be sure
@@ -45,26 +45,22 @@ class Bitmap:
raise SpectrumError(f'bitmap is not consistant with f_min{f_min} - n: {n_min} and f_max{f_max}- n :{n_max}')
def getn(self, i):
""" converts the n (itu grid) into a local index
"""
"""converts the n (itu grid) into a local index"""
return self.freq_index[i]
def geti(self, nvalue):
""" converts the local index into n (itu grid)
"""
"""converts the local index into n (itu grid)"""
return self.freq_index.index(nvalue)
def insert_left(self, newbitmap):
""" insert bitmap on the left to align oms bitmaps if their start frequencies are different
"""
"""insert bitmap on the left to align oms bitmaps if their start frequencies are different"""
self.bitmap = newbitmap + self.bitmap
temp = list(range(self.n_min - len(newbitmap), self.n_min))
self.freq_index = temp + self.freq_index
self.n_min = self.freq_index[0]
def insert_right(self, newbitmap):
""" insert bitmap on the right to align oms bitmaps if their stop frequencies are different
"""
"""insert bitmap on the right to align oms bitmaps if their stop frequencies are different"""
self.bitmap = self.bitmap + newbitmap
self.freq_index = self.freq_index + list(range(self.n_max, self.n_max + len(newbitmap)))
self.n_max = self.freq_index[-1]
@@ -75,8 +71,8 @@ OMSParams = namedtuple('OMSParams', 'oms_id el_id_list el_list')
class OMS:
""" OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""
def __init__(self, *args, **params):
@@ -98,36 +94,28 @@ class OMS:
f'{self.el_id_list[0]} - {self.el_id_list[-1]}', '\n'])
def add_element(self, elem):
""" records oms elements
"""
"""records oms elements"""
self.el_id_list.append(elem.uid)
self.el_list.append(elem)
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None,
grid=0.00625e12):
""" frequencies expressed in Hz
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None, grid=0.00625e12):
"""Frequencies expressed in Hz.
Add 150 GHz margin to enable a center channel on f_min
Use ITU-T G694.1 Flexible DWDM grid definition
For the flexible DWDM grid, the allowed frequency slots have a nominal central frequency (in THz) defined by:
193.1 + n × 0.00625 where n is a positive or negative integer including 0
and 0.00625 is the nominal central frequency granularity in THz
and a slot width defined by:
12.5 × m where m is a positive integer and 12.5 is the slot width granularity in GHz.
Any combination of frequency slots is allowed as long as no two frequency slots overlap.
If bitmap is not None, then use it: Bitmap checks its consistency with f_min f_max
else a brand new bitmap is created
"""
if existing_spectrum is None:
# add some 150 GHz margin to enable a center channel on f_min
# use ITU-T G694.1
# Flexible DWDM grid definition
# For the flexible DWDM grid, the allowed frequency slots have a nominal
# central frequency (in THz) defined by:
# 193.1 + n × 0.00625 where n is a positive or negative integer including 0
# and 0.00625 is the nominal central frequency granularity in THz
# and a slot width defined by:
# 12.5 × m where m is a positive integer and 12.5 is the slot width granularity in
# GHz.
# Any combination of frequency slots is allowed as long as no two frequency
# slots overlap.
# TODO : add explaination on that / parametrize ....
self.spectrum_bitmap = Bitmap(f_min, f_max, grid, guardband)
# print(len(self.spectrum_bitmap.bitmap))
self.spectrum_bitmap = Bitmap(f_min=f_min, f_max=f_max, grid=grid, guardband=guardband,
bitmap=existing_spectrum)
def assign_spectrum(self, nvalue, mvalue):
""" change oms spectrum to mark spectrum assigned
"""
"""change oms spectrum to mark spectrum assigned"""
if not isinstance(nvalue, int):
raise SpectrumError(f'N must be a signed integer, got {nvalue}')
if not isinstance(mvalue, int):
@@ -146,16 +134,16 @@ class OMS:
self.spectrum_bitmap.bitmap[self.spectrum_bitmap.geti(startn):self.spectrum_bitmap.geti(stopn) + 1] = [0] * (stopn - startn + 1)
def add_service(self, service_id, nb_wl):
""" record service and mark spectrum as occupied
"""
"""record service and mark spectrum as occupied"""
self.service_list.append(service_id)
self.nb_channels += nb_wl
def frequency_to_n(freq, grid=0.00625e12):
""" converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> frequency_to_n(193.1375e12)
6
@@ -167,9 +155,10 @@ def frequency_to_n(freq, grid=0.00625e12):
def nvalue_to_frequency(nvalue, grid=0.00625e12):
""" converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nvalue_to_frequency(6)
193137500000000.0
@@ -181,17 +170,17 @@ def nvalue_to_frequency(nvalue, grid=0.00625e12):
def mvalue_to_slots(nvalue, mvalue):
""" convert center n an m into start and stop n
"""
"""convert center n an m into start and stop n"""
startn = nvalue - mvalue
stopn = nvalue + mvalue - 1
return startn, stopn
def slots_to_m(startn, stopn):
""" converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nval, mval = slots_to_m(6, 20)
>>> nval
@@ -206,10 +195,11 @@ def slots_to_m(startn, stopn):
def m_to_freq(nvalue, mvalue, grid=0.00625e12):
""" converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> fstart, fstop = m_to_freq(13, 7)
>>> fstart
@@ -225,9 +215,7 @@ def m_to_freq(nvalue, mvalue, grid=0.00625e12):
def align_grids(oms_list):
""" used to apply same grid to all oms : same starting n, stop n and slot size
out of grid slots are set to 0
"""
"""Used to apply same grid to all oms : same starting n, stop n and slot size. Out of grid slots are set to 0."""
n_min = min([o.spectrum_bitmap.n_min for o in oms_list])
n_max = max([o.spectrum_bitmap.n_max for o in oms_list])
for this_o in oms_list:
@@ -239,12 +227,13 @@ def align_grids(oms_list):
def build_oms_list(network, equipment):
""" initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""
oms_id = 0
oms_list = []
@@ -296,8 +285,9 @@ def build_oms_list(network, equipment):
def reversed_oms(oms_list):
""" identifies reversed OMS
only applicable for non parallel OMS
"""identifies reversed OMS
only applicable for non parallel OMS
"""
for oms in oms_list:
has_reversed = False
@@ -322,28 +312,41 @@ def bitmap_sum(band1, band2):
return res
def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
# use indexes instead of ITU-T n values
def build_path_oms_id_list(pth):
path_oms = []
for elem in pth:
if not isinstance(elem, Roadm) and not isinstance(elem, Transceiver):
# only edfa, fused and fibers have oms_id attribute
path_oms.append(elem.oms_id)
# remove duplicate oms_id, order is not important
path_oms = list(set(path_oms))
# assuming all oms have same freq index
if not path_oms:
candidate = (None, None, None)
return candidate, path_oms
freq_index = oms_list[path_oms[0]].spectrum_bitmap.freq_index
freq_index_min = oms_list[path_oms[0]].spectrum_bitmap.freq_index_min
freq_index_max = oms_list[path_oms[0]].spectrum_bitmap.freq_index_max
return list(set(path_oms))
freq_availability = oms_list[path_oms[0]].spectrum_bitmap.bitmap
def aggregate_oms_bitmap(path_oms, oms_list):
spectrum = oms_list[path_oms[0]].spectrum_bitmap
bitmap = spectrum.bitmap
# assuming all oms have same freq indices
for oms in path_oms[1:]:
freq_availability = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, freq_availability)
bitmap = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, bitmap)
params = {
'oms_id': 0,
'el_id_list': 0,
'el_list': []
}
freq_min = nvalue_to_frequency(spectrum.freq_index_min)
freq_max = nvalue_to_frequency(spectrum.freq_index_max)
aggregate_oms = OMS(**params)
aggregate_oms.update_spectrum(freq_min, freq_max, grid=0.00625e12, existing_spectrum=bitmap)
return aggregate_oms
def spectrum_selection(test_oms, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
freq_index = test_oms.spectrum_bitmap.freq_index
freq_index_min = test_oms.spectrum_bitmap.freq_index_min
freq_index_max = test_oms.spectrum_bitmap.freq_index_max
freq_availability = test_oms.spectrum_bitmap.bitmap
if requested_n is None:
# avoid slots reserved on the edge 0.15e-12 on both sides -> 24
candidates = [(freq_index[i] + requested_m, freq_index[i], freq_index[i] + 2 * requested_m - 1)
@@ -354,23 +357,36 @@ def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
candidate = select_candidate(candidates, policy='first_fit')
else:
i = oms_list[path_oms[0]].spectrum_bitmap.geti(requested_n)
# print(f'N {requested_n} i {i}')
# print(freq_availability[i-m:i+m] )
# print(freq_index[i-m:i+m])
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m) and
freq_index[i - requested_m] >= freq_index_min
i = test_oms.spectrum_bitmap.geti(requested_n)
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m)
and freq_index[i - requested_m] >= freq_index_min
and freq_index[i + requested_m - 1] <= freq_index_max):
# candidate is the triplet center_n, startn and stopn
candidate = (requested_n, requested_n - requested_m, requested_n + requested_m - 1)
else:
candidate = (None, None, None)
return candidate, path_oms
return candidate
def determine_slot_numbers(test_oms, requested_n, required_m, per_channel_m):
"""determines max availability around requested_n. requested_n should not be None"""
bitmap = test_oms.spectrum_bitmap
freq_index = bitmap.freq_index
freq_index_min = bitmap.freq_index_min
freq_index_max = bitmap.freq_index_max
freq_availability = bitmap.bitmap
center_i = bitmap.geti(requested_n)
i = per_channel_m
while (freq_availability[center_i - i:center_i + i] == [1] * (2 * i)
and freq_index[center_i - i] >= freq_index_min
and freq_index[center_i + i - 1] <= freq_index_max
and i <= required_m):
i += per_channel_m
return i - per_channel_m
def select_candidate(candidates, policy):
""" selects a candidate among all available spectrum
"""
"""selects a candidate among all available spectrum"""
if policy == 'first_fit':
if candidates:
return candidates[0]
@@ -380,44 +396,112 @@ def select_candidate(candidates, policy):
raise ServiceError('Only first_fit spectrum assignment policy is implemented.')
def compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m, policy='first_fit'):
""" based on requested path_bandwidth fill in M=None values with uint values, using per_channel_m
and center frequency, with first fit strategy. The function checks the available spectrum but check
consistencies among M values of the request, but not with other requests.
For example, if request is for 32 slots corresponding to 8 x 4 slots of 32Gbauds channels,
the following frequency slots will result in the following assignment
N = 0, 8, 16, 32 -> 0, 8, 16, 32
M = 8, None, 8, None -> 8, 8, 8, 8
N = 0, 8, 16, 32 -> 0, , 16
M = None, None, 8, None -> 24, , 8
"""
selected_m = []
selected_n = []
remaining_slots_to_serve = required_m
# order slots for the computation: assign biggest m first
rq_N, rq_M, order = order_slots([{'N': n, 'M': m} for n, m in zip(rq.N, rq.M)])
# Create an oms that represents current assignments of all oms listed in path_oms, and test N and M on it.
# If M is defined, checks that proposed N, M is free
test_oms = aggregate_oms_bitmap(path_oms, oms_list)
for n, m in zip(rq_N, rq_M):
if m is not None and n is not None:
# check availabilityfor this n, m
available_slots = determine_slot_numbers(test_oms, n, m, m)
if available_slots == 0:
# if n, m are not feasible, break at this point no have non zero remaining_slots_to_serve
# in order to blocks the request (even is other N,M where feasible)
break
elif m is not None and n is None:
# find a candidate n
n, _, _ = spectrum_selection(test_oms, m, None)
if n is None:
# if no n is feasible for the m, block the request
break
elif m is None and n is not None:
# find a feasible m for this n. If None is found, then block the request
m = determine_slot_numbers(test_oms, n, remaining_slots_to_serve, per_channel_m)
if m == 0 or remaining_slots_to_serve == 0:
break
else:
# if n and m are not defined, try to find a single assignment to fits the remaining slots to serve
# (first fit strategy)
n, _, _ = spectrum_selection(test_oms, remaining_slots_to_serve, None)
if n is None or remaining_slots_to_serve == 0:
break
else:
m = remaining_slots_to_serve
selected_m.append(m)
selected_n.append(n)
test_oms.assign_spectrum(n, m)
remaining_slots_to_serve = remaining_slots_to_serve - m
# re-order selected_m and selected_n according to initial request N, M order, ignoring None values
not_selected = [None for i in range(len(rq_N) - len(selected_n))]
selected_m = restore_order(selected_m + not_selected, order)
selected_n = restore_order(selected_n + not_selected, order)
return selected_n, selected_m, remaining_slots_to_serve
def pth_assign_spectrum(pths, rqs, oms_list, rpths):
""" basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""
for pth, rq, rpth in zip(pths, rqs, rpths):
# computes the number of channels required
if hasattr(rq, 'blocking_reason'):
rq.N = None
rq.M = None
else:
nb_wl, requested_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
rq.spacing, rq.bit_rate)
if getattr(rq, 'M', None) is not None:
# Consistency check between the requested M and path_bandwidth
# M value should be bigger than the computed requested_m (simple estimate)
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
# computes the number of channels required for path_bandwidth and the min required nb of slots
# for one channel (corresponds to the spacing)
nb_wl, required_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
rq.spacing, rq.bit_rate)
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(rq.bit_rate,
rq.spacing, rq.bit_rate)
# find oms ids that are concerned both by pth and rpth
path_oms = build_path_oms_id_list(pth + rpth)
if getattr(rq, 'M', None) is not None and all(rq.M):
# if all M are well defined: Consistency check that the requested M are enough to carry the nb_wl:
# check that the integer number of per_channel_m carried in each M value is enough to carry nb_wl.
# if not, blocks the demand
nb_channels_of_request = sum([m // per_channel_m for m in rq.M])
# TODO: elaborate a more accurate estimate with nb_wl * min_spacing + possibly guardbands in case of
# superchannel closed packing.
if requested_m > rq.M:
if nb_wl > nb_channels_of_request:
rq.N = None
rq.M = None
rq.blocking_reason = 'NOT_ENOUGH_RESERVED_SPECTRUM'
# need to stop here for this request and not go though spectrum selection process with requested_m
# need to stop here for this request and not go though spectrum selection process
continue
# use the req.M even if requested_m is smaller
requested_m = rq.M
requested_n = getattr(rq, 'N', None)
(center_n, startn, stopn), path_oms = spectrum_selection(pth + rpth, oms_list, requested_m,
requested_n)
# if requested n and m concern already occupied spectrum the previous function returns a None candidate
# if not None, center_n and start, stop frequencies are applicable to all oms of pth
# checks that spectrum is not None else indicate blocking reason
if center_n is not None:
for oms_elem in path_oms:
oms_list[oms_elem].assign_spectrum(center_n, requested_m)
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
rq.N = center_n
rq.M = requested_m
else:
# Use the req.M even if nb_wl and required_m are smaller.
# first fit strategy: assign as many lambda as possible in the None remaining N, M values
selected_n, selected_m, remaining_slots_to_serve = \
compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m)
# if there are some remaining_slots_to_serve, this means that provided rq.M and rq.N values were
# not possible. Then do not go though spectrum assignment process and blocks the demand
if remaining_slots_to_serve > 0:
rq.N = None
rq.M = None
rq.blocking_reason = 'NO_SPECTRUM'
continue
for oms_elem in path_oms:
for this_n, this_m in zip(selected_n, selected_m):
if this_m is not None:
oms_list[oms_elem].assign_spectrum(this_n, this_m)
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
rq.N = selected_n
rq.M = selected_m

View File

@@ -1,6 +1,11 @@
matplotlib>=3.5.1,<4
networkx>=2.6,<3
numpy>=1.22.0,<2
pbr>=5.7.0,<6
scipy>=1.7.3,<2
# matplotlib 3.8 removed support for Python 3.8
matplotlib>=3.7.3,<4
# networkx 3.2 removed support for Python 3.8
networkx>=3.1,<4
# numpy 1.25 removed support for Python 3.8
numpy>=1.24.4,<2
pbr>=6.0.0,<7
# scipy 1.11 removed support for Python 3.8
scipy>=1.10.1,<2
# xlrd 2.x removed support for .xlsx, it's only .xls now
xlrd>=1.2.0,<2

View File

@@ -23,6 +23,7 @@ classifier =
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
Programming Language :: Python :: 3.12
Programming Language :: Python :: Implementation :: CPython
Topic :: Scientific/Engineering
Topic :: Scientific/Engineering :: Physics

View File

@@ -0,0 +1,21 @@
{
"path-request": [
{
"request-id": "0",
"source": "trx Abilene",
"destination": "trx Albany",
"src-tp-id": "trx Abilene",
"dst-tp-id": "trx Albany",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 3",
"spacing": 62500000000.0,
"path_bandwidth": 100000000000.0
}
}
}
]
}

View File

@@ -217,7 +217,7 @@
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
},
{
"format": "mode 4",
"baud_rate": 66e9,

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
response-id,source,destination,path_bandwidth,Pass?,nb of tsp pairs,total cost,transponder-type,transponder-mode,OSNR-0.1nm,SNR-0.1nm,SNR-bandwidth,baud rate (Gbaud),input power (dBm),path,"spectrum (N,M)",reversed path OSNR-0.1nm,reversed path SNR-0.1nm,reversed path SNR-bandwidth
0,trx Lorient_KMA,trx Vannes_KBE,100.0,True,1,1,Voyager,mode 1,30.84,30.84,26.75,32.0,0.0,trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"-284, 4",,,
1,trx Brest_KLA,trx Vannes_KBE,10.0,True,1,1,Voyager,mode 1,22.65,22.11,18.03,32.0,1.0,trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"-276, 4",,,
3,trx Lannion_CAS,trx Rennes_STA,60.0,True,1,1,vendorA_trx-type1,mode 1,28.29,25.85,21.77,32.0,1.0,trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA,"-284, 4",,,
4,trx Rennes_STA,trx Lannion_CAS,150.0,True,1,1,vendorA_trx-type1,mode 2,22.27,22.15,15.05,64.0,0.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS,"-266, 6",,,
5,trx Rennes_STA,trx Lannion_CAS,20.0,True,1,1,vendorA_trx-type1,mode 2,30.79,28.78,21.68,64.0,3.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS,"-274, 6",,,
0,trx Lorient_KMA,trx Vannes_KBE,100.0,True,1,1,Voyager,mode 1,30.84,30.84,26.75,32.0,0.0,trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"[-284], [4]",,,
1,trx Brest_KLA,trx Vannes_KBE,10.0,True,1,1,Voyager,mode 1,22.65,22.11,18.03,32.0,1.0,trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE,"[-276], [4]",,,
3,trx Lannion_CAS,trx Rennes_STA,60.0,True,1,1,vendorA_trx-type1,mode 1,28.29,25.85,21.77,32.0,1.0,trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA,"[-284], [4]",,,
4,trx Rennes_STA,trx Lannion_CAS,150.0,True,1,1,vendorA_trx-type1,mode 2,22.27,22.14,15.05,64.0,0.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS,"[-266], [6]",,,
5,trx Rennes_STA,trx Lannion_CAS,20.0,True,1,1,vendorA_trx-type1,mode 2,30.79,28.76,21.67,64.0,3.0,trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS,"[-274], [6]",,,
6,,,,NO_PATH,,,,,,,,,,,,,,
1 response-id source destination path_bandwidth Pass? nb of tsp pairs total cost transponder-type transponder-mode OSNR-0.1nm SNR-0.1nm SNR-bandwidth baud rate (Gbaud) input power (dBm) path spectrum (N,M) reversed path OSNR-0.1nm reversed path SNR-0.1nm reversed path SNR-bandwidth
2 0 trx Lorient_KMA trx Vannes_KBE 100.0 True 1 1 Voyager mode 1 30.84 30.84 26.75 32.0 0.0 trx Lorient_KMA | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE -284, 4 [-284], [4]
3 1 trx Brest_KLA trx Vannes_KBE 10.0 True 1 1 Voyager mode 1 22.65 22.11 18.03 32.0 1.0 trx Brest_KLA | roadm Brest_KLA | east edfa in Brest_KLA to Morlaix | fiber (Brest_KLA → Morlaix)-F060 | east fused spans in Morlaix | fiber (Morlaix → Lannion_CAS)-F059 | west edfa in Lannion_CAS to Morlaix | roadm Lannion_CAS | east edfa in Lannion_CAS to Corlay | fiber (Lannion_CAS → Corlay)-F061 | west fused spans in Corlay | fiber (Corlay → Loudeac)-F010 | west fused spans in Loudeac | fiber (Loudeac → Lorient_KMA)-F054 | west edfa in Lorient_KMA to Loudeac | roadm Lorient_KMA | east edfa in Lorient_KMA to Vannes_KBE | fiber (Lorient_KMA → Vannes_KBE)-F055 | west edfa in Vannes_KBE to Lorient_KMA | roadm Vannes_KBE | trx Vannes_KBE -276, 4 [-276], [4]
4 3 trx Lannion_CAS trx Rennes_STA 60.0 True 1 1 vendorA_trx-type1 mode 1 28.29 25.85 21.77 32.0 1.0 trx Lannion_CAS | roadm Lannion_CAS | east edfa in Lannion_CAS to Stbrieuc | fiber (Lannion_CAS → Stbrieuc)-F056 | east edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Rennes_STA)-F057 | west edfa in Rennes_STA to Stbrieuc | roadm Rennes_STA | trx Rennes_STA -284, 4 [-284], [4]
5 4 trx Rennes_STA trx Lannion_CAS 150.0 True 1 1 vendorA_trx-type1 mode 2 22.27 22.15 22.14 15.05 64.0 0.0 trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Ploermel | fiber (Rennes_STA → Ploermel)- | east edfa in Ploermel to Vannes_KBE | fiber (Ploermel → Vannes_KBE)- | west edfa in Vannes_KBE to Ploermel | roadm Vannes_KBE | east edfa in Vannes_KBE to Lorient_KMA | fiber (Vannes_KBE → Lorient_KMA)-F055 | west edfa in Lorient_KMA to Vannes_KBE | roadm Lorient_KMA | east edfa in Lorient_KMA to Loudeac | fiber (Lorient_KMA → Loudeac)-F054 | east fused spans in Loudeac | fiber (Loudeac → Corlay)-F010 | east fused spans in Corlay | fiber (Corlay → Lannion_CAS)-F061 | west edfa in Lannion_CAS to Corlay | roadm Lannion_CAS | trx Lannion_CAS -266, 6 [-266], [6]
6 5 trx Rennes_STA trx Lannion_CAS 20.0 True 1 1 vendorA_trx-type1 mode 2 30.79 28.78 28.76 21.68 21.67 64.0 3.0 trx Rennes_STA | roadm Rennes_STA | east edfa in Rennes_STA to Stbrieuc | fiber (Rennes_STA → Stbrieuc)-F057 | west edfa in Stbrieuc to Rennes_STA | fiber (Stbrieuc → Lannion_CAS)-F056 | west edfa in Lannion_CAS to Stbrieuc | roadm Lannion_CAS | trx Lannion_CAS -274, 6 [-274], [6]
7 6 NO_PATH

View File

@@ -1,97 +1,97 @@
signal,nli
1.9952623149688793e-05,1.1158426495504604e-08
1.9952623149688793e-05,1.263949624403159e-08
1.9952623149688793e-05,1.3358478621325285e-08
1.9952623149688793e-05,1.3830775406251184e-08
1.9952623149688793e-05,1.4180462471172083e-08
1.9952623149688793e-05,1.4456701012984246e-08
1.9952623149688793e-05,1.4683973899785875e-08
1.9952623149688793e-05,1.487624147046227e-08
1.9952623149688793e-05,1.5042217041806274e-08
1.9952623149688793e-05,1.5187703614492153e-08
1.9952623149688793e-05,1.5316759790785317e-08
1.9952623149688793e-05,1.543233485150211e-08
1.9952623149688793e-05,1.553663885878994e-08
1.9952623149688793e-05,1.5631370249579246e-08
1.9952623149688793e-05,1.5717862065800704e-08
1.9952623149688793e-05,1.57971793985894e-08
1.9952623149688793e-05,1.5870186356579704e-08
1.9952623149688793e-05,1.593759332223716e-08
1.9952623149688793e-05,1.5999991070923486e-08
1.9952623149688793e-05,1.6057875903450682e-08
1.9952623149688793e-05,1.6111668489205982e-08
1.9952623149688793e-05,1.6161728217386366e-08
1.9952623149688793e-05,1.6208364281630228e-08
1.9952623149688793e-05,1.6251844350226973e-08
1.9952623149688793e-05,1.629240142540359e-08
1.9952623149688793e-05,1.6330239326114482e-08
1.9952623149688793e-05,1.6365537111728e-08
1.9952623149688793e-05,1.6398452681655655e-08
1.9952623149688793e-05,1.642912572715412e-08
1.9952623149688793e-05,1.6457680168940455e-08
1.9952623149688793e-05,1.6484226183026747e-08
1.9952623149688793e-05,1.6508861894003893e-08
1.9952623149688793e-05,1.6531674797617433e-08
1.9952623149688793e-05,1.655274296130114e-08
1.9952623149688793e-05,1.657213604125123e-08
1.9952623149688793e-05,1.6589916146838222e-08
1.9952623149688793e-05,1.660613857708963e-08
1.9952623149688793e-05,1.6620852449214096e-08
1.9952623149688793e-05,1.6634101235366932e-08
1.9952623149688793e-05,1.664592322084737e-08
1.9952623149688793e-05,1.6656351894496074e-08
1.9952623149688793e-05,1.666541628009631e-08
1.9952623149688793e-05,1.6673141215973025e-08
1.9952623149688793e-05,1.6679547588653583e-08
1.9952623149688793e-05,1.6684652525341145e-08
1.9952623149688793e-05,1.668846954900963e-08
1.9952623149688793e-05,1.66910086991187e-08
1.9952623149688793e-05,1.6692276620238304e-08
1.9952623149688793e-05,1.6692276620238304e-08
1.9952623149688793e-05,1.6691008699118703e-08
1.9952623149688793e-05,1.6688469549009633e-08
1.9952623149688793e-05,1.6684652525341148e-08
1.9952623149688793e-05,1.6679547588653586e-08
1.9952623149688793e-05,1.6673141215973028e-08
1.9952623149688793e-05,1.666541628009631e-08
1.9952623149688793e-05,1.6656351894496084e-08
1.9952623149688793e-05,1.6645923220847374e-08
1.9952623149688793e-05,1.6634101235366935e-08
1.9952623149688793e-05,1.66208524492141e-08
1.9952623149688793e-05,1.6606138577089633e-08
1.9952623149688793e-05,1.6589916146838225e-08
1.9952623149688793e-05,1.6572136041251237e-08
1.9952623149688793e-05,1.6552742961301146e-08
1.9952623149688793e-05,1.653167479761744e-08
1.9952623149688793e-05,1.6508861894003893e-08
1.9952623149688793e-05,1.648422618302675e-08
1.9952623149688793e-05,1.645768016894046e-08
1.9952623149688793e-05,1.6429125727154126e-08
1.9952623149688793e-05,1.6398452681655658e-08
1.9952623149688793e-05,1.6365537111728004e-08
1.9952623149688793e-05,1.6330239326114482e-08
1.9952623149688793e-05,1.6292401425403594e-08
1.9952623149688793e-05,1.6251844350226973e-08
1.9952623149688793e-05,1.6208364281630228e-08
1.9952623149688793e-05,1.616172821738637e-08
1.9952623149688793e-05,1.6111668489205982e-08
1.9952623149688793e-05,1.605787590345069e-08
1.9952623149688793e-05,1.5999991070923493e-08
1.9952623149688793e-05,1.5937593322237167e-08
1.9952623149688793e-05,1.5870186356579704e-08
1.9952623149688793e-05,1.5797179398589402e-08
1.9952623149688793e-05,1.571786206580071e-08
1.9952623149688793e-05,1.5631370249579252e-08
1.9952623149688793e-05,1.5536638858789946e-08
1.9952623149688793e-05,1.5432334851502114e-08
1.9952623149688793e-05,1.531675979078532e-08
1.9952623149688793e-05,1.5187703614492156e-08
1.9952623149688793e-05,1.5042217041806274e-08
1.9952623149688793e-05,1.4876241470462273e-08
1.9952623149688793e-05,1.4683973899785879e-08
1.9952623149688793e-05,1.4456701012984246e-08
1.9952623149688793e-05,1.4180462471172086e-08
1.9952623149688793e-05,1.3830775406251184e-08
1.9952623149688793e-05,1.3358478621325285e-08
1.9952623149688793e-05,1.2639496244031593e-08
1.9952623149688793e-05,1.1158426495504613e-08
1.9952623149688796e-05,1.0570305869494063e-08
1.9952623149688796e-05,1.1989102199581664e-08
1.9952623149688796e-05,1.2687787891259665e-08
1.9952623149688796e-05,1.3153676763101585e-08
1.9952623149688796e-05,1.3504001312414315e-08
1.9952623149688796e-05,1.378517965356758e-08
1.9952623149688796e-05,1.4020312829929705e-08
1.9952623149688796e-05,1.4222564206194578e-08
1.9952623149688796e-05,1.440014394542033e-08
1.9952623149688796e-05,1.4558516068269932e-08
1.9952623149688796e-05,1.4701499315172012e-08
1.9952623149688796e-05,1.4831866587815758e-08
1.9952623149688796e-05,1.4951694168451522e-08
1.9952623149688796e-05,1.506257639956634e-08
1.9952623149688796e-05,1.5165763570833366e-08
1.9952623149688796e-05,1.5262253772723937e-08
1.9952623149688796e-05,1.535285600134073e-08
1.9952623149688796e-05,1.543823467328411e-08
1.9952623149688796e-05,1.551894175425445e-08
1.9952623149688796e-05,1.5595440417063968e-08
1.9952623149688796e-05,1.5668122772822936e-08
1.9952623149688796e-05,1.5737323370281063e-08
1.9952623149688796e-05,1.5803329618444796e-08
1.9952623149688796e-05,1.5866389935670908e-08
1.9952623149688796e-05,1.592672019391794e-08
1.9952623149688796e-05,1.598450886742589e-08
1.9952623149688796e-05,1.6039921184766554e-08
1.9952623149688796e-05,1.609310250559421e-08
1.9952623149688796e-05,1.61441810880001e-08
1.9952623149688796e-05,1.6193270372246937e-08
1.9952623149688796e-05,1.6240470877236143e-08
1.9952623149688796e-05,1.6285871784230113e-08
1.9952623149688796e-05,1.6329552265978812e-08
1.9952623149688796e-05,1.6371582606990462e-08
1.9952623149688796e-05,1.641202515119326e-08
1.9952623149688796e-05,1.6450935105904177e-08
1.9952623149688796e-05,1.6488361225310858e-08
1.9952623149688796e-05,1.6524346392188574e-08
1.9952623149688796e-05,1.6558928113022246e-08
1.9952623149688796e-05,1.6592138938867027e-08
1.9952623149688796e-05,1.6624006821997905e-08
1.9952623149688796e-05,1.665455541654349e-08
1.9952623149688796e-05,1.668380432977811e-08
1.9952623149688796e-05,1.6711769329485368e-08
1.9952623149688796e-05,1.6738462511750264e-08
1.9952623149688796e-05,1.6763892432637406e-08
1.9952623149688796e-05,1.6788064206436675e-08
1.9952623149688796e-05,1.681097957247311e-08
1.9952623149688796e-05,1.6832636931862217e-08
1.9952623149688796e-05,1.6853031355021186e-08
1.9952623149688796e-05,1.687215456020574e-08
1.9952623149688796e-05,1.688999486281053e-08
1.9952623149688796e-05,1.690653709463382e-08
1.9952623149688796e-05,1.6921762491746848e-08
1.9952623149688796e-05,1.6935648549006222e-08
1.9952623149688796e-05,1.6948168838584662e-08
1.9952623149688796e-05,1.695929278914847e-08
1.9952623149688796e-05,1.696898542145055e-08
1.9952623149688796e-05,1.6977207035104874e-08
1.9952623149688796e-05,1.6983912840119302e-08
1.9952623149688796e-05,1.6989052525338295e-08
1.9952623149688796e-05,1.699256975421989e-08
1.9952623149688796e-05,1.6994401576260005e-08
1.9952623149688796e-05,1.6994477739772384e-08
1.9952623149688796e-05,1.699271988849318e-08
1.9952623149688796e-05,1.6989040620420942e-08
1.9952623149688796e-05,1.6983342382173362e-08
1.9952623149688796e-05,1.6975516165613388e-08
1.9952623149688796e-05,1.6965439965112504e-08
1.9952623149688796e-05,1.6952976942961452e-08
1.9952623149688796e-05,1.693797323625088e-08
1.9952623149688796e-05,1.6920255319826076e-08
1.9952623149688796e-05,1.6899626814970685e-08
1.9952623149688796e-05,1.6875864599859146e-08
1.9952623149688796e-05,1.6848714031984708e-08
1.9952623149688796e-05,1.6817883029489423e-08
1.9952623149688796e-05,1.6783034669737056e-08
1.9952623149688796e-05,1.674377783759437e-08
1.9952623149688796e-05,1.669965527407164e-08
1.9952623149688796e-05,1.6650128108596616e-08
1.9952623149688796e-05,1.6594555557112625e-08
1.9952623149688796e-05,1.6532167853144137e-08
1.9952623149688796e-05,1.6462029512327026e-08
1.9952623149688796e-05,1.6382988469074245e-08
1.9952623149688796e-05,1.6293604020234886e-08
1.9952623149688796e-05,1.619204201130206e-08
1.9952623149688796e-05,1.607591759753518e-08
1.9952623149688796e-05,1.5942050594874486e-08
1.9952623149688796e-05,1.578606776895102e-08
1.9952623149688796e-05,1.5601720601345105e-08
1.9952623149688796e-05,1.5379633197361104e-08
1.9952623149688796e-05,1.5104793671989548e-08
1.9952623149688796e-05,1.4750892345803154e-08
1.9952623149688796e-05,1.4265134295425351e-08
1.9952623149688796e-05,1.3514359541675816e-08
1.9952623149688796e-05,1.194579997186553e-08
1 signal nli
2 1.9952623149688793e-05 1.9952623149688796e-05 1.1158426495504604e-08 1.0570305869494063e-08
3 1.9952623149688793e-05 1.9952623149688796e-05 1.263949624403159e-08 1.1989102199581664e-08
4 1.9952623149688793e-05 1.9952623149688796e-05 1.3358478621325285e-08 1.2687787891259665e-08
5 1.9952623149688793e-05 1.9952623149688796e-05 1.3830775406251184e-08 1.3153676763101585e-08
6 1.9952623149688793e-05 1.9952623149688796e-05 1.4180462471172083e-08 1.3504001312414315e-08
7 1.9952623149688793e-05 1.9952623149688796e-05 1.4456701012984246e-08 1.378517965356758e-08
8 1.9952623149688793e-05 1.9952623149688796e-05 1.4683973899785875e-08 1.4020312829929705e-08
9 1.9952623149688793e-05 1.9952623149688796e-05 1.487624147046227e-08 1.4222564206194578e-08
10 1.9952623149688793e-05 1.9952623149688796e-05 1.5042217041806274e-08 1.440014394542033e-08
11 1.9952623149688793e-05 1.9952623149688796e-05 1.5187703614492153e-08 1.4558516068269932e-08
12 1.9952623149688793e-05 1.9952623149688796e-05 1.5316759790785317e-08 1.4701499315172012e-08
13 1.9952623149688793e-05 1.9952623149688796e-05 1.543233485150211e-08 1.4831866587815758e-08
14 1.9952623149688793e-05 1.9952623149688796e-05 1.553663885878994e-08 1.4951694168451522e-08
15 1.9952623149688793e-05 1.9952623149688796e-05 1.5631370249579246e-08 1.506257639956634e-08
16 1.9952623149688793e-05 1.9952623149688796e-05 1.5717862065800704e-08 1.5165763570833366e-08
17 1.9952623149688793e-05 1.9952623149688796e-05 1.57971793985894e-08 1.5262253772723937e-08
18 1.9952623149688793e-05 1.9952623149688796e-05 1.5870186356579704e-08 1.535285600134073e-08
19 1.9952623149688793e-05 1.9952623149688796e-05 1.593759332223716e-08 1.543823467328411e-08
20 1.9952623149688793e-05 1.9952623149688796e-05 1.5999991070923486e-08 1.551894175425445e-08
21 1.9952623149688793e-05 1.9952623149688796e-05 1.6057875903450682e-08 1.5595440417063968e-08
22 1.9952623149688793e-05 1.9952623149688796e-05 1.6111668489205982e-08 1.5668122772822936e-08
23 1.9952623149688793e-05 1.9952623149688796e-05 1.6161728217386366e-08 1.5737323370281063e-08
24 1.9952623149688793e-05 1.9952623149688796e-05 1.6208364281630228e-08 1.5803329618444796e-08
25 1.9952623149688793e-05 1.9952623149688796e-05 1.6251844350226973e-08 1.5866389935670908e-08
26 1.9952623149688793e-05 1.9952623149688796e-05 1.629240142540359e-08 1.592672019391794e-08
27 1.9952623149688793e-05 1.9952623149688796e-05 1.6330239326114482e-08 1.598450886742589e-08
28 1.9952623149688793e-05 1.9952623149688796e-05 1.6365537111728e-08 1.6039921184766554e-08
29 1.9952623149688793e-05 1.9952623149688796e-05 1.6398452681655655e-08 1.609310250559421e-08
30 1.9952623149688793e-05 1.9952623149688796e-05 1.642912572715412e-08 1.61441810880001e-08
31 1.9952623149688793e-05 1.9952623149688796e-05 1.6457680168940455e-08 1.6193270372246937e-08
32 1.9952623149688793e-05 1.9952623149688796e-05 1.6484226183026747e-08 1.6240470877236143e-08
33 1.9952623149688793e-05 1.9952623149688796e-05 1.6508861894003893e-08 1.6285871784230113e-08
34 1.9952623149688793e-05 1.9952623149688796e-05 1.6531674797617433e-08 1.6329552265978812e-08
35 1.9952623149688793e-05 1.9952623149688796e-05 1.655274296130114e-08 1.6371582606990462e-08
36 1.9952623149688793e-05 1.9952623149688796e-05 1.657213604125123e-08 1.641202515119326e-08
37 1.9952623149688793e-05 1.9952623149688796e-05 1.6589916146838222e-08 1.6450935105904177e-08
38 1.9952623149688793e-05 1.9952623149688796e-05 1.660613857708963e-08 1.6488361225310858e-08
39 1.9952623149688793e-05 1.9952623149688796e-05 1.6620852449214096e-08 1.6524346392188574e-08
40 1.9952623149688793e-05 1.9952623149688796e-05 1.6634101235366932e-08 1.6558928113022246e-08
41 1.9952623149688793e-05 1.9952623149688796e-05 1.664592322084737e-08 1.6592138938867027e-08
42 1.9952623149688793e-05 1.9952623149688796e-05 1.6656351894496074e-08 1.6624006821997905e-08
43 1.9952623149688793e-05 1.9952623149688796e-05 1.666541628009631e-08 1.665455541654349e-08
44 1.9952623149688793e-05 1.9952623149688796e-05 1.6673141215973025e-08 1.668380432977811e-08
45 1.9952623149688793e-05 1.9952623149688796e-05 1.6679547588653583e-08 1.6711769329485368e-08
46 1.9952623149688793e-05 1.9952623149688796e-05 1.6684652525341145e-08 1.6738462511750264e-08
47 1.9952623149688793e-05 1.9952623149688796e-05 1.668846954900963e-08 1.6763892432637406e-08
48 1.9952623149688793e-05 1.9952623149688796e-05 1.66910086991187e-08 1.6788064206436675e-08
49 1.9952623149688793e-05 1.9952623149688796e-05 1.6692276620238304e-08 1.681097957247311e-08
50 1.9952623149688793e-05 1.9952623149688796e-05 1.6692276620238304e-08 1.6832636931862217e-08
51 1.9952623149688793e-05 1.9952623149688796e-05 1.6691008699118703e-08 1.6853031355021186e-08
52 1.9952623149688793e-05 1.9952623149688796e-05 1.6688469549009633e-08 1.687215456020574e-08
53 1.9952623149688793e-05 1.9952623149688796e-05 1.6684652525341148e-08 1.688999486281053e-08
54 1.9952623149688793e-05 1.9952623149688796e-05 1.6679547588653586e-08 1.690653709463382e-08
55 1.9952623149688793e-05 1.9952623149688796e-05 1.6673141215973028e-08 1.6921762491746848e-08
56 1.9952623149688793e-05 1.9952623149688796e-05 1.666541628009631e-08 1.6935648549006222e-08
57 1.9952623149688793e-05 1.9952623149688796e-05 1.6656351894496084e-08 1.6948168838584662e-08
58 1.9952623149688793e-05 1.9952623149688796e-05 1.6645923220847374e-08 1.695929278914847e-08
59 1.9952623149688793e-05 1.9952623149688796e-05 1.6634101235366935e-08 1.696898542145055e-08
60 1.9952623149688793e-05 1.9952623149688796e-05 1.66208524492141e-08 1.6977207035104874e-08
61 1.9952623149688793e-05 1.9952623149688796e-05 1.6606138577089633e-08 1.6983912840119302e-08
62 1.9952623149688793e-05 1.9952623149688796e-05 1.6589916146838225e-08 1.6989052525338295e-08
63 1.9952623149688793e-05 1.9952623149688796e-05 1.6572136041251237e-08 1.699256975421989e-08
64 1.9952623149688793e-05 1.9952623149688796e-05 1.6552742961301146e-08 1.6994401576260005e-08
65 1.9952623149688793e-05 1.9952623149688796e-05 1.653167479761744e-08 1.6994477739772384e-08
66 1.9952623149688793e-05 1.9952623149688796e-05 1.6508861894003893e-08 1.699271988849318e-08
67 1.9952623149688793e-05 1.9952623149688796e-05 1.648422618302675e-08 1.6989040620420942e-08
68 1.9952623149688793e-05 1.9952623149688796e-05 1.645768016894046e-08 1.6983342382173362e-08
69 1.9952623149688793e-05 1.9952623149688796e-05 1.6429125727154126e-08 1.6975516165613388e-08
70 1.9952623149688793e-05 1.9952623149688796e-05 1.6398452681655658e-08 1.6965439965112504e-08
71 1.9952623149688793e-05 1.9952623149688796e-05 1.6365537111728004e-08 1.6952976942961452e-08
72 1.9952623149688793e-05 1.9952623149688796e-05 1.6330239326114482e-08 1.693797323625088e-08
73 1.9952623149688793e-05 1.9952623149688796e-05 1.6292401425403594e-08 1.6920255319826076e-08
74 1.9952623149688793e-05 1.9952623149688796e-05 1.6251844350226973e-08 1.6899626814970685e-08
75 1.9952623149688793e-05 1.9952623149688796e-05 1.6208364281630228e-08 1.6875864599859146e-08
76 1.9952623149688793e-05 1.9952623149688796e-05 1.616172821738637e-08 1.6848714031984708e-08
77 1.9952623149688793e-05 1.9952623149688796e-05 1.6111668489205982e-08 1.6817883029489423e-08
78 1.9952623149688793e-05 1.9952623149688796e-05 1.605787590345069e-08 1.6783034669737056e-08
79 1.9952623149688793e-05 1.9952623149688796e-05 1.5999991070923493e-08 1.674377783759437e-08
80 1.9952623149688793e-05 1.9952623149688796e-05 1.5937593322237167e-08 1.669965527407164e-08
81 1.9952623149688793e-05 1.9952623149688796e-05 1.5870186356579704e-08 1.6650128108596616e-08
82 1.9952623149688793e-05 1.9952623149688796e-05 1.5797179398589402e-08 1.6594555557112625e-08
83 1.9952623149688793e-05 1.9952623149688796e-05 1.571786206580071e-08 1.6532167853144137e-08
84 1.9952623149688793e-05 1.9952623149688796e-05 1.5631370249579252e-08 1.6462029512327026e-08
85 1.9952623149688793e-05 1.9952623149688796e-05 1.5536638858789946e-08 1.6382988469074245e-08
86 1.9952623149688793e-05 1.9952623149688796e-05 1.5432334851502114e-08 1.6293604020234886e-08
87 1.9952623149688793e-05 1.9952623149688796e-05 1.531675979078532e-08 1.619204201130206e-08
88 1.9952623149688793e-05 1.9952623149688796e-05 1.5187703614492156e-08 1.607591759753518e-08
89 1.9952623149688793e-05 1.9952623149688796e-05 1.5042217041806274e-08 1.5942050594874486e-08
90 1.9952623149688793e-05 1.9952623149688796e-05 1.4876241470462273e-08 1.578606776895102e-08
91 1.9952623149688793e-05 1.9952623149688796e-05 1.4683973899785879e-08 1.5601720601345105e-08
92 1.9952623149688793e-05 1.9952623149688796e-05 1.4456701012984246e-08 1.5379633197361104e-08
93 1.9952623149688793e-05 1.9952623149688796e-05 1.4180462471172086e-08 1.5104793671989548e-08
94 1.9952623149688793e-05 1.9952623149688796e-05 1.3830775406251184e-08 1.4750892345803154e-08
95 1.9952623149688793e-05 1.9952623149688796e-05 1.3358478621325285e-08 1.4265134295425351e-08
96 1.9952623149688793e-05 1.9952623149688796e-05 1.2639496244031593e-08 1.3514359541675816e-08
97 1.9952623149688793e-05 1.9952623149688796e-05 1.1158426495504613e-08 1.194579997186553e-08

View File

@@ -1,6 +1,6 @@
signal,nli
1.9952623149688793e-05,5.522326183599433e-09
1.7957360834719913e-05,4.5606601423111315e-09
2.593841009459543e-05,6.633717697038881e-09
1.5962098519751036e-05,4.3237017878447286e-09
2.3943147779626553e-05,8.311382502260195e-09
1.9952623149688796e-05,5.183134799604202e-09
1.7957360834719913e-05,4.286200408629989e-09
2.593841009459543e-05,6.2510001955285065e-09
1.5962098519751036e-05,4.082332034495425e-09
2.3943147779626556e-05,7.857762167195498e-09
1 signal nli
2 1.9952623149688793e-05 1.9952623149688796e-05 5.522326183599433e-09 5.183134799604202e-09
3 1.7957360834719913e-05 4.5606601423111315e-09 4.286200408629989e-09
4 2.593841009459543e-05 6.633717697038881e-09 6.2510001955285065e-09
5 1.5962098519751036e-05 4.3237017878447286e-09 4.082332034495425e-09
6 2.3943147779626553e-05 2.3943147779626556e-05 8.311382502260195e-09 7.857762167195498e-09

View File

@@ -1,96 +1,96 @@
1.000000000000000021e-03,5.915557166626927424e-04,3.840877221245049653e-04,2.466727384040633977e-04,1.573474629975438242e-04,9.994300566924636483e-05,6.331217828438720550e-05,4.004003600460594289e-05,2.529553013238426405e-05
1.000000000000000021e-03,5.910087140881509866e-04,3.835259923737136521e-04,2.462279833344210639e-04,1.570298910751132091e-04,9.972770370845923681e-05,6.317035443958771254e-05,3.994817502675088248e-05,2.523663218966317481e-05
1.000000000000000021e-03,5.904624672772724710e-04,3.829653846278134621e-04,2.457842903404500092e-04,1.567131560243821098e-04,9.951300275831494635e-05,6.302894048828063141e-05,3.985658526347281646e-05,2.517791045472703461e-05
1.000000000000000021e-03,5.899169734839467818e-04,3.824058950962419133e-04,2.453416557234028707e-04,1.563972548287988369e-04,9.929890059644241613e-05,6.288793488850426760e-05,3.976526568300959219e-05,2.511936425240675192e-05
1.000000000000000021e-03,5.893722299298780965e-04,3.818475199355363483e-04,2.449000757332959262e-04,1.560821844312877747e-04,9.908539497140619857e-05,6.274733607851797545e-05,3.967421524053715842e-05,2.506099289905929403e-05
1.000000000000000021e-03,5.888282338048204554e-04,3.812902552499899305e-04,2.444595465697163919e-04,1.557679417349789946e-04,9.887248360327203632e-05,6.260714247720703990e-05,3.958343287844485109e-05,2.500279570274922987e-05
1.000000000000000021e-03,5.882849822668304897e-04,3.807340970923119234e-04,2.440200643826254091e-04,1.554545236039297650e-04,9.866016418416755746e-05,6.246735248448248958e-05,3.949291752660743311e-05,2.494477196342878550e-05
1.000000000000000021e-03,5.877403241312353140e-04,3.801768826891299322e-04,2.435799392795756472e-04,1.551407333476893054e-04,9.844762961169771281e-05,6.232743618144160702e-05,3.940232665622856909e-05,2.488670234861411131e-05
1.000000000000000021e-03,5.871942634186000593e-04,3.796186190022559433e-04,2.431391779090945110e-04,1.548265761463755335e-04,9.823488356157069126e-05,6.218739605181586088e-05,3.931166190013138108e-05,2.482858791458364441e-05
1.000000000000000021e-03,5.866468041173980141e-04,3.790593129257516128e-04,2.426977868451053722e-04,1.545120571165502460e-04,9.802192966180839372e-05,6.204723454596646772e-05,3.922092486871354988e-05,2.477042970290643410e-05
1.000000000000000021e-03,5.860979501842715923e-04,3.784989712866057847e-04,2.422557725877665796e-04,1.541971813119806349e-04,9.780877149334107738e-05,6.190695408131255699e-05,3.913011715023943305e-05,2.471222874063606835e-05
1.000000000000000021e-03,5.855428054911818777e-04,3.779325362214322600e-04,2.418091152720060536e-04,1.538790714407033914e-04,9.759345536126727376e-05,6.176526646718061210e-05,3.903840385562048950e-05,2.465344951928800295e-05
1.000000000000000021e-03,5.849813875456967485e-04,3.773600382625630725e-04,2.413578451141304101e-04,1.535577517356502032e-04,9.737599881379701964e-05,6.162218372343696363e-05,3.894579295722817337e-05,2.459409722576532997e-05
1.000000000000000021e-03,5.844137140093277807e-04,3.767815081401627831e-04,2.409019924922280132e-04,1.532332465435331354e-04,9.715641947446165209e-05,6.147771791853056712e-05,3.885229245840823961e-05,2.453417706661341544e-05
1.000000000000000021e-03,5.838398026969793654e-04,3.761969767804803125e-04,2.404415879440078890e-04,1.529055803229076760e-04,9.693473504062415536e-05,6.133188116843621776e-05,3.875791039276530608e-05,2.447369426754818325e-05
1.000000000000000021e-03,5.832596715764015120e-04,3.756064753041117783e-04,2.399766621646476654e-04,1.525747776422469490e-04,9.671096328199675835e-05,6.118468563560254894e-05,3.866265482344967213e-05,2.441265407298631344e-05
1.000000000000000021e-03,5.826733387676383139e-04,3.750100350242446291e-04,2.395072460046293692e-04,1.522408631780071723e-04,9.648512203915507620e-05,6.103614352789890607e-05,3.856653384244465896e-05,2.435106174557538284e-05
1.000000000000000021e-03,5.820810441807425326e-04,3.744079089136845458e-04,2.390335428197917333e-04,1.519039834472631588e-04,9.625731118926498641e-05,6.088632085792882825e-05,3.846959029618343478e-05,2.428894479270876788e-05
1.000000000000000021e-03,5.814828054675655030e-04,3.738001274474016776e-04,2.385555825972570808e-04,1.515641624143126585e-04,9.602754804766522702e-05,6.073522946956701240e-05,3.837183203343020677e-05,2.422630831805138899e-05
1.000000000000000021e-03,5.808786404289665358e-04,3.731867212872194738e-04,2.380733954737781241e-04,1.512214241469207320e-04,9.579584999731260704e-05,6.058288124990010364e-05,3.827326693032387752e-05,2.416315744255338838e-05
1.000000000000000021e-03,5.802685670142343878e-04,3.725677212800349654e-04,2.375870117335689917e-04,1.508757928143868079e-04,9.556223448729982074e-05,6.042928812817623899e-05,3.817390288966712009e-05,2.409949730398197492e-05
1.000000000000000021e-03,5.796526968519212725e-04,3.719432545624587992e-04,2.370965379259533010e-04,1.505273470495264228e-04,9.532675589286383365e-05,6.027448635812982831e-05,3.807376356963088358e-05,2.403534314190221437e-05
1.000000000000000021e-03,5.790310479093865609e-04,3.713133518665244839e-04,2.366020041460938778e-04,1.501761108339581341e-04,9.508943151110322721e-05,6.011848775803337427e-05,3.797285679655886708e-05,2.397070004317041725e-05
1.000000000000000021e-03,5.784036383121742876e-04,3.706780441238009577e-04,2.361034406501071276e-04,1.498221082613785163e-04,9.485027871279472060e-05,5.996130419345521918e-05,3.787119042685209972e-05,2.390557311366359151e-05
1.000000000000000021e-03,5.777704863433433301e-04,3.700373624633735868e-04,2.356008778526011383e-04,1.494653635353745394e-04,9.460931494071504256e-05,5.980294757607067669e-05,3.776877234616485572e-05,2.383996747774973522e-05
1.000000000000000021e-03,5.771316104427772061e-04,3.693913382097967039e-04,2.350943463241932639e-04,1.491059009672212558e-04,9.436655770795449559e-05,5.964342986246977532e-05,3.766561046859827219e-05,2.377388827775711285e-05
1.000000000000000021e-03,5.764870292064976651e-04,3.687400028810397501e-04,2.345838767890191692e-04,1.487437449736715462e-04,9.412202459622686095e-05,5.948276305296108525e-05,3.756171273589169023e-05,2.370734067344167480e-05
1.000000000000000021e-03,5.758375946234993610e-04,3.680842155919215072e-04,2.340701414876563216e-04,1.483793719498717782e-04,9.387603703510192111e-05,5.932115823520561543e-05,3.745721560837426419e-05,2.364041205155829344e-05
1.000000000000000021e-03,5.751833223951592329e-04,3.674240032104748388e-04,2.335531666416808738e-04,1.480128027327277474e-04,9.362861002461524574e-05,5.915862564500113025e-05,3.735212585887714390e-05,2.357310681190604310e-05
1.000000000000000021e-03,5.745242283439769499e-04,3.667593927483133397e-04,2.330329785818580578e-04,1.476440582313571256e-04,9.337975861033522300e-05,5.899517554647101613e-05,3.724645027783519551e-05,2.350542936525477225e-05
1.000000000000000021e-03,5.738603284130473379e-04,3.660904113590355527e-04,2.325096037462197861e-04,1.472731594253864234e-04,9.312949788206356194e-05,5.883081823114703288e-05,3.714019567266727830e-05,2.343738413293735195e-05
1.000000000000000021e-03,5.731917314000997948e-04,3.654171810067180655e-04,2.319831433530600859e-04,1.469001805571756218e-04,9.287787898176902846e-05,5.866558771451522606e-05,3.703338420706373603e-05,2.336898537810763873e-05
1.000000000000000021e-03,5.725184531760584700e-04,3.647397285916569422e-04,2.314536235223777264e-04,1.465251423190001693e-04,9.262491677678542706e-05,5.849949412959568328e-05,3.692602258076439168e-05,2.330023745100291859e-05
1.000000000000000021e-03,5.718405097346714646e-04,3.640580811583470273e-04,2.309210704829702432e-04,1.461480654746279682e-04,9.237062617930094123e-05,5.833254763720848617e-05,3.681811751074023914e-05,2.323114471257928647e-05
1.000000000000000021e-03,5.711579171919053044e-04,3.633722658937428313e-04,2.303855105703487465e-04,1.457689708574830614e-04,9.211502214495855044e-05,5.816475842498649012e-05,3.670967573052717390e-05,2.316171153407365905e-05
1.000000000000000021e-03,5.704706917853448337e-04,3.626823101255147543e-04,2.298469702246577707e-04,1.453878793688169360e-04,9.185811967146480901e-05,5.799613670639434487e-05,3.660070398956385041e-05,2.309194229656875218e-05
1.000000000000000021e-03,5.697788498735841109e-04,3.619882413202942504e-04,2.293054759885765847e-04,1.450048119758659754e-04,9.159993379718755254e-05,5.782669271974067121e-05,3.649120905252569737e-05,2.302184139055488024e-05
1.000000000000000021e-03,5.690839249361781711e-04,3.612915831986411477e-04,2.287622092282637863e-04,1.446206010588695675e-04,9.134102410651873409e-05,5.765679311500335815e-05,3.638142760462866287e-05,2.295156024783083523e-05
1.000000000000000021e-03,5.683859273133331363e-04,3.605923537461036641e-04,2.282171874164802170e-04,1.442352604283837097e-04,9.108140050118301682e-05,5.748644463023418617e-05,3.627136409615889481e-05,2.288110175599186700e-05
1.000000000000000021e-03,5.676848674169825831e-04,3.598905710243090802e-04,2.276704280772651710e-04,1.438488039249314222e-04,9.082107289971861372e-05,5.731565401294060850e-05,3.616102298282374168e-05,2.281046880581413228e-05
1.000000000000000021e-03,5.669807557304629327e-04,3.591862531699841626e-04,2.271219487847658911e-04,1.434612454179789358e-04,9.056005123670258442e-05,5.714442801953895405e-05,3.605040872538299508e-05,2.273966429101268041e-05
1.000000000000000021e-03,5.662756696284717943e-04,3.584815135619230891e-04,2.265734124911083147e-04,1.430737675597642188e-04,9.029913524493678829e-05,5.697329258726415482e-05,3.593986162522089478e-05,2.266890625682277028e-05
1.000000000000000021e-03,5.655696121370722921e-04,3.577763576655677066e-04,2.260248242651153531e-04,1.426863741861267136e-04,9.003832758694041048e-05,5.680224948786493348e-05,3.582938283523433764e-05,2.259819544408493697e-05
1.000000000000000021e-03,5.648625863181645518e-04,3.570707909872514684e-04,2.254761892066869196e-04,1.422990691538204475e-04,8.977763093872482745e-05,5.663130050166089515e-05,3.571897351373497692e-05,2.252753259705453904e-05
1.000000000000000021e-03,5.641545952693012783e-04,3.563648190736888295e-04,2.249275124461922067e-04,1.419118563399853763e-04,8.951704798938974166e-05,5.646044741725799208e-05,3.560863482425828067e-05,2.245691846327665519e-05
1.000000000000000021e-03,5.634456421235028989e-04,3.556584475114634488e-04,2.243787991438712611e-04,1.415247396416227112e-04,8.925658144072659398e-05,5.628969203126926030e-05,3.549836793537420297e-05,2.238635379346144160e-05
1.000000000000000021e-03,5.627357300490819225e-04,3.549516819265270164e-04,2.238300544892383743e-04,1.411377229750731741e-04,8.899623400682166435e-05,5.611903614803531905e-05,3.538817402049950172e-05,2.231583934136070575e-05
1.000000000000000021e-03,5.620265745740795878e-04,3.542462045793823072e-04,2.232825718355581747e-04,1.407517127660701999e-04,8.873661298955798349e-05,5.594887683102661642e-05,3.527830905094599801e-05,2.224553873809700179e-05
1.000000000000000021e-03,5.613181716914067464e-04,3.535420099674467737e-04,2.227363458317740963e-04,1.403667046661989041e-04,8.847771519474716161e-05,5.577921186868756777e-05,3.516877154903826080e-05,2.217545101761858074e-05
1.000000000000000021e-03,5.606105174362018646e-04,3.528390926567629869e-04,2.221913711948466166e-04,1.399826943822104249e-04,8.821953746856249804e-05,5.561003907731979445e-05,3.505956005567386572e-05,2.210557522599888898e-05
1.000000000000000021e-03,5.599036078855734169e-04,3.521374472813410678e-04,2.216476427089692435e-04,1.395996776753266513e-04,8.796207669700402236e-05,5.544135630070159596e-05,3.495067313006486022e-05,2.203591042126611129e-05
1.000000000000000021e-03,5.591992581819900257e-04,3.514388991464684675e-04,2.211065862108586844e-04,1.392186639199167455e-04,8.770601346645835294e-05,5.527361030479937100e-05,3.484239951455165907e-05,2.196664147854661471e-05
1.000000000000000021e-03,5.584974577369657654e-04,3.507434317312190116e-04,2.205681855748304113e-04,1.388396401724235928e-04,8.745133837595373525e-05,5.510679463338290224e-05,3.473473491875524963e-05,2.189776560286087024e-05
1.000000000000000021e-03,5.577981960279812567e-04,3.500510286412654524e-04,2.200324248112712805e-04,1.384625936044855835e-04,8.719804211084999142e-05,5.494090289064881491e-05,3.462767509292537455e-05,2.182928002589032757e-05
1.000000000000000021e-03,5.571014625980537805e-04,3.493616736077873519e-04,2.194992880653100025e-04,1.380875115017372141e-04,8.694611544190507637e-05,5.477592874055209164e-05,3.452121582748434684e-05,2.176118200567564087e-05
1.000000000000000021e-03,5.564072470552914543e-04,3.486753504863699662e-04,2.189687596154907018e-04,1.377143812626113696e-04,8.669554922434540153e-05,5.461186590614181566e-05,3.441535295257522900e-05,2.169346882631773742e-05
1.000000000000000021e-03,5.557155390724777657e-04,3.479920432559456848e-04,2.184408238724854000e-04,1.373431903971786034e-04,8.644633439696230146e-05,5.444870816891464747e-05,3.431008233762035268e-05,2.162613779768559453e-05
1.000000000000000021e-03,5.550282308874212147e-04,3.473135853761227104e-04,2.179168797741835634e-04,1.369749146289257855e-04,8.619912270820690987e-05,5.428688083545962664e-05,3.420567782931384528e-05,2.155936384410790980e-05
1.000000000000000021e-03,5.543453044039096641e-04,3.466399489498413807e-04,2.173969005859271932e-04,1.366095327799803094e-04,8.595389890905566596e-05,5.412637349122350694e-05,3.410213253115887156e-05,2.149314248283782383e-05
1.000000000000000021e-03,5.536667416543260278e-04,3.459711063207645686e-04,2.168808598269340415e-04,1.362470238846985658e-04,8.571064790824490891e-05,5.396717583150281386e-05,3.399943962027434491e-05,2.142746927933548718e-05
1.000000000000000021e-03,5.529925247987736454e-04,3.453070300711248903e-04,2.163687312677279435e-04,1.358873671873677324e-04,8.546935477049620155e-05,5.380927766017944798e-05,3.389759234653519571e-05,2.136233984669994517e-05
1.000000000000000021e-03,5.523242123557685823e-04,3.446492679875326503e-04,2.158617145497228296e-04,1.355314077800207832e-04,8.523058755788532964e-05,5.365305115434923267e-05,3.379683095199963850e-05,2.129790788796336886e-05
1.000000000000000021e-03,5.516617811459008413e-04,3.439977838203789025e-04,2.153597748770509342e-04,1.351791181086447731e-04,8.499432644189092710e-05,5.349848277838686991e-05,3.369714647650299112e-05,2.123416758034315385e-05
1.000000000000000021e-03,5.510052081904127453e-04,3.433525416882428740e-04,2.148628778379304833e-04,1.348304709382760146e-04,8.476055183025699440e-05,5.334555916079864168e-05,3.359853006971443923e-05,2.117111317291617240e-05
1.000000000000000021e-03,5.503544707098636342e-04,3.427135060745518090e-04,2.143709894006651793e-04,1.344854393494213974e-04,8.452924436422564868e-05,5.319426709225049006e-05,3.350097298979682009e-05,2.110873898573355285e-05
1.000000000000000021e-03,5.497095461228062706e-04,3.420806418242862412e-04,2.138840759097000895e-04,1.341439967345312348e-04,8.430038491581448882e-05,5.304459352362807473e-05,3.340446660208796169e-05,2.104703940894962140e-05
1.000000000000000021e-03,5.490704120444732210e-04,3.414539141407250565e-04,2.134021040817290626e-04,1.338061167945246396e-04,8.407395458513211085e-05,5.289652556412503305e-05,3.330900237780223545e-05,2.098600890196449472e-05
1.000000000000000021e-03,5.484371298422446297e-04,3.408333692467681113e-04,2.129251024270059081e-04,1.334718163299163942e-04,8.384996326436759272e-05,5.275006911363530105e-05,3.321458388816914869e-05,2.092564965374723430e-05
1.000000000000000021e-03,5.478096771889333057e-04,3.402189725469309967e-04,2.124530379214265854e-04,1.331410692793207290e-04,8.362839223924152716e-05,5.260521141428185532e-05,3.312120269498457291e-05,2.086595618361951373e-05
1.000000000000000021e-03,5.471880319478338028e-04,3.396106897916775086e-04,2.119858778995733334e-04,1.328138498781884043e-04,8.340922301478033581e-05,5.246193986031627375e-05,3.302885046175365648e-05,2.080692307740899109e-05
1.000000000000000021e-03,5.465721721714859958e-04,3.390084870743713592e-04,2.115235900510876890e-04,1.324901326555763298e-04,8.319243731282516567e-05,5.232024199634728476e-05,3.293751895248773966e-05,2.074854498665493433e-05
1.000000000000000021e-03,5.459629241404544706e-04,3.384131725428774743e-04,2.110667946787101129e-04,1.321703518944146796e-04,8.297832591380873519e-05,5.218030786215170435e-05,3.284733064718059383e-05,2.069090019482566404e-05
1.000000000000000021e-03,5.453602635114507746e-04,3.378247083723790616e-04,2.106154557101209946e-04,1.318544791589579420e-04,8.276686841524559784e-05,5.204212355675735553e-05,3.275827635494999894e-05,2.063398273378693265e-05
1.000000000000000021e-03,5.447641661727002649e-04,3.372430571518834691e-04,2.101695374983407439e-04,1.315424863636820575e-04,8.255804467261116894e-05,5.190567535780167048e-05,3.267034700418964161e-05,2.057778671334094953e-05
1.000000000000000021e-03,5.441746082424759419e-04,3.366681818805845774e-04,2.097290048174083239e-04,1.312343457694375884e-04,8.235183479637930588e-05,5.177094971942625129e-05,3.258353364113958107e-05,2.052230632028256941e-05
1.000000000000000021e-03,5.435915660676414983e-04,3.361000459642789163e-04,2.092938228581225045e-04,1.309300299796617602e-04,8.214821914910500468e-05,5.163793327020207291e-05,3.249782742847867687e-05,2.046753581747058517e-05
1.000000000000000021e-03,5.430150162222109568e-04,3.355386132118161487e-04,2.088639572238308215e-04,1.306295119366350911e-04,8.194717834254394587e-05,5.150661281108238069e-05,3.241321964393507540e-05,2.041346954291065543e-05
1.000000000000000021e-03,5.424450181544462771e-04,3.349839271155603902e-04,2.084394340599780252e-04,1.303328067075743425e-04,8.174872108664715700e-05,5.137699346328779477e-05,3.232971335519106785e-05,2.036010936323692981e-05
1.000000000000000021e-03,5.418815485793469040e-04,3.344359518126675877e-04,2.080202193468776877e-04,1.300398875631312602e-04,8.155282824274543232e-05,5.124906220377890154e-05,3.224729995882103797e-05,2.030744969463951815e-05
1.000000000000000021e-03,5.413245844265015877e-04,3.338946518213946552e-04,2.076062794549138172e-04,1.297507280942760690e-04,8.135948090770286575e-05,5.112280617242197348e-05,3.216597096011364272e-05,2.025548502431296445e-05
1.000000000000000021e-03,5.407741028387587183e-04,3.333599920378552692e-04,2.071975811406991498e-04,1.294653022088876294e-04,8.116866041129419294e-05,5.099821267012491396e-05,3.208571797180734118e-05,2.020420990962221080e-05
1.000000000000000021e-03,5.402303025747014556e-04,3.328321561526745862e-04,2.067942601549091974e-04,1.291837026153304184e-04,8.098042783792958120e-05,5.087532120941394917e-05,3.200656629292941073e-05,2.015364045325785942e-05
1.000000000000000021e-03,5.396931605409548225e-04,3.323111087173311550e-04,2.063962829591101838e-04,1.289059030082810651e-04,8.079476437365657295e-05,5.075411899733799342e-05,3.192850747587867838e-05,2.010377117411100997e-05
1.000000000000000021e-03,5.391626538584482192e-04,3.317968146613820609e-04,2.060036164003212873e-04,1.286318773981824648e-04,8.061165143636152362e-05,5.063459340114707095e-05,3.185153317990099749e-05,2.005459666083220688e-05
1.000000000000000021e-03,5.386387598611086340e-04,3.312892392892789490e-04,2.056162277072543561e-04,1.283616001079104806e-04,8.043107067321031531e-05,5.051673194647494236e-05,3.177563516985718072e-05,2.000611157101859271e-05
1.000000000000000021e-03,5.381214560945620949e-04,3.307883482772016118e-04,2.052340844865845515e-04,1.280950457694747437e-04,8.025300395811590449e-05,5.040052231554306949e-05,3.170080531500530551e-05,1.995831063041139523e-05
1.000000000000000021e-03,5.376107203148404326e-04,3.302941076699326679e-04,2.048571547192701043e-04,1.278321893207613302e-04,8.007743338923888358e-05,5.028595234538581714e-05,3.162703558779804923e-05,1.991118863210237610e-05
1.000000000000000021e-03,5.371022748594453389e-04,3.298024246812891291e-04,2.044823390252625600e-04,1.275708788891961756e-04,7.990292563076895462e-05,5.017208832604374468e-05,3.155372544493714152e-05,1.986436223028797206e-05
1.000000000000000021e-03,5.365961117498912114e-04,3.293132869081722108e-04,2.041096254707852251e-04,1.273111050031557620e-04,7.972947385597059739e-05,5.005892559260894715e-05,3.148087179640124731e-05,1.981782941609088261e-05
1.000000000000000021e-03,5.360922230056120808e-04,3.288266819633119922e-04,2.037390021489647173e-04,1.270528582181514683e-04,7.955707126027152540e-05,4.994645949643470906e-05,3.140847156340457124e-05,1.977158818812822943e-05
1.000000000000000021e-03,5.355906006439992324e-04,3.283425974753378354e-04,2.033704571798752555e-04,1.267961291168465381e-04,7.938571106126265876e-05,4.983468540512894492e-05,3.133652167839010846e-05,1.972563655250571181e-05
1.000000000000000021e-03,5.350891259362026411e-04,3.278589502113704612e-04,2.030023855884717748e-04,1.265397912200834861e-04,7.921463777328526478e-05,4.972310904903239575e-05,3.126470337114675132e-05,1.967977067875568528e-05
1.000000000000000021e-03,5.345877966909636306e-04,3.273757374134148111e-04,2.026347848040474173e-04,1.262838424862170036e-04,7.904384991646645146e-05,4.961172941171763403e-05,3.119301596587686584e-05,1.963399012641590455e-05
1.000000000000000021e-03,5.340866106918126799e-04,3.268929562877650259e-04,2.022676522245876859e-04,1.260282808504260116e-04,7.887334599501782170e-05,4.950054546622813158e-05,3.112145877995456692e-05,1.958829445064508602e-05
1.000000000000000021e-03,5.335855656972701092e-04,3.264106040054970534e-04,2.019009852173301103e-04,1.257731042251948573e-04,7.870312449759831505e-05,4.938955617533215942e-05,3.105003112409614148e-05,1.954268320233478379e-05
1.000000000000000021e-03,5.330846594410641130e-04,3.259286777029715004e-04,2.015347811193284109e-04,1.255183105007985753e-04,7.853318389767883849e-05,4.927876049177821896e-05,3.097873230253197569e-05,1.949715592822227211e-05
0.001,0.0007537739940510926,0.0005921033539224395,0.000384643453726324,0.00024710943492700773,0.00015765779381207088,0.00010015276356884663,6.345008665672524e-05,4.012925332336102e-05,2.535268958174273e-05
0.001,0.0007532443480762404,0.0005915606741358828,0.00038408573214392957,0.00024666764094038643,0.00015734224135307426,9.993879038586218e-05,6.330912140259024e-05,4.003794165686942e-05,2.529414108865862e-05
0.001,0.0007527148738848327,0.0005910183036445593,0.0003835286706438232,0.0002462265418760313,0.00015702726304657165,9.972523988324127e-05,6.316844848796591e-05,3.994682503096186e-05,2.5235719950422228e-05
0.001,0.0007521855703345118,0.0005904762413907948,0.00038297226807207136,0.0002457861365766504,0.00015671285789580896,9.9512111295817e-05,6.302806736731544e-05,3.985590307420444e-05,2.5177425921282973e-05
0.001,0.0007516564362539944,0.0005899344862777934,0.00038241652320864807,0.0002453464238190796,0.00015639902485083639,9.929940381972637e-05,6.288797746852316e-05,3.976517539750482e-05,2.511925874398998e-05
0.001,0.0007511274704431355,0.0005893930371697809,0.0003818614347679428,0.0002449074023149522,0.00015608576280913723,9.908711661290977e-05,6.27481781932559e-05,3.967464159435973e-05,2.5061218149955632e-05
0.001,0.0007505986716729718,0.0005888518928921378,0.00038130700139925517,0.0002444690707113658,0.00015577307061625246,9.887524879560432e-05,6.260866891731864e-05,3.958430124109855e-05,2.5003303859417958e-05
0.001,0.0007500678710880661,0.0005883088511431218,0.000380751009486411,0.0002440296996901373,0.00015545972380501664,9.866297459432463e-05,6.246890748950651e-05,3.949380391318895e-05,2.4945291488462056e-05
0.001,0.0007495350705096461,0.0005877639154939723,0.000380193466563788,0.00024358929686534952,0.00015514572847430736,9.8450298405315e-05,6.232889690863924e-05,3.9403151593579556e-05,2.4887182324516918e-05
0.001,0.0007490002717484986,0.0005872170894971442,0.00037963438011605534,0.00024314786979147204,0.00015483109067004745,9.823722458416644e-05,6.218864014470764e-05,3.931234624568946e-05,2.4828977642138712e-05
0.001,0.0007484634766050366,0.000586668376686434,0.0003790737575785661,0.00024270542596389042,0.0001545158163857142,9.802375744622405e-05,6.204814013916893e-05,3.9221389813611975e-05,2.4770678703146694e-05
0.001,0.0007479199274773811,0.0005861128912299699,0.0003785065486556895,0.00024225795000622747,0.0001541970308568484,9.780794472023814e-05,6.190610951865765e-05,3.9129447888412384e-05,2.471175028700643e-05
0.001,0.0007473696306726699,0.0005855506450602122,0.0003779327791658341,0.00024180546890527417,0.0001538747562360148,9.758980264023896e-05,6.176255947727244e-05,3.903652792388679e-05,2.4652197254708885e-05
0.001,0.0007468125926679213,0.0005849816503235855,0.0003773524752207052,0.00024134800990073543,0.00015354901486124996,9.736934756691086e-05,6.161750129261558e-05,3.8942637427869684e-05,2.459202450185328e-05
0.001,0.0007462488201102061,0.0005844059193804029,0.00037676566322402907,0.00024088560048334876,0.0001532198292542639,9.714659598616437e-05,6.147094632476142e-05,3.884778396152801e-05,2.4531236958179027e-05
0.001,0.0007456783198168171,0.0005838234648047683,0.00037617236987025305,0.00024041826839299018,0.00015288722211863548,9.692156450770277e-05,6.132290601522212e-05,3.875197513865345e-05,2.4469839587096592e-05
0.001,0.0007451010987754332,0.0005832342993844907,0.0003755726221432343,0.0002399460416167659,0.00015255121633799497,9.66942698635831e-05,6.11733918859104e-05,3.8655218624953314e-05,2.4407837385217267e-05
0.001,0.0007445173992825126,0.0005826386743528757,0.00037496668540476865,0.00023946913369259697,0.00015221196586566552,9.646481704279825e-05,6.102247334575324e-05,3.85575594785277e-05,2.4345259282747418e-05
0.001,0.0007439272282773631,0.0005820366023339485,0.0003743545861363169,0.00023898757201912962,0.00015186949307274757,9.623322238874437e-05,6.0870161643097905e-05,3.845900518061352e-05,2.4282110155051444e-05
0.001,0.0007433305928659832,0.0005814280961601982,0.00037373635109929905,0.0002385013842326201,0.0001515238205025659,9.599950236146117e-05,6.071646810276464e-05,3.835956326175255e-05,2.4218394908993806e-05
0.001,0.0007427275003211868,0.0005808131688724332,0.0003731120073337174,0.00023801059820498021,0.0001511749708688244,9.576367353617374e-05,6.05614041249978e-05,3.825924130107498e-05,2.4154118482464792e-05
0.001,0.0007421180800523362,0.0005801919587229117,0.00037248171070273063,0.0002375153439047009,0.00015082303982525373,9.55258019540184e-05,6.0405013700224733e-05,3.815806798909622e-05,2.4089299350133826e-05
0.001,0.0007415023395254894,0.0005795644789202474,0.00037184548827748576,0.0002370156491221818,0.00015046804996987382,9.528590408468248e-05,6.0247308147258e-05,3.8056050847170796e-05,2.4023942410771268e-05
0.001,0.0007408802863797739,0.000578930742889133,0.00037120336741830446,0.00023651154189285886,0.00015011002407818366,9.504399651802114e-05,6.008829886368558e-05,3.7953197447440844e-05,2.395805259559495e-05
0.001,0.0007402519284274773,0.00057829076427012,0.0003705553757730914,0.00023600305049498863,0.0001497489851010917,9.480009596242987e-05,5.992799732470356e-05,3.784951541204015e-05,2.389163486774317e-05
0.001,0.0007396172736541335,0.0005776445569193926,0.0003699015412757306,0.000235490203447419,0.00014938495616282697,9.455421924320194e-05,5.976641508193571e-05,3.774501241228877e-05,2.38246942217421e-05
0.001,0.0007389763302186035,0.0005769921349085269,0.00036924189214444916,0.00023497302950733012,0.00014901796055883247,9.4306383300876e-05,5.960356376224896e-05,3.763969616788547e-05,2.37572356829714e-05
0.001,0.000738329973009011,0.0005763343882557762,0.00036857732657886674,0.00023445223185895243,0.00014864849677321228,9.40569245366171e-05,5.943966431343476e-05,3.753370952478887e-05,2.3689350732036766e-05
0.001,0.0007376782088319843,0.0005756713289449496,0.0003679078688863157,0.00023392783529630037,0.00014827658488585004,9.38058575472753e-05,5.927472675087035e-05,3.7427059131368685e-05,2.362104369630353e-05
0.001,0.0007370210446325295,0.0005750029691304239,0.000367233543593211,0.00023339986479263558,0.00014790224510292775,9.355319701349314e-05,5.910876114408311e-05,3.7319751670569666e-05,2.3552318925085614e-05
0.001,0.0007363584874940915,0.0005743293211369546,0.0003665543754437431,0.00023286834549865966,0.00014752549775524457,9.329895769838934e-05,5.8941777615809794e-05,3.721179385927125e-05,2.348318078922229e-05
0.001,0.0007356906659117175,0.0005736505214206793,0.00036587051603697917,0.00023233340267585003,0.00014714643450378646,9.30432026577021e-05,5.8773818072131705e-05,3.710321298927822e-05,2.3413646846771747e-05
0.001,0.0007350175870680764,0.0005729665823498456,0.00036518198995355594,0.00023179506120909636,0.00014676507541963834,9.278594644638945e-05,5.8604892484780656e-05,3.699401567385024e-05,2.3343721399750524e-05
0.001,0.000734339258284937,0.0005722775164633901,0.0003644888219905243,0.00023125334615855053,0.0001463814406964208,9.252720370024704e-05,5.8435010877524154e-05,3.688420855938328e-05,2.327340877117354e-05
0.001,0.0007336556870231954,0.0005715833364706749,0.00036379103715988533,0.00023070828275766533,0.00014599555064848363,9.226698913450141e-05,5.82641833251609e-05,3.677379832472749e-05,2.320271330460301e-05
0.001,0.0007329668808828947,0.0005708840552512191,0.00036308866068712113,0.00023015989641122435,0.00014560742570909416,9.200531754239911e-05,5.8092419952513674e-05,3.666279168050168e-05,2.313163936369656e-05
0.001,0.000732272847603227,0.0005701796858544125,0.000362381718009681,0.0002296082126933358,0.00014521708642859763,9.174220379377606e-05,5.791973093340874e-05,3.6551195368400524e-05,2.3060191331749373e-05
0.001,0.0007315751779154508,0.0005694718366517781,0.00036167180797618383,0.00022905447155647377,0.00014482540661409508,9.147823538482221e-05,5.774650123146614e-05,3.643925790598459e-05,2.2988528215049473e-05
0.001,0.0007308738763564251,0.0005687605159526348,0.00036095894758939165,0.00022849869020493823,0.00014443240010265552,9.121342232553745e-05,5.7572737692798364e-05,3.6326983828340116e-05,2.2916652961499898e-05
0.001,0.0007301689475478705,0.0005680457321686527,0.00036024315397386176,0.00022794088593578913,0.00014403808079282816,9.094777466478586e-05,5.739844718775089e-05,3.6214377685641065e-05,2.2844568528419092e-05
0.001,0.0007294603961963875,0.0005673274938137002,0.0003595244443750873,0.00022738107613769066,0.00014364246264358423,9.068130248947494e-05,5.72236366103174e-05,3.610144404275241e-05,2.2772277882278848e-05
0.001,0.0007287502876018436,0.0005666079096289159,0.00035880496633647314,0.00022682095171468864,0.00014324674865159545,9.041481948469436e-05,5.7048841153261715e-05,3.598852922211342e-05,2.270000293927642e-05
0.001,0.0007280386231103084,0.0005658869826353605,0.0003580847262718071,0.00022626051891339797,0.00014285094367250402,9.014832907727154e-05,5.687406312117876e-05,3.587563473352017e-05,2.2627744673782604e-05
0.001,0.0007273254041056322,0.0005651647158992671,0.00035736373064750184,0.00022569978402038908,0.00014245505258865028,8.988183471111395e-05,5.669930482943582e-05,3.5762762093538084e-05,2.2555504064421286e-05
0.001,0.0007266106320094578,0.0005644411125319691,0.00035664198598218,0.00022513875336164715,0.0001420590803085807,8.961533984682783e-05,5.652456860390248e-05,3.564991282531874e-05,2.2483282093948716e-05
0.001,0.000725894308281204,0.0005637161756897977,0.0003559194988462394,0.00022457743330201225,0.00014166303176654256,8.934884796133105e-05,5.634985678067539e-05,3.5537088458413665e-05,2.2411079749130865e-05
0.001,0.0007251764344180624,0.0005629899085739927,0.00035519627586142176,0.0002240158302446243,0.00014126691192198565,8.90823625474685e-05,5.6175171705805915e-05,3.542429052859005e-05,2.233889802062196e-05
0.001,0.0007244588135748975,0.0005622641246704724,0.00035447409591105305,0.0002234553120905153,0.00014087167955905718,8.881652603390643e-05,5.600093342830372e-05,3.531178983274928e-05,2.2266910019981595e-05
0.001,0.000723741443178776,0.000561538821268995,0.0003537529553873339,0.00022289587522719752,0.00014047733166655684,8.855133617099835e-05,5.5827140373801375e-05,3.519958531186087e-05,2.219511505192651e-05
0.001,0.0007230243206833482,0.0005608139956950427,0.00035303285074046774,0.00022233751609917817,0.00014008386527925162,8.82867907426191e-05,5.565379099102327e-05,3.508767592227262e-05,2.212351243120618e-05
0.001,0.0007223074435688039,0.0005600896453097011,0.0003523137784782074,0.00022178023120736695,0.00013969127747733319,8.802288756574066e-05,5.5480883751481105e-05,3.4976060635503277e-05,2.2052101482465692e-05
0.001,0.0007215926247557181,0.0005593676122940626,0.00035159759247597197,0.00022122546934306127,0.00013930059415776796,8.776031848020719e-05,5.5308872854303e-05,3.486503301641155e-05,2.198107017600086e-05
0.001,0.0007208798585848073,0.0005586478889723664,0.0003508842795507963,0.0002206732171528304,0.00013891180440309996,8.749907547557891e-05,5.513775276548628e-05,3.475458937431628e-05,2.1910416102241813e-05
0.001,0.0007201691394257483,0.000557930467712979,0.00035017382661216696,0.00022012346138632064,0.00013852489738482468,8.723915060881119e-05,5.49675179985075e-05,3.464472605058592e-05,2.184013687270143e-05
0.001,0.0007194604616770773,0.00055721534092818,0.00034946622066134466,0.00021957618889536463,0.00013813986236255893,8.698053600359808e-05,5.4798163113848986e-05,3.453543941831367e-05,2.177023011975932e-05
0.001,0.0007187538197660722,0.0005565025010739346,0.00034876144879066544,0.00021903138663308575,0.0001377566886832086,8.672322384971475e-05,5.462968271852315e-05,3.442672588199151e-05,2.1700693496445714e-05
0.001,0.0007180492081486484,0.0005557919406496801,0.00034805949818288173,0.0002184890416530366,0.00013737536578016266,8.646720640237894e-05,5.446207146561145e-05,3.431858187719449e-05,2.1631524676231647e-05
0.001,0.000717348639431565,0.0005550856739198547,0.00034736232071304855,0.00021795064331956514,0.00013699693247692832,8.621317757037385e-05,5.429578217858938e-05,3.421129897003673e-05,2.1562909902755936e-05
0.001,0.0007166521035756881,0.0005543836868927082,0.0003466698924934393,0.00021741616794755068,0.00013662136971116798,8.596112351100096e-05,5.413080535731451e-05,3.410487085131832e-05,2.1494845067789903e-05
0.001,0.0007159595906065037,0.0005536859656730149,0.00034598218983055497,0.0002168855920630381,0.0001362486585998701,8.571103051605296e-05,5.396713159578493e-05,3.399929127512844e-05,2.142732610463052e-05
0.001,0.0007152710906138687,0.0005529924964615861,0.00034529918922366796,0.00021635889240138666,0.0001358787804376394,8.546288501047042e-05,5.380475158117202e-05,3.389455405818364e-05,2.1360348987661796e-05
0.001,0.0007145881681833736,0.0005523048607339887,0.0003446224616264519,0.00021583728670966556,0.00013551259312919557,8.521726369129195e-05,5.364404315662281e-05,3.379090310339315e-05,2.129406976339983e-05
0.001,0.0007139108109389651,0.0005516230407004492,0.0003439519758859039,0.00021532074399295122,0.00013515007172518374,8.497414844816332e-05,5.3484993898260945e-05,3.368833016244125e-05,2.122848306212633e-05
0.001,0.0007132390066148024,0.0005509470187317473,0.00034328770115903844,0.00021480923358720733,0.0001347911915544671,8.473352137819455e-05,5.3327591526929936e-05,3.358682708410006e-05,2.1163583577742056e-05
0.001,0.0007125727430549207,0.0005502767773585094,0.000342629606910633,0.00021430272515636744,0.0001344359282214269,8.449536478383494e-05,5.317182390666476e-05,3.348638581318404e-05,2.109936606707349e-05
0.001,0.0007119120082129148,0.0005496122992705212,0.0003419776629110174,0.0002138011886894788,0.00013408425760331254,8.425966117078749e-05,5.3017679043188334e-05,3.3386998389521964e-05,2.1035825349191292e-05
0.001,0.000711256790151613,0.0005489535673160376,0.0003413318392338714,0.00021330459449785352,0.00013373615584760944,8.40263932459383e-05,5.286514508242194e-05,3.3288656946938245e-05,2.0972956304734848e-05
0.001,0.0007106071943639499,0.0005483006816957998,0.00034069221933208274,0.0002128129992904075,0.00013339165932644894,8.379558393280961e-05,5.271423641048183e-05,3.31913705135711e-05,2.091076460544407e-05
0.001,0.000709963208882901,0.0005476536252143895,0.0003400587732671483,0.0002123263734210078,0.00013305074425072359,8.356721599784782e-05,5.256494122003263e-05,3.3095131256746724e-05,2.0849245154782437e-05
0.001,0.0007093248218486061,0.0005470123808316875,0.00033943147139689077,0.0002118446875576196,0.00013271338709432742,8.334127240311385e-05,5.241724783997488e-05,3.299993143509595e-05,2.0788392916005465e-05
0.001,0.0007086920215080653,0.0005463769316622218,0.0003388102843733889,0.00021136791267964032,0.0001323795645916927,8.311773630434548e-05,5.2271144734051514e-05,3.290576339760186e-05,2.07282029115292e-05
0.001,0.0007080656480431051,0.0005457481216341828,0.0003381960373995552,0.00021089668206097172,0.0001320497200486003,8.289690449717853e-05,5.2126825862102536e-05,3.2812752146082854e-05,2.0668755034757233e-05
0.001,0.0007074456886869565,0.0005451259321489777,0.0003375886977799707,0.0002104309633113142,0.00013172382748945162,8.26787581753205e-05,5.198427834496719e-05,3.2720889139431744e-05,2.061004372929991e-05
0.001,0.0007068321308093747,0.0005445103448031184,0.0003369882331820464,0.00020997072442018424,0.00013140186125447996,8.246327876643199e-05,5.18434894660219e-05,3.2630165945308436e-05,2.055206350992823e-05
0.001,0.0007062249619162967,0.0005439013413874698,0.00033639461163356655,0.00020951593375373114,0.00013108379599680725,8.225044792981545e-05,5.170444666951808e-05,3.254057423900392e-05,2.0494808961820763e-05
0.001,0.00070562416964951,0.0005432989038865089,0.00033580780152024723,0.000209066560051587,0.00013076960667953474,8.204024755412909e-05,5.156713755893784e-05,3.2452105802317056e-05,2.0438274739819433e-05
0.001,0.0007050297417863318,0.0005427030144775926,0.0003352277715833316,0.00020862257242375786,0.00013045926857287288,8.183265975513502e-05,5.143154989537623e-05,3.236475252244954e-05,2.038245556769746e-05
0.001,0.0007044417829621171,0.000542113771820027,0.0003346546023905152,0.00020818402485557293,0.00013015281596227648,8.162770599537212e-05,5.129769708700084e-05,3.227852278867728e-05,2.032735670561579e-05
0.001,0.0007038602809995153,0.0005415311581470623,0.00033408826282687573,0.00020775088664703998,0.00012985022429639665,8.142536853201701e-05,5.116556699709043e-05,3.219340855821242e-05,2.0272972923816322e-05
0.001,0.0007032852238493367,0.0005409551558747416,0.0003335287221154158,0.00020732312745044945,0.00012955146931603386,8.122562983828357e-05,5.103514763884953e-05,3.2109401888525124e-05,2.0219299058105656e-05
0.001,0.0007027165995902542,0.0005403857476012292,0.00033297594981485264,0.00020690071726752732,0.0001292565270515082,8.102847260135871e-05,5.090642717392409e-05,3.202649493632917e-05,2.0166330009182866e-05
0.001,0.0007021546252265139,0.0005398231466905069,0.00033243014325207994,0.00020648380199548492,0.0001289654971719027,8.083396250547584e-05,5.077944809587575e-05,3.194471491165552e-05,2.0114083097018264e-05
0.001,0.0007015992888126556,0.0005392673356287205,0.0003318912717105927,0.00020607235137144977,0.0001286783555062261,8.06420820982489e-05,5.065419847368218e-05,3.186405391103787e-05,2.006255318369691e-05
0.001,0.0007010505785332368,0.0005387182970867077,0.00033135930481238495,0.00020566633548374424,0.0001283950781739038,8.04528141416734e-05,5.053066652493675e-05,3.1784504130324826e-05,2.001173519622426e-05
0.001,0.000700508482702546,0.0005381760139193414,0.00033083421251577956,0.00020526572476908743,0.000128115641582197,8.026614161010359e-05,5.040884061439589e-05,3.170605786368809e-05,1.9961624125869314e-05
0.001,0.0006999729897643184,0.0005376404691648787,0.00033031596511327947,0.00020487049000982136,0.00012784002242364822,8.008204768824872e-05,5.028870925253973e-05,3.1628707502639986e-05,1.9912215027513866e-05
0.001,0.0006994440882914515,0.0005371116460443127,0.0003298045332294241,0.0002044806023311588,0.0001275681976735486,7.990051576919067e-05,5.0170261094149856e-05,3.155244553506268e-05,1.9863503019009735e-05
0.001,0.0006989172535560769,0.0005365850419669894,0.000329295612913881,0.00020409280438264766,0.00012729790663346764,7.972004038787022e-05,5.0052515589855926e-05,3.147664135129994e-05,1.9815085586326718e-05
0.001,0.0006983924815322933,0.0005360606511477293,0.0003287891938968759,0.00020370708584067882,0.00012702914094133737,7.954061545150935e-05,4.993546855036179e-05,3.140129216611291e-05,1.9766960914662127e-05
0.001,0.0006978697681747856,0.000535538467781285,0.000328285265898271,0.00020332343638453147,0.00012676189224377013,7.936223487646896e-05,4.981911579385119e-05,3.1326395199731696e-05,1.971912719297887e-05
0.001,0.0006973491094188342,0.0005350184860423863,0.0003277838186277228,0.0002029418456965422,0.0001264961521961901,7.918489258833681e-05,4.970345314604528e-05,3.125194767789152e-05,1.967158261402843e-05
0.001,0.0006968284099289676,0.000534498597351666,0.00032728277956097635,0.00020256071739357045,0.0001262308004979493,7.900783730702533e-05,4.958798911408524e-05,3.1177632631488905e-05,1.9624124503146986e-05
0.001,0.0006963076677967887,0.0005339787996978908,0.00032678214616920946,0.00020218004908417888,0.0001259658352285323,7.883106763041168e-05,4.947272273059253e-05,3.110344941552445e-05,1.957675243920473e-05
0.001,0.0006957868810888677,0.0005334590910383602,0.00032628191587964447,0.00020179983833834103,0.00012570125443876325,7.865458213663353e-05,4.935765301510161e-05,3.102939737649859e-05,1.9529465995615212e-05
0.001,0.0006952660478468047,0.0005329394692990367,0.0003257820860759608,0.00020142008268794192,0.0001254370561512512,7.847837938443003e-05,4.924277897429975e-05,3.0955475852573814e-05,1.94822647404421e-05
0.001,0.00069474516608728,0.0005324199323746772,0.00032528265409871067,0.0002010407796272818,0.0001251732383608348,7.830245791348127e-05,4.91280996022673e-05,3.088168417373684e-05,1.943514823650581e-05
1 1.000000000000000021e-03 0.001 5.915557166626927424e-04 0.0007537739940510926 3.840877221245049653e-04 0.0005921033539224395 2.466727384040633977e-04 0.000384643453726324 1.573474629975438242e-04 0.00024710943492700773 9.994300566924636483e-05 0.00015765779381207088 6.331217828438720550e-05 0.00010015276356884663 4.004003600460594289e-05 6.345008665672524e-05 2.529553013238426405e-05 4.012925332336102e-05 2.535268958174273e-05
2 1.000000000000000021e-03 0.001 5.910087140881509866e-04 0.0007532443480762404 3.835259923737136521e-04 0.0005915606741358828 2.462279833344210639e-04 0.00038408573214392957 1.570298910751132091e-04 0.00024666764094038643 9.972770370845923681e-05 0.00015734224135307426 6.317035443958771254e-05 9.993879038586218e-05 3.994817502675088248e-05 6.330912140259024e-05 2.523663218966317481e-05 4.003794165686942e-05 2.529414108865862e-05
3 1.000000000000000021e-03 0.001 5.904624672772724710e-04 0.0007527148738848327 3.829653846278134621e-04 0.0005910183036445593 2.457842903404500092e-04 0.0003835286706438232 1.567131560243821098e-04 0.0002462265418760313 9.951300275831494635e-05 0.00015702726304657165 6.302894048828063141e-05 9.972523988324127e-05 3.985658526347281646e-05 6.316844848796591e-05 2.517791045472703461e-05 3.994682503096186e-05 2.5235719950422228e-05
4 1.000000000000000021e-03 0.001 5.899169734839467818e-04 0.0007521855703345118 3.824058950962419133e-04 0.0005904762413907948 2.453416557234028707e-04 0.00038297226807207136 1.563972548287988369e-04 0.0002457861365766504 9.929890059644241613e-05 0.00015671285789580896 6.288793488850426760e-05 9.9512111295817e-05 3.976526568300959219e-05 6.302806736731544e-05 2.511936425240675192e-05 3.985590307420444e-05 2.5177425921282973e-05
5 1.000000000000000021e-03 0.001 5.893722299298780965e-04 0.0007516564362539944 3.818475199355363483e-04 0.0005899344862777934 2.449000757332959262e-04 0.00038241652320864807 1.560821844312877747e-04 0.0002453464238190796 9.908539497140619857e-05 0.00015639902485083639 6.274733607851797545e-05 9.929940381972637e-05 3.967421524053715842e-05 6.288797746852316e-05 2.506099289905929403e-05 3.976517539750482e-05 2.511925874398998e-05
6 1.000000000000000021e-03 0.001 5.888282338048204554e-04 0.0007511274704431355 3.812902552499899305e-04 0.0005893930371697809 2.444595465697163919e-04 0.0003818614347679428 1.557679417349789946e-04 0.0002449074023149522 9.887248360327203632e-05 0.00015608576280913723 6.260714247720703990e-05 9.908711661290977e-05 3.958343287844485109e-05 6.27481781932559e-05 2.500279570274922987e-05 3.967464159435973e-05 2.5061218149955632e-05
7 1.000000000000000021e-03 0.001 5.882849822668304897e-04 0.0007505986716729718 3.807340970923119234e-04 0.0005888518928921378 2.440200643826254091e-04 0.00038130700139925517 1.554545236039297650e-04 0.0002444690707113658 9.866016418416755746e-05 0.00015577307061625246 6.246735248448248958e-05 9.887524879560432e-05 3.949291752660743311e-05 6.260866891731864e-05 2.494477196342878550e-05 3.958430124109855e-05 2.5003303859417958e-05
8 1.000000000000000021e-03 0.001 5.877403241312353140e-04 0.0007500678710880661 3.801768826891299322e-04 0.0005883088511431218 2.435799392795756472e-04 0.000380751009486411 1.551407333476893054e-04 0.0002440296996901373 9.844762961169771281e-05 0.00015545972380501664 6.232743618144160702e-05 9.866297459432463e-05 3.940232665622856909e-05 6.246890748950651e-05 2.488670234861411131e-05 3.949380391318895e-05 2.4945291488462056e-05
9 1.000000000000000021e-03 0.001 5.871942634186000593e-04 0.0007495350705096461 3.796186190022559433e-04 0.0005877639154939723 2.431391779090945110e-04 0.000380193466563788 1.548265761463755335e-04 0.00024358929686534952 9.823488356157069126e-05 0.00015514572847430736 6.218739605181586088e-05 9.8450298405315e-05 3.931166190013138108e-05 6.232889690863924e-05 2.482858791458364441e-05 3.9403151593579556e-05 2.4887182324516918e-05
10 1.000000000000000021e-03 0.001 5.866468041173980141e-04 0.0007490002717484986 3.790593129257516128e-04 0.0005872170894971442 2.426977868451053722e-04 0.00037963438011605534 1.545120571165502460e-04 0.00024314786979147204 9.802192966180839372e-05 0.00015483109067004745 6.204723454596646772e-05 9.823722458416644e-05 3.922092486871354988e-05 6.218864014470764e-05 2.477042970290643410e-05 3.931234624568946e-05 2.4828977642138712e-05
11 1.000000000000000021e-03 0.001 5.860979501842715923e-04 0.0007484634766050366 3.784989712866057847e-04 0.000586668376686434 2.422557725877665796e-04 0.0003790737575785661 1.541971813119806349e-04 0.00024270542596389042 9.780877149334107738e-05 0.0001545158163857142 6.190695408131255699e-05 9.802375744622405e-05 3.913011715023943305e-05 6.204814013916893e-05 2.471222874063606835e-05 3.9221389813611975e-05 2.4770678703146694e-05
12 1.000000000000000021e-03 0.001 5.855428054911818777e-04 0.0007479199274773811 3.779325362214322600e-04 0.0005861128912299699 2.418091152720060536e-04 0.0003785065486556895 1.538790714407033914e-04 0.00024225795000622747 9.759345536126727376e-05 0.0001541970308568484 6.176526646718061210e-05 9.780794472023814e-05 3.903840385562048950e-05 6.190610951865765e-05 2.465344951928800295e-05 3.9129447888412384e-05 2.471175028700643e-05
13 1.000000000000000021e-03 0.001 5.849813875456967485e-04 0.0007473696306726699 3.773600382625630725e-04 0.0005855506450602122 2.413578451141304101e-04 0.0003779327791658341 1.535577517356502032e-04 0.00024180546890527417 9.737599881379701964e-05 0.0001538747562360148 6.162218372343696363e-05 9.758980264023896e-05 3.894579295722817337e-05 6.176255947727244e-05 2.459409722576532997e-05 3.903652792388679e-05 2.4652197254708885e-05
14 1.000000000000000021e-03 0.001 5.844137140093277807e-04 0.0007468125926679213 3.767815081401627831e-04 0.0005849816503235855 2.409019924922280132e-04 0.0003773524752207052 1.532332465435331354e-04 0.00024134800990073543 9.715641947446165209e-05 0.00015354901486124996 6.147771791853056712e-05 9.736934756691086e-05 3.885229245840823961e-05 6.161750129261558e-05 2.453417706661341544e-05 3.8942637427869684e-05 2.459202450185328e-05
15 1.000000000000000021e-03 0.001 5.838398026969793654e-04 0.0007462488201102061 3.761969767804803125e-04 0.0005844059193804029 2.404415879440078890e-04 0.00037676566322402907 1.529055803229076760e-04 0.00024088560048334876 9.693473504062415536e-05 0.0001532198292542639 6.133188116843621776e-05 9.714659598616437e-05 3.875791039276530608e-05 6.147094632476142e-05 2.447369426754818325e-05 3.884778396152801e-05 2.4531236958179027e-05
16 1.000000000000000021e-03 0.001 5.832596715764015120e-04 0.0007456783198168171 3.756064753041117783e-04 0.0005838234648047683 2.399766621646476654e-04 0.00037617236987025305 1.525747776422469490e-04 0.00024041826839299018 9.671096328199675835e-05 0.00015288722211863548 6.118468563560254894e-05 9.692156450770277e-05 3.866265482344967213e-05 6.132290601522212e-05 2.441265407298631344e-05 3.875197513865345e-05 2.4469839587096592e-05
17 1.000000000000000021e-03 0.001 5.826733387676383139e-04 0.0007451010987754332 3.750100350242446291e-04 0.0005832342993844907 2.395072460046293692e-04 0.0003755726221432343 1.522408631780071723e-04 0.0002399460416167659 9.648512203915507620e-05 0.00015255121633799497 6.103614352789890607e-05 9.66942698635831e-05 3.856653384244465896e-05 6.11733918859104e-05 2.435106174557538284e-05 3.8655218624953314e-05 2.4407837385217267e-05
18 1.000000000000000021e-03 0.001 5.820810441807425326e-04 0.0007445173992825126 3.744079089136845458e-04 0.0005826386743528757 2.390335428197917333e-04 0.00037496668540476865 1.519039834472631588e-04 0.00023946913369259697 9.625731118926498641e-05 0.00015221196586566552 6.088632085792882825e-05 9.646481704279825e-05 3.846959029618343478e-05 6.102247334575324e-05 2.428894479270876788e-05 3.85575594785277e-05 2.4345259282747418e-05
19 1.000000000000000021e-03 0.001 5.814828054675655030e-04 0.0007439272282773631 3.738001274474016776e-04 0.0005820366023339485 2.385555825972570808e-04 0.0003743545861363169 1.515641624143126585e-04 0.00023898757201912962 9.602754804766522702e-05 0.00015186949307274757 6.073522946956701240e-05 9.623322238874437e-05 3.837183203343020677e-05 6.0870161643097905e-05 2.422630831805138899e-05 3.845900518061352e-05 2.4282110155051444e-05
20 1.000000000000000021e-03 0.001 5.808786404289665358e-04 0.0007433305928659832 3.731867212872194738e-04 0.0005814280961601982 2.380733954737781241e-04 0.00037373635109929905 1.512214241469207320e-04 0.0002385013842326201 9.579584999731260704e-05 0.0001515238205025659 6.058288124990010364e-05 9.599950236146117e-05 3.827326693032387752e-05 6.071646810276464e-05 2.416315744255338838e-05 3.835956326175255e-05 2.4218394908993806e-05
21 1.000000000000000021e-03 0.001 5.802685670142343878e-04 0.0007427275003211868 3.725677212800349654e-04 0.0005808131688724332 2.375870117335689917e-04 0.0003731120073337174 1.508757928143868079e-04 0.00023801059820498021 9.556223448729982074e-05 0.0001511749708688244 6.042928812817623899e-05 9.576367353617374e-05 3.817390288966712009e-05 6.05614041249978e-05 2.409949730398197492e-05 3.825924130107498e-05 2.4154118482464792e-05
22 1.000000000000000021e-03 0.001 5.796526968519212725e-04 0.0007421180800523362 3.719432545624587992e-04 0.0005801919587229117 2.370965379259533010e-04 0.00037248171070273063 1.505273470495264228e-04 0.0002375153439047009 9.532675589286383365e-05 0.00015082303982525373 6.027448635812982831e-05 9.55258019540184e-05 3.807376356963088358e-05 6.0405013700224733e-05 2.403534314190221437e-05 3.815806798909622e-05 2.4089299350133826e-05
23 1.000000000000000021e-03 0.001 5.790310479093865609e-04 0.0007415023395254894 3.713133518665244839e-04 0.0005795644789202474 2.366020041460938778e-04 0.00037184548827748576 1.501761108339581341e-04 0.0002370156491221818 9.508943151110322721e-05 0.00015046804996987382 6.011848775803337427e-05 9.528590408468248e-05 3.797285679655886708e-05 6.0247308147258e-05 2.397070004317041725e-05 3.8056050847170796e-05 2.4023942410771268e-05
24 1.000000000000000021e-03 0.001 5.784036383121742876e-04 0.0007408802863797739 3.706780441238009577e-04 0.000578930742889133 2.361034406501071276e-04 0.00037120336741830446 1.498221082613785163e-04 0.00023651154189285886 9.485027871279472060e-05 0.00015011002407818366 5.996130419345521918e-05 9.504399651802114e-05 3.787119042685209972e-05 6.008829886368558e-05 2.390557311366359151e-05 3.7953197447440844e-05 2.395805259559495e-05
25 1.000000000000000021e-03 0.001 5.777704863433433301e-04 0.0007402519284274773 3.700373624633735868e-04 0.00057829076427012 2.356008778526011383e-04 0.0003705553757730914 1.494653635353745394e-04 0.00023600305049498863 9.460931494071504256e-05 0.0001497489851010917 5.980294757607067669e-05 9.480009596242987e-05 3.776877234616485572e-05 5.992799732470356e-05 2.383996747774973522e-05 3.784951541204015e-05 2.389163486774317e-05
26 1.000000000000000021e-03 0.001 5.771316104427772061e-04 0.0007396172736541335 3.693913382097967039e-04 0.0005776445569193926 2.350943463241932639e-04 0.0003699015412757306 1.491059009672212558e-04 0.000235490203447419 9.436655770795449559e-05 0.00014938495616282697 5.964342986246977532e-05 9.455421924320194e-05 3.766561046859827219e-05 5.976641508193571e-05 2.377388827775711285e-05 3.774501241228877e-05 2.38246942217421e-05
27 1.000000000000000021e-03 0.001 5.764870292064976651e-04 0.0007389763302186035 3.687400028810397501e-04 0.0005769921349085269 2.345838767890191692e-04 0.00036924189214444916 1.487437449736715462e-04 0.00023497302950733012 9.412202459622686095e-05 0.00014901796055883247 5.948276305296108525e-05 9.4306383300876e-05 3.756171273589169023e-05 5.960356376224896e-05 2.370734067344167480e-05 3.763969616788547e-05 2.37572356829714e-05
28 1.000000000000000021e-03 0.001 5.758375946234993610e-04 0.000738329973009011 3.680842155919215072e-04 0.0005763343882557762 2.340701414876563216e-04 0.00036857732657886674 1.483793719498717782e-04 0.00023445223185895243 9.387603703510192111e-05 0.00014864849677321228 5.932115823520561543e-05 9.40569245366171e-05 3.745721560837426419e-05 5.943966431343476e-05 2.364041205155829344e-05 3.753370952478887e-05 2.3689350732036766e-05
29 1.000000000000000021e-03 0.001 5.751833223951592329e-04 0.0007376782088319843 3.674240032104748388e-04 0.0005756713289449496 2.335531666416808738e-04 0.0003679078688863157 1.480128027327277474e-04 0.00023392783529630037 9.362861002461524574e-05 0.00014827658488585004 5.915862564500113025e-05 9.38058575472753e-05 3.735212585887714390e-05 5.927472675087035e-05 2.357310681190604310e-05 3.7427059131368685e-05 2.362104369630353e-05
30 1.000000000000000021e-03 0.001 5.745242283439769499e-04 0.0007370210446325295 3.667593927483133397e-04 0.0005750029691304239 2.330329785818580578e-04 0.000367233543593211 1.476440582313571256e-04 0.00023339986479263558 9.337975861033522300e-05 0.00014790224510292775 5.899517554647101613e-05 9.355319701349314e-05 3.724645027783519551e-05 5.910876114408311e-05 2.350542936525477225e-05 3.7319751670569666e-05 2.3552318925085614e-05
31 1.000000000000000021e-03 0.001 5.738603284130473379e-04 0.0007363584874940915 3.660904113590355527e-04 0.0005743293211369546 2.325096037462197861e-04 0.0003665543754437431 1.472731594253864234e-04 0.00023286834549865966 9.312949788206356194e-05 0.00014752549775524457 5.883081823114703288e-05 9.329895769838934e-05 3.714019567266727830e-05 5.8941777615809794e-05 2.343738413293735195e-05 3.721179385927125e-05 2.348318078922229e-05
32 1.000000000000000021e-03 0.001 5.731917314000997948e-04 0.0007356906659117175 3.654171810067180655e-04 0.0005736505214206793 2.319831433530600859e-04 0.00036587051603697917 1.469001805571756218e-04 0.00023233340267585003 9.287787898176902846e-05 0.00014714643450378646 5.866558771451522606e-05 9.30432026577021e-05 3.703338420706373603e-05 5.8773818072131705e-05 2.336898537810763873e-05 3.710321298927822e-05 2.3413646846771747e-05
33 1.000000000000000021e-03 0.001 5.725184531760584700e-04 0.0007350175870680764 3.647397285916569422e-04 0.0005729665823498456 2.314536235223777264e-04 0.00036518198995355594 1.465251423190001693e-04 0.00023179506120909636 9.262491677678542706e-05 0.00014676507541963834 5.849949412959568328e-05 9.278594644638945e-05 3.692602258076439168e-05 5.8604892484780656e-05 2.330023745100291859e-05 3.699401567385024e-05 2.3343721399750524e-05
34 1.000000000000000021e-03 0.001 5.718405097346714646e-04 0.000734339258284937 3.640580811583470273e-04 0.0005722775164633901 2.309210704829702432e-04 0.0003644888219905243 1.461480654746279682e-04 0.00023125334615855053 9.237062617930094123e-05 0.0001463814406964208 5.833254763720848617e-05 9.252720370024704e-05 3.681811751074023914e-05 5.8435010877524154e-05 2.323114471257928647e-05 3.688420855938328e-05 2.327340877117354e-05
35 1.000000000000000021e-03 0.001 5.711579171919053044e-04 0.0007336556870231954 3.633722658937428313e-04 0.0005715833364706749 2.303855105703487465e-04 0.00036379103715988533 1.457689708574830614e-04 0.00023070828275766533 9.211502214495855044e-05 0.00014599555064848363 5.816475842498649012e-05 9.226698913450141e-05 3.670967573052717390e-05 5.82641833251609e-05 2.316171153407365905e-05 3.677379832472749e-05 2.320271330460301e-05
36 1.000000000000000021e-03 0.001 5.704706917853448337e-04 0.0007329668808828947 3.626823101255147543e-04 0.0005708840552512191 2.298469702246577707e-04 0.00036308866068712113 1.453878793688169360e-04 0.00023015989641122435 9.185811967146480901e-05 0.00014560742570909416 5.799613670639434487e-05 9.200531754239911e-05 3.660070398956385041e-05 5.8092419952513674e-05 2.309194229656875218e-05 3.666279168050168e-05 2.313163936369656e-05
37 1.000000000000000021e-03 0.001 5.697788498735841109e-04 0.000732272847603227 3.619882413202942504e-04 0.0005701796858544125 2.293054759885765847e-04 0.000362381718009681 1.450048119758659754e-04 0.0002296082126933358 9.159993379718755254e-05 0.00014521708642859763 5.782669271974067121e-05 9.174220379377606e-05 3.649120905252569737e-05 5.791973093340874e-05 2.302184139055488024e-05 3.6551195368400524e-05 2.3060191331749373e-05
38 1.000000000000000021e-03 0.001 5.690839249361781711e-04 0.0007315751779154508 3.612915831986411477e-04 0.0005694718366517781 2.287622092282637863e-04 0.00036167180797618383 1.446206010588695675e-04 0.00022905447155647377 9.134102410651873409e-05 0.00014482540661409508 5.765679311500335815e-05 9.147823538482221e-05 3.638142760462866287e-05 5.774650123146614e-05 2.295156024783083523e-05 3.643925790598459e-05 2.2988528215049473e-05
39 1.000000000000000021e-03 0.001 5.683859273133331363e-04 0.0007308738763564251 3.605923537461036641e-04 0.0005687605159526348 2.282171874164802170e-04 0.00036095894758939165 1.442352604283837097e-04 0.00022849869020493823 9.108140050118301682e-05 0.00014443240010265552 5.748644463023418617e-05 9.121342232553745e-05 3.627136409615889481e-05 5.7572737692798364e-05 2.288110175599186700e-05 3.6326983828340116e-05 2.2916652961499898e-05
40 1.000000000000000021e-03 0.001 5.676848674169825831e-04 0.0007301689475478705 3.598905710243090802e-04 0.0005680457321686527 2.276704280772651710e-04 0.00036024315397386176 1.438488039249314222e-04 0.00022794088593578913 9.082107289971861372e-05 0.00014403808079282816 5.731565401294060850e-05 9.094777466478586e-05 3.616102298282374168e-05 5.739844718775089e-05 2.281046880581413228e-05 3.6214377685641065e-05 2.2844568528419092e-05
41 1.000000000000000021e-03 0.001 5.669807557304629327e-04 0.0007294603961963875 3.591862531699841626e-04 0.0005673274938137002 2.271219487847658911e-04 0.0003595244443750873 1.434612454179789358e-04 0.00022738107613769066 9.056005123670258442e-05 0.00014364246264358423 5.714442801953895405e-05 9.068130248947494e-05 3.605040872538299508e-05 5.72236366103174e-05 2.273966429101268041e-05 3.610144404275241e-05 2.2772277882278848e-05
42 1.000000000000000021e-03 0.001 5.662756696284717943e-04 0.0007287502876018436 3.584815135619230891e-04 0.0005666079096289159 2.265734124911083147e-04 0.00035880496633647314 1.430737675597642188e-04 0.00022682095171468864 9.029913524493678829e-05 0.00014324674865159545 5.697329258726415482e-05 9.041481948469436e-05 3.593986162522089478e-05 5.7048841153261715e-05 2.266890625682277028e-05 3.598852922211342e-05 2.270000293927642e-05
43 1.000000000000000021e-03 0.001 5.655696121370722921e-04 0.0007280386231103084 3.577763576655677066e-04 0.0005658869826353605 2.260248242651153531e-04 0.0003580847262718071 1.426863741861267136e-04 0.00022626051891339797 9.003832758694041048e-05 0.00014285094367250402 5.680224948786493348e-05 9.014832907727154e-05 3.582938283523433764e-05 5.687406312117876e-05 2.259819544408493697e-05 3.587563473352017e-05 2.2627744673782604e-05
44 1.000000000000000021e-03 0.001 5.648625863181645518e-04 0.0007273254041056322 3.570707909872514684e-04 0.0005651647158992671 2.254761892066869196e-04 0.00035736373064750184 1.422990691538204475e-04 0.00022569978402038908 8.977763093872482745e-05 0.00014245505258865028 5.663130050166089515e-05 8.988183471111395e-05 3.571897351373497692e-05 5.669930482943582e-05 2.252753259705453904e-05 3.5762762093538084e-05 2.2555504064421286e-05
45 1.000000000000000021e-03 0.001 5.641545952693012783e-04 0.0007266106320094578 3.563648190736888295e-04 0.0005644411125319691 2.249275124461922067e-04 0.00035664198598218 1.419118563399853763e-04 0.00022513875336164715 8.951704798938974166e-05 0.0001420590803085807 5.646044741725799208e-05 8.961533984682783e-05 3.560863482425828067e-05 5.652456860390248e-05 2.245691846327665519e-05 3.564991282531874e-05 2.2483282093948716e-05
46 1.000000000000000021e-03 0.001 5.634456421235028989e-04 0.000725894308281204 3.556584475114634488e-04 0.0005637161756897977 2.243787991438712611e-04 0.0003559194988462394 1.415247396416227112e-04 0.00022457743330201225 8.925658144072659398e-05 0.00014166303176654256 5.628969203126926030e-05 8.934884796133105e-05 3.549836793537420297e-05 5.634985678067539e-05 2.238635379346144160e-05 3.5537088458413665e-05 2.2411079749130865e-05
47 1.000000000000000021e-03 0.001 5.627357300490819225e-04 0.0007251764344180624 3.549516819265270164e-04 0.0005629899085739927 2.238300544892383743e-04 0.00035519627586142176 1.411377229750731741e-04 0.0002240158302446243 8.899623400682166435e-05 0.00014126691192198565 5.611903614803531905e-05 8.90823625474685e-05 3.538817402049950172e-05 5.6175171705805915e-05 2.231583934136070575e-05 3.542429052859005e-05 2.233889802062196e-05
48 1.000000000000000021e-03 0.001 5.620265745740795878e-04 0.0007244588135748975 3.542462045793823072e-04 0.0005622641246704724 2.232825718355581747e-04 0.00035447409591105305 1.407517127660701999e-04 0.0002234553120905153 8.873661298955798349e-05 0.00014087167955905718 5.594887683102661642e-05 8.881652603390643e-05 3.527830905094599801e-05 5.600093342830372e-05 2.224553873809700179e-05 3.531178983274928e-05 2.2266910019981595e-05
49 1.000000000000000021e-03 0.001 5.613181716914067464e-04 0.000723741443178776 3.535420099674467737e-04 0.000561538821268995 2.227363458317740963e-04 0.0003537529553873339 1.403667046661989041e-04 0.00022289587522719752 8.847771519474716161e-05 0.00014047733166655684 5.577921186868756777e-05 8.855133617099835e-05 3.516877154903826080e-05 5.5827140373801375e-05 2.217545101761858074e-05 3.519958531186087e-05 2.219511505192651e-05
50 1.000000000000000021e-03 0.001 5.606105174362018646e-04 0.0007230243206833482 3.528390926567629869e-04 0.0005608139956950427 2.221913711948466166e-04 0.00035303285074046774 1.399826943822104249e-04 0.00022233751609917817 8.821953746856249804e-05 0.00014008386527925162 5.561003907731979445e-05 8.82867907426191e-05 3.505956005567386572e-05 5.565379099102327e-05 2.210557522599888898e-05 3.508767592227262e-05 2.212351243120618e-05
51 1.000000000000000021e-03 0.001 5.599036078855734169e-04 0.0007223074435688039 3.521374472813410678e-04 0.0005600896453097011 2.216476427089692435e-04 0.0003523137784782074 1.395996776753266513e-04 0.00022178023120736695 8.796207669700402236e-05 0.00013969127747733319 5.544135630070159596e-05 8.802288756574066e-05 3.495067313006486022e-05 5.5480883751481105e-05 2.203591042126611129e-05 3.4976060635503277e-05 2.2052101482465692e-05
52 1.000000000000000021e-03 0.001 5.591992581819900257e-04 0.0007215926247557181 3.514388991464684675e-04 0.0005593676122940626 2.211065862108586844e-04 0.00035159759247597197 1.392186639199167455e-04 0.00022122546934306127 8.770601346645835294e-05 0.00013930059415776796 5.527361030479937100e-05 8.776031848020719e-05 3.484239951455165907e-05 5.5308872854303e-05 2.196664147854661471e-05 3.486503301641155e-05 2.198107017600086e-05
53 1.000000000000000021e-03 0.001 5.584974577369657654e-04 0.0007208798585848073 3.507434317312190116e-04 0.0005586478889723664 2.205681855748304113e-04 0.0003508842795507963 1.388396401724235928e-04 0.0002206732171528304 8.745133837595373525e-05 0.00013891180440309996 5.510679463338290224e-05 8.749907547557891e-05 3.473473491875524963e-05 5.513775276548628e-05 2.189776560286087024e-05 3.475458937431628e-05 2.1910416102241813e-05
54 1.000000000000000021e-03 0.001 5.577981960279812567e-04 0.0007201691394257483 3.500510286412654524e-04 0.000557930467712979 2.200324248112712805e-04 0.00035017382661216696 1.384625936044855835e-04 0.00022012346138632064 8.719804211084999142e-05 0.00013852489738482468 5.494090289064881491e-05 8.723915060881119e-05 3.462767509292537455e-05 5.49675179985075e-05 2.182928002589032757e-05 3.464472605058592e-05 2.184013687270143e-05
55 1.000000000000000021e-03 0.001 5.571014625980537805e-04 0.0007194604616770773 3.493616736077873519e-04 0.00055721534092818 2.194992880653100025e-04 0.00034946622066134466 1.380875115017372141e-04 0.00021957618889536463 8.694611544190507637e-05 0.00013813986236255893 5.477592874055209164e-05 8.698053600359808e-05 3.452121582748434684e-05 5.4798163113848986e-05 2.176118200567564087e-05 3.453543941831367e-05 2.177023011975932e-05
56 1.000000000000000021e-03 0.001 5.564072470552914543e-04 0.0007187538197660722 3.486753504863699662e-04 0.0005565025010739346 2.189687596154907018e-04 0.00034876144879066544 1.377143812626113696e-04 0.00021903138663308575 8.669554922434540153e-05 0.0001377566886832086 5.461186590614181566e-05 8.672322384971475e-05 3.441535295257522900e-05 5.462968271852315e-05 2.169346882631773742e-05 3.442672588199151e-05 2.1700693496445714e-05
57 1.000000000000000021e-03 0.001 5.557155390724777657e-04 0.0007180492081486484 3.479920432559456848e-04 0.0005557919406496801 2.184408238724854000e-04 0.00034805949818288173 1.373431903971786034e-04 0.0002184890416530366 8.644633439696230146e-05 0.00013737536578016266 5.444870816891464747e-05 8.646720640237894e-05 3.431008233762035268e-05 5.446207146561145e-05 2.162613779768559453e-05 3.431858187719449e-05 2.1631524676231647e-05
58 1.000000000000000021e-03 0.001 5.550282308874212147e-04 0.000717348639431565 3.473135853761227104e-04 0.0005550856739198547 2.179168797741835634e-04 0.00034736232071304855 1.369749146289257855e-04 0.00021795064331956514 8.619912270820690987e-05 0.00013699693247692832 5.428688083545962664e-05 8.621317757037385e-05 3.420567782931384528e-05 5.429578217858938e-05 2.155936384410790980e-05 3.421129897003673e-05 2.1562909902755936e-05
59 1.000000000000000021e-03 0.001 5.543453044039096641e-04 0.0007166521035756881 3.466399489498413807e-04 0.0005543836868927082 2.173969005859271932e-04 0.0003466698924934393 1.366095327799803094e-04 0.00021741616794755068 8.595389890905566596e-05 0.00013662136971116798 5.412637349122350694e-05 8.596112351100096e-05 3.410213253115887156e-05 5.413080535731451e-05 2.149314248283782383e-05 3.410487085131832e-05 2.1494845067789903e-05
60 1.000000000000000021e-03 0.001 5.536667416543260278e-04 0.0007159595906065037 3.459711063207645686e-04 0.0005536859656730149 2.168808598269340415e-04 0.00034598218983055497 1.362470238846985658e-04 0.0002168855920630381 8.571064790824490891e-05 0.0001362486585998701 5.396717583150281386e-05 8.571103051605296e-05 3.399943962027434491e-05 5.396713159578493e-05 2.142746927933548718e-05 3.399929127512844e-05 2.142732610463052e-05
61 1.000000000000000021e-03 0.001 5.529925247987736454e-04 0.0007152710906138687 3.453070300711248903e-04 0.0005529924964615861 2.163687312677279435e-04 0.00034529918922366796 1.358873671873677324e-04 0.00021635889240138666 8.546935477049620155e-05 0.0001358787804376394 5.380927766017944798e-05 8.546288501047042e-05 3.389759234653519571e-05 5.380475158117202e-05 2.136233984669994517e-05 3.389455405818364e-05 2.1360348987661796e-05
62 1.000000000000000021e-03 0.001 5.523242123557685823e-04 0.0007145881681833736 3.446492679875326503e-04 0.0005523048607339887 2.158617145497228296e-04 0.0003446224616264519 1.355314077800207832e-04 0.00021583728670966556 8.523058755788532964e-05 0.00013551259312919557 5.365305115434923267e-05 8.521726369129195e-05 3.379683095199963850e-05 5.364404315662281e-05 2.129790788796336886e-05 3.379090310339315e-05 2.129406976339983e-05
63 1.000000000000000021e-03 0.001 5.516617811459008413e-04 0.0007139108109389651 3.439977838203789025e-04 0.0005516230407004492 2.153597748770509342e-04 0.0003439519758859039 1.351791181086447731e-04 0.00021532074399295122 8.499432644189092710e-05 0.00013515007172518374 5.349848277838686991e-05 8.497414844816332e-05 3.369714647650299112e-05 5.3484993898260945e-05 2.123416758034315385e-05 3.368833016244125e-05 2.122848306212633e-05
64 1.000000000000000021e-03 0.001 5.510052081904127453e-04 0.0007132390066148024 3.433525416882428740e-04 0.0005509470187317473 2.148628778379304833e-04 0.00034328770115903844 1.348304709382760146e-04 0.00021480923358720733 8.476055183025699440e-05 0.0001347911915544671 5.334555916079864168e-05 8.473352137819455e-05 3.359853006971443923e-05 5.3327591526929936e-05 2.117111317291617240e-05 3.358682708410006e-05 2.1163583577742056e-05
65 1.000000000000000021e-03 0.001 5.503544707098636342e-04 0.0007125727430549207 3.427135060745518090e-04 0.0005502767773585094 2.143709894006651793e-04 0.000342629606910633 1.344854393494213974e-04 0.00021430272515636744 8.452924436422564868e-05 0.0001344359282214269 5.319426709225049006e-05 8.449536478383494e-05 3.350097298979682009e-05 5.317182390666476e-05 2.110873898573355285e-05 3.348638581318404e-05 2.109936606707349e-05
66 1.000000000000000021e-03 0.001 5.497095461228062706e-04 0.0007119120082129148 3.420806418242862412e-04 0.0005496122992705212 2.138840759097000895e-04 0.0003419776629110174 1.341439967345312348e-04 0.0002138011886894788 8.430038491581448882e-05 0.00013408425760331254 5.304459352362807473e-05 8.425966117078749e-05 3.340446660208796169e-05 5.3017679043188334e-05 2.104703940894962140e-05 3.3386998389521964e-05 2.1035825349191292e-05
67 1.000000000000000021e-03 0.001 5.490704120444732210e-04 0.000711256790151613 3.414539141407250565e-04 0.0005489535673160376 2.134021040817290626e-04 0.0003413318392338714 1.338061167945246396e-04 0.00021330459449785352 8.407395458513211085e-05 0.00013373615584760944 5.289652556412503305e-05 8.40263932459383e-05 3.330900237780223545e-05 5.286514508242194e-05 2.098600890196449472e-05 3.3288656946938245e-05 2.0972956304734848e-05
68 1.000000000000000021e-03 0.001 5.484371298422446297e-04 0.0007106071943639499 3.408333692467681113e-04 0.0005483006816957998 2.129251024270059081e-04 0.00034069221933208274 1.334718163299163942e-04 0.0002128129992904075 8.384996326436759272e-05 0.00013339165932644894 5.275006911363530105e-05 8.379558393280961e-05 3.321458388816914869e-05 5.271423641048183e-05 2.092564965374723430e-05 3.31913705135711e-05 2.091076460544407e-05
69 1.000000000000000021e-03 0.001 5.478096771889333057e-04 0.000709963208882901 3.402189725469309967e-04 0.0005476536252143895 2.124530379214265854e-04 0.0003400587732671483 1.331410692793207290e-04 0.0002123263734210078 8.362839223924152716e-05 0.00013305074425072359 5.260521141428185532e-05 8.356721599784782e-05 3.312120269498457291e-05 5.256494122003263e-05 2.086595618361951373e-05 3.3095131256746724e-05 2.0849245154782437e-05
70 1.000000000000000021e-03 0.001 5.471880319478338028e-04 0.0007093248218486061 3.396106897916775086e-04 0.0005470123808316875 2.119858778995733334e-04 0.00033943147139689077 1.328138498781884043e-04 0.0002118446875576196 8.340922301478033581e-05 0.00013271338709432742 5.246193986031627375e-05 8.334127240311385e-05 3.302885046175365648e-05 5.241724783997488e-05 2.080692307740899109e-05 3.299993143509595e-05 2.0788392916005465e-05
71 1.000000000000000021e-03 0.001 5.465721721714859958e-04 0.0007086920215080653 3.390084870743713592e-04 0.0005463769316622218 2.115235900510876890e-04 0.0003388102843733889 1.324901326555763298e-04 0.00021136791267964032 8.319243731282516567e-05 0.0001323795645916927 5.232024199634728476e-05 8.311773630434548e-05 3.293751895248773966e-05 5.2271144734051514e-05 2.074854498665493433e-05 3.290576339760186e-05 2.07282029115292e-05
72 1.000000000000000021e-03 0.001 5.459629241404544706e-04 0.0007080656480431051 3.384131725428774743e-04 0.0005457481216341828 2.110667946787101129e-04 0.0003381960373995552 1.321703518944146796e-04 0.00021089668206097172 8.297832591380873519e-05 0.0001320497200486003 5.218030786215170435e-05 8.289690449717853e-05 3.284733064718059383e-05 5.2126825862102536e-05 2.069090019482566404e-05 3.2812752146082854e-05 2.0668755034757233e-05
73 1.000000000000000021e-03 0.001 5.453602635114507746e-04 0.0007074456886869565 3.378247083723790616e-04 0.0005451259321489777 2.106154557101209946e-04 0.0003375886977799707 1.318544791589579420e-04 0.0002104309633113142 8.276686841524559784e-05 0.00013172382748945162 5.204212355675735553e-05 8.26787581753205e-05 3.275827635494999894e-05 5.198427834496719e-05 2.063398273378693265e-05 3.2720889139431744e-05 2.061004372929991e-05
74 1.000000000000000021e-03 0.001 5.447641661727002649e-04 0.0007068321308093747 3.372430571518834691e-04 0.0005445103448031184 2.101695374983407439e-04 0.0003369882331820464 1.315424863636820575e-04 0.00020997072442018424 8.255804467261116894e-05 0.00013140186125447996 5.190567535780167048e-05 8.246327876643199e-05 3.267034700418964161e-05 5.18434894660219e-05 2.057778671334094953e-05 3.2630165945308436e-05 2.055206350992823e-05
75 1.000000000000000021e-03 0.001 5.441746082424759419e-04 0.0007062249619162967 3.366681818805845774e-04 0.0005439013413874698 2.097290048174083239e-04 0.00033639461163356655 1.312343457694375884e-04 0.00020951593375373114 8.235183479637930588e-05 0.00013108379599680725 5.177094971942625129e-05 8.225044792981545e-05 3.258353364113958107e-05 5.170444666951808e-05 2.052230632028256941e-05 3.254057423900392e-05 2.0494808961820763e-05
76 1.000000000000000021e-03 0.001 5.435915660676414983e-04 0.00070562416964951 3.361000459642789163e-04 0.0005432989038865089 2.092938228581225045e-04 0.00033580780152024723 1.309300299796617602e-04 0.000209066560051587 8.214821914910500468e-05 0.00013076960667953474 5.163793327020207291e-05 8.204024755412909e-05 3.249782742847867687e-05 5.156713755893784e-05 2.046753581747058517e-05 3.2452105802317056e-05 2.0438274739819433e-05
77 1.000000000000000021e-03 0.001 5.430150162222109568e-04 0.0007050297417863318 3.355386132118161487e-04 0.0005427030144775926 2.088639572238308215e-04 0.0003352277715833316 1.306295119366350911e-04 0.00020862257242375786 8.194717834254394587e-05 0.00013045926857287288 5.150661281108238069e-05 8.183265975513502e-05 3.241321964393507540e-05 5.143154989537623e-05 2.041346954291065543e-05 3.236475252244954e-05 2.038245556769746e-05
78 1.000000000000000021e-03 0.001 5.424450181544462771e-04 0.0007044417829621171 3.349839271155603902e-04 0.000542113771820027 2.084394340599780252e-04 0.0003346546023905152 1.303328067075743425e-04 0.00020818402485557293 8.174872108664715700e-05 0.00013015281596227648 5.137699346328779477e-05 8.162770599537212e-05 3.232971335519106785e-05 5.129769708700084e-05 2.036010936323692981e-05 3.227852278867728e-05 2.032735670561579e-05
79 1.000000000000000021e-03 0.001 5.418815485793469040e-04 0.0007038602809995153 3.344359518126675877e-04 0.0005415311581470623 2.080202193468776877e-04 0.00033408826282687573 1.300398875631312602e-04 0.00020775088664703998 8.155282824274543232e-05 0.00012985022429639665 5.124906220377890154e-05 8.142536853201701e-05 3.224729995882103797e-05 5.116556699709043e-05 2.030744969463951815e-05 3.219340855821242e-05 2.0272972923816322e-05
80 1.000000000000000021e-03 0.001 5.413245844265015877e-04 0.0007032852238493367 3.338946518213946552e-04 0.0005409551558747416 2.076062794549138172e-04 0.0003335287221154158 1.297507280942760690e-04 0.00020732312745044945 8.135948090770286575e-05 0.00012955146931603386 5.112280617242197348e-05 8.122562983828357e-05 3.216597096011364272e-05 5.103514763884953e-05 2.025548502431296445e-05 3.2109401888525124e-05 2.0219299058105656e-05
81 1.000000000000000021e-03 0.001 5.407741028387587183e-04 0.0007027165995902542 3.333599920378552692e-04 0.0005403857476012292 2.071975811406991498e-04 0.00033297594981485264 1.294653022088876294e-04 0.00020690071726752732 8.116866041129419294e-05 0.0001292565270515082 5.099821267012491396e-05 8.102847260135871e-05 3.208571797180734118e-05 5.090642717392409e-05 2.020420990962221080e-05 3.202649493632917e-05 2.0166330009182866e-05
82 1.000000000000000021e-03 0.001 5.402303025747014556e-04 0.0007021546252265139 3.328321561526745862e-04 0.0005398231466905069 2.067942601549091974e-04 0.00033243014325207994 1.291837026153304184e-04 0.00020648380199548492 8.098042783792958120e-05 0.0001289654971719027 5.087532120941394917e-05 8.083396250547584e-05 3.200656629292941073e-05 5.077944809587575e-05 2.015364045325785942e-05 3.194471491165552e-05 2.0114083097018264e-05
83 1.000000000000000021e-03 0.001 5.396931605409548225e-04 0.0007015992888126556 3.323111087173311550e-04 0.0005392673356287205 2.063962829591101838e-04 0.0003318912717105927 1.289059030082810651e-04 0.00020607235137144977 8.079476437365657295e-05 0.0001286783555062261 5.075411899733799342e-05 8.06420820982489e-05 3.192850747587867838e-05 5.065419847368218e-05 2.010377117411100997e-05 3.186405391103787e-05 2.006255318369691e-05
84 1.000000000000000021e-03 0.001 5.391626538584482192e-04 0.0007010505785332368 3.317968146613820609e-04 0.0005387182970867077 2.060036164003212873e-04 0.00033135930481238495 1.286318773981824648e-04 0.00020566633548374424 8.061165143636152362e-05 0.0001283950781739038 5.063459340114707095e-05 8.04528141416734e-05 3.185153317990099749e-05 5.053066652493675e-05 2.005459666083220688e-05 3.1784504130324826e-05 2.001173519622426e-05
85 1.000000000000000021e-03 0.001 5.386387598611086340e-04 0.000700508482702546 3.312892392892789490e-04 0.0005381760139193414 2.056162277072543561e-04 0.00033083421251577956 1.283616001079104806e-04 0.00020526572476908743 8.043107067321031531e-05 0.000128115641582197 5.051673194647494236e-05 8.026614161010359e-05 3.177563516985718072e-05 5.040884061439589e-05 2.000611157101859271e-05 3.170605786368809e-05 1.9961624125869314e-05
86 1.000000000000000021e-03 0.001 5.381214560945620949e-04 0.0006999729897643184 3.307883482772016118e-04 0.0005376404691648787 2.052340844865845515e-04 0.00033031596511327947 1.280950457694747437e-04 0.00020487049000982136 8.025300395811590449e-05 0.00012784002242364822 5.040052231554306949e-05 8.008204768824872e-05 3.170080531500530551e-05 5.028870925253973e-05 1.995831063041139523e-05 3.1628707502639986e-05 1.9912215027513866e-05
87 1.000000000000000021e-03 0.001 5.376107203148404326e-04 0.0006994440882914515 3.302941076699326679e-04 0.0005371116460443127 2.048571547192701043e-04 0.0003298045332294241 1.278321893207613302e-04 0.0002044806023311588 8.007743338923888358e-05 0.0001275681976735486 5.028595234538581714e-05 7.990051576919067e-05 3.162703558779804923e-05 5.0170261094149856e-05 1.991118863210237610e-05 3.155244553506268e-05 1.9863503019009735e-05
88 1.000000000000000021e-03 0.001 5.371022748594453389e-04 0.0006989172535560769 3.298024246812891291e-04 0.0005365850419669894 2.044823390252625600e-04 0.000329295612913881 1.275708788891961756e-04 0.00020409280438264766 7.990292563076895462e-05 0.00012729790663346764 5.017208832604374468e-05 7.972004038787022e-05 3.155372544493714152e-05 5.0052515589855926e-05 1.986436223028797206e-05 3.147664135129994e-05 1.9815085586326718e-05
89 1.000000000000000021e-03 0.001 5.365961117498912114e-04 0.0006983924815322933 3.293132869081722108e-04 0.0005360606511477293 2.041096254707852251e-04 0.0003287891938968759 1.273111050031557620e-04 0.00020370708584067882 7.972947385597059739e-05 0.00012702914094133737 5.005892559260894715e-05 7.954061545150935e-05 3.148087179640124731e-05 4.993546855036179e-05 1.981782941609088261e-05 3.140129216611291e-05 1.9766960914662127e-05
90 1.000000000000000021e-03 0.001 5.360922230056120808e-04 0.0006978697681747856 3.288266819633119922e-04 0.000535538467781285 2.037390021489647173e-04 0.000328285265898271 1.270528582181514683e-04 0.00020332343638453147 7.955707126027152540e-05 0.00012676189224377013 4.994645949643470906e-05 7.936223487646896e-05 3.140847156340457124e-05 4.981911579385119e-05 1.977158818812822943e-05 3.1326395199731696e-05 1.971912719297887e-05
91 1.000000000000000021e-03 0.001 5.355906006439992324e-04 0.0006973491094188342 3.283425974753378354e-04 0.0005350184860423863 2.033704571798752555e-04 0.0003277838186277228 1.267961291168465381e-04 0.0002029418456965422 7.938571106126265876e-05 0.0001264961521961901 4.983468540512894492e-05 7.918489258833681e-05 3.133652167839010846e-05 4.970345314604528e-05 1.972563655250571181e-05 3.125194767789152e-05 1.967158261402843e-05
92 1.000000000000000021e-03 0.001 5.350891259362026411e-04 0.0006968284099289676 3.278589502113704612e-04 0.000534498597351666 2.030023855884717748e-04 0.00032728277956097635 1.265397912200834861e-04 0.00020256071739357045 7.921463777328526478e-05 0.0001262308004979493 4.972310904903239575e-05 7.900783730702533e-05 3.126470337114675132e-05 4.958798911408524e-05 1.967977067875568528e-05 3.1177632631488905e-05 1.9624124503146986e-05
93 1.000000000000000021e-03 0.001 5.345877966909636306e-04 0.0006963076677967887 3.273757374134148111e-04 0.0005339787996978908 2.026347848040474173e-04 0.00032678214616920946 1.262838424862170036e-04 0.00020218004908417888 7.904384991646645146e-05 0.0001259658352285323 4.961172941171763403e-05 7.883106763041168e-05 3.119301596587686584e-05 4.947272273059253e-05 1.963399012641590455e-05 3.110344941552445e-05 1.957675243920473e-05
94 1.000000000000000021e-03 0.001 5.340866106918126799e-04 0.0006957868810888677 3.268929562877650259e-04 0.0005334590910383602 2.022676522245876859e-04 0.00032628191587964447 1.260282808504260116e-04 0.00020179983833834103 7.887334599501782170e-05 0.00012570125443876325 4.950054546622813158e-05 7.865458213663353e-05 3.112145877995456692e-05 4.935765301510161e-05 1.958829445064508602e-05 3.102939737649859e-05 1.9529465995615212e-05
95 1.000000000000000021e-03 0.001 5.335855656972701092e-04 0.0006952660478468047 3.264106040054970534e-04 0.0005329394692990367 2.019009852173301103e-04 0.0003257820860759608 1.257731042251948573e-04 0.00020142008268794192 7.870312449759831505e-05 0.0001254370561512512 4.938955617533215942e-05 7.847837938443003e-05 3.105003112409614148e-05 4.924277897429975e-05 1.954268320233478379e-05 3.0955475852573814e-05 1.94822647404421e-05
96 1.000000000000000021e-03 0.001 5.330846594410641130e-04 0.00069474516608728 3.259286777029715004e-04 0.0005324199323746772 2.015347811193284109e-04 0.00032528265409871067 1.255183105007985753e-04 0.0002010407796272818 7.853318389767883849e-05 0.0001251732383608348 4.927876049177821896e-05 7.830245791348127e-05 3.097873230253197569e-05 4.91280996022673e-05 1.949715592822227211e-05 3.088168417373684e-05 1.943514823650581e-05

View File

@@ -1,98 +1,98 @@
1.000000000000000021e-03,6.059596816131984903e-04,4.124540545641951000e-04,2.874328952539468305e-04,2.103398919772851445e-04,1.677242405549142946e-04,1.544863001982801454e-04,1.810521006745035243e-04,3.200643516934312716e-04
1.000000000000000021e-03,6.053276391419512917e-04,4.117105797931639192e-04,2.867132476380170980e-04,2.096494018677202108e-04,1.670078900317705016e-04,1.536235748319029191e-04,1.797412011853683042e-04,3.172302656811062894e-04
1.000000000000000021e-03,6.046965215788322606e-04,4.109687952835336887e-04,2.859957486816950244e-04,2.089614974033423851e-04,1.662949011112697126e-04,1.527659914515381017e-04,1.784402430016445015e-04,3.144223032044235564e-04
1.000000000000000021e-03,6.040663257237133005e-04,4.102286952029449651e-04,2.852803900268787471e-04,2.082761669373014350e-04,1.655852558250782110e-04,1.519135165004971508e-04,1.771491455864908956e-04,3.116402083285431824e-04
1.000000000000000021e-03,6.034134049131552151e-04,4.094420572177277762e-04,2.844940684888993296e-04,2.074903534701979157e-04,1.647299311261353841e-04,1.508247978694524506e-04,1.753757648572244786e-04,3.073546770239318966e-04
1.000000000000000021e-03,6.027614491955140619e-04,4.086572704905903084e-04,2.837102537033676193e-04,2.067078158689920062e-04,1.638793172508614261e-04,1.497441922066543145e-04,1.736205593148946460e-04,3.031290170068882115e-04
1.000000000000000021e-03,6.021104551256277167e-04,4.078743283205443272e-04,2.829289352705667755e-04,2.059285379676389937e-04,1.630333854029286287e-04,1.486716352337672398e-04,1.718833358612950819e-04,2.989623714008152688e-04
1.000000000000000021e-03,6.014582116574243619e-04,4.070908897338878368e-04,2.821481168500803620e-04,2.051508852341138217e-04,1.621907338278938133e-04,1.476057520309239507e-04,1.701623353591907634e-04,2.948510854465446421e-04
1.000000000000000021e-03,6.008047235362061304e-04,4.063069632907822604e-04,2.813678065291968134e-04,2.043748619094956848e-04,1.613513572535205565e-04,1.465465096091600223e-04,1.684574188261711764e-04,2.907944492354505236e-04
1.000000000000000021e-03,6.001451360530016092e-04,4.055123728737173791e-04,2.805722092000019225e-04,2.035777116783122080e-04,1.604816172174310248e-04,1.454380432794140279e-04,1.666509749540511247e-04,2.864106919229302104e-04
1.000000000000000021e-03,5.994843238884264500e-04,4.047173509812383436e-04,2.797772242168449484e-04,2.027823739011739494e-04,1.596154967418240479e-04,1.443369747762361644e-04,1.648627759919576703e-04,2.820911717580149220e-04
1.000000000000000021e-03,5.988172342183890103e-04,4.039163714190686103e-04,2.789780293498389497e-04,2.019848363041463460e-04,1.587495225986212185e-04,1.432398991427229250e-04,1.630885426393815433e-04,2.778273023594395367e-04
1.000000000000000021e-03,5.981438884479926745e-04,4.031094770638417378e-04,2.781746763026650849e-04,2.011851525894453846e-04,1.578837467363927922e-04,1.421468562989037501e-04,1.613282432889087106e-04,2.736185440612619660e-04
1.000000000000000021e-03,5.974643081279905951e-04,4.022967109333065402e-04,2.773672167904255525e-04,2.003833762773818070e-04,1.570182206524130687e-04,1.410578853054891162e-04,1.595818450324428667e-04,2.694643589605560702e-04
1.000000000000000021e-03,5.967776135628261383e-04,4.014760835454474729e-04,2.765523639715266420e-04,1.995745107850170087e-04,1.561451751437292214e-04,1.399593838969533089e-04,1.578189695554256631e-04,2.652593622585595239e-04
1.000000000000000021e-03,5.960847301704033955e-04,4.006496794462583626e-04,2.757335282633677394e-04,1.987637005805311633e-04,1.552725686595443394e-04,1.388652425906941482e-04,1.560705931497471889e-04,2.611111091988240428e-04
1.000000000000000021e-03,5.953856800664869900e-04,3.998175424230218200e-04,2.749107619574642008e-04,1.979509993037016505e-04,1.544004519462355480e-04,1.377754975907092790e-04,1.543366727366940775e-04,2.570190084729973012e-04
1.000000000000000021e-03,5.946807128856675898e-04,3.989799547069150759e-04,2.740843182982303974e-04,1.971366223883773178e-04,1.535290106655841792e-04,1.366903106980890768e-04,1.526173104925201149e-04,2.529827224768709296e-04
1.000000000000000021e-03,5.939698501124463306e-04,3.981369586533569987e-04,2.732542475356756692e-04,1.963206208562686219e-04,1.526582921179318820e-04,1.356097131673934353e-04,1.509124557001679569e-04,2.490016526370400561e-04
1.000000000000000021e-03,5.932465626846949178e-04,3.972749900655482406e-04,2.723996767755988246e-04,1.954732420440092287e-04,1.517449722599865122e-04,1.344633353162260421e-04,1.490787207039270096e-04,2.446311790608478916e-04
1.000000000000000021e-03,5.925174390191371033e-04,3.964077570693368959e-04,2.715417094444828503e-04,1.946245940839898595e-04,1.508329769024341859e-04,1.333227635443309334e-04,1.472627410071646460e-04,2.403295419535726046e-04
1.000000000000000021e-03,5.917825975966207411e-04,3.955354074700222146e-04,2.706804869652218665e-04,1.937748023716854423e-04,1.499224142400159925e-04,1.321880784683747445e-04,1.454644877205459041e-04,2.360959501695517580e-04
1.000000000000000021e-03,5.910420603206251872e-04,3.946579839875351422e-04,2.698160594859791645e-04,1.929239167799043884e-04,1.490133276731937860e-04,1.310592984163628486e-04,1.436838579350653566e-04,2.319294885748935905e-04
1.000000000000000021e-03,5.902958492424382119e-04,3.937755294749108723e-04,2.689484771457827648e-04,1.920719869699086713e-04,1.481057601269397369e-04,1.299364409184113305e-04,1.419207481479104003e-04,2.278292508796841368e-04
1.000000000000000021e-03,5.895598685634120817e-04,3.929178479527316910e-04,2.681193531438139815e-04,1.912726116179633686e-04,1.472689584526509451e-04,1.289152165190126341e-04,1.403276367723939690e-04,2.241040180807166735e-04
1.000000000000000021e-03,5.888182184446727908e-04,3.920550888852155800e-04,2.672869104586279658e-04,1.904718280301954622e-04,1.464329431074320987e-04,1.278983689606465277e-04,1.387482416027983217e-04,2.204326648641897243e-04
1.000000000000000021e-03,5.880709209312291698e-04,3.911872944022057189e-04,2.664511977530461032e-04,1.896696843025943828e-04,1.455977573633372962e-04,1.268859249854523304e-04,1.371825077963339959e-04,2.168145532732365665e-04
1.000000000000000021e-03,5.873188516038330012e-04,3.903153927531259398e-04,2.656130037940035156e-04,1.888668181821939697e-04,1.447639292589146184e-04,1.258783532658409540e-04,1.356308744741794301e-04,2.132498546822566535e-04
1.000000000000000021e-03,5.865620290918570692e-04,3.894394196579139384e-04,2.647723694527710347e-04,1.880632691586897262e-04,1.439314922056974795e-04,1.248756678383702303e-04,1.340932673985179111e-04,2.097378989636096219e-04
1.000000000000000021e-03,5.858004721379563712e-04,3.885594109297237520e-04,2.639293355828808605e-04,1.872590765580118600e-04,1.431004792703304354e-04,1.238778821782577646e-04,1.325696118981003829e-04,2.062780220293337398e-04
1.000000000000000021e-03,5.850341996176138979e-04,3.876754025264287241e-04,2.630839431003643525e-04,1.864542796470906004e-04,1.422709233084495310e-04,1.228850093894619591e-04,1.310598332174379369e-04,2.028695668674851068e-04
1.000000000000000021e-03,5.842633259194077947e-04,3.867875329548579075e-04,2.622363206668650243e-04,1.856489888735660490e-04,1.414429165168560936e-04,1.218971173595769875e-04,1.295639192660443006e-04,1.995119889022209966e-04
1.000000000000000021e-03,5.834878697730810785e-04,3.858958376209294626e-04,2.613865082576556967e-04,1.848432421885319707e-04,1.406164899573639974e-04,1.209142166826000190e-04,1.280817922197122173e-04,1.962046375108947760e-04
1.000000000000000021e-03,5.827078500230523962e-04,3.850003520236475163e-04,2.605345458299026889e-04,1.840370773822073991e-04,1.397916743597008157e-04,1.199363174304283899e-04,1.266133739282210172e-04,1.929468682039042694e-04
1.000000000000000021e-03,5.819334261621241173e-04,3.841195496874485939e-04,2.597054450234843122e-04,1.832615752361228063e-04,1.390067359137023490e-04,1.190124837885568685e-04,1.252266477671892364e-04,1.898342669542842250e-04
1.000000000000000021e-03,5.811544494713084385e-04,3.832349425929183610e-04,2.588741118031709712e-04,1.824854619290212638e-04,1.382230274271905722e-04,1.180928923649849320e-04,1.238519429087230690e-04,1.867668194223294086e-04
1.000000000000000021e-03,5.803709388350691226e-04,3.823465658113372784e-04,2.580405852181276633e-04,1.817087742555892370e-04,1.374405795299253087e-04,1.171775570200931022e-04,1.224892004036316632e-04,1.837439681062861012e-04
1.000000000000000021e-03,5.795844646861092117e-04,3.814560496353979662e-04,2.572062245701910057e-04,1.809325897993571621e-04,1.366602663048694689e-04,1.162672443199922736e-04,1.211391750652958171e-04,1.807664171209839225e-04
1.000000000000000021e-03,5.787950390386191295e-04,3.805634168176052199e-04,2.563710546191050039e-04,1.801569303693986560e-04,1.358821021611104744e-04,1.153619483579342790e-04,1.198017787120210541e-04,1.778335550584487373e-04
1.000000000000000021e-03,5.780026739739645147e-04,3.796686901561970007e-04,2.555351001009416268e-04,1.793818176715784992e-04,1.351061013224604760e-04,1.144616629966290335e-04,1.184769233829579004e-04,1.749447775426769835e-04
1.000000000000000021e-03,5.772073816396077655e-04,3.787718924921195112e-04,2.546983857238086673e-04,1.786072733038042632e-04,1.343322778228697451e-04,1.135663818643436025e-04,1.171645213323757931e-04,1.720994871389106646e-04
1.000000000000000021e-03,5.764112975619451167e-04,3.778753049229251356e-04,2.538628529985562728e-04,1.778348606584519826e-04,1.335619170774594953e-04,1.126772524533375236e-04,1.158657577413503814e-04,1.692991320527776819e-04
1.000000000000000021e-03,5.756144252522814222e-04,3.769789335549947914e-04,2.530285065275222683e-04,1.770645798114452998e-04,1.327950095246515803e-04,1.117942393436846088e-04,1.145805009748875411e-04,1.665430248001372392e-04
1.000000000000000021e-03,5.748167682568085593e-04,3.760827845283660131e-04,2.521953509290719687e-04,1.762964308427695766e-04,1.320315456257037542e-04,1.109173072961205789e-04,1.133086205901110452e-04,1.638304880953399246e-04
1.000000000000000021e-03,5.740166237139158025e-04,3.751830736799844387e-04,2.513572749088919958e-04,1.755213872380331861e-04,1.312580494760662926e-04,1.100242733780145235e-04,1.120050977276823334e-04,1.610268323297459373e-04
1.000000000000000021e-03,5.732157063485666254e-04,3.742836154796483610e-04,2.505204393147844274e-04,1.747485543201545441e-04,1.304881340598568315e-04,1.091376023135285023e-04,1.107157077892566201e-04,1.582698947895536752e-04
1.000000000000000021e-03,5.724140197507473007e-04,3.733844159930685934e-04,2.496848484812796650e-04,1.739779315547772373e-04,1.297217884948703216e-04,1.082572552711356679e-04,1.094403070125688193e-04,1.555589173140119988e-04
1.000000000000000021e-03,5.716133163514535006e-04,3.724872615728835922e-04,2.488519667094108378e-04,1.732106573421359136e-04,1.289599119326889729e-04,1.073839886960488172e-04,1.081795839980315968e-04,1.528943685588057789e-04
1.000000000000000021e-03,5.708135916089464952e-04,3.715921440481619780e-04,2.480217821880964816e-04,1.724467146387093834e-04,1.282024761936270685e-04,1.065177436423506841e-04,1.069333674890963240e-04,1.502754491507743331e-04
1.000000000000000021e-03,5.700148410279018158e-04,3.706990553358867476e-04,2.471942832207120249e-04,1.716860865497342535e-04,1.274494533371790404e-04,1.056584617232978574e-04,1.057014883248694426e-04,1.477013737020834935e-04
1.000000000000000021e-03,5.692170601522963469e-04,3.698079874222007994e-04,2.463694581964103098e-04,1.709287562926333241e-04,1.267008156164750913e-04,1.048060850476081559e-04,1.044837793145218324e-04,1.451713702741069042e-04
1.000000000000000021e-03,5.684221107462931718e-04,3.689208973051672467e-04,2.455489480245545849e-04,1.701760222502850749e-04,1.259576042689529907e-04,1.039615052862917467e-04,1.032810864032787402e-04,1.426862118551680341e-04
1.000000000000000021e-03,5.676299806599446841e-04,3.680377623533836952e-04,2.447327238198633678e-04,1.694278494753442496e-04,1.252197721019686588e-04,1.031246414956518974e-04,1.020932099638295122e-04,1.402450714512258731e-04
1.000000000000000021e-03,5.668406578186927338e-04,3.671585601102087264e-04,2.439207569480618843e-04,1.686842033525584789e-04,1.244872724153648453e-04,1.022954136930148580e-04,1.009199532576916553e-04,1.378471380449364540e-04
1.000000000000000021e-03,5.660528798623399357e-04,3.662807588285737852e-04,2.431092838206291959e-04,1.679399278621275505e-04,1.237529841606189703e-04,1.014631173867882653e-04,9.974194130068655907e-05,1.354424501489320950e-04
1.000000000000000021e-03,5.652678887062091489e-04,3.654068578608936813e-04,2.423020363044335113e-04,1.672001557892942780e-04,1.230240193993821724e-04,1.006384714692423982e-04,9.857860748076281341e-05,1.330810886504238974e-04
1.000000000000000021e-03,5.644856725120149217e-04,3.645368352560149003e-04,2.414989864020476457e-04,1.664648531857207327e-04,1.223003320760450115e-04,9.982139651422967225e-05,9.742975533494338731e-05,1.307622432316707048e-04
1.000000000000000021e-03,5.637081598516872297e-04,3.636726247466106157e-04,2.407016951041400575e-04,1.657352124900924413e-04,1.215828418563276393e-04,9.901263879559620603e-05,9.629602344691408898e-05,1.284862679388324466e-04
1.000000000000000021e-03,5.629353300793490293e-04,3.628141892281135789e-04,2.399101174854294510e-04,1.650111827309744587e-04,1.208714852573268089e-04,9.821209936496322563e-05,9.517719041742417905e-05,1.262523213089875105e-04
1.000000000000000021e-03,5.621671626935266465e-04,3.619614919160761232e-04,2.391242090587739641e-04,1.642927134849468424e-04,1.201661995513669139e-04,9.741968060975319133e-05,9.407303841474721877e-05,1.240595794224424390e-04
1.000000000000000021e-03,5.614036373218869204e-04,3.611144963064036881e-04,2.383439257149278542e-04,1.635797548004748762e-04,1.194669226721670609e-04,9.663528612429730903e-05,9.298335293466474341e-05,1.219072350364201328e-04
1.000000000000000021e-03,5.606463485664969944e-04,3.602748496609082000e-04,2.375706263435288989e-04,1.628733614326239394e-04,1.187744774441648902e-04,9.585958850070355037e-05,9.190871230268097864e-05,1.197956257524449784e-04
1.000000000000000021e-03,5.598952698555576370e-04,3.594425038433207622e-04,2.368042532426757629e-04,1.621734693226255697e-04,1.180887870128607769e-04,9.509247448928166366e-05,9.084888029067286991e-05,1.177239166851852087e-04
1.000000000000000021e-03,5.591503748394264367e-04,3.586174111937711294e-04,2.360447493430869353e-04,1.614800151758654528e-04,1.174097755299612002e-04,9.433383251239638840e-05,8.980362478385646723e-05,1.156912913627774928e-04
1.000000000000000021e-03,5.584225591487143505e-04,3.578196518919505740e-04,2.353197697834314708e-04,1.608280111225492105e-04,1.167814916834832538e-04,9.364209834454310303e-05,8.886089862139266997e-05,1.138670987493162862e-04
1.000000000000000021e-03,5.577008468242452242e-04,3.570289620106132170e-04,2.346013750077580542e-04,1.601820316992516276e-04,1.161592518078891664e-04,9.295772679954118940e-05,8.793036528463705852e-05,1.120748093307471799e-04
1.000000000000000021e-03,5.569852125454166723e-04,3.562452965139748743e-04,2.338895121728417183e-04,1.595420198714332595e-04,1.155429900504064843e-04,9.228062559771084612e-05,8.701184300011380421e-05,1.103138112316197746e-04
1.000000000000000021e-03,5.562757163116399499e-04,3.554686957703368042e-04,2.331841974232642283e-04,1.589079715282182140e-04,1.149326819589807311e-04,9.161073769793274093e-05,8.610518609906000706e-05,1.085835484715731990e-04
1.000000000000000021e-03,5.555723328562507538e-04,3.546991150005096983e-04,2.324853783642831767e-04,1.582798302759657303e-04,1.143282626503791007e-04,9.094797264045832242e-05,8.521021771090780625e-05,1.068834322603653324e-04
1.000000000000000021e-03,5.548750371213563657e-04,3.539365098621276230e-04,2.317930031654593444e-04,1.576575403787569985e-04,1.137296680667903865e-04,9.029224125378113518e-05,8.432676390648500317e-05,1.052128860599020399e-04
1.000000000000000021e-03,5.541838042439771635e-04,3.531808364136874187e-04,2.311070205067102163e-04,1.570410466910287454e-04,1.131368348940622735e-04,8.964345554504144940e-05,8.345465350366406993e-05,1.035713449503019397e-04
1.000000000000000021e-03,5.534994772986728557e-04,3.524329474767404734e-04,2.304281200650363333e-04,1.564308719194829761e-04,1.125501566344392631e-04,8.900191672771989599e-05,8.259410426967044201e-05,1.019587783174918249e-04
1.000000000000000021e-03,5.528220286453137825e-04,3.516927939956549431e-04,2.297562446752235638e-04,1.558269550144645319e-04,1.119695640249353838e-04,8.836753049012398612e-05,8.174493812638424233e-05,1.003746189891791522e-04
1.000000000000000021e-03,5.521514308959529988e-04,3.509603274307335013e-04,2.290913378267074509e-04,1.552292356754889449e-04,1.113949887224841186e-04,8.774020391605217217e-05,8.090698006040516024e-05,9.881831191717569708e-05
1.000000000000000021e-03,5.514925705077818562e-04,3.502439423799475968e-04,2.284441610897542578e-04,1.546502536108915020e-04,1.108405451476827762e-04,8.713560862370903280e-05,8.009669495978734939e-05,9.729798207441842409e-05
1.000000000000000021e-03,5.508404954145605355e-04,3.495351144497065954e-04,2.278037808073336661e-04,1.540772565128698055e-04,1.102918428934658313e-04,8.653767235071846409e-05,7.929694151393572473e-05,9.580416231533655223e-05
1.000000000000000021e-03,5.501951791779016417e-04,3.488337972114359704e-04,2.271701434112839691e-04,1.535101877933933972e-04,1.097488185619751536e-04,8.594630990981442489e-05,7.850756016455258672e-05,9.433633928045583440e-05
1.000000000000000021e-03,5.495566796872157793e-04,3.481400279377950191e-04,2.265432624126748171e-04,1.529490418493457818e-04,1.092114481281042810e-04,8.536146896299809861e-05,7.772842391839215501e-05,9.289404738934854406e-05
1.000000000000000021e-03,5.489249706454161527e-04,3.474537605956091817e-04,2.259230848255512310e-04,1.523937628358645337e-04,1.086796692149487770e-04,8.478306608188779627e-05,7.695937762456762194e-05,9.147679298288125297e-05
1.000000000000000021e-03,5.483000259883204826e-04,3.467749496226811058e-04,2.253095582547179863e-04,1.518442955755717951e-04,1.081534202533376696e-04,8.421101904463252675e-05,7.620026875215024978e-05,9.008409282780761526e-05
1.000000000000000021e-03,5.476818198739591458e-04,3.461035499001802445e-04,2.247026308546789793e-04,1.513005855077949086e-04,1.076326404207925846e-04,8.364524675486820964e-05,7.545094724756280888e-05,8.871547365198851438e-05
1.000000000000000021e-03,5.470705529810189179e-04,3.454397485743721506e-04,2.241024413587690614e-04,1.507627254998857578e-04,1.071173841908876651e-04,8.308576484396013343e-05,7.471135773791005180e-05,8.737059031219478156e-05
1.000000000000000021e-03,5.464661991670638182e-04,3.447835000304132159e-04,2.235089374295866490e-04,1.502306605954647535e-04,1.066075905365267742e-04,8.253249249775968508e-05,7.398135232542971769e-05,8.604898363826276057e-05
1.000000000000000021e-03,5.458687325221291348e-04,3.441347591201103138e-04,2.229220673120790245e-04,1.497043364932862668e-04,1.061031992194506256e-04,8.198535007121052676e-05,7.326078561528488937e-05,8.475020417489323324e-05
1.000000000000000021e-03,5.452901895090844558e-04,3.435150570304173014e-04,2.223706511768525117e-04,1.492190839480494894e-04,1.056468106030715887e-04,8.149737756206330190e-05,7.262157722718122260e-05,8.358877577600780481e-05
1.000000000000000021e-03,5.447184570616723891e-04,3.429026954804162766e-04,2.218256219048080177e-04,1.487392297472955698e-04,1.051953246672348403e-04,8.101471604563164947e-05,7.199020130947719233e-05,8.244600742971828849e-05
1.000000000000000021e-03,5.441535103689846154e-04,3.422976319891982578e-04,2.212869318272295087e-04,1.482647252612499030e-04,1.047486894350850925e-04,8.053730000430466094e-05,7.136654438032706549e-05,8.132155926679031160e-05
1.000000000000000021e-03,5.435909997143165834e-04,3.416955774702987799e-04,2.207511658034611989e-04,1.477929951923679644e-04,1.043049394866297369e-04,8.006352324306285982e-05,7.074908147590525608e-05,8.021344078389119761e-05
1.000000000000000021e-03,5.430309161342643806e-04,3.410965159927432586e-04,2.202183050641030458e-04,1.473240192034464783e-04,1.038640511149413747e-04,7.959335168171117276e-05,7.013774197495506457e-05,7.912139691327875046e-05
1.000000000000000021e-03,5.424732506674768149e-04,3.405004316631486216e-04,2.196883309178195964e-04,1.468577770769967101e-04,1.034260007962051111e-04,7.912675157408064104e-05,6.953245613429904408e-05,7.804517686317993341e-05
1.000000000000000021e-03,5.419179943504857889e-04,3.399073086151600896e-04,2.191612247355960430e-04,1.463942486957527610e-04,1.029907651665082401e-04,7.866368947795671801e-05,6.893315503775990498e-05,7.698453395110452940e-05
1.000000000000000021e-03,5.413629828746738867e-04,3.393149394667066966e-04,2.186351838182767991e-04,1.459320465988429058e-04,1.025572658029062702e-04,7.820326658601671303e-05,6.833895931108436813e-05,7.593823716905742757e-05
1.000000000000000021e-03,5.408082138671730385e-04,3.387233205925343745e-04,2.181102035828516778e-04,1.454711649598321068e-04,1.021254940975202248e-04,7.774546638666711494e-05,6.774982397495531476e-05,7.490609035628451105e-05
1.000000000000000021e-03,5.402536849306272763e-04,3.381324483351249330e-04,2.175862794239174624e-04,1.450115979478540569e-04,1.016954414669310805e-04,7.729027246482876178e-05,6.716570445567967391e-05,7.388790009412213962e-05
1.000000000000000021e-03,5.396844473492076093e-04,3.375153269484326116e-04,2.170269255797531330e-04,1.445081577421817903e-04,1.012119806681102793e-04,7.676796353167371053e-05,6.648955946153636300e-05,7.272015355307609235e-05
1.000000000000000021e-03,5.391154759339646064e-04,3.368990409960971838e-04,2.164687998325534753e-04,1.440063199340409466e-04,1.007307157169936256e-04,7.624910690660518565e-05,6.582015362379603355e-05,7.157078178685281889e-05
1.174325560395078800e-03,2.755298774803674553e-03,5.194387759090383395e-03,9.354521953613973567e-03,1.651171618252517473e-02,2.916966879690554432e-02,5.262163370571950466e-02,9.910396847768351836e-02,2.000000000000000111e-01
4.160571131359890040e-03,8.527170824088577475e-03,1.466969461393815427e-02,2.443642414582058997e-02,3.975038656808106002e-02,6.331729118004528201e-02,9.842489957479945428e-02,1.474045868235714374e-01,2.059999999999999887e-01
0.001,0.0007651928200015371,0.0006070713937965498,0.00041423535558437785,0.0002897888610631573,0.00021340907299884933,0.00017198131811953097,0.00016127923791982795,0.00019503601408127412,0.00036549739730595273
0.001,0.0007645995806173374,0.0006064422887178694,0.00041349144049413134,0.00028906380160320487,0.00021270693331134475,0.0001712438796411692,0.0001603765556252246,0.00019363496213474675,0.00036239423700181427
0.001,0.0007640065772643761,0.0006058136176614386,0.00041274866023030733,0.0002883403899406645,0.0002120069527025505,0.00017050944162049183,0.000159478716966613,0.00019224364342300643,0.0003593168093314386
0.001,0.0007634138087852742,0.000605185379478,0.0004120070127662441,0.0002876186224176594,0.00021130912485491145,0.00016977799240843955,0.0001585856969223786,0.00019086199210672448,0.0003562649023666937
0.001,0.0007628028346998721,0.0006045332187986192,0.0004112166712442958,0.0002868226029691562,0.00021050564591298308,0.0001688917074786142,0.00015743651373617922,0.00018893812235512526,0.0003514029291704815
0.001,0.0007621921143131398,0.0006038815297458003,0.00041042762231867933,0.00028602858816935265,0.00020970502628600424,0.00016800982241073787,0.00015629534163924753,0.00018703308452519017,0.00034660591682276115
0.001,0.0007615816463554626,0.0006032303109890501,0.0004096398633263614,0.0002852365728026657,0.00020890725596775628,0.00016713231600712825,0.00015516212643578583,0.00018514669874176095,0.00034187301148734186
0.001,0.0007609692265548555,0.000602577299493926,0.0004088509941253184,0.00028444450359523985,0.00020811064471691694,0.00016625772561605027,0.00015403541161623416,0.00018327705284413884,0.00033720006213702974
0.001,0.0007603548574442921,0.0006019224999904981,0.0004080610253035772,0.00028365239238410656,0.0002073152021201705,0.00016538605339556675,0.00015291517504370476,0.00018142402424673905,0.0003325863766610152
0.001,0.0007597350402439383,0.0006012612395706585,0.0004072600935672035,0.0002828447987841907,0.00020649842223713097,0.00016448344741808307,0.00015174362495246272,0.00017946021794659197,0.00032758319657592714
0.001,0.0007591132829776185,0.0006005982088110791,0.0004064581175876688,0.00028203726728774387,0.00020568299547110922,0.00016358411213968798,0.00015057934813125987,0.00017751539893581778,0.00032265060787650516
0.001,0.000758484736453085,0.0005999283660908604,0.0004056495676510805,0.00028122495212139567,0.00020486486304104927,0.00016268449575399985,0.00014941879820841596,0.00017558496339953558,0.0003177787884410679
0.001,0.0007578494094215417,0.0005992517275730322,0.0004048344831924046,0.000280407904430663,0.00020404408117776887,0.0001617846565020927,0.00014826202727426984,0.00017366890284920263,0.0003129672376410902
0.001,0.0007572073108060312,0.0005985683096346821,0.0004040129039083478,0.0002795861755026316,0.00020322070604404603,0.00016088465224596546,0.00014710908652278506,0.00017176720707727308,0.00030821545426856767
0.001,0.0007565575890478602,0.00059787696153193,0.0004031823074325593,0.00027875567967892653,0.00020238859856737548,0.00015997497741322437,0.00014594324831107206,0.00016984173084389243,0.0003033838449669414
0.001,0.0007559011152632264,0.0005971788697390111,0.00040234530612592536,0.0002779206290242912,0.00020155405878687617,0.00015906535701622418,0.0001447815990558725,0.00016793142878541938,0.0002986152551090434
0.001,0.000755237898986442,0.000596474051424026,0.00040150194087318277,0.00027708107588917086,0.00020071714346489746,0.00015815584855490808,0.00014362418708307366,0.00016603627832169687,0.00029390910930431773
0.001,0.0007545681886825906,0.0005957627683701927,0.00040065250958751827,0.00027623729012494873,0.00019987808563904174,0.00015724665811831285,0.0001424712015659587,0.00016415642490307197,0.0002892651425802985
0.001,0.0007538919937536639,0.0005950450374279253,0.0003997970520738093,0.0002753893223189692,0.00019903693960802692,0.00015633783972296886,0.0001413226854400146,0.00016229183664828758,0.0002846827650697017
0.001,0.0007532045557665671,0.0005943145247994342,0.0003989223236188871,0.00027451662339635243,0.0001981640806362608,0.00015538551594067732,0.00014010540813129958,0.00016028630721570607,0.00027963581042999
0.001,0.0007525106592079478,0.0005935776116184588,0.00039804170193550713,0.0002736399653899091,0.00019728948692008958,0.00015443417816766013,0.00013889388158999866,0.0001582996284854468,0.0002746667454821644
0.001,0.0007518104383956622,0.000592834444449282,0.0003971553683797481,0.0002727595219957832,0.00019641331428482412,0.00015348396557824612,0.00013768822268133468,0.000156331819705631,0.00026977480754699626
0.001,0.0007511039033537896,0.0005920850408658466,0.0003962633635582371,0.00027187534416274955,0.00019553561634171146,0.00015253492870981108,0.00013648846139846028,0.00015438279270990136,0.0002649590347362105
0.001,0.0007503910642803073,0.0005913294186556257,0.0003953657283217157,0.0002709874829437419,0.00019465644657888978,0.0001515871176567501,0.0001352946268320504,0.0001524524582210848,0.0002602184722292356
0.001,0.0007496855573046408,0.0005905851062898704,0.00039449552403657745,0.00027014241927282736,0.0001938361803657908,0.0001507194393001951,0.00013421767536698768,0.000150722476765932,0.0002559376038022294
0.001,0.0007489737467556278,0.0005898345737440663,0.000393619635985906,0.00026929349394052985,0.00019301404332913125,0.00014985216957655317,0.00013314488789598826,0.00014900672746282064,0.00025171693602497907
0.001,0.0007482556429977025,0.0005890778388714725,0.00039273810426086416,0.0002684407562332248,0.0001921900867993824,0.00014898535811302548,0.00013207630234912348,0.00014730517414690737,0.000247555825445753
0.001,0.000747532135526673,0.0005883158165865031,0.0003918519024244402,0.00026758503804540166,0.0001913649895279964,0.00014811957577380352,0.00013101244041258906,0.0001456183389249714,0.00024345460151209766
0.001,0.0007468032330641541,0.0005875485221384682,0.0003909610648762846,0.00026672638132361175,0.0001905387943939666,0.00014725486211264363,0.00012995332641946747,0.00014394616337354944,0.00023941257691738652
0.001,0.0007460689444707028,0.0005867759709451519,0.0003900656262003575,0.00026586482808789615,0.00018971154418348472,0.00014639125636754904,0.00012889898406950181,0.00014228858823944247,0.00023542906884335907
0.001,0.0007453292787585437,0.0005859981786120694,0.0003891656212152682,0.00026500042051039684,0.000188883281693472,0.0001455287975953345,0.000127849436626481,0.0001406455538271199,0.00023150340029334736
0.001,0.0007445843685250069,0.0005852152884984452,0.0003882612223549495,0.00026413331906842847,0.00018805414639063353,0.00014466760638632992,0.00012680478406473458,0.00013901709088191773,0.00022763506393382832
0.001,0.0007438342228409441,0.0005844273161744179,0.0003873524639441998,0.00026326356496406687,0.00018722417962072503,0.0001438077197030893,0.00012576504647438162,0.00013740313489262333,0.00022382338328436597
0.001,0.0007430788509165626,0.0005836342773781009,0.0003864393804873395,0.0002623911994661588,0.00018639342263244998,0.00014294917419819004,0.000124730243348245,0.00013580362065026603,0.00022006768669446508
0.001,0.000742327254060605,0.0005828476385639736,0.00038554300530339766,0.00026154496076193957,0.00018559797011481673,0.0001421370333657246,0.00012375932796391997,0.00013430279846409174,0.00021649152387618443
0.001,0.0007415704350109161,0.0005820559385468977,0.00038464228372291103,0.0002606960153281244,0.00018480150743526303,0.00014132579578003348,0.000122792459010487,0.0001328143978658426,0.0002129659469511457
0.001,0.0007408084031449065,0.0005812591931755618,0.00038373724983374976,0.00025984440338310303,0.0001840040745362742,0.0001405154975809745,0.00012182965960439977,0.00013133837476817992,0.00020949038404752677
0.001,0.0007400427720784002,0.0005804590496942265,0.00038282961864956994,0.0002589915613698488,0.00018320681873232144,0.00013970708155515462,0.00012087177639736769,0.00012987560432955444,0.00020606578076074432
0.001,0.0007392735475065714,0.0005796555183614057,0.00038191941292656456,0.0002581375157328154,0.0001824097650442608,0.00013890056717630873,0.00011991881140841177,0.0001284260094133047,0.00020269149646849757
0.001,0.0007385007352097838,0.0005788486095364762,0.00038100665551987393,0.00025728229294257515,0.00018161293842329387,0.00013809597373520515,0.00011897076635433426,0.0001269895128043655,0.00019936689671873207
0.001,0.0007377243410529983,0.0005780383336785572,0.0003800913693799712,0.0002564259194903244,0.00018081636374445108,0.00013729332033271256,0.00011802764264291933,0.00012556603720150224,0.00019609135315036536
0.001,0.0007369464655998592,0.0005772268587748353,0.0003791758785432219,0.0002555703831979673,0.00018002165393456068,0.00013649394990366146,0.00011709066577140669,0.00012415690240967774,0.0001928666431485617
0.001,0.0007361671107233329,0.000576414188654825,0.000378260191109379,0.00025471569177879693,0.0001792288130669198,0.00013569785799734456,0.00011615980704210183,0.00012276198311838844,0.00018969202938803596
0.001,0.0007353862783344302,0.000575600327192691,0.00037734431522203,0.00025386185296321013,0.00017843784520433673,0.00013490504014296103,0.00011523503783001357,0.00012138115492992521,0.0001865667844236815
0.001,0.0007346027258369329,0.0005747835721418604,0.00037642443290667116,0.0002530026346493095,0.000177639416207763,0.0001341012793025371,0.0001142922256260196,0.00011996295037667013,0.00018332302768968173
0.001,0.0007338177018431625,0.0005739656376861859,0.00037550439543261463,0.0002521443237629474,0.00017684294734265143,0.00013330094534015117,0.00011335582519792064,0.00011855974750452474,0.00018013280630154984
0.001,0.0007330312083387708,0.0005731465277735759,0.000374584210907019,0.00025128692777751636,0.0001760484420635206,0.00013250403238709868,0.00011242580398299235,0.00011717140625198769,0.000176995286763841
0.001,0.0007322450716827681,0.0005723280950701311,0.00037366577307640326,0.00025043200586833656,0.00017525712146802507,0.00013171151729665014,0.00011150300328069361,0.00011579873047427355,0.00017391111613739919
0.001,0.0007314592892342591,0.0005715103366354928,0.0003727490765712826,0.00024957954955556494,0.0001744689721973381,0.00013092337604814113,0.00011058736861417956,0.00011444154833756723,0.0001708794064250159
0.001,0.0007306738583803173,0.0005706932495677312,0.00037183411609277345,0.00024872955044744495,0.00017368398100343736,0.0001301395848004509,0.00010967884595770732,0.00011309968990727626,0.00016789928423747183
0.001,0.0007298887765314699,0.0005698768309963597,0.00037092088639398746,0.0002478820002115871,0.00017290213471209804,0.00012936011984533696,0.0001087773816703527,0.00011177298701463364,0.00016496989019036454
0.001,0.0007291058850619836,0.0005690629705872476,0.0003700113801847071,0.0002470385774678141,0.00017212477134492983,0.0001285860674779147,0.00010788392632853856,0.00011046237940908493,0.00016209217355659912
0.001,0.0007283251776795193,0.0005682516594285885,0.0003691055790623401,0.0002461992575642169,0.00017135185999287266,0.00012781738439880834,0.00010699840217906239,0.00010916766306641233,0.00015926520709064215
0.001,0.000727546648123048,0.000567442888658507,0.0003682034647519281,0.00024536401604150686,0.00017058337001160307,0.00012705402771768452,0.00010612073231230378,0.0001078886367084761,0.00015648808062028533
0.001,0.0007267691175258129,0.0005666351120658079,0.00036730194585451363,0.00024452825978826814,0.00016981299319253088,0.00012628722374912656,0.00010523753204397677,0.00010660034638564814,0.00015369233245141463
0.001,0.0007259937543683618,0.0005658298620581495,0.00036640409142867466,0.00024369656281803695,0.0001690470312136919,0.00012552576286196436,0.00010436224908854787,0.00010532792661952348,0.00015094700928094292
0.001,0.0007252205525006216,0.0005650271299429238,0.0003655098835814395,0.0002428689011484816,0.0001682854538881413,0.00012476960247399048,0.00010349480634605481,0.00010407117393308648,0.00014825118806841486
0.001,0.0007244515476870691,0.0005642289688561167,0.00036462138604045246,0.00024204694758546622,0.00016752954803985582,0.00012401974721449815,0.00010263603739686231,0.00010283083470852359,0.0001456053538142381
0.001,0.0007236867286572494,0.0005634353625294562,0.0003637385663464586,0.00024123066115747858,0.00016677926586679636,0.00012327613591461942,0.00010178584352378332,0.00010160667618634935,0.0001430085413998934
0.001,0.0007229260842094953,0.0005626462948017631,0.0003628613922977866,0.00024042000126051454,0.00016603456004153966,0.00012253870808207087,0.0001009441272602465,0.00010039846917127745,0.000140459805170444
0.001,0.0007221696032014468,0.000561861749604344,0.00036198983191176377,0.0002396149275989645,0.00016529538363567852,0.00012180740380654271,0.00010011079225737115,9.920598777483068e-05,0.00013795821792425024
0.001,0.0007214188723728384,0.00056108334509554,0.0003611255610840681,0.0002388168283348348,0.00016456282140960994,0.00012108307905286178,9.928655238677393e-05,9.802986918413655e-05,0.0001355041849544529
0.001,0.0007206738776295639,0.0005603110603628828,0.0003602685373417506,0.00023802565027806571,0.00016383681258690845,0.00012036565891864721,9.847129356381268e-05,9.686986333449523e-05,0.0001330967445342526
0.001,0.0007199346049934109,0.0005595448746691314,0.00035941871861020354,0.00023724134078502595,0.00016311729706930416,0.00011965506942237431,9.7664903298557e-05,9.57257243308077e-05,0.00013073495556510661
0.001,0.0007192103057281418,0.0005587965882928195,0.000358597914203722,0.00023649404923234267,0.0001624426539507404,0.00011900000933912548,9.693290327537121e-05,9.469853254875163e-05,0.0001286228242214262
0.001,0.0007184916860834766,0.000558054333130965,0.0003577841401235257,0.0002357533416394368,0.00016177407584741055,0.00011835110239617177,9.620855295571759e-05,9.368449216343134e-05,0.0001265476735456528
0.001,0.000717778732645577,0.0005573180893469085,0.0003569773567342285,0.0002350191694371068,0.0001611115088719043,0.00011770828481211398,9.549176022876216e-05,9.268341301362701e-05,0.00012450880618841231
0.001,0.0007170715507844816,0.0005565879566941514,0.0003561776441627035,0.00023429158098135867,0.00016045497378223205,0.00011707155159443024,9.47824835635146e-05,9.169515755193108e-05,0.00012250560759307665
0.001,0.0007163701270344053,0.0005558639152622166,0.0003553849627325309,0.00023357052778616886,0.00015980441694230793,0.00011644083951173604,9.408063218207804e-05,9.071953997714039e-05,0.00012053740486430812
0.001,0.0007156744480415676,0.0005551459453084167,0.00035459927313802623,0.00023285596185845654,0.00015915978530381373,0.00011581608608941654,9.338611653058621e-05,8.975637744384618e-05,0.00011860353870291344
0.001,0.0007149845005557793,0.0005544340272448129,0.0003538205364097734,0.0002321478356456351,0.0001585210263398076,0.00011519722952770958,9.269884816673769e-05,8.880548985453175e-05,0.00011670336266552508
0.001,0.0007143011352806332,0.0005537290222260827,0.0003530496254918224,0.00023144685778402562,0.00015788868071804074,0.00011458468167101622,9.20191492389152e-05,8.786712068874325e-05,0.00011483685132763588
0.001,0.0007136243377311475,0.0005530309085687206,0.00035228649684153725,0.0002307529751854999,0.00015726269010384348,0.00011397837465469773,9.134692457668887e-05,8.694108196461404e-05,0.00011300335424584403
0.001,0.0007129540935643617,0.0005523396647985742,0.000351531107363628,0.0002300661353432777,0.0001566429968410848,0.00011337824146720777,9.06820803490277e-05,8.602718880727694e-05,0.00011120223452206596
0.001,0.0007122949300063586,0.0005516609446370161,0.0003507932546232374,0.0002293990178082647,0.00015604454205901748,0.00011280134646728481,9.004396195380538e-05,8.514641523915274e-05,0.00010944396621311202
0.001,0.0007116422850379047,0.0005509890404263221,0.00035006301886912226,0.00022873877079420107,0.00015545216193435095,0.00011223032450910806,8.941277122627028e-05,8.427699754143763e-05,0.00010771649233683978
0.001,0.0007109961448775265,0.0005503239315436604,0.00034934035900275196,0.00022808534468017605,0.00015486580256638324,0.00011166511373672321,8.878842266662507e-05,8.341876815036907e-05,0.00010601922394974779
0.001,0.0007103566138672342,0.0005496657159311855,0.0003486253516297722,0.00022743878433373037,0.00015428548213839886,0.00011110570832676001,8.81708780194749e-05,8.25716070442755e-05,0.00010435164299643007
0.001,0.0007097236782517396,0.0005490143729973408,0.0003479179557857281,0.0002267990403962617,0.0001537111471536449,0.00011055204708289399,8.756005313455197e-05,8.173535064610718e-05,0.0001027131817052566
0.001,0.0007090973244087274,0.0005483698823458906,0.00034721813091834777,0.000226166064037726,0.00015314274472297157,0.00011000406955950422,8.695586501935841e-05,8.090983803329783e-05,0.00010110328401062253
0.001,0.0007084775388425413,0.0005477322237660661,0.0003465258368613831,0.00022553980691704316,0.00015258022251510344,0.00010946171600087524,8.635823175652435e-05,8.00949107862898e-05,9.952140501322636e-05
0.001,0.0007078645400735427,0.0005471016129101978,0.0003458412757255009,0.00022492042013778988,0.00015202368335334558,0.00010892504915290583,8.57671759148139e-05,7.929051589048381e-05,9.796715152670613e-05
0.001,0.0007072583145347741,0.0005464780293804963,0.00034516440688163317,0.00022430785483116316,0.0001514730744232032,0.00010839400891826328,8.518261565996433e-05,7.84964968569563e-05,9.643999410136803e-05
0.001,0.0007066588487940405,0.000545861452976259,0.0003444951901125997,0.00022370206265319418,0.00015092834351042303,0.00010786853593723236,8.460447028623623e-05,7.771269974698105e-05,9.493941424410264e-05
0.001,0.0007060768113835355,0.0005452653567881146,0.00034385780916102886,0.0002231355522451839,0.0001504295746545273,0.00010739737531972382,8.409424224945842e-05,7.702434963545377e-05,9.360618912201228e-05
0.001,0.0007055014939207988,0.0005446762036784223,0.00034322791998477503,0.0002225755642266546,0.00014993632274793293,0.00010693123855410087,8.358951092264173e-05,7.634435339541097e-05,9.22944227993744e-05
0.001,0.0007049328836329239,0.0005440939744776738,0.0003426054850001757,0.00022202205441602206,0.000149448541485554,0.00010647007505716636,8.309021096715739e-05,7.567259318109089e-05,9.100372969350909e-05
0.001,0.0007043664108869901,0.0005435140913972429,0.00034198598587466614,0.00022147141590047654,0.00014896349766232102,0.00010601178096740148,8.259459730216135e-05,7.500736724232048e-05,8.973176442333615e-05
0.001,0.0007038020712072354,0.0005429365478183962,0.00034136940918446675,0.0002209236320980648,0.00014848117283038098,0.00010555633431743894,8.210263744821714e-05,7.434860458126827e-05,8.847824135377829e-05
0.001,0.0007032398600991381,0.0005423613371043419,0.00034075574151016483,0.0002203786864681782,0.00014800154862415601,0.00010510371328265478,8.161429921011451e-05,7.369623501807121e-05,8.724287943554497e-05
0.001,0.0007026797730466592,0.0005417884525961108,0.00034014496942632764,0.0002198365624959981,0.00014752460674093983,0.00010465389615779026,8.112955064604149e-05,7.305018913687007e-05,8.602540201539488e-05
0.001,0.0007021196874055633,0.0005412157406692665,0.0003395348927353949,0.00021929545761274023,0.00014704895219343257,0.00010420578859113516,8.064746506639534e-05,7.240953347459202e-05,8.482441661675139e-05
0.001,0.0007015596012323657,0.0005406431992153213,0.0003389255082691921,0.00021875536780717296,0.00014657457987728414,0.00010375938295149973,8.016802726693694e-05,7.17742234562459e-05,8.363970356449741e-05
0.001,0.0007009995125587165,0.0005400708260946051,0.0003383168128172846,0.00021821628903476192,0.00014610148467187763,0.0001033146716169485,7.969122211456026e-05,7.114421486558773e-05,8.247104609297546e-05
0.001,0.000700426120570031,0.0005394817717340144,0.00033767827777106695,0.00021763678242090514,0.00014557802543177205,0.00010280805245363877,7.913535785684264e-05,7.040274681183516e-05,8.111172191387726e-05
0.001,0.0006998527383823768,0.0005388929110101418,0.0003370405259007354,0.00021705847496470142,0.00014505616500334602,0.00010230367256069614,7.858312049704058e-05,6.966868896041247e-05,7.977423771714316e-05
0.0010496228983614124,0.002020602352332682,0.0024834354692445607,0.004712247621156641,0.00854174709233096,0.015197203876184536,0.027142477151470907,0.049749449744480465,0.09589624880110185,0.2
0.004235602571438949,0.007336805952289255,0.008714058005603317,0.015024716476258112,0.025061770718850837,0.04079161627542227,0.0649508755581543,0.10074574737193842,0.14993445055894863,0.206
1 1.000000000000000021e-03 0.001 6.059596816131984903e-04 0.0007651928200015371 4.124540545641951000e-04 0.0006070713937965498 2.874328952539468305e-04 0.00041423535558437785 2.103398919772851445e-04 0.0002897888610631573 1.677242405549142946e-04 0.00021340907299884933 1.544863001982801454e-04 0.00017198131811953097 1.810521006745035243e-04 0.00016127923791982795 3.200643516934312716e-04 0.00019503601408127412 0.00036549739730595273
2 1.000000000000000021e-03 0.001 6.053276391419512917e-04 0.0007645995806173374 4.117105797931639192e-04 0.0006064422887178694 2.867132476380170980e-04 0.00041349144049413134 2.096494018677202108e-04 0.00028906380160320487 1.670078900317705016e-04 0.00021270693331134475 1.536235748319029191e-04 0.0001712438796411692 1.797412011853683042e-04 0.0001603765556252246 3.172302656811062894e-04 0.00019363496213474675 0.00036239423700181427
3 1.000000000000000021e-03 0.001 6.046965215788322606e-04 0.0007640065772643761 4.109687952835336887e-04 0.0006058136176614386 2.859957486816950244e-04 0.00041274866023030733 2.089614974033423851e-04 0.0002883403899406645 1.662949011112697126e-04 0.0002120069527025505 1.527659914515381017e-04 0.00017050944162049183 1.784402430016445015e-04 0.000159478716966613 3.144223032044235564e-04 0.00019224364342300643 0.0003593168093314386
4 1.000000000000000021e-03 0.001 6.040663257237133005e-04 0.0007634138087852742 4.102286952029449651e-04 0.000605185379478 2.852803900268787471e-04 0.0004120070127662441 2.082761669373014350e-04 0.0002876186224176594 1.655852558250782110e-04 0.00021130912485491145 1.519135165004971508e-04 0.00016977799240843955 1.771491455864908956e-04 0.0001585856969223786 3.116402083285431824e-04 0.00019086199210672448 0.0003562649023666937
5 1.000000000000000021e-03 0.001 6.034134049131552151e-04 0.0007628028346998721 4.094420572177277762e-04 0.0006045332187986192 2.844940684888993296e-04 0.0004112166712442958 2.074903534701979157e-04 0.0002868226029691562 1.647299311261353841e-04 0.00021050564591298308 1.508247978694524506e-04 0.0001688917074786142 1.753757648572244786e-04 0.00015743651373617922 3.073546770239318966e-04 0.00018893812235512526 0.0003514029291704815
6 1.000000000000000021e-03 0.001 6.027614491955140619e-04 0.0007621921143131398 4.086572704905903084e-04 0.0006038815297458003 2.837102537033676193e-04 0.00041042762231867933 2.067078158689920062e-04 0.00028602858816935265 1.638793172508614261e-04 0.00020970502628600424 1.497441922066543145e-04 0.00016800982241073787 1.736205593148946460e-04 0.00015629534163924753 3.031290170068882115e-04 0.00018703308452519017 0.00034660591682276115
7 1.000000000000000021e-03 0.001 6.021104551256277167e-04 0.0007615816463554626 4.078743283205443272e-04 0.0006032303109890501 2.829289352705667755e-04 0.0004096398633263614 2.059285379676389937e-04 0.0002852365728026657 1.630333854029286287e-04 0.00020890725596775628 1.486716352337672398e-04 0.00016713231600712825 1.718833358612950819e-04 0.00015516212643578583 2.989623714008152688e-04 0.00018514669874176095 0.00034187301148734186
8 1.000000000000000021e-03 0.001 6.014582116574243619e-04 0.0007609692265548555 4.070908897338878368e-04 0.000602577299493926 2.821481168500803620e-04 0.0004088509941253184 2.051508852341138217e-04 0.00028444450359523985 1.621907338278938133e-04 0.00020811064471691694 1.476057520309239507e-04 0.00016625772561605027 1.701623353591907634e-04 0.00015403541161623416 2.948510854465446421e-04 0.00018327705284413884 0.00033720006213702974
9 1.000000000000000021e-03 0.001 6.008047235362061304e-04 0.0007603548574442921 4.063069632907822604e-04 0.0006019224999904981 2.813678065291968134e-04 0.0004080610253035772 2.043748619094956848e-04 0.00028365239238410656 1.613513572535205565e-04 0.0002073152021201705 1.465465096091600223e-04 0.00016538605339556675 1.684574188261711764e-04 0.00015291517504370476 2.907944492354505236e-04 0.00018142402424673905 0.0003325863766610152
10 1.000000000000000021e-03 0.001 6.001451360530016092e-04 0.0007597350402439383 4.055123728737173791e-04 0.0006012612395706585 2.805722092000019225e-04 0.0004072600935672035 2.035777116783122080e-04 0.0002828447987841907 1.604816172174310248e-04 0.00020649842223713097 1.454380432794140279e-04 0.00016448344741808307 1.666509749540511247e-04 0.00015174362495246272 2.864106919229302104e-04 0.00017946021794659197 0.00032758319657592714
11 1.000000000000000021e-03 0.001 5.994843238884264500e-04 0.0007591132829776185 4.047173509812383436e-04 0.0006005982088110791 2.797772242168449484e-04 0.0004064581175876688 2.027823739011739494e-04 0.00028203726728774387 1.596154967418240479e-04 0.00020568299547110922 1.443369747762361644e-04 0.00016358411213968798 1.648627759919576703e-04 0.00015057934813125987 2.820911717580149220e-04 0.00017751539893581778 0.00032265060787650516
12 1.000000000000000021e-03 0.001 5.988172342183890103e-04 0.000758484736453085 4.039163714190686103e-04 0.0005999283660908604 2.789780293498389497e-04 0.0004056495676510805 2.019848363041463460e-04 0.00028122495212139567 1.587495225986212185e-04 0.00020486486304104927 1.432398991427229250e-04 0.00016268449575399985 1.630885426393815433e-04 0.00014941879820841596 2.778273023594395367e-04 0.00017558496339953558 0.0003177787884410679
13 1.000000000000000021e-03 0.001 5.981438884479926745e-04 0.0007578494094215417 4.031094770638417378e-04 0.0005992517275730322 2.781746763026650849e-04 0.0004048344831924046 2.011851525894453846e-04 0.000280407904430663 1.578837467363927922e-04 0.00020404408117776887 1.421468562989037501e-04 0.0001617846565020927 1.613282432889087106e-04 0.00014826202727426984 2.736185440612619660e-04 0.00017366890284920263 0.0003129672376410902
14 1.000000000000000021e-03 0.001 5.974643081279905951e-04 0.0007572073108060312 4.022967109333065402e-04 0.0005985683096346821 2.773672167904255525e-04 0.0004040129039083478 2.003833762773818070e-04 0.0002795861755026316 1.570182206524130687e-04 0.00020322070604404603 1.410578853054891162e-04 0.00016088465224596546 1.595818450324428667e-04 0.00014710908652278506 2.694643589605560702e-04 0.00017176720707727308 0.00030821545426856767
15 1.000000000000000021e-03 0.001 5.967776135628261383e-04 0.0007565575890478602 4.014760835454474729e-04 0.00059787696153193 2.765523639715266420e-04 0.0004031823074325593 1.995745107850170087e-04 0.00027875567967892653 1.561451751437292214e-04 0.00020238859856737548 1.399593838969533089e-04 0.00015997497741322437 1.578189695554256631e-04 0.00014594324831107206 2.652593622585595239e-04 0.00016984173084389243 0.0003033838449669414
16 1.000000000000000021e-03 0.001 5.960847301704033955e-04 0.0007559011152632264 4.006496794462583626e-04 0.0005971788697390111 2.757335282633677394e-04 0.00040234530612592536 1.987637005805311633e-04 0.0002779206290242912 1.552725686595443394e-04 0.00020155405878687617 1.388652425906941482e-04 0.00015906535701622418 1.560705931497471889e-04 0.0001447815990558725 2.611111091988240428e-04 0.00016793142878541938 0.0002986152551090434
17 1.000000000000000021e-03 0.001 5.953856800664869900e-04 0.000755237898986442 3.998175424230218200e-04 0.000596474051424026 2.749107619574642008e-04 0.00040150194087318277 1.979509993037016505e-04 0.00027708107588917086 1.544004519462355480e-04 0.00020071714346489746 1.377754975907092790e-04 0.00015815584855490808 1.543366727366940775e-04 0.00014362418708307366 2.570190084729973012e-04 0.00016603627832169687 0.00029390910930431773
18 1.000000000000000021e-03 0.001 5.946807128856675898e-04 0.0007545681886825906 3.989799547069150759e-04 0.0005957627683701927 2.740843182982303974e-04 0.00040065250958751827 1.971366223883773178e-04 0.00027623729012494873 1.535290106655841792e-04 0.00019987808563904174 1.366903106980890768e-04 0.00015724665811831285 1.526173104925201149e-04 0.0001424712015659587 2.529827224768709296e-04 0.00016415642490307197 0.0002892651425802985
19 1.000000000000000021e-03 0.001 5.939698501124463306e-04 0.0007538919937536639 3.981369586533569987e-04 0.0005950450374279253 2.732542475356756692e-04 0.0003997970520738093 1.963206208562686219e-04 0.0002753893223189692 1.526582921179318820e-04 0.00019903693960802692 1.356097131673934353e-04 0.00015633783972296886 1.509124557001679569e-04 0.0001413226854400146 2.490016526370400561e-04 0.00016229183664828758 0.0002846827650697017
20 1.000000000000000021e-03 0.001 5.932465626846949178e-04 0.0007532045557665671 3.972749900655482406e-04 0.0005943145247994342 2.723996767755988246e-04 0.0003989223236188871 1.954732420440092287e-04 0.00027451662339635243 1.517449722599865122e-04 0.0001981640806362608 1.344633353162260421e-04 0.00015538551594067732 1.490787207039270096e-04 0.00014010540813129958 2.446311790608478916e-04 0.00016028630721570607 0.00027963581042999
21 1.000000000000000021e-03 0.001 5.925174390191371033e-04 0.0007525106592079478 3.964077570693368959e-04 0.0005935776116184588 2.715417094444828503e-04 0.00039804170193550713 1.946245940839898595e-04 0.0002736399653899091 1.508329769024341859e-04 0.00019728948692008958 1.333227635443309334e-04 0.00015443417816766013 1.472627410071646460e-04 0.00013889388158999866 2.403295419535726046e-04 0.0001582996284854468 0.0002746667454821644
22 1.000000000000000021e-03 0.001 5.917825975966207411e-04 0.0007518104383956622 3.955354074700222146e-04 0.000592834444449282 2.706804869652218665e-04 0.0003971553683797481 1.937748023716854423e-04 0.0002727595219957832 1.499224142400159925e-04 0.00019641331428482412 1.321880784683747445e-04 0.00015348396557824612 1.454644877205459041e-04 0.00013768822268133468 2.360959501695517580e-04 0.000156331819705631 0.00026977480754699626
23 1.000000000000000021e-03 0.001 5.910420603206251872e-04 0.0007511039033537896 3.946579839875351422e-04 0.0005920850408658466 2.698160594859791645e-04 0.0003962633635582371 1.929239167799043884e-04 0.00027187534416274955 1.490133276731937860e-04 0.00019553561634171146 1.310592984163628486e-04 0.00015253492870981108 1.436838579350653566e-04 0.00013648846139846028 2.319294885748935905e-04 0.00015438279270990136 0.0002649590347362105
24 1.000000000000000021e-03 0.001 5.902958492424382119e-04 0.0007503910642803073 3.937755294749108723e-04 0.0005913294186556257 2.689484771457827648e-04 0.0003953657283217157 1.920719869699086713e-04 0.0002709874829437419 1.481057601269397369e-04 0.00019465644657888978 1.299364409184113305e-04 0.0001515871176567501 1.419207481479104003e-04 0.0001352946268320504 2.278292508796841368e-04 0.0001524524582210848 0.0002602184722292356
25 1.000000000000000021e-03 0.001 5.895598685634120817e-04 0.0007496855573046408 3.929178479527316910e-04 0.0005905851062898704 2.681193531438139815e-04 0.00039449552403657745 1.912726116179633686e-04 0.00027014241927282736 1.472689584526509451e-04 0.0001938361803657908 1.289152165190126341e-04 0.0001507194393001951 1.403276367723939690e-04 0.00013421767536698768 2.241040180807166735e-04 0.000150722476765932 0.0002559376038022294
26 1.000000000000000021e-03 0.001 5.888182184446727908e-04 0.0007489737467556278 3.920550888852155800e-04 0.0005898345737440663 2.672869104586279658e-04 0.000393619635985906 1.904718280301954622e-04 0.00026929349394052985 1.464329431074320987e-04 0.00019301404332913125 1.278983689606465277e-04 0.00014985216957655317 1.387482416027983217e-04 0.00013314488789598826 2.204326648641897243e-04 0.00014900672746282064 0.00025171693602497907
27 1.000000000000000021e-03 0.001 5.880709209312291698e-04 0.0007482556429977025 3.911872944022057189e-04 0.0005890778388714725 2.664511977530461032e-04 0.00039273810426086416 1.896696843025943828e-04 0.0002684407562332248 1.455977573633372962e-04 0.0001921900867993824 1.268859249854523304e-04 0.00014898535811302548 1.371825077963339959e-04 0.00013207630234912348 2.168145532732365665e-04 0.00014730517414690737 0.000247555825445753
28 1.000000000000000021e-03 0.001 5.873188516038330012e-04 0.000747532135526673 3.903153927531259398e-04 0.0005883158165865031 2.656130037940035156e-04 0.0003918519024244402 1.888668181821939697e-04 0.00026758503804540166 1.447639292589146184e-04 0.0001913649895279964 1.258783532658409540e-04 0.00014811957577380352 1.356308744741794301e-04 0.00013101244041258906 2.132498546822566535e-04 0.0001456183389249714 0.00024345460151209766
29 1.000000000000000021e-03 0.001 5.865620290918570692e-04 0.0007468032330641541 3.894394196579139384e-04 0.0005875485221384682 2.647723694527710347e-04 0.0003909610648762846 1.880632691586897262e-04 0.00026672638132361175 1.439314922056974795e-04 0.0001905387943939666 1.248756678383702303e-04 0.00014725486211264363 1.340932673985179111e-04 0.00012995332641946747 2.097378989636096219e-04 0.00014394616337354944 0.00023941257691738652
30 1.000000000000000021e-03 0.001 5.858004721379563712e-04 0.0007460689444707028 3.885594109297237520e-04 0.0005867759709451519 2.639293355828808605e-04 0.0003900656262003575 1.872590765580118600e-04 0.00026586482808789615 1.431004792703304354e-04 0.00018971154418348472 1.238778821782577646e-04 0.00014639125636754904 1.325696118981003829e-04 0.00012889898406950181 2.062780220293337398e-04 0.00014228858823944247 0.00023542906884335907
31 1.000000000000000021e-03 0.001 5.850341996176138979e-04 0.0007453292787585437 3.876754025264287241e-04 0.0005859981786120694 2.630839431003643525e-04 0.0003891656212152682 1.864542796470906004e-04 0.00026500042051039684 1.422709233084495310e-04 0.000188883281693472 1.228850093894619591e-04 0.0001455287975953345 1.310598332174379369e-04 0.000127849436626481 2.028695668674851068e-04 0.0001406455538271199 0.00023150340029334736
32 1.000000000000000021e-03 0.001 5.842633259194077947e-04 0.0007445843685250069 3.867875329548579075e-04 0.0005852152884984452 2.622363206668650243e-04 0.0003882612223549495 1.856489888735660490e-04 0.00026413331906842847 1.414429165168560936e-04 0.00018805414639063353 1.218971173595769875e-04 0.00014466760638632992 1.295639192660443006e-04 0.00012680478406473458 1.995119889022209966e-04 0.00013901709088191773 0.00022763506393382832
33 1.000000000000000021e-03 0.001 5.834878697730810785e-04 0.0007438342228409441 3.858958376209294626e-04 0.0005844273161744179 2.613865082576556967e-04 0.0003873524639441998 1.848432421885319707e-04 0.00026326356496406687 1.406164899573639974e-04 0.00018722417962072503 1.209142166826000190e-04 0.0001438077197030893 1.280817922197122173e-04 0.00012576504647438162 1.962046375108947760e-04 0.00013740313489262333 0.00022382338328436597
34 1.000000000000000021e-03 0.001 5.827078500230523962e-04 0.0007430788509165626 3.850003520236475163e-04 0.0005836342773781009 2.605345458299026889e-04 0.0003864393804873395 1.840370773822073991e-04 0.0002623911994661588 1.397916743597008157e-04 0.00018639342263244998 1.199363174304283899e-04 0.00014294917419819004 1.266133739282210172e-04 0.000124730243348245 1.929468682039042694e-04 0.00013580362065026603 0.00022006768669446508
35 1.000000000000000021e-03 0.001 5.819334261621241173e-04 0.000742327254060605 3.841195496874485939e-04 0.0005828476385639736 2.597054450234843122e-04 0.00038554300530339766 1.832615752361228063e-04 0.00026154496076193957 1.390067359137023490e-04 0.00018559797011481673 1.190124837885568685e-04 0.0001421370333657246 1.252266477671892364e-04 0.00012375932796391997 1.898342669542842250e-04 0.00013430279846409174 0.00021649152387618443
36 1.000000000000000021e-03 0.001 5.811544494713084385e-04 0.0007415704350109161 3.832349425929183610e-04 0.0005820559385468977 2.588741118031709712e-04 0.00038464228372291103 1.824854619290212638e-04 0.0002606960153281244 1.382230274271905722e-04 0.00018480150743526303 1.180928923649849320e-04 0.00014132579578003348 1.238519429087230690e-04 0.000122792459010487 1.867668194223294086e-04 0.0001328143978658426 0.0002129659469511457
37 1.000000000000000021e-03 0.001 5.803709388350691226e-04 0.0007408084031449065 3.823465658113372784e-04 0.0005812591931755618 2.580405852181276633e-04 0.00038373724983374976 1.817087742555892370e-04 0.00025984440338310303 1.374405795299253087e-04 0.0001840040745362742 1.171775570200931022e-04 0.0001405154975809745 1.224892004036316632e-04 0.00012182965960439977 1.837439681062861012e-04 0.00013133837476817992 0.00020949038404752677
38 1.000000000000000021e-03 0.001 5.795844646861092117e-04 0.0007400427720784002 3.814560496353979662e-04 0.0005804590496942265 2.572062245701910057e-04 0.00038282961864956994 1.809325897993571621e-04 0.0002589915613698488 1.366602663048694689e-04 0.00018320681873232144 1.162672443199922736e-04 0.00013970708155515462 1.211391750652958171e-04 0.00012087177639736769 1.807664171209839225e-04 0.00012987560432955444 0.00020606578076074432
39 1.000000000000000021e-03 0.001 5.787950390386191295e-04 0.0007392735475065714 3.805634168176052199e-04 0.0005796555183614057 2.563710546191050039e-04 0.00038191941292656456 1.801569303693986560e-04 0.0002581375157328154 1.358821021611104744e-04 0.0001824097650442608 1.153619483579342790e-04 0.00013890056717630873 1.198017787120210541e-04 0.00011991881140841177 1.778335550584487373e-04 0.0001284260094133047 0.00020269149646849757
40 1.000000000000000021e-03 0.001 5.780026739739645147e-04 0.0007385007352097838 3.796686901561970007e-04 0.0005788486095364762 2.555351001009416268e-04 0.00038100665551987393 1.793818176715784992e-04 0.00025728229294257515 1.351061013224604760e-04 0.00018161293842329387 1.144616629966290335e-04 0.00013809597373520515 1.184769233829579004e-04 0.00011897076635433426 1.749447775426769835e-04 0.0001269895128043655 0.00019936689671873207
41 1.000000000000000021e-03 0.001 5.772073816396077655e-04 0.0007377243410529983 3.787718924921195112e-04 0.0005780383336785572 2.546983857238086673e-04 0.0003800913693799712 1.786072733038042632e-04 0.0002564259194903244 1.343322778228697451e-04 0.00018081636374445108 1.135663818643436025e-04 0.00013729332033271256 1.171645213323757931e-04 0.00011802764264291933 1.720994871389106646e-04 0.00012556603720150224 0.00019609135315036536
42 1.000000000000000021e-03 0.001 5.764112975619451167e-04 0.0007369464655998592 3.778753049229251356e-04 0.0005772268587748353 2.538628529985562728e-04 0.0003791758785432219 1.778348606584519826e-04 0.0002555703831979673 1.335619170774594953e-04 0.00018002165393456068 1.126772524533375236e-04 0.00013649394990366146 1.158657577413503814e-04 0.00011709066577140669 1.692991320527776819e-04 0.00012415690240967774 0.0001928666431485617
43 1.000000000000000021e-03 0.001 5.756144252522814222e-04 0.0007361671107233329 3.769789335549947914e-04 0.000576414188654825 2.530285065275222683e-04 0.000378260191109379 1.770645798114452998e-04 0.00025471569177879693 1.327950095246515803e-04 0.0001792288130669198 1.117942393436846088e-04 0.00013569785799734456 1.145805009748875411e-04 0.00011615980704210183 1.665430248001372392e-04 0.00012276198311838844 0.00018969202938803596
44 1.000000000000000021e-03 0.001 5.748167682568085593e-04 0.0007353862783344302 3.760827845283660131e-04 0.000575600327192691 2.521953509290719687e-04 0.00037734431522203 1.762964308427695766e-04 0.00025386185296321013 1.320315456257037542e-04 0.00017843784520433673 1.109173072961205789e-04 0.00013490504014296103 1.133086205901110452e-04 0.00011523503783001357 1.638304880953399246e-04 0.00012138115492992521 0.0001865667844236815
45 1.000000000000000021e-03 0.001 5.740166237139158025e-04 0.0007346027258369329 3.751830736799844387e-04 0.0005747835721418604 2.513572749088919958e-04 0.00037642443290667116 1.755213872380331861e-04 0.0002530026346493095 1.312580494760662926e-04 0.000177639416207763 1.100242733780145235e-04 0.0001341012793025371 1.120050977276823334e-04 0.0001142922256260196 1.610268323297459373e-04 0.00011996295037667013 0.00018332302768968173
46 1.000000000000000021e-03 0.001 5.732157063485666254e-04 0.0007338177018431625 3.742836154796483610e-04 0.0005739656376861859 2.505204393147844274e-04 0.00037550439543261463 1.747485543201545441e-04 0.0002521443237629474 1.304881340598568315e-04 0.00017684294734265143 1.091376023135285023e-04 0.00013330094534015117 1.107157077892566201e-04 0.00011335582519792064 1.582698947895536752e-04 0.00011855974750452474 0.00018013280630154984
47 1.000000000000000021e-03 0.001 5.724140197507473007e-04 0.0007330312083387708 3.733844159930685934e-04 0.0005731465277735759 2.496848484812796650e-04 0.000374584210907019 1.739779315547772373e-04 0.00025128692777751636 1.297217884948703216e-04 0.0001760484420635206 1.082572552711356679e-04 0.00013250403238709868 1.094403070125688193e-04 0.00011242580398299235 1.555589173140119988e-04 0.00011717140625198769 0.000176995286763841
48 1.000000000000000021e-03 0.001 5.716133163514535006e-04 0.0007322450716827681 3.724872615728835922e-04 0.0005723280950701311 2.488519667094108378e-04 0.00037366577307640326 1.732106573421359136e-04 0.00025043200586833656 1.289599119326889729e-04 0.00017525712146802507 1.073839886960488172e-04 0.00013171151729665014 1.081795839980315968e-04 0.00011150300328069361 1.528943685588057789e-04 0.00011579873047427355 0.00017391111613739919
49 1.000000000000000021e-03 0.001 5.708135916089464952e-04 0.0007314592892342591 3.715921440481619780e-04 0.0005715103366354928 2.480217821880964816e-04 0.0003727490765712826 1.724467146387093834e-04 0.00024957954955556494 1.282024761936270685e-04 0.0001744689721973381 1.065177436423506841e-04 0.00013092337604814113 1.069333674890963240e-04 0.00011058736861417956 1.502754491507743331e-04 0.00011444154833756723 0.0001708794064250159
50 1.000000000000000021e-03 0.001 5.700148410279018158e-04 0.0007306738583803173 3.706990553358867476e-04 0.0005706932495677312 2.471942832207120249e-04 0.00037183411609277345 1.716860865497342535e-04 0.00024872955044744495 1.274494533371790404e-04 0.00017368398100343736 1.056584617232978574e-04 0.0001301395848004509 1.057014883248694426e-04 0.00010967884595770732 1.477013737020834935e-04 0.00011309968990727626 0.00016789928423747183
51 1.000000000000000021e-03 0.001 5.692170601522963469e-04 0.0007298887765314699 3.698079874222007994e-04 0.0005698768309963597 2.463694581964103098e-04 0.00037092088639398746 1.709287562926333241e-04 0.0002478820002115871 1.267008156164750913e-04 0.00017290213471209804 1.048060850476081559e-04 0.00012936011984533696 1.044837793145218324e-04 0.0001087773816703527 1.451713702741069042e-04 0.00011177298701463364 0.00016496989019036454
52 1.000000000000000021e-03 0.001 5.684221107462931718e-04 0.0007291058850619836 3.689208973051672467e-04 0.0005690629705872476 2.455489480245545849e-04 0.0003700113801847071 1.701760222502850749e-04 0.0002470385774678141 1.259576042689529907e-04 0.00017212477134492983 1.039615052862917467e-04 0.0001285860674779147 1.032810864032787402e-04 0.00010788392632853856 1.426862118551680341e-04 0.00011046237940908493 0.00016209217355659912
53 1.000000000000000021e-03 0.001 5.676299806599446841e-04 0.0007283251776795193 3.680377623533836952e-04 0.0005682516594285885 2.447327238198633678e-04 0.0003691055790623401 1.694278494753442496e-04 0.0002461992575642169 1.252197721019686588e-04 0.00017135185999287266 1.031246414956518974e-04 0.00012781738439880834 1.020932099638295122e-04 0.00010699840217906239 1.402450714512258731e-04 0.00010916766306641233 0.00015926520709064215
54 1.000000000000000021e-03 0.001 5.668406578186927338e-04 0.000727546648123048 3.671585601102087264e-04 0.000567442888658507 2.439207569480618843e-04 0.0003682034647519281 1.686842033525584789e-04 0.00024536401604150686 1.244872724153648453e-04 0.00017058337001160307 1.022954136930148580e-04 0.00012705402771768452 1.009199532576916553e-04 0.00010612073231230378 1.378471380449364540e-04 0.0001078886367084761 0.00015648808062028533
55 1.000000000000000021e-03 0.001 5.660528798623399357e-04 0.0007267691175258129 3.662807588285737852e-04 0.0005666351120658079 2.431092838206291959e-04 0.00036730194585451363 1.679399278621275505e-04 0.00024452825978826814 1.237529841606189703e-04 0.00016981299319253088 1.014631173867882653e-04 0.00012628722374912656 9.974194130068655907e-05 0.00010523753204397677 1.354424501489320950e-04 0.00010660034638564814 0.00015369233245141463
56 1.000000000000000021e-03 0.001 5.652678887062091489e-04 0.0007259937543683618 3.654068578608936813e-04 0.0005658298620581495 2.423020363044335113e-04 0.00036640409142867466 1.672001557892942780e-04 0.00024369656281803695 1.230240193993821724e-04 0.0001690470312136919 1.006384714692423982e-04 0.00012552576286196436 9.857860748076281341e-05 0.00010436224908854787 1.330810886504238974e-04 0.00010532792661952348 0.00015094700928094292
57 1.000000000000000021e-03 0.001 5.644856725120149217e-04 0.0007252205525006216 3.645368352560149003e-04 0.0005650271299429238 2.414989864020476457e-04 0.0003655098835814395 1.664648531857207327e-04 0.0002428689011484816 1.223003320760450115e-04 0.0001682854538881413 9.982139651422967225e-05 0.00012476960247399048 9.742975533494338731e-05 0.00010349480634605481 1.307622432316707048e-04 0.00010407117393308648 0.00014825118806841486
58 1.000000000000000021e-03 0.001 5.637081598516872297e-04 0.0007244515476870691 3.636726247466106157e-04 0.0005642289688561167 2.407016951041400575e-04 0.00036462138604045246 1.657352124900924413e-04 0.00024204694758546622 1.215828418563276393e-04 0.00016752954803985582 9.901263879559620603e-05 0.00012401974721449815 9.629602344691408898e-05 0.00010263603739686231 1.284862679388324466e-04 0.00010283083470852359 0.0001456053538142381
59 1.000000000000000021e-03 0.001 5.629353300793490293e-04 0.0007236867286572494 3.628141892281135789e-04 0.0005634353625294562 2.399101174854294510e-04 0.0003637385663464586 1.650111827309744587e-04 0.00024123066115747858 1.208714852573268089e-04 0.00016677926586679636 9.821209936496322563e-05 0.00012327613591461942 9.517719041742417905e-05 0.00010178584352378332 1.262523213089875105e-04 0.00010160667618634935 0.0001430085413998934
60 1.000000000000000021e-03 0.001 5.621671626935266465e-04 0.0007229260842094953 3.619614919160761232e-04 0.0005626462948017631 2.391242090587739641e-04 0.0003628613922977866 1.642927134849468424e-04 0.00024042000126051454 1.201661995513669139e-04 0.00016603456004153966 9.741968060975319133e-05 0.00012253870808207087 9.407303841474721877e-05 0.0001009441272602465 1.240595794224424390e-04 0.00010039846917127745 0.000140459805170444
61 1.000000000000000021e-03 0.001 5.614036373218869204e-04 0.0007221696032014468 3.611144963064036881e-04 0.000561861749604344 2.383439257149278542e-04 0.00036198983191176377 1.635797548004748762e-04 0.0002396149275989645 1.194669226721670609e-04 0.00016529538363567852 9.663528612429730903e-05 0.00012180740380654271 9.298335293466474341e-05 0.00010011079225737115 1.219072350364201328e-04 9.920598777483068e-05 0.00013795821792425024
62 1.000000000000000021e-03 0.001 5.606463485664969944e-04 0.0007214188723728384 3.602748496609082000e-04 0.00056108334509554 2.375706263435288989e-04 0.0003611255610840681 1.628733614326239394e-04 0.0002388168283348348 1.187744774441648902e-04 0.00016456282140960994 9.585958850070355037e-05 0.00012108307905286178 9.190871230268097864e-05 9.928655238677393e-05 1.197956257524449784e-04 9.802986918413655e-05 0.0001355041849544529
63 1.000000000000000021e-03 0.001 5.598952698555576370e-04 0.0007206738776295639 3.594425038433207622e-04 0.0005603110603628828 2.368042532426757629e-04 0.0003602685373417506 1.621734693226255697e-04 0.00023802565027806571 1.180887870128607769e-04 0.00016383681258690845 9.509247448928166366e-05 0.00012036565891864721 9.084888029067286991e-05 9.847129356381268e-05 1.177239166851852087e-04 9.686986333449523e-05 0.0001330967445342526
64 1.000000000000000021e-03 0.001 5.591503748394264367e-04 0.0007199346049934109 3.586174111937711294e-04 0.0005595448746691314 2.360447493430869353e-04 0.00035941871861020354 1.614800151758654528e-04 0.00023724134078502595 1.174097755299612002e-04 0.00016311729706930416 9.433383251239638840e-05 0.00011965506942237431 8.980362478385646723e-05 9.7664903298557e-05 1.156912913627774928e-04 9.57257243308077e-05 0.00013073495556510661
65 1.000000000000000021e-03 0.001 5.584225591487143505e-04 0.0007192103057281418 3.578196518919505740e-04 0.0005587965882928195 2.353197697834314708e-04 0.000358597914203722 1.608280111225492105e-04 0.00023649404923234267 1.167814916834832538e-04 0.0001624426539507404 9.364209834454310303e-05 0.00011900000933912548 8.886089862139266997e-05 9.693290327537121e-05 1.138670987493162862e-04 9.469853254875163e-05 0.0001286228242214262
66 1.000000000000000021e-03 0.001 5.577008468242452242e-04 0.0007184916860834766 3.570289620106132170e-04 0.000558054333130965 2.346013750077580542e-04 0.0003577841401235257 1.601820316992516276e-04 0.0002357533416394368 1.161592518078891664e-04 0.00016177407584741055 9.295772679954118940e-05 0.00011835110239617177 8.793036528463705852e-05 9.620855295571759e-05 1.120748093307471799e-04 9.368449216343134e-05 0.0001265476735456528
67 1.000000000000000021e-03 0.001 5.569852125454166723e-04 0.000717778732645577 3.562452965139748743e-04 0.0005573180893469085 2.338895121728417183e-04 0.0003569773567342285 1.595420198714332595e-04 0.0002350191694371068 1.155429900504064843e-04 0.0001611115088719043 9.228062559771084612e-05 0.00011770828481211398 8.701184300011380421e-05 9.549176022876216e-05 1.103138112316197746e-04 9.268341301362701e-05 0.00012450880618841231
68 1.000000000000000021e-03 0.001 5.562757163116399499e-04 0.0007170715507844816 3.554686957703368042e-04 0.0005565879566941514 2.331841974232642283e-04 0.0003561776441627035 1.589079715282182140e-04 0.00023429158098135867 1.149326819589807311e-04 0.00016045497378223205 9.161073769793274093e-05 0.00011707155159443024 8.610518609906000706e-05 9.47824835635146e-05 1.085835484715731990e-04 9.169515755193108e-05 0.00012250560759307665
69 1.000000000000000021e-03 0.001 5.555723328562507538e-04 0.0007163701270344053 3.546991150005096983e-04 0.0005558639152622166 2.324853783642831767e-04 0.0003553849627325309 1.582798302759657303e-04 0.00023357052778616886 1.143282626503791007e-04 0.00015980441694230793 9.094797264045832242e-05 0.00011644083951173604 8.521021771090780625e-05 9.408063218207804e-05 1.068834322603653324e-04 9.071953997714039e-05 0.00012053740486430812
70 1.000000000000000021e-03 0.001 5.548750371213563657e-04 0.0007156744480415676 3.539365098621276230e-04 0.0005551459453084167 2.317930031654593444e-04 0.00035459927313802623 1.576575403787569985e-04 0.00023285596185845654 1.137296680667903865e-04 0.00015915978530381373 9.029224125378113518e-05 0.00011581608608941654 8.432676390648500317e-05 9.338611653058621e-05 1.052128860599020399e-04 8.975637744384618e-05 0.00011860353870291344
71 1.000000000000000021e-03 0.001 5.541838042439771635e-04 0.0007149845005557793 3.531808364136874187e-04 0.0005544340272448129 2.311070205067102163e-04 0.0003538205364097734 1.570410466910287454e-04 0.0002321478356456351 1.131368348940622735e-04 0.0001585210263398076 8.964345554504144940e-05 0.00011519722952770958 8.345465350366406993e-05 9.269884816673769e-05 1.035713449503019397e-04 8.880548985453175e-05 0.00011670336266552508
72 1.000000000000000021e-03 0.001 5.534994772986728557e-04 0.0007143011352806332 3.524329474767404734e-04 0.0005537290222260827 2.304281200650363333e-04 0.0003530496254918224 1.564308719194829761e-04 0.00023144685778402562 1.125501566344392631e-04 0.00015788868071804074 8.900191672771989599e-05 0.00011458468167101622 8.259410426967044201e-05 9.20191492389152e-05 1.019587783174918249e-04 8.786712068874325e-05 0.00011483685132763588
73 1.000000000000000021e-03 0.001 5.528220286453137825e-04 0.0007136243377311475 3.516927939956549431e-04 0.0005530309085687206 2.297562446752235638e-04 0.00035228649684153725 1.558269550144645319e-04 0.0002307529751854999 1.119695640249353838e-04 0.00015726269010384348 8.836753049012398612e-05 0.00011397837465469773 8.174493812638424233e-05 9.134692457668887e-05 1.003746189891791522e-04 8.694108196461404e-05 0.00011300335424584403
74 1.000000000000000021e-03 0.001 5.521514308959529988e-04 0.0007129540935643617 3.509603274307335013e-04 0.0005523396647985742 2.290913378267074509e-04 0.000351531107363628 1.552292356754889449e-04 0.0002300661353432777 1.113949887224841186e-04 0.0001566429968410848 8.774020391605217217e-05 0.00011337824146720777 8.090698006040516024e-05 9.06820803490277e-05 9.881831191717569708e-05 8.602718880727694e-05 0.00011120223452206596
75 1.000000000000000021e-03 0.001 5.514925705077818562e-04 0.0007122949300063586 3.502439423799475968e-04 0.0005516609446370161 2.284441610897542578e-04 0.0003507932546232374 1.546502536108915020e-04 0.0002293990178082647 1.108405451476827762e-04 0.00015604454205901748 8.713560862370903280e-05 0.00011280134646728481 8.009669495978734939e-05 9.004396195380538e-05 9.729798207441842409e-05 8.514641523915274e-05 0.00010944396621311202
76 1.000000000000000021e-03 0.001 5.508404954145605355e-04 0.0007116422850379047 3.495351144497065954e-04 0.0005509890404263221 2.278037808073336661e-04 0.00035006301886912226 1.540772565128698055e-04 0.00022873877079420107 1.102918428934658313e-04 0.00015545216193435095 8.653767235071846409e-05 0.00011223032450910806 7.929694151393572473e-05 8.941277122627028e-05 9.580416231533655223e-05 8.427699754143763e-05 0.00010771649233683978
77 1.000000000000000021e-03 0.001 5.501951791779016417e-04 0.0007109961448775265 3.488337972114359704e-04 0.0005503239315436604 2.271701434112839691e-04 0.00034934035900275196 1.535101877933933972e-04 0.00022808534468017605 1.097488185619751536e-04 0.00015486580256638324 8.594630990981442489e-05 0.00011166511373672321 7.850756016455258672e-05 8.878842266662507e-05 9.433633928045583440e-05 8.341876815036907e-05 0.00010601922394974779
78 1.000000000000000021e-03 0.001 5.495566796872157793e-04 0.0007103566138672342 3.481400279377950191e-04 0.0005496657159311855 2.265432624126748171e-04 0.0003486253516297722 1.529490418493457818e-04 0.00022743878433373037 1.092114481281042810e-04 0.00015428548213839886 8.536146896299809861e-05 0.00011110570832676001 7.772842391839215501e-05 8.81708780194749e-05 9.289404738934854406e-05 8.25716070442755e-05 0.00010435164299643007
79 1.000000000000000021e-03 0.001 5.489249706454161527e-04 0.0007097236782517396 3.474537605956091817e-04 0.0005490143729973408 2.259230848255512310e-04 0.0003479179557857281 1.523937628358645337e-04 0.0002267990403962617 1.086796692149487770e-04 0.0001537111471536449 8.478306608188779627e-05 0.00011055204708289399 7.695937762456762194e-05 8.756005313455197e-05 9.147679298288125297e-05 8.173535064610718e-05 0.0001027131817052566
80 1.000000000000000021e-03 0.001 5.483000259883204826e-04 0.0007090973244087274 3.467749496226811058e-04 0.0005483698823458906 2.253095582547179863e-04 0.00034721813091834777 1.518442955755717951e-04 0.000226166064037726 1.081534202533376696e-04 0.00015314274472297157 8.421101904463252675e-05 0.00011000406955950422 7.620026875215024978e-05 8.695586501935841e-05 9.008409282780761526e-05 8.090983803329783e-05 0.00010110328401062253
81 1.000000000000000021e-03 0.001 5.476818198739591458e-04 0.0007084775388425413 3.461035499001802445e-04 0.0005477322237660661 2.247026308546789793e-04 0.0003465258368613831 1.513005855077949086e-04 0.00022553980691704316 1.076326404207925846e-04 0.00015258022251510344 8.364524675486820964e-05 0.00010946171600087524 7.545094724756280888e-05 8.635823175652435e-05 8.871547365198851438e-05 8.00949107862898e-05 9.952140501322636e-05
82 1.000000000000000021e-03 0.001 5.470705529810189179e-04 0.0007078645400735427 3.454397485743721506e-04 0.0005471016129101978 2.241024413587690614e-04 0.0003458412757255009 1.507627254998857578e-04 0.00022492042013778988 1.071173841908876651e-04 0.00015202368335334558 8.308576484396013343e-05 0.00010892504915290583 7.471135773791005180e-05 8.57671759148139e-05 8.737059031219478156e-05 7.929051589048381e-05 9.796715152670613e-05
83 1.000000000000000021e-03 0.001 5.464661991670638182e-04 0.0007072583145347741 3.447835000304132159e-04 0.0005464780293804963 2.235089374295866490e-04 0.00034516440688163317 1.502306605954647535e-04 0.00022430785483116316 1.066075905365267742e-04 0.0001514730744232032 8.253249249775968508e-05 0.00010839400891826328 7.398135232542971769e-05 8.518261565996433e-05 8.604898363826276057e-05 7.84964968569563e-05 9.643999410136803e-05
84 1.000000000000000021e-03 0.001 5.458687325221291348e-04 0.0007066588487940405 3.441347591201103138e-04 0.000545861452976259 2.229220673120790245e-04 0.0003444951901125997 1.497043364932862668e-04 0.00022370206265319418 1.061031992194506256e-04 0.00015092834351042303 8.198535007121052676e-05 0.00010786853593723236 7.326078561528488937e-05 8.460447028623623e-05 8.475020417489323324e-05 7.771269974698105e-05 9.493941424410264e-05
85 1.000000000000000021e-03 0.001 5.452901895090844558e-04 0.0007060768113835355 3.435150570304173014e-04 0.0005452653567881146 2.223706511768525117e-04 0.00034385780916102886 1.492190839480494894e-04 0.0002231355522451839 1.056468106030715887e-04 0.0001504295746545273 8.149737756206330190e-05 0.00010739737531972382 7.262157722718122260e-05 8.409424224945842e-05 8.358877577600780481e-05 7.702434963545377e-05 9.360618912201228e-05
86 1.000000000000000021e-03 0.001 5.447184570616723891e-04 0.0007055014939207988 3.429026954804162766e-04 0.0005446762036784223 2.218256219048080177e-04 0.00034322791998477503 1.487392297472955698e-04 0.0002225755642266546 1.051953246672348403e-04 0.00014993632274793293 8.101471604563164947e-05 0.00010693123855410087 7.199020130947719233e-05 8.358951092264173e-05 8.244600742971828849e-05 7.634435339541097e-05 9.22944227993744e-05
87 1.000000000000000021e-03 0.001 5.441535103689846154e-04 0.0007049328836329239 3.422976319891982578e-04 0.0005440939744776738 2.212869318272295087e-04 0.0003426054850001757 1.482647252612499030e-04 0.00022202205441602206 1.047486894350850925e-04 0.000149448541485554 8.053730000430466094e-05 0.00010647007505716636 7.136654438032706549e-05 8.309021096715739e-05 8.132155926679031160e-05 7.567259318109089e-05 9.100372969350909e-05
88 1.000000000000000021e-03 0.001 5.435909997143165834e-04 0.0007043664108869901 3.416955774702987799e-04 0.0005435140913972429 2.207511658034611989e-04 0.00034198598587466614 1.477929951923679644e-04 0.00022147141590047654 1.043049394866297369e-04 0.00014896349766232102 8.006352324306285982e-05 0.00010601178096740148 7.074908147590525608e-05 8.259459730216135e-05 8.021344078389119761e-05 7.500736724232048e-05 8.973176442333615e-05
89 1.000000000000000021e-03 0.001 5.430309161342643806e-04 0.0007038020712072354 3.410965159927432586e-04 0.0005429365478183962 2.202183050641030458e-04 0.00034136940918446675 1.473240192034464783e-04 0.0002209236320980648 1.038640511149413747e-04 0.00014848117283038098 7.959335168171117276e-05 0.00010555633431743894 7.013774197495506457e-05 8.210263744821714e-05 7.912139691327875046e-05 7.434860458126827e-05 8.847824135377829e-05
90 1.000000000000000021e-03 0.001 5.424732506674768149e-04 0.0007032398600991381 3.405004316631486216e-04 0.0005423613371043419 2.196883309178195964e-04 0.00034075574151016483 1.468577770769967101e-04 0.0002203786864681782 1.034260007962051111e-04 0.00014800154862415601 7.912675157408064104e-05 0.00010510371328265478 6.953245613429904408e-05 8.161429921011451e-05 7.804517686317993341e-05 7.369623501807121e-05 8.724287943554497e-05
91 1.000000000000000021e-03 0.001 5.419179943504857889e-04 0.0007026797730466592 3.399073086151600896e-04 0.0005417884525961108 2.191612247355960430e-04 0.00034014496942632764 1.463942486957527610e-04 0.0002198365624959981 1.029907651665082401e-04 0.00014752460674093983 7.866368947795671801e-05 0.00010465389615779026 6.893315503775990498e-05 8.112955064604149e-05 7.698453395110452940e-05 7.305018913687007e-05 8.602540201539488e-05
92 1.000000000000000021e-03 0.001 5.413629828746738867e-04 0.0007021196874055633 3.393149394667066966e-04 0.0005412157406692665 2.186351838182767991e-04 0.0003395348927353949 1.459320465988429058e-04 0.00021929545761274023 1.025572658029062702e-04 0.00014704895219343257 7.820326658601671303e-05 0.00010420578859113516 6.833895931108436813e-05 8.064746506639534e-05 7.593823716905742757e-05 7.240953347459202e-05 8.482441661675139e-05
93 1.000000000000000021e-03 0.001 5.408082138671730385e-04 0.0007015596012323657 3.387233205925343745e-04 0.0005406431992153213 2.181102035828516778e-04 0.0003389255082691921 1.454711649598321068e-04 0.00021875536780717296 1.021254940975202248e-04 0.00014657457987728414 7.774546638666711494e-05 0.00010375938295149973 6.774982397495531476e-05 8.016802726693694e-05 7.490609035628451105e-05 7.17742234562459e-05 8.363970356449741e-05
94 1.000000000000000021e-03 0.001 5.402536849306272763e-04 0.0007009995125587165 3.381324483351249330e-04 0.0005400708260946051 2.175862794239174624e-04 0.0003383168128172846 1.450115979478540569e-04 0.00021821628903476192 1.016954414669310805e-04 0.00014610148467187763 7.729027246482876178e-05 0.0001033146716169485 6.716570445567967391e-05 7.969122211456026e-05 7.388790009412213962e-05 7.114421486558773e-05 8.247104609297546e-05
95 1.000000000000000021e-03 0.001 5.396844473492076093e-04 0.000700426120570031 3.375153269484326116e-04 0.0005394817717340144 2.170269255797531330e-04 0.00033767827777106695 1.445081577421817903e-04 0.00021763678242090514 1.012119806681102793e-04 0.00014557802543177205 7.676796353167371053e-05 0.00010280805245363877 6.648955946153636300e-05 7.913535785684264e-05 7.272015355307609235e-05 7.040274681183516e-05 8.111172191387726e-05
96 1.000000000000000021e-03 0.001 5.391154759339646064e-04 0.0006998527383823768 3.368990409960971838e-04 0.0005388929110101418 2.164687998325534753e-04 0.0003370405259007354 1.440063199340409466e-04 0.00021705847496470142 1.007307157169936256e-04 0.00014505616500334602 7.624910690660518565e-05 0.00010230367256069614 6.582015362379603355e-05 7.858312049704058e-05 7.157078178685281889e-05 6.966868896041247e-05 7.977423771714316e-05
97 1.174325560395078800e-03 0.0010496228983614124 2.755298774803674553e-03 0.002020602352332682 5.194387759090383395e-03 0.0024834354692445607 9.354521953613973567e-03 0.004712247621156641 1.651171618252517473e-02 0.00854174709233096 2.916966879690554432e-02 0.015197203876184536 5.262163370571950466e-02 0.027142477151470907 9.910396847768351836e-02 0.049749449744480465 2.000000000000000111e-01 0.09589624880110185 0.2
98 4.160571131359890040e-03 0.004235602571438949 8.527170824088577475e-03 0.007336805952289255 1.466969461393815427e-02 0.008714058005603317 2.443642414582058997e-02 0.015024716476258112 3.975038656808106002e-02 0.025061770718850837 6.331729118004528201e-02 0.04079161627542227 9.842489957479945428e-02 0.0649508755581543 1.474045868235714374e-01 0.10074574737193842 2.059999999999999887e-01 0.14993445055894863 0.206

