Thomas Eizinger 90cf191a7c feat(linux): multi-threaded TUN device operations (#7449)
## Context

At present, we only have a single thread that reads and writes to the
TUN device on all platforms. On Linux, it is possible to open the file
descriptor of a TUN device multiple times by setting the
`IFF_MULTI_QUEUE` option using `ioctl`. Using multi-queue, we can then
spawn multiple threads that concurrently read and write to the TUN
device. This is critical for achieving a better throughput.

## Solution

`IFF_MULTI_QUEUE` is a Linux-only thing and therefore only applies to
headless-client, GUI-client on Linux and the Gateway (it may also be
possible on Android, I haven't tried). As such, we need to first change
our internal abstractions a bit to move the creation of the TUN thread
to the `Tun` abstraction itself. For this, we change the interface of
`Tun` to the following:

- `poll_recv_many`: An API, inspired by tokio's `mpsc::Receiver` where
multiple items in a channel can be batch-received.
- `poll_send_ready`: Mimics the API of `Sink` to check whether more
items can be written.
- `send`: Mimics the API of `Sink` to actually send an item.

With these APIs in place, we can implement various (performance)
improvements for the different platforms.

- On Linux, this allows us to spawn multiple threads to read and write
from the TUN device and send all packets into the same channel. The `Io`
component of `connlib` then uses `poll_recv_many` to read batches of up
to 100 packets at once. This ties in well with #7210 because we can then
use GSO to send the encrypted packets in single syscalls to the OS.
- On Windows, we already have a dedicated recv thread because `WinTun`'s
most-convenient API uses blocking IO. As such, we can now also tie into
that by batch-receiving from this channel.
- In addition to using multiple threads, this API now also uses correct
readiness checks on Linux, Darwin and Android to uphold backpressure in
case we cannot write to the TUN device.

## Configuration

Local testing has shown that 2 threads give the best performance for a
local `iperf3` run. I suspect this is because there is only so much
traffic that a single application (i.e. `iperf3`) can generate. With
more than 2 threads, the throughput actually drops drastically because
`connlib`'s main thread is too busy with lock-contention and triggering
`Waker`s for the TUN threads (which mostly idle around if there are 4+
of them). I've made it configurable on the Gateway though so we can
experiment with this during concurrent speedtests etc.

In addition, switching `connlib` to a single-threaded tokio runtime
further increased the throughput. I suspect due to less task / context
switching.

## Results

Local testing with `iperf3` shows some very promising results. We now
achieve a throughput of 2+ Gbit/s.

```
Connecting to host 172.20.0.110, port 5201
Reverse mode, remote host 172.20.0.110 is sending
[  5] local 100.80.159.34 port 57040 connected to 172.20.0.110 port 5201
[ ID] Interval           Transfer     Bitrate
[  5]   0.00-1.00   sec   274 MBytes  2.30 Gbits/sec
[  5]   1.00-2.00   sec   279 MBytes  2.34 Gbits/sec
[  5]   2.00-3.00   sec   216 MBytes  1.82 Gbits/sec
[  5]   3.00-4.00   sec   224 MBytes  1.88 Gbits/sec
[  5]   4.00-5.00   sec   234 MBytes  1.96 Gbits/sec
[  5]   5.00-6.00   sec   238 MBytes  2.00 Gbits/sec
[  5]   6.00-7.00   sec   229 MBytes  1.92 Gbits/sec
[  5]   7.00-8.00   sec   222 MBytes  1.86 Gbits/sec
[  5]   8.00-9.00   sec   223 MBytes  1.87 Gbits/sec
[  5]   9.00-10.00  sec   217 MBytes  1.82 Gbits/sec
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  2.30 GBytes  1.98 Gbits/sec  22247             sender
[  5]   0.00-10.00  sec  2.30 GBytes  1.98 Gbits/sec                  receiver

iperf Done.
```

This is a pretty solid improvement over what is in `main`:

```
Connecting to host 172.20.0.110, port 5201
[  5] local 100.65.159.3 port 56970 connected to 172.20.0.110 port 5201
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-1.00   sec  90.4 MBytes   758 Mbits/sec  1800    106 KBytes
[  5]   1.00-2.00   sec  93.4 MBytes   783 Mbits/sec  1550   51.6 KBytes
[  5]   2.00-3.00   sec  92.6 MBytes   777 Mbits/sec  1350   76.8 KBytes
[  5]   3.00-4.00   sec  92.9 MBytes   779 Mbits/sec  1800   56.4 KBytes
[  5]   4.00-5.00   sec  93.4 MBytes   783 Mbits/sec  1650   69.6 KBytes
[  5]   5.00-6.00   sec  90.6 MBytes   760 Mbits/sec  1500   73.2 KBytes
[  5]   6.00-7.00   sec  87.6 MBytes   735 Mbits/sec  1400   76.8 KBytes
[  5]   7.00-8.00   sec  92.6 MBytes   777 Mbits/sec  1600   82.7 KBytes
[  5]   8.00-9.00   sec  91.1 MBytes   764 Mbits/sec  1500   70.8 KBytes
[  5]   9.00-10.00  sec  92.0 MBytes   771 Mbits/sec  1550   85.1 KBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec   917 MBytes   769 Mbits/sec  15700             sender
[  5]   0.00-10.00  sec   916 MBytes   768 Mbits/sec                  receiver

iperf Done.
```
2024-12-05 00:18:20 +00:00
2024-02-27 23:56:46 +00:00

firezone logo

A modern alternative to legacy VPNs.


firezone Discourse firezone Coverage Status GitHub commit activity GitHub closed issues Cloudsmith follow on Twitter


Overview

Firezone is an open source platform to securely manage remote access for any-sized organization. Unlike most VPNs, Firezone takes a granular, least-privileged approach to access management with group-based policies that control access to individual applications, entire subnets, and everything in between.

architecture

Features

Firezone is:

  • Fast: Built on WireGuard® to be 3-4 times faster than OpenVPN.
  • Scalable: Deploy two or more gateways for automatic load balancing and failover.
  • Private: Peer-to-peer, end-to-end encrypted tunnels prevent packets from routing through our infrastructure.
  • Secure: Zero attack surface thanks to Firezone's holepunching tech which establishes tunnels on-the-fly at the time of access.
  • Open: Our entire product is open-source, allowing anyone to audit the codebase.
  • Flexible: Authenticate users via email, Google Workspace, Okta, Entra ID, or OIDC and sync users and groups automatically.
  • Simple: Deploy gateways and configure access in minutes with a snappy admin UI.

Firezone is not:

  • A tool for creating bi-directional mesh networks
  • A full-featured router or firewall
  • An IPSec or OpenVPN server

Contents of this repository

This is a monorepo containing the full Firezone product, marketing website, and product documentation, organized as follows:

Quickstart

The quickest way to get started with Firezone is to sign up for an account at https://app.firezone.dev/sign_up.

Once you've signed up, follow the instructions in the welcome email to get started.

Frequently asked questions (FAQ)

Can I self-host Firezone?

Our license won't stop you from self-hosting the entire Firezone product top to bottom, but our internal APIs are changing rapidly so we can't meaningfully support self-hosting Firezone in production at this time.

If you're feeling especially adventurous and want to self-host Firezone for educational or hobby purposes, follow the instructions to spin up a local development environment in CONTRIBUTING.md.

The latest published clients (on App Stores and on releases) are only guaranteed to work with the managed version of Firezone and may not work with a self-hosted portal built from this repository. This is because Apple and Google can sometimes delay updates to their app stores, and so the latest published version may not be compatible with the tip of main from this repository.

Therefore, if you're experimenting with self-hosting Firezone, you will probably want to use clients you build and distribute yourself as well.

See the READMEs in the following directories for more information on building each client:

How long will 0.7 be supported until?

Firezone 0.7 is currently end-of-life and has stopped receiving updates as of January 31st, 2024. It will continue to be available indefinitely from the legacy branch of this repo under the Apache 2.0 license.

How much does it cost?

We offer flexible per-seat monthly and annual plans for the cloud-managed version of Firezone, with optional invoicing for larger organizations. See our pricing page for more details.

Those experimenting with self-hosting can use Firezone for free without feature or seat limitations, but we can't provide support for self-hosted installations at this time.

Documentation

Additional documentation on general usage, troubleshooting, and configuration can be found at https://www.firezone.dev/kb.

Get Help

If you're looking for help installing, configuring, or using Firezone, check our community support options:

  1. Discussion Forums: Ask questions, report bugs, and suggest features.
  2. Join our Discord Server: Join live discussions, meet other users, and chat with the Firezone team.
  3. Open a PR: Contribute a bugfix or make a contribution to Firezone.

If you need help deploying or maintaining Firezone for your business, consider contacting our sales team to speak with a Firezone expert.

Star History

Star History Chart

Developing and Contributing

See CONTRIBUTING.md.

Security

See SECURITY.md.

License

Portions of this software are licensed as follows:

  • All content residing under the "elixir/" directory of this repository, if that directory exists, is licensed under the "Elastic License 2.0" license defined in "elixir/LICENSE".
  • All third party components incorporated into the Firezone Software are licensed under the original license provided by the owner of the applicable component.
  • Content outside of the above mentioned directories or restrictions above is available under the "Apache 2.0 License" license as defined in "LICENSE".

WireGuard® is a registered trademark of Jason A. Donenfeld.

Description
No description provided
Readme Apache-2.0 169 MiB
Languages
Elixir 57.1%
Rust 29.2%
TypeScript 5.9%
Swift 3.3%
Kotlin 1.8%
Other 2.5%