262 Commits
v2.5 ... v2.13

Author SHA1 Message Date
EstherLerouzic
c744a97d83 Prepare release notes for v2.13
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iff07dcd6e98b4e4abd79ec8f97d09df2cf2c0e24
2025-09-26 11:56:02 +02:00
EstherLerouzic
09221504d7 Add yang trees
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I98a16ebea347ff4913840cf6f563c34ebcf8f8d9
2025-09-26 11:52:56 +02:00
EstherLerouzic
f2039fbe1c fix: use loaded json instead of Path for extra configs
In order to be used by API.

Co-authored-by: Renato Ambrosone <renato.ambrosone@polito.it>

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I12111427c8a90b85b3158cdd95f4ee771cb39316
2025-09-26 11:17:45 +02:00
EstherLerouzic
78227e65da fix documentation and release notes
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I18457b1bdebd92bdd547877760a039706ad995a3
2025-09-26 11:17:45 +02:00
EstherLerouzic
e27e6d5c7b chore: add release notes
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia561105ac5b3fa246bbd26a37e495e0d2ae92041
2025-09-26 11:17:45 +02:00
EstherLerouzic
e3445e1066 Update maintainer names
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9122bfcf91a6cb55a6c50f98c6944086a21b1b73
2025-09-26 11:17:45 +02:00
EstherLerouzic
a0758d0da5 Move and refactor create_eqpt_sheet.py and add tests on it
Co-authored-by: Rodrigo Sasse David <rodrigo.sassedavid@orange.com>

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib961c5c0e203f2225a0f1e2e7a091485567189c3
2025-09-26 11:17:45 +02:00
EstherLerouzic
0bc1fb3bf8 fix: Use openpyxl for xlsx reading and move to latest xlrd version
Create a set of excel utils to be used for .xls and .xlsx files, for
reading workbook, reading sheets, ... optimize openpyxl access to
sheet to save computation time.

Use this opportunity to refactor service sheet without namedtuple
and simplify code

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibaf3aac40b3f6ca4829d8ea8cd506523d318103a
2025-09-26 11:17:45 +02:00
Arturo Mayoral
cd9d4c55b2 Publish calendar at docs/calendar.html and update README link to GitHub Pages
Change-Id: I0381b8d8ebcf3b40d15d1e80fa22bbc3613348e3
2025-09-17 13:13:51 +02:00
EstherLerouzic
62889bf6af feat: add a console script for yang conversion
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If5ec36beec9d90b2f3d8c08c7fb5b629ad722245
2025-09-03 12:58:21 +02:00
EstherLerouzic
61787d5052 feat: parametrize the function that computes power targets
enable changing the reference span loss and the ratio of the
loss deviation to this reference that should be reported on
the span input.

Initial target used a hardcoded 20dB loss span with
0.3 power slope.

update documentation accordingly.

requires yang updates
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib763db6be2bd7e947057176f3246f19ac7e6ac0d
2025-09-03 10:34:16 +02:00
Florian FRANK
6612a46a9e Fix to_json()-function of Multiband_amplifier when gain is missing
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: I2a0c249c7e3278e282c2c45ea8be52073f014de3
2025-09-03 10:34:16 +02:00
EstherLerouzic
f30515ba9d fix: do not replace 0 with None
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I02ee8f4f1148873fd19f1c312578bc1f15355667
2025-09-03 10:34:16 +02:00
EstherLerouzic
6f9897fe40 fix: do not crash if type_variety is not defined when saving network
before autodesign type_variety may not be created yet, while ther is one default in params:
use type_variety from params

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I556bc8fa1a8241054c81cee386cf52b94a76a0bc
2025-09-03 10:34:16 +02:00
EstherLerouzic
56e615c713 Feat: Use a reference channel per OMS instead of total power for design
Correctly uses the oms band and spacing for computing the nb of channel
and total power for design per band.
In order to keep the SI values as reference, introduce a new parameter
in SI to indicate wether to use this feature or not.

If "use_si_channel_count_for_design": true, then the f_min, f_max and spacing
from SI are used for all OMSes
else, the f_min, f_max, spacing defined per OMS (design_bands) is used.

This impacts tests where the artificial C-band boudaries were hardcoded, and
it also has an impact on performances when SI's defined nb of channels is larger
than the one defined per OMS. In this case the design was considering a larger
total power than the one finally propagated which resulted in reduced performance.
This feature now corrects this case (if "use_si_channel_count_for_design": false
which is the default setting). Overall autodesign are thus improved.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I471a2c45200894ca354c90b46b662f42414b48ad

tous les test marche et les jeu de tests aussi.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If25b47aa10f97301fde7f17daa2a9478aed46db2
2025-09-03 10:34:15 +02:00
EstherLerouzic
f447c908bc Feat: Add spacing info in the design_band info
This will be used to compute the max total power for design per OMS.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I392f06c792af9f32d4a14324c683bd3fae655de8
2025-09-03 10:34:15 +02:00
EstherLerouzic
4df6cc6b23 fix bug: use preselected restrictions also for raman flag true
otherwise restrictions that include raman are not correctly selected
eg for preamp with raman restriction in ROADM

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie0215ca430cf463a5422d9236745710ab92ade59
2025-09-03 10:34:15 +02:00
EstherLerouzic
6c5d11d86c Implement in_voa of amplifiers
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I24feed756586a104e829275244f0868a272e5f6b
2025-09-03 10:34:15 +02:00
EstherLerouzic
1a795639c7 feat: Add conversion utilities for YANG and legacy formats in GNPy
This commit introduces new functions for converting between YANG formatted files and
legacy formats. The conversion processes adhere to RFC7951 for encoding YANG data.

Key changes include:
- Conversion of float and empty type representations.
- Transformation of Span and SI lists xx_power_range into dictionaries.
- Addition of necessary namespaces.
- use of oopt-gnpy-libyang to enforce compliancy to yang models

These utilities enable full compatibility with GNPy.

Co-authored-by: Renato Ambrosone <renato.ambrosone@polito.it>

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia004113bca2b0631d1648564e5ccb60504fe80f8
2025-09-03 10:34:14 +02:00
EstherLerouzic
ee5e6f9b9e fix(CI): remove windows 2019, add windows 2025 support
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I133f5603f00d03e33add8842d34d692ab8fb1804
2025-09-03 10:34:14 +02:00
EstherLerouzic
ea4ab1d61b fix: place index first in the request-list because of libyang bug
libyang does not find key in data if not placed first in the data

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I63b9aa619e15d770e2dcb59010223318d2518eb7
2025-06-30 09:21:42 +02:00
EstherLerouzic
d43fee5945 fix: save network_name
network_name was not correctly exported in json output.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia4ae6bf82e5d147d3c99e195151942abc21be3f3
2025-06-30 09:21:42 +02:00
EstherLerouzic
6603a50e78 chore: gnpy yang models
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I68502e76e27b43d2a6f6a5741045df3095fc7ccd
2025-06-30 09:21:39 +02:00
EstherLerouzic
b76c529c0c chore: import external ietf modules
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I02ed156105736ab538e4d5708d38b497f9479658
2025-06-11 15:05:51 +02:00
EstherLerouzic
7a1b15a916 chore: make sure all python files have the correct header
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ifdd6a566fda74c5b7d417f9d61c51d4d3da07bfd
2025-06-11 15:05:51 +02:00
EstherLerouzic
7bc9461547 chore: make sure commits authors are in th AUTHORS list
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I721957b59746738426f2356056c553d9876bcf22
2025-06-04 12:22:33 -04:00
EstherLerouzic
b0ac41e2d5 fix: PMD was not correctly read from excel or exported from json
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1069b07dfb62bf94d4f591908c034df4e49ce22a
2025-03-21 15:42:45 +01:00
EstherLerouzic
bce42331c4 fix: improve core.networks module docstrings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I883987bd8c1b966b9fcab6a87a62d14607d8548d
2025-03-21 10:46:43 +01:00
EstherLerouzic
d5491c9ace fix documentation: harmonize titles
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I827b4dcd1418017d925b63e50f95514dc1a0eed8
2025-03-21 10:00:25 +01:00
EstherLerouzic
689c2fb038 fix minor linter issues
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I22154752198d9c9186d185885ca83d82e8870107
2025-03-21 10:00:25 +01:00
EstherLerouzic
15c912bd72 fix improve docstring for tools.cli_examples
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id368cb52791090d985e67be09edcc7580939524b
2025-03-21 10:00:25 +01:00
EstherLerouzic
d0c10e8537 fix: improve dosctring and typing in tools.convert
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I6640737f2255867120f829bb9709abce77693147
2025-03-21 10:00:25 +01:00
EstherLerouzic
93186b26fb fix link to example-data files in the documentation
and of the class referenced in the documentation
example-data folder is not accessible from the
generated pages on readthedocs. So use hyperlinks
to the files  github repo.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I135e2cb0b0d28fecffcbcbfec9a9d6c8cb5c7347
2025-03-21 10:00:25 +01:00
EstherLerouzic
49aee5a4e8 feat: improve elements docstring and typing
use sphinx notation for params , attributes and type

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ife5cde24f3f8dfad9f14dccc6e9b41a13ba370f3
2025-03-21 10:00:21 +01:00
EstherLerouzic
1c4da4794d fix: update excel documentation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I34ae7e7a60d46482df1af538e6977ba9afd09f3a
2025-03-21 09:57:34 +01:00
EstherLerouzic
de42dd4a93 fix: restore rtd theme
and fix the table with the custom css

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib16c08451aa3faaa06ea85c2b9359fc4e7a015da
2025-03-21 09:57:34 +01:00
JennyLescop
57a5e9732b fix integrate tilt data into conversion
add some tests

Signed-off-by: JennyLescop <jenny.lescop@orange.com>
Change-Id: I4bb9a16b5db7890247568cce9d4b4f81ad2f7d34
2025-03-21 08:22:37 +00:00
Renato Ambrosone
101eb8f969 Define functions for results conversion and load eqpt/topology from dict
Change-Id: I4111f20f59aeef1e25fc8b44028922bbb94dea91
2025-03-10 16:13:10 +01:00
EstherLerouzic
7ce6650109 feat: move and update documentation on equipment types
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0f85a059e2393d2d573938bd0804fe49596bbc2d
2025-01-30 17:23:18 +01:00
EstherLerouzic
252e67a71e fix: move amp documentation to the docs folder and update it
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie6c207e3335cbf30b1f5858c21672dff420b9c51
2025-01-30 17:23:18 +01:00
EstherLerouzic
f83869392b feat: improve documentation of the scripts options
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic68ded41b188cd07cf87f83e31e6d4eea5af5ed9
2025-01-30 17:23:18 +01:00
EstherLerouzic
94a3714aba fix: documentation missing the worker_utils section
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I832b0f0bfdd255396e6c9809273b1171d08c9f60
2025-01-30 17:23:18 +01:00
EstherLerouzic
ccab4835fc fix: Refactor the methods to avoid returning the same value
equipment being a dict, no need to use 'return' to have the changes
applied.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic5a4247bbaa0b4af3fca5b6cb0a74a2f434b1b6a
2025-01-30 17:23:18 +01:00
EstherLerouzic
e55f7a5d4c Define default in common parts to be used both by cli and API
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1e9c6aa99fd2896789c73340ccf5c8adf51a5f13
2025-01-30 17:23:18 +01:00
EstherLerouzic
4fda8c6002 use explicit file arguments for additional configs
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I133bb6a2d21d573cf819e1d92b1912dfa87dbfa4
2025-01-30 17:23:18 +01:00
EstherLerouzic
8717156712 feat: Read a list of optional extra equipement files
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic521bbacd38b3bb60da3a364a069abfd1895d337
2025-01-30 17:23:18 +01:00
EstherLerouzic
d2c0836164 Remove default_edfa_config.json dictionary and use parameters.py
But enable the user to still input its own default file with a new
'default_config_from_json' attribute useable in fixed and variable gain
amplifiers.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I773682ae6daa1025007fc051582e779986982838
2025-01-29 18:27:51 +00:00
AndreaDAmico
eac4ba80ea List of collaborative PSE publications added in the docs
Change-Id: I1db6d9fe86004cd5bc8135577421117679cb9965
2025-01-24 08:49:48 +00:00
EstherLerouzic
4ef01d54a5 fix plot bug: do not overwrite the path used for plot
The plot function failed to recognize 'path' as part
of the network due to the reuse of the 'path' variable.
This led to errors when attempting to plot.

Solution is to use a different name for the deepcopy of
path elements used to record the propagation results
'propagated_path'.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0351c37de0d74391ebeb68e974b777b1f51572aa
2025-01-10 11:08:04 +01:00
EstherLerouzic
4b50ee0c2d fix: do not assume 0 dB default value for tilt-target
Instead keep the None value, it user has not stated anything

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I45fcff92caabbfbe514fbe30deac60426b7eb16b
2024-12-06 16:35:46 +01:00
EstherLerouzic
33a289e22b fix: restore uid info in warning logs
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2fdd29a4461b250661b1ccaa9737836fc3fe8695
2024-12-06 16:35:46 +01:00
EstherLerouzic
e593b8c9ec fix case where there are multiple multiband amps matching the sub amp type
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibe86499866f2f9e3dfd70b51a33b919d584b812b
2024-12-06 16:35:46 +01:00
EstherLerouzic
94a6f922cd fix typing
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0f1621b669b4db833d0760368cd834f3186ee2db
2024-12-06 16:35:46 +01:00
EstherLerouzic
fbe387915b fix: offset was not correctly taken into account on reversed path
TODO: write a test!

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7ac909bb9b8c9700c3841f133245f17f49ba3467
2024-12-06 16:35:46 +01:00
EstherLerouzic
fce9d1d293 chore: refactor json_io
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If764ba7b520a060deb855c0b55e17c78fa22f841
2024-12-06 16:35:46 +01:00
EstherLerouzic
a59db8fd12 fix: cli_examples linter issues
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id7e2f8b7282913b885062a01f1bd018bbc85e39c
2024-12-06 16:35:46 +01:00
EstherLerouzic
de509139b3 fix: linter issues on json_io
add docstrings, typing, small fixes

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I01d0fabe5e34103077ec2de829e96829e6202e1e
2024-12-06 16:35:46 +01:00
EstherLerouzic
bb77b3f4a8 fix: remove unused _automatic_spacing
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie3c2fc226f8a549622933cbd1ba8a6b8be213f92
2024-12-06 16:35:46 +01:00
EstherLerouzic
34c7fd1b60 fix: save autodesign file after autodesign!
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If1c82c8cb7ff9dbb8bf5c2d5c4b96beaa59dc402
2024-12-06 16:35:46 +01:00
EstherLerouzic
89a962ffaf fix remove unnecessary else after return
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I61dc58f15c8f03a686437e19a36ac0afe35904e9
2024-12-06 16:35:46 +01:00
EstherLerouzic
1722fbec13 feat: add more warnings on amplifiers
when user settings do not match library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id387b7781d9637f1d18c453dae75330962229902
2024-12-06 16:35:46 +01:00
EstherLerouzic
e48aa57c35 Improve error reporting by including uid of elements
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ief4125322e4db02765974c43159a014749cdab2e
2024-12-06 16:35:46 +01:00
EstherLerouzic
e3e37b1986 feat: skip path computation when path is explicit
and add tests for explicit path

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I95aaf5b56a7ea04f24153d5cb6612cd09401401c
2024-12-06 16:35:46 +01:00
EstherLerouzic
abf42afaf8 fix ci: The macOS-12 environment is deprecated
remove this check and add one for The macOS-14 instead

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ief1c990cbc67ec4d7912404c24d67f9f2fa6d96e
2024-12-06 16:35:46 +01:00
EstherLerouzic
310995045e fix: linter issues in convert and service_sheet
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5f7490ed61b53cea8d2923a8a54d38b3fbb5fa0a
2024-12-06 16:35:43 +01:00
EstherLerouzic
c840bb1a44 Improve test coverage on ila constraint cases
explicitely check the corrections for all cases
ila defined in eqpt or not,
ila defined on the link with same direction as request or not
constraint loose or strict
several or one ila in the OMS

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4d4b5167e7327c9aea4b13879f4e00d30e60d643
2024-11-25 17:07:36 +01:00
EstherLerouzic
4b6f4af3a5 Refactor to reduce cognitive complexity
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia9992ebbe06498ed53b3987edd4eb139d960ff75
2024-11-25 17:07:33 +01:00
EstherLerouzic
dc68d38293 fix ila names
auto design were changed long ago and these functions did not
apply the changes. Besides there was a confusion between request_element
class where loose is a string, and PathRequest from topology.requests
where loose_list is a list of strings.
This patch corrects the naming and also the tests,
because it used the wrong class to gererate xls services

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I564b77576459d6cb47767398a2db8138ba6ad1e4
2024-11-25 16:55:25 +01:00
EstherLerouzic
defe3bee5c feat: documentation for ROADM excel sheet input
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie662015c9cd0a90aff46c63fce47d678ffe1d4db
2024-11-25 12:09:14 +01:00
EstherLerouzic
32adc0fc53 feat: enables reading per degree impairment from xls input
- read per degre roadm-path impairment from roadm sheet
add additional optional columns: type_variety and 'from degrees'
and 'from degree to degree impairment id'
'from degrees' can contain a list of degrees separated with ' | ', then the
'from degree to degree impairment id' must contain a list of ids of the same
length.
Impairment ids are expected to be in the ROADM equipment spec and
from degree must be the previous node (no verification of user input).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7d326bb3d4f366835249089e9537747c7d3ec2fd
2024-11-25 12:09:09 +01:00
EstherLerouzic
4796266657 fix bug in roadm to_json: move per_degree_impairments in params
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I75ed610f201608a3cb651e8c0604de444113bc25
2024-11-25 08:55:00 +01:00
EstherLerouzic
c35104c184 Add documentation for multiband
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iadf6d9edd8c67c1389c4a0d482466a8c52198621
2024-11-21 09:26:51 +01:00
AndreaDAmico
7b1354ee24 fix: avoid using cumtrapz from scipy
cumtrapz has been replaced with cumulative_trapezoid in the scipy version currently required by GNPy.

Change-Id: I6790f7aa8d8e8d171faa48db4b20e6a93141c471
2024-11-15 22:25:27 +00:00
AndreaDAmico
39d3f0f483 Perturbative Raman Solver
Raman effect evaluation based on a perturbative solution for faster computation

Change-Id: Ie6d4ea4d9f95d8755dc8dfd004c954d4c2c5f759
2024-11-08 19:55:20 +00:00
AndreaDAmico
bbe9ef7356 Increasing precision in Raman tests
Change-Id: I7a4de449a673d2e2ac23376d7fe64399c65e1246
2024-11-08 18:12:49 +00:00
AndreaDAmico
42a8f018cd GGN approximation formula defined
An approximated version of the GGN is implemented to reduce the computational time enabling fast multi-band transmission simulations

Change-Id: I2951a878aa04b5eb4a33ba86d626a788c4cbb100
2024-11-08 18:09:44 +00:00
EstherLerouzic
29f5dd1dc4 Add frequency dependency on ROADM impairments
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icb88bf9c42c09deb0064e3299b78b080462fef79
2024-10-16 17:49:00 +00:00
EstherLerouzic
03da959724 insert multiband_amplifier if needed
the automatic add_missing_elements function is updated to insert
multiband booster, preamp or inline amplifiers based on the OMS
nature. If nothing is stated, then uses Edfas.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I968a2fc0a3da97aecb7b513ff211491b20cdd4f2
2024-10-16 17:47:29 +00:00
EstherLerouzic
f621ca6fe7 Add tilt computation for design targets
Compute the tilts only if raman-flag in sim_params is turned on.
Use actual input power in fiber (according to expected propagation
during design).
Creates a function that computes the expected tilt after propagation
in a span, and returns the normalized power difference at the center
frequency of each band, and the tilt experenced between lower and
upper frequency in each band.
Include the expected tilt when computing target gains of amplifiers.
Current function requires that the bands remain in the same order.
(ordering is ensured when creating the objects).

Change-Id: I28bdf13f2010153175e8b6d199fd8eea15d7b292
2024-10-16 17:46:59 +00:00
EstherLerouzic
24f4503020 Preselect multiband amplifiers based on band gain and power targets
To ensure that the multiband amplifier meets the required gain and
power targets for each band, this commit introduces a preselection
process for the amplifiers type variety. The preselection ensures
that only compatible amplifiers are considered, avoiding that
an amplifier is selected for one band that is not part of the same
multiband amplifier type variety of the amplifier selected for the
other band(s).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8de7e0b7c165e6edfe47d7f4cda80db23924a9c9
2024-10-16 17:46:34 +00:00
EstherLerouzic
520c3615e4 Refactor select_edfa
Objective is to reuse the functions that lists suitable type variety candidates
for each amplifier of the multiband amplifier

restrictions are processed before entering select_edfa.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8c784cef6bfed9a2e95bc39434a32191678db81f
2024-10-16 17:40:29 +00:00
EstherLerouzic
548626a9f2 preselect amplifiers based on restrictions and bands
make sure that selected amplifiers (single or multiband) have a band
that encompasses design_band.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8b66755efbe8413f32328b9e02099ffdedd4b7ed
2024-10-16 17:40:01 +00:00
EstherLerouzic
7a26833a5a Add some test on select_edfa
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia54c62fe76175f16048992ca1f67439dd32c6e5e
2024-10-16 17:39:39 +00:00
EstherLerouzic
c2f6f9c6a0 Add an invocation test with multiband case
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0a98175f0c6b4333fae6bea40dac826032a25233
2024-10-16 17:39:13 +00:00
EstherLerouzic
64a91256fc Propagate power per band during autodesign
Target setting computation is done going through each element of the OMS
and computing resulting delta power after each amplifier element. In order
to account for different delta power per band (multi band autodesign), the
computation must be made per band. The previous introduction of a standard
name for bands ("CBAND", "LBAND") ensures a stable key to index these
delta power computation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida4b2486ebde4f2a1fb21a44458d1fe34a788d1f
2024-10-16 17:37:35 +00:00
EstherLerouzic
bdcffc2a5e Refactor: define a separate function to compute targets
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5698feb059f13b90c1ab3d0843fb000c4e0b6b59
2024-10-16 17:36:52 +00:00
EstherLerouzic
c384af8062 Refactor: create a function to set one single band amplifier
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I00018c38b0cc0ceefcd21d50dd0cdc639019cc70
2024-10-16 17:36:25 +00:00
EstherLerouzic
0813332adc Enable differentiated design band per OMS
Introduce a design_band parameter in ROADM and Transceiver.
- if nothing is defined, use SI band(s)
- if design band is defined in ROADM, use this one for all degrees
- if per degree design band is defined, use this one instead

unsupported case: single band OMS with default multiband design band.
Check that these definitions are consistent with actual amplifiers

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibea4ce6e72d2b1e96ef8cf4efaf499530d24179c
2024-10-16 17:31:33 +00:00
EstherLerouzic
22fe9ead55 Introduce multi band amps
Introduce a new multi-band element that contains a list of Edfa element:
- reads multiple amps out of the element config.
- deduces frequency band from the amp in the list.

no autodesign yet: multi-band amps must have type_variety.

- checks that type variety of individual EDFAs is consistent with multiband
type variety
- demux and mux spectrum when propagate in multiband
- don't add a preamp or booster if a multiband amp is already defined.

The print of channel number is removed from equipment, since the channel number
may now depend on the path's amplifiers. This changes invocation results layout.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I44e77ff82e622cdee4021a7984d660317cb90cf9
2024-10-16 17:26:11 +00:00
EstherLerouzic
920ac30aa5 Refactor and simplify network functions
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ifa0949a8b7739036639e1a4b006ceb08804558ce
2024-10-16 17:24:52 +00:00
EstherLerouzic
ac8fd770ab Only propagates carriers that belong to Amp bandwidth
The commit introduces mux/demux functions in amps and ensures that the
propagation is only done on carriers that are in the Amp bandwitdh, ie
with all their spectrum including slot width is in bandwidth.

For consistency, default amp f_min is changed:
Objective is to use amplifiers' band to bound the possible frequencies
to be propagated. Since the current default f_min of Amp in json_io.py is
higher than the SI one, this would result in a different nb of channels
than currently used in tests, and a change in all tests. In order to
avoid this, I preferred to change this value and have consistency
between SI f_min and Amp f_min.

The commits adds a set of functions to make amps band the useable
spectrum on each OMS. Thee OMS generation is changed to use the amp band.

The commit adds filtering functions (demux and mux) to filter out spectrum
which is not in the amplifier band.

Spectrum assignment is also corrected to correctly match the amp bandwidth
constraint with guardband: center frequency index must be within the
usable part of the amp band. This changes a bit the notion of freq_index
and guardband in the functions, but this is transparent to user:
f_min, f_max represent the amp band, while self.freq_index_min/max
represent the center frequency boundary for a reference 50GHz channel.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I225b2b2dc0e1f1992c0460f6e08fa9c9bc641edf
2024-10-16 17:16:21 +00:00
EstherLerouzic
5277ae2005 Add a redesign option
redesign True means that network is redesigned using each request
as reference channel. When False it means that the design is made
once and successive propagation use the settings computed with this
design.

Default propogation is without redesign, so that path-request-script
must use the ----redesign-per-request option to behave as before this
commit.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0084185106d14659a846136620cd17791d551a7d
2024-10-16 17:15:20 +00:00
EstherLerouzic
30ead40e76 Creates a set of functions to be called by CLI and API
Instead of copying the CLI script in API code, use functions shared
by CLI and API

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3f9b30b8700b68237d0e80768db015d8dec3deb5
2024-10-16 17:13:25 +00:00
EstherLerouzic
ae858b911a fix: capture warning to show the ROADM uid
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie13bf4c3436a5a0b8ec730698920eee2c7fb81e8
2024-10-16 17:10:34 +00:00
EstherLerouzic
0d236fd31e fix: remove unused invocation test file
Wrongly added by commit #4a071c5

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I337b8d4560cd7f2634fca7d242783da327127de5
2024-10-16 16:42:09 +00:00
EstherLerouzic
9a84e29433 fix: remove freq2wavelength that is already defined
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8ef480460e689bfcb33116cd393ad92ed0e03338
2024-10-08 11:07:13 +00:00
‘Renato
143f63170e FIX: json indentation in example-data
Change-Id: If3585fc554638cb1e5f7e4564d10af29420b6159
2024-09-20 13:49:26 +00:00
EstherLerouzic
b2d7f883a1 Add documentation for topology, service and sim-params files
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0d917b742acd91aa52403f1ac96a378bb3cd8497
2024-06-02 19:26:33 +02:00
EstherLerouzic
73dbdf3042 Add documentation for the roadm impairment feature
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ief7e79ef10edf098c49ab1a0164284e5ae604961
2024-06-02 19:26:33 +02:00
EstherLerouzic
4a071c53d7 feat: transform roadm-paths into list indexed with frequency band
to be conformed with ietf + to prepare for next multiband case

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If71857ef7dff9eaaa4c16e3837d3500bcef2fa72
2024-06-02 19:26:33 +02:00
EstherLerouzic
dcde64a8db clean some leftover from previous refactor
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibd6e32090155433d7b1aa5b6572f1fe07a4cbe4a
2024-06-02 19:26:33 +02:00
EstherLerouzic
38cc0e3cc5 feat: separate span power from tx power
gnpy currently uses the same parameter for tx output power and span
input power: this prevents from modelling low tx power effect.
This patch introduces a new tx-cannel-power and uses it to
propagate in ROADM.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id3ac75e2cb617b513bdb38b51a52e05d15af46f5
2024-06-02 19:26:33 +02:00
EstherLerouzic
fb70413784 Refactor equipment and add some tests
This fixes error message for wrong trx type,  catches the case of
KeyError when trx_type is not part of the library.

removes power setting from this function: power out of transceiver or
at the input of span is nor defined in equipment Transceiver

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I15fa7cc772ab5c1a8c7637738eb83c2ddffa1219
2024-06-02 19:26:33 +02:00
EstherLerouzic
87e10c240e Add test on blocking due to PDL penalty
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d6a7f9ed0ff8ad6977bcfe1b78ed620bb0e848d
2024-06-02 19:26:33 +02:00
EstherLerouzic
43c1085be6 feat: apply per path_type ROADM OSNR
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2b0838c9a217a7f918b2cf08c233aacdbf686a72
2024-06-02 19:26:33 +02:00
EstherLerouzic
4ace60bea2 Feat: apply roadm-path loss
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I87e27d5b653bdce814f43e4c9c1183fb51fbcc1e
2024-06-02 19:26:33 +02:00
EstherLerouzic
f950a6aee8 Feat: add detailed ROADM impairments per roadm-path
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I09c55dcff53ffb264609654cde0f1d8b9dc7fe9b
2024-06-02 19:26:33 +02:00
EstherLerouzic
fb4195c775 Feat: Enable multiple type_varieties for ROADM
This commit introduces the 'type_variety' attribute for ROADM elements,
allowing the use of different types of ROADM specifications instead of
being limited to the default one.

If no type variety name is provided in the eqpt_config, the 'default'
name is used for backward compatibility with libraries. Additionally,
if no type variety is defined in the ROADM element in the topology,
the default one is used for backward compatibility with topologies.

The 'type_variety' attribute is included in the 'to_json' and
'display' methods for ROADM elements.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I61a2491f994e47ad0b08cf8eaef30d6d855aa706
2024-06-02 19:26:33 +02:00
EstherLerouzic
29f42666e5 remove whites spaces and align parentheses
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0f5f389a3cf20155ceb0e9d9f071d1334a5ad688
2024-06-02 19:26:33 +02:00
EstherLerouzic
9bf7f336e3 Update release notes of v2.9
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib949ff81fa818886a69339117bc66290dc2685b0
2024-06-02 19:26:27 +02:00
EstherLerouzic
eed6564f11 Add power sweep functionality description in documentation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic8db566bc168f120ddb0016c91bcc1d24263548c
2024-06-02 19:17:07 +02:00
EstherLerouzic
fbb2f2c587 fix missing to_json export of computed_number_of_channels
The parameter was introduced in commit 9736f7c032
but the export to_json was not added.

In the next commits, it is necessary to compute Raman gain during the design
phase. The sim-params used for this computation are updated during the
design phase for speed reasons. To ensure the proper restoration of user
settings for propagation, the export must include all parameters. Therefore,
this commit adds 'computed_number_of_channels' to the JSON export. This allows
for the accurate recording of all user settings locally and enables their
restoration.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I221a6f614010edea9cf46c3a7d43c5be064ff09c
2024-06-01 19:17:50 +02:00
EstherLerouzic
44040c4d06 fix missing description of computed_number_of_channels
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5c8d057dcdab535617eee8de3eccdd806cec403e
2024-06-01 09:11:56 +02:00
EstherLerouzic
ee9af69558 Improve doc to state when tilt is vs wavelength
add some text in the docs to explain that tilt can be expressed
vs freq or lambda depending on context:
advanced_model expresses dgt as a function of frequency,
while tilt target is still defined vs wavelength (common usage).

Change the variable to have explicit name when it is per wavelength,
or add a comment to help identifyper wavelength or per frequency
variables.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7727f00b38244152b95954e981cc9da096bb3d1d
2024-05-24 07:11:02 +00:00
Esther Le Rouzic
ce21609fec Merge "fix: image of the script and documentation" 2024-05-22 14:24:26 +00:00
Esther Le Rouzic
a1289e6a9b Merge "feat: enable different sim_param vectors for multiple requests" 2024-05-22 14:19:35 +00:00
AndreaDAmico
138115e1d7 Frequency scaling description in release notes v2.8
Change-Id: I74f3d52a3cbc087b914ff18075869d2162b693ac
2024-05-16 01:23:27 -04:00
EstherLerouzic
ed41305f55 fix: image of the script and documentation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib022320efd36a2d912f7b443686d7fee137e48b1
2024-04-26 18:19:53 +02:00
EstherLerouzic
9736f7c032 feat: enable different sim_param vectors for multiple requests
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia800a7b98b33b795cc3553500116be61c612e45c
2024-04-26 17:12:43 +02:00
EstherLerouzic
be7ae35db3 Refactor amp default in parameters
default parameters are shared between json and network function,
so it is better to have them on the parameters to avoid circular
dependency when importing modules

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib9d41852e394586d36f74992c91f67f3330cc552
2024-04-25 17:51:56 +02:00
EstherLerouzic
2b4a4ab72c fix Raman gain estimation during design
- Replaced multiple calls to the span_loss function
  with recording the span loss result in the fiber elements,
  reducing computation time.
- Updated Raman gain estimation based on design target powers to ensure
  accurate Edfa gain calculation or gain reduction during design.
- display the computed and design Raman gain in RamanFiber string output
- do not add padding on Raman fibers
- Added to_json function to preserve user input SimParams values,
  which were previously overwritten by initializing SimParams
  with fake values during design.

Next step is to allow users to balance computation time and
target accuracy of the design by inputing their own SimParams
and ref channels design values.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1ca4954d0621858cefb3d776a538131992cae3e3
2024-04-12 08:58:16 +02:00
EstherLerouzic
426c88432d fix: update README script animation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I31381ddf3e372f34836416162c080a5205ef969d
2024-04-12 08:41:27 +02:00
AndreaDAmico
2a800b781f Bug fix: Raman coefficient properly scaled in non SSMF case
Before the Raman coefficient was normalized with respect the given effective area, instead of the reference.

Change-Id: I4c0547db4fbd0f823a9058022b93c1ca37d67b51
2024-04-11 01:21:02 -04:00
Jan Kundrát
8d1d3677ed docs: fix graphs on RTD
At OFC I was talking with the OpenROADM people, and it turned out that
our docs stopped rendering properly at RTD. It turned out that the build
started skipping the bindep.txt file at some (unknown) point in time.

Reported-by: Aparaajitha G L <aparaajitha.gomathinayakamlatha@utdallas.edu>
Change-Id: Ie9a4b61f36fb979fb5c109d02de06e0b2cbf270e
2024-03-29 19:23:08 +01:00
Jan Kundrát
5b6f8c60cf docs: use the default theme on ReadTheDocs.org as well
Historically, we've been using the RTD theme on the RTD site which hosts
the docs for us, and a Sphinx-default, "Alabaster" theme for other docs
builds. Doing that however started failing:

 Traceback (most recent call last):
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 1096, in handle_page
     output = self.templates.render(templatename, ctx)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/readthedocs_ext/readthedocs.py", line 181, in rtd_render
     content = old_render(template, render_context)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/jinja2glue.py", line 194, in render
     return self.environment.get_template(template).render(context)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/environment.py", line 1301, in render
     self.environment.handle_exception()
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/environment.py", line 936, in handle_exception
     raise rewrite_traceback_stack(source=source)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/basic/page.html", line 10, in top-level template code
     {%- extends "layout.html" %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/classic/layout.html", line 10, in top-level template code
     {%- extends "basic/layout.html" %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 170, in top-level template code
     {%- block content %}
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 189, in block 'content'
     {%- block sidebar2 %}{{ sidebar() }}{% endblock %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 189, in block 'sidebar2'
     {%- block sidebar2 %}{{ sidebar() }}{% endblock %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/sandbox.py", line 393, in call
     return __context.call(__obj, *args, **kwargs)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/jinja2/runtime.py", line 777, in _invoke
     rv = self._func(*arguments)
          ^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/themes/default/../basic/layout.html", line 63, in template
     {%- include sidebartemplate %}
     ^^^^^^^^^^^^^^^^^^^^^^^^^
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/jinja2glue.py", line 215, in get_source
     raise TemplateNotFound(template)
 jinja2.exceptions.TemplateNotFound: about.html

 The above exception was the direct cause of the following exception:

 Traceback (most recent call last):
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/cmd/build.py", line 281, in build_main
     app.build(args.force_all, args.filenames)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/application.py", line 347, in build
     self.builder.build_update()
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 310, in build_update
     self.build(to_build,
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 376, in build
     self.write(docnames, list(updated_docnames), method)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 571, in write
     self._write_serial(sorted(docnames))
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/__init__.py", line 581, in _write_serial
     self.write_doc(docname, doctree)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 672, in write_doc
     self.handle_page(docname, ctx, event_arg=doctree)
   File "/home/docs/checkouts/readthedocs.org/user_builds/gnpy/envs/499/lib/python3.12/site-packages/sphinx/builders/html/__init__.py", line 1103, in handle_page
     raise ThemeError(__("An error happened in rendering the page %s.\nReason: %r") %
 sphinx.errors.ThemeError: An error happened in rendering the page about-project.
 Reason: TemplateNotFound('about.html')

 Theme error:
 An error happened in rendering the page about-project.
 Reason: TemplateNotFound('about.html')

I have no clue what that means because we have never requested this
`about.html`, nor do we reference that file from anywhere. Chances are
that it's "just" some version pinning/compatibility issue, but hey --
why mess with that when there's a perfectly good default theme that
we're using for other purposes already.

As a side effect, this also solves that long-standing issue that Esther
reported where the tables have overly long lines. Apparently, it's a
theme-specific misfeature (readthedocs/sphinx_rtd_theme/#117), and the
Alabaster one doesn't suffer from that.

All hail alabaster!

Change-Id: I857890f29f14b7c0f66bca201c9a9c1b1cbf8841
2024-03-13 21:30:20 +01:00
Jan Kundrát
3a733b1fd5 docs: try to unbreak the readthedocs.io build
It was failing with a message:

  Config validation error in build.os. Value os not found.

Apparently, the v2 config file is mandatory, so let's do that.

Change-Id: I267d5314db026de532b2b6644f500d25de08e343
2024-03-13 21:30:20 +01:00
Jan Kundrát
2d68b94a46 build: specify dependencies directly in setup.cfg
In tox v4, "reuse of environments" was disabled [1]. This is then later
explained [2] to refer to exactly that thing which we were using for
inheriting the dependencies from the top-level testenv all the way to
the docs build. That's why the docs build in GitHub CI started failing.

IMHO, The Correct Way™ of specifying what dependencies are used for
which feature are the so-called "extra dependencies". Once they are in
place, it is be possible to install gnpy via, e.g., `pip install
oopt-gnpy[docs]`. However, this process is (as far as I can tell)
incompatible with `requirements.txt`; all my attempts at using the
standard dependency syntax in that file have failed for me.

So, in order to make this happen, let's move all the dependencies from a
more-or-less ad-hoc collection of files to this declarative approach
right in setup.cfg. That way, the deps are listed on a single place, in
a declarative manner, and as a result, the installation is now a trivial
pip oneliner.

As a result, one can also remove that duplication of dependencies in
docs requirements.

[1] https://tox.wiki/en/4.11.4/upgrading.html#reuse-of-environments
[2] https://tox.wiki/en/4.11.4/upgrading.html#packaging-configuration-and-inheritance

Change-Id: I34aa0c71e993b39e2b805a7de40e133b4d290318
Fixes: 47c89626 fix docs requirements
2024-03-13 21:28:01 +01:00
EstherLerouzic
bc71823bd0 docs: add a release-note section and update documentation for penalties and SI
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I12a5747df3cee6df79c24dd6261f7be17aa77fcf
2024-02-09 18:59:40 +01:00
EstherLerouzic
5481b93728 Fix frequency scaling for fiber
- wrong parameter was used in parameter
- error message could not read 0-dimensional arrey for 0 and -1 element
- add a test that makes use of the feature

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id7f6d6766d5b91a4b9410ad23aaa5e472b8ebb6f
2024-01-16 09:10:31 +00:00
EstherLerouzic
05e301182d Change fedora-python in action
"Until version 0.4, this action always used the
latest fedora-python-tox image"
https://github.com/fedora-python/tox-github-action

So let's use one that supports python 3.8

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibf3e0baa715da70b4c2af6e2cde6efccfab50311
2024-01-15 20:02:13 +01:00
EstherLerouzic
47c89626e3 fix docs requirements
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9d151b842a38380b0368e099c67957ec36b78250
2024-01-15 13:53:44 +01:00
EstherLerouzic
7a032a63b5 ci change allow_whitelist which is deprecated
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic62050d351eb5bb2f8be2b8d9e0088bd965dc71d
2024-01-15 13:12:35 +01:00
EstherLerouzic
f195d5f496 fix: use ref power on transceiver to Roadm (or transceivers) links
The recent refactor removed a default pref in case of transceivers-OMS
(amplified links starting with a transceiver).
This resulted in a mismatch between input power during design
(default 0 forced in the function) and the design ref power using SI
power_dbm.

This change ensures that the same power is used for the input power
and for the design ref power, and avoid inconsistent gain computatiion.

The code has been using the same power input (SI power_dbm) to define the
power target out of a transceiver and the target out of amplifiers
(at the input of fibers). This will be changed in a future patch.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I610c8df19039bcf156a8ba77c79114b22913a538
2023-12-08 12:27:05 +01:00
Esther Le Rouzic
56569f866f Merge changes from topics "mixed-rate", "refactor_remove_pref"
* changes:
  Add a test on EOL
  add invocation test with the 3 equalization settings
  Add a test on out_voa optimisation function
  Clean a bit, add docstrings
  Remove Pref, and move ref_carrier definition
  Remove p_span0 from SI
  Remove p_spani from Pref
  Use design delta_p and gains instead of p_spani
  restore initial power sweep behaviour
  refactor cli to use a common design function
  Parametrize verbose in autodesign
  refactor build_network: create a separate function to add elements
  Computes reference input power in fiber during design
  Computes reference input power in ROADM during design
  Add a variable to hold delta_p even if gain mode is selected
  Add frequency range in default_edfa profile
  Add a test on gain mode behaviour
  Check element setting before and after propagation
  Correct design: apply saturation in all cases
  Add more tests on amp saturation
2023-12-04 16:09:37 +00:00
Esther Le Rouzic
bf1f293043 Merge "Add test in amplifier behaviour" 2023-12-04 16:08:14 +00:00
Esther Le Rouzic
28871c6f2d Merge pull request #480 from jktjkt/python-3.12
CI: Python 3.12 and extended platform coverage
2023-11-23 17:54:02 +01:00
EstherLerouzic
d7c1a6b75e Add a test on EOL
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iddce655a64623a42cdaeaa2e8c269e3a737dd935
2023-11-20 17:07:53 +01:00
EstherLerouzic
c69c2a3af2 add invocation test with the 3 equalization settings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0aee8da7bbf71991c68e163c7188efe1ddf29ff9
2023-11-20 17:07:53 +01:00
EstherLerouzic
fb29d72906 Add a test on out_voa optimisation function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I36d71d85e5837965f6d5ae47820506d06b3cb94e
2023-11-20 17:07:53 +01:00
EstherLerouzic
30a06da6b1 Clean a bit, add docstrings
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8639d458ebb090761846387921f9da4fc65a9f64
2023-11-20 17:07:53 +01:00
EstherLerouzic
139c8cc1e7 Remove Pref, and move ref_carrier definition
Finally, ref_carrier is not meant to change after design since
it is the carrier used for design. So let's move its definition
to networks function. Only ROADM need the ref_carrier baud rate
so let's define a dedicated variable in ROADM to hold it.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida7e42dd534a04c8df8792b44980f3fd2165ecb6
2023-11-20 17:07:53 +01:00
EstherLerouzic
7034d4c686 Remove p_span0 from SI
reference channel is defined during design. No need to convey it
anymore during propagation.

move target_pch_out_db definition to the design phase and change
its name to be consistent with what it contains (dbm)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I350e4557e8488a614674042de26152ab89b2d245
2023-11-20 17:07:53 +01:00
EstherLerouzic
10164495b9 Remove p_spani from Pref
next step: remove Pref

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7cc17253a2d7ab3fb42e3d07c1665991cffa6222
2023-11-20 17:07:53 +01:00
EstherLerouzic
87211b35e9 Use design delta_p and gains instead of p_spani
Remove the visualisation of the effective_pch in amp because actual
and target are the relevant ones. effective_pch was artificially
related to a mix of reference channel and noisy channel (mixed between
on the fly redesign but using actual ROADM equalisation which includes noise
in its actual loss).

the change does no more rely on the target power (which is rounded)
but on the designed gain, which is not rounded.

Propagations are slightly changed for openroadm simulations because of that.
(I verified)

The gain of amp was estimated on the fly with p_spni also in case of
RamanFiber preceding elements. removing p_spani requies that an estimation
of Raman gain be done during design.

This commit also adds this estimation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I960b85e99f85a7d168ac5349e325c4928fa5673b
2023-11-20 17:07:46 +01:00
EstherLerouzic
e9f9ddb4d6 restore initial power sweep behaviour
if user define a delta_p that is reduced because of saturation,
then this initial setting is still kept for power sweep to be sure
that the full amplitude of sweep is used.

SI power = 0 dBm
max power amp1 = 20 dBm,
user_defined_delta_p set by user = 3
80 channels, so pch_max = 20 - 10log10(80) = 0.96 dBm
power_sweep -> power range [-3, 0] dBm

then for initial design,
   pref = 0 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref = 0.96

but for -3 power sweep
   pref = -3 dBm
   computed_delta_p =
      min(pch_max, pref + user_defined_delta_p) - pref =
      min(0.96,    -3 + 3) - (-3) = 3
   so the user defined delta_p is applied as much as possible

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I8fd459c29aa9754ff9d4868af1d8be8642a31913
2023-11-20 11:10:07 +01:00
EstherLerouzic
8ea13bb4d6 refactor cli to use a common design function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I029d8c7fc29b1e86e1e3b2b64933bae5da134226
2023-11-20 10:27:43 +01:00
EstherLerouzic
b45829d2df Parametrize verbose in autodesign
transmission-main-example and path-request-run functions implement an
on-the-fly redesign based on p_span_i.
Since we remove p_span_i from elements, we will need to properly call
redesign several times before each propagation, to keep the same
behaviour of these functions.

in this commit we simply enable the possibility to mute warnings.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3aa3d8fc87325033ef69641078bdd7213e0409eb
2023-11-20 10:27:41 +01:00
EstherLerouzic
6ac3a517cf refactor build_network: create a separate function to add elements
separate function that adds element, from function that configure them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ica332223bdf7fc599cb007d7513d7cd62d9c5f9c
2023-11-20 10:25:07 +01:00
EstherLerouzic
2f2920a716 Computes reference input power in fiber during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for reference channel fiber loss computation.
Note that this loss parameter is only used for visualisation purpose.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I16bd792bd6079ce521aafadcf5e21922aa3b4c81
2023-11-20 10:23:21 +01:00
EstherLerouzic
07fd89351b Computes reference input power in ROADM during design
input power is computed at design time: so let's record it and
use it instead of p_span_i for ROADM reference channel loss computation.
Note that this loss parameter is only used for visualisation purpose.
No impact on propagation.

Since this loss is computed for the reference channel used for
design, we need to record input power based on input degrees,
and indicate this information within the call function.

Note that this will be also usefull later on to implement ROADM
parameters

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I64d510fc20df72f07158f400964d592d76dc0ce4
2023-11-20 10:23:21 +01:00
EstherLerouzic
7c60b000b5 Add a variable to hold delta_p even if gain mode is selected
Let's use a clean convention to hold values that are configured,
autodesigned or resulting from propagation.

- edfa.operational.delta_p: holds the value set by the user if any.
  This is needed in case of redesign for power sweep for example.
  It is never changed.
- edfa.delta_p:
  o if power_mode is true, records the value computed by the design.
      Applies user defined value except:
      If the user has set non possible values (eg leading to saturation),
      then the value is corrected at design phase.
      If the element is propagated for different conditions than
      design, for example leading to saturation,  then delta_p might be
      different than the value initially computed during design.
  o if power_mode is False, it is set to None
- edfa._delta_p: records the value computed during design whatever
  the power mode

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4e130a3abe0a5e3f6c057d89360e50531c168123
2023-11-20 10:23:21 +01:00
EstherLerouzic
537eb017b5 Add frequency range in default_edfa profile
This range is the property of amps and is independant from user propagation range.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ib89f1987910aa3121a3b8c859a0a785f7d5e27eb
2023-11-20 10:23:21 +01:00
EstherLerouzic
9c514e8086 Add a test on gain mode behaviour
This test checks that setting in gain mode forces amp to the gain settings
and ignores any power requirements. Change in SI in eqpt config and change
in req power (eg power sweep) should have no effect on the propagation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iad826f30010fe3110d105b5206d99f502fbf98ff
2023-11-20 10:23:21 +01:00
EstherLerouzic
78efb6c650 Check element setting before and after propagation
In power mode, all elements design attributes should not change except
amplifiers' gain in case of power saturation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2fec00232c80dd395e4dec20ec531c9c2e127760
2023-11-20 10:23:18 +01:00
EstherLerouzic
3510d59250 Correct design: apply saturation in all cases
Previously saturation was not checked during design if amp type was set.
This commit also applies saturation for these amplifiers.

This changes some of the autodesign result (since range for selection
is changed). For example, this changes some of the gains, or type variety
of amplifier of test files.

The commit also removes one of the rounding in the design phase, and
applies rounding only for printing purpose.

It also adds minor refactor on a function

In order to keep power sweep behaviour in case of saturation, the saturation
check in amplifier element uses initial power targets set by user instead
of a possible autodesign delta_p result.

Note that gain_mode is unchanged: design in gain mode means that delta_p
is set to None during the build process, even if the user defined a value
in operational.delta_p.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idc5cfc8263cf678473acb6ec490207d9d6ba5c0a
2023-11-20 10:21:38 +01:00
EstherLerouzic
41d9d156a6 Add more tests on amp saturation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibba18bed646748d59cfe906b403a9b100c58bb7e
2023-11-20 10:21:35 +01:00
EstherLerouzic
e9d5e748e4 Add test in amplifier behaviour
Check that amp correctly applies saturation, when there is tilt.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e7623e9d5b28bdc12eae24766588645781c2827
2023-11-20 10:21:06 +01:00
EstherLerouzic
5a5bed56c2 Add test on _check_one_request function
Add the call to the function, and creates additional test cases to raise the
different situations related to spectrum slots:
- M value too small
- total nb of channels too small
- overlapping

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7ab3923deef2ff154ee1be21dcaeb3d9e4b84375
2023-11-17 16:26:12 +01:00
EstherLerouzic
22de1b1281 Add tests on aggregation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5409d847657fbe14f7963ff56546d0bedbf6c941
2023-11-17 16:26:12 +01:00
EstherLerouzic
73e1485b47 aggregate demands with defined mode and spectrum
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id9fc2e0fe6f6ff5a3996700f6db7dfa6222dc3ca
2023-11-17 16:26:12 +01:00
EstherLerouzic
22ee05ea6f Add more tests for multiple slots spectrum assignment
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id773f0f14cfe80b7ebcf07370170ad425faf0919
2023-11-17 16:23:48 +01:00
EstherLerouzic
31824f318d Enable multiple slots assignment
list of slot may include (N, M) values such as
(int, uint>0)
(int, None)
(None, uint>0)
(None, None)

Demands will be splitted into requested slots according to first fit strategy.
For example, if request is for 32 slots corresponding to 8 x 4slots 32Gbauds
channels, the following frequency slots will result in the following
assignments:
example 1
N = 0, 8,    16, 32           -> 0,   8,   16,   32
M = 8, None, 8,  None         -> 8,   8,    8,    8
example 2
N = 0,    8,    16, 32        -> 0,   , 16
M = None, None, 8,  None      -> 24,  , 8

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ice9bb4b5700d23bcf30db25aa4882e74853169ac
2023-11-17 16:23:48 +01:00
EstherLerouzic
b0cb604e91 Remove old commented code
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idd2fcca0fe757eb801ab575953828c6df0521bb4
2023-11-17 16:23:48 +01:00
EstherLerouzic
79102e283a Refactor function to simplify the process
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I362d23a969c338ccd70caecc4e59e991d2a8d8a2
2023-11-17 16:23:48 +01:00
EstherLerouzic
db5e63d51b Refactor spectrum selection function
Cut some functions into smaller pieces to be easily re-used afterwards.
This step to prepare multiple slots assignment.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0fa2df7f6174e54405f92a57d60289d560c1166
2023-11-17 16:23:48 +01:00
EstherLerouzic
af42699133 Enable the loading of a bitmap
OMS are currently built with a brand new spectrum bitmap using f_min, f_max,
guard band and grid values. This changes enables to load an existing bitmap.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0547bc337c863a3510ad9e43928e6f64701d295
2023-11-17 16:23:48 +01:00
EstherLerouzic
4ba77d0a0a Change rq.N and rq.M from scalar to list
Prepare for the next step, to be able to handle lists of candidate assignment

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2bd78606ce4502f68efb60f85892df5f76d52bb5
2023-11-17 16:23:48 +01:00
EstherLerouzic
064d3af8e0 Remove line number from invocation logs
line numbers are useful for debugging, but the benefit does not
compensate for the painful update of lines in files at each commit
that changes line numbers.
So I have removed those lines only for the test_invocation logs case.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic1f628d80b204a9a098f3902ebdfd10b480c7613
2023-11-17 11:56:06 +01:00
AndreaDAmico
4ab5bac45f EDFA Parameters restructuring
The parameters of the EDFA are explicitely retrieved in the EDFAParams class.
All the defaults are set instead in the gnpy.tool.json_io.AMP class.
Where required, the AMP.default_values are used instead of an empty dictionary.

Change-Id: Iba80a6a56bc89feb7e959b54b9bd424ec9b0bf06
Co-authored-by: Vittorio Gatto <vittoriogatto98@gmail.com>
2023-11-17 09:08:00 +01:00
AndreaDAmico
bbe5fb7821 Chromatic Dispersion scaling along frequency
The chromatic dispersion and dispersion slope can be provided as a single values evaluated at the fiber reference frequency or in a dictionary containing the dispersion values evaluated at multiple frequencies:
"dispersion": {"value": [], "frequency": []}

Change-Id: I81429484dd373cc49bd9baf013247782ba1912fd
2023-11-17 09:04:44 +01:00
AndreaDAmico
edf1eec072 Nonlinear coefficient scaling along frequency
The nonlinear coefficient can be expressed at the reference frequency and will be scaled in frequency using the scaling rule of the effective area

Change-Id: Id103b227472702776bda17ab0a2a120ecfbf7473
2023-11-17 08:53:58 +01:00
AndreaDAmico
88ac41f721 Seprating the eta matrix evaluation in compute nli
The evaluation of the eta matrix is reintroduced for nli evaluation and validation purposes. Also, the parameters for cut and pump are separated explicitelly.

Change-Id: Id3844fa8ba41a5d4f5a72d281d758136ee983f45
2023-11-17 08:51:35 +01:00
AndreaDAmico
c20e6fb320 Effective Area and Raman Gain Coefficient Scaling
1. Effective area scaling along frequency is implemented by means of a technological model.
2. Raman gain coefficient is extended coherently, including the scaling due to the pump frequency.

Change-Id: I4e8b79697500ef0f73ba2f969713d9bdb3e9949c
Co-authored-by: Giacomo Borraccini <giacomo.borraccini@polito.it>
2023-11-17 08:51:26 +01:00
Jan Kundrát
05500c7047 CI: run tests on Apple M1 CPUs as well (64bit ARM)
Note that on GitHub, this currently targets a "runner" that's behind a
paywall. TIP does have a payment setup in place AFAICT, so we make sure
that this job does not run on forks.

Change-Id: I50c556424d86a1ce47e59911b9e39f336df34ce5
2023-11-15 20:37:26 +01:00
Jan Kundrát
86a39f4b5e packaging: mark Python 3.12 as supported
Change-Id: If3c8ea7d5a7651b71379a71e5dfde6b464aa5b4a
2023-11-15 20:06:55 +01:00
Jan Kundrát
2b25609255 CI: test on Python 3.12 and some new platforms
Change-Id: Ice5c3ca21245c4ac87cb2bf4f0fd062596615a2e
2023-11-15 20:06:55 +01:00
Jan Kundrát
7e0b95bcfd Bump all dependencies
Change-Id: Id08b7722880b992b1bb70f53ad243d4f40ffe387
2023-11-15 20:06:54 +01:00
Jan Kundrát
f0a52dcc8a tests: upgrade pandas
There are no binary wheels for Python 3.12 prior to pandas v2.1.1. Our
previous pin requested the 1.x branch, and that resulted in building
Pandas from source, which takes time. We cannot pin to 2.1.1 because
they removed support of Python 3.8 in 2.1, so 2.0.3 it is.

Change-Id: Ia9a567e54f4dda19a0a6b67d0c295a9a079892de
2023-11-15 20:05:54 +01:00
EstherLerouzic
3bea4b3c9f Feat: improve sanity check for eqpt sheet
add cases of wrong sheets that were not captured and
generate errors later in propagation:
- if the eqpt line is duplicated
- if the eqpt contains a link that is not present in Links sheet,
  but Nodes are OK
- if the same link is defined but with opposite directions
- if the ila is defined twice with opposite directions
- if the service type or mode are not in the library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I4715886e19f07380bf02ed0e664559972bb39b71
2023-11-02 10:14:03 +01:00
EstherLerouzic
f2cc9f7225 Add more logs
and test them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I05ffc3a75354fa8d8f3a668973ab7f4cbcfa1a98
2023-11-02 10:01:38 +01:00
Esther Le Rouzic
e79f9f51b6 Merge "Feat: add offset power option for transceivers" 2023-10-31 08:30:13 +00:00
Esther Le Rouzic
7fd7f94efe Merge "Refactor error message" 2023-10-31 08:29:58 +00:00
Esther Le Rouzic
0acdf9d9f6 Merge "docs: rename the Matrix channel" 2023-10-27 15:09:16 +00:00
EstherLerouzic
a3edb20142 Feat: add offset power option for transceivers
Offset power is used for equalization purpose to correct for the
generic equalization target set in ROADM for this particular transceiver.
This is usefull to handle exception to the general equalization rule.
For example in the case of constant power equalization, the user might
want to apply particular power offsets unrelated to slot width or baudrate.
or in constant PSW, the user might want to have a given mode equalized for
a different value than the one computed based on the request bandwidth.

For example consider that a transceiver mode is meant to be equalized with
75 GHz whatever the spacing specified in request. then the user may specify
2 flavours depending on used spacing:

  service 1 : mode 3, spacing 75GHz
  service 2 : mode 4, spacing 87.5Ghz
avec
  {
    "format": "mode 3",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 75e9,
    "cost": 1
  }

  {
    "format": "mode 4",
    "baud_rate": 64e9,
    "OSNR": 18,
    "bit_rate": 200e9,
    "roll_off": 0.15,
    "tx_osnr": 40,
    "min_spacing": 87.5e9,
    "equalization_offset_db": -0.67,
    "cost": 1
  }

then the same target power would be considered for mode3 and mode4
despite using a different slot width

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I437f75c42f257b88b24207260ef9ec9b1ab7066e
2023-10-24 13:20:00 +02:00
EstherLerouzic
33cc11b85c Refactor error message
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie8fc6bedcdbce26e2e80759c6c56d2c7429bf560
2023-10-24 13:20:00 +02:00
Jan Kundrát
5d079ab261 docs: rename the Matrix channel
It seems that the Matrix server at `foss.wtf` disappeared some time ago
with no details posted anywhere. I've marked the long-existing channel
alias `#oopt-gnpy:matrix.org` as the primary one, so let's adjust the
docs so that new people can actually join this channel.

This should have no consequences on people who have already joined.

Change-Id: Idee9c050ff5cb1c3926e5d4cf751002ad1541e71
2023-10-03 01:50:11 +02:00
AndreaDAmico
a3b1157e38 Fiber latency calculation
Fiber latency evaluated during propagation. The speed of ligth in fiber is evaluated as the vacuum speed of ligth  divided by the core reflective index n1.
The latency in the transceiver is evaluated in ms.

Change-Id: I7a3638c49f346aecaf1d4897cecf96d345fdb26c
2023-08-07 18:29:03 +02:00
AndreaDAmico
70731b64d6 fix: include position of lumped losses in Raman profile
In the previous version, the position of the lumped losses were not
included in the result Raman profile. As the latter is then used to
evaluate the NLI, including the lumped loss positions is required for
accurate estimations.

Change-Id: I683f48ceb7139d1a8be03d2e7ca7e3abffecbe85
2023-07-24 17:13:15 +02:00
AndreaDAmico
4ea0180caf tests: prefer pandas.read_csv over numpy.genfromtext
Change-Id: Icc9618afc4cad0c7a07f3a785c99b6b438e0c6cc
2023-07-24 17:12:25 +02:00
AndreaDAmico
eb2363a3d4 Fix: lumped losses included in total fiber loss
In previous version, the lumped losses where not included in the fiber loss, creating an inaccurate overall power balance.

Change-Id: I98a4d37b9cc0526218fe3c6f2b9318b6fa797901
2023-07-06 15:19:07 +02:00
EstherLerouzic
41b94cc888 fix: don't crash if PMD, PDL or CD penalties are missing in transceivers
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Iafc248af3ecfcd4da4c1135fd3a37da796cdfb5f
2023-05-09 10:11:26 +02:00
Jan Kundrát
1eeb6a0583 Merge changes Icd0b4fbd,I3ca81bcd,Ia33315f0
* changes:
  docs: docstring formatting
  SimParams: less boilerplate
  python: prefer isinstance(foo, Bar) over type(foo) == Bar
2023-04-18 23:01:30 +00:00
Jan Kundrát
215c20e245 Merge "fix: add missing PSW case for power computation" 2023-04-18 00:41:45 +00:00
Jan Kundrát
76e9146043 docs: docstring formatting
Let's use the pythonic indenting, quoting and structure in general as
specified in PEP 0257.

Change-Id: Icd0b4fbd94dabd9a163ae3f6887b236e76c486ab
2023-04-18 01:34:19 +02:00
Jan Kundrát
2a07eec966 SimParams: less boilerplate
The code look as if it was trying to prevent direct instantiation of the
SimParams class. However, instance *creation* in Python is actually
handled via `__new__` which was not overridden. In addition, the
`get()` accessor was invoking `SimParams.__new__()` directly, which
meant that this class was instantiated each time it was needed.

Let's cut the boilerplate by getting rid of the extra step and just use
the regular constructor.

This patch doesn't change anything in actual observable behavior. I
still do not like this implicit singleton design pattern, but nuking
that will have to wait until some other time.

Change-Id: I3ca81bcd0042e91b4f6b7581879922611f18febe
2023-04-17 23:06:31 +02:00
Jan Kundrát
cc994bf118 python: prefer isinstance(foo, Bar) over type(foo) == Bar
Use of isinstance() is more Python and it also allows inheritance to
work properly.

Change-Id: Ia33315f0e3faf6638334bec85d0fa92ea8ac81f0
2023-04-17 23:02:51 +02:00
EstherLerouzic
37e70e622c fix: add missing PSW case for power computation
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5fa9135cdde1735ec142bc88d8fdf0aa03b13a41
2023-04-13 16:48:21 +02:00
Florian FRANK
7d9a508955 Fix 2 minor typos in docs/model.rst
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: Ic2160f554b120b011c941aca36b69a0f032cf45f
2023-04-13 09:33:19 +02:00
Florian FRANK
185adabd77 Fix bug of comparison dimension when Raman is allowed and loss_coef is a vector instead of a scalar
Signed-off-by: Florian FRANK <florian1.frank@orange.com>
Change-Id: I0b39d102b9200ec25ed62e6f53b1e0addcc66f67
2023-04-11 17:30:24 +02:00
Jan Kundrát
8f9cf8ccc7 docs: sync the author list from git history
I don't have a script for this because it requires some manual fixups.

Change-Id: I19f36b953c98d6bc0c09040c27b964b288360c0e
2023-03-06 01:31:41 +01:00
Sami Alavi
0c797a254c simplify type annotations
PEP 484 says that `float` also implicitly allows `int`, so there's no
need to use `Union[int | float]`.

Fixes: #450
Change-Id: Ib1aeda4c13ffabd47719c1e0886e9ebcf21a64e0
2023-03-03 21:12:57 +05:00
Jan Kundrát
2cdeeabfa6 Mark Python 3.11 as supported
Change-Id: I2dedd942c92959e1f891194f6234376b9ecad6e5
2023-03-02 14:28:12 +01:00
Jan Kundrát
5e874798cb CI: GitHub: add builds on 3.11
...and also switch various jobs to use that by default.

Change-Id: I9170fc305bfd9bea6b5dde5741f912c6ed455e3e
2023-03-02 14:28:12 +01:00
Jan Kundrát
ff8f044064 Merge changes from topic "mixed-rate"
* changes:
  complete tests with the --power option tests
  Add Roadm uid when raising error
  add equalization per constant ratio power/slot_width
2023-02-14 09:59:20 +00:00
Jan Kundrát
d84ee4e76c Merge "doc: add a link to our public chat room" 2023-02-07 17:09:15 +00:00
Jan Kundrát
521d27ffac docs: fix a nasty typo
Fixes: b1067a62 docs: flexgrid
Change-Id: I44613d8ef4a27e7791db81509a56efa7ee29b4ff
2023-02-07 00:36:14 +01:00
Jan Kundrát
35e759212e doc: add a link to our public chat room
Change-Id: Id5323ad01ff0705efb9c9335e2c1f61227e5b73b
2023-02-02 17:29:19 +01:00
Jan Kundrát
f6dede2b5f docs: remove LGTM.com code-quality badge
...which no longer works since they got acquired by GitHub. Setting up
that CodeQL will need a bit more time I'm afraid.

Change-Id: I2f2bf21d31df643b25e931b2aadf60406bba683b
2023-02-02 17:28:40 +01:00
Jan Kundrát
0d0019f627 Update my e-mail address
I was informed that my TIP-specific e-mail address won't be coming back.

Change-Id: Ic2ee4986203490d90143a89dc49d7fca71a84c73
2023-02-02 17:13:23 +01:00
EstherLerouzic
06fe1c2f63 complete tests with the --power option tests
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ia7be6b86b82cc0317a5ba48086ef63f67d490990
2023-01-30 18:05:41 +01:00
EstherLerouzic
092316a9d7 Add Roadm uid when raising error
in case parameters are not correct, catch the ParameterError
and raises it again with the uid of the ROADM to ease debug

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I1f85f0e9e9226fc613d35611774c739adb2104c7
2023-01-30 18:05:37 +01:00
EstherLerouzic
48e3f96967 add equalization per constant ratio power/slot_width
Constant power per slot_width uses the slot width instead of
baud rate compared to PSD.

This is the equalization used in OpenROADM

add tests for constant power per slot width equalization

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie350e4c15cb6b54c15e418556fe33e72486cb134
2023-01-30 18:03:58 +01:00
Jan Kundrát
e9e8956caf docs: fix the GitHub CI (actions) badge
Bug: https://github.com/badges/shields/issues/8671
Change-Id: I9cb15b762710cae7c3c37ed95d08aee2ca7b2457
2023-01-18 22:57:17 +01:00
Jan Kundrát
0ae341c2a5 tests: update to flake8 v5
flake8-html is now compatible with the v5 of this package, so let's use
it. Unfortunately, they killed the `--diff` option in v6, so we cannot
use it right now. I understand the reasoning as well as the fact that
it's easy to be broken, but I don't like broken CI that much.

Change-Id: I70dd686e097f411c39bfc53f83d519540687dd64
2023-01-18 22:25:48 +01:00
Jan Kundrát
0c2f6372f8 tests: switch to PEP517-compliant build process
...mainly to be in sync with oopt-gnpy-libyang that I've been working on
recently, and to allow us to modernize this infrastructure later on.

Change-Id: Id0ed1d7620762fc204300ebe8a190de8e42ae9df
2023-01-18 22:20:39 +01:00
Jan Kundrát
97e80b4445 Merge changes from topic "enable-multiple-slots-assignment"
* changes:
  record request_id as string, not integer
  support missing trx_mode in request instead of null value
2023-01-18 21:20:03 +00:00
Jan Kundrát
5e4c9b7d73 Merge "Respect fiber max_length when splitting fibers" 2023-01-18 21:19:39 +00:00
Jan Kundrát
e96f821cce CI: Switch to Fedora 36
...because Vexxhost pulled the plug on the F35 mirroring infrastructure,
and as a result, all jobs started failing.

Change-Id: Ib5d795397e907de3eff6cdb9c4145353400793ab
Depends-on: https://review.gerrithub.io/c/Telecominfraproject/oopt-zuul-jobs/+/548583
2023-01-18 21:35:08 +01:00
Jan Kundrát
5f7e61e255 CI: temporarily remove Fedora 35 jobs
...since the hosting provider pulled the plug on the mirroring
infrastructure. See the rest of these commits in this serie for
details.

Change-Id: Iac1d5f1c6f557458194deafe441564afc4851d94
2023-01-18 21:32:11 +01:00
Jonas Mårtensson
682b5c5691 Respect fiber max_length when splitting fibers
According to the documentation, auto-design will
"Split fiber lengths > max_length", which also makes sense based on the
name of the parameter but with the existing implementation fiber
length could still be longer than max_length after splitting. This
patch makes auto-design respect the specified max_length.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ifd83aa4d77206bf10796579df73632fe405e2d54
2023-01-18 11:59:06 +00:00
Jan Kundrát
11e5117505 tests: do not compare floating point numbers for equality
GitHub CI started failing with the following error:

  assert (watt2dbm(si.signal) == target - correction).all()
  assert False
   +  where False = <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0>()
   +    where <built-in method all of numpy.ndarray object at 0x7f01c0ca94d0> = array([-25.5, -24.5, -22.5, -25. , -27.5]) == array([-25.5, -24.5, -22.5, -25. , -27.5])
        +array([-25.5, -24.5, -22.5, -25. , -27.5])
        -array([-25.5, -24.5, -22.5, -25. , -27.5])
        Full diff:
          array([-25.5, -24.5, -22.5, -25. , -27.5]).all

This is with code which has passed in the Zuul/Vexxhost CI.

It looks very similar to a regression that hit numpy 1.24.0, but the
GitHub action log shows that this happens with numpy 1.24.1. Weird, and
I'm not getting these differences locally, and also not on an ARM64
cloud VM.

Anyway, comparing floating point numbers for strict equality is futile,
so let's use this opportunity to use a proper check for these.

Change-Id: I05683f3116cad78d067bddde2780fe25b5caf768
2023-01-18 00:27:53 +01:00
EstherLerouzic
50603420fc ROADM: rework equalization
On a ROADM, the code would previously set the same per-carrier power
regardless of the channel spectrum width. With this patch, carriers are
equalized either by their:

- absolute power (same as before),
- power spectral density (PSD).

Also, it's possible to apply a per-channel power offset (in dB) which
will be applied to a specified channel on top of the selected
power-level or PSD strategy. The same offset can be also selected
through the `--spectrum` option via the `default_pdb` parameter.

The equalization policy can be set via the ROADM model (in the equipment
config) as well as on a per-instance basis.

The PSD is defined as the absolute power over a spectral bandwidth,
where the spectral bandwidth corresponds to the actual spectrum
occupation (without any applicable guard bands), as approximated by the
symbol rate. PSD is specified in mW/GHz. As an example, for a 32 GBaud
signal at 0.01 mW, the PSD is 0.01/32 = 3.125e-4 mW/GHz.

This has some implications on the power sweep and ROADM behavior. Same
as previously (with absolute power targets), the ROADM design determines
the power set points. Target power is usually the best (highest) power
that can be supported by the ROADMs, especially the Add/Drop and express
stages' losses, with the goal to maximize the power at the booster's
input. As such, the `--power` option (or the power sweep) doesn't
manipulate with ROADM's target output power, but only with the output
power of the amplifiers. With PSD equalization, the `--power` option is
interpreted as the power of the reference channel defined in equipment
config's `SI` container, and its PSD is used for propagation. Power
sweep is interpreted in the same way, e.g.:

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": 0,
            "power_range_db": [-1,1,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

...and with the PSD equalization in a ROADM:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 3.125e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

then we use the power steps of the power_range_db to compute resulting
powers of each carrier out of the booster amp:

 power_db = psd2powerdbm(target_psd_out_mWperGHz, baud_rate)
 sweep = power_db + delta_power for delta_power in power_range_db

Assuming one 32Gbaud and one 64Gbaud carriers:

                   32 Gbaud        64 Gbaud
roadmA out power
(sig+ase+nli)      -20dBm         -17dBm

EDFA out power
range[
        -1          1dBm            4dBm
         0          2dBm            5dBm
         1          3dBm            6dBm
]

Design case:

Design is performed based on the reference channel set defined in SI
in equipment config (independantly of equalization process):

      "SI":[{
            "f_min": 191.3e12,
            "baud_rate": 32e9,
            "f_max":195.1e12,
            "spacing": 50e9,
            "power_dbm": -1,
            "power_range_db": [0,0,1],
            "roll_off": 0.15,
            "tx_osnr": 40,
            "sys_margins": 2
            }],

`delta_p` values of amps refer to this reference channel, but are applicable
for any baudrate during propagation, e.g.:

    {
      "uid": "roadm A",
      "type": "Roadm",
      "params": {
        "target_psd_out_mWperGHz": 2.717e-4,
      }
    },
    {
      "uid": "edfa in roadm A to toto",
      "type": "Edfa",
      "type_variety": "standard_medium_gain",
      "operational": {
        "gain_target": 22,
        "delta_p": 2,
        "tilt_target": 0.0,
        "out_voa": 0
      }
    },

Then the output power for a 64 Gbaud carrier will be +4 =
= lin2db(db2lin(power_dbm + delta_p)/32e9 * 64e9)
= lin2db(db2lin(power_dbm + delta_p) * 2)
= powerdbm + delta + 3 = 4 dBm

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I28bcfeb72b0e74380b087762bb92ba5d39219eb3
2023-01-17 12:26:50 +01:00
Jan Kundrát
125264f265 coding style: don't yell when using the recommended newline-vs-operator
Fun stuff -- PEP8 used to recommend against this pattern, but back in
2016 the Pythonic Truth got reversed to actually recommend the pattern
which we're using. Unfortunately, W503 is still a thing, and even though
it's supposed to be ignored, it really ain't.

Change-Id: I99f42548d236f05d1050fd78cb81b3b20a78013c
2023-01-17 12:26:50 +01:00
Jan Kundrát
b1067a6266 docs: flexgrid
Co-authored-by: Esther Lerouzic <esther.lerouzic@orange.com>
Change-Id: If38b56a39e083deec0563f25a2b575788dcedc43
2023-01-17 09:48:15 +00:00
EstherLerouzic
50d4ecd700 docs: fix power mode vs. gain mode and power sweep
Change-Id: Ibef9a49123767d6e2ce73081485833f281711e04
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2023-01-17 09:47:58 +00:00
Jan Kundrát
9f37e0371e CI: temporarily require tox 3.x
Upstream introduced some breaking changes, one of which is a different
installation process. As a result, the builds won't perform a full
package installation, which means that there are no console entry points
(shell wrappers), which means that the test suite fails.

Hotfix this by temporarily requiring an older version of tox.

Change-Id: I0466c70f2024d35d87606d9ad738284a143a574f
2023-01-17 01:31:33 +01:00
Jan Kundrát
9bd303db05 CI: github: upgrade deprecated actions
...because the GitHub infrastructure is deprecating Node 12 actions:

 https: //github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/

Change-Id: I2d4a28be37a407aa26e79a1755eb5c3b0ec36a87
2023-01-10 12:27:50 +01:00
EstherLerouzic
1bcb3ce25c JSON: ensure that node constraints use correct indexing
The program currently ignores the explicit `index` and reads the
constraints in the JSON order of the list. However in general, it is not
guaranteed that constraints are listed in order.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icefe271f5801cf9f7b43311c6666556564587c65
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2022-11-22 01:53:24 +01:00
Jan Kundrát
e381138320 move test-only dependencies from main requirements
Pandas is only used from the test suite.

Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/451
Change-Id: Iafd02c800e5b7772e180979d19b81a2eda0e588f
2022-11-15 10:01:31 +00:00
EstherLerouzic
b450677709 Minor refactor: use watt2dbm function
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I09c3e923a8e1565d2ab07596c393bb5b2dc30f6c
2022-11-09 14:39:27 +01:00
EstherLerouzic
54a3725e17 Add a -spectrum option to input external file to define spectrum
The option is only set for gnpy-transmission-main.