View File

@@ -0,0 +1,224 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15,
"raman_efficiency": {
"cr": [
0.00000000e+00,
1.12351610e-05,
3.47838074e-05,
5.79356636e-05,
8.06921680e-05,
9.79845709e-05,
1.10454361e-04,
1.18735302e-04,
1.24736889e-04,
1.30110053e-04,
1.41001273e-04,
1.46383247e-04,
1.57011792e-04,
1.70765865e-04,
1.88408911e-04,
2.05914127e-04,
2.24074028e-04,
2.47508283e-04,
2.77729174e-04,
3.08044243e-04,
3.34764439e-04,
3.56481704e-04,
3.77127256e-04,
3.96269124e-04,
4.10955175e-04,
4.18718761e-04,
4.19511263e-04,
4.17025384e-04,
4.13565369e-04,
4.07726048e-04,
3.83671291e-04,
4.08564283e-04,
3.69571936e-04,
3.14442090e-04,
2.16074535e-04,
1.23097823e-04,
8.95457457e-05,
7.52470400e-05,
7.19806145e-05,
8.87961158e-05,
9.30812065e-05,
9.37058268e-05,
8.45719619e-05,
6.90585286e-05,
4.50407159e-05,
3.36521245e-05,
3.02292475e-05,
2.69376939e-05,
2.60020897e-05,
2.82958958e-05,
3.08667558e-05,
3.66024657e-05,
5.80610307e-05,
6.54797937e-05,
6.25022715e-05,
5.37806442e-05,
3.94996621e-05,
2.68120644e-05,
2.33038554e-05,
1.79140757e-05,
1.52472424e-05,
1.32707565e-05,
1.06541760e-05,
9.84649374e-06,
9.13999627e-06,
9.08971012e-06,
1.04227525e-05,
1.50419271e-05,
1.77838232e-05,
2.15810815e-05,
2.03744008e-05,
1.81939341e-05,
1.31862121e-05,
9.65352116e-06,
8.62698322e-06,
9.18688016e-06,
1.01737784e-05,
1.08017817e-05,
1.03903588e-05,
9.30040333e-06,
8.30809173e-06,
6.90650401e-06,
5.52238029e-06,
3.90648708e-06,
2.22908227e-06,
1.55796177e-06,
9.77218716e-07,
3.23477236e-07,
1.60602454e-07,
7.97306386e-08
],
"frequency_offset": [
0.0e12,
0.5e12,
1.0e12,
1.5e12,
2.0e12,
2.5e12,
3.0e12,
3.5e12,
4.0e12,
4.5e12,
5.0e12,
5.5e12,
6.0e12,
6.5e12,
7.0e12,
7.5e12,
8.0e12,
8.5e12,
9.0e12,
9.5e12,
10.0e12,
10.5e12,
11.0e12,
11.5e12,
12.0e12,
12.5e12,
12.75e12,
13.0e12,
13.25e12,
13.5e12,
14.0e12,
14.5e12,
14.75e12,
15.0e12,
15.5e12,
16.0e12,
16.5e12,
17.0e12,
17.5e12,
18.0e12,
18.25e12,
18.5e12,
18.75e12,
19.0e12,
19.5e12,
20.0e12,
20.5e12,
21.0e12,
21.5e12,
22.0e12,
22.5e12,
23.0e12,
23.5e12,
24.0e12,
24.5e12,
25.0e12,
25.5e12,
26.0e12,
26.5e12,
27.0e12,
27.5e12,
28.0e12,
28.5e12,
29.0e12,
29.5e12,
30.0e12,
30.5e12,
31.0e12,
31.5e12,
32.0e12,
32.5e12,
33.0e12,
33.5e12,
34.0e12,
34.5e12,
35.0e12,
35.5e12,
36.0e12,
36.5e12,
37.0e12,
37.5e12,
38.0e12,
38.5e12,
39.0e12,
39.5e12,
40.0e12,
40.5e12,
41.0e12,
41.5e12,
42.0e12
]
}
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

