port_probe: Fix whitespace

Signed-off-by: Matthew Stidham <stidmatt@gmail.com>
This commit is contained in:
Matthew Stidham
2021-12-06 17:03:16 -08:00
parent ec9bceea4e
commit e00ad53428

View File

@@ -6,7 +6,6 @@ import sys
import os
from pprint import pprint
sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../")))
lfcli_base = importlib.import_module("py-json.LANforge.lfcli_base")
@@ -83,7 +82,8 @@ class ProbePort(LFCliBase):
print("tx_bitrate {tx_bitrate}".format(tx_bitrate=tx_bitrate))
self.tx_bitrate = tx_bitrate.split(':')[-1].strip(' ')
if 'MHz' in tx_bitrate:
self.tx_mhz = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(' ')
self.tx_mhz = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(
' ')
print("tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz))
try:
@@ -117,7 +117,8 @@ class ProbePort(LFCliBase):
# rx will received : 6Mbps encoding is legacy frame
try:
if 'MHz' in rx_bitrate:
self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(' ')
self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[
-1].strip(' ')
print("rx_mhz {rx_mhz}".format(rx_mhz=self.rx_mhz))
self.rx_mgt_6Mb_frame = False
else:
@@ -177,10 +178,10 @@ class ProbePort(LFCliBase):
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
bw = 20
T_dft = 3.2 * 10 ** -6 # Constant for HT
T_gi_short = .4 * 10 ** -6 # Guard index.
T_gi_long = .8 * 10 ** -6 # Guard index.
bw = 20
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
try:
@@ -239,14 +240,16 @@ class ProbePort(LFCliBase):
R = 5 / 6
N_bpscs = 6
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
print(
"tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
print(
"tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
@@ -263,9 +266,9 @@ class ProbePort(LFCliBase):
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
T_dft = 3.2 * 10 ** -6 # Constant for HT
T_gi_short = .4 * 10 ** -6 # Guard index.
T_gi_long = .8 * 10 ** -6 # Guard index.
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
if self.rx_mgt_6Mb_frame:
@@ -329,36 +332,38 @@ class ProbePort(LFCliBase):
R = 5 / 6
N_bpscs = 6
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
self.rx_gi = T_gi_long
def calculated_data_rate_tx_VHT(self):
# TODO compare with standard for 40 MHz if values change
N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
bw = 20
T_dft = 3.2 * 10 ** -6 # Constant for HT
T_gi_short = .4 * 10 ** -6 # Guard index.
T_gi_long = .8 * 10 ** -6 # Guard index.
bw = 20
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
try:
@@ -385,54 +390,56 @@ class ProbePort(LFCliBase):
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.tx_mcs == 0 :
if self.tx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.tx_mcs == 1 :
elif self.tx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.tx_mcs == 2 :
elif self.tx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.tx_mcs == 3 :
elif self.tx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.tx_mcs == 4 :
elif self.tx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.tx_mcs == 5 :
elif self.tx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.tx_mcs == 6 :
elif self.tx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.tx_mcs == 7 :
elif self.tx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.tx_mcs == 8 :
elif self.tx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.tx_mcs == 9 :
elif self.tx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
print(
"tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
print(
"tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
@@ -449,9 +456,9 @@ class ProbePort(LFCliBase):
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
T_dft = 3.2 * 10 ** -6 # Constant for HT
T_gi_short = .4 * 10 ** -6 # Guard index.
T_gi_long = .8 * 10 ** -6 # Guard index.
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
if self.rx_mgt_6Mb_frame is True:
@@ -483,59 +490,62 @@ class ProbePort(LFCliBase):
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0 :
if self.rx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1 :
elif self.rx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2 :
elif self.rx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3 :
elif self.rx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4 :
elif self.rx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5 :
elif self.rx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6 :
elif self.rx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7 :
elif self.rx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.rx_mcs == 8 :
elif self.rx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.rx_mcs == 9 :
elif self.rx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else:
@@ -547,16 +557,17 @@ class ProbePort(LFCliBase):
# HE no OFDMA - changes the calculations
#
###########################################
def calculated_data_rate_tx_HE(self):
# TODO compare with standard for 40 MHz if values change
N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
bw = 20
T_dft = 3.2 * 10 ** -6 # Constant for HT
T_gi_short = .4 * 10 ** -6 # Guard index.
T_gi_long = .8 * 10 ** -6 # Guard index.
bw = 20
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
try:
@@ -583,54 +594,56 @@ class ProbePort(LFCliBase):
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.tx_mcs == 0 :
if self.tx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.tx_mcs == 1 :
elif self.tx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.tx_mcs == 2 :
elif self.tx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.tx_mcs == 3 :
elif self.tx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.tx_mcs == 4 :
elif self.tx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.tx_mcs == 5 :
elif self.tx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.tx_mcs == 6 :
elif self.tx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.tx_mcs == 7 :
elif self.tx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.tx_mcs == 8 :
elif self.tx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.tx_mcs == 9 :
elif self.tx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
print(
"tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
print(
"tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps))
@@ -647,9 +660,9 @@ class ProbePort(LFCliBase):
N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
R = 0 # coding , (Determined by the modulation, MCS )
N_ss = 0 # Number of Spatial Streams
T_dft = 3.2 * 10**-6 # Constant for HT
T_gi_short = .4 * 10**-6 # Guard index.
T_gi_long = .8 * 10**-6 # Guard index.
T_dft = 3.2 * 10 ** -6 # Constant for HT
T_gi_short = .4 * 10 ** -6 # Guard index.
T_gi_long = .8 * 10 ** -6 # Guard index.
# Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
# the nubmer of Data Subcarriers is based on modulation and bandwith
if self.rx_mgt_6Mb_frame is True:
@@ -681,59 +694,62 @@ class ProbePort(LFCliBase):
# MCS (Modulation Coding Scheme) determines the constands
# MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1,
# Only for HT configuration
if self.rx_mcs == 0 :
if self.rx_mcs == 0:
R = 1 / 2
N_bpscs = 1
# MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
elif self.rx_mcs == 1 :
elif self.rx_mcs == 1:
R = 1 / 2
N_bpscs = 2
# MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
elif self.rx_mcs == 2 :
elif self.rx_mcs == 2:
R = 3 / 4
N_bpscs = 2
# MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
elif self.rx_mcs == 3 :
elif self.rx_mcs == 3:
R = 1 / 2
N_bpscs = 4
# MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
elif self.rx_mcs == 4 :
elif self.rx_mcs == 4:
R = 3 / 4
N_bpscs = 4
# MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
elif self.rx_mcs == 5 :
elif self.rx_mcs == 5:
R = 2 / 3
N_bpscs = 6
# MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
elif self.rx_mcs == 6 :
elif self.rx_mcs == 6:
R = 3 / 4
N_bpscs = 6
# MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
elif self.rx_mcs == 7 :
elif self.rx_mcs == 7:
R = 5 / 6
N_bpscs = 6
# MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
elif self.rx_mcs == 8 :
elif self.rx_mcs == 8:
R = 3 / 4
N_bpscs = 8
# MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
elif self.rx_mcs == 9 :
elif self.rx_mcs == 9:
R = 5 / 6
N_bpscs = 8
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
print(
"mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format(
mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
self.rx_gi = T_gi_short
else: