port_probe.py : beginning of HE calculations

Signed-off-by: Chuck SmileyRekiere <chuck.smileyrekiere@candelatech.com>
This commit is contained in:
Chuck SmileyRekiere
2021-11-17 04:12:33 -07:00
parent 1a6881edf2
commit c5f08b9c50

View File

@@ -72,6 +72,9 @@ class ProbePort(LFCliBase):
signals = [x.strip('\t').split('\t') for x in text if 'signal' in x]
keys = [x[0].strip(' ').strip(':') for x in signals]
values = [x[1].strip('dBm').strip(' ') for x in signals]
# if self.debug:
print("signals keys: {keys}".format(keys=keys))
print("signals values: {values}".format(values=values))
self.signals = dict(zip(keys, values))
tx_bitrate = [x for x in text if 'tx bitrate' in x][0].replace('\t', ' ')
@@ -538,3 +541,201 @@ class ProbePort(LFCliBase):
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long
###########################################
#
# HE no OFDMA - changes the calculations
#
###########################################
def calculated_data_rate_tx_HE(self):
# TODO compare with standard for 40 MHz if values change
N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
bw = 20
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
try:
bw = int(self.tx_mhz)
except BaseException:
print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.tx_mhz = 20
# NSS
N_ss = self.tx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.tx_mcs == 0 :
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.tx_mcs == 1 :
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.tx_mcs == 2 :
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.tx_mcs == 3 :
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.tx_mcs == 4 :
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.tx_mcs == 5 :
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.tx_mcs == 6 :
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.tx_mcs == 7 :
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.tx_mcs == 8 :
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.tx_mcs == 9 :
R = 5 / 6
N_bpscs = 8
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
self.tx_gi = T_gi_short
else:
self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
self.tx_gi = T_gi_long
def calculated_data_rate_rx_HE(self):
N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
if self.rx_mgt_6Mb_frame is True:
self.rx_mgt_6Mg_frame = False
self.rx_data_rate_gi_short_Mbps = None
self.rx_data_rate_gi_long_Mbps = None
else:
try:
bw = int(self.rx_mhz)
except BaseException:
print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
if bw == 20:
N_sd = 52
elif bw == 40:
N_sd = 108
elif bw == 80:
N_sd = 234
elif bw == 160:
N_sd = 468
else:
print("For HT if cannot be read bw is assumed to be 20")
N_sd = 52
self.rx_mhz = 20
# NSS
N_ss = self.rx_nss
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0 :
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1 :
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2 :
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3 :
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4 :
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5 :
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6 :
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7 :
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.rx_mcs == 8 :
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.rx_mcs == 9 :
R = 5 / 6
N_bpscs = 8
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long