View File

@@ -0,0 +1,225 @@
{
"uid": "Span1",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"type_variety": "SSMF",
"dispersion": 0.0000167,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15,
"raman_coefficient": {
"g0": [
0.00000000e+00,
1.12351610e-05,
3.47838074e-05,
5.79356636e-05,
8.06921680e-05,
9.79845709e-05,
1.10454361e-04,
1.18735302e-04,
1.24736889e-04,
1.30110053e-04,
1.41001273e-04,
1.46383247e-04,
1.57011792e-04,
1.70765865e-04,
1.88408911e-04,
2.05914127e-04,
2.24074028e-04,
2.47508283e-04,
2.77729174e-04,
3.08044243e-04,
3.34764439e-04,
3.56481704e-04,
3.77127256e-04,
3.96269124e-04,
4.10955175e-04,
4.18718761e-04,
4.19511263e-04,
4.17025384e-04,
4.13565369e-04,
4.07726048e-04,
3.83671291e-04,
4.08564283e-04,
3.69571936e-04,
3.14442090e-04,
2.16074535e-04,
1.23097823e-04,
8.95457457e-05,
7.52470400e-05,
7.19806145e-05,
8.87961158e-05,
9.30812065e-05,
9.37058268e-05,
8.45719619e-05,
6.90585286e-05,
4.50407159e-05,
3.36521245e-05,
3.02292475e-05,
2.69376939e-05,
2.60020897e-05,
2.82958958e-05,
3.08667558e-05,
3.66024657e-05,
5.80610307e-05,
6.54797937e-05,
6.25022715e-05,
5.37806442e-05,
3.94996621e-05,
2.68120644e-05,
2.33038554e-05,
1.79140757e-05,
1.52472424e-05,
1.32707565e-05,
1.06541760e-05,
9.84649374e-06,
9.13999627e-06,
9.08971012e-06,
1.04227525e-05,
1.50419271e-05,
1.77838232e-05,
2.15810815e-05,
2.03744008e-05,
1.81939341e-05,
1.31862121e-05,
9.65352116e-06,
8.62698322e-06,
9.18688016e-06,
1.01737784e-05,
1.08017817e-05,
1.03903588e-05,
9.30040333e-06,
8.30809173e-06,
6.90650401e-06,
5.52238029e-06,
3.90648708e-06,
2.22908227e-06,
1.55796177e-06,
9.77218716e-07,
3.23477236e-07,
1.60602454e-07,
7.97306386e-08
],
"frequency_offset": [
0.0e12,
0.5e12,
1.0e12,
1.5e12,
2.0e12,
2.5e12,
3.0e12,
3.5e12,
4.0e12,
4.5e12,
5.0e12,
5.5e12,
6.0e12,
6.5e12,
7.0e12,
7.5e12,
8.0e12,
8.5e12,
9.0e12,
9.5e12,
10.0e12,
10.5e12,
11.0e12,
11.5e12,
12.0e12,
12.5e12,
12.75e12,
13.0e12,
13.25e12,
13.5e12,
14.0e12,
14.5e12,
14.75e12,
15.0e12,
15.5e12,
16.0e12,
16.5e12,
17.0e12,
17.5e12,
18.0e12,
18.25e12,
18.5e12,
18.75e12,
19.0e12,
19.5e12,
20.0e12,
20.5e12,
21.0e12,
21.5e12,
22.0e12,
22.5e12,
23.0e12,
23.5e12,
24.0e12,
24.5e12,
25.0e12,
25.5e12,
26.0e12,
26.5e12,
27.0e12,
27.5e12,
28.0e12,
28.5e12,
29.0e12,
29.5e12,
30.0e12,
30.5e12,
31.0e12,
31.5e12,
32.0e12,
32.5e12,
33.0e12,
33.5e12,
34.0e12,
34.5e12,
35.0e12,
35.5e12,
36.0e12,
36.5e12,
37.0e12,
37.5e12,
38.0e12,
38.5e12,
39.0e12,
39.5e12,
40.0e12,
40.5e12,
41.0e12,
41.5e12,
42.0e12
],
"reference_frequency": 206184634112792
}
},
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 224.403e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 231.135e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}

View File

@@ -1,97 +1,97 @@
,Unnamed: 0,signal,ase,nli
0,0,0.00028461768874888705,3.436639817118301e-08,2.1584395398371026e-07
1,1,0.00028211666293476406,3.423996759499589e-08,2.1809245861954257e-07
2,2,0.0002796385058453953,3.411427963331182e-08,2.2028548201656645e-07
3,3,0.0002771829951915728,3.398932824433299e-08,2.224238538437057e-07
4,4,0.00027338904730863836,3.371109366484941e-08,2.2339638015421542e-07
5,5,0.0002696478418176822,3.3435235312069656e-08,2.2430128879557504e-07
6,6,0.00026595862771951147,3.316172589770091e-08,2.2514026889123164e-07
7,7,0.0002623182345801782,3.289051654795761e-08,2.2591288176837496e-07
8,8,0.00025872603823298804,3.262158136113203e-08,2.2662073272007013e-07
9,9,0.0002548422077504841,3.231480491053109e-08,2.269632917207947e-07
10,10,0.0002510150800727548,3.201089350512762e-08,2.2724305184561305e-07
11,11,0.0002472372108596339,3.1709697987730424e-08,2.274556638142854e-07
12,12,0.0002435081184388883,3.1411188710954923e-08,2.2760284870806473e-07
13,13,0.0002398273228957255,3.1115336193393125e-08,2.2768630096746835e-07
14,14,0.00023610099948769217,3.081056270085416e-08,2.27617695956038e-07
15,15,0.00023242489102440902,3.050859262250336e-08,2.274887362838919e-07
16,16,0.00022879847092097078,3.020939430576677e-08,2.273011122655665e-07
17,17,0.00022522143236587835,2.991293825364657e-08,2.27056704831033e-07
18,18,0.00022169324298613107,2.9619193056612953e-08,2.2315585168570266e-07
19,19,0.0002178178461312317,2.9278097616561043e-08,2.189169855906453e-07
20,20,0.0002140033759047069,2.8940600865395135e-08,2.1475128288390263e-07
21,21,0.00021024912752446947,2.8606658136588645e-08,2.1065775386659407e-07
22,22,0.000206554289175574,2.827622313698371e-08,2.0663530613832196e-07
23,23,0.00020291805701626135,2.7949249962519028e-08,2.0268286030011824e-07
24,24,0.00019961589106178864,2.765975998385304e-08,1.9907485701921993e-07
25,25,0.00019636137150032674,2.7373095433009936e-08,1.9552454239910457e-07
26,26,0.0001931539326017224,2.7089223372231097e-08,1.9203113225618846e-07
27,27,0.00018999370973089413,2.68081175642488e-08,1.885945418493717e-07
28,28,0.00018688010986276862,2.6529745205109403e-08,1.8521396370161997e-07
29,29,0.00018381254538966195,2.6254073731438793e-08,1.818885993764317e-07
30,30,0.00018079043504395085,2.5981070886269e-08,1.78617660347401e-07
31,31,0.00017781329518445636,2.5710706310905614e-08,1.7540045799671345e-07
32,32,0.00017488055045064023,2.544294811944895e-08,1.7223621637516225e-07
33,33,0.00017199163096488036,2.5177764647772334e-08,1.691241684952796e-07
34,34,0.00016923198600435235,2.4926164244345613e-08,1.6614800249846462e-07
35,35,0.00016651223518287261,2.4676978561810828e-08,1.632195038378843e-07
36,36,0.00016383188581753214,2.443018036493577e-08,1.6033800467387247e-07
37,37,0.0001611915388800597,2.418575294396746e-08,1.5725354810318075e-07
38,38,0.0001585906555197023,2.394366896238391e-08,1.5422386234766858e-07
39,39,0.00015602870309712287,2.3703901303924173e-08,1.5124806354481474e-07
40,40,0.0001535051551031788,2.3466423066629146e-08,1.4832528036973196e-07
41,41,0.0001510212597387019,2.3231240549132765e-08,1.4545635735033158e-07
42,42,0.00014857641307701306,2.2998325757462813e-08,1.4264034538487909e-07
43,43,0.00014617002011358969,2.276765094680208e-08,1.3987631140917146e-07
44,44,0.00014368188097051016,2.252080862505795e-08,1.3704924606778587e-07
45,45,0.00014123500136325632,2.227648394665253e-08,1.342768563640109e-07
46,46,0.00013882871459443323,2.2034644371118186e-08,1.31558126246417e-07
47,47,0.00013646341840215168,2.1795267893415555e-08,1.2889305332810146e-07
48,48,0.00013413841082142,2.155832207437193e-08,1.2628059500046815e-07
49,49,0.00013185300210097483,2.132377480769977e-08,1.2371972883222934e-07
50,50,0.00012960651423053282,2.1091594291962705e-08,1.2120945193769904e-07
51,51,0.00012739961074346843,2.0861774576065466e-08,1.1875002031242091e-07
52,52,0.00012523156633255863,2.0634283235397628e-08,1.1634039147633555e-07
53,53,0.00012310166960708747,2.0409088189365173e-08,1.1397954484148417e-07
54,54,0.00012096529298347188,2.0178855168888422e-08,1.1162594309222065e-07
55,55,0.00011886718830718708,1.9950983760858723e-08,1.093208043434055e-07
56,56,0.00011680664424128133,1.9725440474060072e-08,1.0695583879566178e-07
57,57,0.00011478396058700633,1.950220202088885e-08,1.0464196732373097e-07
58,58,0.00011279839933843229,1.9281235055452333e-08,1.0237806316789167e-07
59,59,0.00011084923776207272,1.906250658388995e-08,1.0016302524437989e-07
60,60,0.00010893576763351642,1.884598391874928e-08,9.79957771514819e-08
61,61,0.00010705827573621923,1.8631654017664683e-08,9.587614496435341e-08
62,62,0.00010521603014069265,1.8419483867548078e-08,9.380304193213288e-08
63,63,0.00010340831493293095,1.8209440802910146e-08,9.1775407295826e-08
64,64,0.00010178667717264663,1.8029552937387797e-08,8.992671343771878e-08
65,65,0.00010019319833745167,1.7851381317094802e-08,8.811583172055121e-08
66,66,9.86273426809622e-05,1.767490377589294e-08,8.634195328719705e-08
67,67,9.70886230248071e-05,1.7500098774413897e-08,8.460432022445385e-08
68,68,9.557652367577673e-05,1.7326944621204857e-08,8.290215772518696e-08
69,69,9.409053958216297e-05,1.7155419863785074e-08,8.123470846820667e-08
70,70,9.263017577528553e-05,1.698550325493719e-08,7.960123192429599e-08
71,71,9.119540203213482e-05,1.681718296074974e-08,7.800139303615196e-08
72,72,8.978572151582878e-05,1.6650437769918198e-08,7.643446000507212e-08
73,73,8.840064792008674e-05,1.648524670194174e-08,7.489971794966337e-08
74,74,8.704752218385389e-05,1.6323921332107853e-08,7.340306015991841e-08
75,75,8.571782151670807e-05,1.616417166590195e-08,7.228178645083984e-08
76,76,8.441109599127084e-05,1.6005979385519616e-08,7.117988659258102e-08
77,77,8.312693723019766e-05,1.584932678267078e-08,7.009701621983393e-08
78,78,8.186491243372442e-05,1.569419608150936e-08,6.90328103730187e-08
79,79,8.062459786565112e-05,1.554056978222129e-08,6.798691173543069e-08
80,80,7.94055784447779e-05,1.538843064058219e-08,6.695897028871753e-08
81,81,7.820755061857071e-05,1.523776381588298e-08,6.594873006137818e-08
82,82,7.703011159024537e-05,1.5088552513719166e-08,6.495585139392737e-08
83,83,7.587286701386211e-05,1.494078021244127e-08,6.398000175307732e-08
84,84,7.483848702669918e-05,1.481852757489104e-08,6.310775801171533e-08
85,85,7.382059659354297e-05,1.4697575551136038e-08,6.224941913167962e-08
86,86,7.281889798107282e-05,1.4577917663325962e-08,6.140473404853674e-08
87,87,7.183165666349203e-05,1.4459532716368791e-08,6.057224011868445e-08
88,88,7.08586484091438e-05,1.4342415672865158e-08,5.975174825816752e-08
89,89,6.989965271824705e-05,1.422656189652791e-08,5.8943072529944956e-08
90,90,6.895445267562359e-05,1.411196715686287e-08,5.814603001970201e-08
91,91,6.802197391413278e-05,1.3998609279853771e-08,5.735971476442124e-08
92,92,6.710204336793658e-05,1.3886485591019257e-08,5.6583980825863337e-08
93,93,6.619449037899918e-05,1.3775593851234834e-08,5.581868429617485e-08
94,94,6.515268324911003e-05,1.3628882565600955e-08,5.494017759648076e-08
95,95,6.412720169535454e-05,1.3483606920728348e-08,5.407543748332493e-08
signal,ase,nli
0.000325019416624,3.8827360617812335e-08,2.397604591245591e-07
0.0003222815415358,3.8702821151814216e-08,2.4267833614138976e-07
0.0003195661748689,3.8578942925493807e-08,2.455296149641726e-07
0.000316873132879,3.8455721305309324e-08,2.483151861322029e-07
0.0003125687708988,3.815158818797417e-08,2.497308542349044e-07
0.0003083216327341,3.784989647314237e-08,2.5106122773764815e-07
0.0003041309702107,3.755062053762566e-08,2.523083160653813e-07
0.0002999931829076,3.725370771318225e-08,2.534716728592015e-07
0.0002959076621852,3.695913382975532e-08,2.545532047834699e-07
0.0002914749637887,3.6620413511505286e-08,2.5520557429118934e-07
0.0002871045786391,3.62847038107824e-08,2.557776344401253e-07
0.0002827879891071,3.5951828869209396e-08,2.5626453052593257e-07
0.0002785247470154,3.562176113110911e-08,2.5666832208790035e-07
0.0002743144039041,3.5294473123494e-08,2.569910409348857e-07
0.000270032675166,3.4954880805048256e-08,2.571167784361306e-07
0.0002658067200554,3.4618272391047544e-08,2.571652788509227e-07
0.000261636025157,3.428461757057609e-08,2.5713860104931033e-07
0.00025752034599,3.395388872366444e-08,2.570390408700655e-07
0.000253459157096,3.362605558722993e-08,2.5284986247287787e-07
0.000248983782073,3.3242702224575744e-08,2.48252059976888e-07
0.0002445773493265,3.286328176612301e-08,2.437277481862015e-07
0.0002402391773459,3.2487750441670215e-08,2.392761376865807e-07
0.0002359684123723,3.2116061418127753e-08,2.3489626905665574e-07
0.0002317642070805,3.174816817069829e-08,2.3058719110264335e-07
0.0002279695550926,3.1424928539548144e-08,2.2668986526609113e-07
0.0002242281358436,3.1104729317697146e-08,2.228495045304229e-07
0.0002205393783222,3.078753835343166e-08,2.190654562751529e-07
0.0002169035545525,3.047333197100547e-08,2.1533790605165431e-07
0.0002133200561122,3.01620779209974e-08,2.1166616520930645e-07
0.0002097882786443,2.9853744125792176e-08,2.080495504306458e-07
0.0002063076230434,2.9548298767727423e-08,2.0448738489666716e-07
0.0002028776374913,2.9245712991289203e-08,2.009791389793126e-07
0.0001994977236946,2.8945955168147914e-08,1.975241389908885e-07
0.0001961672877059,2.8648993828553545e-08,1.9412171682473827e-07
0.0001929967738963,2.8368195292008612e-08,1.9088102669437356e-07
0.0001898709450753,2.8090002575266257e-08,1.8768789971552863e-07
0.0001867892958482,2.7814389032455363e-08,1.8454176486632323e-07
0.000183752636707,2.754134148447891e-08,1.8115002092564538e-07
0.0001807604032471,2.7270832946920812e-08,1.7781492252546064e-07
0.0001778120365192,2.7002836607760232e-08,1.745356369687972e-07
0.0001749069829579,2.673732582084065e-08,1.7131134159682263e-07
0.0001720467771106,2.6474316260529432e-08,1.6814325920632144e-07
0.0001692307716138,2.6213779758633963e-08,1.6503047175593728e-07
0.0001664583277393,2.5955688359138642e-08,1.619720751255672e-07
0.0001635796256227,2.5677295228672648e-08,1.588223280583729e-07
0.0001607481963598,2.540169810843596e-08,1.557306487644946e-07
0.0001579633073114,2.512886316325068e-08,1.526960267832303e-07
0.0001552255108883,2.4858770138402143e-08,1.4971869736122287e-07
0.000152534027681,2.4591385101783997e-08,1.467976093017761e-07
0.0001498880910245,2.432667443532368e-08,1.439317302908228e-07
0.0001472869464661,2.4064604800471338e-08,1.411200462508912e-07
0.0001447314108795,2.3805175801260087e-08,1.3836305172259211e-07
0.0001422206714078,2.3548353146553164e-08,1.3565967973526553e-07
0.0001397539300508,2.3294102880186107e-08,1.3300888438790536e-07
0.0001372700286953,2.3032485432340423e-08,1.3035230831596558e-07
0.0001348306664569,2.2773547798807564e-08,1.277485195296911e-07
0.0001324350333325,2.2517253805739807e-08,1.2505815113074245e-07
0.0001300835425363,2.2263580536243144e-08,1.2242454150816991e-07
0.0001277753479236,2.2012491805819457e-08,1.1984647647989558e-07
0.0001255096202792,2.1763951788812352e-08,1.1732276843747534e-07
0.0001232855464269,2.1517924960982367e-08,1.148522552473446e-07
0.0001211034718808,2.1274400813402842e-08,1.1243486085670634e-07
0.0001189625537742,2.1033343271785093e-08,1.100694052812587e-07
0.0001168619671686,2.0794716623616593e-08,1.0775473577456182e-07
0.0001149842862687,2.0591381044652174e-08,1.056582342233035e-07
0.0001131392424142,2.038998454906055e-08,1.0360354473279054e-07
0.0001113262252932,2.0190503422606346e-08,1.0158979943539652e-07
0.0001095446965516,1.9992914861970927e-08,9.961620365200192e-08
0.0001077940670993,1.9797195630879305e-08,9.768192356581421e-08
0.0001060737596438,1.9603322741072024e-08,9.578614349620901e-08
0.0001043832080373,1.9411273409584944e-08,9.392806512410292e-08
0.0001027223865858,1.922103688152168e-08,9.210738192714242e-08
0.0001010907257366,1.9032590330084783e-08,9.032330177845482e-08
9.948766769187398e-05,1.8845911172333032e-08,8.857505025129074e-08
9.792267601599324e-05,1.8663442661346744e-08,8.687075031773093e-08
9.638489299064336e-05,1.848276820506329e-08,8.550652733411691e-08
9.48738026587305e-05,1.830386814585904e-08,8.416598440502352e-08
9.338895072626004e-05,1.8126723701740663e-08,8.284871850980459e-08
9.192983962632808e-05,1.7951315790883015e-08,8.155428823884958e-08
9.049598195913348e-05,1.7777625631449783e-08,8.028226120215297e-08
8.908690001727453e-05,1.7605634715742614e-08,7.903221360818749e-08
8.77022482135352e-05,1.743532764682425e-08,7.780383887402493e-08
8.634156228069215e-05,1.7266686393258476e-08,7.659672513140668e-08
8.50043874741986e-05,1.7099693224424935e-08,7.541046895998541e-08
8.381694660770028e-05,1.6962933489525264e-08,7.43570471865261e-08
8.26484651987276e-05,1.682764479561346e-08,7.33204450340972e-08
8.149860566615124e-05,1.6693821025332528e-08,7.230036302225977e-08
8.036532369463753e-05,1.6561436760581683e-08,7.129498756488483e-08
7.924836834130927e-05,1.6430487594212236e-08,7.030409604146297e-08
7.814749266035204e-05,1.6300969571299207e-08,6.932746937742372e-08
7.706245353522453e-05,1.6172879193985398e-08,6.836489189528336e-08
7.599203524832233e-05,1.6046190191322708e-08,6.741528508795074e-08
7.493604414299442e-05,1.5920900877281144e-08,6.647847715560108e-08
7.389428911314724e-05,1.57970100612018e-08,6.555429856110159e-08
7.268136514077581e-05,1.5628904744452727e-08,6.447826980203191e-08
7.148784598320314e-05,1.5462487634551132e-08,6.341945575654982e-08
1 signal Unnamed: 0 ase nli
2 0 0.00028461768874888705 0.000325019416624 0 3.436639817118301e-08 3.8827360617812335e-08 2.1584395398371026e-07 2.397604591245591e-07
3 1 0.00028211666293476406 0.0003222815415358 1 3.423996759499589e-08 3.8702821151814216e-08 2.1809245861954257e-07 2.4267833614138976e-07
4 2 0.0002796385058453953 0.0003195661748689 2 3.411427963331182e-08 3.8578942925493807e-08 2.2028548201656645e-07 2.455296149641726e-07
5 3 0.0002771829951915728 0.000316873132879 3 3.398932824433299e-08 3.8455721305309324e-08 2.224238538437057e-07 2.483151861322029e-07
6 4 0.00027338904730863836 0.0003125687708988 4 3.371109366484941e-08 3.815158818797417e-08 2.2339638015421542e-07 2.497308542349044e-07
7 5 0.0002696478418176822 0.0003083216327341 5 3.3435235312069656e-08 3.784989647314237e-08 2.2430128879557504e-07 2.5106122773764815e-07
8 6 0.00026595862771951147 0.0003041309702107 6 3.316172589770091e-08 3.755062053762566e-08 2.2514026889123164e-07 2.523083160653813e-07
9 7 0.0002623182345801782 0.0002999931829076 7 3.289051654795761e-08 3.725370771318225e-08 2.2591288176837496e-07 2.534716728592015e-07
10 8 0.00025872603823298804 0.0002959076621852 8 3.262158136113203e-08 3.695913382975532e-08 2.2662073272007013e-07 2.545532047834699e-07
11 9 0.0002548422077504841 0.0002914749637887 9 3.231480491053109e-08 3.6620413511505286e-08 2.269632917207947e-07 2.5520557429118934e-07
12 10 0.0002510150800727548 0.0002871045786391 10 3.201089350512762e-08 3.62847038107824e-08 2.2724305184561305e-07 2.557776344401253e-07
13 11 0.0002472372108596339 0.0002827879891071 11 3.1709697987730424e-08 3.5951828869209396e-08 2.274556638142854e-07 2.5626453052593257e-07
14 12 0.0002435081184388883 0.0002785247470154 12 3.1411188710954923e-08 3.562176113110911e-08 2.2760284870806473e-07 2.5666832208790035e-07
15 13 0.0002398273228957255 0.0002743144039041 13 3.1115336193393125e-08 3.5294473123494e-08 2.2768630096746835e-07 2.569910409348857e-07
16 14 0.00023610099948769217 0.000270032675166 14 3.081056270085416e-08 3.4954880805048256e-08 2.27617695956038e-07 2.571167784361306e-07
17 15 0.00023242489102440902 0.0002658067200554 15 3.050859262250336e-08 3.4618272391047544e-08 2.274887362838919e-07 2.571652788509227e-07
18 16 0.00022879847092097078 0.000261636025157 16 3.020939430576677e-08 3.428461757057609e-08 2.273011122655665e-07 2.5713860104931033e-07
19 17 0.00022522143236587835 0.00025752034599 17 2.991293825364657e-08 3.395388872366444e-08 2.27056704831033e-07 2.570390408700655e-07
20 18 0.00022169324298613107 0.000253459157096 18 2.9619193056612953e-08 3.362605558722993e-08 2.2315585168570266e-07 2.5284986247287787e-07
21 19 0.0002178178461312317 0.000248983782073 19 2.9278097616561043e-08 3.3242702224575744e-08 2.189169855906453e-07 2.48252059976888e-07
22 20 0.0002140033759047069 0.0002445773493265 20 2.8940600865395135e-08 3.286328176612301e-08 2.1475128288390263e-07 2.437277481862015e-07
23 21 0.00021024912752446947 0.0002402391773459 21 2.8606658136588645e-08 3.2487750441670215e-08 2.1065775386659407e-07 2.392761376865807e-07
24 22 0.000206554289175574 0.0002359684123723 22 2.827622313698371e-08 3.2116061418127753e-08 2.0663530613832196e-07 2.3489626905665574e-07
25 23 0.00020291805701626135 0.0002317642070805 23 2.7949249962519028e-08 3.174816817069829e-08 2.0268286030011824e-07 2.3058719110264335e-07
26 24 0.00019961589106178864 0.0002279695550926 24 2.765975998385304e-08 3.1424928539548144e-08 1.9907485701921993e-07 2.2668986526609113e-07
27 25 0.00019636137150032674 0.0002242281358436 25 2.7373095433009936e-08 3.1104729317697146e-08 1.9552454239910457e-07 2.228495045304229e-07
28 26 0.0001931539326017224 0.0002205393783222 26 2.7089223372231097e-08 3.078753835343166e-08 1.9203113225618846e-07 2.190654562751529e-07
29 27 0.00018999370973089413 0.0002169035545525 27 2.68081175642488e-08 3.047333197100547e-08 1.885945418493717e-07 2.1533790605165431e-07
30 28 0.00018688010986276862 0.0002133200561122 28 2.6529745205109403e-08 3.01620779209974e-08 1.8521396370161997e-07 2.1166616520930645e-07
31 29 0.00018381254538966195 0.0002097882786443 29 2.6254073731438793e-08 2.9853744125792176e-08 1.818885993764317e-07 2.080495504306458e-07
32 30 0.00018079043504395085 0.0002063076230434 30 2.5981070886269e-08 2.9548298767727423e-08 1.78617660347401e-07 2.0448738489666716e-07
33 31 0.00017781329518445636 0.0002028776374913 31 2.5710706310905614e-08 2.9245712991289203e-08 1.7540045799671345e-07 2.009791389793126e-07
34 32 0.00017488055045064023 0.0001994977236946 32 2.544294811944895e-08 2.8945955168147914e-08 1.7223621637516225e-07 1.975241389908885e-07
35 33 0.00017199163096488036 0.0001961672877059 33 2.5177764647772334e-08 2.8648993828553545e-08 1.691241684952796e-07 1.9412171682473827e-07
36 34 0.00016923198600435235 0.0001929967738963 34 2.4926164244345613e-08 2.8368195292008612e-08 1.6614800249846462e-07 1.9088102669437356e-07
37 35 0.00016651223518287261 0.0001898709450753 35 2.4676978561810828e-08 2.8090002575266257e-08 1.632195038378843e-07 1.8768789971552863e-07
38 36 0.00016383188581753214 0.0001867892958482 36 2.443018036493577e-08 2.7814389032455363e-08 1.6033800467387247e-07 1.8454176486632323e-07
39 37 0.0001611915388800597 0.000183752636707 37 2.418575294396746e-08 2.754134148447891e-08 1.5725354810318075e-07 1.8115002092564538e-07
40 38 0.0001585906555197023 0.0001807604032471 38 2.394366896238391e-08 2.7270832946920812e-08 1.5422386234766858e-07 1.7781492252546064e-07
41 39 0.00015602870309712287 0.0001778120365192 39 2.3703901303924173e-08 2.7002836607760232e-08 1.5124806354481474e-07 1.745356369687972e-07
42 40 0.0001535051551031788 0.0001749069829579 40 2.3466423066629146e-08 2.673732582084065e-08 1.4832528036973196e-07 1.7131134159682263e-07
43 41 0.0001510212597387019 0.0001720467771106 41 2.3231240549132765e-08 2.6474316260529432e-08 1.4545635735033158e-07 1.6814325920632144e-07
44 42 0.00014857641307701306 0.0001692307716138 42 2.2998325757462813e-08 2.6213779758633963e-08 1.4264034538487909e-07 1.6503047175593728e-07
45 43 0.00014617002011358969 0.0001664583277393 43 2.276765094680208e-08 2.5955688359138642e-08 1.3987631140917146e-07 1.619720751255672e-07
46 44 0.00014368188097051016 0.0001635796256227 44 2.252080862505795e-08 2.5677295228672648e-08 1.3704924606778587e-07 1.588223280583729e-07
47 45 0.00014123500136325632 0.0001607481963598 45 2.227648394665253e-08 2.540169810843596e-08 1.342768563640109e-07 1.557306487644946e-07
48 46 0.00013882871459443323 0.0001579633073114 46 2.2034644371118186e-08 2.512886316325068e-08 1.31558126246417e-07 1.526960267832303e-07
49 47 0.00013646341840215168 0.0001552255108883 47 2.1795267893415555e-08 2.4858770138402143e-08 1.2889305332810146e-07 1.4971869736122287e-07
50 48 0.00013413841082142 0.000152534027681 48 2.155832207437193e-08 2.4591385101783997e-08 1.2628059500046815e-07 1.467976093017761e-07
51 49 0.00013185300210097483 0.0001498880910245 49 2.132377480769977e-08 2.432667443532368e-08 1.2371972883222934e-07 1.439317302908228e-07
52 50 0.00012960651423053282 0.0001472869464661 50 2.1091594291962705e-08 2.4064604800471338e-08 1.2120945193769904e-07 1.411200462508912e-07
53 51 0.00012739961074346843 0.0001447314108795 51 2.0861774576065466e-08 2.3805175801260087e-08 1.1875002031242091e-07 1.3836305172259211e-07
54 52 0.00012523156633255863 0.0001422206714078 52 2.0634283235397628e-08 2.3548353146553164e-08 1.1634039147633555e-07 1.3565967973526553e-07
55 53 0.00012310166960708747 0.0001397539300508 53 2.0409088189365173e-08 2.3294102880186107e-08 1.1397954484148417e-07 1.3300888438790536e-07
56 54 0.00012096529298347188 0.0001372700286953 54 2.0178855168888422e-08 2.3032485432340423e-08 1.1162594309222065e-07 1.3035230831596558e-07
57 55 0.00011886718830718708 0.0001348306664569 55 1.9950983760858723e-08 2.2773547798807564e-08 1.093208043434055e-07 1.277485195296911e-07
58 56 0.00011680664424128133 0.0001324350333325 56 1.9725440474060072e-08 2.2517253805739807e-08 1.0695583879566178e-07 1.2505815113074245e-07
59 57 0.00011478396058700633 0.0001300835425363 57 1.950220202088885e-08 2.2263580536243144e-08 1.0464196732373097e-07 1.2242454150816991e-07
60 58 0.00011279839933843229 0.0001277753479236 58 1.9281235055452333e-08 2.2012491805819457e-08 1.0237806316789167e-07 1.1984647647989558e-07
61 59 0.00011084923776207272 0.0001255096202792 59 1.906250658388995e-08 2.1763951788812352e-08 1.0016302524437989e-07 1.1732276843747534e-07
62 60 0.00010893576763351642 0.0001232855464269 60 1.884598391874928e-08 2.1517924960982367e-08 9.79957771514819e-08 1.148522552473446e-07
63 61 0.00010705827573621923 0.0001211034718808 61 1.8631654017664683e-08 2.1274400813402842e-08 9.587614496435341e-08 1.1243486085670634e-07
64 62 0.00010521603014069265 0.0001189625537742 62 1.8419483867548078e-08 2.1033343271785093e-08 9.380304193213288e-08 1.100694052812587e-07
65 63 0.00010340831493293095 0.0001168619671686 63 1.8209440802910146e-08 2.0794716623616593e-08 9.1775407295826e-08 1.0775473577456182e-07
66 64 0.00010178667717264663 0.0001149842862687 64 1.8029552937387797e-08 2.0591381044652174e-08 8.992671343771878e-08 1.056582342233035e-07
67 65 0.00010019319833745167 0.0001131392424142 65 1.7851381317094802e-08 2.038998454906055e-08 8.811583172055121e-08 1.0360354473279054e-07
68 66 9.86273426809622e-05 0.0001113262252932 66 1.767490377589294e-08 2.0190503422606346e-08 8.634195328719705e-08 1.0158979943539652e-07
69 67 9.70886230248071e-05 0.0001095446965516 67 1.7500098774413897e-08 1.9992914861970927e-08 8.460432022445385e-08 9.961620365200192e-08
70 68 9.557652367577673e-05 0.0001077940670993 68 1.7326944621204857e-08 1.9797195630879305e-08 8.290215772518696e-08 9.768192356581421e-08
71 69 9.409053958216297e-05 0.0001060737596438 69 1.7155419863785074e-08 1.9603322741072024e-08 8.123470846820667e-08 9.578614349620901e-08
72 70 9.263017577528553e-05 0.0001043832080373 70 1.698550325493719e-08 1.9411273409584944e-08 7.960123192429599e-08 9.392806512410292e-08
73 71 9.119540203213482e-05 0.0001027223865858 71 1.681718296074974e-08 1.922103688152168e-08 7.800139303615196e-08 9.210738192714242e-08
74 72 8.978572151582878e-05 0.0001010907257366 72 1.6650437769918198e-08 1.9032590330084783e-08 7.643446000507212e-08 9.032330177845482e-08
75 73 8.840064792008674e-05 9.948766769187398e-05 73 1.648524670194174e-08 1.8845911172333032e-08 7.489971794966337e-08 8.857505025129074e-08
76 74 8.704752218385389e-05 9.792267601599324e-05 74 1.6323921332107853e-08 1.8663442661346744e-08 7.340306015991841e-08 8.687075031773093e-08
77 75 8.571782151670807e-05 9.638489299064336e-05 75 1.616417166590195e-08 1.848276820506329e-08 7.228178645083984e-08 8.550652733411691e-08
78 76 8.441109599127084e-05 9.48738026587305e-05 76 1.6005979385519616e-08 1.830386814585904e-08 7.117988659258102e-08 8.416598440502352e-08
79 77 8.312693723019766e-05 9.338895072626004e-05 77 1.584932678267078e-08 1.8126723701740663e-08 7.009701621983393e-08 8.284871850980459e-08
80 78 8.186491243372442e-05 9.192983962632808e-05 78 1.569419608150936e-08 1.7951315790883015e-08 6.90328103730187e-08 8.155428823884958e-08
81 79 8.062459786565112e-05 9.049598195913348e-05 79 1.554056978222129e-08 1.7777625631449783e-08 6.798691173543069e-08 8.028226120215297e-08
82 80 7.94055784447779e-05 8.908690001727453e-05 80 1.538843064058219e-08 1.7605634715742614e-08 6.695897028871753e-08 7.903221360818749e-08
83 81 7.820755061857071e-05 8.77022482135352e-05 81 1.523776381588298e-08 1.743532764682425e-08 6.594873006137818e-08 7.780383887402493e-08
84 82 7.703011159024537e-05 8.634156228069215e-05 82 1.5088552513719166e-08 1.7266686393258476e-08 6.495585139392737e-08 7.659672513140668e-08
85 83 7.587286701386211e-05 8.50043874741986e-05 83 1.494078021244127e-08 1.7099693224424935e-08 6.398000175307732e-08 7.541046895998541e-08
86 84 7.483848702669918e-05 8.381694660770028e-05 84 1.481852757489104e-08 1.6962933489525264e-08 6.310775801171533e-08 7.43570471865261e-08
87 85 7.382059659354297e-05 8.26484651987276e-05 85 1.4697575551136038e-08 1.682764479561346e-08 6.224941913167962e-08 7.33204450340972e-08
88 86 7.281889798107282e-05 8.149860566615124e-05 86 1.4577917663325962e-08 1.6693821025332528e-08 6.140473404853674e-08 7.230036302225977e-08
89 87 7.183165666349203e-05 8.036532369463753e-05 87 1.4459532716368791e-08 1.6561436760581683e-08 6.057224011868445e-08 7.129498756488483e-08
90 88 7.08586484091438e-05 7.924836834130927e-05 88 1.4342415672865158e-08 1.6430487594212236e-08 5.975174825816752e-08 7.030409604146297e-08
91 89 6.989965271824705e-05 7.814749266035204e-05 89 1.422656189652791e-08 1.6300969571299207e-08 5.8943072529944956e-08 6.932746937742372e-08
92 90 6.895445267562359e-05 7.706245353522453e-05 90 1.411196715686287e-08 1.6172879193985398e-08 5.814603001970201e-08 6.836489189528336e-08
93 91 6.802197391413278e-05 7.599203524832233e-05 91 1.3998609279853771e-08 1.6046190191322708e-08 5.735971476442124e-08 6.741528508795074e-08
94 92 6.710204336793658e-05 7.493604414299442e-05 92 1.3886485591019257e-08 1.5920900877281144e-08 5.6583980825863337e-08 6.647847715560108e-08
95 93 6.619449037899918e-05 7.389428911314724e-05 93 1.3775593851234834e-08 1.57970100612018e-08 5.581868429617485e-08 6.555429856110159e-08
96 94 6.515268324911003e-05 7.268136514077581e-05 94 1.3628882565600955e-08 1.5628904744452727e-08 5.494017759648076e-08 6.447826980203191e-08
97 95 6.412720169535454e-05 7.148784598320314e-05 95 1.3483606920728348e-08 1.5462487634551132e-08 5.407543748332493e-08 6.341945575654982e-08

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_service.xlsx Executable file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_topo_eqpt.xlsx Executable file

Binary file not shown.

BIN
tests/data/wrong_topo_link.xlsx Executable file

Binary file not shown.

Binary file not shown.

BIN
tests/data/wrong_topo_node.xlsx Executable file

Binary file not shown.

View File

@@ -0,0 +1,37 @@
INFO gnpy.tools.cli_examples:cli_examples.py Computing path requests meshTopologyExampleV2.xls into JSON format
INFO gnpy.tools.json_io:json_io.py Automatically converting requests from XLS to JSON
INFO gnpy.topology.request:request.py
request 0
Computing path from trx Lorient_KMA to trx Vannes_KBE
with path constraint: ['trx Lorient_KMA', 'trx Vannes_KBE']
Computed path (roadms):['roadm Lorient_KMA', 'roadm Vannes_KBE']
INFO gnpy.topology.request:request.py
request 1
Computing path from trx Brest_KLA to trx Vannes_KBE
with path constraint: ['trx Brest_KLA', 'roadm Brest_KLA', 'roadm Lannion_CAS', 'roadm Lorient_KMA', 'roadm Vannes_KBE', 'trx Vannes_KBE']
Computed path (roadms):['roadm Brest_KLA', 'roadm Lannion_CAS', 'roadm Lorient_KMA', 'roadm Vannes_KBE']
INFO gnpy.topology.request:request.py
request 3
Computing path from trx Lannion_CAS to trx Rennes_STA
with path constraint: ['trx Lannion_CAS', 'trx Rennes_STA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Rennes_STA']
INFO gnpy.topology.request:request.py
request 4
Computing path from trx Rennes_STA to trx Lannion_CAS
with path constraint: ['trx Rennes_STA', 'trx Lannion_CAS']
Computed path (roadms):['roadm Rennes_STA', 'roadm Vannes_KBE', 'roadm Lorient_KMA', 'roadm Lannion_CAS']
INFO gnpy.topology.request:request.py
request 5
Computing path from trx Rennes_STA to trx Lannion_CAS
with path constraint: ['trx Rennes_STA', 'trx Lannion_CAS']
Computed path (roadms):['roadm Rennes_STA', 'roadm Lannion_CAS']
INFO gnpy.topology.request:request.py
request 7 | 6
Computing path from trx Lannion_CAS to trx Lorient_KMA
with path constraint: ['trx Lannion_CAS', 'trx Lorient_KMA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Lorient_KMA']
INFO gnpy.topology.request:request.py
request 7b
Computing path from trx Lannion_CAS to trx Lorient_KMA
with path constraint: ['trx Lannion_CAS', 'trx Lorient_KMA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Lorient_KMA']

View File

@@ -0,0 +1,13 @@
INFO gnpy.tools.cli_examples:cli_examples.py Computing path requests CORONET_services.json into JSON format
INFO gnpy.topology.request:request.py
request 0
Computing path from trx Abilene to trx Albany
with path constraint: ['trx Abilene', 'trx Albany']
Computed path (roadms):['roadm Abilene', 'roadm Dallas', 'roadm Little_Rock', 'roadm Memphis', 'roadm Nashville', 'roadm Louisville', 'roadm Cincinnati', 'roadm Columbus', 'roadm Cleveland', 'roadm Buffalo', 'roadm Rochester', 'roadm Syracuse', 'roadm Albany']
WARNING gnpy.topology.request:request.py Warning! Request 0 computed path from trx Abilene to trx Albany does not pass with mode 3
computed SNR in 0.1nm = 14.44
PDL penalty not evaluated
CD penalty not evaluated
PMD penalty not evaluated
required osnr = 18
system margin = 2

View File

@@ -0,0 +1,307 @@
INFO gnpy.tools.cli_examples:cli_examples.py source = 'lannion'
INFO gnpy.tools.cli_examples:cli_examples.py destination = 'lorient'
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Lannion_CAS to Stbrieuc
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 23.0dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Lannion_CAS to Morlaix
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 23.5dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node west edfa in Lannion_CAS to Corlay
is above user specified amplifier test
max flat gain: 25dB ; required gain: 29.82dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Brest_KLA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Ploermel to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Stbrieuc to Rennes_STA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lannion_CAS to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: effective gain in Node east edfa in Brest_KLA to Quimper
is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 23.0dB. Please check amplifier type.
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node east edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING gnpy.core.network:network.py
WARNING: target gain and power in node west edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied

View File

@@ -15,6 +15,7 @@ Transceiver trx_Stockholm
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Roadm roadm_Stockholm
effective loss (dB): 22.00
reference pch out (dBm): -20.00
@@ -64,7 +65,7 @@ Fiber fiber (Stockholm → Norrköping)_(2/2)
(includes conn loss (dB) in: 0.00 out: 0.00)
(conn loss out includes EOL margin defined in eqpt_config.json)
reference pch out (dBm): -14.33
actual pch out (dBm): -14.30
actual pch out (dBm): -14.29
Edfa Edfa_preamp_roadm_Norrköping_from_fiber (Stockholm → Norrköping)_(2/2)
type_variety: openroadm_mw_mw_preamp
effective gain(dB): 16.33
@@ -248,16 +249,17 @@ Roadm roadm_Gothenburg
reference pch out (dBm): -20.00
actual pch out (dBm): -20.00
Transceiver trx_Gothenburg
GSNR (0.1nm, dB): 18.90
GSNR (signal bw, dB): 14.88
GSNR (0.1nm, dB): 18.89
GSNR (signal bw, dB): 14.86
OSNR ASE (0.1nm, dB): 21.20
OSNR ASE (signal bw, dB): 17.18
CD (ps/nm): 8350.42
PMD (ps): 7.99
PDL (dB): 3.74
Latency (ms): 2.45
Transmission result for input power = 2.00 dBm:
Final GSNR (0.1 nm): 18.90 dB
Final GSNR (0.1 nm): 18.89 dB
(No source node specified: picked trx_Stockholm)

View File

@@ -15,6 +15,7 @@ Transceiver trx_Stockholm
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Roadm roadm_Stockholm
effective loss (dB): 22.00
reference pch out (dBm): -20.00
@@ -64,7 +65,7 @@ Fiber fiber (Stockholm → Norrköping)_(2/2)
(includes conn loss (dB) in: 0.00 out: 0.00)
(conn loss out includes EOL margin defined in eqpt_config.json)
reference pch out (dBm): -14.33
actual pch out (dBm): -14.30
actual pch out (dBm): -14.29
Edfa Edfa_preamp_roadm_Norrköping_from_fiber (Stockholm → Norrköping)_(2/2)
type_variety: openroadm_mw_mw_preamp_worstcase_ver5
effective gain(dB): 16.33
@@ -248,16 +249,17 @@ Roadm roadm_Gothenburg
reference pch out (dBm): -20.00
actual pch out (dBm): -20.00
Transceiver trx_Gothenburg
GSNR (0.1nm, dB): 19.27
GSNR (signal bw, dB): 15.24
GSNR (0.1nm, dB): 19.25
GSNR (signal bw, dB): 15.23
OSNR ASE (0.1nm, dB): 21.84
OSNR ASE (signal bw, dB): 17.82
CD (ps/nm): 8350.42
PMD (ps): 7.99
PDL (dB): 3.74
Latency (ms): 2.45
Transmission result for input power = 2.00 dBm:
Final GSNR (0.1 nm): 19.27 dB
Final GSNR (0.1 nm): 19.25 dB
(No source node specified: picked trx_Stockholm)

View File

@@ -106,48 +106,13 @@
]
Computing all paths with constraints
Propagating on selected path
request 0
Computing path from trx Lorient_KMA to trx Vannes_KBE
with path constraint: ['trx Lorient_KMA', 'trx Vannes_KBE']
Computed path (roadms):['roadm Lorient_KMA', 'roadm Vannes_KBE']
request 1
Computing path from trx Brest_KLA to trx Vannes_KBE
with path constraint: ['trx Brest_KLA', 'roadm Brest_KLA', 'roadm Lannion_CAS', 'roadm Lorient_KMA', 'roadm Vannes_KBE', 'trx Vannes_KBE']
Computed path (roadms):['roadm Brest_KLA', 'roadm Lannion_CAS', 'roadm Lorient_KMA', 'roadm Vannes_KBE']
request 3
Computing path from trx Lannion_CAS to trx Rennes_STA
with path constraint: ['trx Lannion_CAS', 'trx Rennes_STA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Rennes_STA']
request 4
Computing path from trx Rennes_STA to trx Lannion_CAS
with path constraint: ['trx Rennes_STA', 'trx Lannion_CAS']
Computed path (roadms):['roadm Rennes_STA', 'roadm Vannes_KBE', 'roadm Lorient_KMA', 'roadm Lannion_CAS']
request 5
Computing path from trx Rennes_STA to trx Lannion_CAS
with path constraint: ['trx Rennes_STA', 'trx Lannion_CAS']
Computed path (roadms):['roadm Rennes_STA', 'roadm Lannion_CAS']
request 7 | 6
Computing path from trx Lannion_CAS to trx Lorient_KMA
with path constraint: ['trx Lannion_CAS', 'trx Lorient_KMA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Lorient_KMA']
request 7b
Computing path from trx Lannion_CAS to trx Lorient_KMA
with path constraint: ['trx Lannion_CAS', 'trx Lorient_KMA']
Computed path (roadms):['roadm Lannion_CAS', 'roadm Lorient_KMA']
Result summary
req id demand GSNR@bandwidth A-Z (Z-A) GSNR@0.1nm A-Z (Z-A) Receiver minOSNR mode Gbit/s nb of tsp pairs N,M or blocking reason
0 trx Lorient_KMA to trx Vannes_KBE : 24.83 28.92 14 mode 1 100.0 1 (-284,4)
1 trx Brest_KLA to trx Vannes_KBE : 17.75 21.83 14 mode 1 200.0 2 (-272,8)
3 trx Lannion_CAS to trx Rennes_STA : 22.21 26.29 13 mode 1 60.0 1 (-284,4)
4 trx Rennes_STA to trx Lannion_CAS : 16.06 23.29 17 mode 2 150.0 1 (-258,6)
5 trx Rennes_STA to trx Lannion_CAS : 20.31 27.54 17 mode 2 20.0 1 (-274,6)
7 | 6 trx Lannion_CAS to trx Lorient_KMA : 19.52 23.61 14 mode 1 700.0 7 (-224,28)
7b trx Lannion_CAS to trx Lorient_KMA : 19.61 23.69 14 mode 1 400.0 4 (-172,24)
0 trx Lorient_KMA to trx Vannes_KBE : 24.83 28.92 14 mode 1 100.0 1 ([-284],[4])
1 trx Brest_KLA to trx Vannes_KBE : 17.74 21.82 14 mode 1 200.0 2 ([-272],[8])
3 trx Lannion_CAS to trx Rennes_STA : 22.19 26.28 13 mode 1 60.0 1 ([-284],[4])
4 trx Rennes_STA to trx Lannion_CAS : 16.06 23.29 17 mode 2 150.0 1 ([-258],[6])
5 trx Rennes_STA to trx Lannion_CAS : 20.3 27.53 17 mode 2 20.0 1 ([-274],[6])
7 | 6 trx Lannion_CAS to trx Lorient_KMA : 19.52 23.61 14 mode 1 700.0 7 ([-224],[28])
7b trx Lannion_CAS to trx Lorient_KMA : 19.61 23.69 14 mode 1 400.0 4 ([-172],[24])
Result summary shows mean GSNR and OSNR (average over all channels)

View File

@@ -0,0 +1,24 @@
List of disjunctions
[]
Aggregating similar requests
The following services have been requested:
[PathRequest 0
source: trx Abilene
destination: trx Albany
trx type: Voyager
trx mode: mode 3
baud_rate: 44.0 Gbaud
bit_rate: 300.0 Gb/s
spacing: 62.50000000000001 GHz
power: 0.0 dBm
nb channels: 76
path_bandwidth: 100.0 Gbit/s
nodes-list: []
loose-list: []
]
Computing all paths with constraints
Propagating on selected path
Result summary
req id demand GSNR@bandwidth A-Z (Z-A) GSNR@0.1nm A-Z (Z-A) Receiver minOSNR mode Gbit/s nb of tsp pairs N,M or blocking reason
0 trx Abilene to trx Albany : 9.04 14.5 - mode 3 100.0 - MODE_NOT_FEASIBLE
Result summary shows mean GSNR and OSNR (average over all channels)

View File

@@ -16,6 +16,7 @@ Transceiver trx Lannion_CAS
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Roadm roadm Lannion_CAS
effective loss (dB): 20.00
reference pch out (dBm): -20.00
@@ -85,12 +86,13 @@ Roadm roadm Lorient_KMA
actual pch out (dBm): -20.00
Transceiver trx Lorient_KMA
GSNR (0.1nm, dB): 23.61
GSNR (signal bw, dB): 19.52
GSNR (signal bw, dB): 19.53
OSNR ASE (0.1nm, dB): 23.89
OSNR ASE (signal bw, dB): 19.81
CD (ps/nm): 2171.00
PMD (ps): 0.46
PDL (dB): 0.00
Latency (ms): 0.64
Transmission result for input power = 0.00 dBm:
Final GSNR (0.1 nm): 23.61 dB

View File

@@ -16,6 +16,7 @@ Transceiver trx Lannion_CAS
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Roadm roadm Lannion_CAS
effective loss (dB): 20.00
reference pch out (dBm): -20.00
@@ -84,79 +85,80 @@ Roadm roadm Lorient_KMA
reference pch out (dBm): -20.00
actual pch out (dBm): mode_1: -20.00, mode_2: -20.00
Transceiver trx Lorient_KMA
GSNR (0.1nm, dB): mode_1: 23.65, mode_2: 23.81
GSNR (signal bw, dB): mode_1: 19.57, mode_2: 16.72
GSNR (0.1nm, dB): mode_1: 23.66, mode_2: 23.81
GSNR (signal bw, dB): mode_1: 19.58, mode_2: 16.72
OSNR ASE (0.1nm, dB): mode_1: 23.91, mode_2: 23.87
OSNR ASE (signal bw, dB): mode_1: 19.83, mode_2: 16.78
CD (ps/nm): 2171.00
PMD (ps): 0.46
PDL (dB): 0.00
Latency (ms): 0.64
Transmission result for input power = 0.00 dBm:
Final GSNR (0.1 nm): 23.72 dB
The GSNR per channel at the end of the line is:
Ch. # Channel frequency (THz) Channel power (dBm) OSNR ASE (signal bw, dB) SNR NLI (signal bw, dB) GSNR (signal bw, dB)
1 191.40000 -20.04 19.85 33.30 19.65
2 191.45000 -20.04 19.85 32.70 19.63
3 191.50000 -20.04 19.84 32.45 19.61
4 191.55000 -20.04 19.84 32.29 19.60
5 191.60000 -20.04 19.84 32.18 19.60
6 191.65000 -20.04 19.84 32.10 19.59
7 191.70000 -20.04 19.84 32.03 19.59
8 191.75000 -20.04 19.84 31.98 19.58
9 191.80000 -20.04 19.84 31.93 19.58
10 191.85000 -20.04 19.84 31.90 19.57
11 191.90000 -20.04 19.84 31.86 19.57
12 191.95000 -20.04 19.84 31.84 19.57
13 192.00000 -20.04 19.83 31.82 19.57
14 192.05000 -20.04 19.83 31.80 19.57
15 192.10000 -20.04 19.83 31.78 19.56
16 192.15000 -20.04 19.83 31.77 19.56
17 192.20000 -20.04 19.83 31.76 19.56
18 192.25000 -20.04 19.83 31.75 19.56
19 192.30000 -20.04 19.83 31.75 19.56
20 192.35000 -20.04 19.83 31.75 19.56
21 192.40000 -20.05 19.83 31.75 19.56
22 192.45000 -20.05 19.82 31.75 19.55
23 192.50000 -20.05 19.82 31.76 19.55
24 192.55000 -20.05 19.82 31.76 19.55
25 192.60000 -20.05 19.82 31.78 19.55
26 192.65000 -20.05 19.82 31.79 19.55
27 192.70000 -20.05 19.82 31.81 19.55
28 192.75000 -20.05 19.82 31.83 19.55
29 192.80000 -20.05 19.82 31.86 19.55
30 192.85000 -20.05 19.82 31.90 19.56
31 192.90000 -20.04 19.82 31.95 19.56
32 192.95000 -20.04 19.81 32.02 19.56
33 193.00000 -20.04 19.81 32.11 19.56
34 193.05000 -20.04 19.81 32.27 19.57
35 193.10000 -20.04 19.81 32.61 19.59
36 193.16250 -20.09 16.80 33.70 16.71
37 193.23750 -20.09 16.80 34.20 16.72
38 193.31250 -20.09 16.80 34.45 16.72
39 193.38750 -20.09 16.79 34.62 16.72
1 191.40000 -20.04 19.85 33.52 19.66
2 191.45000 -20.04 19.85 32.93 19.64
3 191.50000 -20.04 19.84 32.67 19.62
4 191.55000 -20.04 19.84 32.50 19.61
5 191.60000 -20.04 19.84 32.39 19.61
6 191.65000 -20.04 19.84 32.30 19.60
7 191.70000 -20.04 19.84 32.22 19.60
8 191.75000 -20.04 19.84 32.16 19.59
9 191.80000 -20.04 19.84 32.11 19.59
10 191.85000 -20.04 19.84 32.07 19.59
11 191.90000 -20.04 19.84 32.04 19.58
12 191.95000 -20.04 19.84 32.00 19.58
13 192.00000 -20.04 19.83 31.98 19.58
14 192.05000 -20.04 19.83 31.95 19.57
15 192.10000 -20.04 19.83 31.93 19.57
16 192.15000 -20.04 19.83 31.91 19.57
17 192.20000 -20.04 19.83 31.90 19.57
18 192.25000 -20.04 19.83 31.88 19.57
19 192.30000 -20.04 19.83 31.87 19.56
20 192.35000 -20.04 19.83 31.87 19.56
21 192.40000 -20.04 19.83 31.86 19.56
22 192.45000 -20.04 19.82 31.86 19.56
23 192.50000 -20.04 19.82 31.86 19.56
24 192.55000 -20.04 19.82 31.86 19.56
25 192.60000 -20.04 19.82 31.87 19.56
26 192.65000 -20.04 19.82 31.88 19.56
27 192.70000 -20.04 19.82 31.89 19.56
28 192.75000 -20.04 19.82 31.91 19.56
29 192.80000 -20.04 19.82 31.93 19.56
30 192.85000 -20.04 19.82 31.97 19.56
31 192.90000 -20.04 19.82 32.01 19.56
32 192.95000 -20.04 19.81 32.07 19.56
33 193.00000 -20.04 19.81 32.16 19.57
34 193.05000 -20.04 19.81 32.31 19.57
35 193.10000 -20.04 19.81 32.65 19.59
36 193.16250 -20.09 16.80 33.73 16.71
37 193.23750 -20.09 16.80 34.22 16.72
38 193.31250 -20.09 16.80 34.47 16.72
39 193.38750 -20.09 16.79 34.63 16.72
40 193.46250 -20.09 16.79 34.75 16.72
41 193.53750 -20.09 16.79 34.85 16.72
42 193.61250 -20.09 16.79 34.94 16.72
43 193.68750 -20.09 16.79 35.02 16.72
44 193.76250 -20.09 16.79 35.08 16.72
45 193.83750 -20.09 16.78 35.15 16.72
46 193.91250 -20.09 16.78 35.20 16.72
47 193.98750 -20.09 16.78 35.26 16.72
48 194.06250 -20.09 16.78 35.31 16.72
49 194.13750 -20.09 16.78 35.36 16.72
50 194.21250 -20.09 16.78 35.41 16.72
51 194.28750 -20.09 16.78 35.47 16.72
52 194.36250 -20.09 16.77 35.52 16.72
53 194.43750 -20.09 16.77 35.58 16.72
54 194.51250 -20.09 16.77 35.65 16.71
55 194.58750 -20.09 16.77 35.72 16.71
56 194.66250 -20.09 16.77 35.81 16.71
57 194.73750 -20.09 16.77 35.92 16.71
58 194.81250 -20.09 16.76 36.06 16.71
59 194.88750 -20.09 16.76 36.27 16.71
60 194.96250 -20.09 16.76 36.75 16.72
41 193.53750 -20.09 16.79 34.84 16.72
42 193.61250 -20.09 16.79 34.92 16.72
43 193.68750 -20.09 16.79 34.99 16.72
44 193.76250 -20.09 16.79 35.04 16.72
45 193.83750 -20.09 16.78 35.10 16.72
46 193.91250 -20.09 16.78 35.15 16.72
47 193.98750 -20.09 16.78 35.19 16.72
48 194.06250 -20.09 16.78 35.24 16.72
49 194.13750 -20.09 16.78 35.28 16.72
50 194.21250 -20.09 16.78 35.33 16.72
51 194.28750 -20.09 16.78 35.37 16.72
52 194.36250 -20.09 16.77 35.42 16.72
53 194.43750 -20.09 16.77 35.47 16.71
54 194.51250 -20.09 16.77 35.53 16.71
55 194.58750 -20.09 16.77 35.59 16.71
56 194.66250 -20.09 16.77 35.67 16.71
57 194.73750 -20.09 16.77 35.77 16.71
58 194.81250 -20.09 16.76 35.90 16.71
59 194.88750 -20.09 16.76 36.11 16.71
60 194.96250 -20.09 16.76 36.58 16.72
(No source node specified: picked trx Lannion_CAS)

View File

@@ -15,6 +15,7 @@ Transceiver Site_A
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Fiber Span1
type_variety: SSMF
length (km): 80.00
@@ -39,16 +40,17 @@ Edfa Edfa1
actual pch out (dBm): -1.99
output VOA (dB): 0.00
Transceiver Site_B
GSNR (0.1nm, dB): 31.17
GSNR (signal bw, dB): 27.09
GSNR (0.1nm, dB): 31.18
GSNR (signal bw, dB): 27.10
OSNR ASE (0.1nm, dB): 33.30
OSNR ASE (signal bw, dB): 29.21
CD (ps/nm): 1336.00
PMD (ps): 0.36
PDL (dB): 0.00
Latency (ms): 0.39
Transmission result for input power = 0.00 dBm:
Final GSNR (0.1 nm): 31.17 dB
Final GSNR (0.1 nm): 31.18 dB
(No source node specified: picked Site_A)

View File

@@ -15,6 +15,7 @@ Transceiver Site_A
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
RamanFiber Span1
type_variety: SSMF
length (km): 80.00
@@ -22,18 +23,18 @@ RamanFiber Span1
total loss (dB): 17.00
(includes conn loss (dB) in: 0.50 out: 0.50)
(conn loss out includes EOL margin defined in eqpt_config.json)
reference pch out (dBm): -7.77
actual pch out (dBm): -8.03
reference pch out (dBm): -7.20
actual pch out (dBm): -7.47
Fused Fused1
loss (dB): 0.00
Edfa Edfa1
type_variety: std_low_gain
effective gain(dB): 5.77
effective gain(dB): 5.20
(before att_in and before output VOA)
noise figure (dB): 13.23
noise figure (dB): 13.80
(including att_in)
pad att_in (dB): 2.23
Power In (dBm): 11.04
pad att_in (dB): 2.80
Power In (dBm): 11.61
Power Out (dBm): 16.81
Delta_P (dB): -2.00
target pch (dBm): -2.00
@@ -41,95 +42,96 @@ Edfa Edfa1
actual pch out (dBm): -2.26
output VOA (dB): 0.00
Transceiver Site_B
GSNR (0.1nm, dB): 31.44
GSNR (signal bw, dB): 27.36
GSNR (0.1nm, dB): 31.42
GSNR (signal bw, dB): 27.34
OSNR ASE (0.1nm, dB): 34.21
OSNR ASE (signal bw, dB): 30.13
CD (ps/nm): 1336.00
PMD (ps): 0.36
PDL (dB): 0.00
Latency (ms): 0.39
Transmission result for input power = 0.00 dBm:
Final GSNR (0.1 nm): 31.44 dB
Final GSNR (0.1 nm): 31.42 dB
The GSNR per channel at the end of the line is:
Ch. # Channel frequency (THz) Channel power (dBm) OSNR ASE (signal bw, dB) SNR NLI (signal bw, dB) GSNR (signal bw, dB)
1 191.35000 0.21 31.62 31.43 28.52
2 191.40000 0.17 31.60 31.35 28.46
3 191.45000 0.13 31.58 31.26 28.41
4 191.50000 0.09 31.56 31.18 28.36
5 191.55000 0.03 31.53 31.10 28.30
6 191.60000 -0.02 31.50 31.02 28.24
7 191.65000 -0.08 31.46 30.94 28.19
8 191.70000 -0.14 31.43 30.87 28.13
9 191.75000 -0.20 31.40 30.79 28.08
10 191.80000 -0.27 31.37 30.72 28.02
11 191.85000 -0.33 31.33 30.65 27.97
12 191.90000 -0.40 31.29 30.58 27.91
13 191.95000 -0.46 31.26 30.51 27.86
14 192.00000 -0.53 31.22 30.44 27.80
15 192.05000 -0.59 31.18 30.37 27.75
16 192.10000 -0.66 31.15 30.30 27.69
17 192.15000 -0.73 31.11 30.24 27.64
18 192.20000 -0.80 31.07 30.17 27.59
19 192.25000 -0.86 31.03 30.18 27.57
20 192.30000 -0.94 30.99 30.19 27.56
21 192.35000 -1.02 30.94 30.20 27.54
22 192.40000 -1.09 30.90 30.20 27.53
23 192.45000 -1.17 30.86 30.21 27.51
24 192.50000 -1.24 30.81 30.22 27.50
25 192.55000 -1.31 30.77 30.23 27.48
26 192.60000 -1.38 30.73 30.23 27.46
27 192.65000 -1.45 30.69 30.24 27.45
28 192.70000 -1.52 30.65 30.25 27.43
29 192.75000 -1.59 30.60 30.26 27.42
30 192.80000 -1.67 30.56 30.27 27.40
31 192.85000 -1.74 30.52 30.27 27.38
32 192.90000 -1.81 30.47 30.28 27.37
33 192.95000 -1.88 30.43 30.29 27.35
34 193.00000 -1.95 30.39 30.30 27.33
35 193.05000 -2.02 30.34 30.30 27.31
36 193.10000 -2.08 30.30 30.31 27.30
37 193.15000 -2.15 30.26 30.32 27.28
38 193.20000 -2.22 30.21 30.34 27.26
39 193.25000 -2.29 30.17 30.36 27.25
40 193.30000 -2.36 30.13 30.37 27.24
41 193.35000 -2.43 30.08 30.39 27.22
42 193.40000 -2.50 30.04 30.41 27.21
43 193.45000 -2.56 29.99 30.43 27.19
44 193.50000 -2.63 29.95 30.44 27.18
45 193.55000 -2.70 29.90 30.46 27.16
46 193.60000 -2.78 29.85 30.48 27.15
47 193.65000 -2.85 29.80 30.50 27.13
48 193.70000 -2.92 29.76 30.52 27.11
49 193.75000 -2.99 29.71 30.54 27.09
50 193.80000 -3.06 29.66 30.55 27.07
51 193.85000 -3.14 29.61 30.57 27.06
52 193.90000 -3.21 29.56 30.59 27.04
53 193.95000 -3.28 29.52 30.61 27.02
54 194.00000 -3.35 29.47 30.63 27.00
55 194.05000 -3.42 29.42 30.65 26.98
56 194.10000 -3.50 29.37 30.67 26.96
57 194.15000 -3.57 29.32 30.72 26.95
58 194.20000 -3.64 29.26 30.78 26.95
59 194.25000 -3.72 29.21 30.84 26.94
60 194.30000 -3.79 29.16 30.90 26.94
61 194.35000 -3.86 29.11 30.96 26.93
62 194.40000 -3.93 29.06 31.02 26.92
63 194.45000 -4.01 29.01 31.09 26.91
64 194.50000 -4.08 28.96 31.15 26.91
65 194.55000 -4.14 28.91 31.21 26.90
66 194.60000 -4.21 28.86 31.28 26.90
67 194.65000 -4.27 28.82 31.34 26.89
68 194.70000 -4.34 28.77 31.41 26.88
69 194.75000 -4.41 28.72 31.48 26.88
70 194.80000 -4.47 28.67 31.55 26.87
71 194.85000 -4.54 28.63 31.62 26.86
72 194.90000 -4.60 28.58 31.69 26.85
73 194.95000 -4.67 28.53 31.76 26.84
74 195.00000 -4.73 28.48 31.84 26.83
75 195.05000 -4.80 28.43 31.91 26.82
76 195.10000 -4.86 28.38 31.91 26.79
1 191.35000 0.22 31.64 31.55 28.58
2 191.40000 0.18 31.62 31.46 28.53
3 191.45000 0.15 31.60 31.37 28.47
4 191.50000 0.11 31.58 31.28 28.42
5 191.55000 0.05 31.54 31.20 28.36
6 191.60000 -0.01 31.51 31.11 28.30
7 191.65000 -0.07 31.48 31.03 28.24
8 191.70000 -0.12 31.45 30.95 28.18
9 191.75000 -0.18 31.42 30.87 28.13
10 191.80000 -0.25 31.38 30.79 28.07
11 191.85000 -0.31 31.35 30.72 28.01
12 191.90000 -0.38 31.31 30.64 27.95
13 191.95000 -0.44 31.27 30.57 27.90
14 192.00000 -0.51 31.24 30.50 27.84
15 192.05000 -0.58 31.20 30.42 27.78
16 192.10000 -0.64 31.16 30.35 27.73
17 192.15000 -0.71 31.12 30.29 27.67
18 192.20000 -0.78 31.08 30.22 27.62
19 192.25000 -0.85 31.04 30.22 27.60
20 192.30000 -0.93 31.00 30.22 27.58
21 192.35000 -1.00 30.96 30.23 27.57
22 192.40000 -1.08 30.91 30.23 27.55
23 192.45000 -1.16 30.87 30.23 27.53
24 192.50000 -1.23 30.82 30.24 27.51
25 192.55000 -1.30 30.78 30.24 27.49
26 192.60000 -1.37 30.74 30.24 27.47
27 192.65000 -1.44 30.70 30.25 27.46
28 192.70000 -1.52 30.65 30.25 27.44
29 192.75000 -1.59 30.61 30.25 27.42
30 192.80000 -1.66 30.57 30.26 27.40
31 192.85000 -1.73 30.52 30.26 27.38
32 192.90000 -1.80 30.48 30.26 27.36
33 192.95000 -1.87 30.43 30.27 27.34
34 193.00000 -1.94 30.39 30.27 27.32
35 193.05000 -2.01 30.35 30.27 27.30
36 193.10000 -2.08 30.30 30.28 27.28
37 193.15000 -2.15 30.26 30.28 27.26
38 193.20000 -2.22 30.22 30.29 27.24
39 193.25000 -2.29 30.17 30.31 27.23
40 193.30000 -2.36 30.13 30.32 27.21
41 193.35000 -2.43 30.08 30.33 27.19
42 193.40000 -2.50 30.04 30.35 27.18
43 193.45000 -2.56 29.99 30.36 27.16
44 193.50000 -2.63 29.95 30.37 27.14
45 193.55000 -2.71 29.90 30.39 27.12
46 193.60000 -2.78 29.85 30.40 27.11
47 193.65000 -2.85 29.80 30.41 27.09
48 193.70000 -2.93 29.75 30.43 27.07
49 193.75000 -3.00 29.70 30.44 27.05
50 193.80000 -3.07 29.65 30.45 27.02
51 193.85000 -3.15 29.60 30.47 27.00
52 193.90000 -3.22 29.55 30.48 26.98
53 193.95000 -3.29 29.50 30.50 26.96
54 194.00000 -3.37 29.45 30.51 26.94
55 194.05000 -3.44 29.40 30.52 26.92
56 194.10000 -3.52 29.35 30.54 26.89
57 194.15000 -3.59 29.30 30.59 26.89
58 194.20000 -3.66 29.25 30.64 26.88
59 194.25000 -3.74 29.19 30.70 26.87
60 194.30000 -3.81 29.14 30.75 26.86
61 194.35000 -3.89 29.09 30.81 26.86
62 194.40000 -3.96 29.04 30.87 26.85
63 194.45000 -4.04 28.98 30.93 26.84
64 194.50000 -4.11 28.93 30.98 26.83
65 194.55000 -4.18 28.88 31.04 26.82
66 194.60000 -4.25 28.83 31.10 26.81
67 194.65000 -4.31 28.78 31.17 26.80
68 194.70000 -4.38 28.74 31.23 26.79
69 194.75000 -4.45 28.69 31.29 26.79
70 194.80000 -4.51 28.64 31.35 26.78
71 194.85000 -4.58 28.59 31.42 26.77
72 194.90000 -4.65 28.54 31.48 26.76
73 194.95000 -4.71 28.49 31.55 26.74
74 195.00000 -4.78 28.44 31.62 26.73
75 195.05000 -4.85 28.39 31.69 26.72
76 195.10000 -4.91 28.34 31.69 26.69
(No source node specified: picked Site_A)

View File

@@ -15,6 +15,7 @@ Transceiver Site_A
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Roadm roadm Site A
effective loss (dB): 20.00
reference pch out (dBm): -20.00
@@ -182,7 +183,7 @@ Edfa Edfa6
noise figure (dB): 9.00
(including att_in)
pad att_in (dB): 4.00
Power In (dBm): 3.83
Power In (dBm): 3.84
Power Out (dBm): 19.84
Delta_P (dB): 0.00
target pch (dBm): 0.00
@@ -437,16 +438,17 @@ Roadm roadm Site B
reference pch out (dBm): -20.00
actual pch out (dBm): -20.00
Transceiver Site_B
GSNR (0.1nm, dB): 17.85
GSNR (signal bw, dB): 13.77
GSNR (0.1nm, dB): 17.84
GSNR (signal bw, dB): 13.76
OSNR ASE (0.1nm, dB): 19.70
OSNR ASE (signal bw, dB): 15.62
CD (ps/nm): 20040.00
PMD (ps): 1.39
PDL (dB): 0.00
Latency (ms): 5.88
Transmission result for input power = 0.00 dBm:
Final GSNR (0.1 nm): 17.85 dB
Final GSNR (0.1 nm): 17.84 dB
(No source node specified: picked Site_A)

View File

@@ -1,242 +1,6 @@
There are 96 channels propagating
Power mode is set to True
=> it can be modified in eqpt_config.json - Span
WARNING: target gain and power in node west edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: WARNING: effective gain in Node east edfa in Lannion_CAS to Stbrieuc is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 23.0dB. Please check amplifier type.
WARNING: target gain and power in node west edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: WARNING: effective gain in Node east edfa in Lannion_CAS to Morlaix is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 23.5dB. Please check amplifier type.
WARNING: target gain and power in node west edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in Lorient_KMA to Loudeac
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: WARNING: effective gain in Node west edfa in Lannion_CAS to Corlay is above user specified amplifier test
max flat gain: 25dB ; required gain: 29.82dB. Please check amplifier type.
WARNING: target gain and power in node east edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Brest_KLA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in Vannes_KBE to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Lorient_KMA to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Ploermel to Vannes_KBE
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in Rennes_STA to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Stbrieuc to Rennes_STA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Lannion_CAS to Stbrieuc
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in Rennes_STA to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Vannes_KBE to Ploermel
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in Brest_KLA to Morlaix
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: WARNING: effective gain in Node east edfa in Brest_KLA to Quimper is above user specified amplifier std_low_gain
max flat gain: 16dB ; required gain: 23.0dB. Please check amplifier type.
WARNING: target gain and power in node east edfa in Quimper to Lorient_KMA
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in Lorient_KMA to Quimper
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in b to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in a to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in c to a
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in a to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in d to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in c to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in e to d
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in d to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in f to c
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in c to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in f to b
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in b to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in g to e
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in e to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in h to f
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in f to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node east edfa in h to g
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
WARNING: target gain and power in node west edfa in g to h
is beyond all available amplifiers capabilities and/or extended_gain_range:
a power reduction of -1.82 is applied
There are 3 fiber spans over 130 km between trx Lannion_CAS and trx Lorient_KMA
@@ -251,6 +15,7 @@ Transceiver trx Lannion_CAS
CD (ps/nm): 0.00
PMD (ps): 0.00
PDL (dB): 0.00
Latency (ms): 0.00
Roadm roadm Lannion_CAS
effective loss (dB): 23.00
reference pch out (dBm): -20.00
@@ -319,16 +84,17 @@ Roadm roadm Lorient_KMA
reference pch out (dBm): -20.00
actual pch out (dBm): -20.00
Transceiver trx Lorient_KMA
GSNR (0.1nm, dB): 23.94
GSNR (0.1nm, dB): 23.93
GSNR (signal bw, dB): 19.85
OSNR ASE (0.1nm, dB): 24.29
OSNR ASE (signal bw, dB): 20.20
CD (ps/nm): 2171.00
PMD (ps): 0.46
PDL (dB): 0.00
Latency (ms): 0.64
Transmission result for input power = 3.00 dBm:
Final GSNR (0.1 nm): 23.94 dB
Final GSNR (0.1 nm): 23.93 dB
(Invalid source node 'lannion' replaced with trx Lannion_CAS)

View File

@@ -1,6 +1,7 @@
build>=0.10.0,<1
pytest>=6.2.5,<7
pandas>=1.3.5,<2
build>=1.0.3,<2
pytest>=7.4.3,<8
# pandas 2.1 removed support for Python 3.8
pandas>=2.0.3,<3
# flake v6 killed the --diff option
flake8>=5.0.4,<6

View File

@@ -115,7 +115,7 @@ def test_si(si, nch_and_spacing):
@pytest.mark.parametrize("gain", [17, 19, 21, 23])
def test_compare_nf_models(gain, setup_edfa_variable_gain, si):
""" compare the 2 amplifier models (polynomial and estimated from nf_min and max)
"""compare the 2 amplifier models (polynomial and estimated from nf_min and max)
=> nf_model vs nf_poly_fit for intermediate gain values:
between gain_min and gain_flatmax some discrepancy is expected but target < 0.5dB
=> unitary test for Edfa._calc_nf (and Edfa.interpol_params)"""

View File

@@ -4,12 +4,12 @@
# License: BSD 3-Clause Licence
# Copyright (c) 2018, Telecom Infra Project
'''
"""
@author: esther.lerouzic
checks that computed paths are disjoint as specified in the json service file
that computed paths do not loop
that include node constraints are correctly taken into account
'''
"""
from pathlib import Path
import pytest
@@ -19,7 +19,7 @@ from gnpy.core.exceptions import ServiceError, DisjunctionError
from gnpy.core.utils import automatic_nch, lin2db
from gnpy.core.elements import Roadm
from gnpy.topology.request import (compute_path_dsjctn, isdisjoint, find_reversed_path, PathRequest,
correct_json_route_list)
correct_json_route_list, requests_aggregation, Disjunction)
from gnpy.topology.spectrum_assignment import build_oms_list
from gnpy.tools.json_io import requests_from_json, load_requests, load_network, load_equipment, disjunctions_from_json
@@ -31,8 +31,7 @@ EQPT_LIBRARY_NAME = Path(__file__).parent.parent / 'tests/data/eqpt_config.json'
@pytest.fixture()
def serv(test_setup):
''' common setup for service list
'''
"""common setup for service list"""
network, equipment = test_setup
data = load_requests(SERVICE_FILE_NAME, equipment, bidir=False, network=network, network_filename=NETWORK_FILE_NAME)
rqs = requests_from_json(data, equipment)
@@ -43,8 +42,7 @@ def serv(test_setup):
@pytest.fixture()
def test_setup():
''' common setup for tests: builds network, equipment and oms only once
'''
"""common setup for tests: builds network, equipment and oms only once"""
equipment = load_equipment(EQPT_LIBRARY_NAME)
network = load_network(NETWORK_FILE_NAME, equipment)
# Build the network once using the default power defined in SI in eqpt config
@@ -61,9 +59,10 @@ def test_setup():
def test_disjunction(serv):
''' service_file contains sevaral combination of disjunction constraint. The test checks
that computed paths with disjunction constraint are effectively disjoint
'''
"""service_file contains sevaral combination of disjunction constraint
The test checks that computed paths with disjunction constraint are effectively disjoint.
"""
network, equipment, rqs, dsjn = serv
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
print(dsjn)
@@ -86,8 +85,7 @@ def test_disjunction(serv):
def test_does_not_loop_back(serv):
''' check that computed paths do not loop back ie each element appears only once
'''
"""check that computed paths do not loop back ie each element appears only once"""
network, equipment, rqs, dsjn = serv
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
test = True
@@ -108,8 +106,7 @@ def test_does_not_loop_back(serv):
def create_rq(equipment, srce, dest, bdir, node_list, loose_list, rqid='test_request'):
''' create the usual request list according to parameters
'''
"""create the usual request list according to parameters"""
requests_list = []
params = {
'request_id': rqid,
@@ -151,19 +148,20 @@ def create_rq(equipment, srce, dest, bdir, node_list, loose_list, rqid='test_req
['trx a', 'trx h', 'pass', 'found_path', ['trx h'], ['STRICT']],
['trx a', 'trx h', 'pass', 'found_path', ['roadm a'], ['STRICT']]])
def test_include_constraints(test_setup, srce, dest, result, pth, node_list, loose_list):
''' check that all combinations of constraints are correctly handled:
- STRICT/LOOSE
- correct names/incorrect names -> pass/fail
- possible include/impossible include
if incorrect name -> fail
else:
constraint |one or more STRICT | all LOOSE
----------------------------------------------------------------------------------
>1 path from s to d | can be applied | found_path | found_path
| cannot be applied | no_path | found_path
----------------------------------------------------------------------------------
0 | | computation stops
'''
"""check that all combinations of constraints are correctly handled:
- STRICT/LOOSE
- correct names/incorrect names -> pass/fail
- possible include/impossible include
if incorrect name -> fail
else:
constraint |one or more STRICT | all LOOSE
----------------------------------------------------------------------------------
>1 path from s to d | can be applied | found_path | found_path
| cannot be applied | no_path | found_path
----------------------------------------------------------------------------------
0 | | computation stops
"""
network, equipment = test_setup
dsjn = []
bdir = False
@@ -201,7 +199,7 @@ def test_include_constraints(test_setup, srce, dest, result, pth, node_list, loo
['roadm c', 'roadm f'],
['roadm a', 'roadm b', 'roadm f', 'roadm h']]]])
def test_create_disjunction(test_setup, dis1, dis2, node_list1, loose_list1, result, expected_paths):
""" verifies that the expected result is obtained for a set of particular constraints:
"""verifies that the expected result is obtained for a set of particular constraints:
in particular, verifies that:
- multiple disjunction constraints are correcly handled
- in case a loose constraint can not be met, the first alternate candidate is selected
@@ -242,3 +240,91 @@ def test_create_disjunction(test_setup, dis1, dis2, node_list1, loose_list1, res
path_names.append(roadm_names)
assert path_names == expected_paths
# if loose, one path can be returned
@pytest.fixture()
def request_set():
""" creates default request dict
"""
return {
# 'request_id': '0',
'source': 'trx a',
'bidir': False,
'destination': 'trx g',
'trx_type': 'Voyager',
'spacing': 50e9,
'nodes_list': [],
'loose_list': [],
'f_min': 191.1e12,
'f_max': 196.3e12,
'nb_channel': None,
'power': 0,
'path_bandwidth': 200e9}
@pytest.mark.parametrize(
'ids, modes, req_n, req_m, disjunction, final_ids, final_ns, final_ms, final_path_bandwidths',
# requests that should be correctly aggregated:
[(['a', 'b', 'c', 'd'], ['mode 1', 'mode 1', 'mode 1', 'mode 1'],
[[0], [16], [32], [48]], [[8], [8], [8], [8]], [[]],
['d | c | b | a'], [[48, 32, 16, 0]], [[8, 8, 8, 8]], [800e9]),
(['a', 'b', 'c', 'd'], ['mode 1', 'mode 1', 'mode 1', 'mode 1'],
[[0, 8], [16, 24], [32, 40], [48]], [[4, 4], [4, 4], [4, 4], [8]], [[]],
['d | c | b | a'], [[48, 32, 40, 16, 24, 0, 8]], [[8, 4, 4, 4, 4, 4, 4]], [800e9]),
(['a', 'b', 'c', 'd'], ['mode 1', 'mode 1', 'mode 1', 'mode 1'],
[[0, 8], [None, 24], [32, 40], [None]], [[4, 4], [4, 4], [4, 4], [None]], [[]],
['d | c | b | a'], [[None, 32, 40, None, 24, 0, 8]], [[None, 4, 4, 4, 4, 4, 4]], [800e9]),
# 'a' and 'b' have same constraint and can be aggregated
(['a', 'b', 'c', 'd'], ['mode 1', 'mode 1', 'mode 1', 'mode 1'],
[[0], [16], [32], [48]], [[8], [8], [8], [8]], [['c', 'd']],
['b | a', 'c', 'd'], [[16, 0], [32], [48]], [[8, 8], [8], [8]], [400e9, 200e9, 200e9]),
(['a', 'b', 'c', 'd'], ['mode 1', 'mode 1', 'mode 1', 'mode 1'],
[[0], [16], [32], [48]], [[8], [8], [8], [8]], [['a', 'd'], ['b', 'd']],
['b | a', 'c', 'd'], [[16, 0], [32], [48]], [[8, 8], [8], [8]], [400e9, 200e9, 200e9]),
# requests that should not be aggregated:
(['a', 'b', 'c', 'd'], [None, None, None, 'mode 1'],
[[0, 8], [None, 24], [32, 40], [None]], [[4, 4], [4, 4], [4, 4], [None]], [[]],
['a', 'b', 'c', 'd'], [[0, 8], [None, 24], [32, 40], [None]], [[4, 4], [4, 4], [4, 4], [None]],
[200e9, 200e9, 200e9, 200e9]),
(['a', 'b', 'c', 'd'], ['mode 1', 'mode 1', 'mode 1', 'mode 1'],
[[0], [16], [32], [48]], [[8], [8], [8], [8]], [['c', 'd', 'a']],
['a', 'b', 'c', 'd'], [[0], [16], [32], [48]], [[8], [8], [8], [8]], [200e9, 200e9, 200e9, 200e9]), ])
def test_aggregation(ids, modes, req_n, req_m, disjunction, final_ids, final_ns, final_ms, final_path_bandwidths,
request_set):
""" tests that identical requests are correctly aggregated (included frequency slots merging)
if mode is not defined, requests must not be merged,
if requests are in a synchronization vector, they should not be merged
"""
equipment = load_equipment(EQPT_LIBRARY_NAME)
requests = []
for request_id, mode, req_n, req_m in zip(ids, modes, req_n, req_m):
params = request_set
params['request_id'] = request_id
params['trx_mode'] = mode
params['effective_freq_slot'] = [{'N': n, 'M': m} for n, m in zip(req_n, req_m)]
trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True)
params.update(trx_params)
requests.append(PathRequest(**params))
params = {
'relaxable': False,
'link_diverse': True,
'node_diverse': True
}
disjunctions = []
i = 0
for vector in disjunction:
params['disjunctions_req'] = vector
params['disjunction_id'] = i
disjunctions.append(Disjunction(**params))
i += 1
requests, disjunctions = requests_aggregation(requests, disjunctions)
print(disjunctions)
print(requests)
i = 0
for final_id, final_n, final_m, final_path_bandwidth in zip(final_ids, final_ns, final_ms, final_path_bandwidths):
assert requests[i].request_id == final_id
assert requests[i].N == final_n
assert requests[i].M == final_m
assert requests[i].path_bandwidth == final_path_bandwidth
i += 1

View File

@@ -12,6 +12,7 @@ from pathlib import Path
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_raises
from numpy import array
from copy import deepcopy
from gnpy.core.utils import lin2db, automatic_nch, dbm2watt, power_dbm_to_psd_mw_ghz, watt2dbm, psd2powerdbm
from gnpy.core.network import build_network
@@ -20,8 +21,9 @@ from gnpy.core.info import create_input_spectral_information, Pref, create_arbit
ReferenceCarrier
from gnpy.core.equipment import trx_mode_params
from gnpy.core.exceptions import ConfigurationError
from gnpy.tools.json_io import network_from_json, load_equipment, load_network, _spectrum_from_json, load_json
from gnpy.topology.request import PathRequest, compute_constrained_path, propagate
from gnpy.tools.json_io import network_from_json, load_equipment, load_network, _spectrum_from_json, load_json, \
Transceiver, requests_from_json
from gnpy.topology.request import PathRequest, compute_constrained_path, propagate, propagate_and_optimize_mode
TEST_DIR = Path(__file__).parent
@@ -299,8 +301,7 @@ def test_2low_input_power(target_out, delta_pdb_per_channel, correction):
def net_setup(equipment):
""" common setup for tests: builds network, equipment and oms only once
"""
"""common setup for tests: builds network, equipment and oms only once"""
network = load_network(NETWORK_FILENAME, equipment)
spectrum = equipment['SI']['default']
p_db = spectrum.power_dbm
@@ -310,8 +311,7 @@ def net_setup(equipment):
def create_voyager_req(equipment, source, dest, bidir, nodes_list, loose_list, mode, spacing, power_dbm):
""" create the usual request list according to parameters
"""
"""create the usual request list according to parameters"""
params = {'request_id': 'test_request',
'source': source,
'bidir': bidir,
@@ -336,8 +336,7 @@ def create_voyager_req(equipment, source, dest, bidir, nodes_list, loose_list, m
@pytest.mark.parametrize('power_dbm', [0, 1, -2, None])
@pytest.mark.parametrize('mode, slot_width', (['mode 1', 50e9], ['mode 2', 75e9]))
def test_initial_spectrum(mode, slot_width, power_dbm):
""" checks that propagation using the user defined spectrum identical to SI, gives same result as SI
"""
"""checks that propagation using the user defined spectrum identical to SI, gives same result as SI"""
# first propagate without any req.initial_spectrum attribute
equipment = load_equipment(EQPT_FILENAME)
req = create_voyager_req(equipment, 'trx Brest_KLA', 'trx Vannes_KBE', False, ['trx Vannes_KBE'], ['STRICT'],
@@ -373,7 +372,7 @@ def test_initial_spectrum(mode, slot_width, power_dbm):
def test_initial_spectrum_not_identical():
""" checks that user defined spectrum overrides spectrum defined in SI
"""checks that user defined spectrum overrides spectrum defined in SI
"""
# first propagate without any req.initial_spectrum attribute
equipment = load_equipment(EQPT_FILENAME)
@@ -408,7 +407,7 @@ def test_initial_spectrum_not_identical():
('target_psd_out_mWperGHz', power_dbm_to_psd_mw_ghz(-20, 32e9))])
@pytest.mark.parametrize('power_dbm', [0, 2, -0.5])
def test_target_psd_or_psw(power_dbm, equalization, target_value):
""" checks that if target_out_mWperSlotWidth or target_psd_out_mWperGHz is defined, it is used as equalization
"""checks that if target_out_mWperSlotWidth or target_psd_out_mWperGHz is defined, it is used as equalization
and it gives same result if computed target is the same
"""
equipment = load_equipment(EQPT_FILENAME)
@@ -438,8 +437,7 @@ def test_target_psd_or_psw(power_dbm, equalization, target_value):
def ref_network():
""" Create a network instance with a instance of propagated path
"""
"""Create a network instance with a instance of propagated path"""
equipment = load_equipment(EQPT_FILENAME)
network = net_setup(equipment)
req0 = create_voyager_req(equipment, 'trx Brest_KLA', 'trx Vannes_KBE', False, ['trx Vannes_KBE'], ['STRICT'],
@@ -451,7 +449,8 @@ def ref_network():
@pytest.mark.parametrize('deltap', [0, +1.2, -0.5])
def test_target_psd_out_mwperghz_deltap(deltap):
""" checks that if target_psd_out_mWperGHz is defined, delta_p of amps is correctly updated
"""checks that if target_psd_out_mWperGHz is defined, delta_p of amps is correctly updated
Power over 1.2dBm saturate amp with this test: TODO add a test on this saturation
"""
equipment = load_equipment(EQPT_FILENAME)
@@ -586,3 +585,253 @@ def test_power_option(req_power):
assert_array_equal(infos_expected.pmd, infos_actual.pmd)
assert_array_equal(infos_expected.channel_number, infos_actual.channel_number)
assert_array_equal(infos_expected.number_of_channels, infos_actual.number_of_channels)
def transceiver(slot_width, value):
return {
"type_variety": "test_offset",
"frequency": {
"min": 191.3e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 64e9,
"OSNR": 18,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 64e9,
"OSNR": 18,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": slot_width,
"equalization_offset_db": value,
"cost": 1
}
]
}
def some_requests():
route = {
"route-object-include-exclude": [
{
"explicit-route-usage": "route-include-ero",
"index": 0,
"num-unnum-hop": {
"node-id": "trx Brest_KLA",
"link-tp-id": "link-tp-id is not used",
"hop-type": "STRICT"
}
},
{
"explicit-route-usage": "route-include-ero",
"index": 1,
"num-unnum-hop": {
"node-id": "trx Vannes_KBE",
"link-tp-id": "link-tp-id is not used",
"hop-type": "STRICT"
}
}
]
}
return {
"path-request": [{
"request-id": "2",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "test_offset",
"trx_mode": "mode 1",
"spacing": 75000000000.0,
"path_bandwidth": 100000000000.0
}
},
"explicit-route-objects": route
}, {
"request-id": "3",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "test_offset",
"trx_mode": "mode 3",
"spacing": 87500000000.0,
"path_bandwidth": 100000000000.0
}
},
"explicit-route-objects": route
}, {
"request-id": "4",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "test_offset",
"trx_mode": "mode 1",
"spacing": 87500000000.0,
"path_bandwidth": 100000000000.0
}
},
"explicit-route-objects": route
}]
}
@pytest.mark.parametrize('slot_width, value', [(75e9, lin2db(75 / 87.5)),
(87.5e9, lin2db(75 / 87.5))])
def test_power_offset_trx_equalization_psw(slot_width, value):
"""Check that the equalization with the offset is giving the same result as with reference slot_width
Check that larger slot width but no offset takes larger slot width for equalization
"""
equipment = load_equipment(EQPT_FILENAME)
trx = transceiver(slot_width, value)
equipment['Transceiver'][trx['type_variety']] = Transceiver(**trx)
setattr(equipment['Roadm']['default'], 'target_pch_out_db', None)
setattr(equipment['Roadm']['default'], 'target_out_mWperSlotWidth', power_dbm_to_psd_mw_ghz(-20, 50e9))
network = net_setup(equipment)
json_data = some_requests()
ref_request, request, other = requests_from_json(json_data, equipment)
# ref_request (_expected) has no offset, equalization on 75GH basis
path_expected = compute_constrained_path(network, ref_request)
_ = propagate(path_expected, ref_request, equipment)
roadm1_expected = deepcopy(path_expected[1])
# request has an offset either defined in power and a larger slot width.
# The defined offset is "equalize as if it was a 75 GHz channel" although slot_width is 87.5GHz
path = compute_constrained_path(network, request)
_ = propagate(path, request, equipment)
roadm1 = deepcopy(path[1])
# the other request has a larger slot width (spacing) but no offset. so equalization uses this slot width
path_other = compute_constrained_path(network, other)
_ = propagate(path, other, equipment)
roadm1_other = path_other[1]
# check the first frequency since all cariers have the same equalization
# Check that the power is equalized as if it was for a 75GHz channel (mode 1) instead of a 87.5GHz
assert roadm1.pch_out_dbm[0] == roadm1_expected.pch_out_dbm[0]
# Check that equalization instead uses 87.5GHz basis
assert roadm1_other.pch_out_dbm[0] == roadm1_expected.pch_out_dbm[0] + lin2db(87.5 / 75)
@pytest.mark.parametrize('slot_width, value', [(75e9, lin2db(75 / 50)),
(87.5e9, lin2db(75 / 50))])
def test_power_offset_trx_equalization_p(slot_width, value):
"""Check that the constant power equalization with the offset is applied
"""
equipment = load_equipment(EQPT_FILENAME)
trx = transceiver(slot_width, value)
equipment['Transceiver'][trx['type_variety']] = Transceiver(**trx)
setattr(equipment['Roadm']['default'], 'target_pch_out_db', -20)
network = net_setup(equipment)
json_data = some_requests()
ref_request, request, _ = requests_from_json(json_data, equipment)
path_expected = compute_constrained_path(network, ref_request)
_ = propagate(path_expected, ref_request, equipment)
roadm1_expected = deepcopy(path_expected[1])
path = compute_constrained_path(network, request)
_ = propagate(path, request, equipment)
roadm1 = deepcopy(path[1])
assert roadm1.pch_out_dbm[0] == roadm1_expected.pch_out_dbm[0] + lin2db(75 / 50)
@pytest.mark.parametrize('equalization, target_value',
[('target_pch_out_db', -20),
('target_psd_out_mWperGHz', power_dbm_to_psd_mw_ghz(-20, 64e9)),
('target_out_mWperSlotWidth', power_dbm_to_psd_mw_ghz(-20, 50e9))])
@pytest.mark.parametrize('slot_width, value, expected_mode', [(75e9, 3.0, 'mode 3')])
def test_power_offset_automatic_mode_selection(slot_width, value, equalization,
target_value, expected_mode):
"""Check that the same result is obtained if the mode is user defined or if it is
automatically selected
"""
equipment = load_equipment(EQPT_FILENAME)
trx = transceiver(slot_width, value)
equipment['Transceiver'][trx['type_variety']] = Transceiver(**trx)
setattr(equipment['Roadm']['default'], 'target_pch_out_db', None)
setattr(equipment['Roadm']['default'], equalization, target_value)
network = net_setup(equipment)
route = {
"route-object-include-exclude": [
{
"explicit-route-usage": "route-include-ero",
"index": 0,
"num-unnum-hop": {
"node-id": "trx Brest_KLA",
"link-tp-id": "link-tp-id is not used",
"hop-type": "STRICT"
}
},
{
"explicit-route-usage": "route-include-ero",
"index": 1,
"num-unnum-hop": {
"node-id": "trx Vannes_KBE",
"link-tp-id": "link-tp-id is not used",
"hop-type": "STRICT"
}
}
]
}
json_data = {
"path-request": [{
"request-id": "imposed_mode",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "test_offset",
"trx_mode": "mode 3",
"spacing": 75000000000.0,
"path_bandwidth": 100000000000.0
}
},
"explicit-route-objects": route
}, {
"request-id": "free_mode",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "test_offset",
"spacing": 75000000000.0,
"path_bandwidth": 100000000000.0
}
},
"explicit-route-objects": route
}]}
imposed_req, free_req, = requests_from_json(json_data, equipment)
assert free_req.tsp_mode is None
path_expected = compute_constrained_path(network, imposed_req)
_ = propagate(path_expected, imposed_req, equipment)
path = compute_constrained_path(network, free_req)
_, mode = propagate_and_optimize_mode(path, free_req, equipment)
assert mode['format'] == expected_mode
assert_allclose(path_expected[-1].snr_01nm, path[-1].snr_01nm, rtol=1e-5)

View File

@@ -2,6 +2,7 @@
from pathlib import Path
import os
from logging import INFO, Formatter
import pytest
import subprocess
from gnpy.tools.cli_examples import transmission_main_example, path_requests_run
@@ -9,39 +10,46 @@ from gnpy.tools.cli_examples import transmission_main_example, path_requests_run
SRC_ROOT = Path(__file__).parent.parent
@pytest.mark.parametrize("output, handler, args", (
('transmission_main_example', transmission_main_example, []),
('transmission_saturated', transmission_main_example,
@pytest.mark.parametrize("output, log, handler, args", (
('transmission_main_example', None, transmission_main_example, []),
('transmission_saturated', 'logs_transmission_saturated', transmission_main_example,
['tests/data/testTopology_expected.json', 'lannion', 'lorient', '-e', 'tests/data/eqpt_config.json', '--pow', '3']),
('path_requests_run', path_requests_run, []),
('transmission_main_example__raman', transmission_main_example,
('path_requests_run', 'logs_path_request', path_requests_run, ['-v']),
('transmission_main_example__raman', None, transmission_main_example,
['gnpy/example-data/raman_edfa_example_network.json', '--sim', 'gnpy/example-data/sim_params.json', '--show-channels', ]),
('openroadm-v4-Stockholm-Gothenburg', transmission_main_example,
('openroadm-v4-Stockholm-Gothenburg', None, transmission_main_example,
['-e', 'gnpy/example-data/eqpt_config_openroadm_ver4.json', 'gnpy/example-data/Sweden_OpenROADMv4_example_network.json', ]),
('openroadm-v5-Stockholm-Gothenburg', transmission_main_example,
('openroadm-v5-Stockholm-Gothenburg', None, transmission_main_example,
['-e', 'gnpy/example-data/eqpt_config_openroadm_ver5.json', 'gnpy/example-data/Sweden_OpenROADMv5_example_network.json', ]),
('transmission_main_example_long', transmission_main_example,
('transmission_main_example_long', None, transmission_main_example,
['-e', 'tests/data/eqpt_config.json', 'tests/data/test_long_network.json']),
('spectrum1_transmission_main_example', transmission_main_example,
('spectrum1_transmission_main_example', None, transmission_main_example,
['--spectrum', 'gnpy/example-data/initial_spectrum1.json', 'gnpy/example-data/meshTopologyExampleV2.xls', ]),
('spectrum2_transmission_main_example', transmission_main_example,
('spectrum2_transmission_main_example', None, transmission_main_example,
['--spectrum', 'gnpy/example-data/initial_spectrum2.json', 'gnpy/example-data/meshTopologyExampleV2.xls', '--show-channels', ]),
))
def test_example_invocation(capfd, output, handler, args):
'''Make sure that our examples produce useful output'''
('path_requests_run_CD_PMD_PDL_missing', 'logs_path_requests_run_CD_PMD_PDL_missing', path_requests_run,
['tests/data/CORONET_Global_Topology_expected.json', 'tests/data/CORONET_services.json', '-v']),
))
def test_example_invocation(capfd, caplog, output, log, handler, args):
"""Make sure that our examples produce useful output"""
os.chdir(SRC_ROOT)
expected = open(SRC_ROOT / 'tests' / 'invocation' / output, mode='r', encoding='utf-8').read()
formatter = Formatter('%(levelname)-9s%(name)s:%(filename)s %(message)s')
caplog.handler.setFormatter(formatter)
# keep INFO level to at least test those logs once
caplog.set_level(INFO)
handler(args)
captured = capfd.readouterr()
assert captured.out == expected
assert captured.err == ''
if log:
expected_log = open(SRC_ROOT / 'tests' / 'invocation' / log, mode='r', encoding='utf-8').read()
assert expected_log == caplog.text
@pytest.mark.parametrize('program', ('gnpy-transmission-example', 'gnpy-path-request'))
def test_run_wrapper(program):
'''Ensure that our wrappers really, really work'''
"""Ensure that our wrappers really, really work"""
proc = subprocess.run((program, '--help'), stdout=subprocess.PIPE, stderr=subprocess.PIPE,
check=True, universal_newlines=True)
assert proc.stderr == ''
@@ -53,5 +61,5 @@ def test_conversion_xls():
proc = subprocess.run(
('gnpy-convert-xls', SRC_ROOT / 'tests' / 'data' / 'testTopology.xls', '--output', os.path.devnull),
stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, universal_newlines=True)
assert proc.stderr == ''
assert proc.stderr == 'missing header delta p\nmissing header delta p\n'
assert os.path.devnull in proc.stdout

422
tests/test_logger.py Normal file
View File

@@ -0,0 +1,422 @@
# SPDX-License-Identifier: BSD-3-Clause
#
# Copyright (C) 2020 Telecom Infra Project and GNPy contributors
# see LICENSE.md for a list of contributors
#
from pathlib import Path
import re
import pytest
from gnpy.core.exceptions import ConfigurationError, ServiceError, EquipmentConfigError, ParametersError, \
NetworkTopologyError
from gnpy.tools.json_io import SI, Roadm, Amp, load_equipment, requests_from_json, network_from_json, \
load_network, load_requests
from gnpy.tools.convert import xls_to_json_data
TEST_DIR = Path(__file__).parent
EQPT_FILENAME = TEST_DIR / 'data/eqpt_config.json'
DATA_DIR = TEST_DIR / 'data'
def test_jsonthing(caplog):
"""Check that a missing key correctly raises an info
"""
json_data = {
"baud_rate": 32e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}
_ = SI(**json_data)
expected_msg = 'WARNING missing f_min attribute in eqpt_config.json[SI]\n ' \
+ 'default value is f_min = 191350000000000.0'
assert expected_msg in caplog.text
def wrong_equipment():
"""Creates list of malformed equipments
"""
data = []
data.append({
"error": EquipmentConfigError,
"equipment": Roadm,
"json_data": {
"target_pch_out_db": -20,
"target_out_mWperSlotWidth": 3.125e-4,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
},
"expected_msg": "Only one equalization type should be set in ROADM, found: target_pch_out_db,"
+ " target_out_mWperSlotWidth"
})
data.append({
"error": EquipmentConfigError,
"equipment": Roadm,
"json_data": {
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
},
"expected_msg": "No equalization type set in ROADM"
})
return data
@pytest.mark.parametrize('error, equipment, json_data, expected_msg',
[(e['error'], e['equipment'], e['json_data'], e['expected_msg']) for e in wrong_equipment()])
def test_wrong_equipment(caplog, error, equipment, json_data, expected_msg):
"""
"""
with pytest.raises(EquipmentConfigError, match=expected_msg):
_ = equipment(**json_data)
@pytest.mark.parametrize('xls_service_filename, xls_topo_filename, expected_msg',
[('wrong_service.xlsx', 'testTopology.xls',
"Service error: Request Id: 0 - could not find tsp : 'Voyager' with mode: 'Mode 10' "
+ "in eqpt library \nComputation stopped."),
('wrong_service_type.xlsx', 'testTopology.xls',
"Service error: Request Id: 0 - could not find tsp : 'Galileo' with mode: 'mode 1' "
+ "in eqpt library \nComputation stopped.")])
def test_wrong_xls_service(xls_service_filename, xls_topo_filename, expected_msg):
"""
"""
equipment = load_equipment(EQPT_FILENAME)
network = load_network(DATA_DIR / xls_topo_filename, equipment)
with pytest.raises(ServiceError, match=expected_msg):
_ = load_requests(DATA_DIR / xls_service_filename, equipment, False, network, DATA_DIR / xls_topo_filename)
def wrong_amp():
"""Creates list of malformed equipments
"""
data = []
data.append({
"error": EquipmentConfigError,
"json_data": {
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"allowed_for_design": True
},
"expected_msg": "missing nf0 value input for amplifier: test_fixed_gain in equipment config"
})
data.append({
"error": EquipmentConfigError,
"json_data": {
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"out_voa_auto": False,
"allowed_for_design": True
},
"expected_msg": "missing nf_min or nf_max value input for amplifier: test in equipment config"
})
data.append({
"error": EquipmentConfigError,
"json_data": {
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"allowed_for_design": False
},
"expected_msg": "missing preamp/booster variety input for amplifier: medium+high_power in equipment config"
})
return data
@pytest.mark.parametrize('error, json_data, expected_msg',
[(e['error'], e['json_data'], e['expected_msg']) for e in wrong_amp()])
def test_wrong_amp(error, json_data, expected_msg):
"""
"""
with pytest.raises(error, match=re.escape(expected_msg)):
_ = Amp.from_json(EQPT_FILENAME, **json_data)
def wrong_requests():
"""Creates list of malformed requests
"""
data = []
data.append({
'error': ConfigurationError,
'json_data': {
"path-request": [{
"request-id": "imposed_mode",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "test_offset",
"trx_mode": "mode 3",
"spacing": 75000000000.0,
"path_bandwidth": 100000000000.0
}
}
}]
},
'expected_msg': 'Equipment Config error in imposed_mode: '
+ 'Could not find transponder "test_offset" with mode "mode 3" in equipment library'
})
data.append({
'error': ServiceError,
'json_data': {
"path-request": [{
"request-id": "Missing_type",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": None,
"spacing": 75000000000.0,
"path_bandwidth": 100000000000.0
}
}
}]},
'expected_msg': 'Request Missing_type has no transceiver type defined'
})
data.append({
'error': ServiceError,
'json_data': {
"path-request": [{
"request-id": "wrong_spacing",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 2",
"spacing": 50000000000.0,
"path_bandwidth": 100000000000.0
}
}
}]},
'expected_msg': 'Request wrong_spacing has spacing below transponder Voyager mode 2 min spacing'
+ ' value 75.0GHz.\nComputation stopped'
})
data.append({
'error': ServiceError,
'json_data': {
"path-request": [{
"request-id": "Wrong_nb_channel",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 2",
"spacing": 75000000000.0,
"max-nb-of-channel": 150,
"path_bandwidth": 100000000000.0
}
}
}]},
'expected_msg': 'Requested channel number 150, baud rate 66.0 GHz'
+ ' and requested spacing 75.0GHz is not consistent with frequency range'
+ ' 191.35 THz, 196.1 THz.'
+ ' Max recommanded nb of channels is 63.'
})
data.append({
'error': ServiceError,
'json_data': {
"path-request": [{
"request-id": "Wrong_M",
"source": "trx Brest_KLA",
"destination": "trx Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"bidirectional": False,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 2",
"spacing": 75000000000.0,
"effective-freq-slot": [
{
"N": -208,
"M": 4
}
],
"path_bandwidth": 100000000000.0
}
}
}]},
'expected_msg': 'Requested M [{\'N\': -208, \'M\': 4}] number of slots for request Wrong_M '
+ 'support 0 nb of channels while 1 are required to support request 100.0 Gbit/s'
+ ' with Voyager mode 2'
})
return data
@pytest.mark.parametrize('error, json_data, expected_msg',
[(e['error'], e['json_data'], e['expected_msg']) for e in wrong_requests()])
def test_json_request(error, json_data, expected_msg):
"""
Check that a missing key is correctly raisong the logger
"""
equipment = load_equipment(EQPT_FILENAME)
with pytest.raises(error, match=re.escape(expected_msg)):
_ = requests_from_json(json_data, equipment)
def wrong_element():
"""
"""
data = []
data.append({
"error": ConfigurationError,
"json_data": {
"elements": [{
"uid": "roadm SITE2",
"type": "Roadm",
"params": {
"target_pch_out_db": -20,
"target_out_mWperSlotWidth": 3.125e-4,
},
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 3.0,
"city": "SITE2",
"region": "RLD"
}
}
}],
"connections": []
},
"expected_msg": "ROADM roadm SITE2: invalid equalization settings"
})
data.append({
"error": ConfigurationError,
"json_data": {
"elements": [{
"uid": "east edfa in ILA2 to SITE2",
"type": "Edfa",
"type_variety": "not_valid_variety",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 0.0,
"city": "ILA2",
"region": "RLD"
}
}
}],
"connections": []
},
"expected_msg": "The Edfa of variety type not_valid_variety was not recognized:"
+ "\nplease check it is properly defined in the eqpt_config json file"
})
data.append({
"error": ParametersError,
"json_data": {
"elements": [{
"uid": "fiber (ILA2 → ILA1)",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 100.0,
"loss_coef": 0.2,
"att_in": 0,
"con_in": 0,
"con_out": 0
},
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.5,
"city": None,
"region": None
}
}
}],
"connections": []
},
"expected_msg": "Config error in fiber (ILA2 → ILA1): "
+ "Fiber configurations json must include \'length_units\'. Configuration: "
+ "{\'length\': 100.0, \'loss_coef\': 0.2, \'att_in\': 0, \'con_in\': 0, \'con_out\': 0, "
+ "\'type_variety\': \'SSMF\', \'dispersion\': 1.67e-05, \'effective_area\': 8.3e-11, "
+ "\'pmd_coef\': 1.265e-15}"
})
return data
@pytest.mark.parametrize('error, json_data, expected_msg',
[(e['error'], e['json_data'], e['expected_msg']) for e in wrong_element()])
def test_json_network(error, json_data, expected_msg):
"""
Check that a missing key is correctly raisong the logger
"""
equipment = load_equipment(EQPT_FILENAME)
with pytest.raises(error, match=re.escape(expected_msg)):
_ = network_from_json(json_data, equipment)
@pytest.mark.parametrize('input_filename, expected_msg',
[(DATA_DIR / 'wrong_topo_node.xlsx', 'XLS error: The following nodes are not referenced from the Links sheet.'
+ ' If unused, remove them from the Nodes sheet:\n - toto'),
(DATA_DIR / 'wrong_topo_link.xlsx', 'XLS error: The Links sheet references nodes that are not defined in the '
+ 'Nodes sheet:\n - ALB -> toto'),
(DATA_DIR / 'wrong_topo_link_header.xlsx', 'missing header Node Z'),
(DATA_DIR / 'wrong_topo_eqpt.xlsx', 'XLS error: The Eqpt sheet refers to nodes that are not defined in the '
+ 'Nodes sheet:\n - toto'),
(DATA_DIR / 'wrong_topo_duplicate_node.xlsx', 'Duplicate city: Counter({\'ALB\': 2, \'CHA_3\': 1})'),
(DATA_DIR / 'wrong_topo_duplicate_eqpt.xlsx', 'XLS error: Duplicate lines in Eqpt sheet: - ALB -> CHA_3'),
(DATA_DIR / 'wrong_topo_bad_eqpt.xlsx', 'XLS error: The Eqpt sheet references links that are not defined '
+ 'in the Links sheet:\n - toto -> CHA_3'),
(DATA_DIR / 'wrong_duplicate_link_reverse.xlsx', 'XLS error: links - (\'ila\', \'siteb\') are duplicate'),
(DATA_DIR / 'wrong_duplicate_eqpt_ila_reverse.xlsx', 'XLS error: Duplicate ILA eqpt definition in Eqpt sheet:'
+ ' - ila')])
def test_wrong_xlsx(input_filename, expected_msg):
"""Check that error and logs are correctly working
"""
with pytest.raises(NetworkTopologyError, match=re.escape(expected_msg)):
_ = xls_to_json_data(input_filename)
@pytest.mark.parametrize('input_filename, expected_msg',
[(DATA_DIR / 'wrong_node_type.xlsx', 'invalid node type (ILA) specified in Lannion_CAS, replaced by ROADM\n')])
def test_log_wrong_xlsx(caplog, input_filename, expected_msg):
"""Check that logs are correctly working
"""
_ = xls_to_json_data(input_filename)
assert expected_msg in caplog.text

View File

@@ -6,18 +6,51 @@ Checks that the class SimParams behaves as a mutable Singleton.
"""
import pytest
from gnpy.core.parameters import SimParams
from pathlib import Path
from numpy.testing import assert_allclose
from gnpy.core.parameters import SimParams, FiberParams
from gnpy.tools.json_io import load_json, Fiber
TEST_DIR = Path(__file__).parent
@pytest.mark.usefixtures('set_sim_params')
def test_sim_parameters():
sim_params = {'nli_params': {}, 'raman_params': {}}
SimParams.set_params(sim_params)
s1 = SimParams.get()
s1 = SimParams()
assert s1.nli_params.method == 'gn_model_analytic'
s2 = SimParams.get()
s2 = SimParams()
assert not s1.raman_params.flag
sim_params['raman_params']['flag'] = True
SimParams.set_params(sim_params)
assert s2.raman_params.flag
assert s1.raman_params.flag
def test_fiber_parameters():
fiber_dict_explicit_g0 = load_json(TEST_DIR/'data'/'test_parameters_fiber_config.json')['params']
fiber_params_explicit_g0 = FiberParams(**fiber_dict_explicit_g0)
fiber_dict_default_g0 = load_json(TEST_DIR/'data'/'test_science_utils_fiber_config.json')['params']
fiber_params_default_g0 = FiberParams(**fiber_dict_default_g0)
fiber_dict_cr = load_json(TEST_DIR/'data'/'test_old_parameters_fiber_config.json')['params']
fiber_dict_cr.update(Fiber(**fiber_dict_cr).__dict__)
fiber_params_cr = FiberParams(**fiber_dict_cr)
raman_coefficient_explicit_g0 = fiber_params_explicit_g0.raman_coefficient
raman_coefficient_explicit_g0 =\
raman_coefficient_explicit_g0.normalized_gamma_raman * fiber_params_explicit_g0._raman_reference_frequency
raman_coefficient_default_g0 = fiber_params_default_g0.raman_coefficient
raman_coefficient_default_g0 = \
raman_coefficient_default_g0.normalized_gamma_raman * fiber_params_default_g0._raman_reference_frequency
raman_coefficient_cr = fiber_params_cr.raman_coefficient
raman_coefficient_cr = \
raman_coefficient_cr.normalized_gamma_raman * fiber_params_cr._raman_reference_frequency
assert_allclose(raman_coefficient_explicit_g0, raman_coefficient_default_g0, rtol=1e-10)
assert_allclose(raman_coefficient_explicit_g0, raman_coefficient_cr, rtol=1e-10)

View File

@@ -3,16 +3,17 @@
# @Author: Esther Le Rouzic
# @Date: 2018-06-15
""" Adding tests to check the parser non regression
convention of naming of test files:
- ..._expected.json for the reference output
tests:
- generation of topology json
- reading of Eqpt sheet w and W/ power mode
- consistency of autodesign
- generation of service list based on service sheet
- writing of results in csv
- writing of results in json (same keys)
"""Adding tests to check the parser non regression
convention of naming of test files:
- ..._expected.json for the reference output
tests:
- generation of topology json
- reading of Eqpt sheet w and W/ power mode
- consistency of autodesign
- generation of service list based on service sheet
- writing of results in csv
- writing of results in json (same keys)
"""
from pathlib import Path
@@ -46,8 +47,7 @@ equipment = load_equipment(eqpt_filename)
}.items())
def test_excel_json_generation(tmpdir, xls_input, expected_json_output):
""" tests generation of topology json
"""
"""tests generation of topology json"""
xls_copy = Path(tmpdir) / xls_input.name
shutil.copyfile(xls_input, xls_copy)
convert_file(xls_copy)
@@ -68,9 +68,7 @@ def test_excel_json_generation(tmpdir, xls_input, expected_json_output):
DATA_DIR / 'testTopology_auto_design_expected.json',
}.items())
def test_auto_design_generation_fromxlsgainmode(tmpdir, xls_input, expected_json_output):
""" tests generation of topology json
test that the build network gives correct results in gain mode
"""
"""tests generation of topology json and that the build network gives correct results in gain mode"""
equipment = load_equipment(eqpt_filename)
network = load_network(xls_input, equipment)
# in order to test the Eqpt sheet and load gain target,
@@ -100,8 +98,7 @@ def test_auto_design_generation_fromxlsgainmode(tmpdir, xls_input, expected_json
True
}.items())
def test_auto_design_generation_fromjson(tmpdir, json_input, power_mode):
"""test that autodesign creates same file as an input file already autodesigned
"""
"""test that autodesign creates same file as an input file already autodesigned"""
equipment = load_equipment(eqpt_filename)
network = load_network(json_input, equipment)
# in order to test the Eqpt sheet and load gain target,
@@ -127,8 +124,7 @@ def test_auto_design_generation_fromjson(tmpdir, json_input, power_mode):
DATA_DIR / 'testService.xls': DATA_DIR / 'testService_services_expected.json'
}.items())
def test_excel_service_json_generation(xls_input, expected_json_output):
""" test services creation
"""
"""test services creation"""
equipment = load_equipment(eqpt_filename)
network = load_network(DATA_DIR / 'testTopology.xls', equipment)
# Build the network once using the default power defined in SI in eqpt config
@@ -148,9 +144,7 @@ def test_excel_service_json_generation(xls_input, expected_json_output):
(DATA_DIR / 'testTopology_response.json', )
)
def test_csv_response_generation(tmpdir, json_input):
""" tests if generated csv is consistant with expected generation
same columns (order not important)
"""
"""tests if generated csv is consistant with expected generation same columns (order not important)"""
json_data = load_json(json_input)
equipment = load_equipment(eqpt_filename)
csv_filename = Path(tmpdir / json_input.name).with_suffix('.csv')
@@ -215,8 +209,7 @@ def test_csv_response_generation(tmpdir, json_input):
DATA_DIR / 'testTopology.xls': DATA_DIR / 'testTopology_response.json',
}.items())
def test_json_response_generation(xls_input, expected_response_file):
""" tests if json response is correctly generated for all combinations of requests
"""
"""tests if json response is correctly generated for all combinations of requests"""
equipment = load_equipment(eqpt_filename)
network = load_network(xls_input, equipment)
@@ -323,8 +316,7 @@ def test_json_response_generation(xls_input, expected_response_file):
('trx Brest_KLA', 'trx Rennes_STA', 'Brest_KLA | trx Lannion_CAS', 'STRICT', 'Fail')
])
def test_excel_ila_constraints(source, destination, route_list, hoptype, expected_correction):
""" add different kind of constraints to test all correct_route cases
"""
"""add different kind of constraints to test all correct_route cases"""
service_xls_input = DATA_DIR / 'testTopology.xls'
network_json_input = DATA_DIR / 'testTopology_auto_design_expected.json'
equipment = load_equipment(eqpt_filename)
@@ -363,7 +355,8 @@ def test_excel_ila_constraints(source, destination, route_list, hoptype, expecte
'nb_channel': 0,
'power': 0,
'path_bandwidth': 0,
'effective_freq_slot': None
'effective_freq_slot': None,
'equalization_offset_db': 0
}
request = PathRequest(**params)
@@ -376,8 +369,7 @@ def test_excel_ila_constraints(source, destination, route_list, hoptype, expecte
def setup_per_degree(case):
""" common setup for degree: returns the dict network for different cases
"""
"""common setup for degree: returns the dict network for different cases"""
json_network = load_json(DATA_DIR / 'testTopology_expected.json')
json_network_auto = load_json(DATA_DIR / 'testTopology_auto_design_expected.json')
if case == 'no':
@@ -401,8 +393,7 @@ def setup_per_degree(case):
@pytest.mark.parametrize('case', ['no', 'all', 'Lannion_CAS and all', 'Lannion_CAS and one'])
def test_target_pch_out_db_global(case):
""" check that per degree attributes are correctly created with global values if none are given
"""
"""check that per degree attributes are correctly created with global values if none are given"""
json_network = setup_per_degree(case)
per_degree = {}
for elem in json_network['elements']:
@@ -442,14 +433,12 @@ def test_target_pch_out_db_global(case):
def all_rows(sh, start=0):
""" reads excel sheet row per row
"""
"""reads excel sheet row per row"""
return (sh.row(x) for x in range(start, sh.nrows))
class Amp:
""" Node element contains uid, list of connected nodes and eqpt type
"""
"""Node element contains uid, list of connected nodes and eqpt type"""
def __init__(self, uid, to_node, eqpt=None, west=None):
self.uid = uid
@@ -459,7 +448,7 @@ class Amp:
def test_eqpt_creation(tmpdir):
""" tests that convert correctly creates equipment according to equipment sheet
"""tests that convert correctly creates equipment according to equipment sheet
including all cominations in testTopologyconvert.xls: if a line exists the amplifier
should be created even if no values are provided.
"""

View File

@@ -31,10 +31,10 @@ NETWORK_FILE_NAME = TEST_DIR / 'data/testTopology_expected.json'
# mark node_uid amps as fused for testing purpose
@pytest.mark.parametrize("node_uid", ['east edfa in Lannion_CAS to Stbrieuc'])
def test_no_amp_feature(node_uid):
''' Check that booster is not placed on a roadm if fused is specified
test_parser covers partly this behaviour. This test should guaranty that the
feature is preserved even if convert is changed
'''
"""Check that booster is not placed on a roadm if fused is specified
test_parser covers partly this behaviour. This test should guaranty that the
feature is preserved even if convert is changed
"""
equipment = load_equipment(EQPT_LIBRARY_NAME)
json_network = load_json(NETWORK_FILE_NAME)
@@ -145,9 +145,9 @@ def equipment():
'booster_variety_list':[]
}])
def test_restrictions(restrictions, equipment):
''' test that restriction is correctly applied if provided in eqpt_config and if no Edfa type
"""test that restriction is correctly applied if provided in eqpt_config and if no Edfa type
were provided in the network json
'''
"""
# add restrictions
equipment['Roadm']['default'].restrictions = restrictions
# build network
@@ -212,11 +212,11 @@ def test_restrictions(restrictions, equipment):
@pytest.mark.parametrize('power_dbm', [0, +1, -2])
@pytest.mark.parametrize('prev_node_type, effective_pch_out_db', [('edfa', -20.0), ('fused', -22.0)])
def test_roadm_target_power(prev_node_type, effective_pch_out_db, power_dbm):
''' Check that egress power of roadm is equal to target power if input power is greater
"""Check that egress power of roadm is equal to target power if input power is greater
than target power else, that it is equal to input power. Use a simple two hops A-B-C topology
for the test where the prev_node in ROADM B is either an amplifier or a fused, so that the target
power can not be met in this last case.
'''
"""
equipment = load_equipment(EQPT_LIBRARY_NAME)
json_network = load_json(TEST_DIR / 'data/twohops_roadm_power_test.json')
prev_node = next(n for n in json_network['elements'] if n['uid'] == 'west edfa in node B to ila2')

View File

@@ -9,10 +9,11 @@ are tested.
from pathlib import Path
from pandas import read_csv
from numpy.testing import assert_allclose
from numpy import array, genfromtxt
from numpy import array
import pytest
from gnpy.core.info import create_input_spectral_information, create_arbitrary_spectral_information, Pref, ReferenceCarrier
from gnpy.core.info import create_input_spectral_information, create_arbitrary_spectral_information, Pref, \
ReferenceCarrier
from gnpy.core.elements import Fiber, RamanFiber
from gnpy.core.parameters import SimParams
from gnpy.tools.json_io import load_json
@@ -23,13 +24,14 @@ TEST_DIR = Path(__file__).parent
def test_fiber():
""" Test the accuracy of propagating the Fiber."""
"""Test the accuracy of propagating the Fiber."""
fiber = Fiber(**load_json(TEST_DIR / 'data' / 'test_science_utils_fiber_config.json'))
# fix grid spectral information generation
spectral_info_input = create_input_spectral_information(f_min=191.3e12, f_max=196.1e12, roll_off=0.15,
baud_rate=32e9, power=1e-3, spacing=50e9, tx_osnr=40.0,
ref_carrier=ReferenceCarrier(baud_rate=32e9, slot_width=50e9))
ref_carrier=
ReferenceCarrier(baud_rate=32e9, slot_width=50e9))
# propagation
spectral_info_out = fiber(spectral_info_input)
@@ -65,7 +67,7 @@ def test_fiber():
@pytest.mark.usefixtures('set_sim_params')
def test_raman_fiber():
""" Test the accuracy of propagating the RamanFiber."""
"""Test the accuracy of propagating the RamanFiber."""
# spectral information generation
spectral_info_input = create_input_spectral_information(f_min=191.3e12, f_max=196.1e12, roll_off=0.15,
baud_rate=32e9, power=1e-3, spacing=50e9, tx_osnr=40.0,
@@ -92,7 +94,7 @@ def test_raman_fiber():
(0.5, 81, "Lumped loss positions must be between 0 and the fiber length (80.0 km), boundaries excluded.")))
@pytest.mark.usefixtures('set_sim_params')
def test_fiber_lumped_losses(loss, position, errmsg, set_sim_params):
""" Lumped losses length sanity checking."""
"""Lumped losses length sanity checking."""
SimParams.set_params(load_json(TEST_DIR / 'data' / 'sim_params.json'))
fiber_dict = load_json(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber_config.json')
fiber_dict['params']['lumped_losses'] = [{'position': position, 'loss': loss}]
@@ -103,11 +105,12 @@ def test_fiber_lumped_losses(loss, position, errmsg, set_sim_params):
@pytest.mark.usefixtures('set_sim_params')
def test_fiber_lumped_losses_srs(set_sim_params):
""" Test the accuracy of Fiber with lumped losses propagation."""
"""Test the accuracy of Fiber with lumped losses propagation."""
# spectral information generation
spectral_info_input = create_input_spectral_information(f_min=191.3e12, f_max=196.1e12, roll_off=0.15,
baud_rate=32e9, power=1e-3, spacing=50e9, tx_osnr=40.0,
ref_carrier=ReferenceCarrier(baud_rate=32e9, slot_width=50e9))
ref_carrier=
ReferenceCarrier(baud_rate=32e9, slot_width=50e9))
SimParams.set_params(load_json(TEST_DIR / 'data' / 'sim_params.json'))
fiber = Fiber(**load_json(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber_config.json'))
@@ -118,18 +121,18 @@ def test_fiber_lumped_losses_srs(set_sim_params):
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(
spectral_info_input, fiber)
power_profile = stimulated_raman_scattering.power_profile
expected_power_profile = genfromtxt(TEST_DIR / 'data' / 'test_lumped_losses_fiber_no_pumps.csv', delimiter=',')
expected_power_profile = read_csv(TEST_DIR / 'data' / 'test_lumped_losses_fiber_no_pumps.csv', header=None)
assert_allclose(power_profile, expected_power_profile, rtol=1e-3)
# with Raman pumps
expected_power_profile = genfromtxt(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber.csv', delimiter=',')
expected_power_profile = read_csv(TEST_DIR / 'data' / 'test_lumped_losses_raman_fiber.csv', header=None)
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(
spectral_info_input, raman_fiber)
power_profile = stimulated_raman_scattering.power_profile
assert_allclose(power_profile, expected_power_profile, rtol=1e-3)
# without Stimulated Raman Scattering
expected_power_profile = genfromtxt(TEST_DIR / 'data' / 'test_lumped_losses_fiber_no_raman.csv', delimiter=',')
expected_power_profile = read_csv(TEST_DIR / 'data' / 'test_lumped_losses_fiber_no_raman.csv', header=None)
stimulated_raman_scattering = RamanSolver.calculate_attenuation_profile(spectral_info_input, fiber)
power_profile = stimulated_raman_scattering.power_profile
assert_allclose(power_profile, expected_power_profile, rtol=1e-3)

View File

@@ -20,7 +20,8 @@ from gnpy.core.elements import Roadm, Transceiver
from gnpy.core.exceptions import ServiceError, SpectrumError
from gnpy.topology.request import compute_path_dsjctn, find_reversed_path, deduplicate_disjunctions, PathRequest
from gnpy.topology.spectrum_assignment import (build_oms_list, align_grids, nvalue_to_frequency,
bitmap_sum, Bitmap, spectrum_selection, pth_assign_spectrum)
bitmap_sum, Bitmap, spectrum_selection, pth_assign_spectrum,
build_path_oms_id_list, aggregate_oms_bitmap)
from gnpy.tools.json_io import (load_equipment, load_network, requests_from_json, disjunctions_from_json,
_check_one_request)
@@ -45,8 +46,7 @@ def equipment():
@pytest.fixture()
def setup(equipment):
""" common setup for tests: builds network, equipment and oms only once
"""
"""common setup for tests: builds network, equipment and oms only once"""
network = load_network(NETWORK_FILENAME, equipment)
spectrum = equipment['SI']['default']
p_db = spectrum.power_dbm
@@ -57,9 +57,9 @@ def setup(equipment):
def test_oms(setup):
""" tests that the OMS is between two ROADMs, that there is no ROADM or transceivers in the OMS
except end points, checks that the id of OMS is present in the element and that the element
OMS id is consistant
"""tests that the OMS is between two ROADMs, that there is no ROADM or transceivers in the OMS
except end points, checks that the id of OMS is present in the element and that the element
OMS id is consistant
"""
network, oms_list = setup
for oms in oms_list:
@@ -150,8 +150,7 @@ def test_aligned(nmin, nmax, setup):
@pytest.mark.parametrize('nval1', [0, 15, 24])
@pytest.mark.parametrize('nval2', [8, 12])
def test_assign_and_sum(nval1, nval2, setup):
""" checks that bitmap sum gives correct result
"""
"""checks that bitmap sum gives correct result"""
network, oms_list = setup
guardband = grid
mval = 4 # slot in 12.5GHz
@@ -198,8 +197,7 @@ def test_assign_and_sum(nval1, nval2, setup):
def test_bitmap_assignment(setup):
""" test that a bitmap can be assigned
"""
"""test that a bitmap can be assigned"""
network, oms_list = setup
random_oms = oms_list[2]
random_oms.assign_spectrum(13, 7)
@@ -216,8 +214,7 @@ def test_bitmap_assignment(setup):
@pytest.fixture()
def services(equipment):
""" common setup for service list: builds service only once
"""
"""common setup for service list: builds service only once"""
with open(SERVICE_FILENAME, encoding='utf-8') as my_f:
services = json.loads(my_f.read())
return services
@@ -225,25 +222,24 @@ def services(equipment):
@pytest.fixture()
def requests(equipment, services):
""" common setup for requests, builds requests list only once
"""
"""common setup for requests, builds requests list only once"""
requests = requests_from_json(services, equipment)
return requests
def test_spectrum_assignment_on_path(equipment, setup, requests):
""" test assignment functions on path and network
"""
"""test assignment functions on path and network"""
network, oms_list = setup
req = [deepcopy(requests[1])]
paths = compute_path_dsjctn(network, equipment, req, [])
first_path_oms = build_path_oms_id_list(paths[0])
print(req)
for nval in range(100):
req = [deepcopy(requests[1])]
(center_n, startn, stopn), path_oms = spectrum_selection(paths[0], oms_list, 4)
test_oms = aggregate_oms_bitmap(first_path_oms, oms_list)
center_n, startn, stopn = spectrum_selection(test_oms, 4)
pth_assign_spectrum(paths, req, oms_list, [find_reversed_path(paths[0])])
print(f'testing on following oms {path_oms}')
print(f'testing on following oms {first_path_oms}')
# check that only 96 channels are feasible
if nval >= 96:
print(center_n, startn, stopn)
@@ -256,13 +252,15 @@ def test_spectrum_assignment_on_path(equipment, setup, requests):
req = [requests[2]]
paths = compute_path_dsjctn(network, equipment, req, [])
(center_n, startn, stopn), path_oms = spectrum_selection(paths[0], oms_list, 4, 478)
second_path_oms = build_path_oms_id_list(paths[0])
test_oms = aggregate_oms_bitmap(second_path_oms, oms_list)
center_n, startn, stopn = spectrum_selection(test_oms, 4, 478)
print(oms_list[0].spectrum_bitmap.freq_index_max)
print(oms_list[0])
print(center_n, startn, stopn)
print('spectrum selection error: should be None')
assert center_n is None and startn is None and stopn is None
(center_n, startn, stopn), path_oms = spectrum_selection(paths[0], oms_list, 4, 477)
center_n, startn, stopn = spectrum_selection(test_oms, 4, 477)
print(center_n, startn, stopn)
print('spectrum selection error should not be None')
assert center_n is not None and startn is not None and stopn is not None
@@ -270,8 +268,7 @@ def test_spectrum_assignment_on_path(equipment, setup, requests):
@pytest.fixture()
def request_set():
""" creates default request dict
"""
"""creates default request dict"""
return {
'request_id': '0',
'source': 'trx a',
@@ -295,29 +292,28 @@ def request_set():
'min_spacing': 37.5e9,
'nb_channel': None,
'power': 0,
'path_bandwidth': 800e9}
'path_bandwidth': 800e9,
'equalization_offset_db': 0}
def test_freq_slot_exist(setup, equipment, request_set):
""" test that assignment works even if effective_freq_slot is not populated
"""
"""test that assignment works even if effective_freq_slot is not populated"""
network, oms_list = setup
params = request_set
params['effective_freq_slot'] = None
params['effective_freq_slot'] = [{'N': None, 'M': None}]
rqs = [PathRequest(**params)]
paths = compute_path_dsjctn(network, equipment, rqs, [])
pth_assign_spectrum(paths, rqs, oms_list, [find_reversed_path(paths[0])])
assert rqs[0].N == -256
assert rqs[0].M == 32
assert rqs[0].N == [-256]
assert rqs[0].M == [32]
def test_inconsistant_freq_slot(setup, equipment, request_set):
""" test that an inconsistant M correctly raises an error
"""
"""test that an inconsistant M correctly raises an error"""
network, oms_list = setup
params = request_set
# minimum required nb of slots is 32 (800Gbit/100Gbit/s channels each occupying 50GHz ie 4 slots)
params['effective_freq_slot'] = {'N': 0, 'M': 4}
params['effective_freq_slot'] = [{'N': 0, 'M': 4}]
with pytest.raises(ServiceError):
_check_one_request(params, 196.05e12)
params['trx_mode'] = None
@@ -327,27 +323,59 @@ def test_inconsistant_freq_slot(setup, equipment, request_set):
assert rqs[0].blocking_reason == 'NOT_ENOUGH_RESERVED_SPECTRUM'
@pytest.mark.parametrize('n, m, final_n, final_m, blocking_reason', [
@pytest.mark.parametrize('req_n, req_m, final_n, final_m, blocking_reason, raises_error', [
# regular requests that should be correctly assigned:
(-100, 32, -100, 32, None),
(150, 50, 150, 50, None),
([-100], [32], [-100], [32], None, False),
([150], [50], [150], [50], None, False),
# if n is None, there should be an assignment (enough spectrum cases)
# and the center frequency should be set on the lower part of the spectrum based on m value if it exists
# or based on 32
(None, 32, -256, 32, None),
(None, 40, -248, 40, None),
(-100, None, -100, 32, None),
(None, None, -256, 32, None),
([None], [32], [-256], [32], None, False),
([None], [40], [-248], [40], None, False),
([-100], [None], [-100], [32], None, False),
([None], [None], [-256], [32], None, False),
# -280 and 60 center indexes should result in unfeasible spectrum, either out of band or
# overlapping with occupied spectrum. The requested spectrum is not available
(-280, None, None, None, 'NO_SPECTRUM'),
(-60, 40, None, None, 'NO_SPECTRUM'),
([None], [300], None, None, 'NO_SPECTRUM', False),
([-280], [None], None, None, 'NO_SPECTRUM', False),
([-60], [40], None, None, 'NO_SPECTRUM', False),
# raises service error: M value too small
([-60], [3], None, None, 'NOT_ENOUGH_RESERVED_SPECTRUM', True),
# 20 is smaller than min 32 required nb of slots so should also be blocked
(-60, 20, None, None, 'NOT_ENOUGH_RESERVED_SPECTRUM')
])
def test_n_m_requests(setup, equipment, n, m, final_n, final_m, blocking_reason, request_set):
""" test that various N and M values for a request end up with the correct path assgnment
"""
([-60], [20], None, None, 'NOT_ENOUGH_RESERVED_SPECTRUM', False),
# multiple assignments
([-100, -164], [16, 16], [-100, -164], [16, 16], None, False),
([-100, -164], [32, 32], [-100, -164], [32, 32], None, False),
([-100, -164], [None, None], [-164], [32], None, False),
([None, None], [16, 16], [-272, -240], [16, 16], None, False),
([None, None, None], [16, 16, None], [-272, -240], [16, 16], None, False),
([None, None], [None, None], [-256], [32], None, False),
([-272, None], [16, 16], [-272, -240], [16, 16], None, False),
([-272, 100], [None, 16], [-272, 100], [16, 16], None, False),
# first assign defined Ms whatever the N (but order them), and then uses imposed N. Fill in with the max
# available nb of slots (centered on N).
([-88, -100, -116, None], [8, None, 12, None], [-88, -100, -116, -280], [8, 4, 12, 8], None, False),
# If no M is defined, uses th Ns to fill in with the max possible nb of slots (with respecte to request,
# here it is 32 slots)
([-88, -106, -116, None], [None, None, None, None], [-116], [32], None, False),
# if one defined N, M is not applicable then blocks the spectrum (even f other slots are OK)
# only 2 slots remains between -104 (-100 - 4) and -108 (-112 + 4). So (-106, None) is not feasible, because min
# required M is 4 for Voyager, Mode 1
([-100, -106, -112], [4, None, 4], None, None, 'NO_SPECTRUM', False),
# required nb of channels is 8 with 4 slots each. Next two spectrum are not providing enough spectrum
# raises service error: not enough nb of channels
([-88, -100, -116], [4, 4, 4], None, None, 'NOT_ENOUGH_RESERVED_SPECTRUM', True),
([-88, -100, -116], [4, None, 4], None, None, 'NO_SPECTRUM', False),
# only 4 slots remains between -96 (-88 -8) and -104 (-116 + 12), and centered on -100, so N = -101 is not
# feasible whatever the M.
([-88, -101, -116, None], [8, 4, 12, None], None, None, 'NO_SPECTRUM', False),
([-88, -101, -116, -250], [4, 4, 12, 12], None, None, 'NO_SPECTRUM', False),
([-88, -101, -116, None], [8, None, 12, None], None, None, 'NO_SPECTRUM', False),
# raises service error: slots overlap
([-88, -81, -116, -136], [8, 8, 12, 8], None, None, 'NO_SPECTRUM', True),
])
def test_n_m_requests(setup, equipment, req_n, req_m, final_n, final_m, blocking_reason, raises_error, request_set):
"""test that various N and M values for a request end up with the correct path assignment"""
network, oms_list = setup
# add an occupation on one of the span of the expected path OMS list on both directions
# as defined by its offsets within the OMS list: [17, 20, 13, 22] and reversed path [19, 16, 21, 26]
@@ -356,7 +384,10 @@ def test_n_m_requests(setup, equipment, n, m, final_n, final_m, blocking_reason,
some_oms = oms_list[expected_oms[3]]
some_oms.assign_spectrum(-30, 32) # means that spectrum is occupied from indexes -62 to 1 on reversed path
params = request_set
params['effective_freq_slot'] = {'N': n, 'M': m}
params['effective_freq_slot'] = [{'N': n, 'M': m} for n, m in zip(req_n, req_m)]
if raises_error:
with pytest.raises(ServiceError):
_check_one_request(params, 196.3e12)
rqs = [PathRequest(**params)]
paths = compute_path_dsjctn(network, equipment, rqs, [])
@@ -372,9 +403,7 @@ def test_n_m_requests(setup, equipment, n, m, final_n, final_m, blocking_reason,
def test_reversed_direction(equipment, setup, requests, services):
""" checks that if spectrum is selected on one direction it is also selected on reversed
direction
"""
"""checks that if spectrum is selected on one direction it is also selected on reversed direction"""
network, oms_list = setup
dsjn = disjunctions_from_json(services)
dsjn = deduplicate_disjunctions(dsjn)
@@ -392,8 +421,9 @@ def test_reversed_direction(equipment, setup, requests, services):
if pth:
number_wl = ceil(requests[i].path_bandwidth / requests[i].bit_rate)
requested_m = ceil(requests[i].spacing / slot) * number_wl
(center_n, startn, stopn), path_oms = spectrum_selection(pth, oms_list, requested_m,
requested_n=None)
path_oms = build_path_oms_id_list(pth)
test_oms = aggregate_oms_bitmap(path_oms, oms_list)
center_n, startn, stopn = spectrum_selection(test_oms, requested_m, requested_n=None)
spectrum_list.append([center_n, startn, stopn])
else:
spectrum_list.append([])