The spectrum file is a list of spectrum objects, each defining
f_min, f_max and spectrum attributes using the same meaning as SI
in eqpt_config.json for baud_rate, roll_off, tx_osnr. slot_width is
used for the occupation of each carrier around their central frequency,
so slot_width corresponds to spacing of SI.
Unlike SI, the frequencies are defined includint f_min and f_max.
The partitions must be contiguous not overlapping.

Pref.p_span0 object records the req_power, while
ref_carrier records info that will be useful for equalization ie baud_rate.

For now, I have not integrated the possibility to directly use
transceivers type and mode in the list.

User can define sets of contiguous channels and a label to identify
the spectrum bands. If no label are defined, the program justs uses
the index + baud rate of the spectrum bands as label.

Print results per spectrum label

If propagated spectrum has mixed rates, then prints results (GSNR and OSNR)
for each propagated spectrum type according to its label.

Print per label channel power of elements

Per channel power prints were previously only showing the noiseless
reference channel power and only an average power.
With this change, we add a new information on the print:
the average total power (signal + noise + non-linear noise).
If there are several spectrum types propagating, the average per
spectrum is displayed using the label.
For this purpose, label and total power are recorded in each element
upon propagation

Note that the difference between this total power and the existing
channel power represents the added noise for the considered OMS.
Indeed ROADMs equalize per channel total power, so that power displayed
in 'actual pch (dBm)' may contain some noise contribution accumulated
with previous propagation.
Because 'reference pch out (dBm)' is for the noiseless reference,
it is exactly set to the target power and 'actual pch (dBm)' is always
matching 'reference pch out (dBm)' in ROADM prints.

Add examples and tests for -spectrum option

initial_spectrum1.json reproduces exactly the case of SI
initial_spectrum2.json sets half of the spectrum with 50GHz 32Gbauds and
half with 75GHz 64 Gbauds. Power setting is not set for the second half,
So that equalization will depend on ROADM settings.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibc01e59e461e5e933e95d23dacbc5289e275ccf7
2022-11-09 14:39:25 +01:00
Jan Kundrát
8889c2437a refactoring: ROADM: clarify effective_loss and improve the docs
Move the docs to a place where that variable is declared, not to the
place where it's computed.

Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-id: I17dff12c1e81827dfb4be869e59c9be85797dba4
2022-11-03 10:24:42 +01:00
Jan Kundrát
8bf8b2947b tests: pass the reference carrier when constructing SI
Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Fixes: 18610fb7 Add ref_carrier to Pref and remove req_power from ReferenceCarrier
Change-Id: I8ac2a7ca7c6d866170e564771c6cb78dcf3754d8
2022-11-03 10:24:38 +01:00
EstherLerouzic
cb85b8fe2b Add a test with long propagation
Existing tests only cover short distances, and effect on accumulated
noise, especially when crossing ROADMs with equalization, are not well
reported on elements power prints.
With this long path, I can catch more printing inconsistencies.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d0e8ccbbd387a2cd6c645c07f4b5f75e4617c30
2022-11-02 12:05:26 +01:00
EstherLerouzic
18610fb7a9 Add ref_carrier to Pref and remove req_power from ReferenceCarrier
ref_carrier is added in Pref conveys the reference channel type
information ie the channel that was used for design (would it be
auto-design or for a given design). Other attributes (like
slot_width or roll-off) may be added here for future equalization
types.

Pref object already records the req_power, so let's remove it
from ReferenceCarrier and only use ref_carrier to record info that
will be useful for PSD equalization ie baud_rate.

This reference baud_rate is required to compute reference target power
based on spectral density values during propagation. It is thus required
because of on-the-fly evaluation of loss for p_span_i and for printing
loss and target power of ROADM during propagation.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic7441afa12ca5273ff99dea0268e439276107257
2022-11-02 12:05:26 +01:00
EstherLerouzic
bd6b278dd1 Add tx_osnr in spectral information
This change enables to use a different tx_osnr per carrier.

If tx_osnr is defined via spectrum then use it to define a tx_osnr per
carrier in si else use the tx_osnr of request to set tx_osnr of si.

Then, the propagate function for requests is changed to update OSNR with
tx_OSNR per carrier defined in si.

TODO: The tx_osnr defined in spectrum is not yet taken into account for
the propagate_and_optimize function, because the loop that optimizes
the choice for the mode only loops on baudrate.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0fcdf559d4f1f8f0047faa257076084ec7adcc77
2022-10-31 16:04:46 +01:00
EstherLerouzic
e143d25339 Add a user defined initial spectrum in propagation functions
A new function is added to build spectrum information based on
the actual mixture of channels to be simulated (baud rate, slot width,
power per frequency).

Propagation function is changed so that, if the user defines a
specific distribution, then it uses it, else it uses as before,
all identical channels based on the initial request. In this case,
as before this change, we assume full load, with same channel for
the spectral info and not the resulting mixt of channels after
routing.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Icf56396837b77009e98accd27fcebd2dded6d112
2022-10-31 16:03:15 +01:00
EstherLerouzic
ffc7dbc241 Change pref from a scalar to a list of per channel delta power
The idea behind this change is to reproduce the exact same behaviour as
with the scalar, but accounting for variable levels of powers.

- delete the  neq_ch: equivalent channel count in dB because with mixed
  rates and power such a value has limited utility
- instead creates a vector that records the 'user defined' distribution
  of power.

This vector is used as a reference for channel equalization out of the
ROADM. If target_power_per_channel has some channels power above
input power, then the whole target is reduced.
For example, if user specifies delta_pdb_per_channel:
   freq1: 1dB, freq2: 3dB, freq3: -3dB, and target is -20dBm out of the
ROADM, then the target power for each channel uses the specified
delta_pdb_per_channel.
   target_power_per_channel[f1, f2, f3] = -19, -17, -23
However if input_signal = -23, -16, -26, then the target can not be
applied, because -23 < -19dBm and -26 < -23dBm, and a reduction must be
applied (ROADM can not amplify).
Then the target is only applied to signals whose power is above the
threshold. others are left unchanged and unequalized.
the new target is [-23, -17, -26]
and the attenuation to apply is [-23, -16, -26] - [-23, -17, -26] = [0, 1, 0]

Important note:
This changes the previous behaviour that equalized all identical channels
based on the one that had the min power !!

TODO: in coming refactor where transmission and design will be properly
separated, the initial behaviour may be set again as a design choice.

This change corresponds to a discussion held during coders call. Please look at this document for
a reference: https://telecominfraproject.atlassian.net/wiki/spaces/OOPT/pages/669679645/PSE+Meeting+Minutes

- in amplifier: the saturation is computed based on this vector
delta_pdb_per_channel, instead of the nb of channels.
The target of the future refactor will be to use the effective
carrier's power. I prefer to have this first step, because this is
how it is implemented today (ie based on the noiseless reference),
and I would like first to add more behaviour tests before doing
this refactor (would it be needed).

- in spectralInfo class, change pref to a Pref object to enable both
p_span0 and p_spani to be conveyed during propagation of
spectral_information in elements. No refactor of them at this point.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I591027cdd08e89098330c7d77d6f50212f4d4724
2022-10-28 09:13:24 +02:00
EstherLerouzic
b842898baf Change precision of --show-channels to 5 digits
Flexgrid precision is 6.25GHz so --show-channels should be at least 5 digits

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7de4254ab18508320133371e0d8cc8b5e08f0d2f
2022-10-28 00:38:28 +00:00
EstherLerouzic
7ea9e3b341 Fix bug when gain is not initialized
If gain is not initialized, save_networks does not work properly
trying to round a None value

Change-Id: I614859f16e0019a2f6fe680c04159398c9b1eb51
2022-10-20 15:38:12 +00:00
Jan Kundrát
fcf168b361 tests: fix flake8 and flake8-html incompatibility
Test runs (`linters-diff-ci`) end up with an error:

 Traceback (most recent call last):
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/bin/flake8", line 8, in <module>
     sys.exit(main())
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/cli.py", line 22, in main
     app.run(argv)
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 336, in run
     self._run(argv)
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 326, in _run
     self.report()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8/main/application.py", line 321, in report
     self.formatter.stop()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8_html/plugin.py", line 245, in stop
     self.write_index()
   File "/home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/lib/python3.10/site-packages/flake8_html/plugin.py", line 281, in write_index
     versions=self.option_manager.generate_versions(),
 AttributeError: 'OptionManager' object has no attribute 'generate_versions'
 ERROR: InvocationError for command /home/zuul/src/gerrithub.io/Telecominfraproject/oopt-gnpy/.tox/linters-diff-ci/bin/flake8 --format html --htmldir linters --exit-zero (exited with code 1)

Bug: https://github.com/lordmauve/flake8-html/issues/30
Change-Id: I755877341dec2d9cd9bdcdab098e2067f783cc27
2022-10-20 15:37:12 +02:00
Jan Kundrát
a7ec7e2ed6 Merge changes from topic "mixed-rate"
* changes:
  Change saturation verification to total input power
  Prepare for Pref definition
  Add utilities
2022-09-19 09:30:59 +00:00
Jan Kundrát
00ee102b3a docs: fix RST formatting
...of a bullet list. This ain't markdown, apparently.

Change-Id: I4f7a55a4084eda6463636c1dd5c41ef43ef78921
2022-09-18 12:46:19 +02:00
EstherLerouzic
ce11524ad9 Correct dgt vector: listed in the reversed order
This was corrected for example-data but not for tests data
(in commit 3a72ce84d0, related
to issue #390)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I929beeb034166d30aa994439a1d6a26350f5c3e9
2022-09-14 05:35:15 +00:00
EstherLerouzic
74be14562a record request_id as string, not integer
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I59416a6d69a5989d0c152461ca9e264abcf09ea8
2022-08-24 16:45:56 +02:00
EstherLerouzic
16694d0a09 support missing trx_mode in request instead of null value
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I5c05b17b0b134c7782a08e86015dc30c7c9b3713
2022-08-24 16:43:57 +02:00
EstherLerouzic
33c6038921 Change saturation verification to total input power
Previous check was made on reference channel computation.
Now we use the actual total input power to compute the actual gain.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e0db72fdb030a49e2b06cdcfb442b5e642c1777
2022-08-17 14:13:38 +02:00
EstherLerouzic
119c9eda90 Prepare for Pref definition
Mainly changes self.pch_out_db to self.ref_pch_out_dbm in order
to reflect real unit for the value and to remind that this value
is defined for a reference noiseless channel (whose power is recorded
in p_spani in Pref).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If0e008c3efc36ce73c9df01c76cf46985543d9fa
2022-08-17 14:13:38 +02:00
EstherLerouzic
b63e146bf4 Add utilities
to convert from/to watt, mW, dBm, power spectral density ...

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I9b9684c1ad096aa54d01ef3f0242ecd2dcae79aa
2022-08-17 14:13:38 +02:00
gborrach
09dba8a166 Fix: Raman pumps SRS solver
In the previous version, when the values of the counter-propagating Raman pump profiles were flipped, the pumps resulted flipped also in frequency.

Change-Id: I66f7c2aff35c72f5dcb4fb11f7a82fe1df2ee3f2
Co-authored-by: Andrea D'Amico <andrea.damico@polito.it>
2022-07-27 00:20:47 +02:00
Jan Kundrát
7f5043622b CI: GitHub: show all build failures
Change-Id: I4a5aeb123aa89a30371a36788188964ca924ca12
2022-07-07 16:32:13 +02:00
Jan Kundrát
6ad4593f41 CI: GitHub: test on Mac OS as well
Change-Id: Ifb8ba470765fc02e3367beeaf8f048da6fdad6d7
2022-07-05 13:18:37 +02:00
Jan Kundrát
706661d801 CI: GitHub: use new test-requirements
Follow-up: b86fe960 I8d2e610c91da728d72c7d19590b25bbd8713f0de tests: Easier installation of test requirements via PIP
Change-Id: I870ed27af7301829ced572214f517ca76a94a0dc
2022-07-05 13:07:18 +02:00
Jan Kundrát
a408d28911 Merge "Remove Travis-CI leftovers" 2022-07-05 11:07:08 +00:00
Jan Kundrát
b86fe96032 tests: Easier installation of test requirements via PIP
Burying these behind the tox.ini works fine on CI, but it means that
someone has to ask the users to run an extra `pip install pytest` for
the test suite. Not nice.

This will need a follow-up commit to adjust the GitHub action to use
this new simplified way. That cannot land via Gerrit due to GitHub's
permission model.

Change-Id: I8d2e610c91da728d72c7d19590b25bbd8713f0de
2022-07-05 12:45:19 +02:00
Jan Kundrát
43926518ad Remove Travis-CI leftovers
These builds have not been running for about an year. Now that we have
Zuul for day-to-day CI and GitHub actions for some auxiliary package
building, remove Travis.

Change-Id: I1dd7f70045fd24d2f73f0d2086cb49edde2093c7
2022-07-05 10:14:18 +02:00
Jan Kundrát
128a6e816b docs: better anchor for legacy JSON
Change-Id: I410a4c0cdd34dd9aa5d8e34bb859746236fffdd2
2022-07-03 01:03:26 +02:00
Jan Kundrát
44db951261 docs: show gnpy.app
Change-Id: I7ec5eec72fb0f07e277ac849da09003d376eec17
2022-04-12 11:42:06 +02:00
Jonas Mårtensson
3c3d919b77 Merge "Fix: penalties are not correctly initialized" 2022-04-11 18:55:42 +00:00
EstherLerouzic
2079d2bc5b Fix: penalties are not correctly initialized
When mode is not given and propagation is performed bidir, penalties
corresponding to automatically  selected mode are not correctly
initialized in request, and gnpy-path-request fails.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If045624ff5dad7f0dfdec93eaa05bb5eae86e643
2022-04-06 17:17:21 +02:00
Jonas Mårtensson
062e2076ed Properly initialize power profiles for Raman calculation
numpy.empty should not be used for initializing arrays without manually
setting values since it does not initialize entries. Use numpy.zeros
instead.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I4e85eb39bdce00663c0cab9582ea7ae25eb90986
2022-03-29 21:41:57 +02:00
Jonas Mårtensson
1dd1bad273 Fix bug in Raman calculation without counterpropagating pumps
The counterpropagating power profile was initialized based on number of
copropagating frequencies, which caused simulation to crash when no
counterpropagating pumps were present.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I685e5438fda06058f0757ff51fdd67bc68aa1352
2022-03-29 21:27:18 +02:00
226 changed files with 88901 additions and 11263 deletions

View File

@@ -1,47 +0,0 @@
#!/bin/bash
set -e
IMAGE_NAME=telecominfraproject/oopt-gnpy
IMAGE_TAG=$(git describe --tags)
ALREADY_FOUND=0
docker pull ${IMAGE_NAME}:${IMAGE_TAG} && ALREADY_FOUND=1
if [[ $ALREADY_FOUND == 0 ]]; then
docker build . -t ${IMAGE_NAME}
docker tag ${IMAGE_NAME} ${IMAGE_NAME}:${IMAGE_TAG}
# shared directory setup: do not clobber the real data
mkdir trash
cd trash
docker run -it --rm --volume $(pwd):/shared ${IMAGE_NAME} gnpy-transmission-example
else
echo "Image ${IMAGE_NAME}:${IMAGE_TAG} already available, will just update the other tags"
fi
docker images
do_docker_login() {
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
}
if [[ "${TRAVIS_PULL_REQUEST}" == "false" ]]; then
if [[ "${TRAVIS_BRANCH}" == "develop" || "${TRAVIS_BRANCH}" == "docker" ]]; then
echo "Publishing latest"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:latest
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:latest
elif [[ "${TRAVIS_BRANCH}" == "master" ]]; then
echo "Publishing stable"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:stable
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:stable
fi
fi

View File

@@ -11,23 +11,26 @@ jobs:
name: Tox test
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: fedora-python/tox-github-action@v0.4
- uses: fedora-python/tox-github-action@v37.0
with:
tox_env: ${{ matrix.tox_env }}
dnf_install: ${{ matrix.dnf_install }}
- uses: codecov/codecov-action@29386c70ef20e286228c72b668a06fd0e8399192
- uses: codecov/codecov-action@v3.1.1
if: ${{ endswith(matrix.tox_env, '-cover') }}
with:
files: ${{ github.workspace }}/cover/coverage.xml
strategy:
fail-fast: false
matrix:
tox_env:
- py38
- py39
- py310-cover
- py310
- py311
- py312-cover
include:
- tox_env: docs
dnf_install: graphviz
@@ -38,13 +41,13 @@ jobs:
name: PyPI packaging
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v2
- uses: actions/setup-python@v4
name: Install Python
with:
python-version: '3.10'
python-version: '3.12'
- uses: casperdcl/deploy-pypi@bb869aafd89f657ceaafe9561d3b5584766c0f95
with:
password: ${{ secrets.PYPI_API_TOKEN }}
@@ -62,7 +65,7 @@ jobs:
with:
username: jktjkt
password: ${{ secrets.DOCKERHUB_TOKEN }}
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Extract tag name
@@ -92,21 +95,53 @@ jobs:
telecominfraproject/oopt-gnpy:${{ steps.extract_tag_name.outputs.GIT_DESC }}
telecominfraproject/oopt-gnpy:latest
windows:
name: Tests on Windows
runs-on: windows-2019
other-platforms:
name: Tests on other platforms
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v2
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- run: |
pip install --editable .
pip install 'pytest>=6.2.5,<7'
pip install --editable .[tests]
pytest -vv
strategy:
fail-fast: false
matrix:
python_version:
- "3.10"
include:
- os: windows-2022
python_version: "3.11"
- os: windows-2022
python_version: "3.12"
- os: windows-2025
python_version: "3.11"
- os: windows-2025
python_version: "3.12"
- os: macos-13
python_version: "3.12"
- os: macos-14
python_version: "3.12"
paywalled-platforms:
name: Tests on paywalled platforms
if: github.repository_owner == 'Telecominfraproject'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- run: |
pip install --editable .[tests]
pytest -vv
strategy:
fail-fast: false
matrix:
include:
- os: macos-13-xlarge # Apple M1 CPU
python_version: "3.12"

View File

@@ -1,5 +1,17 @@
version: 2
build:
image: latest
os: ubuntu-22.04
tools:
python: "3.12"
apt_packages:
- graphviz
python:
version: 3.8
requirements_file: docs/requirements.txt
install:
- method: pip
path: .
extra_requirements:
- docs
sphinx:
configuration: docs/conf.py

View File

@@ -1,27 +0,0 @@
dist: focal
os: linux
language: python
services: docker
python:
- "3.8"
- "3.9"
before_install:
- sudo apt-get -y install graphviz
install: skip
script:
- pip install --editable .
- pip install pytest-cov rstcheck
- pytest --cov-report=xml --cov=gnpy -v
- pip install -r docs/requirements.txt
- rstcheck --ignore-roles cite *.rst
- sphinx-build -W --keep-going docs/ x-throwaway-location
after_success:
- bash <(curl -s https://codecov.io/bash)
jobs:
include:
- stage: test
name: Docker image
script:
- git fetch --unshallow
- ./.docker-travis.sh
- docker images

View File

@@ -2,10 +2,18 @@
- project:
check:
jobs:
- tox-py38
- tox-py39
- tox-py310-cover
- tox-docs-f35
- tox-py38:
vars:
ensure_tox_version: '<4'
- tox-py39:
vars:
ensure_tox_version: '<4'
- tox-py310-cover:
vars:
ensure_tox_version: '<4'
- tox-docs-f36:
vars:
ensure_tox_version: '<4'
- coverage-diff:
voting: false
dependencies:
@@ -16,7 +24,11 @@
coverage_job_name_current: tox-py310-cover
- tox-linters-diff-n-report:
voting: false
- tox-py310-cover-previous
vars:
ensure_tox_version: '<4'
- tox-py310-cover-previous:
vars:
ensure_tox_version: '<4'
tag:
jobs:
- oopt-release-python:

View File

@@ -7,22 +7,30 @@ To learn how to contribute, please see CONTRIBUTING.md
- Alessio Ferrari (Politecnico di Torino) <alessio.ferrari@polito.it>
- Anders Lindgren (Telia Company) <Anders.X.Lindgren@teliacompany.com>
- Andrea D'Amico (Politecnico di Torino) <andrea.damico@polito.it>
- Andrea D'Amico (NEC) <adamico@nec-labs.com>
- Arturo Mayoral (Telecom Infra Project) <amayoral@telecominfraproject.com>
- Brian Taylor (Facebook) <briantaylor@fb.com>
- David Boertjes (Ciena) <dboertje@ciena.com>
- Diego Landa (Facebook) <dlanda@fb.com>
- Emmanuelle Delfour (Orange) <WEDE7391@orange.com>
- Esther Le Rouzic (Orange) <esther.lerouzic@orange.com>
- Florian Frank (Orange) <florian1.frank@orange.com>
- Gabriele Galimberti (Cisco) <ggalimbe@cisco.com>
- Gert Grammel (Juniper Networks) <ggrammel@juniper.net>
- Giacomo Borraccini (NEC Laboratories America) <gborraccini@nec-labs.com>
- Gilad Goldfarb (Facebook) <giladg@fb.com>
- James Powell (Telecom Infra Project) <james.powell@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jan.kundrat@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jkt@jankundrat.com>
- Jeanluc Augé (Orange) <jeanluc.auge@orange.com>
- Jenny L'Escop (Orange) <jenny.lescop@orange.com>
- Jonas Mårtensson (RISE) <jonas.martensson@ri.se>
- Mattia Cantono (Politecnico di Torino) <mattia.cantono@polito.it>
- Miguel Garrich (University Catalunya) <miquel.garrich@upct.es>
- Raj Nagarajan (Lumentum) <raj.nagarajan@lumentum.com>
- Renato Ambrosone (Politecnico di Torino) <renato.ambrosone@polito.it>
- Roberts Miculens (Lattelecom) <roberts.miculens@lattelecom.lv>
- Rodrigo Sasse David (Orange) <rodrigo.sassedavid@orange.com>
- Sami Alavi (NUST) <sami.mansooralavi1999@gmail.com>
- Shengxiang Zhu (University of Arizona) <szhu@email.arizona.edu>
- Stefan Melin (Telia Company) <Stefan.Melin@teliacompany.com>
- Vittorio Curri (Politecnico di Torino) <vittorio.curri@polito.it>

View File

@@ -3,12 +3,12 @@
[![Install via pip](https://img.shields.io/pypi/v/gnpy)](https://pypi.org/project/gnpy/)
[![Python versions](https://img.shields.io/pypi/pyversions/gnpy)](https://pypi.org/project/gnpy/)
[![Documentation status](https://readthedocs.org/projects/gnpy/badge/?version=master)](http://gnpy.readthedocs.io/en/master/?badge=master)
[![GitHub Workflow Status](https://img.shields.io/github/workflow/status/Telecominfraproject/oopt-gnpy/build)](https://github.com/Telecominfraproject/oopt-gnpy/actions/workflows/main.yml)
[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/Telecominfraproject/oopt-gnpy/main.yml)](https://github.com/Telecominfraproject/oopt-gnpy/actions/workflows/main.yml)
[![Gerrit](https://img.shields.io/badge/patches-via%20Gerrit-blue)](https://review.gerrithub.io/q/project:Telecominfraproject/oopt-gnpy+is:open)
[![Contributors](https://img.shields.io/github/contributors-anon/Telecominfraproject/oopt-gnpy)](https://github.com/Telecominfraproject/oopt-gnpy/graphs/contributors)
[![Code Quality via LGTM.com](https://img.shields.io/lgtm/grade/python/github/Telecominfraproject/oopt-gnpy)](https://lgtm.com/projects/g/Telecominfraproject/oopt-gnpy/)
[![Code Coverage via codecov](https://img.shields.io/codecov/c/github/Telecominfraproject/oopt-gnpy)](https://codecov.io/gh/Telecominfraproject/oopt-gnpy)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3458319.svg)](https://doi.org/10.5281/zenodo.3458319)
[![Matrix chat](https://img.shields.io/matrix/oopt-gnpy:matrix.org)](https://matrix.to/#/%23oopt-gnpy%3Amatrix.org?via=matrix.org)
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks.
We are a consortium of operators, vendors, and academic researchers sponsored via the [Telecom Infra Project](http://telecominfraproject.com)'s [OOPT/PSE](https://telecominfraproject.com/open-optical-packet-transport) working group.
@@ -23,7 +23,13 @@ Read our [documentation](https://gnpy.readthedocs.io/), learn from the demos, an
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
![Running a simple simulation example](https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg)
![Running a simple simulation example](docs/images/gnpy-transmission-example.svg)
GNPy can do much more, including acting as a Path Computation Engine, tracking bandwidth requests, or advising the SDN controller about a best possible path through a large DWDM network.
Learn more about this [in the documentation](https://gnpy.readthedocs.io/).
Learn more about this [in the documentation](https://gnpy.readthedocs.io/), or give it a [try online at `gnpy.app`](https://gnpy.app/):
[![Path propagation at gnpy.app](docs/images/2022-04-12-gnpy-app.png)](https://gnpy.app/)
## Project Calendar
See upcoming meetings on the [Project Calendar](https://telecominfraproject.github.io/oopt-gnpy/calendar.html). The calendar is embedded from Google Calendar and updates automatically.

4
docs/_static/custom.css vendored Normal file
View File

@@ -0,0 +1,4 @@
.wy-table-responsive table td, .wy-table-responsive table th {
white-space: normal;
}

View File

@@ -12,7 +12,8 @@ We encourage all interested people outside the TIP to [join the project](https:/
`gnpy` is looking for additional contributors, especially those with experience planning and maintaining large-scale, real-world mesh optical networks.
To get involved, please contact [Jan Kundrát](mailto:jan.kundrat@telecominfraproject.com) or [Gert Grammel](mailto:ggrammel@juniper.net).
To get involved, please contact [Esther Le Rouzic](mailto:esther.lerouzic@orange.com) or
[Andrea d'Amico](mailto:adamico@nec-labs.com) or [Gert Grammel](mailto:ggrammel@juniper.net).
`gnpy` contributions are currently limited to members of [TIP](http://telecominfraproject.com).
Membership is free and open to all.

View File

@@ -1,18 +1,20 @@
*********************************************
Amplifier models and configuration
*********************************************
.. _amp_models:
**********************************
Amplifier models and Configuration
**********************************
1. Equipment configuration description
#######################################
======================================
Equipment description defines equipment types and parameters.
It takes place in the default **eqpt_config.json** file.
It takes place in the equipment library such as **eqpt_config.json** file defined in example-data folder.
By default **gnpy-transmission-example** uses **eqpt_config.json** file and that
can be changed with **-e** or **--equipment** command line parameter.
2. Amplifier parameters and subtypes
#######################################
====================================
Several amplifiers can be used by GNpy, so they are defined as an array of equipment parameters in **eqpt_config.json** file.
@@ -28,9 +30,16 @@ Several amplifiers can be used by GNpy, so they are defined as an array of equip
- *"variable_gain"*
- *"fixed_gain"*
- *"dual_stage"*
- *"multi_band"*
- *"openroadm"*
*see next section for a full description of these models*
- *"default_config_from_json"*:
Use a custom per frequency dynamic gain tilt, gain and noise ripple arrays defined in the file specified with
this option, instead of the default values from GNPy.
- *"advanced_config_from_json"*:
**This parameter is only applicable to the _"advanced_model"_ model**
@@ -135,7 +144,7 @@ Several amplifiers can be used by GNpy, so they are defined as an array of equip
3. Amplifier models
#######################################
===================
In an opensource and multi-vendor environnement, it is needed to support different use cases and context. Therefore several models are supported for amplifiers.
@@ -179,7 +188,7 @@ In an opensource and multi-vendor environnement, it is needed to support differe
- *"variable_gain"*
This model is refered as an operator model because a lower level of knowledge is required. A full polynomial description of the NF cross the gain range is not required. Instead, NF_min and NF_max values are required and used by the code to model a dual stage amplifier with an internal mid stage VOA. NF_min and NF_max values are typically available from equipment suppliers data-sheet.
There is a default JSON file ”default_edfa_config.json”* to enforce 0 tilt and ripple values because GNpy core algorithm is a multi-carrier propogation.
There is a default configuration to enforce 0 tilt and ripple values because GNPy core algorithm is a multi-carrier propagation.
- gain_ripple =[0,...,0]
- nf_ripple = [0,...,0]
- dgt = [...] generic dgt comb
@@ -250,7 +259,7 @@ In an opensource and multi-vendor environnement, it is needed to support differe
- gain_min indicates to auto_design when this dual_stage should be used
But unlike other models the 1st stage input will not be padded: it is always operated to its maximu gain and min NF. Therefore if gain adaptation and padding is needed it will be performed by the 2nd stage.
But unlike other models the 1st stage input will not be padded: it is always operated to its maximum gain and min NF. Therefore if gain adaptation and padding is needed it will be performed by the 2nd stage.
.. code-block:: json
@@ -263,8 +272,18 @@ In an opensource and multi-vendor environnement, it is needed to support differe
"allowed_for_design": true
}
- *"multiband"*
This model enables the definition of multiband amplifiers that consist of multiple single-band
amplifier elements, with each amplifier responsible for amplifying a different portion of the spectrum.
The types of single-band amplifiers that can be included in these multiband amplifiers are specified,
allowing for multiple options to be available for the same spectrum band (for instance, providing
several permitted type varieties for both the C-band and the L-band). The actual element utilizing the
type_variety must implement only one option for each band.
4. advanced_config_from_json
#######################################
============================
The build_oa_json.py library in ``gnpy/example-data/edfa_model/`` can be used to build the json file required for the amplifier advanced_model type_def:
@@ -297,4 +316,3 @@ the json input file should have the following fields:
"gain_ripple": "DFG_filename.txt",
"dgt": "DGT_filename.txt"
}

View File

@@ -1848,3 +1848,177 @@ month={Sept},}
title = {Telecom Infra Project},
url = {https://www.telecominfraproject.com},
}
@ARTICLE{DAmicoJLT2022,
author={DAmico, Andrea and Correia, Bruno and London, Elliot and Virgillito,
Emanuele and Borraccini, Giacomo and Napoli, Antonio and Curri, Vittorio},
journal={Journal of Lightwave Technology},
title={Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network},
year={2022},
volume={40},
number={11},
pages={3499-3511},
doi={10.1109/JLT.2022.3162134}
}
@inproceedings{grammel2018physical,
title={Physical simulation environment of the telecommunications infrastructure project (TIP)},
author={Grammel, Gert and Curri, Vittorio and Auge, Jean-Luc},
booktitle={Optical Fiber Communication Conference},
pages={M1D--3},
year={2018},
organization={Optica Publishing Group}
}
@inproceedings{taylor2018towards,
title={Towards a route planning tool for open optical networks in the telecom infrastructure project},
author={Taylor, Brian D and Goldfarb, Gilad and Bandyopadhyay, Saumil and Curri, Vittorio and Schmidtke, Hans-Juergen},
booktitle={Optical Fiber Communication Conference},
pages={Tu3E--4},
year={2018},
organization={Optica Publishing Group}
}
@article{filer2018multi,
title={Multi-vendor experimental validation of an open source QoT estimator for optical networks},
author={Filer, Mark and Cantono, Mattia and Ferrari, Alessio and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio},
journal={Journal of Lightwave Technology},
volume={36},
number={15},
pages={3073--3082},
year={2018},
publisher={IEEE}
}
@inproceedings{auge2019open,
title={Open optical network planning demonstration},
author={Auge, Jean-Luc and Grammel, Gert and Le Rouzic, Esther and Curri, Vittorio and Galimberti, Gabriele and Powell, James},
booktitle={Optical Fiber Communication Conference},
pages={M3Z--9},
year={2019},
organization={Optica Publishing Group}
}
@inproceedings{kundrat2020physical,
title={Physical-layer awareness: GNPy and ONOS for end-to-end circuits in disaggregated networks},
author={Kundr{\'a}t, Jan and Campanella, Andrea and Le Rouzic, Esther and Ferrari, Alessio and Havli{\v{s}}, Ond{\v{r}}ej and Ha{\v{z}}linsk{\`y}, Michal and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio},
booktitle={2020 Optical Fiber Communications Conference and Exhibition (OFC)},
pages={1--3},
year={2020},
organization={IEEE}
}
@inproceedings{ferrari2020experimental,
title={Experimental validation of an open source quality of transmission estimator for open optical networks},
author={Ferrari, Alessio and Filer, Mark and Balasubramanian, Karthikeyan and Yin, Yawei and Le Rouzic, Esther and Kundr{\'a}t, Jan and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio},
booktitle={2020 Optical Fiber Communications Conference and Exhibition (OFC)},
pages={1--3},
year={2020},
organization={IEEE}
}
@article{ferrari2020gnpy,
title={GNPy: an open source application for physical layer aware open optical networks},
author={Ferrari, Alessio and Filer, Mark and Balasubramanian, Karthikeyan and Yin, Yawei and Le Rouzic, Esther and Kundr{\'a}t, Jan and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio},
journal={Journal of Optical Communications and Networking},
volume={12},
number={6},
pages={C31--C40},
year={2020},
publisher={Optica Publishing Group}
}
@inproceedings{ferrari2020softwarized,
title={Softwarized optical transport QoT in production optical network: a Brownfield validation},
author={Ferrari, Alessio and Balasubramanian, Karthikeyan and Filer, Mark and Yin, Yawei and Le Rouzic, Esther and Kundr{\'a}t, Jan and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio},
booktitle={2020 European Conference on Optical Communications (ECOC)},
pages={1--4},
year={2020},
organization={IEEE}
}
@article{ferrari2021assessment,
title={Assessment on the in-field lightpath QoT computation including connector loss uncertainties},
author={Ferrari, Alessio and Balasubramanian, Karthikeyan and Filer, Mark and Yin, Yawei and Le Rouzic, Esther and Kundr{\'a}t, Jan and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio},
journal={Journal of Optical Communications and Networking},
volume={13},
number={2},
pages={A156--A164},
year={2021},
publisher={Optica Publishing Group}
}
@inproceedings{kundrat2021gnpy,
title={GNPy \& YANG: open APIs for end-to-end service provisioning in optical networks},
author={Kundr{\'a}t, Jan and Le Rouzic, Esther and M{\aa}rtensson, Jonas and Campanella, Andrea and Havli{\v{s}}, Ond{\v{r}}ej and DAmico, Andrea and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio and Vojt{\v{e}}ch, Josef},
booktitle={Optical Fiber Communication Conference},
pages={M1B--6},
year={2021},
organization={Optica Publishing Group}
}
@inproceedings{d2021gnpy,
title={GNPy experimental validation on flex-grid, flex-rate WDM optical transport scenarios},
author={DAmico, Andrea and London, Elliot and Le Guyader, Bertrand and Frank, Florian and Le Rouzic, Esther and Pincemin, Erwan and Brochier, Nicolas and Curri, Vittorio},
booktitle={Optical fiber communication conference},
pages={W1G--2},
year={2021},
organization={Optica Publishing Group}
}
@inproceedings{virgillito2021testing,
title={Testing TIP open source solutions in deployed optical networks},
author={Virgillito, Emanuele and Braun, Ralf-Peter and Breuer, Dirk and Gladisch, Andreas and Curri, Vittorio and Grammel, Gert},
booktitle={Optical Fiber Communication Conference},
pages={F1C--3},
year={2021},
organization={Optica Publishing Group}
}
@article{d2022experimental,
title={Experimental validation of GNPy in a multi-vendor flex-grid flex-rate WDM optical transport scenario},
author={DAmico, Andrea and London, Elliot and Le Guyader, Bertrand and Frank, Florian and Le Rouzic, Esther and Pincemin, Erwan and Brochier, Nicolas and Curri, Vittorio},
journal={Journal of Optical Communications and Networking},
volume={14},
number={3},
pages={79--88},
year={2022},
publisher={Optica Publishing Group}
}
@inproceedings{mano2022accuracy,
title={Accuracy of nonlinear interference estimation on launch power optimization in short-reach systems with field trial},
author={Mano, Toru and DAmico, Andrea and Virgillito, Emanuele and Borraccini, Giacomo and Huang, Yue-Kai and Kitamura, Kei and Anazawa, Kazuya and Masuda, Akira and Nishizawa, Hideki and Wang, Ting and others},
booktitle={European Conference and Exhibition on Optical Communication},
pages={We3B--1},
year={2022},
organization={Optica Publishing Group}
}
@inproceedings{kundrat2022gnpy,
title={GNPy: Lessons learned and future plans},
author={Kundr{\'a}t, Jan and Le Rouzic, Esther and M{\aa}rtensson, Jonas and Melin, Stefan and DAmico, Andrea and Grammel, Gert and Galimberti, Gabriele and Curri, Vittorio},
booktitle={European Conference and Exhibition on Optical Communication},
pages={We3B--6},
year={2022},
organization={Optica Publishing Group}
}
@inproceedings{grammel2023open,
title={Open Optical Networks: the good, the bad and the ugly},
author={Grammel, Gert and Kundrat, Jan and Le Rouzic, Esther and Melin, Stefan and Curri, Vittorio and d'Amico, Andrea and Manzotti, Roberto},
booktitle={49th European Conference on Optical Communications (ECOC 2023)},
volume={2023},
pages={1585--1588},
year={2023},
organization={IET}
}
@inproceedings{d2024gnpy,
title={GNPy Experimental Validation in a C+ L Multiband Optical Multiplex Section},
author={DAmico, Andrea and Gatto, Vittorio and Nespola, Antonino and Borraccini, Giacomo and Jiang, Yanchao and Poggiolini, Pierluigi and Le Rouzic, Esther and de Lerma, Arturo Mayoral L{\'o}pez and Grammel, Gert and Manzotti, Roberto and others},
booktitle={2024 24th International Conference on Transparent Optical Networks (ICTON)},
pages={1--4},
year={2024},
organization={IEEE}
}

29
docs/calendar.html Normal file
View File

@@ -0,0 +1,29 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Project Calendar</title>
<style>
body { font-family: system-ui, -apple-system, Segoe UI, Roboto, Helvetica, Arial, sans-serif; margin: 20px; }
.container { max-width: 1000px; margin: 0 auto; }
h1 { font-size: 1.8rem; margin-bottom: 1rem; }
iframe { border: 0; width: 100%; height: 800px; }
.note { color: #555; margin-top: 1rem; font-size: 0.9rem; }
</style>
</head>
<body>
<div class="container">
<h1>Project Calendar</h1>
<p>This page embeds the public project calendar. It updates automatically when events change in Google Calendar.</p>
<iframe
src="https://calendar.google.com/calendar/embed?src=c_0895d13d880537c3e54db61ba95e9df167db19a49b96d41e42e2c6d842f30a6a%40group.calendar.google.com&ctz=Europe%2FMadrid"
frameborder="0"
scrolling="no"
></iframe>
<p class="note">Timezone: Europe/Madrid. If you prefer your local timezone, add <code>&amp;ctz=Your%2FTimezone</code> to the URL.</p>
</div>
</body>
</html>

297
docs/cli_options.rst Normal file
View File

@@ -0,0 +1,297 @@
.. _cli-options:
***********************************************************
`gnpy-path-request` and `gnpy-transmission-example` scripts
***********************************************************
Common options
==============
**Option**: `--no-insert-edfas`
-------------------------------
**Purpose**: Disables the automatic insertion of EDFAs after ROADMs and fibers, as well as the splitting
of fibers during the auto-design process.
The `--no-insert-edfas` option is a command-line argument available in GNPy that allows users to control the
automatic insertion of amplifiers during the network design process. This option provides flexibility for
users who may want to manually manage amplifier placements or who have specific design requirements that
do not necessitate automatic amplification.
To use the `--no-insert-edfas` option, simply include it in the command line when running your GNPy program. For example:
.. code-block:: shell-session
gnpy-transmission-example my_network.json --no-insert-edfas
When the `--no-insert-edfas` option is specified:
1. **No Automatic Amplifiers**: The program will not automatically add EDFAs to the network topology after
ROADMs or fiber elements. This means that if the network design requires amplification, users must ensure
that amplifiers are manually defined in the network topology file. Users should be aware that disabling
automatic amplifier insertion may lead to insufficient amplification in the network if not managed properly.
It is essential to ensure that the network topology includes the necessary amplifiers to meet performance requirements.
2. **No Fiber Splitting**: The option also prevents the automatic splitting of fibers during the design process.
This is particularly useful for users who want to maintain specific fiber lengths or configurations without
the program altering them.
**Option**: `--equipment`, `-e`
-------------------------------
**Description**: Specifies the equipment library file.
**Usage**:
.. code-block:: shell-session
gnpy-transmission-example my_network.json --equipment <FILE.json>
**Default**: Uses the default equipment configuration in the example-data folder if not specified.
**Functionality**: This option allows users to load a specific equipment configuration that defines the characteristics of the network elements.
**Option**: `--extra-equipment` and `--extra-config`
----------------------------------------------------
The `--extra-equipment` and `--extra-config` options allow users to extend the default equipment library and configuration
settings used by the GNPy program. This feature is particularly useful for users who need to incorporate additional
equipment types or specific configurations that are not included in the standard equipment library (such as third party pluggables).
**Usage**:
.. code-block:: shell-session
--extra-equipment <file1.json> [<file2.json> ...]
**Parameters**:
- `<file1.json>`: Path to the first additional equipment file.
- `<file2.json>`: Path to any subsequent additional equipment files (optional).
**Functionality**:
- The program will merge the equipment definitions from the specified files into the main equipment library.
- If an equipment type defined in the additional files has the same name as one in the main library, the program
will issue a warning about the duplicate entry and will include ony the last definition.
- This allows for flexibility in defining equipment that may be specific to certain use cases or vendor-specific models.
**`--extra-config`**:
**Description**: This option allows users to specify additional configuration files that can override
or extend the default configuration settings used by the program. This is useful for customizing simulation
parameters or equipment settings. To set an amplifier with a specific such config, it must be defined in the
library with the keyword "default_config_from_json" filled with the file name containing the config in the case of
"variable_gain" amplifier or with the "advanced_config_from_json" for the "advanced_model" amplifier.
**Usage**:
.. code-block:: shell-session
--extra-config <file1.json> [<file2.json> ...]
**Parameters**:
- `<file1.json>`: Path to the first additional configuration file.
- `<file2.json>`: Path to any subsequent additional configuration files (optional).
**Functionality**:
The program will load the configurations from the specified files and consider them instead of the
default configurations for the amplifiers that use the "default_config_from_json" or "advanced_config_from_json" keywords.
To run the program with additional equipment and configuration files, you can use the following command:
.. code-block:: shell-session
gnpy-transmission-example --equipment main_equipment.json \
--extra-equipment additional_equipment1.json additional_equipment2.json \
--extra-config additional_config1.json
In this example:
- `main_equipment.json` is the primary equipment file.
- `additional_equipment1.json` and `additional_equipment2.json` are additional equipment files that will be merged into the main library.
- `additional_config1.json` is an additional configuration file that will override the default settings for the amplifiers pointing to it.
**Option**: `--save-network`
----------------------------
**Description**: Saves the final network configuration to a specified JSON file.
**Usage**:
.. code-block:: shell-session
--save-network <FILE.json>
**Functionality**: This option allows users to save the network state after the simulation, which can be useful for future reference or analysis.
**Option**: `--save-network-before-autodesign`
----------------------------------------------
**Description**: Dumps the network into a JSON file prior to autodesign.
**Usage**:
.. code-block:: shell-session
gnpy-path-request my_network.json my_services.json --save-network-before-autodesign <FILE.json>
**Functionality**: This option is useful for users who want to inspect the network configuration before any automatic design adjustments are made.
**Option**: `--sim-params`
--------------------------
**Description**: Path to the JSON file containing simulation parameters.
**Usage**:
.. code-block:: shell-session
gnpy-transmission-example my_network.json --sim-params <FILE.json>
**Functionality**: The `--sim-params` option is a command-line argument available in GNPy that allows users to specify a
JSON file containing simulation parameters. This option is crucial for customizing the behavior of the simulation:
the file ``sim_params.json`` contains the tuning parameters used within both the ``gnpy.science_utils.RamanSolver`` and
the ``gnpy.science_utils.NliSolver`` for the evaluation of the Raman profile and the NLI generation, respectively.
The tuning of the parameters is detailed here: :ref:`json input sim-params<sim-params>`.
`gnpy-transmission-example` options
===================================
**Option**: `--show-channels`
-----------------------------
**Description**: Displays the final per-channel OSNR and GSNR summary.
**Usage**:
.. code-block:: shell-session
gnpy-transmission-example my_network.json --show-channels
**Functionality**: This option provides a summary of the optical signal-to-noise ratio (OSNR)
and generalized signal-to-noise ratio (GSNR) for each channel after the simulation.
**Option**: `-pl`, `--plot`
---------------------------
**Description**: Generates plots of the results.
**Usage**:
.. code-block:: shell-session
gnpy-transmission-example my_network.json -pl
**Functionality**: This option allows users to visualize the results of the simulation through graphical plots.
**Option**: `-l`, `--list-nodes`
--------------------------------
**Description**: Lists all transceiver nodes in the network.
**Usage**:
.. code-block:: shell-session
gnpy-transmission-example my_network.json -l
**Functionality**: This option provides a quick way to view all transceiver nodes present in the network topology.
**Option**: `-po`, `--power`
----------------------------
**Description**: Specifies the reference channel power in span in dBm.
**Usage**:
.. code-block:: shell-session
gnpy-transmission-example my_network.json -po <value>
**Functionality**: This option allows users to set the input power level for the reference channel used in the simulation.
It replaces the value specified in the `SI` section of the equipment library (:ref:`power_dbm<spectral_info>`).
**Option**: `--spectrum`
------------------------
**Description**: Specifies a user-defined mixed rate spectrum JSON file for propagation.
**Usage**:
.. code-block:: shell-session
gnpy-transmission-example my_network.json --spectrum <FILE.json>
**Functionality**: This option allows users to define a custom spectrum for the simulation, which can
include varying channel rates and configurations. More details here: :ref:`mixed-rate<mixed-rate>`.
Options for `path_requests_run`
===============================
The `gnpy-path-request` script provides a simple path computation function that supports routing, transceiver mode selection, and spectrum assignment.
It supports include and disjoint constraints for the path computation, but does not provide any optimisation.
It requires two mandatory arguments: network file and service file (see :ref:`XLS files<excel-service-sheet>` or :ref:`JSON files<legacy-json>`).
The `gnpy-path-request` computes:
- design network once and propagate the service requests on this design
- computes performance of each request defined in the service file independently from each other, considering full load (based on the request settings),
- assigns spectrum for each request according to the remaining spectrum, on a first arrived first served basis.
Lack of spectrum leads to blocking, but performance estimation is still returned for information.
**Option**: `-bi`, `--bidir`
----------------------------
**Description**: Indicates that all demands are bidirectional.
**Usage**:
.. code-block:: shell-session
gnpy-path-request my_network.json my_service.json -e my_equipment.json -bi
**Functionality**: This option allows users to specify that the performance of the service requests should be
computed in both directions (source to destination and destination to source). This forces the 'bidirectional'
attribute to true in the service file, possibly affecting feasibility if one direction is not feasible.
**Option**: `-o`, `--output`
----------------------------
**Description**: Stores computation results requests into a JSON or CSV file.
**Usage**:
.. code-block:: shell-session
gnpy-path-request my_network.json my_service.json -o <FILE.json|FILE.csv>
**Functionality**: This option allows users to save the results of the path requests into a specified output file
for further analysis.
**Option**: `--redesign-per-request`
------------------------------------
**Description**: Redesigns the network for each request using the request as the reference channel
(replaces the `SI` section of the equipment library with the request specifications).
**Usage**:
.. code-block:: shell-session
gnpy-path-request my_network.json my_services.json --redesign-per-request
**Functionality**: This option enables checking different scenarios for design.

View File

@@ -1,7 +1,8 @@
.. _concepts:
*****************************
Simulating networks with GNPy
=============================
*****************************
Running simulations with GNPy requires three pieces of information:
@@ -12,7 +13,7 @@ Running simulations with GNPy requires three pieces of information:
.. _concepts-topology:
Network Topology
----------------
================
The *topology* acts as a "digital self" of the simulated network.
When given a network topology, GNPy can either run a specific simulation as-is, or it can *optimize* the topology before performing the simulation.
@@ -29,12 +30,12 @@ This path is directional, and all "GNPy elements" along the path match the unidi
The network topology contains not just the physical topology of the network, but also references to the :ref:`equipment library<concepts-equipment>` and a set of *operating parameters* for each entity.
These parameters include the **fiber length** of each fiber, the connector **attenutation losses**, or an amplifier's specific **gain setting**.
The topology is specified via :ref:`XLS files<excel>` or via :ref:`JSON<json>`.
The topology is specified via :ref:`XLS files<excel>` or via :ref:`JSON<legacy-json>`.
.. _complete-vs-incomplete:
Fully Specified vs. Partially Designed Networks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-----------------------------------------------
Let's consider a simple triangle topology with three :abbr:`PoPs (Points of Presence)` covering three cities:
@@ -208,7 +209,7 @@ In other cases where the location of amplifier huts is already known, but the sp
.. _concepts-equipment:
The Equipment Library
---------------------
=====================
In order to produce an accurate simulation, GNPy needs to know the physical properties of each entity which affects the optical signal.
Entries in the equipment library correspond to actual real-world, tangible entities.
@@ -231,7 +232,7 @@ GNPy currently does not take into consideration the spectrum filtering penalties
.. _concepts-nf-model:
Amplifier Noise Figure Models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-----------------------------
One of the key parameters of an amplifier is the method to use for computing the Noise Figure (NF).
GNPy supports several different noise models with varying level of accuracy.
@@ -244,7 +245,7 @@ For scenarios where the vendor has not yet contributed an accurate EDFA NF descr
.. _nf-model-min-max-NF:
Min-max NF
**********
^^^^^^^^^^
This is an operator-focused model where performance is defined by the *minimal* and *maximal NF*.
These are especially suited to model a dual-coil EDFA with a VOA in between.
@@ -254,7 +255,7 @@ The worst (maximal) NF applies when the EDFA operates at its minimal gain.
This model is suitable for use when the vendor has not provided a more accurate performance description of the EDFA.
Raman Approximation
*******************
^^^^^^^^^^^^^^^^^^^
While GNPy is fully Raman-aware, under certain scenarios it is useful to be able to run a simulation without an accurate Raman description.
For these purposes the :ref:`polynomial NF<ext-nf-model-polynomial-NF>` model with :math:`\text{a} = \text{b} = \text{c} = 0`, and :math:`\text{d} = NF` can be used.
@@ -262,7 +263,7 @@ For these purposes the :ref:`polynomial NF<ext-nf-model-polynomial-NF>` model wi
.. _concepts-simulation:
Simulation
----------
==========
When the network model has been instantiated and the physical properties and operational settings of the actual physical devices are known, GNPy can start simulating how the signal propagate through the optical fiber.

View File

@@ -19,6 +19,8 @@
#
import os
import sys
sys.path.insert(0, os.path.abspath('../'))
# -- General configuration ------------------------------------------------
@@ -36,6 +38,7 @@ extensions = ['sphinx.ext.autodoc',
'sphinxcontrib.bibtex',
'sphinx.ext.graphviz',
'myst_parser',
'sphinx_rtd_theme',
]
myst_enable_extensions = [
@@ -65,7 +68,7 @@ author = 'Telecom Infra Project - OOPT PSE Group'
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
language = 'en'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
@@ -84,18 +87,22 @@ todo_include_todos = False
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
on_rtd = os.environ.get('READTHEDOCS') == 'True'
if on_rtd:
html_theme = 'default'
html_theme_options = {
'logo_only': True,
}
else:
html_theme = 'alabaster'
html_theme_options = {
'logo': 'images/GNPy-logo.png',
'logo_name': False,
}
html_theme = "sphinx_rtd_theme"
html_theme_options = {
'logo': 'images/GNPy-logo.png',
'logo_name': False,
'prev_next_buttons_location': 'bottom',
# Toc options
'collapse_navigation': True,
'sticky_navigation': True,
'navigation_depth': 4,
'includehidden': True,
'titles_only': False
}
html_theme_options = {
'navigation_depth': 4,
}
html_favicon = 'images/GNPy-logo.png'
html_logo = 'images/GNPy-logo.png'
@@ -108,7 +115,10 @@ html_logo = 'images/GNPy-logo.png'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []
html_static_path = ['_static']
html_css_files = [
'custom.css', # Inclure votre fichier CSS personnalisé
]
# Custom sidebar templates, must be a dictionary that maps document names
# to template names.
@@ -125,6 +135,7 @@ html_sidebars = {
]
}
html_secnum_depth = 4
# -- Options for HTMLHelp output ------------------------------------------

View File

@@ -1,7 +1,8 @@
.. _excel:
*****************************
Excel (XLS, XLSX) input files
=============================
*****************************
``gnpy-transmission-example`` gives the possibility to use an excel input file instead of a json file. The program then will generate the corresponding json file for you.
@@ -9,21 +10,22 @@ The file named 'meshTopologyExampleV2.xls' is an example.
In order to work the excel file MUST contain at least 2 sheets:
- Nodes
- Links
- `Nodes`
- `Links`
(In progress) The File MAY contain an additional sheet:
(In progress) The File MAY contain additional sheets:
- Eqt
- Service
- `Eqpt`
- `Service`
- `Roadms`
.. _excel-nodes-sheet:
Nodes sheet
-----------
`Nodes` sheet
=============
Nodes sheet contains nine columns.
Each line represents a 'node' (ROADM site or an in line amplifier site ILA or a Fused)::
`Nodes` sheet contains nine columns.
Each line represents a 'node' (`ROADM` site or an in line amplifier site `ILA` or a `Fused`)::
City (Mandatory) ; State ; Country ; Region ; Latitude ; Longitude ; Type
@@ -50,15 +52,15 @@ Each line represents a 'node' (ROADM site or an in line amplifier site ILA or a
.. _excel-links-sheet:
Links sheet
-----------
===========
Links sheet must contain sixteen columns::
<-- east cable from a to z --> <-- west from z to -->
<-- east cable from a to z --> <-- west from z to a -->
NodeA ; NodeZ ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ; Cable Id ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ; Cable Id
Links sheets MUST contain all links between nodes defined in Nodes sheet.
`Links` sheet MUST contain all links between nodes defined in Nodes sheet.
Each line represents a 'bidir link' between two nodes. The two directions are represented on a single line with "east cable from a to z" fields and "west from z to a" fields. Values for 'a to z' may be different from values from 'z to a'.
Since both direction of a bidir 'a-z' link are described on the same line (east and west), 'z to a' direction MUST NOT be repeated in a different line. If repeated, it will generate another parrallel bidir link between the same end nodes.
@@ -85,43 +87,42 @@ and a fiber span from node3 to node6::
- If filled it MUST contain numbers. If empty it is replaced by a default "80" km value.
- If value is below 150 km, it is considered as a single (bidirectional) fiber span.
- If value is over 150 km the `gnpy-transmission-example`` program will automatically suppose that intermediate span description are required and will generate fiber spans elements with "_1","_2", ... trailing strings which are not visible in the json output. The reason for the splitting is that current edfa usually do not support large span loss. The current assumption is that links larger than 150km will require intermediate amplification. This value will be revisited when Raman amplification is added”
- If value is over 150 km or if the loss is greater than 28 dB, the autodesign program
will automatically split the span with "_1","_2", ... trailing strings in names.
Splitting threshold can be tuned in ["Span"]["max_length"] and ["Span"]["max_loss"] in
equipment library.
- **Fiber type** is not mandatory.
If filled it must contain types listed in `eqpt_config.json <gnpy/example-data/eqpt_config.json>`_ in "Fiber" list "type_variety".
If not filled it takes "SSMF" as default value.
- **Lineic att** is not mandatory.
- **Lineic att** is not mandatory.
It is the lineic attenuation expressed in dB/km.
If filled it must contain positive numbers.
If not filled it takes "0.2" dB/km value
- *Con_in*, *Con_out* are not mandatory.
- **Con_in**, **Con_out** are not mandatory.
They are the connector loss in dB at ingress and egress of the fiber spans.
If filled they must contain positive numbers.
If not filled they take "0.5" dB default value.
- *PMD* is not mandatory and and is not used yet.
- **PMD** is not mandatory.
It is the PMD value of the link in ps.
If filled they must contain positive numbers.
If not filled, it takes "0.1" ps value.
- *Cable Id* is not mandatory.
- **Cable Id** is not mandatory.
If filled they must contain strings with the same constraint as "City" names. Its value is used to differenate links having the same end points. In this case different Id should be used. Cable Ids are not meant to be unique in general.
(in progress)
.. _excel-equipment-sheet:
Eqpt sheet
----------
==========
The equipment sheet (named "Eqpt") is optional.
If provided, it specifies types of boosters and preamplifiers for all ROADM degrees of all ROADM nodes, and for all ILA nodes.
@@ -176,7 +177,7 @@ This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content ca
- **Node Z** is mandatory. It is the egress direction from the *Node A* site. Multiple Links between the same Node A and NodeZ is not supported.
- **amp type** is not mandatory.
If filled it must contain types listed in `eqpt_config.json <gnpy/example-data/eqpt_config.json>`_ in "Edfa" list "type_variety".
If filled it must contain types listed in the equipment librairie like in the example `eqpt_config.json <gnpy/example-data/eqpt_config.json>`_ in "Edfa" list "type_variety".
If not filled it takes "std_medium_gain" as default value.
If filled with fused, a fused element with 0.0 dB loss will be placed instead of an amplifier. This might be used to avoid booster amplifier on a ROADM direction.
@@ -184,22 +185,57 @@ This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content ca
If not filled, it will be determined with design rules in the convert.py file.
If filled, it must contain positive numbers.
- *att_in* and *att_out* are not mandatory and are not used yet. They are the value of the attenuator at input and output of amplifier (in dB).
- **att_in** and **att_out** are not mandatory. They are the value of the attenuator at input and output of amplifier (in dB).
If filled they must contain positive numbers.
- **tilt**, in dB, is not mandatory. It is the target gain tilt over the full amplfifier bandwidth and is defined with regard to wavelength, i.e. negative tilt means lower gain
for higher wavelengths (lower frequencies). If not filled, the default value is 0.
- **delta_p**, in dBm, is not mandatory. If filled it is used to set the output target power per channel at the output of the amplifier, if power_mode is True. The output power is then set to power_dbm + delta_power.
- **delta_p**, in dB, is not mandatory. If filled it is used to set the output target power per channel at the output of the amplifier, if power_mode is True. The output power is then set to power_dbm + delta_power.
# to be completed #
.. _excel-roadms-sheet:
Roadms sheet
============
The ROADM sheet (named "Roadms") is optional.
If provided, it can be used to specify:
- per channel power target on a specific ROADM degree (*per_degree_pch_out_db*),
- ROADM type variety,
- impairment ID (identifier) on a particular ROADM path (from degree - to degree).
This sheet contains six columns:
Node A ; Node Z ; per degree target power (dBm) ; type_variety ; from degrees ; from degree to degree impairment id
- **Node A** is mandatory. Name of the ROADM node (as listed in Nodes sheet).
Must be a 'ROADM' (Type attribute in Node sheet), its number of occurence may be equal to its degree.
- **Node Z** is mandatory. Egress direction from the *Node A* ROADM site. Multiple Links between the same Node A
and NodeZ is not supported.
- **per degree target power (dBm)** (optional).
If filled it must contain a value in dBm corresponding to :ref:`per_degree_pch_out_db<roadm_json_instance>` on the **Node Z** degree.
Defaults to equipment library value if not filled.
- **type_variety** (optional). Must be the same for all ROADM entries if filled,
and defined in the :ref:`equipment library<roadm>`. Defaults to 'default' if not filled.
- **from degrees** (optional): List of Node names separated by ' | '. Names must be present in Node sheet.
Together with Node Z, they define a list of internal path in ROADM for which the impairment ID applies
- **from degree to degree impairment id** (optional):List of impairment IDs separated by ' | '. Must be filled
if **from degrees** is defined.
The impairment ID must be defined in the equipment library and be of "express" type.
(in progress)
.. _excel-service-sheet:
Service sheet
-------------
=============
Service sheet is optional. It lists the services for which path and feasibility must be computed with ``gnpy-path-request``.
@@ -213,7 +249,7 @@ Service sheet must contain 11 columns::
- **Destination** is mandatory. It is the name of the destination node (as listed in Nodes sheet). Source MUST be a ROADM node. (TODO: relax this and accept trx entries)
- **TRX type** is mandatory. They are the variety type and selected mode of the transceiver to be used for the propagation simulation. These modes MUST be defined in the equipment library. The format of the mode is used as the name of the mode. (TODO: maybe add another mode id on Transceiver library ?). In particular the mode selection defines the channel baudrate to be used for the propagation simulation.
- **TRX type** is mandatory. It is the variety type of the transceiver to be used for the propagation simulation. These modes MUST be defined in the equipment library. The format of the mode is used as the name of the mode. (TODO: maybe add another mode id on Transceiver library ?). In particular the mode selection defines the channel baudrate to be used for the propagation simulation.
- **mode** is optional. If not specified, the program will search for the mode of the defined transponder with the highest baudrate fitting within the spacing value.

View File

@@ -1,7 +1,8 @@
.. _extending:
****************************************
Extending GNPy with vendor-specific data
========================================
****************************************
GNPy ships with an :ref:`equipment library<concepts-equipment>` containing machine-readable datasheets of networking equipment.
Vendors who are willing to contribute descriptions of their supported products are encouraged to `submit a patch <https://review.gerrithub.io/Documentation/intro-gerrit-walkthrough-github.html>`__ -- or just :ref:`get in touch with us directly<contributing>`.
@@ -11,7 +12,7 @@ This chapter discusses option for modeling performance of :ref:`EDFA amplifiers<
.. _extending-edfa:
EDFAs
-----
=====
An accurate description of the :abbr:`EDFA (Erbium-Doped Fiber Amplifier)` and especially its noise characteristics is required.
GNPy describes this property in terms of the **Noise Figure (NF)** of an amplifier model as a function of its operating point.
@@ -20,7 +21,7 @@ GNPy supports several different :ref:`noise models<concepts-nf-model>`, and vend
.. _ext-nf-model-polynomial-NF:
Polynomial NF
*************
-------------
This model computes the NF as a function of the difference between the optimal gain and the current gain.
The NF is expressed as a third-degree polynomial:
@@ -43,7 +44,7 @@ In that case, use:
.. _ext-nf-model-polynomial-OSNR-OpenROADM:
Polynomial OSNR (OpenROADM-style for inline amplifier)
******************************************************
------------------------------------------------------
This model is useful for amplifiers compliant to the OpenROADM specification for ILA (an in-line amplifier).
The amplifier performance is evaluated via its incremental OSNR, which is a function of the input power.
@@ -55,7 +56,7 @@ The amplifier performance is evaluated via its incremental OSNR, which is a func
.. _ext-nf-model-noise-mask-OpenROADM:
Noise mask (OpenROADM-style for combined preamp and booster)
************************************************************
------------------------------------------------------------
Unlike GNPy which simluates the preamplifier and the booster separately as two amplifiers for best accuracy, the OpenROADM specification mandates a certain performance level for a combination of these two amplifiers.
For the express path, the effective noise mask comprises the preamplifier and the booster.
@@ -70,7 +71,7 @@ GNPy emulates this specification via two special NF models:
.. _ext-nf-model-min-max-NF:
Min-max NF
**********
----------
When the vendor prefers not to share the amplifier description in full detail, GNPy also supports describing the NF characteristics via the *minimal* and *maximal NF*.
This approximates a more accurate polynomial description reasonably well for some models of a dual-coil EDFA with a VOA in between.
@@ -80,7 +81,7 @@ The worst (maximal) NF applies when the EDFA operates at the minimal gain.
.. _ext-nf-model-dual-stage-amplifier:
Dual-stage
**********
----------
Dual-stage amplifier combines two distinct amplifiers.
Vendors which provide an accurate description of their preamp and booster stages separately can use the dual-stage model for an aggregate description of the whole amplifier.
@@ -88,22 +89,23 @@ Vendors which provide an accurate description of their preamp and booster stages
.. _ext-nf-model-advanced:
Advanced Specification
**********************
----------------------
The amplifier performance can be further described in terms of gain ripple, NF ripple, and the dynamic gain tilt.
When provided, the amplifier characteristic is fine-tuned as a function of carrier frequency.
When provided, the amplifier characteristic is fine-tuned as a function of carrier frequency. Note that in this advanced
specification tilt is defined vs frequency while tilt_target specified in EDFA instances is defined vs wavelength.
.. _extending-raman:
Raman Amplifiers
----------------
================
An accurate simulation of Raman amplification requires knowledge of:
- the *power* and *wavelength* of all Raman pumping lasers,
- the *direction*, whether it is co-propagating or counter-propagating,
- the Raman efficiency of the fiber,
- the fiber temperature.
* the *power* and *wavelength* of all Raman pumping lasers,
* the *direction*, whether it is co-propagating or counter-propagating,
* the Raman efficiency of the fiber,
* the fiber temperature.
Under certain scenarios it is useful to be able to run a simulation without an accurate Raman description.
For these purposes, it is possible to approximate a Raman amplifier via a fixed-gain EDFA with the :ref:`polynomial NF<ext-nf-model-polynomial-NF>` model using :math:`\text{a} = \text{b} = \text{c} = 0`, and a desired effective :math:`\text{d} = NF`.
@@ -112,52 +114,46 @@ This is also useful to quickly approximate a hybrid EDFA+Raman amplifier.
.. _extending-transponder:
Transponders
------------
============
Since transponders are usually capable of operating in a variety of modes, these are described separately.
A *mode* usually refers to a particular performance point that is defined by a combination of the symbol rate, modulation format, and :abbr:`FEC (Forward Error Correction)`.
The following data are required for each mode:
``bit-rate``
Data bit rate, in :math:`\text{Gbits}\times s^{-1}`.
``baud-rate``
Symbol modulation rate, in :math:`\text{Gbaud}`.
``required-osnr``
Minimal allowed OSNR for the receiver.
``bit_rate``
Data bit rate, in :math:`\text{bits}\times s^{-1}`.
``baud_rate``
Symbol modulation rate, in :math:`\text{baud}`.
``OSNR``
Minimal required OSNR for the receiver. In :math:`\text{dB}`
``tx-osnr``
Initial OSNR at the transmitter's output.
``grid-spacing``
Initial OSNR at the transmitter's output. In :math:`\text{dB}`
``min-spacing``
Minimal grid spacing, i.e., an effective channel spectral bandwidth.
In :math:`\text{Hz}`.
``tx-roll-off``
``roll-off``
Roll-off parameter (:math:`\beta`) of the TX pulse shaping filter.
This assumes a raised-cosine filter.
``rx-power-min`` and ``rx-power-max``
The allowed range of power at the receiver.
(work in progress) The allowed range of power at the receiver.
In :math:`\text{dBm}`.
``cd-max``
Maximal allowed Chromatic Dispersion (CD).
In :math:`\text{ps}/\text{nm}`.
``pmd-max``
Maximal allowed Polarization Mode Dispersion (PMD).
In :math:`\text{ps}`.
``cd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`CD (Chromatic Dispersion)` deteriorates.
``dgd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`DGD (Differential Group Delay)` deteriorates.
``pmd-penalty``
*Work-in-progress.*
Describes the increase of the requires GSNR as the :abbr:`PMD (Polarization Mode Dispersion)` deteriorates.
``penalties``
Impairments such as Chromatic Dispersion (CD), Polarization Mode Dispersion (PMD), and Polarization Dispersion Loss (PDL)
result in penalties at the receiver. The receiver's ability to handle these impairments can be defined for each mode as
a list of {impairment: in defined units, 'penalty_value' in dB} (see `transceiver section here <json.rst#_transceiver>`).
Maximum allowed CD, maximum allowed PMD, and maximum allowed PDL should be listed there with corresponding penalties.
Impairments experienced during propagation are linearly interpolated between given points to obtain the corresponding penalty.
The accumulated penalties are subtracted from the path GSNR before comparing with the minimum required OSNR.
Impairments: PMD in :math:`\text{ps}`, CD in :math:`\text{ps/nm}`, PDL in :math:`\text{dB}`, penalty_value in :math:`\text{dB}`
GNPy does not directly track the FEC performance, so the type of chosen FEC is likely indicated in the *name* of the selected transponder mode alone.
.. _extending-roadm:
ROADMs
------
======
In a :abbr:`ROADM (Reconfigurable Add/Drop Multiplexer)`, GNPy simulates the impairments of the preamplifiers and boosters of line degrees :ref:`separately<topo-roadm-preamp-booster>`.
The set of parameters for each ROADM model therefore includes:
@@ -168,6 +164,7 @@ The set of parameters for each ROADM model therefore includes:
Per-channel target TX power towards the egress amplifier.
Within GNPy, a ROADM is expected to attenuate any signal that enters the ROADM node to this level.
This can be overridden on a per-link in the network topology.
Targets can be set using power or power spectral density (see `roadm section here <json.rst#__roadm>`)
``pmd``
Polarization mode dispersion (PMD) penalty of the express path.
In :math:`\text{ps}`.

View File

@@ -7,3 +7,4 @@
.. automodule:: gnpy.tools.json_io
.. automodule:: gnpy.tools.plots
.. automodule:: gnpy.tools.service_sheet
.. automodule:: gnpy.tools.worker_utils

View File

@@ -2,8 +2,8 @@
API Reference Documentation
***************************
``gnpy`` package
================
GNPy package
============
.. automodule:: gnpy

Binary file not shown.

After

Width:  |  Height:  |  Size: 288 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 478 KiB

View File

@@ -1,5 +1,6 @@
************************************
GNPy: Optical Route Planning Library
=====================================================================
************************************
`GNPy <http://github.com/telecominfraproject/gnpy>`_ is an open-source,
community-developed library for building route planning and optimization tools
@@ -7,19 +8,27 @@ in real-world mesh optical networks. It is based on the Gaussian Noise Model.
.. toctree::
:maxdepth: 4
:caption: Contents
intro
intro
concepts
install
cli_options
amplifier_models_description
json
json_instance_examples
excel
extending
about-project
model
gnpy-api
release-notes
publications
genindex
modindex
Indices and tables
==================
------------------
* :ref:`genindex`
* :ref:`modindex`

View File

@@ -1,5 +1,6 @@
***************
Installing GNPy
---------------
***************
There are several methods on how to obtain GNPy.
The easiest option for a non-developer is probably going via our :ref:`Docker images<install-docker>`.
@@ -9,7 +10,7 @@ Note that this needs a :ref:`working installation of Python<install-python>`, fo
.. _install-docker:
Using prebuilt Docker images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
============================
Our `Docker images <https://hub.docker.com/r/telecominfraproject/oopt-gnpy>`_ contain everything needed to run all examples from this guide.
Docker transparently fetches the image over the network upon first use.
@@ -35,7 +36,7 @@ Remove that directory if you want to start from scratch.
.. _install-python:
Using Python on your computer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=============================
**Note**: `gnpy` supports Python 3 only. Python 2 is not supported.
`gnpy` requires Python ≥3.8
@@ -89,7 +90,7 @@ exact version of Python you are using.
.. _install-pip:
Installing the Python package
*****************************
-----------------------------
From within your Anaconda Python 3 environment, you can clone the master branch
of the `gnpy` repo and install it with:

View File

@@ -1,7 +1,8 @@
.. _intro:
************
Introduction
============
************
``gnpy`` is a library for building route planning and optimization tools.
@@ -9,33 +10,35 @@ It ships with a number of example programs. Release versions will ship with
fully-functional programs.
**Note**: *If you are a network operator or involved in route planning and
optimization for your organization, please contact project maintainer Jan
Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking for users with
optimization for your organization, please contact project maintainers
esther Le Rouzic <esther.lerouzic@orange.com>, Andrea D'Amico <adamico@nec-labs.com>.
gnpy is looking for users with
specific, delineated use cases to drive requirements for future
development.*
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power,
or to run a planning script to check SNR of several services:
.. image:: https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg
.. image:: images/gnpy-transmission-example.svg
:width: 100%
:align: left
:alt: Running a simple simulation example
By default, this script operates on a single span network defined in
`gnpy/example-data/edfa_example_network.json <gnpy/example-data/edfa_example_network.json>`_
By default, the gnpy-transmission-example script operates on a single span network defined in
`gnpy/example-data/edfa_example_network.json <https://github.com/Telecominfraproject/oopt-gnpy/blob/master/gnpy/example-data/edfa_example_network.json>`_
You can specify a different network at the command line as follows. For
example, to use the CORONET Global network defined in
`gnpy/example-data/CORONET_Global_Topology.json <gnpy/example-data/CORONET_Global_Topology.json>`_:
`gnpy/example-data/CORONET_Global_Topology.json <https://github.com/Telecominfraproject/oopt-gnpy/blob/master/gnpy/example-data/CORONET_Global_Topology.json>`_:
.. code-block:: shell-session
$ gnpy-transmission-example $(gnpy-example-data)/CORONET_Global_Topology.json
It is also possible to use an Excel file input (for example
`gnpy/example-data/CORONET_Global_Topology.xls <gnpy/example-data/CORONET_Global_Topology.xls>`_).
`gnpy/example-data/CORONET_Global_Topology.xls <https://github.com/Telecominfraproject/oopt-gnpy/blob/master/gnpy/example-data/CORONET_Global_Topology.xls>`_).
The Excel file will be processed into a JSON file with the same prefix.
Further details about the Excel data structure are available `in the documentation <docs/excel.rst>`__.
Further details about the Excel data structure are available `in the documentation <excel.rst>`__.
The main transmission example will calculate the average signal OSNR and SNR
across network elements (transceiver, ROADMs, fibers, and amplifiers)
@@ -54,12 +57,12 @@ interference noise.
.. |Pnli| replace:: P\ :sub:`nli`
Further Instructions for Use
----------------------------
============================
Simulations are driven by a set of `JSON <docs/json.rst>`__ or `XLS <docs/excel.rst>`__ files.
Simulations are driven by a set of `JSON <json.rst>`__ or `XLS <excel.rst>`__ files.
The ``gnpy-transmission-example`` script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
Launch power can be overridden by using the ``--power`` argument.
Launch power in fiber spans can be overridden by using the ``--power`` argument.
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
@@ -71,8 +74,8 @@ An experimental support for Raman amplification is available:
$(gnpy-example-data)/raman_edfa_example_network.json \
--sim $(gnpy-example-data)/sim_params.json --show-channels
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <gnpy/example-data/raman_edfa_example_network.json>`_.
General numeric parameters for simulation control are provided in the `gnpy/example-data/sim_params.json <gnpy/example-data/sim_params.json>`_.
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <https://github.com/Telecominfraproject/oopt-gnpy/blob/master/gnpy/example-data/raman_edfa_example_network.json>`_.
General numeric parameters for simulation control are provided in the `gnpy/example-data/sim_params.json <https://github.com/Telecominfraproject/oopt-gnpy/blob/master/gnpy/example-data/sim_params.json>`_.
Use ``gnpy-path-request`` to request several paths at once:
@@ -82,7 +85,7 @@ Use ``gnpy-path-request`` to request several paths at once:
$ gnpy-path-request -o output_file.json \
meshTopologyExampleV2.xls meshTopologyExampleV2_services.json
This program operates on a network topology (`JSON <docs/json.rst>`__ or `Excel <docs/excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
This program operates on a network topology (`JSON <json.rst>`__ or `Excel <excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
The service requests and reply formats are based on the `draft-ietf-teas-yang-path-computation-01 <https://tools.ietf.org/html/draft-ietf-teas-yang-path-computation-01>`__ with custom extensions (e.g., for transponder modes).
An example of the JSON input is provided in file `service-template.json`, while results are shown in `path_result_template.json`.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,10 +1,11 @@
.. _physical-model:
***************************
Physical Model used in GNPy
===========================
***************************
QoT-E including ASE noise and NLI accumulation
----------------------------------------------
==============================================
The operations of PSE simulative framework are based on the capability to
estimate the QoT of one or more channels operating lightpaths over a given
@@ -83,7 +84,7 @@ ps/nm/km, the analytical approximation ensures an excellent accuracy
with a computational time compatible with real-time operations.
The Gaussian Noise Model to evaluate the NLI
--------------------------------------------
============================================
As previously stated, fiber propagation of multilevel modulation formats
relying on the polarization-division-multiplexing generates impairments that
@@ -126,9 +127,9 @@ that can be easily evaluated extending the FWM theory from a set of discrete
tones - the standard FWM theory introduced back in the 90s by Inoue
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
Signals propagating in the fiber are not equivalent to Gaussian noise, but
thanks to the absence of in-line compensation for choromatic dispersion, the
thanks to the absence of in-line compensation for chromatic dispersion, the
become so, over short distances. So, the Gaussian noise model with incoherent
accumulation of NLI has estensively proved to be a quick yet accurate and
accumulation of NLI has extensively proved to be a quick yet accurate and
conservative tool to estimate propagation impairments of fiber propagation.
Note that the GN-model has not been derived with the aim of an *exact*
performance estimation, but to pursue a conservative performance prediction.

25
docs/publications.rst Normal file
View File

@@ -0,0 +1,25 @@
.. _publications:
************
Publications
************
Below is a chronological list of notable publications that emerged from the PSE group's collaborative work.
These articles detail the evolution of GNPy and confirm its performance through experimental trials:
- `G. Grammel, V. Curri, and J. Auge, "Physical Simulation Environment of The Telecommunications Infrastructure Project (TIP)," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optica Publishing Group, 2018), paper M1D.3. <https://opg.optica.org/abstract.cfm?uri=OFC-2018-M1D.3>`_
- `B. D. Taylor, G. Goldfarb, S. Bandyopadhyay, V. Curri, and H. Schmidtke, "Towards a Route Planning Tool for Open Optical Networks in the Telecom Infrastructure Project," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optica Publishing Group, 2018), paper Tu3E.4. <https://opg.optica.org/abstract.cfm?uri=OFC-2018-Tu3E.4>`_
- `M. Filer, M. Cantono, A. Ferrari, G. Grammel, G. Galimberti, and V. Curri, "Multi-Vendor Experimental Validation of an Open Source QoT Estimator for Optical Networks," J. Lightwave Technol. 36, 3073-3082 (2018). <https://opg.optica.org/jlt/abstract.cfm?uri=jlt-36-15-3073>`_
- `J. Auge, G. Grammel, E. le Rouzic, V. Curri, G. Galimberti, and J. Powell, "Open optical network planning demonstration," in Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optica Publishing Group, 2019), paper M3Z.9. <https://opg.optica.org/abstract.cfm?uri=OFC-2019-M3Z.9>`_
- `J. Kundrát, A. Campanella, E. Le Rouzic, A. Ferrari, O. Havliš, M. Hažlinský, G. Grammel, G. Galimberti, and V. Curri, "Physical-Layer Awareness: GNPy and ONOS for End-to-End Circuits in Disaggregated Networks," in Optical Fiber Communication Conference (OFC) 2020, OSA Technical Digest (Optica Publishing Group, 2020), paper M3Z.17. <https://opg.optica.org/abstract.cfm?uri=ofc-2020-m3z.17>`_
- `A. Ferrari, M. Filer, K. Balasubramanian, Y. Yin, E. Le Rouzic, J. Kundrát, G. Grammel, G. Galimberti, and V. Curri, "Experimental Validation of an Open Source Quality of Transmission Estimator for Open Optical Networks," in Optical Fiber Communication Conference (OFC) 2020, OSA Technical Digest (Optica Publishing Group, 2020), paper W3C.2. <https://opg.optica.org/abstract.cfm?uri=ofc-2020-W3C.2>`_
- `A. Ferrari, M. Filer, K. Balasubramanian, Y. Yin, E. Le Rouzic, J. Kundrát, G. Grammel, G. Galimberti, and V. Curri, "GNPy: an open source application for physical layer aware open optical networks," J. Opt. Commun. Netw. 12, C31-C40 (2020). <https://opg.optica.org/jocn/fulltext.cfm?uri=jocn-12-6-C31&id=429003>`_
- `A. Ferrari, K. Balasubramanian, M. Filer, Y. Yin, E. Le Rouzic, J. Kundrát, G. Grammel, G. Galimberti, and V. Curri, "Softwarized Optical Transport QoT in Production Optical Network: a Brownfield Validation," 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 2020. <https://ieeexplore.ieee.org/document/9333280>`_
- `A. Ferrari, K. Balasubramanian, M. Filer, Y. Yin, E. Le Rouzic, J. Kundrát, G. Grammel, G. Galimberti, and V. Curri, "Assessment on the in-field lightpath QoT computation including connector loss uncertainties," in Journal of Optical Communications and Networking, vol. 13, no. 2, pp. A156-A164, February 2021. <https://ieeexplore.ieee.org/document/9308057>`_
- `J. Kundrát, E. Le Rouzic, J. Mårtensson, A. Campanella, O. Havliš, A. DAmico, G. Grammel, G. Galimberti, V. Curri, and J. Vojtěch, "GNPy & YANG: Open APIs for End-to-End Service Provisioning in Optical Networks," in Optical Fiber Communication Conference (OFC) 2021, P. Dong, J. Kani, C. Xie, R. Casellas, C. Cole, and M. Li, eds., OSA Technical Digest (Optica Publishing Group, 2021), paper M1B.6. <https://opg.optica.org/abstract.cfm?uri=ofc-2021-M1B.6>`_
- `A. DAmico, E. London, B. Le Guyader, F. Frank, E. Le Rouzic, E. Pincemin, N. Brochier, and V. Curri, "GNPy experimental validation on flex-grid, flex-rate WDM optical transport scenarios," in Optical Fiber Communication Conference (OFC) 2021, P. Dong, J. Kani, C. Xie, R. Casellas, C. Cole, and M. Li, eds., OSA Technical Digest (Optica Publishing Group, 2021), paper W1G.2. <https://opg.optica.org/abstract.cfm?uri=ofc-2021-W1G.2>`_
- `E. Virgillito, R. Braun, D. Breuer, A. Gladisch, V. Curri, and G. Grammel, "Testing TIP Open Source Solutions in Deployed Optical Networks," in Optical Fiber Communication Conference (OFC) 2021, P. Dong, J. Kani, C. Xie, R. Casellas, C. Cole, and M. Li, eds., OSA Technical Digest (Optica Publishing Group, 2021), paper F1C.3. <https://opg.optica.org/abstract.cfm?uri=ofc-2021-F1C.3>`_
- `A. DAmico, E. London, B. Le Guyader, F. Frank, E. Le Rouzic, E. Pincemin, N. Brochier, and V. Curri, "Experimental validation of GNPy in a multi-vendor flex-grid flex-rate WDM optical transport scenario," J. Opt. Commun. Netw. 14, 79-88 (2022). <https://opg.optica.org/jocn/fulltext.cfm?uri=jocn-14-3-79&id=466355>`_
- `J. Kundrát, E. Le Rouzic, J. Mårtensson, S. Melin, A. DAmico, G. Grammel, G. Galimberti, and V. Curri, "GNPy: Lessons Learned and Future Plans [Invited]," in European Conference on Optical Communication (ECOC) 2022, J. Leuthold, C. Harder, B. Offrein, and H. Limberger, eds., Technical Digest Series (Optica Publishing Group, 2022), paper We3B.6. <https://opg.optica.org/abstract.cfm?uri=ECEOC-2022-We3B.6>`_
- `G. Grammel, J. Kundrat, E. Le Rouzic, S. Melin, V. Curri, A. D'Amico, R. Manzotti, "Open Optical Networks: the good, the bad and the ugly," 49th European Conference on Optical Communications (ECOC 2023), Hybrid Conference, Glasgow, UK, 2023. <https://ieeexplore.ieee.org/document/10484723>`_
- `A. DAmico, V. Gatto, A. Nespola, G. Borraccini, Y. Jiang, P. Poggiolini, E. Le Rouzic, A. M. L. de Lerma, G. Grammel, R. Manzotti, V. Curri, "GNPy Experimental Validation in a C+L Multiband Optical Multiplex Section," 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 2024. <https://ieeexplore.ieee.org/document/10648172>`_

527
docs/release-notes.rst Normal file
View File

@@ -0,0 +1,527 @@
.. _release-notes:
******************
Release change log
******************
Each release introduces some changes and new features.
(prepare text for next release)
v2.13
=====
**Environment**
The windows-2019 environment is no more supported.
**Yang Conversion Utilities**
This release introduces new conversion utilities to facilitate conversion between YANG and legacy formats,
ensuring full compatibility with GNPy. The "legacy" format also benefit from the YANG validation for
a stricter verification of input files.
Console Script for Yang Conversion: Added a new command-line script to perform Yang format conversions easily.
**Design Enhancements**
This release adds the ability to parametrize power target calculations, allowing customization of reference
span loss and deviation ratios. It implements the use of a reference channel per OMS (Optical Multiplex Section)
instead of total power for design calculations, improving accuracy and performance.
It also includes spacing information in design band data to assist in maximum power computation for EDFA
targets compution during autodesign.
**Excel handling**
XLSX files are now read with openpyxl library (while XLS files are still read with xlrd library). Latest release of
xlrd is supported, which solves compatibility issues with anaconda install.
v2.12
=====
**Important Changes:**
The default values for EDFA configuration, including frequency range, gain ripple, noise figure ripple, or dynamic gain tilt
are now hardcoded in parameters.py and are no longer read from the default_edfa_config.json file (the file has been removed).
However, users can define their own custom parameters using the default_config_from_json variable, which should be populated with a file name containing the desired parameter description. This applies to both variable_gain and fixed_gain amplifier types.
This change streamlines the configuration process but requires users to explicitly set parameters through the new
model if the default values do not suit their needs via the --extra-config option.
v2.11.1
-------
**Environment**
The macOS-12 environment is no more supported.
**per degree impairment enabled in xls input**
This release now read per degre roadm-path impairment from roadm sheet
Several optional columns are added: 'type_variety' and 'from degrees'
and 'from degree to degree impairment id'.
- 'from degrees' can contain a list of degrees separated with ' | ', then the
'from degree to degree impairment id' must contain a list of ids of the same
length.
Impairment ids are expected to be defined in the ROADM equipment library and
from degree must be among the previous node from this ROADM.
**optimizing computation speed**
The computation of path is skipped if the provided include nodes provides
a complete explicit path (speeds simulation time).
v2.11
=====
**New feature**
A new type_def for amplifiers has been introduced: multi_band. This allows the definition of a
multiband amplifier site composed of several amplifiers per band (a typical application is C+L transmission). The
release also includes autodesign for links (Optical Multiplex Section, OMS) composed of multi_band amplifiers.
Multi_band autodesign includes basic tilt and tilt_target calculation when the Raman flag is enabled with the
--sim-params option. The spectrum is demultiplexed before propagation in the amplifier and multiplexed in the output
fiber at the amplifier output.
In the library:
.. code-block:: json
{
"type_variety": "std_medium_gain_C",
"f_min": 191.225e12,
"f_max": 196.125e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_L",
"f_min": 186.5e12,
"f_max": 190.1e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_medium_gain_C",
"std_medium_gain_L"
],
"allowed_for_design": false
},
In the network topology:
.. code-block:: json
{
"uid": "east edfa in Site_A to Site_B",
"type": "Multiband_amplifier",
"type_variety": "std_medium_gain_multiband",
"amplifiers": [{
"type_variety": "std_medium_gain_C",
"operational": {
"gain_target": 22.55,
"delta_p": 0.9,
"out_voa": 3.0,
"tilt_target": 0.0
}
}, {
"type_variety": "std_medium_gain_L",
"operational": {
"gain_target": 21,
"delta_p": 3.0,
"out_voa": 3.0,
"tilt_target": 0.0
}
}
]
}
**Network design**
Optionally, users can define a design target per OMS (single or multi-band), with specific frequency ranges.
Default design bands are defined in the SI.
.. code-block:: json
{
"uid": "roadm Site_A",
"type": "Roadm",
"params": {
"target_pch_out_db": -20,
"design_bands": [{"f_min": 191.3e12, "f_max": 195.1e12}]
}
}
It is possible to define a set of bands in the SI block instead of a single Spectrum Information.
In this case type_variety must be used.
Each set defines a reference channel used for design functions and autodesign.
The default design settings for the path-request-run script have been modified.
Now, design is performed once for the reference channel defined in the SI block of the eqpt_config,
and requests are propagated based on this design.
The --redesign-per-request option can be used to restore previous behaviour
(design using request channel types).
The autodesign function has been updated to insert multiband booster, preamp or inline amplifiers based on the OMS
nature. If nothing is stated (no amplifier defined in the OMS, no design_bands attribute in the ROADM), then
it uses single band Edfas.
**Propagation**
Only carriers within the amplifier bandwidth are propagated, improving system coherence. This more rigorous checking
of the spectrum to be propagated and the amplifier bandwidth may lead to changes in the total number of channels
compared to previous releases. The range can be adjusted by changing the values of ``f_min`` and ``f_max``
in the amplifier library.
``f_min`` and ``f_max`` represent the boundary frequencies of the amplification bandwidth (the entire channel must fit
within this range).
In the example below, a signal center frequency of 190.05THz with a 50GHz width cannot fit within the amplifier band.
Note that this has a different meaning in the SI or Transceiver blocks, where ``f_min`` and ``f_max`` refers to the
minimum / maximum values of the carrier center frequency.
.. code-block:: json
{
"type_variety": "std_booster_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
**Display**
The CLI output for the transmission_main_example now displays the channels used for design and simulation,
as well as the tilt target of amplifiers.
.. code-block:: text
Reference used for design: (Input optical power reference in span = 0.00dBm,
spacing = 50.00GHz
nb_channels = 76)
Channels propagating: (Input optical power deviation in span = 0.00dB,
spacing = 50.00GHz,
transceiver output power = 0.00dBm,
nb_channels = 76)
The CLI output displays the settings of each amplifier:
.. code-block:: text
Multiband_amplifier east edfa in Site_A to Site_B
type_variety: std_medium_gain_multiband
type_variety: std_medium_gain_C type_variety: std_medium_gain_L
effective gain(dB): 20.90 effective gain(dB): 22.19
(before att_in and before output VOA) (before att_in and before output VOA)
tilt-target(dB) 0.00 tilt-target(dB) 0.00
noise figure (dB): 6.38 noise figure (dB): 6.19
(including att_in) (including att_in)
pad att_in (dB): 0.00 pad att_in (dB): 0.00
Power In (dBm): -1.08 Power In (dBm): -1.49
Power Out (dBm): 19.83 Power Out (dBm): 20.71
Delta_P (dB): 0.90 Delta_P (dB): 2.19
target pch (dBm): 0.90 target pch (dBm): 3.00
actual pch out (dBm): -2.09 actual pch out (dBm): -0.80
output VOA (dB): 3.00 output VOA (dB): 3.00
**New feature**
The preturbative Raman and the approximated GGN models are introduced for a faster evaluation of the Raman and
Kerr effects, respectively.
These implementation are intended to reduce the computational effort required by multiband transmission scenarios.
Both the novel models have been validated with exstensive simulations
(see `arXiv:2304.11756 <https://arxiv.org/abs/2304.11756>`_ for the new Raman model and
`jlt:9741324 <https://eeexplore.ieee.org/document/9741324>`_ for the new NLI model).
Additionally, they have been experimentally validated in a laboratory setup composed of commertial equipment
(see `icton:10648172 <https://eeexplore.ieee.org/document/10648172>`_).
v2.10
=====
ROADM impairments can be defined per degree and roadm-path type (add, drop or express).
Minimum loss when crossing a ROADM is no more 0 dB. It can be set per ROADM degree with roadm-path-impairments.
The transceiver output power, which was previously set using the same parameter as the input span power (power_dbm),
can now be set using a different parameter. It can be set as:
- for all channels, with tx_power_dbm using SI similarly to tx_osnr (gnpy-transmission-example script)
.. code-block:: json
"SI": [{
"f_min": 191.35e12,
"baud_rate": 32e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 3,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 40,
"tx_power_dbm": -10,
"sys_margins": 2
}
]
- for certain channels, using -spectrum option and tx_channel_power_dbm option (gnpy-transmission-example script).
.. code-block:: json
{
"spectrum": [
{
"f_min": 191.35e12,
"f_max":193.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40
},
{
"f_min": 193.15e12,
"f_max":193.15e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"tx_power_dbm": -10
},
{
"f_min": 193.2e12,
"f_max":195.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40
}
]
}
- per service using the additional parameter ``tx_power`` which similarly to ``power`` should be defined in Watt (gnpy-path-request script)
.. code-block:: json
{
"path-request": [
{
"request-id": "0",
"source": "trx SITE1",
"destination": "trx SITE2",
"src-tp-id": "trx SITE1",
"dst-tp-id": "trx SITE2",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"spacing": 50000000000.0,
"path_bandwidth": 100000000000.0
}
}
},
{
"request-id": "0 with tx_power",
"source": "trx SITE1",
"destination": "trx SITE2",
"src-tp-id": "trx SITE1",
"dst-tp-id": "trx SITE2",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"tx_power": 0.0001,
"spacing": 50000000000.0,
"path_bandwidth": 100000000000.0
}
}
}
]
}
v2.9
====
The revision introduces a major refactor that separates design and propagation. Most of these changes have no impact
on the user experience, except the following ones:
**Network design - amplifiers**: amplifier saturation is checked during design in all cases, even if type_variety is
set; amplifier gain is no more computed on the fly but only at design phase.
Before, the design did not consider amplifier power saturation during design if amplifier type_variety was stated.
With this revision, the saturation is always applied:
If design is made for a per channel power that leads to saturation, the target are properly reduced and the design
is freezed. So that when a new simulation is performed on the same network for lower levels of power per channel
the same gain target is applied. Before these were recomputed, changing the gain targets, so the simulation was
not considering the exact same working points for amplifiers in case of saturation.
Note that this case (working with saturation settings) is not recommended.
The gain of amplifiers was estimated on the fly also in case of RamanFiber preceding elements. The refactor now
requires that an estimation of Raman gain of the RamanFiber is done during design to properly compute a gain target.
The Raman gain is estimated at design for every RamanFiber span and also during propagation instead of being only
estimated at propagation stage for those Raman Fiber spans concerned with the transmission. The auto-design is more
accurate for unpropagated spans, but this results in an increase overall computation time.
This will be improved in the future.
**Network design - ROADMs**: ROADM target power settings are verified during design.
Design checks that expected power coming from every directions ingress from a ROADM are consistent with output power
targets. The checks only considers the adjacent previous hop. If the expected power at the input of this ROADM is
lower than the target power on the out-degree of the ROADM, a warning is displayed, and user is asked to review the
input network to avoid this situation. This does not change the design or propagation behaviour.
**Propagation**: amplifier gain target is no more recomputed during propagation. It is now possible to freeze
the design and propagate without automatic changes.
In previous release, gain was recomputed during propagation based on an hypothetical reference noiseless channel
propagation. It was not possible to «freeze» the autodesign, and propagate without recomputing the gain target
of amplifiers.
With this new release, the design is freezed, so that it is possible to compare performances on same basis.
**Display**: "effective pch (dbm)" is removed. Display contains the target pch which is the target power per channel
in dBm, computed based on reference channel used for design and the amplifier delta_p in dB (and before out VOA
contribution). Note that "actual pch out (dBm)" is the actual propagated total power per channel averaged per spectrum
band definition at the output of the amplifier element, including noises and out VOA contribution.
v2.8
====
**Spectrum assignment**: requests can now support multiple slots.
The definition in service file supports multiple assignments (unchanged syntax):
.. code-block:: json
"effective-freq-slot": [
{
"N": 0,
"M": 4
}, {
"N": 50,
"M": 4
}
],
But in results, label-hop is now a list of slots and center frequency index:
.. code-block:: json
{
"path-route-object": {
"index": 4,
"label-hop": [
{
"N": 0,
"M": 4
}, {
"N": 50,
"M": 4
}
]
}
},
instead of
.. code-block:: json
{
"path-route-object": {
"index": 4,
"label-hop": {
"N": 0,
"M": 4
}
}
},
**change in display**: only warnings are displayed ; information are disabled and needs the -v (verbose)
option to be displayed on standard output.
**frequency scaling**: A more accurate description of fiber parameters is implemented, including frequency scaling of
chromatic dispersion, effective area, Raman gain coefficient, and nonlinear coefficient.
In particular:
1. Chromatic dispersion can be defined with ``'dispersion'`` and ``'dispersion_slope'``, as in previous versions, or
with ``'dispersion_per_frequency'``; the latter must be defined as a dictionary with two keys, ``'value'`` and
``'frequency'`` and it has higher priority than the entries ``'dispersion'`` and ``'dispersion_slope'``.
Essential change: In previous versions, when it was not provided the ``'dispersion_slope'`` was calculated in an
involute manner to get a vanishing beta3 , and this was a mere artifact for NLI evaluation purposes (namely to evaluate
beta2 and beta3, not for total dispersion accumulation). Now, the evaluation of beta2 and beta3 is performed explicitly
in the element.py module.
1. The effective area is provided as a scalar value evaluated at the Fiber reference frequency and properly scaled
considering the Fiber refractive indices n1 and n2, and the core radius. These quantities are assumed to be fixed and
are hard coded in the parameters.py module. Essential change: The effective area is always scaled along the frequency.
1. The Raman gain coefficient is properly scaled considering the overlapping of fiber effective area values scaled at
the interacting frequencies. Essential change: In previous version the Raman gain coefficient depends only on
the frequency offset.
1. The nonlinear coefficient ``'gamma'`` is properly scaled considering the refractive index n2 and the scaling
effective area. Essential change: As the effective area, the nonlinear coefficient is always scaled along the
frequency.
**power offset**: Power equalization now enables defining a power offset in transceiver library to represent
the deviation from the general equalisation strategy defined in ROADMs.
.. code-block:: json
"mode": [{
"format": "100G",
"baud_rate": 32.0e9,
"tx_osnr": 35.0,
"min_spacing": 50.0e9,
"cost": 1,
"OSNR": 10.0,
"bit_rate": 100.0e9,
"roll_off": 0.2,
"equalization_offset_db": 0.0
}, {
"format": "200G",
"baud_rate": 64.0e9,
"tx_osnr": 35.0,
"min_spacing": 75.0e9,
"cost": 1,
"OSNR": 13.0,
"bit_rate": 200.0e9,
"roll_off": 0.2,
"equalization_offset_db": 1.76
}
]
v2.7
====

View File

@@ -1,7 +0,0 @@
alabaster>=0.7.12,<1
docutils>=0.17.1,<1
myst-parser>=0.16.1,<1
Pygments>=2.11.2,<3
rstcheck
Sphinx>=4.4.0,<5
sphinxcontrib-bibtex>=2.4.1,<3

View File

@@ -1,8 +1,8 @@
'''
"""
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks. It is based on the Gaussian Noise Model.
Signal propagation is implemented in :py:mod:`.core`.
Path finding and spectrum assignment is in :py:mod:`.topology`.
Various tools and auxiliary code, including the JSON I/O handling, is in
:py:mod:`.tools`.
'''
"""

View File

@@ -1,4 +1,4 @@
'''
"""
Simulation of signal propagation in the DWDM network
Optical signals, as defined via :class:`.info.SpectralInformation`, enter
@@ -6,4 +6,4 @@ Optical signals, as defined via :class:`.info.SpectralInformation`, enter
through the :py:mod:`.network`.
The simulation is controlled via :py:mod:`.parameters` and implemented mainly
via :py:mod:`.science_utils`.
'''
"""

View File

@@ -1,12 +1,17 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.ansi_escapes: A random subset of ANSI terminal escape codes for colored messages
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.ansi_escapes
======================
A random subset of ANSI terminal escape codes for colored messages
'''
"""
red = '\x1b[1;31;40m'
blue = '\x1b[1;34;40m'

File diff suppressed because it is too large Load Diff

View File

@@ -1,75 +1,137 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.equipment: functionality for specifying equipment
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.equipment
===================
This module contains functionality for specifying equipment.
'''
"""
from collections import defaultdict
from functools import reduce
from typing import List
from gnpy.core.utils import automatic_nch, db2lin
from gnpy.core.exceptions import EquipmentConfigError
from gnpy.core.exceptions import EquipmentConfigError, ConfigurationError
def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=False):
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)"""
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)
if the type or mode do no match an existing transceiver in the library, then the function
raises an error if error_message is True else returns a default mode based on equipment['SI']['default']
If trx_mode is None (but type is valid), it returns an undetermined mode whatever the error message:
this is a special case for automatic mode selection.
"""
trx_params = {}
default_si_data = equipment['SI']['default']
# default transponder characteristics
# mainly used with transmission_main_example.py
default_trx_params = {
'f_min': default_si_data.f_min,
'f_max': default_si_data.f_max,
'baud_rate': default_si_data.baud_rate,
'spacing': default_si_data.spacing,
'OSNR': None,
'penalties': {},
'bit_rate': None,
'cost': None,
'roll_off': default_si_data.roll_off,
'tx_osnr': default_si_data.tx_osnr,
'min_spacing': None,
'equalization_offset_db': 0
}
# Undetermined transponder characteristics
# mainly used with path_request_run.py for the automatic mode computation case
undetermined_trx_params = {
"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"penalties": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr": None,
"min_spacing": None,
"cost": None,
"equalization_offset_db": 0
}
try:
trxs = equipment['Transceiver']
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
# if called from transmission_main.py, trx_mode is ''
if trx_mode is not None:
mode_params = next(mode for trx in trxs
if trx == trx_type_variety
for mode in trxs[trx].mode
if mode['format'] == trx_mode)
trx_params = {**mode_params}
# sanity check: spacing baudrate must be smaller than min spacing
trxs = equipment['Transceiver']
if trx_type_variety in trxs:
modes = {mode['format']: mode for mode in trxs[trx_type_variety].mode}
trx_frequencies = {'f_min': trxs[trx_type_variety].frequency['min'],
'f_max': trxs[trx_type_variety].frequency['max']}
if trx_mode in modes:
# if called from transmission_main.py, trx_mode is ''
trx_params = {**modes[trx_mode], **trx_frequencies}
if trx_params['baud_rate'] > trx_params['min_spacing']:
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" ' +
f'has baud rate {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
else:
mode_params = {"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"penalties": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr": None,
"min_spacing": None,
"cost": None}
trx_params = {**mode_params}
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
# TODO: novel automatic feature maybe unwanted if spacing is specified
# trx_params['spacing'] = _automatic_spacing(trx_params['baud_rate'])
# temp = trx_params['spacing']
# print(f'spacing {temp}')
except StopIteration:
if error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" in equipment library')
else:
# default transponder charcteristics
# mainly used with transmission_main_example.py
trx_params['f_min'] = default_si_data.f_min
trx_params['f_max'] = default_si_data.f_max
trx_params['baud_rate'] = default_si_data.baud_rate
trx_params['spacing'] = default_si_data.spacing
trx_params['OSNR'] = None
trx_params['penalties'] = {}
trx_params['bit_rate'] = None
trx_params['cost'] = None
trx_params['roll_off'] = default_si_data.roll_off
trx_params['tx_osnr'] = default_si_data.tx_osnr
trx_params['min_spacing'] = None
nch = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
trx_params['nb_channel'] = nch
print(f'There are {nch} channels propagating')
trx_params['power'] = db2lin(default_si_data.power_dbm) * 1e-3
# sanity check: baudrate must be smaller than min spacing
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transponder "{trx_type_variety}" '
+ f'mode "{trx_params["format"]}" has baud rate '
+ f'{trx_params["baud_rate"] * 1e-9:.2f} GHz greater than min_spacing '
+ f'{trx_params["min_spacing"] * 1e-9:.2f}.')
trx_params['equalization_offset_db'] = trx_params.get('equalization_offset_db', 0)
return trx_params
if trx_mode is None:
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
trx_params = {**undetermined_trx_params, **trx_frequencies}
return trx_params
if trx_type_variety in trxs and error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" '
+ 'in equipment library')
if error_message:
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" in equipment library')
trx_params = {**default_trx_params}
return trx_params
def find_type_variety(amps: List[str], equipment: dict) -> List[str]:
"""Returns the multiband type_variety associated with a list of single band type_varieties
Args:
amps (List[str]): A list of single band type_varieties.
equipment (dict): A dictionary containing equipment information.
Returns:
str: an amplifier type variety
"""
listes = find_type_varieties(amps, equipment)
_found_type = list(reduce(lambda x, y: set(x) & set(y), listes))
# Given a list of single band amplifiers, find the multiband amplifier whose multi_band group
# matches. For example, if amps list contains ["a1_LBAND", "a2_CBAND"], with a1.multi_band = [a1_LBAND, a1_CBAND]
# and a2.multi_band = [a1_LBAND, a2_CBAND], then:
# possible_type_varieties = {"a1_LBAND": ["a1", "a2"], "a2_CBAND": ["a2"]}
# listes = [["a1", "a2"], ["a2"]]
# and _found_type = [a2]
if not _found_type:
msg = f'{amps} amps do not belong to the same amp type {listes}'
raise ConfigurationError(msg)
return _found_type
def find_type_varieties(amps: List[str], equipment: dict) -> List[List[str]]:
"""Returns the multiband list of type_varieties associated with a list of single band type_varieties
Args:
amps (List[str]): A list of single band type_varieties.
equipment (dict): A dictionary containing equipment information.
Returns:
List[List[str]]: A list of lists containing the multiband type_varieties
associated with each single band type_variety.
"""
possible_type_varieties = defaultdict(list)
for amp_name, amp in equipment['Edfa'].items():
if amp.multi_band is not None:
for elem in amp.multi_band:
# possible_type_varieties stores the list of multiband amp names that list this elem as
# a possible amplifier of the multiband group. For example, if "std_medium_gain_multiband"
# and "std_medium_gain_multiband_new" contain "std_medium_gain_C" in their "multi_band" list, then:
# possible_type_varieties["std_medium_gain_C"] =
# ["std_medium_gain_multiband", "std_medium_gain_multiband_new"]
possible_type_varieties[elem].append(amp_name)
return [possible_type_varieties[a] for a in amps]

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.exceptions: Exceptions thrown by other gnpy modules
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.exceptions
====================

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.info: classes for modelling Spectral Information
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.info
==============
@@ -11,10 +16,11 @@ This module contains classes for modelling :class:`SpectralInformation`.
from __future__ import annotations
from collections import namedtuple
from collections.abc import Iterable
from typing import Union
from typing import Union, List, Optional
from dataclasses import dataclass
from numpy import argsort, mean, array, append, ones, ceil, any, zeros, outer, full, ndarray, asarray
from gnpy.core.utils import automatic_nch, lin2db, db2lin
from gnpy.core.utils import automatic_nch, db2lin, watt2dbm
from gnpy.core.exceptions import SpectrumError
DEFAULT_SLOT_WIDTH_STEP = 12.5e9 # Hz
@@ -26,33 +32,32 @@ class Power(namedtuple('Power', 'signal nli ase')):
"""carriers power in W"""
class Channel(namedtuple('Channel',
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl')):
""" Class containing the parameters of a WDM signal.
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param slot_width: the slot width (Hz)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param pdl: polarization dependent loss (dB)
class Channel(
namedtuple('Channel',
'channel_number frequency baud_rate slot_width roll_off power chromatic_dispersion pmd pdl latency')):
"""Class containing the parameters of a WDM signal.
:param channel_number: channel number in the WDM grid
:param frequency: central frequency of the signal (Hz)
:param baud_rate: the symbol rate of the signal (Baud)
:param slot_width: the slot width (Hz)
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
:param chromatic_dispersion: chromatic dispersion (s/m)
:param pmd: polarization mode dispersion (s)
:param pdl: polarization dependent loss (dB)
:param latency: propagation latency (s)
"""
class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
"""noiseless reference power in dBm:
p_span0: inital target carrier power
p_spani: carrier power after element i
neq_ch: equivalent channel count in dB"""
class SpectralInformation(object):
""" Class containing the parameters of the entire WDM comb."""
"""Class containing the parameters of the entire WDM comb.
delta_pdb_per_channel: (per frequency) per channel delta power in dbm for the actual mix of channels"""
def __init__(self, frequency: array, baud_rate: array, slot_width: array, signal: array, nli: array, ase: array,
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array):
roll_off: array, chromatic_dispersion: array, pmd: array, pdl: array, latency: array,
delta_pdb_per_channel: array, tx_osnr: array, tx_power: array, label: array):
indices = argsort(frequency)
self._frequency = frequency[indices]
self._df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
@@ -77,17 +82,11 @@ class SpectralInformation(object):
self._chromatic_dispersion = chromatic_dispersion[indices]
self._pmd = pmd[indices]
self._pdl = pdl[indices]
pref = lin2db(mean(signal) * 1e3)
self._pref = Pref(pref, pref, lin2db(self._number_of_channels))
@property
def pref(self):
"""Instance of gnpy.info.Pref"""
return self._pref
@pref.setter
def pref(self, pref: Pref):
self._pref = pref
self._latency = latency[indices]
self._delta_pdb_per_channel = delta_pdb_per_channel[indices]
self._tx_osnr = tx_osnr[indices]
self._tx_power = tx_power[indices]
self._label = label[indices]
@property
def frequency(self):
@@ -155,6 +154,10 @@ class SpectralInformation(object):
def pmd(self):
return self._pmd
@property
def label(self):
return self._label
@pmd.setter
def pmd(self, pmd):
self._pmd = pmd
@@ -167,6 +170,38 @@ class SpectralInformation(object):
def pdl(self, pdl):
self._pdl = pdl
@property
def latency(self):
return self._latency
@latency.setter
def latency(self, latency):
self._latency = latency
@property
def delta_pdb_per_channel(self):
return self._delta_pdb_per_channel
@delta_pdb_per_channel.setter
def delta_pdb_per_channel(self, delta_pdb_per_channel):
self._delta_pdb_per_channel = delta_pdb_per_channel
@property
def tx_osnr(self):
return self._tx_osnr
@tx_osnr.setter
def tx_osnr(self, tx_osnr):
self._tx_osnr = tx_osnr
@property
def tx_power(self):
return self._tx_power
@tx_power.setter
def tx_power(self, tx_power):
self._tx_power = tx_power
@property
def channel_number(self):
return self._channel_number
@@ -174,7 +209,7 @@ class SpectralInformation(object):
@property
def carriers(self):
entries = zip(self.channel_number, self.frequency, self.baud_rate, self.slot_width,
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl)
self.roll_off, self.powers, self.chromatic_dispersion, self.pmd, self.pdl, self.latency)
return [Channel(*entry) for entry in entries]
def apply_attenuation_lin(self, attenuation_lin):
@@ -206,29 +241,40 @@ class SpectralInformation(object):
chromatic_dispersion=append(self.chromatic_dispersion,
other.chromatic_dispersion),
pmd=append(self.pmd, other.pmd),
pdl=append(self.pdl, other.pdl))
pdl=append(self.pdl, other.pdl),
latency=append(self.latency, other.latency),
delta_pdb_per_channel=append(self.delta_pdb_per_channel,
other.delta_pdb_per_channel),
tx_osnr=append(self.tx_osnr, other.tx_osnr),
tx_power=append(self.tx_power, other.tx_power),
label=append(self.label, other.label))
except SpectrumError:
raise SpectrumError('Spectra cannot be summed: channels overlapping.')
def _replace(self, carriers, pref):
def _replace(self, carriers):
self.chromatic_dispersion = array([c.chromatic_dispersion for c in carriers])
self.pmd = array([c.pmd for c in carriers])
self.pdl = array([c.pdl for c in carriers])
self.latency = array([c.latency for c in carriers])
self.signal = array([c.power.signal for c in carriers])
self.nli = array([c.power.nli for c in carriers])
self.ase = array([c.power.ase for c in carriers])
self.pref = pref
return self
def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, int, float],
signal: Union[int, float, ndarray, Iterable],
baud_rate: Union[int, float, ndarray, Iterable],
slot_width: Union[int, float, ndarray, Iterable] = None,
roll_off: Union[int, float, ndarray, Iterable] = 0.,
chromatic_dispersion: Union[int, float, ndarray, Iterable] = 0.,
pmd: Union[int, float, ndarray, Iterable] = 0.,
pdl: Union[int, float, ndarray, Iterable] = 0.):
def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, float],
signal: Union[float, ndarray, Iterable],
baud_rate: Union[float, ndarray, Iterable],
tx_osnr: Union[float, ndarray, Iterable],
tx_power: Union[float, ndarray, Iterable] = None,
delta_pdb_per_channel: Union[float, ndarray, Iterable] = 0.,
slot_width: Union[float, ndarray, Iterable] = None,
roll_off: Union[float, ndarray, Iterable] = 0.,
chromatic_dispersion: Union[float, ndarray, Iterable] = 0.,
pmd: Union[float, ndarray, Iterable] = 0.,
pdl: Union[float, ndarray, Iterable] = 0.,
latency: Union[float, ndarray, Iterable] = 0.,
label: Union[str, ndarray, Iterable] = None):
"""This is just a wrapper around the SpectralInformation.__init__() that simplifies the creation of
a non-uniform spectral information with NLI and ASE powers set to zero."""
frequency = asarray(frequency)
@@ -242,13 +288,20 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, in
chromatic_dispersion = full(number_of_channels, chromatic_dispersion)
pmd = full(number_of_channels, pmd)
pdl = full(number_of_channels, pdl)
latency = full(number_of_channels, latency)
nli = zeros(number_of_channels)
ase = zeros(number_of_channels)
delta_pdb_per_channel = full(number_of_channels, delta_pdb_per_channel)
tx_osnr = full(number_of_channels, tx_osnr)
tx_power = full(number_of_channels, tx_power)
label = full(number_of_channels, label)
return SpectralInformation(frequency=frequency, slot_width=slot_width,
signal=signal, nli=nli, ase=ase,
baud_rate=baud_rate, roll_off=roll_off,
chromatic_dispersion=chromatic_dispersion,
pmd=pmd, pdl=pdl)
pmd=pmd, pdl=pdl, latency=latency,
delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
except ValueError as e:
if 'could not broadcast' in str(e):
raise SpectrumError('Dimension mismatch in input fields.')
@@ -256,9 +309,125 @@ def create_arbitrary_spectral_information(frequency: Union[ndarray, Iterable, in
raise
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
""" Creates a fixed slot width spectral information with flat power """
nb_channel = automatic_nch(f_min, f_max, spacing)
frequency = [(f_min + spacing * i) for i in range(1, nb_channel + 1)]
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=power, baud_rate=baud_rate,
roll_off=roll_off)
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, spacing, tx_osnr, tx_power,
delta_pdb=0):
"""Creates a fixed slot width spectral information with flat power.
all arguments are scalar values"""
number_of_channels = automatic_nch(f_min, f_max, spacing)
frequency = [(f_min + spacing * i) for i in range(1, number_of_channels + 1)]
delta_pdb_per_channel = delta_pdb * ones(number_of_channels)
label = [f'{baud_rate * 1e-9 :.2f}G' for i in range(number_of_channels)]
return create_arbitrary_spectral_information(frequency, slot_width=spacing, signal=tx_power, baud_rate=baud_rate,
roll_off=roll_off, delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
def is_in_band(frequency: float, band: dict) -> bool:
"""band has {"f_min": value, "f_max": value} format
"""
if frequency >= band['f_min'] and frequency <= band['f_max']:
return True
return False
def demuxed_spectral_information(input_si: SpectralInformation, band: dict) -> Optional[SpectralInformation]:
"""extract a si based on band
"""
filtered_indices = [i for i, f in enumerate(input_si.frequency)
if is_in_band(f - input_si.slot_width[i] / 2, band)
and is_in_band(f + input_si.slot_width[i] / 2, band)]
if filtered_indices:
frequency = input_si.frequency[filtered_indices]
baud_rate = input_si.baud_rate[filtered_indices]
slot_width = input_si.slot_width[filtered_indices]
signal = input_si.signal[filtered_indices]
nli = input_si.nli[filtered_indices]
ase = input_si.ase[filtered_indices]
roll_off = input_si.roll_off[filtered_indices]
chromatic_dispersion = input_si.chromatic_dispersion[filtered_indices]
pmd = input_si.pmd[filtered_indices]
pdl = input_si.pdl[filtered_indices]
latency = input_si.latency[filtered_indices]
delta_pdb_per_channel = input_si.delta_pdb_per_channel[filtered_indices]
tx_osnr = input_si.tx_osnr[filtered_indices]
tx_power = input_si.tx_power[filtered_indices]
label = input_si.label[filtered_indices]
return SpectralInformation(frequency=frequency, baud_rate=baud_rate, slot_width=slot_width, signal=signal,
nli=nli, ase=ase, roll_off=roll_off, chromatic_dispersion=chromatic_dispersion,
pmd=pmd, pdl=pdl, latency=latency, delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=tx_osnr, tx_power=tx_power, label=label)
return None
def muxed_spectral_information(input_si_list: List[SpectralInformation]) -> SpectralInformation:
"""return the assembled spectrum
"""
if input_si_list and len(input_si_list) > 1:
si = input_si_list[0] + muxed_spectral_information(input_si_list[1:])
return si
elif input_si_list and len(input_si_list) == 1:
return input_si_list[0]
else:
raise ValueError('liste vide')
def carriers_to_spectral_information(initial_spectrum: dict[float, Carrier],
power: float) -> SpectralInformation:
"""Initial spectrum is a dict with key = carrier frequency, and value a Carrier object.
:param initial_spectrum: indexed by frequency in Hz, with power offset (delta_pdb), baudrate, slot width,
tx_osnr, tx_power and roll off.
:param power: power of the request
"""
frequency = list(initial_spectrum.keys())
signal = [c.tx_power for c in initial_spectrum.values()]
roll_off = [c.roll_off for c in initial_spectrum.values()]
baud_rate = [c.baud_rate for c in initial_spectrum.values()]
delta_pdb_per_channel = [c.delta_pdb for c in initial_spectrum.values()]
slot_width = [c.slot_width for c in initial_spectrum.values()]
tx_osnr = [c.tx_osnr for c in initial_spectrum.values()]
tx_power = [c.tx_power for c in initial_spectrum.values()]
label = [c.label for c in initial_spectrum.values()]
return create_arbitrary_spectral_information(frequency=frequency, signal=signal, baud_rate=baud_rate,
slot_width=slot_width, roll_off=roll_off,
delta_pdb_per_channel=delta_pdb_per_channel, tx_osnr=tx_osnr,
tx_power=tx_power, label=label)
@dataclass
class Carrier:
"""One channel in the initial mixed-type spectrum definition, each type being defined by
its delta_pdb (power offset with respect to reference power), baud rate, slot_width, roll_off
tx_power, and tx_osnr. delta_pdb offset is applied to target power out of Roadm.
Label is used to group carriers which belong to the same partition when printing results.
"""
delta_pdb: float
baud_rate: float
slot_width: float
roll_off: float
tx_osnr: float
tx_power: float
label: str
@dataclass
class ReferenceCarrier:
"""Reference channel type is used to determine target power out of ROADM for the reference channel when
constant power spectral density (PSD) equalization is set. Reference channel is the type that has been defined
in SI block and used for the initial design of the network.
Computing the power out of ROADM for the reference channel is required to correctly compute the loss
experienced by reference channel in Roadm element.
Baud rate is required to find the target power in constant PSD: power = PSD_target * baud_rate.
For example, if target PSD is 3.125e4mW/GHz and reference carrier type a 32 GBaud channel then
output power should be -20 dBm and for a 64 GBaud channel power target would need 3 dB more: -17 dBm.
Slot width is required to find the target power in constant PSW (constant power per slot width equalization):
power = PSW_target * slot_width.
For example, if target PSW is 2e4mW/GHz and reference carrier type a 32 GBaud channel in a 50GHz slot width then
output power should be -20 dBm and for a 64 GBaud channel in a 75 GHz slot width, power target would be -18.24 dBm.
Other attributes (like roll-off) may be added there for future equalization purpose.
"""
baud_rate: float
slot_width: float

File diff suppressed because it is too large Load Diff

View File

@@ -1,15 +1,22 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.parameters: parameters to configure standard network elements
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.parameters
====================
This module contains all parameters to configure standard network elements.
"""
from collections import namedtuple
from copy import deepcopy
from dataclasses import dataclass
from scipy.constants import c, pi
from numpy import asarray, array
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
from gnpy.core.utils import convert_length
from gnpy.core.exceptions import ParametersError
@@ -34,49 +41,64 @@ class PumpParams(Parameters):
class RamanParams(Parameters):
def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
""" Simulation parameters used within the Raman Solver
def __init__(self, flag=False, method='perturbative', order=2, result_spatial_resolution=10e3,
solver_spatial_resolution=10e3):
"""Simulation parameters used within the Raman Solver
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
:params method: Raman solver method
:params order: solution order for perturbative method
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
"""
self.flag = flag
self.method = method
self.order = order
self.result_spatial_resolution = result_spatial_resolution # [m]
self.solver_spatial_resolution = solver_spatial_resolution # [m]
def to_json(self):
return {"flag": self.flag,
"method": self.method,
"order": self.order,
"result_spatial_resolution": self.result_spatial_resolution,
"solver_spatial_resolution": self.solver_spatial_resolution}
class NLIParams(Parameters):
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
computed_channels=None):
""" Simulation parameters used within the Nli Solver
def __init__(self, method='gn_model_analytic', dispersion_tolerance=4, phase_shift_tolerance=0.1,
computed_channels=None, computed_number_of_channels=None):
"""Simulation parameters used within the Nli Solver
:params method: formula for NLI calculation
:params dispersion_tolerance: tuning parameter for ggn model solution
:params phase_shift_tolerance: tuning parameter for ggn model solution
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
:params computed_number_of_channels: the NLI is evaluated for this number of channels equally distributed
in the spectrum and extrapolated for the others
"""
self.method = method.lower()
self.dispersion_tolerance = dispersion_tolerance
self.phase_shift_tolerance = phase_shift_tolerance
self.computed_channels = computed_channels
self.computed_number_of_channels = computed_number_of_channels
def to_json(self):
return {"method": self.method,
"dispersion_tolerance": self.dispersion_tolerance,
"phase_shift_tolerance": self.phase_shift_tolerance,
"computed_channels": self.computed_channels,
"computed_number_of_channels": self.computed_number_of_channels}
class SimParams(Parameters):
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
def __init__(self):
if type(self) == SimParams:
raise NotImplementedError('Instances of SimParams cannot be generated')
@classmethod
def set_params(cls, sim_params):
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
@classmethod
def get(cls):
self = cls.__new__(cls)
return self
@property
def nli_params(self):
return self._shared_dict['nli_params']
@@ -88,15 +110,84 @@ class SimParams(Parameters):
class RoadmParams(Parameters):
def __init__(self, **kwargs):
self.target_pch_out_db = kwargs.get('target_pch_out_db')
self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
temp = [kwargs.get(k) is not None for k in equalisation_type]
if sum(temp) > 1:
raise ParametersError('ROADM config contains more than one equalisation type.'
+ 'Please choose only one', kwargs)
self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
try:
self.target_pch_out_db = kwargs['target_pch_out_db']
self.add_drop_osnr = kwargs['add_drop_osnr']
self.pmd = kwargs['pmd']
self.pdl = kwargs['pdl']
self.restrictions = kwargs['restrictions']
self.per_degree_pch_out_db = kwargs['per_degree_pch_out_db'] if 'per_degree_pch_out_db' in kwargs else {}
self.roadm_path_impairments = self.get_roadm_path_impairments(kwargs['roadm-path-impairments'])
except KeyError as e:
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
self.per_degree_impairments = kwargs.get('per_degree_impairments', [])
self.design_bands = kwargs.get('design_bands', [])
self.per_degree_design_bands = kwargs.get('per_degree_design_bands', {})
def get_roadm_path_impairments(self, path_impairments_list):
"""Get the ROADM list of profiles for impairments definition
transform the ietf model into gnpy internal model: add a path-type in the attributes
"""
if not path_impairments_list:
return {}
authorized_path_types = {
'roadm-express-path': 'express',
'roadm-add-path': 'add',
'roadm-drop-path': 'drop',
}
roadm_path_impairments = {}
for path_impairment in path_impairments_list:
index = path_impairment['roadm-path-impairments-id']
path_type = next(key for key in path_impairment if key in authorized_path_types.keys())
impairment_dict = {'path-type': authorized_path_types[path_type], 'impairment': path_impairment[path_type]}
roadm_path_impairments[index] = RoadmImpairment(impairment_dict)
return roadm_path_impairments
class RoadmPath:
def __init__(self, from_degree, to_degree, path_type, impairment_id=None, impairment=None):
"""Records roadm internal paths, types and impairment
path_type must be in "express", "add", "drop"
impairment_id must be one of the id detailed in equipement
"""
self.from_degree = from_degree
self.to_degree = to_degree
self.path_type = path_type
self.impairment_id = impairment_id
self.impairment = impairment
class RoadmImpairment:
"""Generic definition of impairments for express, add and drop"""
default_values = {
'roadm-pmd': None,
'roadm-cd': None,
'roadm-pdl': None,
'roadm-inband-crosstalk': None,
'roadm-maxloss': 0,
'roadm-osnr': None,
'roadm-pmax': None,
'roadm-noise-figure': None,
'minloss': None,
'typloss': None,
'pmin': None,
'ptyp': None
}
def __init__(self, params):
self.path_type = params.get('path-type')
self.impairments = params['impairment']
class FusedParams(Parameters):
@@ -104,26 +195,75 @@ class FusedParams(Parameters):
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
# SSMF Raman coefficient profile normalized with respect to the effective area (Cr * A_eff)
CR_NORM = array([
0., 7.802e-16, 2.4236e-15, 4.0504e-15, 5.6606e-15, 6.8973e-15, 7.802e-15, 8.4162e-15, 8.8727e-15, 9.2877e-15,
1.01011e-14, 1.05244e-14, 1.13295e-14, 1.2367e-14, 1.3695e-14, 1.5023e-14, 1.64091e-14, 1.81936e-14, 2.04927e-14,
2.28167e-14, 2.48917e-14, 2.66098e-14, 2.82615e-14, 2.98136e-14, 3.1042e-14, 3.17558e-14, 3.18803e-14, 3.17558e-14,
3.15566e-14, 3.11748e-14, 2.94567e-14, 3.14985e-14, 2.8552e-14, 2.43439e-14, 1.67992e-14, 9.6114e-15, 7.02180e-15,
5.9262e-15, 5.6938e-15, 7.055e-15, 7.4119e-15, 7.4783e-15, 6.7645e-15, 5.5361e-15, 3.6271e-15, 2.7224e-15,
2.4568e-15, 2.1995e-15, 2.1331e-15, 2.3323e-15, 2.5564e-15, 3.0461e-15, 4.8555e-15, 5.5029e-15, 5.2788e-15,
4.565e-15, 3.3698e-15, 2.2991e-15, 2.0086e-15, 1.5521e-15, 1.328e-15, 1.162e-15, 9.379e-16, 8.715e-16, 8.134e-16,
8.134e-16, 9.379e-16, 1.3612e-15, 1.6185e-15, 1.9754e-15, 1.8758e-15, 1.6849e-15, 1.2284e-15, 9.047e-16, 8.134e-16,
8.715e-16, 9.711e-16, 1.0375e-15, 1.0043e-15, 9.047e-16, 8.134e-16, 6.806e-16, 5.478e-16, 3.901e-16, 2.241e-16,
1.577e-16, 9.96e-17, 3.32e-17, 1.66e-17, 8.3e-18])
DEFAULT_RAMAN_COEFFICIENT = {
# SSMF Raman coefficient profile in terms of mode intensity (g0 * A_ff_overlap)
'gamma_raman': array(
[0.0, 8.524419934705497e-16, 2.643567866245371e-15, 4.410548410941305e-15, 6.153422961291078e-15,
7.484924703044943e-15, 8.452060808349209e-15, 9.101549322698156e-15, 9.57837595158966e-15,
1.0008642675474562e-14, 1.0865773569905647e-14, 1.1300776305865833e-14, 1.2143238647099625e-14,
1.3231065750676068e-14, 1.4624900971525384e-14, 1.6013330554840492e-14, 1.7458119359310242e-14,
1.9320241330434762e-14, 2.1720395392873534e-14, 2.4137337406734775e-14, 2.628163218460466e-14,
2.8041019963285974e-14, 2.9723155447089933e-14, 3.129353531005888e-14, 3.251796163324624e-14,
3.3198839487612773e-14, 3.329527690685666e-14, 3.313155691238456e-14, 3.289013852154548e-14,
3.2458917188506916e-14, 3.060684277937575e-14, 3.2660349473783173e-14, 2.957419109657689e-14,
2.518894321396672e-14, 1.734560485857344e-14, 9.902860761605233e-15, 7.219176385099358e-15,
6.079565990401311e-15, 5.828373065963427e-15, 7.20580801091692e-15, 7.561924351387493e-15,
7.621152352332206e-15, 6.8859886780643254e-15, 5.629181047471162e-15, 3.679727598966185e-15,
2.7555869742500355e-15, 2.4810133942597675e-15, 2.2160080532403624e-15, 2.1440626024765557e-15,
2.33873070799544e-15, 2.557317929858713e-15, 3.039839048226572e-15, 4.8337165515610065e-15,
5.4647431818257436e-15, 5.229187813711269e-15, 4.510768525811313e-15, 3.3213473130607794e-15,
2.2602577027996455e-15, 1.969576495866441e-15, 1.5179853954188527e-15, 1.2953988551200156e-15,
1.1304672156251838e-15, 9.10004390675213e-16, 8.432919922183503e-16, 7.849224069008326e-16,
7.827568196032024e-16, 9.000514440646232e-16, 1.3025926460013665e-15, 1.5444108938497558e-15,
1.8795594063060786e-15, 1.7796130169921014e-15, 1.5938159865046653e-15, 1.1585522355108287e-15,
8.507044444633358e-16, 7.625404663756823e-16, 8.14510750925789e-16, 9.047944693473188e-16,
9.636431901702084e-16, 9.298633899602105e-16, 8.349739503637023e-16, 7.482901278066085e-16,
6.240794767134268e-16, 5.00652535687506e-16, 3.553373263685851e-16, 2.0344217706119682e-16,
1.4267522642294203e-16, 8.980016576743517e-17, 2.9829068181832594e-17, 1.4861959129014824e-17,
7.404482113326137e-18]
), # m/W
# SSMF Raman coefficient profile
'g0': array(
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
), # [1 / (W m)]
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
FREQ_OFFSET = array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75, 19.,
19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5, 29., 29.5,
30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5, 39., 39.5, 40.,
40.5, 41., 41.5, 42.]) * 1e12
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
'frequency_offset': array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
12., 12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75,
19., 19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5,
29., 29.5, 30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5,
39., 39.5, 40., 40.5, 41., 41.5, 42.]) * 1e12, # [Hz]
# Raman profile reference frequency
'reference_frequency': 206.184634112792e12, # [Hz] (1454 nm)
# Raman profile reference effective area
'reference_effective_area': 75.74659443542413e-12 # [m^2] (@1454 nm)
}
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
""" Raman Gain Coefficient Parameters
Based on:
Andrea DAmico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
J. Lightwave Technol. 40, 3499-3511 (2022)
Section III.D
"""
class FiberParams(Parameters):
@@ -137,6 +277,8 @@ class FiberParams(Parameters):
# with default values from eqpt_config.json[Spans]
self._con_in = kwargs.get('con_in')
self._con_out = kwargs.get('con_out')
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
if 'ref_wavelength' in kwargs:
self._ref_wavelength = kwargs['ref_wavelength']
self._ref_frequency = c / self._ref_wavelength
@@ -146,35 +288,78 @@ class FiberParams(Parameters):
else:
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
self._ref_frequency = c / self._ref_wavelength
self._dispersion = kwargs['dispersion'] # s/m/m
self._dispersion_slope = \
kwargs.get('dispersion_slope', -2 * self._dispersion / self.ref_wavelength) # s/m/m/m
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
# (accessed on 25 March 2018) (2005).
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
(2*pi*c/self.ref_wavelength**2)**2)
# Chromatic Dispersion
if 'dispersion_per_frequency' in kwargs:
# Frequency-dependent dispersion
self._dispersion = asarray(kwargs['dispersion_per_frequency']['value']) # s/m/m
self._f_dispersion_ref = asarray(kwargs['dispersion_per_frequency']['frequency']) # Hz
self._dispersion_slope = None
elif 'dispersion' in kwargs:
# Single value dispersion
self._dispersion = asarray(kwargs['dispersion']) # s/m/m
self._dispersion_slope = kwargs.get('dispersion_slope') # s/m/m/m
self._f_dispersion_ref = asarray(self._ref_frequency) # Hz
else:
# Default single value dispersion
self._dispersion = asarray(1.67e-05) # s/m/m
self._dispersion_slope = None
self._f_dispersion_ref = asarray(self.ref_frequency) # Hz
# Effective Area and Nonlinear Coefficient
self._effective_area = kwargs.get('effective_area') # m^2
n2 = 2.6e-20 # m^2/W
if self._effective_area:
self._gamma = kwargs.get('gamma', 2 * pi * n2 / (self.ref_wavelength * self._effective_area)) # 1/W/m
self._n1 = 1.468
self._core_radius = 4.2e-6 # m
self._n2 = 2.6e-20 # m^2/W
if self._effective_area is not None:
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
elif 'gamma' in kwargs:
self._gamma = kwargs['gamma'] # 1/W/m
self._effective_area = 2 * pi * n2 / (self.ref_wavelength * self._gamma) # m^2
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
else:
self._gamma = 0 # 1/W/m
self._effective_area = 83e-12 # m^2
default_raman_efficiency = {'cr': CR_NORM / self._effective_area, 'frequency_offset': FREQ_OFFSET}
self._raman_efficiency = kwargs.get('raman_efficiency', default_raman_efficiency)
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
pi * self._core_radius ** 2 / self._effective_area)) ** 2
# Raman Gain Coefficient
raman_coefficient = kwargs.get('raman_coefficient')
if raman_coefficient is None:
self._raman_reference_frequency = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
frequency_offset = asarray(DEFAULT_RAMAN_COEFFICIENT['frequency_offset'])
gamma_raman = asarray(DEFAULT_RAMAN_COEFFICIENT['gamma_raman'])
stokes_wave = self._raman_reference_frequency - frequency_offset
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
self._g0 = gamma_raman / self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
else:
self._raman_reference_frequency = raman_coefficient['reference_frequency']
frequency_offset = asarray(raman_coefficient['frequency_offset'])
stokes_wave = self._raman_reference_frequency - frequency_offset
self._g0 = asarray(raman_coefficient['g0'])
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
# represent a positive power transfer from higher frequency and vice versa
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
# Polarization Mode Dispersion
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
if type(kwargs['loss_coef']) == dict:
self._pmd_coef_defined = kwargs.get('pmd_coef_defined', kwargs['pmd_coef'] is True)
# Loss Coefficient
if isinstance(kwargs['loss_coef'], dict):
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
else:
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(self._ref_frequency) # Hz
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else []
# Lumped Losses
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
self._latency = self._length / (c / self._n1) # s
except KeyError as e:
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
@@ -219,6 +404,10 @@ class FiberParams(Parameters):
def dispersion(self):
return self._dispersion
@property
def f_dispersion_ref(self):
return self._f_dispersion_ref
@property
def dispersion_slope(self):
return self._dispersion_slope
@@ -227,10 +416,28 @@ class FiberParams(Parameters):
def gamma(self):
return self._gamma
def effective_area_scaling(self, frequency):
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
w = self._core_radius / sqrt(log(V))
return asarray(pi * w ** 2)
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
effective_area_pump = self.effective_area_scaling(frequency_pump)
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
def gamma_scaling(self, frequency):
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
@property
def pmd_coef(self):
return self._pmd_coef
@property
def pmd_coef_defined(self):
return self._pmd_coef_defined
@property
def ref_wavelength(self):
return self._ref_wavelength
@@ -239,14 +446,6 @@ class FiberParams(Parameters):
def ref_frequency(self):
return self._ref_frequency
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def loss_coef(self):
return self._loss_coef
@@ -256,40 +455,165 @@ class FiberParams(Parameters):
return self._f_loss_ref
@property
def raman_efficiency(self):
return self._raman_efficiency
def raman_coefficient(self):
return self._raman_coefficient
@property
def latency(self):
return self._latency
def asdict(self):
dictionary = super().asdict()
dictionary['loss_coef'] = self.loss_coef * 1e3
dictionary['length_units'] = 'm'
if not self.lumped_losses:
if len(self.lumped_losses) == 0:
dictionary.pop('lumped_losses')
if not self.raman_efficiency:
dictionary.pop('raman_efficiency')
if not self.raman_coefficient:
dictionary.pop('raman_coefficient')
else:
raman_frequency_offset = \
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
'frequency_offset': raman_frequency_offset.tolist(),
'reference_frequency': self._raman_reference_frequency}
return dictionary
class EdfaParams:
default_values = {
'f_min': None,
'f_max': None,
'multi_band': None,
'bands': None,
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'preamp_variety': None,
'booster_variety': None,
'nf_min': None,
'nf_max': None,
'nf_coef': None,
'nf0': None,
'nf_fit_coeff': None,
'nf_ripple': 0,
'dgt': None,
'gain_ripple': 0,
'tilt_ripple': 0,
'f_ripple_ref': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False,
'pmd': 0,
'pdl': 0,
'advance_configurations_from_json': None
}
def __init__(self, **params):
self.update_params(params)
if params == {}:
self.type_variety = ''
self.type_def = ''
# self.gain_flatmax = 0
# self.gain_min = 0
# self.p_max = 0
# self.nf_model = None
# self.nf_fit_coeff = None
# self.nf_ripple = None
# self.dgt = None
# self.gain_ripple = None
# self.out_voa_auto = False
# self.allowed_for_design = None
try:
self.type_variety = params['type_variety']
self.type_def = params['type_def']
# Bandwidth
self.f_min = params['f_min']
self.f_max = params['f_max']
self.bandwidth = self.f_max - self.f_min if self.f_max and self.f_min else None
self.f_cent = (self.f_max + self.f_min) / 2 if self.f_max and self.f_min else None
self.f_ripple_ref = params['f_ripple_ref']
self.bands = [{'f_min': params['f_min'],
'f_max': params['f_max']}]
# Gain
self.gain_flatmax = params['gain_flatmax']
self.gain_min = params['gain_min']
gain_ripple = params['gain_ripple']
if gain_ripple == 0:
self.gain_ripple = asarray([0, 0])
self.f_ripple_ref = asarray([self.f_min, self.f_max])
else:
self.gain_ripple = asarray(gain_ripple)
if self.f_ripple_ref is not None:
if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
"with the EDFA frequency maximum and minimum.")
elif self.gain_ripple.size != self.f_ripple_ref.size:
raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
"size.")
else:
self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
tilt_ripple = params['tilt_ripple']
if tilt_ripple == 0:
self.tilt_ripple = full(self.gain_ripple.size, 0)
else:
self.tilt_ripple = asarray(tilt_ripple)
if self.tilt_ripple.size != self.gain_ripple.size:
raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
# Power
self.p_max = params['p_max']
# Noise Figure
self.nf_model = params['nf_model']
self.nf_min = params['nf_min']
self.nf_max = params['nf_max']
self.nf_coef = params['nf_coef']
self.nf0 = params['nf0']
self.nf_fit_coeff = params['nf_fit_coeff']
nf_ripple = params['nf_ripple']
if nf_ripple == 0:
self.nf_ripple = full(self.gain_ripple.size, 0)
else:
self.nf_ripple = asarray(nf_ripple)
if self.nf_ripple.size != self.gain_ripple.size:
raise ParametersError(
"The noise figure ripple and the gain ripple must have the same size. %s, %s",
self.nf_ripple.size, self.gain_ripple.size)
# VOA
self.out_voa_auto = params['out_voa_auto']
# Dual Stage
self.dual_stage_model = params['dual_stage_model']
if self.dual_stage_model is not None:
# Preamp
self.preamp_variety = params['preamp_variety']
self.preamp_type_def = params['preamp_type_def']
self.preamp_nf_model = params['preamp_nf_model']
self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
self.preamp_gain_min = params['preamp_gain_min']
self.preamp_gain_flatmax = params['preamp_gain_flatmax']
# Booster
self.booster_variety = params['booster_variety']
self.booster_type_def = params['booster_type_def']
self.booster_nf_model = params['booster_nf_model']
self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
self.booster_gain_min = params['booster_gain_min']
self.booster_gain_flatmax = params['booster_gain_flatmax']
# Others
self.pmd = params['pmd']
self.pdl = params['pdl']
self.raman = params['raman']
self.dgt = params['dgt']
self.advance_configurations_from_json = params['advance_configurations_from_json']
# Design
self.allowed_for_design = params['allowed_for_design']
except KeyError as e:
raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
def update_params(self, kwargs):
for k, v in kwargs.items():
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
setattr(self, k, v)
class EdfaOperational:
@@ -297,7 +621,8 @@ class EdfaOperational:
'gain_target': None,
'delta_p': None,
'out_voa': None,
'tilt_target': 0
'in_voa': 0,
'tilt_target': None
}
def __init__(self, **operational):
@@ -312,3 +637,95 @@ class EdfaOperational:
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')
DEFAULT_EDFA_CONFIG = {
"nf_ripple": [
0.0
],
"gain_ripple": [
0.0
],
"f_min": 191.275e12,
"f_max": 196.125e12,
"dgt": [
1.0, 1.017807767853702, 1.0356155337864215, 1.0534217504465226, 1.0712204022764056, 1.0895983485572227,
1.108555289615659, 1.1280891949729075, 1.1476135933863398, 1.1672278304018044, 1.1869318618366975,
1.2067249615595257, 1.2264996957264114, 1.2428104897182262, 1.2556591482982988, 1.2650555289898042,
1.2744470198196236, 1.2838336236692311, 1.2932153453410835, 1.3040618749785347, 1.316383926863083,
1.3301807335621048, 1.3439818461440451, 1.3598972673004606, 1.3779439775587023, 1.3981208704326855,
1.418273806730323, 1.4340878115214444, 1.445565137158368, 1.45273959485914, 1.4599103316162523,
1.4670307626366115, 1.474100442252211, 1.48111939735681, 1.488134243479226, 1.495145456062699,
1.502153039909686, 1.5097346239790443, 1.5178910621476225, 1.5266220576235803, 1.5353620432989845,
1.545374152761467, 1.5566577309558969, 1.569199764184379, 1.5817353179379183, 1.5986915141218316,
1.6201194134191075, 1.6460167077689267, 1.6719047669939942, 1.6918150918099673, 1.7057507692361864,
1.7137640932265894, 1.7217732861435076, 1.7297783508684146, 1.737780757913635, 1.7459181197626403,
1.7541903672600494, 1.7625959636196327, 1.7709972329654864, 1.7793941781790852, 1.7877868031023945,
1.7961751115773796, 1.8045606557581335, 1.8139629377087627, 1.824381436842932, 1.835814081380705,
1.847275503201129, 1.862235672444246, 1.8806927939516411, 1.9026104247588487, 1.9245345552113182,
1.9482128147680253, 1.9736443063300082, 2.0008103857988204, 2.0279625371819305, 2.055100772005235,
2.082225099873648, 2.1183028432496016, 2.16337565384239, 2.2174389328192197, 2.271520771371253,
2.322373696229342, 2.3699990328716107, 2.414398437185221, 2.4587748041127506, 2.499446286796604,
2.5364027376452056, 2.5696460593920065, 2.602860350286428, 2.630396440815385, 2.6521732021128046,
2.6681935771243177, 2.6841217449620203, 2.6947834587664494, 2.705443819238505, 2.714526681131686
]
}
class MultiBandParams:
default_values = {
'bands': [],
'type_variety': '',
'type_def': None,
'allowed_for_design': False
}
def __init__(self, **params):
try:
self.update_attr(params)
except KeyError as e:
raise ParametersError(f'Multiband configurations json must include {e}. Configuration: {params}')
def update_attr(self, kwargs):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in self.default_values.items():
# use deepcopy to avoid sharing same object amongst all instance when v is a list or a dict!
if isinstance(v, (list, dict)):
setattr(self, k, clean_kwargs.get(k, deepcopy(v)))
else:
setattr(self, k, clean_kwargs.get(k, v))
class TransceiverParams:
def __init__(self, **params):
self.design_bands = params.get('design_bands', [])
self.per_degree_design_bands = params.get('per_degree_design_bands', {})
@dataclass
class FrequencyBand:
"""Frequency band
"""
f_min: float
f_max: float
DEFAULT_BANDS_DEFINITION = {
"LBAND": FrequencyBand(f_min=187e12, f_max=189e12),
"CBAND": FrequencyBand(f_min=191.3e12, f_max=196.0e12)
}
# use this definition to index amplifiers'element of a multiband amplifier.
# this is not the design band
def find_band_name(band: FrequencyBand) -> str:
"""return the default band name (CBAND, LBAND, ...) that corresponds to the band frequency range
Use the band center frequency: if center frequency is inside the band then returns CBAND.
This is to flexibly encompass all kind of bands definitions.
returns the first matching band name.
"""
for band_name, frequency_range in DEFAULT_BANDS_DEFINITION.items():
center_frequency = (band.f_min + band.f_max) / 2
if center_frequency >= frequency_range.f_min and center_frequency <= frequency_range.f_max:
return band_name
return 'unknown_band'

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.science_utils: Solver definitions to calculate the Raman effect and the nonlinear interference noise
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.science_utils
=======================
@@ -10,45 +15,44 @@ Solver definitions to calculate the Raman effect and the nonlinear interference
The solvers take as input instances of the spectral information, the fiber and the simulation parameters
"""
from numpy import interp, pi, zeros, shape, where, cos, array, append, ones, exp, arange, sqrt, empty, trapz, arcsinh, \
clip, abs, sum, concatenate, flip, outer, inner, transpose, max, format_float_scientific, diag, prod, argwhere, \
unique, argsort, cumprod
from numpy import interp, pi, zeros, cos, array, append, ones, exp, arange, sqrt, trapz, arcsinh, clip, abs, sum, \
concatenate, flip, outer, inner, transpose, max, format_float_scientific, diag, sort, unique, argsort, cumprod, \
polyfit, log, reshape, swapaxes, full, nan, cumsum
from logging import getLogger
from scipy.constants import k, h
from scipy.interpolate import interp1d
from math import isclose
from math import isclose, factorial
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.exceptions import EquipmentConfigError
from gnpy.core.exceptions import EquipmentConfigError, ParametersError
from gnpy.core.parameters import SimParams
from gnpy.core.info import SpectralInformation
logger = getLogger(__name__)
sim_params = SimParams.get()
sim_params = SimParams()
def raised_cosine_comb(f, *carriers):
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
channels at the input frequencies defined in array f
:param f: numpy array of frequencies in Hz
:param carriers: namedtuple describing the WDM comb
:return: PSD of the WDM comb evaluated over f
def raised_cosine(frequency, channel_frequency, channel_baud_rate, channel_roll_off):
"""Returns a unitary raised cosine profile for the given parame
:param frequency: numpy array of frequencies in Hz for the resulting raised cosine
:param channel_frequency: channel frequencies in Hz
:param channel_baud_rate: channel baud rate in Hz
:param channel_roll_off: channel roll off
"""
psd = zeros(shape(f))
for carrier in carriers:
f_nch = carrier.frequency
g_ch = carrier.power.signal / carrier.baud_rate
ts = 1 / carrier.baud_rate
pass_band = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
stop_band = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
ff = abs(f - f_nch)
tf = ff - pass_band
if carrier.roll_off == 0:
psd = where(tf <= 0, g_ch, 0.) + psd
else:
psd = g_ch * (where(tf <= 0, 1., 0.) + 1 / 2 * (1 + cos(pi * ts / carrier.roll_off * tf)) *
where(tf > 0, 1., 0.) * where(abs(ff) <= stop_band, 1., 0.)) + psd
return psd
raised_cosine_mask = zeros(frequency.size)
base_frequency = frequency - channel_frequency
ts = 1 / channel_baud_rate
pass_band = (1 - channel_roll_off) * channel_baud_rate / 2
stop_band = (1 + channel_roll_off) * channel_baud_rate / 2
flat_condition = (abs(base_frequency) <= pass_band) == 1
cosine_condition = (pass_band < abs(base_frequency)) * (abs(base_frequency) < stop_band) == 1
raised_cosine_mask[flat_condition] = 1
raised_cosine_mask[cosine_condition] = \
0.5 * (1 + cos(pi * ts / channel_roll_off * (abs(base_frequency[cosine_condition]) - pass_band)))
return raised_cosine_mask
class StimulatedRamanScattering:
@@ -110,6 +114,7 @@ class RamanSolver:
z_step = sim_params.raman_params.solver_spatial_resolution
z = append(arange(0, fiber.params.length, z_step), fiber.params.length)
z_final = append(arange(0, fiber.params.length, z_resolution), fiber.params.length)
z_final = sort(unique(concatenate((fiber.z_lumped_losses, z_final))))
# Lumped losses array definition
z, lumped_losses = RamanSolver._create_lumped_losses(z, fiber.lumped_losses, fiber.z_lumped_losses)
@@ -131,20 +136,22 @@ class RamanSolver:
cnt_frequency = array([pump.frequency for pump in fiber.raman_pumps
if pump.propagation_direction == 'counterprop'])
# Co-propagating profile initialization
co_power_profile = empty([co_frequency.size, z.size])
co_power_profile = zeros([co_frequency.size, z.size])
if co_frequency.size:
co_cr = fiber.cr(co_frequency)
co_alpha = fiber.alpha(co_frequency)
co_power_profile = \
RamanSolver.first_order_derivative_solution(co_power, co_alpha, co_cr, z, lumped_losses)
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(co_power, co_alpha, co_cr, z,
lumped_losses)
# Counter-propagating profile initialization
cnt_power_profile = empty([co_frequency.size, z.size])
cnt_power_profile = zeros([cnt_frequency.size, z.size])
if cnt_frequency.size:
cnt_cr = fiber.cr(cnt_frequency)
cnt_alpha = fiber.alpha(cnt_frequency)
cnt_power_profile = \
flip(RamanSolver.first_order_derivative_solution(cnt_power, cnt_alpha, cnt_cr,
z[-1] - flip(z), flip(lumped_losses)))
cnt_power_profile = flip(
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(cnt_power, cnt_alpha, cnt_cr,
z[-1] - flip(z),
flip(lumped_losses)), axis=1)
# Co-propagating and Counter-propagating Profile Computation
if co_frequency.size and cnt_frequency.size:
co_power_profile, cnt_power_profile = \
@@ -163,8 +170,9 @@ class RamanSolver:
alpha = fiber.alpha(spectral_info.frequency)
cr = fiber.cr(spectral_info.frequency)
# Power profile
power_profile = \
RamanSolver.first_order_derivative_solution(spectral_info.signal, alpha, cr, z, lumped_losses)
power_profile = (
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(spectral_info.signal, alpha, cr, z,
lumped_losses))
# Loss profile
loss_profile = power_profile / outer(spectral_info.signal, ones(z.size))
frequency = spectral_info.frequency
@@ -190,18 +198,18 @@ class RamanSolver:
# calculate ase power
ase = zeros(spectral_info.number_of_channels)
cr = fiber.cr(srs.frequency)[:spectral_info.number_of_channels, spectral_info.number_of_channels:]
for i, pump in enumerate(fiber.raman_pumps):
pump_power = srs.power_profile[spectral_info.number_of_channels + i, :]
df = pump.frequency - frequency
eta = - 1 / (1 - exp(h * df / (k * fiber.temperature)))
cr = fiber._cr_function(df)
integral = trapz(pump_power / channels_loss, z, axis=1)
ase += 2 * h * baud_rate * frequency * (1 + eta) * cr * (df > 0) * integral # 2 factor for double pol
ase += 2 * h * baud_rate * frequency * (1 + eta) * cr[:, i] * (df > 0) * integral # 2 factor for double pol
return ase
@staticmethod
def first_order_derivative_solution(power_in, alpha, cr, z, lumped_losses):
"""Solves the Raman first order derivative equation
def calculate_unidirectional_stimulated_raman_scattering(power_in, alpha, cr, z, lumped_losses):
"""Solves the Raman equation
:param power_in: launch power array
:param alpha: loss coefficient array
@@ -210,18 +218,66 @@ class RamanSolver:
:param lumped_losses: concentrated losses array along the fiber span
:return: power profile matrix
"""
dz = z[1:] - z[:-1]
power = outer(power_in, ones(z.size))
for i in range(1, z.size):
power[:, i] = \
power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) * lumped_losses[i - 1]
if sim_params.raman_params.method == 'perturbative':
if sim_params.raman_params.order > 4:
raise ValueError(f'Order {sim_params.raman_params.order} not implemented in Raman Solver.')
z_lumped_losses = append(z[lumped_losses != 1], z[-1])
llumped_losses = append(1, lumped_losses[lumped_losses != 1])
power = outer(power_in, ones(z.size))
last_position = 0
z_indices = arange(0, z.size)
for z_lumped_loss, lumped_loss in zip(z_lumped_losses, llumped_losses):
if last_position < z[-1]:
interval = z_indices[(z >= last_position) * (z <= z_lumped_loss) == 1]
z_interval = z[interval] - last_position
dz = z_interval[1:] - z_interval[:-1]
last_position = z[interval][-1]
p0 = power_in * lumped_loss
power_interval = outer(p0, ones(z_interval.size))
alphaz = outer(alpha, z_interval)
expz = exp(- alphaz)
eff_length = 1 / outer(alpha, ones(z_interval.size)) * (1 - expz)
crpz = transpose(ones([z_interval.size, cr.shape[0], cr.shape[1]]) * cr * p0, (1, 2, 0))
exponent = - alphaz
if sim_params.raman_params.order >= 1:
gamma1 = sum(crpz * eff_length, 1)
exponent += gamma1
if sim_params.raman_params.order >= 2:
z_integrand = expz * gamma1
z_integral = cumsum((z_integrand[:, :-1] + z_integrand[:, 1:]) / 2 * dz, 1)
gamma2 = zeros(gamma1.shape)
gamma2[:, 1:] = sum(crpz[:, :, 1:] * z_integral, 1)
exponent += gamma2
if sim_params.raman_params.order >= 3:
z_integrand = expz * (gamma2 + 1/2 * gamma1**2)
z_integral = cumsum((z_integrand[:, :-1] + z_integrand[:, 1:]) / 2 * dz, 1)
gamma3 = zeros(gamma1.shape)
gamma3[:, 1:] = sum(crpz[:, :, 1:] * z_integral, 1)
exponent += gamma3
if sim_params.raman_params.order >= 4:
z_integrand = expz * (gamma3 + gamma1 * gamma2 + 1/factorial(3) * gamma1**3)
z_integral = cumsum((z_integrand[:, :-1] + z_integrand[:, 1:]) / 2 * dz, 1)
gamma4 = zeros(gamma1.shape)
gamma4[:, 1:] = sum(crpz[:, :, 1:] * z_integral, 1)
exponent += gamma4
power_interval *= exp(exponent)
power[:, interval[1:]] = power_interval[:, 1:]
power_in = power_interval[:, -1]
elif sim_params.raman_params.method == 'numerical':
dz = z[1:] - z[:-1]
power = outer(power_in, ones(z.size))
for i in range(1, z.size):
power[:, i] = (power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) *
lumped_losses[i - 1])
else:
raise ValueError(f'Method {sim_params.raman_params.method} not implemented in Raman Solver.')
return power
@staticmethod
def iterative_algorithm(co_initial_guess_power, cnt_initial_guess_power, co_frequency, cnt_frequency, z, fiber,
lumped_losses):
"""Solves the Raman first order derivative equation in case of both co- and counter-propagating
frequencies
"""Solves the Raman equation in case of both co- and counter-propagating frequencies
:param co_initial_guess_power: co-propagationg Raman first order derivative equation solution
:param cnt_initial_guess_power: counter-propagationg Raman first order derivative equation solution
@@ -271,13 +327,17 @@ class RamanSolver:
class NliSolver:
""" This class implements the NLI models.
Model and method can be specified in `sim_params.nli_params.method`.
List of implemented methods:
'gn_model_analytic': eq. 120 from arXiv:1209.0394
'ggn_spectrally_separated': eq. 21 from arXiv: 1710.02225 spectrally separated
"""This class implements the NLI models.
Model and method can be specified in `sim_params.nli_params.method`.
List of implemented methods:
'gn_model_analytic': eq. 120 from arXiv:1209.0394
'ggn_spectrally_separated': eq. 21 from arXiv: 1710.02225
'ggn_approx': eq. 24-25 jlt:9741324
"""
SPM_WEIGHT = (16.0 / 27.0)
XPM_WEIGHT = 2 * (16.0 / 27.0)
@staticmethod
def effective_length(alpha, length):
"""The effective length identify the region in which the NLI has a significant contribution to
@@ -287,58 +347,107 @@ class NliSolver:
@staticmethod
def compute_nli(spectral_info: SpectralInformation, srs: StimulatedRamanScattering, fiber):
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
"""Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
at the end of the fiber span.
"""
logger.debug('Start computing fiber NLI noise')
# Physical fiber parameters
alpha = fiber.alpha(spectral_info.frequency)
beta2 = fiber.params.beta2
beta3 = fiber.params.beta3
f_ref_beta = fiber.params.ref_frequency
gamma = fiber.params.gamma
length = fiber.params.length
if 'gn_model_analytic' == sim_params.nli_params.method:
nli = NliSolver._gn_analytic(spectral_info, alpha, beta2, gamma, length)
eta = NliSolver._gn_analytic(spectral_info, fiber)
cut_power = outer(spectral_info.signal, ones(spectral_info.number_of_channels))
pump_power = outer(ones(spectral_info.number_of_channels), spectral_info.signal)
nli_matrix = cut_power * pump_power ** 2 * eta
nli = sum(nli_matrix, 1)
elif 'ggn_spectrally_separated' in sim_params.nli_params.method:
nli = NliSolver._ggn_spectrally_separated(spectral_info, srs, alpha, beta2, beta3, f_ref_beta, gamma)
if sim_params.nli_params.computed_channels is not None:
cut_indices = array(sim_params.nli_params.computed_channels) - 1
elif sim_params.nli_params.computed_number_of_channels is not None:
nb_ch_computed = sim_params.nli_params.computed_number_of_channels
nb_ch = len(spectral_info.channel_number)
cut_indices = array([round(i * (nb_ch - 1) / (nb_ch_computed - 1)) for i in range(0, nb_ch_computed)])
else:
cut_indices = array(spectral_info.channel_number) - 1
eta = NliSolver._ggn_spectrally_separated(cut_indices, spectral_info, fiber, srs)
# Interpolation over the channels not indicated as compted channels in simulation parameters
cut_power = outer(spectral_info.signal[cut_indices], ones(spectral_info.number_of_channels))
cut_frequency = spectral_info.frequency[cut_indices]
pump_power = outer(ones(cut_indices.size), spectral_info.signal)
cut_baud_rate = outer(spectral_info.baud_rate[cut_indices], ones(spectral_info.number_of_channels))
g_nli = eta * cut_power * pump_power**2 / cut_baud_rate
g_nli = sum(g_nli, 1)
g_nli = interp(spectral_info.frequency, cut_frequency, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
elif 'ggn_approx' in sim_params.nli_params.method:
if sim_params.nli_params.computed_channels is not None:
cut_indices = array(sim_params.nli_params.computed_channels) - 1
elif sim_params.nli_params.computed_number_of_channels is not None:
nb_ch_computed = sim_params.nli_params.computed_number_of_channels
nb_ch = len(spectral_info.channel_number)
cut_indices = array([round(i * (nb_ch - 1) / (nb_ch_computed - 1)) for i in range(0, nb_ch_computed)])
else:
cut_indices = array(spectral_info.channel_number) - 1
eta = NliSolver._ggn_approx(cut_indices, spectral_info, fiber, srs)
# Interpolation over the channels not indicated as computed channels in simulation parameters
cut_power = outer(spectral_info.signal[cut_indices], ones(spectral_info.number_of_channels))
cut_frequency = spectral_info.frequency[cut_indices]
pump_power = outer(ones(cut_indices.size), spectral_info.signal)
cut_baud_rate = outer(spectral_info.baud_rate[cut_indices], ones(spectral_info.number_of_channels))
g_nli = eta * cut_power * pump_power ** 2 / cut_baud_rate
g_nli = sum(g_nli, 1)
g_nli = interp(spectral_info.frequency, cut_frequency, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
else:
raise ValueError(f'Method {sim_params.nli_params.method} not implemented.')
return nli
# Methods for computing GN-model
# Methods for computing GN-model eta matrix
@staticmethod
def _gn_analytic(spectral_info: SpectralInformation, alpha, beta2, gamma, length):
""" Computes the nonlinear interference power evaluated at the fiber input.
def _gn_analytic(spectral_info, fiber, spm_weight=SPM_WEIGHT, xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 120 from arXiv:1209.0394
"""
spm_weight = (16.0 / 27.0) * gamma ** 2
xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
delta_frequency = spectral_info.df
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency), ones(nch))
length = fiber.params.length
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
effective_length = NliSolver.effective_length(alpha, length)
asymptotic_length = 1 / alpha
df = spectral_info.df
baud_rate = spectral_info.baud_rate
cut_baud_rate = outer(baud_rate, ones(nch))
pump_baud_rate = outer(ones(nch), baud_rate)
psd = spectral_info.signal / baud_rate
ggg = outer(psd, psd**2)
psi = NliSolver._psi(df, baud_rate, beta2, effective_length, asymptotic_length)
g_nli = sum(weight * ggg * psi, 1)
nli = spectral_info.baud_rate * g_nli # Local white noise
return nli
psi = NliSolver._psi(delta_frequency, baud_rate, beta2, effective_length, asymptotic_length)
eta_cut_central_frequency = gamma ** 2 * weight * psi / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _psi(df, baud_rate, beta2, effective_length, asymptotic_length):
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
cut_baud_rate = outer(baud_rate, ones(baud_rate.size))
cut_beta = outer(beta2, ones(baud_rate.size))
pump_baud_rate = baud_rate
pump_beta = outer(ones(baud_rate.size), beta2)
beta2 = (cut_beta + pump_beta) / 2
right_extreme = df + pump_baud_rate / 2
left_extreme = df - pump_baud_rate / 2
psi = (arcsinh(pi ** 2 * asymptotic_length * abs(beta2) * cut_baud_rate * right_extreme) -
@@ -346,112 +455,133 @@ class NliSolver:
psi *= effective_length ** 2 / (2 * pi * abs(beta2) * asymptotic_length)
return psi
# Methods for computing the GGN-model
# Methods for computing the GGN-model eta matrix
@staticmethod
def _ggn_spectrally_separated(spectral_info: SpectralInformation, srs: StimulatedRamanScattering,
alpha, beta2, beta3, f_ref_beta, gamma):
""" Computes the nonlinear interference power evaluated at the fiber input.
def _ggn_spectrally_separated(cut_indices, spectral_info, fiber, srs, spm_weight=SPM_WEIGHT, xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 21 from arXiv: 1710.02225
"""
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
slot_width = spectral_info.slot_width
roll_off = spectral_info.roll_off
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency[cut_indices]), ones(nch))
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
weight = weight[cut_indices, :]
dispersion_tolerance = sim_params.nli_params.dispersion_tolerance
phase_shift_tolerance = sim_params.nli_params.phase_shift_tolerance
slot_width = max(spectral_info.slot_width)
max_slot_width = max(slot_width)
delta_z = sim_params.raman_params.result_spatial_resolution
spm_weight = (16.0 / 27.0) * gamma ** 2
xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2
cuts = [carrier for carrier in spectral_info.carriers if carrier.channel_number
in sim_params.nli_params.computed_channels] if sim_params.nli_params.computed_channels \
else spectral_info.carriers
g_nli = array([])
f_nli = array([])
for cut_carrier in cuts:
logger.debug(f'Start computing fiber NLI noise of cut: {cut_carrier}')
f_eval = cut_carrier.frequency
g_nli_computed = 0
g_cut = (cut_carrier.power.signal / cut_carrier.baud_rate)
for j, pump_carrier in enumerate(spectral_info.carriers):
dn = abs(pump_carrier.channel_number - cut_carrier.channel_number)
delta_f = abs(cut_carrier.frequency - pump_carrier.frequency)
k_tol = dispersion_tolerance * abs(alpha[j])
psi_cut_central_frequency = zeros([cut_indices.size, nch])
for i, cut_index in enumerate(cut_indices):
logger.debug(f'Start computing fiber NLI noise of cut: {cut_index + 1}')
cut_frequency = frequency[cut_index]
cut_baud_rate = baud_rate[cut_index]
cut_roll_off = roll_off[cut_index]
cut_number = cut_index + 1
cut_beta2 = beta2[cut_index]
cut_base_frequency = frequency - cut_frequency
cut_beta_coefficients = polyfit(cut_base_frequency, beta2, 2)
cut_beta3 = cut_beta_coefficients[1] / (2 * pi)
for pump_index in range(nch):
pump_frequency = frequency[pump_index]
pump_baud_rate = baud_rate[pump_index]
pump_roll_off = roll_off[pump_index]
pump_number = pump_index + 1
pump_alpha = alpha[pump_index]
dn = abs(pump_number - cut_number)
delta_f = abs(cut_frequency - pump_frequency)
k_tol = dispersion_tolerance * abs(alpha[pump_index])
phi_tol = phase_shift_tolerance / delta_z
f_cut_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * (1 + dn) * slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * slot_width)
if dn == 0: # SPM
ggg = g_cut ** 3
g_nli_computed += \
spm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, f_pump_resolution,
srs, alpha[j], beta2, beta3, f_ref_beta)
f_cut_resolution = min(k_tol, phi_tol) / abs(cut_beta2) / (4 * pi ** 2 * (1 + dn) * max_slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(cut_beta2) / (4 * pi ** 2 * max_slot_width)
if cut_index == pump_index: # SPM
psi_cut_central_frequency[i, pump_index] = \
NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off, f_cut_resolution,
f_pump_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
else: # XPM
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
ggg = g_cut * g_pump ** 2
frequency_offset_threshold = NliSolver._frequency_offset_threshold(beta2, pump_carrier.baud_rate)
frequency_offset_threshold = NliSolver._frequency_offset_threshold(cut_beta2, pump_baud_rate)
if abs(delta_f) <= frequency_offset_threshold:
g_nli_computed += \
xpm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, f_pump_resolution,
srs, alpha[j], beta2, beta3, f_ref_beta)
psi_cut_central_frequency[i, pump_index] = \
NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off, f_cut_resolution,
f_pump_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
else:
g_nli_computed += \
xpm_weight * ggg * NliSolver._fast_generalized_psi(f_eval, cut_carrier, pump_carrier,
f_cut_resolution, srs, alpha[j], beta2,
beta3, f_ref_beta)
f_nli = append(f_nli, cut_carrier.frequency)
g_nli = append(g_nli, g_nli_computed)
g_nli = interp(spectral_info.frequency, f_nli, g_nli)
nli = spectral_info.baud_rate * g_nli # Local white noise
return nli
psi_cut_central_frequency[i, pump_index] = \
NliSolver._fast_generalized_psi(cut_frequency, cut_frequency, cut_baud_rate, cut_roll_off,
pump_frequency, pump_baud_rate, pump_roll_off,
f_cut_resolution, srs, pump_alpha, cut_beta2, cut_beta3,
cut_frequency)
cut_baud_rate = outer(baud_rate[cut_indices], ones(nch))
pump_baud_rate = outer(ones(cut_indices.size), baud_rate)
eta_cut_central_frequency = \
gamma ** 2 * weight * psi_cut_central_frequency / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _fast_generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, srs, alpha, beta2, beta3,
f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha/2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency)
f1_array = array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)])
f2_array = arange(cut_carrier.frequency,
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = zeros(len(f1_array))
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * pi ** 2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate
return generalized_psi
@staticmethod
def _generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, f_pump_resolution, srs, alpha, beta2,
beta3, f_ref_beta):
def _fast_generalized_psi(f_eval, cut_frequency, cut_baud_rate, cut_roll_off, pump_frequency, pump_baud_rate,
pump_roll_off, f_cut_resolution, srs, alpha, beta2, beta3, f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha / 2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency)
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_frequency)
f1_array = arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
f1_array = array([pump_frequency - (pump_baud_rate * (1 + pump_roll_off) / 2),
pump_frequency + (pump_baud_rate * (1 + pump_roll_off) / 2)])
f2_array = arange(cut_frequency, cut_frequency + (cut_baud_rate * (1 + cut_roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = zeros(f1_array.size)
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * pi ** 2 * (f1 - f_eval) * (f2_array - f_eval) * (
beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_baud_rate
return generalized_psi
@staticmethod
def _generalized_psi(f_eval, cut_frequency, cut_baud_rate, cut_roll_off, pump_frequency, pump_baud_rate,
pump_roll_off, f_cut_resolution, f_pump_resolution, srs, alpha, beta2, beta3, f_ref_beta):
"""Computes the generalized psi function similarly to the one used in the GN model."""
z = srs.z
rho_norm = srs.rho * exp(outer(alpha / 2, z))
rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_frequency)
f1_array = arange(pump_frequency - (pump_baud_rate * (1 + pump_roll_off) / 2),
pump_frequency + (pump_baud_rate * (1 + pump_roll_off) / 2),
f_pump_resolution)
f2_array = arange(cut_carrier.frequency - (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
f2_array = arange(cut_frequency - (cut_baud_rate * (1 + cut_roll_off) / 2),
cut_frequency + (cut_baud_rate * (1 + cut_roll_off) / 2),
f_cut_resolution)
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
rc1 = raised_cosine(f1_array, pump_frequency, pump_baud_rate, pump_roll_off)
integrand_f1 = zeros(len(f1_array))
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
f3_array = f1 + f2_array - f_eval
psd2 = raised_cosine_comb(f2_array, cut_carrier) * (cut_carrier.baud_rate / cut_carrier.power.signal)
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
ggg = psd1_sample * psd2 * psd3
delta_beta = 4 * pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = ggg * NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[f1_index] = trapz(integrand_f2, f2_array)
integrand_f1 = zeros(f1_array.size)
for i in range(f1_array.size):
f3_array = f1_array[i] + f2_array - f_eval
rc2 = raised_cosine(f2_array, cut_frequency, cut_baud_rate, cut_roll_off)
rc3 = raised_cosine(f3_array, pump_frequency, pump_baud_rate, pump_roll_off)
delta_beta = 4 * pi ** 2 * (f1_array[i] - f_eval) * (f2_array - f_eval) * (
beta2 + pi * beta3 * (f1_array[i] + f2_array - 2 * f_ref_beta))
integrand_f2 = rc1[i] * rc2 * rc3 * NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha)
integrand_f1[i] = trapz(integrand_f2, f2_array)
generalized_psi = trapz(integrand_f1, f1_array)
return generalized_psi
@@ -475,6 +605,89 @@ class NliSolver:
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (beta2 * symbol_rate)
return freq_offset_th
@staticmethod
def _ggn_approx(cut_indices, spectral_info: SpectralInformation, fiber, srs, spm_weight=SPM_WEIGHT,
xpm_weight=XPM_WEIGHT):
"""Computes the nonlinear interference power evaluated at the fiber input.
The method uses eq. 24-25 of https://ieeexplore.ieee.org/document/9741324
"""
# Spectral Features
nch = spectral_info.number_of_channels
frequency = spectral_info.frequency
baud_rate = spectral_info.baud_rate
slot_width = spectral_info.slot_width
roll_off = spectral_info.roll_off
df = spectral_info.df + diag(full(nch, nan))
# Physical fiber parameters
alpha = fiber.alpha(frequency)
beta2 = fiber.beta2(frequency)
gamma = outer(fiber.gamma(frequency[cut_indices]), ones(nch))
identity = diag(ones(nch))
weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity)
weight = weight[cut_indices, :]
dispersion_tolerance = sim_params.nli_params.dispersion_tolerance
phase_shift_tolerance = sim_params.nli_params.phase_shift_tolerance
max_slot_width = max(slot_width)
max_beta2 = max(abs(beta2))
delta_z = sim_params.raman_params.result_spatial_resolution
# Approximation psi
loss_profile = srs.loss_profile[:nch]
z = srs.z
psi = NliSolver._approx_psi(df=df, frequency=frequency, beta2=beta2, baud_rate=baud_rate,
loss_profile=loss_profile, z=z)
# GGN for SPM
for cut_index in cut_indices:
dn = 0
cut_frequency = frequency[cut_index]
cut_baud_rate = baud_rate[cut_index]
cut_roll_off = roll_off[cut_index]
cut_beta2 = beta2[cut_index]
cut_alpha = alpha[cut_index]
k_tol = dispersion_tolerance * abs(cut_alpha)
phi_tol = phase_shift_tolerance / delta_z
f_cut_resolution = min(k_tol, phi_tol) / abs(max_beta2) / (4 * pi ** 2 * (1 + dn) * max_slot_width)
f_pump_resolution = min(k_tol, phi_tol) / abs(max_beta2) / (4 * pi ** 2 * max_slot_width)
psi[cut_index, cut_index] = NliSolver._generalized_psi(cut_frequency, cut_frequency, cut_baud_rate,
cut_roll_off, cut_frequency, cut_baud_rate,
cut_roll_off, f_cut_resolution, f_pump_resolution,
srs, cut_alpha, cut_beta2, 0, cut_frequency)
psi = psi[cut_indices, :]
cut_baud_rate = outer(baud_rate[cut_indices], ones(nch))
pump_baud_rate = outer(ones(cut_indices.size), baud_rate)
eta_cut_central_frequency = \
gamma ** 2 * weight * psi / (cut_baud_rate * pump_baud_rate ** 2)
eta = cut_baud_rate * eta_cut_central_frequency # Local white noise
return eta
@staticmethod
def _approx_psi(df, frequency, baud_rate, beta2, loss_profile, z):
"""Computes the approximated psi function similarly to the one used in the GN model.
The method uses eq. 25 of https://ieeexplore.ieee.org/document/9741324"""
pump_baud_rate = outer(ones(frequency.size), baud_rate)
cut_beta = outer(beta2, ones(frequency.size))
pump_beta = outer(ones(frequency.size), beta2)
delta_z = abs(z[:-1] - z[1:])
loss_lin = log(loss_profile)
pump_alpha = (loss_lin[:, 1:] - loss_lin[:, :-1]) / delta_z
leff = abs((loss_profile[:, 1:] - loss_profile[:, :-1]) / sqrt(abs(pump_alpha))) * pump_alpha / abs(pump_alpha)
leff = reshape(outer(leff, ones(z.size - 1)), newshape=[leff.shape[0], leff.shape[1], leff.shape[1]])
leff2 = leff * swapaxes(leff, 2, 1)
leff2 = sum(leff2, axis=(1, 2))
z_int = outer(ones(frequency.size), leff2)
delta_beta = (cut_beta + pump_beta) / 2
psi = z_int * pump_baud_rate / (4 * pi * abs(delta_beta * df))
return psi
def estimate_nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
if nf_min < -10:

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.utils: utility functions that are used with gnpy
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.utils
===============
@@ -9,8 +14,10 @@ This module contains utility functions that are used with gnpy.
"""
from csv import writer
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and, mean, array
from scipy import constants
from copy import deepcopy
from typing import List, Union, Dict
from gnpy.core.exceptions import ConfigurationError
@@ -106,6 +113,69 @@ def db2lin(value):
return 10**(value / 10)
def watt2dbm(value):
"""Convert Watt units to dBm
>>> round(watt2dbm(0.001), 1)
0.0
>>> round(watt2dbm(0.02), 1)
13.0
"""
return lin2db(value * 1e3)
def dbm2watt(value):
"""Convert dBm units to Watt
>>> round(dbm2watt(0), 4)
0.001
>>> round(dbm2watt(-3), 4)
0.0005
>>> round(dbm2watt(13), 4)
0.02
"""
return db2lin(value) * 1e-3
def psd2powerdbm(psd_mwperghz, baudrate_baud):
"""computes power in dBm based on baudrate in bauds and psd in mW/GHz
>>> round(psd2powerdbm(0.031176, 64e9),3)
3.0
>>> round(psd2powerdbm(0.062352, 32e9),3)
3.0
>>> round(psd2powerdbm(0.015625, 64e9),3)
0.0
"""
return lin2db(baudrate_baud * psd_mwperghz * 1e-9)
def power_dbm_to_psd_mw_ghz(power_dbm, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in dBm
>>> power_dbm_to_psd_mw_ghz(0, 64e9)
0.015625
>>> round(power_dbm_to_psd_mw_ghz(3, 64e9), 6)
0.031176
>>> round(power_dbm_to_psd_mw_ghz(3, 32e9), 6)
0.062352
"""
return db2lin(power_dbm) / (baudrate_baud * 1e-9)
def psd_mw_per_ghz(power_watt, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in W
>>> psd_mw_per_ghz(2e-3, 32e9)
0.0625
>>> psd_mw_per_ghz(1e-3, 64e9)
0.015625
>>> psd_mw_per_ghz(0.5e-3, 32e9)
0.015625
"""
return power_watt * 1e3 / (baudrate_baud * 1e-9)
def round2float(number, step):
"""Round a floating point number so that its "resolution" is not bigger than 'step'
@@ -149,25 +219,39 @@ wavelength2freq = constants.lambda2nu
freq2wavelength = constants.nu2lambda
def freq2wavelength(value):
""" Converts frequency units to wavelength units.
>>> round(freq2wavelength(191.35e12) * 1e9, 3)
1566.723
>>> round(freq2wavelength(196.1e12) * 1e9, 3)
1528.773
"""
return constants.c / value
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
snr_added = snr_added - lin2db(bw / bw_added)
snr = -lin2db(db2lin(-snr) + db2lin(-snr_added))
return snr
def per_label_average(values, labels):
"""computes the average per defined spectrum band, using labels
>>> labels = ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'D', 'D', 'D', 'D']
>>> values = [28.51, 28.23, 28.15, 28.17, 28.36, 28.53, 28.64, 28.68, 28.7, 28.71, 28.72, 28.73, 28.74, 28.91, 27.96, 27.85, 27.87, 28.02]
>>> per_label_average(values, labels)
{'A': 28.28, 'B': 28.68, 'C': 28.91, 'D': 27.92}
"""
label_set = sorted(set(labels))
summary = {}
for label in label_set:
vals = [val for val, lab in zip(values, labels) if lab == label]
summary[label] = round(mean(vals), 2)
return summary
def pretty_summary_print(summary):
"""Build a prettty string that shows the summary dict values per label with 2 digits"""
if len(summary) == 1:
return f'{list(summary.values())[0]:.2f}'
text = ', '.join([f'{label}: {value:.2f}' for label, value in summary.items()])
return text
def deltawl2deltaf(delta_wl, wavelength):
""" deltawl2deltaf(delta_wl, wavelength):
"""deltawl2deltaf(delta_wl, wavelength):
delta_wl is BW in wavelength units
wavelength is the center wl
units for delta_wl and wavelength must be same
@@ -185,9 +269,9 @@ def deltawl2deltaf(delta_wl, wavelength):
def deltaf2deltawl(delta_f, frequency):
""" deltawl2deltaf(delta_f, frequency):
converts delta frequency to delta wavelength
units for delta_wl and wavelength must be same
"""convert delta frequency to delta wavelength
Units for delta_wl and wavelength must be same.
:param delta_f: delta frequency in same units as frequency
:param frequency: frequency BW is relevant for
@@ -202,8 +286,7 @@ def deltaf2deltawl(delta_f, frequency):
def rrc(ffs, baud_rate, alpha):
""" rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
function.
"""compute the root-raised cosine filter function
:param ffs: A numpy array of frequencies
:param baud_rate: The Baud Rate of the System
@@ -229,7 +312,7 @@ def rrc(ffs, baud_rate, alpha):
def merge_amplifier_restrictions(dict1, dict2):
"""Updates contents of dicts recursively
"""Update contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
@@ -251,6 +334,35 @@ def merge_amplifier_restrictions(dict1, dict2):
return copy_dict1
def use_pmd_coef(dict1: dict, dict2: dict):
"""If Fiber dict1 is missing the pmd_coef value then use the one of dict2.
In addition records in "pmd_coef_defined" key the pmd_coef if is was defined in dict1.
:param dict1: A dictionnary that contains "pmd_coef" key.
:type dict1: dict
:param dict2: Another dictionnary that contains "pmd_coef" key.
:type dict2: dict
>>> dict1 = {'a': 1, 'pmd_coef': 1.5e-15}
>>> dict2 = {'a': 2, 'pmd_coef': 2e-15}
>>> use_pmd_coef(dict1, dict2)
>>> dict1
{'a': 1, 'pmd_coef': 1.5e-15, 'pmd_coef_defined': True}
>>> dict1 = {'a': 1}
>>> use_pmd_coef(dict1, dict2)
>>> dict1
{'a': 1, 'pmd_coef_defined': False, 'pmd_coef': 2e-15}
"""
if 'pmd_coef' in dict1 and not dict1['pmd_coef'] \
or ('pmd_coef' not in dict1 and 'pmd_coef' in dict2):
dict1['pmd_coef_defined'] = False
dict1['pmd_coef'] = dict2['pmd_coef']
elif 'pmd_coef' in dict1 and dict1['pmd_coef']:
dict1['pmd_coef_defined'] = True
# all other case do not need any change
def silent_remove(this_list, elem):
"""Remove matching elements from a list without raising ValueError
@@ -324,3 +436,390 @@ def convert_length(value, units):
return value * 1e3
else:
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
def replace_none(dictionary):
""" Replaces None with inf values in a frequency slots dict
>>> replace_none({'N': 3, 'M': None})
{'N': 3, 'M': inf}
"""
for key, val in dictionary.items():
if val is None:
dictionary[key] = float('inf')
if val == float('inf'):
dictionary[key] = None
return dictionary
def order_slots(slots):
""" Order frequency slots from larger slots to smaller ones up to None
>>> l = [{'N': 3, 'M': None}, {'N': 2, 'M': 1}, {'N': None, 'M': None},{'N': 7, 'M': 2},{'N': None, 'M': 1} , {'N': None, 'M': 0}]
>>> order_slots(l)
([7, 2, None, None, 3, None], [2, 1, 1, 0, None, None], [3, 1, 4, 5, 0, 2])
"""
slots_list = deepcopy(slots)
slots_list = [replace_none(e) for e in slots_list]
for i, e in enumerate(slots_list):
e['i'] = i
slots_list = sorted(slots_list, key=lambda x: (-x['M'], x['N']) if x['M'] != float('inf') else (x['M'], x['N']))
slots_list = [replace_none(e) for e in slots_list]
return [e['N'] for e in slots_list], [e['M'] for e in slots_list], [e['i'] for e in slots_list]
def restore_order(elements, order):
""" Use order to re-order the element of the list, and ignore None values
>>> restore_order([7, 2, None, None, 3, None], [3, 1, 4, 5, 0, 2])
[3, 2, 7]
"""
return [elements[i[0]] for i in sorted(enumerate(order), key=lambda x:x[1]) if elements[i[0]] is not None]
def unique_ordered(elements):
"""
"""
unique_elements = []
for element in elements:
if element not in unique_elements:
unique_elements.append(element)
return unique_elements
def convert_empty_to_none(json_data: Union[list, dict]) -> dict:
"""Convert all instances of "a": [None] into "a": None
:param json_data: the input data.
:type json_data: dict
:return: the converted data.
:rtype: dict
>>> json_data = {
... "uid": "[east edfa in Lannion",
... "type_variety": "multiband_booster",
... "metadata": {
... "location": {
... "latitude": 0.000000,
... "longitude": 0.000000,
... "city": "Zion",
... "region": ""
... }
... },
... "type": "Multiband_amplifier",
... "amplifiers": [{
... "type_variety": "multiband_booster_LOW_C",
... "operational": {
... "gain_target": 12.22,
... "delta_p": 4.19,
... "out_voa": [None],
... "tilt_target": 0.00,
... "f_min": 191.3,
... "f_max": 196.1
... }
... }, {
... "type_variety": "multiband_booster_LOW_L",
... "operational": {
... "gain_target": 12.05,
... "delta_p": 4.19,
... "out_voa": [None],
... "tilt_target": 0.00,
... "f_min": 186.1,
... "f_max": 190.9
... }
... }
... ]
... }
>>> convert_empty_to_none(json_data)
{'uid': '[east edfa in Lannion', 'type_variety': 'multiband_booster', \
'metadata': {'location': {'latitude': 0.0, 'longitude': 0.0, 'city': 'Zion', 'region': ''}}, \
'type': 'Multiband_amplifier', 'amplifiers': [{'type_variety': 'multiband_booster_LOW_C', \
'operational': {'gain_target': 12.22, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0, \
'f_min': 191.3, 'f_max': 196.1}}, {'type_variety': 'multiband_booster_LOW_L', \
'operational': {'gain_target': 12.05, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0, \
'f_min': 186.1, 'f_max': 190.9}}]}
"""
if isinstance(json_data, dict):
for key, value in json_data.items():
json_data[key] = convert_empty_to_none(value)
elif isinstance(json_data, list):
if len(json_data) == 1 and json_data[0] is None:
return None
for i, elem in enumerate(json_data):
json_data[i] = convert_empty_to_none(elem)
return json_data
def convert_none_to_empty(json_data: Union[list, dict]) -> dict:
"""Convert all instances of "a": None into "a": [None], to be compliant with RFC7951.
:param json_data: the input data.
:type json_data: dict
:return: the converted data.
:rtype: dict
>>> a = {'uid': '[east edfa in Lannion', 'type_variety': 'multiband_booster',
... 'metadata': {'location': {'latitude': 0.0, 'longitude': 0.0, 'city': 'Zion', 'region': ''}},
... 'type': 'Multiband_amplifier', 'amplifiers': [{'type_variety': 'multiband_booster_LOW_C',
... 'operational': {'gain_target': 12.22, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0,
... 'f_min': 191.3, 'f_max': 196.1}}, {'type_variety': 'multiband_booster_LOW_L',
... 'operational': {'gain_target': 12.05, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0,
... 'f_min': 186.1, 'f_max': 190.9}}]}
>>> convert_none_to_empty(a)
{'uid': '[east edfa in Lannion', 'type_variety': 'multiband_booster', \
'metadata': {'location': {'latitude': 0.0, 'longitude': 0.0, 'city': 'Zion', 'region': ''}}, \
'type': 'Multiband_amplifier', 'amplifiers': [{'type_variety': 'multiband_booster_LOW_C', \
'operational': {'gain_target': 12.22, 'delta_p': 4.19, 'out_voa': [None], 'tilt_target': 0.0, \
'f_min': 191.3, 'f_max': 196.1}}, {'type_variety': 'multiband_booster_LOW_L', \
'operational': {'gain_target': 12.05, 'delta_p': 4.19, 'out_voa': [None], 'tilt_target': 0.0, \
'f_min': 186.1, 'f_max': 190.9}}]}
"""
if json_data == [None]:
# already conformed
return json_data
if isinstance(json_data, dict):
for key, value in json_data.items():
json_data[key] = convert_none_to_empty(value)
elif isinstance(json_data, list):
for i, elem in enumerate(json_data):
json_data[i] = convert_none_to_empty(elem)
elif json_data is None:
return [None]
return json_data
def calculate_absolute_min_or_zero(x: array) -> array:
"""Calculates the element-wise absolute minimum between the x and zero.
Parameters:
x (array): The first input array.
Returns:
array: The element-wise absolute minimum between x and zero.
Example:
>>> x = array([-1, 2, -3])
>>> calculate_absolute_min_or_zero(x)
array([1., 0., 3.])
"""
return (abs(x) - x) / 2
def nice_column_str(data: List[List[str]], max_length: int = 30, padding: int = 1) -> str:
"""data is a list of rows, creates strings with nice alignment per colum and padding with spaces
letf justified
>>> table_data = [['aaa', 'b', 'c'], ['aaaaaaaa', 'bbb', 'c'], ['a', 'bbbbbbbbbb', 'c']]
>>> print(nice_column_str(table_data))
aaa b c
aaaaaaaa bbb c
a bbbbbbbbbb c
"""
# transpose data to determine size of columns
transposed_data = list(map(list, zip(*data)))
column_width = [max(len(word) for word in column) + padding for column in transposed_data]
nice_str = []
for row in data:
column = ''.join(word[0:max_length].ljust(min(width, max_length)) for width, word in zip(column_width, row))
nice_str.append(f'{column}')
return '\n'.join(nice_str)
def filter_valid_amp_bands(amp_bands: List[List[dict]]) -> List[List[dict]]:
"""Filter out invalid amplifier bands that lack f_min or f_max.
:param amp_bands: A list of lists containing amplifier band dictionaries.
:type amp_bands: List[List[dict]]
:return: A filtered list of amplifier bands that contain valid f_min and f_max.
:rtype: List[List[dict]]
"""
return [amp for amp in amp_bands if all(band.get('f_min') is not None and band.get('f_max') is not None
for band in amp)]
def remove_duplicates(amp_bands: List[List[dict]]) -> List[List[dict]]:
"""Remove duplicate amplifier bands.
:param amp_bands: A list of lists containing amplifier band dictionaries.
:type amp_bands: List[List[dict]]
:return: A list of unique amplifier bands.
:rtype: List[List[dict]]
"""
unique_amp_bands = []
for amp in amp_bands:
if amp not in unique_amp_bands:
unique_amp_bands.append(amp)
return unique_amp_bands
def calculate_spacing(first: dict, second: dict, default_spacing: float, default_design_bands: Union[List[Dict], None],
f_min: float, f_max: float) -> float:
"""Calculate the spacing for the given frequency range.
:param first: The first amplifier band dictionary.
:type first: dict
:param second: The second amplifier band dictionary.
:type second: dict
:param default_spacing: The default spacing to use if no specific spacing can be determined.
:type default_spacing: float
:param default_design_bands: Optional list of design bands to determine spacing from.
:type default_design_bands: Union[List[Dict], None]
:param f_min: The minimum frequency of the range.
:type f_min: float
:param f_max: The maximum frequency of the range.
:type f_max: float
:return: The calculated spacing for the given frequency range.
:rtype: float
"""
if first.get('spacing') is not None and second.get('spacing') is not None:
return max(first['spacing'], second['spacing'])
elif first.get('spacing') is not None:
return first['spacing']
elif second.get('spacing') is not None:
return second['spacing']
elif default_design_bands:
temp = get_spacing_from_band(default_design_bands, f_min, f_max)
return temp if temp is not None else default_spacing
return default_spacing
def find_common_range(amp_bands: List[List[dict]], default_band_f_min: Union[float, None],
default_band_f_max: Union[float, None], default_spacing: float,
default_design_bands: Union[List[Dict], None] = None) -> List[dict]:
"""
Find the common frequency range of amplifier bands.
If there are no amplifiers in the path, then use the default band parameters.
:param amp_bands: A list of lists containing amplifier band dictionaries, each with 'f_min', 'f_max',
and optionally 'spacing'.
:type amp_bands: List[List[dict]]
:param default_band_f_min: The minimum frequency of the default band.
:type default_band_f_min: Union[float, None]
:param default_band_f_max: The maximum frequency of the default band.
:type default_band_f_max: Union[float, None]
:param default_spacing: The default spacing to use if no specific spacing can be determined.
:type default_spacing: float
:param default_design_bands: Optional list of design bands to determine spacing from.
:type default_design_bands: Union[List[Dict], None]
:return: A list of dictionaries representing the common frequency ranges with their respective spacings.
:rtype: List[dict]
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12, 'spacing': 70e9}, {'f_min': 186e12, 'f_max' : 190e12}], \
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
[{'f_min': 186e12, 'f_max': 193e12}]]
>>> find_common_range(amp_bands, 190e12, 195e12, 50e9)
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0, 'spacing': 50000000000.0}, \
{'f_min': 192000000000000.0, 'f_max': 193000000000000.0, 'spacing': 70000000000.0}]
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12}], \
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
[{'f_min': 186e12, 'f_max': 192e12}]]
>>> find_common_range(amp_bands, 190e12, 195e12, 50e9)
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0, 'spacing': 50000000000.0}]
"""
# Step 1: Filter and sort amplifier bands
_amp_bands = [sorted(amp, key=lambda x: x['f_min']) for amp in filter_valid_amp_bands(amp_bands)]
unique_amp_bands = remove_duplicates(_amp_bands)
# Step 2: Handle cases with no valid bands
if unique_amp_bands:
common_range = unique_amp_bands[0]
else:
if default_band_f_min is None or default_band_f_max is None:
return []
return [{'f_min': default_band_f_min, 'f_max': default_band_f_max, 'spacing': None}]
# Step 3: Calculate common frequency range
for bands in unique_amp_bands:
new_common_range = []
for first in common_range:
for second in bands:
f_min = max(first['f_min'], second['f_min'])
f_max = min(first['f_max'], second['f_max'])
if f_min < f_max:
spacing = calculate_spacing(first, second, default_spacing, default_design_bands, f_min, f_max)
new_common_range.append({'f_min': f_min, 'f_max': f_max, 'spacing': spacing})
common_range = new_common_range
return sorted(common_range, key=lambda x: x['f_min'])
def transform_data(data: str) -> Union[List[int], None]:
"""Transforms a float into an list of one integer or a string separated by "|" into a list of integers.
Args:
data (float or str): The data to transform.
Returns:
list of int: The transformed data as a list of integers.
Examples:
>>> transform_data(5.0)
[5]
>>> transform_data('1 | 2 | 3')
[1, 2, 3]
"""
if isinstance(data, float):
return [int(data)]
if isinstance(data, str):
return [int(x) for x in data.split(' | ')]
return None
def convert_pmd_lineic(pmd: Union[float, None], length: float, length_unit: str) -> Union[float, None]:
"""Convert PMD value of the span in ps into pmd_lineic in s/sqrt(km)
:param pmd: value in ps
:type pmd: Union[float, None]
:param length: value in length_unit
:type length: float
:param length_unit: 'km' or 'm'
:type length_unit: str
:return: lineic PMD s/sqrt(m)
:rtype: Union[float, None]
>>> convert_pmd_lineic(10, 0.001, 'km')
1e-11
"""
if pmd:
return pmd * 1e-12 / sqrt(convert_length(length, length_unit))
return None
def get_spacing_from_band(design_bands: List[Dict], f_min, f_max):
"""Retrieve the spacing for a frequency range based on design bands.
This function checks if the midpoint of the provided frequency range (f_min, f_max)
falls within any of the design bands. If it does, the corresponding spacing is returned.
:param design_bands: A list of design band dictionaries, each containing 'f_min', 'f_max', and 'spacing'.
:type design_bands: List[Dict]
:param f_min: The minimum frequency of the range.
:type f_min: float
:param f_max: The maximum frequency of the range.
:type f_max: float
:return: The spacing corresponding to the design band that contains the midpoint of the range,
or None if no such band exists.
:rtype: Union[float, None]
"""
midpoint = (f_min + f_max) / 2
for band in design_bands:
if midpoint >= band['f_min'] and midpoint <= band['f_max']:
return band['spacing']
return None
def reorder_per_degree_design_bands(per_degree_design_bands: dict):
"""Sort the design bands for each degree by their minimum frequency (f_min).
This function modifies the input dictionary in place, sorting the design bands for each unique identifier.
:param per_degree_design_bands: A dictionary where keys are unique identifiers and values are lists of design band dictionaries.
:type per_degree_design_bands: Dict[str, List[Dict]]
"""
for uid, design_bands in per_degree_design_bands.items():
per_degree_design_bands[uid] = sorted(design_bands, key=lambda x: x['f_min'])

