mirror of
				https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
				synced 2025-11-03 20:27:54 +00:00 
			
		
		
		
	port_probe.py : beginning of HE calculations
Signed-off-by: Chuck SmileyRekiere <chuck.smileyrekiere@candelatech.com>
This commit is contained in:
		@@ -72,6 +72,9 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        signals = [x.strip('\t').split('\t') for x in text if 'signal' in x]
 | 
					        signals = [x.strip('\t').split('\t') for x in text if 'signal' in x]
 | 
				
			||||||
        keys = [x[0].strip(' ').strip(':') for x in signals]
 | 
					        keys = [x[0].strip(' ').strip(':') for x in signals]
 | 
				
			||||||
        values = [x[1].strip('dBm').strip(' ') for x in signals]
 | 
					        values = [x[1].strip('dBm').strip(' ') for x in signals]
 | 
				
			||||||
 | 
					        # if self.debug:
 | 
				
			||||||
 | 
					        print("signals keys: {keys}".format(keys=keys))
 | 
				
			||||||
 | 
					        print("signals values: {values}".format(values=values))
 | 
				
			||||||
        self.signals = dict(zip(keys, values))
 | 
					        self.signals = dict(zip(keys, values))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        tx_bitrate = [x for x in text if 'tx bitrate' in x][0].replace('\t', ' ')
 | 
					        tx_bitrate = [x for x in text if 'tx bitrate' in x][0].replace('\t', ' ')
 | 
				
			||||||
@@ -538,3 +541,201 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
            else:
 | 
					            else:
 | 
				
			||||||
                self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
					                self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
				
			||||||
                self.rx_gi = T_gi_long
 | 
					                self.rx_gi = T_gi_long
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        ###########################################
 | 
				
			||||||
 | 
					        #
 | 
				
			||||||
 | 
					        # HE no OFDMA - changes the calculations
 | 
				
			||||||
 | 
					        #
 | 
				
			||||||
 | 
					        ###########################################
 | 
				
			||||||
 | 
					    def calculated_data_rate_tx_HE(self):
 | 
				
			||||||
 | 
					        # TODO compare with standard for 40 MHz if values change
 | 
				
			||||||
 | 
					        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
				
			||||||
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
 | 
					        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
				
			||||||
 | 
					        T_gi_short = .4 * 10**-6  # Guard index.
 | 
				
			||||||
 | 
					        T_gi_long = .8 * 10**-6  # Guard index.
 | 
				
			||||||
 | 
					        bw = 20 
 | 
				
			||||||
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            bw = int(self.tx_mhz)
 | 
				
			||||||
 | 
					        except BaseException:
 | 
				
			||||||
 | 
					            print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
 | 
				
			||||||
 | 
					        if bw == 20:
 | 
				
			||||||
 | 
					            N_sd = 52
 | 
				
			||||||
 | 
					        elif bw == 40:
 | 
				
			||||||
 | 
					            N_sd = 108
 | 
				
			||||||
 | 
					        elif bw == 80:
 | 
				
			||||||
 | 
					            N_sd = 234
 | 
				
			||||||
 | 
					        elif bw == 160:
 | 
				
			||||||
 | 
					            N_sd = 468
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            print("For HT if cannot be read bw is assumed to be 20")
 | 
				
			||||||
 | 
					            N_sd = 52
 | 
				
			||||||
 | 
					            self.tx_mhz = 20
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # NSS
 | 
				
			||||||
 | 
					        N_ss = self.tx_nss
 | 
				
			||||||
 | 
					        # MCS (Modulation Coding Scheme) determines the constands
 | 
				
			||||||
 | 
					        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
				
			||||||
 | 
					        # Only for HT configuration
 | 
				
			||||||
 | 
					        if self.tx_mcs == 0 :
 | 
				
			||||||
 | 
					            R = 1 / 2
 | 
				
			||||||
 | 
					            N_bpscs = 1
 | 
				
			||||||
 | 
					        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 1 :
 | 
				
			||||||
 | 
					            R = 1 / 2
 | 
				
			||||||
 | 
					            N_bpscs = 2
 | 
				
			||||||
 | 
					        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 2 :
 | 
				
			||||||
 | 
					            R = 3 / 4
 | 
				
			||||||
 | 
					            N_bpscs = 2
 | 
				
			||||||
 | 
					        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 3 :
 | 
				
			||||||
 | 
					            R = 1 / 2
 | 
				
			||||||
 | 
					            N_bpscs = 4
 | 
				
			||||||
 | 
					        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 4 :
 | 
				
			||||||
 | 
					            R = 3 / 4
 | 
				
			||||||
 | 
					            N_bpscs = 4
 | 
				
			||||||
 | 
					        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 5 :
 | 
				
			||||||
 | 
					            R = 2 / 3
 | 
				
			||||||
 | 
					            N_bpscs = 6
 | 
				
			||||||
 | 
					        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 6 :
 | 
				
			||||||
 | 
					            R = 3 / 4
 | 
				
			||||||
 | 
					            N_bpscs = 6
 | 
				
			||||||
 | 
					        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 7 :
 | 
				
			||||||
 | 
					            R = 5 / 6
 | 
				
			||||||
 | 
					            N_bpscs = 6
 | 
				
			||||||
 | 
					        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 8 :
 | 
				
			||||||
 | 
					            R = 3 / 4
 | 
				
			||||||
 | 
					            N_bpscs = 8
 | 
				
			||||||
 | 
					        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
				
			||||||
 | 
					        elif self.tx_mcs == 9 :
 | 
				
			||||||
 | 
					            R = 5 / 6
 | 
				
			||||||
 | 
					            N_bpscs = 8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
 | 
					            mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
 | 
					        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
 | 
					            mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
 | 
					        print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
 | 
				
			||||||
 | 
					            self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
 | 
				
			||||||
 | 
					            self.tx_gi = T_gi_short
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
 | 
				
			||||||
 | 
					            self.tx_gi = T_gi_long
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def calculated_data_rate_rx_HE(self):
 | 
				
			||||||
 | 
					        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
				
			||||||
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
 | 
					        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
				
			||||||
 | 
					        T_gi_short = .4 * 10**-6  # Guard index.
 | 
				
			||||||
 | 
					        T_gi_long = .8 * 10**-6  # Guard index.
 | 
				
			||||||
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
 | 
					        if self.rx_mgt_6Mb_frame is True:
 | 
				
			||||||
 | 
					            self.rx_mgt_6Mg_frame = False
 | 
				
			||||||
 | 
					            self.rx_data_rate_gi_short_Mbps = None
 | 
				
			||||||
 | 
					            self.rx_data_rate_gi_long_Mbps = None
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                bw = int(self.rx_mhz)
 | 
				
			||||||
 | 
					            except BaseException:
 | 
				
			||||||
 | 
					                print("port_probe.py:  {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
 | 
				
			||||||
 | 
					            if bw == 20:
 | 
				
			||||||
 | 
					                N_sd = 52
 | 
				
			||||||
 | 
					            elif bw == 40:
 | 
				
			||||||
 | 
					                N_sd = 108
 | 
				
			||||||
 | 
					            elif bw == 80:
 | 
				
			||||||
 | 
					                N_sd = 234
 | 
				
			||||||
 | 
					            elif bw == 160:
 | 
				
			||||||
 | 
					                N_sd = 468
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                print("For HT if cannot be read bw is assumed to be 20")
 | 
				
			||||||
 | 
					                N_sd = 52
 | 
				
			||||||
 | 
					                self.rx_mhz = 20
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # NSS
 | 
				
			||||||
 | 
					            N_ss = self.rx_nss
 | 
				
			||||||
 | 
					            # MCS (Modulation Coding Scheme) determines the constands
 | 
				
			||||||
 | 
					            # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
				
			||||||
 | 
					            # Only for HT configuration
 | 
				
			||||||
 | 
					            if self.rx_mcs == 0 :
 | 
				
			||||||
 | 
					                R = 1 / 2
 | 
				
			||||||
 | 
					                N_bpscs = 1
 | 
				
			||||||
 | 
					            # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 1 :
 | 
				
			||||||
 | 
					                R = 1 / 2
 | 
				
			||||||
 | 
					                N_bpscs = 2
 | 
				
			||||||
 | 
					            # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 2 :
 | 
				
			||||||
 | 
					                R = 3 / 4
 | 
				
			||||||
 | 
					                N_bpscs = 2
 | 
				
			||||||
 | 
					            # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 3 :
 | 
				
			||||||
 | 
					                R = 1 / 2
 | 
				
			||||||
 | 
					                N_bpscs = 4
 | 
				
			||||||
 | 
					            # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 4 :
 | 
				
			||||||
 | 
					                R = 3 / 4
 | 
				
			||||||
 | 
					                N_bpscs = 4
 | 
				
			||||||
 | 
					            # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 5 :
 | 
				
			||||||
 | 
					                R = 2 / 3
 | 
				
			||||||
 | 
					                N_bpscs = 6
 | 
				
			||||||
 | 
					            # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 6 :
 | 
				
			||||||
 | 
					                R = 3 / 4
 | 
				
			||||||
 | 
					                N_bpscs = 6
 | 
				
			||||||
 | 
					            # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 7 :
 | 
				
			||||||
 | 
					                R = 5 / 6
 | 
				
			||||||
 | 
					                N_bpscs = 6
 | 
				
			||||||
 | 
					            # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 8 :
 | 
				
			||||||
 | 
					                R = 3 / 4
 | 
				
			||||||
 | 
					                N_bpscs = 8
 | 
				
			||||||
 | 
					            # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
				
			||||||
 | 
					            elif self.rx_mcs == 9 :
 | 
				
			||||||
 | 
					                R = 5 / 6
 | 
				
			||||||
 | 
					                N_bpscs = 8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
 | 
					                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
 | 
					            print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
 | 
					                mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
 | 
					            print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
				
			||||||
 | 
					                self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
				
			||||||
 | 
					                self.rx_gi = T_gi_short
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
				
			||||||
 | 
					                self.rx_gi = T_gi_long
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user