mirror of
				https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
				synced 2025-10-30 18:27:53 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			758 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			758 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| import importlib
 | |
| from time import sleep
 | |
| # import pandas as pd
 | |
| import sys
 | |
| import os
 | |
| from pprint import pprint
 | |
| 
 | |
| sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../")))
 | |
| 
 | |
| lfcli_base = importlib.import_module("py-json.LANforge.lfcli_base")
 | |
| LFCliBase = lfcli_base.LFCliBase
 | |
| 
 | |
| 
 | |
| # Probe data can change frequently. It is recommended to update
 | |
| 
 | |
| class ProbePort(LFCliBase):
 | |
|     def __init__(self,
 | |
|                  lfhost=None,
 | |
|                  lfport='8080',
 | |
|                  debug=False,
 | |
|                  eid_str=None):
 | |
|         super().__init__(_lfjson_host=lfhost,
 | |
|                          _lfjson_port=lfport,
 | |
|                          _debug=debug)
 | |
|         hunks = eid_str.split(".")
 | |
|         self.eid_str = eid_str
 | |
|         self.probepath = "/probe/1/%s/%s" % (hunks[-2], hunks[-1])
 | |
|         self.response = None
 | |
|         self.signals = None
 | |
|         self.he = None
 | |
|         self.rx_mgt_6Mb_frame = None
 | |
| 
 | |
|         self.he = False
 | |
|         self.ofdma = False
 | |
| 
 | |
|         self.tx_bitrate = None
 | |
|         self.tx_mcs = None
 | |
|         self.tx_nss = None
 | |
|         self.tx_mbit = None
 | |
|         self.tx_mhz = None
 | |
|         self.tx_gi = None
 | |
|         self.tx_duration = None
 | |
|         self.tx_mbit_calc = None
 | |
|         self.tx_data_rate_gi_short_Mbps = None
 | |
|         self.tx_data_rate_gi_long_Mbps = None
 | |
| 
 | |
|         self.rx_bitrate = None
 | |
|         self.rx_mcs = None
 | |
|         self.rx_nss = None
 | |
|         self.rx_mbit = None
 | |
|         self.rx_mhz = None
 | |
|         self.rx_gi = None
 | |
|         self.rx_duration = None
 | |
|         self.rx_mbit_calc = None
 | |
|         self.rx_data_rate_gi_short_Mbps = None
 | |
|         self.rx_data_rate_gi_long_Mbps = None
 | |
| 
 | |
|         self.data_rate = None
 | |
|         # folder = os.path.dirname(__file__)
 | |
| 
 | |
|     def refreshProbe(self):
 | |
|         self.json_post(self.probepath, {})
 | |
|         sleep(0.2)
 | |
|         response = self.json_get(self.probepath)
 | |
|         self.response = response
 | |
|         if self.debug:
 | |
|             print("probepath (eid): {probepath}".format(probepath=self.probepath))
 | |
|         #    pprint("Probe response: {response}".format(response=self.response))
 | |
|         text = self.response['probe-results'][0][self.eid_str]['probe results'].split('\n')
 | |
|         signals = [x.strip('\t').split('\t') for x in text if 'signal' in x]
 | |
|         keys = [x[0].strip(' ').strip(':') for x in signals]
 | |
|         values = [x[1].strip('dBm').strip(' ') for x in signals]
 | |
|         # if self.debug:
 | |
|         print("signals keys: {keys}".format(keys=keys))
 | |
|         print("signals values: {values}".format(values=values))
 | |
|         self.signals = dict(zip(keys, values))
 | |
| 
 | |
|         tx_bitrate = [x for x in text if 'tx bitrate' in x][0].replace('\t', ' ')
 | |
|         if 'HE' in tx_bitrate:
 | |
|             print("HE not supported ")
 | |
|         print("tx_bitrate {tx_bitrate}".format(tx_bitrate=tx_bitrate))
 | |
|         self.tx_bitrate = tx_bitrate.split(':')[-1].strip(' ')
 | |
|         if 'MHz' in tx_bitrate:
 | |
|             self.tx_mhz = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(
 | |
|                 ' ')
 | |
|             print("tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz))
 | |
| 
 | |
|         try:
 | |
|             tx_mcs = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split(':')[1].strip('\t')
 | |
|             self.tx_mcs = int(tx_mcs.split('MCS')[1].strip(' ').split(' ')[0])
 | |
|             print("self.tx_mcs {tx_mcs}".format(tx_mcs=self.tx_mcs))
 | |
|             try:
 | |
|                 self.tx_nss = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('NSS')[1].strip(' ')
 | |
|             except BaseException:
 | |
|                 # nss is not present need to derive from MCS for HT
 | |
|                 if 0 <= self.tx_mcs <= 7:
 | |
|                     self.tx_nss = 1
 | |
|                 elif 8 <= self.tx_mcs <= 15:
 | |
|                     self.tx_nss = 2
 | |
|                 elif 16 <= self.tx_mcs <= 23:
 | |
|                     self.tx_nss = 3
 | |
|                 elif 24 <= self.tx_mcs <= 31:
 | |
|                     self.tx_nss = 4
 | |
|             print("tx_nss {tx_nss}".format(tx_nss=self.tx_nss))
 | |
|             self.tx_mbit = float(self.tx_bitrate.split(' ')[0])
 | |
|             print("tx_mbit {tx_mbit}".format(tx_mbit=self.tx_mbit))
 | |
|             self.calculated_data_rate_tx_HT()
 | |
| 
 | |
|         except IndexError as error:
 | |
|             print(error)
 | |
| 
 | |
|         rx_bitrate = [x for x in text if 'rx bitrate' in x][0].replace('\t', ' ')
 | |
|         print("rx_bitrate {rx_bitrate}".format(rx_bitrate=rx_bitrate))
 | |
|         self.rx_bitrate = rx_bitrate.split(':')[-1].strip(' ')
 | |
|         print("self.rx_bitrate {rx_bitrate}".format(rx_bitrate=self.rx_bitrate))
 | |
|         # rx will received : 6Mbps encoding is legacy frame
 | |
|         try:
 | |
|             if 'MHz' in rx_bitrate:
 | |
|                 self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[
 | |
|                     -1].strip(' ')
 | |
|                 print("rx_mhz {rx_mhz}".format(rx_mhz=self.rx_mhz))
 | |
|                 self.rx_mgt_6Mb_frame = False
 | |
|             else:
 | |
|                 self.rx_mgt_6Mb_frame = True
 | |
| 
 | |
|         except BaseException:
 | |
|             self.rx_mgt_6Mb_frame = True
 | |
|             print("received rx_mgt_6Mb_frame")
 | |
| 
 | |
|         try:
 | |
|             rx_mcs = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split(':')[1].strip('\t')
 | |
|             self.rx_mcs = int(rx_mcs.split('MCS')[1].strip(' ').split(' ')[0])
 | |
|             print("self.rx_mcs {rx_mcs}".format(rx_mcs=self.rx_mcs))
 | |
|             try:
 | |
|                 self.rx_nss = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('NSS')[1].strip(' ')
 | |
|             except BaseException:
 | |
|                 # nss is not present need to derive from MCS for HT
 | |
|                 if 0 <= self.rx_mcs <= 7:
 | |
|                     self.rx_nss = 1
 | |
|                 elif 8 <= self.rx_mcs <= 15:
 | |
|                     self.rx_nss = 2
 | |
|                 elif 16 <= self.rx_mcs <= 23:
 | |
|                     self.rx_nss = 3
 | |
|                 elif 24 <= self.rx_mcs <= 31:
 | |
|                     self.rx_nss = 4
 | |
| 
 | |
|             self.rx_mbit = self.rx_bitrate.split(' ')[0]
 | |
|             print("rx_nss {rx_nss}".format(rx_nss=self.rx_nss))
 | |
|             self.rx_mbit = float(self.rx_bitrate.split(' ')[0])
 | |
|             print("rx_mbit {rx_mbit}".format(rx_mbit=self.rx_mbit))
 | |
|             self.calculated_data_rate_rx_HT()
 | |
|             if 'HE not supported' in [x.strip('\t') for x in text if 'HE' in x]:
 | |
|                 self.he = False
 | |
|             else:
 | |
|                 self.he = True
 | |
|         except IndexError as error:
 | |
|             print(error)
 | |
| 
 | |
|     def getSignalAvgCombined(self):
 | |
|         return self.signals['signal avg'].split(' ')[0]
 | |
| 
 | |
|     def getSignalAvgPerChain(self):
 | |
|         return ' '.join(self.signals['signal avg'].split(' ')[1:])
 | |
| 
 | |
|     def getSignalCombined(self):
 | |
|         return self.signals['signal'].split(' ')[0]
 | |
| 
 | |
|     def getSignalPerChain(self):
 | |
|         return ' '.join(self.signals['signal'].split(' ')[1:])
 | |
| 
 | |
|     def getBeaconSignalAvg(self):
 | |
|         return ' '.join(self.signals['beacon signal avg']).replace(' ', '')
 | |
| 
 | |
|     def calculated_data_rate_tx_HT(self):
 | |
|         # TODO compare with standard for 40 MHz if values change
 | |
|         N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | |
|         N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | |
|         R = 0  # coding ,  (Determined by the modulation, MCS )
 | |
|         N_ss = 0  # Number of Spatial Streams
 | |
|         T_dft = 3.2 * 10 ** -6  # Constant for HT
 | |
|         T_gi_short = .4 * 10 ** -6  # Guard index.
 | |
|         T_gi_long = .8 * 10 ** -6  # Guard index.
 | |
|         bw = 20
 | |
|         # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | |
|         # the nubmer of Data Subcarriers is based on modulation and bandwith
 | |
|         try:
 | |
|             bw = int(self.tx_mhz)
 | |
|         except BaseException:
 | |
|             print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
 | |
| 
 | |
|         print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
 | |
|         if bw == 20:
 | |
|             N_sd = 52
 | |
|         elif bw == 40:
 | |
|             N_sd = 108
 | |
|         elif bw == 80:
 | |
|             N_sd = 234
 | |
|         elif bw == 160:
 | |
|             N_sd = 468
 | |
|         else:
 | |
|             print("For HT if cannot be read bw is assumed to be 20")
 | |
|             N_sd = 52
 | |
|             self.tx_mhz = 20
 | |
| 
 | |
|         # NSS
 | |
|         N_ss = self.tx_nss
 | |
|         # MCS (Modulation Coding Scheme) determines the constands
 | |
|         # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | |
|         # Only for HT configuration
 | |
|         if self.tx_mcs == 0 or self.tx_mcs == 8 or self.tx_mcs == 16 or self.tx_mcs == 24:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 1
 | |
|         # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | |
|         elif self.tx_mcs == 1 or self.tx_mcs == 9 or self.tx_mcs == 17 or self.tx_mcs == 25:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 2
 | |
|         # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | |
|         elif self.tx_mcs == 2 or self.tx_mcs == 10 or self.tx_mcs == 18 or self.tx_mcs == 26:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 2
 | |
|         # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | |
|         elif self.tx_mcs == 3 or self.tx_mcs == 11 or self.tx_mcs == 19 or self.tx_mcs == 27:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 4
 | |
|         # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | |
|         elif self.tx_mcs == 4 or self.tx_mcs == 12 or self.tx_mcs == 20 or self.tx_mcs == 28:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 4
 | |
|         # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 5 or self.tx_mcs == 13 or self.tx_mcs == 21 or self.tx_mcs == 29:
 | |
|             R = 2 / 3
 | |
|             N_bpscs = 6
 | |
|         # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 6 or self.tx_mcs == 14 or self.tx_mcs == 22 or self.tx_mcs == 30:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 6
 | |
|         # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 7 or self.tx_mcs == 15 or self.tx_mcs == 23 or self.tx_mcs == 31:
 | |
|             R = 5 / 6
 | |
|             N_bpscs = 6
 | |
| 
 | |
|         print(
 | |
|             "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | |
|                 mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | |
| 
 | |
|         self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | |
|         print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | |
| 
 | |
|         print(
 | |
|             "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | |
|                 mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | |
| 
 | |
|         self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | |
|         print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
 | |
| 
 | |
|         if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
 | |
|             self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
 | |
|             self.tx_gi = T_gi_short
 | |
|         else:
 | |
|             self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
 | |
|             self.tx_gi = T_gi_long
 | |
| 
 | |
|     def calculated_data_rate_rx_HT(self):
 | |
|         N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | |
|         N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | |
|         R = 0  # coding ,  (Determined by the modulation, MCS )
 | |
|         N_ss = 0  # Number of Spatial Streams
 | |
|         T_dft = 3.2 * 10 ** -6  # Constant for HT
 | |
|         T_gi_short = .4 * 10 ** -6  # Guard index.
 | |
|         T_gi_long = .8 * 10 ** -6  # Guard index.
 | |
|         # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | |
|         # the nubmer of Data Subcarriers is based on modulation and bandwith
 | |
|         if self.rx_mgt_6Mb_frame:
 | |
|             self.rx_mgt_6Mg_frame = False
 | |
|             self.rx_data_rate_gi_short_Mbps = None
 | |
|             self.rx_data_rate_gi_long_Mbps = None
 | |
|         else:
 | |
|             try:
 | |
|                 bw = int(self.rx_mhz)
 | |
|             except BaseException:
 | |
|                 print("port_probe.py:  {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
 | |
| 
 | |
|             print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
 | |
|             if bw == 20:
 | |
|                 N_sd = 52
 | |
|             elif bw == 40:
 | |
|                 N_sd = 108
 | |
|             elif bw == 80:
 | |
|                 N_sd = 234
 | |
|             elif bw == 160:
 | |
|                 N_sd = 468
 | |
|             else:
 | |
|                 print("For HT if cannot be read bw is assumed to be 20")
 | |
|                 N_sd = 52
 | |
|                 self.rx_mhz = 20
 | |
| 
 | |
|             # NSS
 | |
|             N_ss = self.rx_nss
 | |
|             # MCS (Modulation Coding Scheme) determines the constands
 | |
|             # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | |
|             # Only for HT configuration
 | |
|             if self.rx_mcs == 0 or self.rx_mcs == 8 or self.rx_mcs == 16 or self.rx_mcs == 24:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 1
 | |
|             # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | |
|             elif self.rx_mcs == 1 or self.rx_mcs == 9 or self.rx_mcs == 17 or self.rx_mcs == 25:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 2
 | |
|             # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | |
|             elif self.rx_mcs == 2 or self.rx_mcs == 10 or self.rx_mcs == 18 or self.rx_mcs == 26:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 2
 | |
|             # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | |
|             elif self.rx_mcs == 3 or self.rx_mcs == 11 or self.rx_mcs == 19 or self.rx_mcs == 27:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 4
 | |
|             # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | |
|             elif self.rx_mcs == 4 or self.rx_mcs == 12 or self.rx_mcs == 20 or self.rx_mcs == 28:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 4
 | |
|             # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 5 or self.rx_mcs == 13 or self.rx_mcs == 21 or self.rx_mcs == 29:
 | |
|                 R = 2 / 3
 | |
|                 N_bpscs = 6
 | |
|             # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 6 or self.rx_mcs == 14 or self.rx_mcs == 22 or self.rx_mcs == 30:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 6
 | |
|             # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 7 or self.rx_mcs == 15 or self.rx_mcs == 23 or self.rx_mcs == 31:
 | |
|                 R = 5 / 6
 | |
|                 N_bpscs = 6
 | |
| 
 | |
|             print(
 | |
|                 "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | |
|                     mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | |
| 
 | |
|             self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | |
|             print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | |
| 
 | |
|             print(
 | |
|                 "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | |
|                     mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | |
| 
 | |
|             self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | |
|             print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | |
| 
 | |
|             if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | |
|                     self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | |
|                 self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | |
|                 self.rx_gi = T_gi_short
 | |
|             else:
 | |
|                 self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | |
|                 self.rx_gi = T_gi_long
 | |
| 
 | |
|     def calculated_data_rate_tx_VHT(self):
 | |
|         # TODO compare with standard for 40 MHz if values change
 | |
|         N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | |
|         N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | |
|         R = 0  # coding ,  (Determined by the modulation, MCS )
 | |
|         N_ss = 0  # Number of Spatial Streams
 | |
|         T_dft = 3.2 * 10 ** -6  # Constant for HT
 | |
|         T_gi_short = .4 * 10 ** -6  # Guard index.
 | |
|         T_gi_long = .8 * 10 ** -6  # Guard index.
 | |
|         bw = 20
 | |
|         # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | |
|         # the nubmer of Data Subcarriers is based on modulation and bandwith
 | |
|         try:
 | |
|             bw = int(self.tx_mhz)
 | |
|         except BaseException:
 | |
|             print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
 | |
| 
 | |
|         print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
 | |
|         if bw == 20:
 | |
|             N_sd = 52
 | |
|         elif bw == 40:
 | |
|             N_sd = 108
 | |
|         elif bw == 80:
 | |
|             N_sd = 234
 | |
|         elif bw == 160:
 | |
|             N_sd = 468
 | |
|         else:
 | |
|             print("For HT if cannot be read bw is assumed to be 20")
 | |
|             N_sd = 52
 | |
|             self.tx_mhz = 20
 | |
| 
 | |
|         # NSS
 | |
|         N_ss = self.tx_nss
 | |
|         # MCS (Modulation Coding Scheme) determines the constands
 | |
|         # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | |
|         # Only for HT configuration
 | |
|         if self.tx_mcs == 0:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 1
 | |
|         # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | |
|         elif self.tx_mcs == 1:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 2
 | |
|         # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | |
|         elif self.tx_mcs == 2:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 2
 | |
|         # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | |
|         elif self.tx_mcs == 3:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 4
 | |
|         # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | |
|         elif self.tx_mcs == 4:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 4
 | |
|         # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 5:
 | |
|             R = 2 / 3
 | |
|             N_bpscs = 6
 | |
|         # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 6:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 6
 | |
|         # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 7:
 | |
|             R = 5 / 6
 | |
|             N_bpscs = 6
 | |
|         # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | |
|         elif self.tx_mcs == 8:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 8
 | |
|         # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | |
|         elif self.tx_mcs == 9:
 | |
|             R = 5 / 6
 | |
|             N_bpscs = 8
 | |
| 
 | |
|         print(
 | |
|             "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | |
|                 mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | |
| 
 | |
|         self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | |
|         print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | |
| 
 | |
|         print(
 | |
|             "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | |
|                 mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | |
| 
 | |
|         self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | |
|         print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
 | |
| 
 | |
|         if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
 | |
|             self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
 | |
|             self.tx_gi = T_gi_short
 | |
|         else:
 | |
|             self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
 | |
|             self.tx_gi = T_gi_long
 | |
| 
 | |
|     def calculated_data_rate_rx_VHT(self):
 | |
|         N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | |
|         N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | |
|         R = 0  # coding ,  (Determined by the modulation, MCS )
 | |
|         N_ss = 0  # Number of Spatial Streams
 | |
|         T_dft = 3.2 * 10 ** -6  # Constant for HT
 | |
|         T_gi_short = .4 * 10 ** -6  # Guard index.
 | |
|         T_gi_long = .8 * 10 ** -6  # Guard index.
 | |
|         # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | |
|         # the nubmer of Data Subcarriers is based on modulation and bandwith
 | |
|         if self.rx_mgt_6Mb_frame is True:
 | |
|             self.rx_mgt_6Mg_frame = False
 | |
|             self.rx_data_rate_gi_short_Mbps = None
 | |
|             self.rx_data_rate_gi_long_Mbps = None
 | |
|         else:
 | |
|             try:
 | |
|                 bw = int(self.rx_mhz)
 | |
|             except BaseException:
 | |
|                 print("port_probe.py:  {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
 | |
| 
 | |
|             print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
 | |
|             if bw == 20:
 | |
|                 N_sd = 52
 | |
|             elif bw == 40:
 | |
|                 N_sd = 108
 | |
|             elif bw == 80:
 | |
|                 N_sd = 234
 | |
|             elif bw == 160:
 | |
|                 N_sd = 468
 | |
|             else:
 | |
|                 print("For HT if cannot be read bw is assumed to be 20")
 | |
|                 N_sd = 52
 | |
|                 self.rx_mhz = 20
 | |
| 
 | |
|             # NSS
 | |
|             N_ss = self.rx_nss
 | |
|             # MCS (Modulation Coding Scheme) determines the constands
 | |
|             # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | |
|             # Only for HT configuration
 | |
|             if self.rx_mcs == 0:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 1
 | |
|             # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | |
|             elif self.rx_mcs == 1:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 2
 | |
|             # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | |
|             elif self.rx_mcs == 2:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 2
 | |
|             # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | |
|             elif self.rx_mcs == 3:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 4
 | |
|             # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | |
|             elif self.rx_mcs == 4:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 4
 | |
|             # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 5:
 | |
|                 R = 2 / 3
 | |
|                 N_bpscs = 6
 | |
|             # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 6:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 6
 | |
|             # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 7:
 | |
|                 R = 5 / 6
 | |
|                 N_bpscs = 6
 | |
|             # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | |
|             elif self.rx_mcs == 8:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 8
 | |
|             # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | |
|             elif self.rx_mcs == 9:
 | |
|                 R = 5 / 6
 | |
|                 N_bpscs = 8
 | |
| 
 | |
|             print(
 | |
|                 "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | |
|                     mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | |
| 
 | |
|             self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | |
|             print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | |
| 
 | |
|             print(
 | |
|                 "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | |
|                     mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | |
| 
 | |
|             self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | |
|             print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | |
| 
 | |
|             if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | |
|                     self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | |
|                 self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | |
|                 self.rx_gi = T_gi_short
 | |
|             else:
 | |
|                 self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | |
|                 self.rx_gi = T_gi_long
 | |
| 
 | |
|         ###########################################
 | |
|         #
 | |
|         # HE no OFDMA - changes the calculations
 | |
|         #
 | |
|         ###########################################
 | |
| 
 | |
|     def calculated_data_rate_tx_HE(self):
 | |
|         # TODO compare with standard for 40 MHz if values change
 | |
|         N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | |
|         N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | |
|         R = 0  # coding ,  (Determined by the modulation, MCS )
 | |
|         N_ss = 0  # Number of Spatial Streams
 | |
|         T_dft = 3.2 * 10 ** -6  # Constant for HT
 | |
|         T_gi_short = .4 * 10 ** -6  # Guard index.
 | |
|         T_gi_long = .8 * 10 ** -6  # Guard index.
 | |
|         bw = 20
 | |
|         # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | |
|         # the nubmer of Data Subcarriers is based on modulation and bandwith
 | |
|         try:
 | |
|             bw = int(self.tx_mhz)
 | |
|         except BaseException:
 | |
|             print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw))
 | |
| 
 | |
|         print("Mhz {Mhz}".format(Mhz=self.tx_mhz))
 | |
|         if bw == 20:
 | |
|             N_sd = 52
 | |
|         elif bw == 40:
 | |
|             N_sd = 108
 | |
|         elif bw == 80:
 | |
|             N_sd = 234
 | |
|         elif bw == 160:
 | |
|             N_sd = 468
 | |
|         else:
 | |
|             print("For HT if cannot be read bw is assumed to be 20")
 | |
|             N_sd = 52
 | |
|             self.tx_mhz = 20
 | |
| 
 | |
|         # NSS
 | |
|         N_ss = self.tx_nss
 | |
|         # MCS (Modulation Coding Scheme) determines the constands
 | |
|         # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | |
|         # Only for HT configuration
 | |
|         if self.tx_mcs == 0:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 1
 | |
|         # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | |
|         elif self.tx_mcs == 1:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 2
 | |
|         # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | |
|         elif self.tx_mcs == 2:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 2
 | |
|         # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | |
|         elif self.tx_mcs == 3:
 | |
|             R = 1 / 2
 | |
|             N_bpscs = 4
 | |
|         # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | |
|         elif self.tx_mcs == 4:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 4
 | |
|         # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 5:
 | |
|             R = 2 / 3
 | |
|             N_bpscs = 6
 | |
|         # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 6:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 6
 | |
|         # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | |
|         elif self.tx_mcs == 7:
 | |
|             R = 5 / 6
 | |
|             N_bpscs = 6
 | |
|         # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | |
|         elif self.tx_mcs == 8:
 | |
|             R = 3 / 4
 | |
|             N_bpscs = 8
 | |
|         # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | |
|         elif self.tx_mcs == 9:
 | |
|             R = 5 / 6
 | |
|             N_bpscs = 8
 | |
| 
 | |
|         print(
 | |
|             "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | |
|                 mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | |
| 
 | |
|         self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | |
|         print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | |
| 
 | |
|         print(
 | |
|             "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | |
|                 mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | |
| 
 | |
|         self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | |
|         print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
 | |
| 
 | |
|         if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps):
 | |
|             self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps
 | |
|             self.tx_gi = T_gi_short
 | |
|         else:
 | |
|             self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps
 | |
|             self.tx_gi = T_gi_long
 | |
| 
 | |
|     def calculated_data_rate_rx_HE(self):
 | |
|         N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | |
|         N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | |
|         R = 0  # coding ,  (Determined by the modulation, MCS )
 | |
|         N_ss = 0  # Number of Spatial Streams
 | |
|         T_dft = 3.2 * 10 ** -6  # Constant for HT
 | |
|         T_gi_short = .4 * 10 ** -6  # Guard index.
 | |
|         T_gi_long = .8 * 10 ** -6  # Guard index.
 | |
|         # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | |
|         # the nubmer of Data Subcarriers is based on modulation and bandwith
 | |
|         if self.rx_mgt_6Mb_frame is True:
 | |
|             self.rx_mgt_6Mg_frame = False
 | |
|             self.rx_data_rate_gi_short_Mbps = None
 | |
|             self.rx_data_rate_gi_long_Mbps = None
 | |
|         else:
 | |
|             try:
 | |
|                 bw = int(self.rx_mhz)
 | |
|             except BaseException:
 | |
|                 print("port_probe.py:  {} WARNING unable to parse rx MHz (BW) , check probe output will use ")
 | |
| 
 | |
|             print("Mhz {Mhz}".format(Mhz=self.rx_mhz))
 | |
|             if bw == 20:
 | |
|                 N_sd = 52
 | |
|             elif bw == 40:
 | |
|                 N_sd = 108
 | |
|             elif bw == 80:
 | |
|                 N_sd = 234
 | |
|             elif bw == 160:
 | |
|                 N_sd = 468
 | |
|             else:
 | |
|                 print("For HT if cannot be read bw is assumed to be 20")
 | |
|                 N_sd = 52
 | |
|                 self.rx_mhz = 20
 | |
| 
 | |
|             # NSS
 | |
|             N_ss = self.rx_nss
 | |
|             # MCS (Modulation Coding Scheme) determines the constands
 | |
|             # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | |
|             # Only for HT configuration
 | |
|             if self.rx_mcs == 0:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 1
 | |
|             # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | |
|             elif self.rx_mcs == 1:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 2
 | |
|             # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | |
|             elif self.rx_mcs == 2:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 2
 | |
|             # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | |
|             elif self.rx_mcs == 3:
 | |
|                 R = 1 / 2
 | |
|                 N_bpscs = 4
 | |
|             # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | |
|             elif self.rx_mcs == 4:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 4
 | |
|             # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 5:
 | |
|                 R = 2 / 3
 | |
|                 N_bpscs = 6
 | |
|             # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 6:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 6
 | |
|             # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | |
|             elif self.rx_mcs == 7:
 | |
|                 R = 5 / 6
 | |
|                 N_bpscs = 6
 | |
|             # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | |
|             elif self.rx_mcs == 8:
 | |
|                 R = 3 / 4
 | |
|                 N_bpscs = 8
 | |
|             # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | |
|             elif self.rx_mcs == 9:
 | |
|                 R = 5 / 6
 | |
|                 N_bpscs = 8
 | |
| 
 | |
|             print(
 | |
|                 "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | |
|                     mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | |
| 
 | |
|             self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | |
|             print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | |
| 
 | |
|             print(
 | |
|                 "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | |
|                     mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | |
| 
 | |
|             self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | |
|             print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | |
| 
 | |
|             if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | |
|                     self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | |
|                 self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | |
|                 self.rx_gi = T_gi_short
 | |
|             else:
 | |
|                 self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | |
|                 self.rx_gi = T_gi_long
 | 