View File

@@ -1,160 +1,160 @@
{
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.4e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
-0.15656302345061,
-0.22244242043552,
-0.25188965661642,
-0.23575900335007,
-0.20897508375209,
-0.19440221943049,
-0.18324644053602,
-0.18053287269681,
-0.17113588777219,
-0.15460322445561,
-0.13550774706866,
-0.10606051088777,
-0.0765630234506,
-0.04962835008375,
-0.01319618927973,
0.01027114740367,
0.03378873534338,
0.04961788107202,
0.04494451423784,
0.0399193886097,
0.01584903685091,
-0.00420121440538,
-0.01847257118928,
-0.02475397822447,
-0.01053287269681,
0.01509526800668,
0.05921587102177,
0.1191656197655,
0.18147717755444,
0.23579878559464,
0.26941687604691,
0.27836159966498,
0.26956762981574,
0.23826109715241,
0.18936662479061,
0.1204721524288,
0.0453465242881,
-0.00877407872698,
-0.02199015912898,
0.00107516750419,
0.02795958961474,
0.02740682579566,
-0.01028161641541,
-0.05982935510889,
-0.06701528475711,
0.00223094639866,
0.14157768006701,
0.15017064489112
],
"dgt": [
1.0,
1.03941448941778,
1.07773189112355,
1.11575888725852,
1.15209185089701,
1.18632744096844,
1.21911100318577,
1.24931318255134,
1.27657903892303,
1.30069883494415,
1.32210817897091,
1.3405812000038,
1.35690844654118,
1.3710092503689,
1.38430337205545,
1.3966294751726,
1.40864903907609,
1.42089447397912,
1.43476940680732,
1.44977369463316,
1.46637521309853,
1.48420288841848,
1.50335352244996,
1.5242627235492,
1.54578500307573,
1.56750088631614,
1.58973304612691,
1.61073904908309,
1.63068023161292,
1.64799163036252,
1.66286684904577,
1.6761448370895,
1.68845480656382,
1.70379790088896,
1.72461030013125,
1.75428006928365,
1.79748596476494,
1.85543800978691,
1.92915262384742,
2.01414465424155,
2.10336369905543,
2.19013043016015,
2.26678136721453,
2.33147727493671,
2.38192717604575,
2.41879254989742,
2.44342862248888,
2.4553191172498
]
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.4e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
-0.15656302345061,
-0.22244242043552,
-0.25188965661642,
-0.23575900335007,
-0.20897508375209,
-0.19440221943049,
-0.18324644053602,
-0.18053287269681,
-0.17113588777219,
-0.15460322445561,
-0.13550774706866,
-0.10606051088777,
-0.0765630234506,
-0.04962835008375,
-0.01319618927973,
0.01027114740367,
0.03378873534338,
0.04961788107202,
0.04494451423784,
0.0399193886097,
0.01584903685091,
-0.00420121440538,
-0.01847257118928,
-0.02475397822447,
-0.01053287269681,
0.01509526800668,
0.05921587102177,
0.1191656197655,
0.18147717755444,
0.23579878559464,
0.26941687604691,
0.27836159966498,
0.26956762981574,
0.23826109715241,
0.18936662479061,
0.1204721524288,
0.0453465242881,
-0.00877407872698,
-0.02199015912898,
0.00107516750419,
0.02795958961474,
0.02740682579566,
-0.01028161641541,
-0.05982935510889,
-0.06701528475711,
0.00223094639866,
0.14157768006701,
0.15017064489112
],
"dgt": [
1.0,
1.03941448941778,
1.07773189112355,
1.11575888725852,
1.15209185089701,
1.18632744096844,
1.21911100318577,
1.24931318255134,
1.27657903892303,
1.30069883494415,
1.32210817897091,
1.3405812000038,
1.35690844654118,
1.3710092503689,
1.38430337205545,
1.3966294751726,
1.40864903907609,
1.42089447397912,
1.43476940680732,
1.44977369463316,
1.46637521309853,
1.48420288841848,
1.50335352244996,
1.5242627235492,
1.54578500307573,
1.56750088631614,
1.58973304612691,
1.61073904908309,
1.63068023161292,
1.64799163036252,
1.66286684904577,
1.6761448370895,
1.68845480656382,
1.70379790088896,
1.72461030013125,
1.75428006928365,
1.79748596476494,
1.85543800978691,
1.92915262384742,
2.01414465424155,
2.10336369905543,
2.19013043016015,
2.26678136721453,
2.33147727493671,
2.38192717604575,
2.41879254989742,
2.44342862248888,
2.4553191172498
]
}

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# Utility functions that creates an Eqpt sheet template
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
create_eqpt_sheet.py
====================

View File

@@ -1,106 +0,0 @@
{
"nf_ripple": [
0.0
],
"gain_ripple": [
0.0
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
]
}

View File

@@ -1,80 +1,81 @@
{
"network_name": "EDFA Example Network - P2P",
"elements": [{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 17,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 2,
"longitude": 0
}
}
"network_name": "EDFA Example Network - P2P",
"elements": [
{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site A",
"region": "",
"latitude": 0,
"longitude": 0
}
],
"connections": [{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
},
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5,
"pmd_coef": 3.0e-15
},
"metadata": {
"location": {
"region": "",
"latitude": 1,
"longitude": 0
}
]
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 17,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 2,
"longitude": 0
}
}
}
],
"connections": [
{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
]
}

View File

@@ -1,5 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# update an existing json file with all the 96ch txt files for a given amplifier type
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
Created on Tue Jan 30 12:32:00 2018

View File

@@ -1,323 +1,444 @@
{ "Edfa":[{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}, {
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,27.99],
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
{
"Edfa": [
{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"RamanFiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [-2,3,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
27.99
],
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}],
"Transceiver":[
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
-2,
3,
0.5
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
},
{
"type_variety": "roadm_type_1",
"target_pch_out_db": -18,
"add_drop_osnr": 35,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": []
},
{
"type_variety": "detailed_impairments",
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
},
"roadm-path-impairments": [
{
"roadm-path-impairments-id": 0,
"roadm-express-path": [
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
},
{
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 16.5
}
]
},
{
"roadm-path-impairments-id": 1,
"roadm-add-path": [
{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-pmax": 2.5,
"roadm-osnr": 41,
"roadm-noise-figure": 23
}
]
},
{
"roadm-path-impairments-id": 2,
"roadm-drop-path": [
{
"frequency-range": {
"lower-frequency": 191.3e12,
"upper-frequency": 196.1e12
},
"roadm-pmd": 0,
"roadm-cd": 0,
"roadm-pdl": 0,
"roadm-inband-crosstalk": 0,
"roadm-maxloss": 11.5,
"roadm-minloss": 7.5,
"roadm-typloss": 10,
"roadm-pmin": -13.5,
"roadm-pmax": -9.5,
"roadm-ptyp": -12,
"roadm-osnr": 41,
"roadm-noise-figure": 15
}
]
}
]
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max": 195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [
0,
0,
1
],
"tx_power_dbm": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2,
"use_si_channel_count_for_design": true
}
],
"Transceiver": [
{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,479 @@
{
"Edfa": [
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_reduced",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_C",
"f_min": 191.225e12,
"f_max": 196.125e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_L",
"f_min": 186.5e12,
"f_max": 190.1e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_reduced_band",
"f_min": 192.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_bis",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L_ter",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 16,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_L_reduced_band",
"f_min": 187.3e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
},
{
"type_variety": "std_booster_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
},
{
"type_variety": "std_booster_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_booster",
"std_booster_L"
],
"allowed_for_design": false
},
{
"type_variety": "std_medium_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_medium_gain_C",
"std_medium_gain_L"
],
"allowed_for_design": false
},
{
"type_variety": "std_low_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain",
"std_low_gain_L"
],
"allowed_for_design": false
},
{
"type_variety": "std_low_gain_multiband_ter",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain",
"std_low_gain_L_ter"
],
"allowed_for_design": false
},
{
"type_variety": "std_low_gain_multiband_bis",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_bis",
"std_low_gain_L"
],
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_multiband_reduced",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_reduced",
"std_low_gain_L"
],
"allowed_for_design": true
},
{
"type_variety": "std_low_gain_multiband_reduced_bis",
"type_def": "multi_band",
"amplifiers": [
"std_low_gain_bis",
"std_low_gain_L_reduced_band"
],
"allowed_for_design": true
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
-2,
3,
0.5
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"pmd": 0,
"pdl": 0,
"restrictions": {
"preamp_variety_list": [],
"booster_variety_list": []
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max": 195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
},
{
"type_variety": "lband",
"f_min": 186.3e12,
"baud_rate": 32e9,
"f_max": 190.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "vendorA_trx-type1",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
},
{
"type_variety": "Voyager",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost": 1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost": 1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost": 1
}
]
}
]
}

View File

@@ -1,349 +1,371 @@
{
"Edfa": [
"Edfa": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
0,
0,
0
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 30,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": [
"openroadm_mw_mw_preamp"
],
"booster_variety_list": [
"openroadm_mw_mw_booster"
]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 4.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4, -6.221e-2, -5.889e-1, 37.62],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp",
"type_def": "openroadm_preamp",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [0, 0, 0],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 30,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": ["openroadm_mw_mw_preamp"],
"booster_variety_list": ["openroadm_mw_mw_booster"]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 4.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
"mode": [
{
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 35,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 40e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 35,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 40e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
]
}
]
}

View File

@@ -1,409 +1,441 @@
{
"Edfa": [
"Edfa": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-8.104e-4,
-6.221e-2,
-5.889e-1,
37.62
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
28.99
],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [
-5.952e-4,
-6.250e-2,
-1.071,
27.99
],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [
0,
0,
0
],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 33,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": [
"openroadm_mw_mw_preamp_worstcase_ver5"
],
"booster_variety_list": [
"openroadm_mw_mw_booster"
]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [
0,
0,
1
],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 5.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
},
"mode": [
{
"type_variety": "openroadm_ila_low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-8.104e-4, -6.221e-2, -5.889e-1, 37.62],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_ila_standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
"pmd": 3e-12,
"pdl": 0.7,
"allowed_for_design": true
},
{
"type_variety": "openroadm_mw_mw_preamp_typical_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 28.99],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_preamp_worstcase_ver5",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 0,
"p_max": 22,
"nf_coef": [-5.952e-4, -6.250e-2, -1.071, 27.99],
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
},
{
"type_variety": "openroadm_mw_mw_booster",
"type_def": "openroadm_booster",
"gain_flatmax": 32,
"gain_min": 0,
"p_max": 22,
"pmd": 0,
"pdl": 0,
"allowed_for_design": false
}
],
"Fiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"effective_area": 72e-12,
"pmd_coef": 1.265e-15
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"effective_area": 125e-12,
"pmd_coef": 1.265e-15
}
],
"RamanFiber": [
{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"effective_area": 83e-12,
"pmd_coef": 1.265e-15
}
],
"Span": [
{
"power_mode": true,
"delta_power_range_db": [0, 0, 0],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 0,
"max_length": 135,
"length_units": "km",
"max_loss": 28,
"padding": 11,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm": [
{
"target_pch_out_db": -20,
"add_drop_osnr": 33,
"pmd": 3e-12,
"pdl": 1.5,
"restrictions": {
"preamp_variety_list": ["openroadm_mw_mw_preamp_worstcase_ver5"],
"booster_variety_list": ["openroadm_mw_mw_booster"]
}
}
],
"SI": [
{
"f_min": 191.3e12,
"baud_rate": 31.57e9,
"f_max": 196.1e12,
"spacing": 50e9,
"power_dbm": 2,
"power_range_db": [0, 0, 1],
"roll_off": 0.15,
"tx_osnr": 35,
"sys_margins": 2
}
],
"Transceiver": [
{
"type_variety": "OpenROADM MSA ver. 5.0",
"frequency": {
"min": 191.35e12,
"max": 196.1e12
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
"mode": [
{
"format": "100 Gbit/s, 27.95 Gbaud, DP-QPSK",
"baud_rate": 27.95e9,
"OSNR": 17,
"bit_rate": 100e9,
"roll_off": null,
"tx_osnr": 33,
"penalties": [
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 48e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
"baud_rate": 31.57e9,
"OSNR": 20.5,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "100 Gbit/s, 31.57 Gbaud, DP-QPSK",
"baud_rate": 31.57e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 48e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, 31.57 Gbaud, DP-16QAM",
"baud_rate": 31.57e9,
"OSNR": 20.5,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 30,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
},
{
"pdl": 6,
"penalty_value": 4
}
],
"min_spacing": 50e9,
"cost": 1
},
{
"format": "200 Gbit/s, DP-QPSK",
"baud_rate": 63.1e9,
"OSNR": 17,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 24e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "300 Gbit/s, DP-8QAM",
"baud_rate": 63.1e9,
"OSNR": 21,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 18e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 25,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
},
{
"format": "400 Gbit/s, DP-16QAM",
"baud_rate": 63.1e9,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 36,
"penalties": [
{
"chromatic_dispersion": -1e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 4e3,
"penalty_value": 0
},
{
"chromatic_dispersion": 12e3,
"penalty_value": 0.5
},
{
"pmd": 10,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1,
"penalty_value": 0.5
},
{
"pdl": 2,
"penalty_value": 1
},
{
"pdl": 4,
"penalty_value": 2.5
}
],
"min_spacing": 87.5e9,
"cost": 1
}
]
]
}
]
}

View File

@@ -0,0 +1,74 @@
{
"Edfa": [
{
"type_variety": "user_defined",
"type_def": "variable_gain",
"f_min": 192.0e12,
"f_max": 195.9e12,
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"default_config_from_json": "user_edfa_config.json",
"out_voa_auto": false,
"allowed_for_design": true
}, {
"type_variety": "user_high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}
],
"Transceiver": [
{
"type_variety": "ZR400G",
"frequency": {
"min": 191.3e12,
"max": 196.1e12
},
"mode": [
{
"format": "SFF-ID:70",
"baud_rate": 60138546798,
"OSNR": 24,
"bit_rate": 400e9,
"roll_off": 0.2,
"tx_osnr": 34,
"min_spacing": 75e9,
"penalties": [
{
"chromatic_dispersion": 20e3,
"penalty_value": 0.5
},
{
"chromatic_dispersion": 0,
"penalty_value": 0
},
{
"pmd": 20,
"penalty_value": 0.5
},
{
"pdl": 1.5,
"penalty_value": 0
},
{
"pdl": 3.5,
"penalty_value": 1.8
},
{
"pdl": 3,
"penalty_value": 1.3
}
],
"cost": 1
}
]
}
]
}

View File

@@ -0,0 +1,12 @@
{
"spectrum": [
{
"f_min": 191.35e12,
"f_max": 195.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"roll_off": 0.15,
"tx_osnr": 40
}
]
}

View File

@@ -0,0 +1,23 @@
{
"spectrum": [
{
"f_min": 191.4e12,
"f_max": 193.1e12,
"baud_rate": 32e9,
"slot_width": 50e9,
"delta_pdb": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "mode_1"
},
{
"f_min": 193.1625e12,
"f_max": 195e12,
"baud_rate": 64e9,
"slot_width": 75e9,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "mode_2"
}
]
}

View File

@@ -52,8 +52,8 @@
"explicit-route-objects": {
"route-object-include-exclude": [
{
"explicit-route-usage": "route-include-ero",
"index": 0,
"explicit-route-usage": "route-include-ero",
"num-unnum-hop": {
"node-id": "roadm Brest_KLA",
"link-tp-id": "link-tp-id is not used",
@@ -61,8 +61,8 @@
}
},
{
"explicit-route-usage": "route-include-ero",
"index": 1,
"explicit-route-usage": "route-include-ero",
"num-unnum-hop": {
"node-id": "roadm Lannion_CAS",
"link-tp-id": "link-tp-id is not used",
@@ -70,8 +70,8 @@
}
},
{
"explicit-route-usage": "route-include-ero",
"index": 2,
"explicit-route-usage": "route-include-ero",
"num-unnum-hop": {
"node-id": "roadm Lorient_KMA",
"link-tp-id": "link-tp-id is not used",
@@ -79,8 +79,8 @@
}
},
{
"explicit-route-usage": "route-include-ero",
"index": 3,
"explicit-route-usage": "route-include-ero",
"num-unnum-hop": {
"node-id": "roadm Vannes_KBE",
"link-tp-id": "link-tp-id is not used",

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,24 @@
{
"spectrum": [
{
"f_min": 191.25e12,
"baud_rate": 32e9,
"f_max": 195.1e12,
"slot_width": 50e9,
"delta_pdb": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "cband"
},
{
"f_min": 186.3e12,
"baud_rate": 32e9,
"f_max": 190.1e12,
"slot_width": 50e9,
"delta_pdb": 0,
"roll_off": 0.15,
"tx_osnr": 40,
"label": "lband"
}
]
}

View File

@@ -32,7 +32,6 @@
]
},
"params": {
"type_variety": "SSMF",
"length": 80.0,
"loss_coef": 0.2,
"length_units": "km",

View File

@@ -0,0 +1,22 @@
{
"path-request": [
{
"request-id": "0",
"source": "trx Brest_KLA",
"destination": "trx Lannion_CAS",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Lannion_CAS",
"bidirectional": false,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "ZR400G",
"trx_mode": "SFF-ID:70",
"spacing": 100000000000.0,
"tx_power": 0.0015,
"path_bandwidth": 400000000000.0
}
}
}
]
}

View File

@@ -8,6 +8,12 @@
"method": "ggn_spectrally_separated",
"dispersion_tolerance": 1,
"phase_shift_tolerance": 0.1,
"computed_channels": [1, 18, 37, 56, 75]
"computed_channels": [
1,
18,
37,
56,
75
]
}
}

View File

@@ -1,304 +1,304 @@
{
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
0.4372876328262819,
0.4372876328262819,
0.41270842850729195,
0.38814205928193013,
0.36358851509924695,
0.3390191214858807,
0.30474360397422756,
0.27048596623174515,
0.23624619427167134,
0.202035284929368,
0.1694483010211072,
0.13687829834471027,
0.1043252636301016,
0.07184040799914815,
0.061288823415841555,
0.050742731588695494,
0.04020212822983975,
0.029667009055877668,
0.01913736978785662,
0.00861320615127981,
-0.010157321677553965,
-0.028982516728038848,
-0.04779792991567815,
-0.06660356886269536,
-0.06256260169582961,
-0.05832916277634124,
-0.05409792133358102,
-0.04990610405914272,
-0.05078533294804249,
-0.05166410580536087,
-0.05254242298580185,
-0.05342028484370278,
-0.051742390657545205,
-0.050039429413028365,
-0.048337350303318156,
-0.04663615264317309,
-0.04493583574805963,
-0.043236398934156144,
-0.035622012697103154,
-0.027999803010447587,
-0.02038153550619876,
-0.012779471908040341,
-0.006436207679519103,
-9.622162373026585e-05,
0.006240488799898697,
0.012573926129294415,
0.021418708618354456,
0.030289222542492025,
0.03915515813685565,
0.047899419704645264,
0.04256372893215024,
0.03723078993416436,
0.03190060058247842,
0.02657315875107553,
0.021248462316134083,
0.01605877647020772,
0.02326948274513522,
0.03047647598902483,
0.037679759069084225,
0.044883315610536455,
0.052470799141237305,
0.06005437964543287,
0.0676340601339394,
0.07521193198077789,
0.08415906712621996,
0.09310160456603413,
0.1020395478432815,
0.11079585523492333,
0.1018180306253394,
0.09284481475528361,
0.0838762040768461,
0.07482015390297145,
0.05670549786742816,
0.03860013139908377,
0.020504047353947653,
0.0024172385953583004,
-0.015660302006048,
-0.03372858157230583,
-0.07037375788020579,
-0.10709599992470213,
-0.14379944379052215,
-0.18048410390821285,
-0.20911178784023846,
-0.23772399031437283,
-0.26632156113294336,
-0.2949045115165272,
-0.30206775396360075,
-0.30915729645781326,
-0.31624321721895354,
-0.3233255190215882,
-0.32037911876162584,
-0.3172854168606314,
-0.31419329378173544,
-0.31110274831665313,
-0.3110761646066259,
-0.3110761646066259
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
],
"gain_ripple": [
0.07704745697916238,
0.06479749697916048,
0.05257029697916238,
0.040326236979161934,
0.028098946979159933,
0.01393231697916164,
-0.0021726530208390216,
-0.01819858302084043,
-0.03218106302083967,
-0.042428283020839785,
-0.05095282302083959,
-0.05947139302083926,
-0.06968090302083851,
-0.07844600302084004,
-0.08407607302083875,
-0.0865687230208394,
-0.08906007302083907,
-0.0913487130208388,
-0.09343261302083761,
-0.09717347302083823,
-0.1027863830208382,
-0.11089282302084058,
-0.11963431302083904,
-0.1279646530208396,
-0.13525493302083902,
-0.1409032730208395,
-0.14591937302083835,
-0.14823350302084037,
-0.1484450830208388,
-0.1455411330208385,
-0.14160178302083892,
-0.1353792530208402,
-0.12789859302083784,
-0.11916081302083725,
-0.11041488302083735,
-0.10103437302083762,
-0.09101254302083817,
-0.07868024302083754,
-0.06468462302083822,
-0.051112303020840244,
-0.039618433020837784,
-0.028748483020837767,
-0.016475303020840215,
-0.006936193020838033,
-0.0015763130208377163,
0.0007104669791608842,
0.0040435869791615175,
0.006965146979162284,
0.00842583697916055,
0.00874012697916271,
0.00936596697916059,
0.01030063697916006,
0.011234826979162449,
0.013321846979160057,
0.01659282697915998,
0.023488786979161347,
0.03285456697916089,
0.04072968697916224,
0.04467697697916151,
0.04551704697916037,
0.04717897697916129,
0.04946107697915991,
0.05154489697916276,
0.05447361697916264,
0.05848224697916038,
0.06916723697916183,
0.08548825697916129,
0.10802383697916085,
0.13114358697916018,
0.15216302697916007,
0.17037189697916233,
0.1767381569791624,
0.1739275269791598,
0.15945681697916214,
0.14239527697916188,
0.12276252697916235,
0.10313984697916112,
0.08731066697916035,
0.07533675697916209,
0.07114372697916238,
0.07094413697916124,
0.07091459697916136,
0.0670723869791594,
0.054956336979159914,
0.038328296979159404,
0.017572956979162058,
-0.0028138630208403015,
-0.016792253020838643,
-0.0246928330208398,
-0.018326963020840026,
-0.0036199830208403228,
0.02602813697916062,
0.06245819697916133,
0.09542181697916163,
0.11822862697916037,
0.1359703369791596
]
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"f_min": 191.275e12,
"f_max": 196.125e12,
"nf_ripple": [
0.4372876328262819,
0.4372876328262819,
0.41270842850729195,
0.38814205928193013,
0.36358851509924695,
0.3390191214858807,
0.30474360397422756,
0.27048596623174515,
0.23624619427167134,
0.202035284929368,
0.1694483010211072,
0.13687829834471027,
0.1043252636301016,
0.07184040799914815,
0.061288823415841555,
0.050742731588695494,
0.04020212822983975,
0.029667009055877668,
0.01913736978785662,
0.00861320615127981,
-0.010157321677553965,
-0.028982516728038848,
-0.04779792991567815,
-0.06660356886269536,
-0.06256260169582961,
-0.05832916277634124,
-0.05409792133358102,
-0.04990610405914272,
-0.05078533294804249,
-0.05166410580536087,
-0.05254242298580185,
-0.05342028484370278,
-0.051742390657545205,
-0.050039429413028365,
-0.048337350303318156,
-0.04663615264317309,
-0.04493583574805963,
-0.043236398934156144,
-0.035622012697103154,
-0.027999803010447587,
-0.02038153550619876,
-0.012779471908040341,
-0.006436207679519103,
-9.622162373026585e-05,
0.006240488799898697,
0.012573926129294415,
0.021418708618354456,
0.030289222542492025,
0.03915515813685565,
0.047899419704645264,
0.04256372893215024,
0.03723078993416436,
0.03190060058247842,
0.02657315875107553,
0.021248462316134083,
0.01605877647020772,
0.02326948274513522,
0.03047647598902483,
0.037679759069084225,
0.044883315610536455,
0.052470799141237305,
0.06005437964543287,
0.0676340601339394,
0.07521193198077789,
0.08415906712621996,
0.09310160456603413,
0.1020395478432815,
0.11079585523492333,
0.1018180306253394,
0.09284481475528361,
0.0838762040768461,
0.07482015390297145,
0.05670549786742816,
0.03860013139908377,
0.020504047353947653,
0.0024172385953583004,
-0.015660302006048,
-0.03372858157230583,
-0.07037375788020579,
-0.10709599992470213,
-0.14379944379052215,
-0.18048410390821285,
-0.20911178784023846,
-0.23772399031437283,
-0.26632156113294336,
-0.2949045115165272,
-0.30206775396360075,
-0.30915729645781326,
-0.31624321721895354,
-0.3233255190215882,
-0.32037911876162584,
-0.3172854168606314,
-0.31419329378173544,
-0.31110274831665313,
-0.3110761646066259,
-0.3110761646066259
],
"dgt": [
1.0,
1.017807767853702,
1.0356155337864215,
1.0534217504465226,
1.0712204022764056,
1.0895983485572227,
1.108555289615659,
1.1280891949729075,
1.1476135933863398,
1.1672278304018044,
1.1869318618366975,
1.2067249615595257,
1.2264996957264114,
1.2428104897182262,
1.2556591482982988,
1.2650555289898042,
1.2744470198196236,
1.2838336236692311,
1.2932153453410835,
1.3040618749785347,
1.316383926863083,
1.3301807335621048,
1.3439818461440451,
1.3598972673004606,
1.3779439775587023,
1.3981208704326855,
1.418273806730323,
1.4340878115214444,
1.445565137158368,
1.45273959485914,
1.4599103316162523,
1.4670307626366115,
1.474100442252211,
1.48111939735681,
1.488134243479226,
1.495145456062699,
1.502153039909686,
1.5097346239790443,
1.5178910621476225,
1.5266220576235803,
1.5353620432989845,
1.545374152761467,
1.5566577309558969,
1.569199764184379,
1.5817353179379183,
1.5986915141218316,
1.6201194134191075,
1.6460167077689267,
1.6719047669939942,
1.6918150918099673,
1.7057507692361864,
1.7137640932265894,
1.7217732861435076,
1.7297783508684146,
1.737780757913635,
1.7459181197626403,
1.7541903672600494,
1.7625959636196327,
1.7709972329654864,
1.7793941781790852,
1.7877868031023945,
1.7961751115773796,
1.8045606557581335,
1.8139629377087627,
1.824381436842932,
1.835814081380705,
1.847275503201129,
1.862235672444246,
1.8806927939516411,
1.9026104247588487,
1.9245345552113182,
1.9482128147680253,
1.9736443063300082,
2.0008103857988204,
2.0279625371819305,
2.055100772005235,
2.082225099873648,
2.1183028432496016,
2.16337565384239,
2.2174389328192197,
2.271520771371253,
2.322373696229342,
2.3699990328716107,
2.414398437185221,
2.4587748041127506,
2.499446286796604,
2.5364027376452056,
2.5696460593920065,
2.602860350286428,
2.630396440815385,
2.6521732021128046,
2.6681935771243177,
2.6841217449620203,
2.6947834587664494,
2.705443819238505,
2.714526681131686
],
"gain_ripple": [
0.07704745697916238,
0.06479749697916048,
0.05257029697916238,
0.040326236979161934,
0.028098946979159933,
0.01393231697916164,
-0.0021726530208390216,
-0.01819858302084043,
-0.03218106302083967,
-0.042428283020839785,
-0.05095282302083959,
-0.05947139302083926,
-0.06968090302083851,
-0.07844600302084004,
-0.08407607302083875,
-0.0865687230208394,
-0.08906007302083907,
-0.0913487130208388,
-0.09343261302083761,
-0.09717347302083823,
-0.1027863830208382,
-0.11089282302084058,
-0.11963431302083904,
-0.1279646530208396,
-0.13525493302083902,
-0.1409032730208395,
-0.14591937302083835,
-0.14823350302084037,
-0.1484450830208388,
-0.1455411330208385,
-0.14160178302083892,
-0.1353792530208402,
-0.12789859302083784,
-0.11916081302083725,
-0.11041488302083735,
-0.10103437302083762,
-0.09101254302083817,
-0.07868024302083754,
-0.06468462302083822,
-0.051112303020840244,
-0.039618433020837784,
-0.028748483020837767,
-0.016475303020840215,
-0.006936193020838033,
-0.0015763130208377163,
0.0007104669791608842,
0.0040435869791615175,
0.006965146979162284,
0.00842583697916055,
0.00874012697916271,
0.00936596697916059,
0.01030063697916006,
0.011234826979162449,
0.013321846979160057,
0.01659282697915998,
0.023488786979161347,
0.03285456697916089,
0.04072968697916224,
0.04467697697916151,
0.04551704697916037,
0.04717897697916129,
0.04946107697915991,
0.05154489697916276,
0.05447361697916264,
0.05848224697916038,
0.06916723697916183,
0.08548825697916129,
0.10802383697916085,
0.13114358697916018,
0.15216302697916007,
0.17037189697916233,
0.1767381569791624,
0.1739275269791598,
0.15945681697916214,
0.14239527697916188,
0.12276252697916235,
0.10313984697916112,
0.08731066697916035,
0.07533675697916209,
0.07114372697916238,
0.07094413697916124,
0.07091459697916136,
0.0670723869791594,
0.054956336979159914,
0.038328296979159404,
0.017572956979162058,
-0.0028138630208403015,
-0.016792253020838643,
-0.0246928330208398,
-0.018326963020840026,
-0.0036199830208403228,
0.02602813697916062,
0.06245819697916133,
0.09542181697916163,
0.11822862697916037,
0.1359703369791596
]
}

View File

@@ -1,5 +1,5 @@
'''
"""
Processing of data via :py:mod:`.json_io`.
Utilities for Excel conversion in :py:mod:`.convert` and :py:mod:`.service_sheet`.
Example code in :py:mod:`.cli_examples` and :py:mod:`.plots`.
'''
"""

View File

@@ -1,37 +1,43 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.tools.cli_examples: Common code for CLI examples
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.tools.cli_examples
=======================
Common code for CLI examples
'''
"""
import argparse
import logging
import sys
from math import ceil
from numpy import linspace, mean
from pathlib import Path
import gnpy.core.ansi_escapes as ansi_escapes
from typing import Union, List
from math import ceil
from numpy import mean
from gnpy.core import ansi_escapes
from gnpy.core.elements import Transceiver, Fiber, RamanFiber
from gnpy.core.equipment import trx_mode_params
import gnpy.core.exceptions as exceptions
from gnpy.core.network import build_network
from gnpy.core import exceptions
from gnpy.core.parameters import SimParams
from gnpy.core.utils import db2lin, lin2db, automatic_nch
from gnpy.topology.request import (ResultElement, jsontocsv, compute_path_dsjctn, requests_aggregation,
BLOCKING_NOPATH, correct_json_route_list,
deduplicate_disjunctions, compute_path_with_disjunction,
PathRequest, compute_constrained_path, propagate)
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum
from gnpy.tools.json_io import load_equipment, load_network, load_json, load_requests, save_network, \
requests_from_json, disjunctions_from_json, save_json
from gnpy.core.utils import lin2db, pretty_summary_print, per_label_average, watt2dbm
from gnpy.topology.request import (ResultElement, jsontocsv, BLOCKING_NOPATH)
from gnpy.tools.json_io import (load_equipments_and_configs, load_network, load_json, load_requests, save_network,
requests_from_json, save_json, load_initial_spectrum, DEFAULT_EQPT_CONFIG)
from gnpy.tools.plots import plot_baseline, plot_results
from gnpy.tools.worker_utils import designed_network, transmission_simulation, planning
_logger = logging.getLogger(__name__)
_examples_dir = Path(__file__).parent.parent / 'example-data'
_default_config_files = ['example-data/std_medium_gain_advanced_config.json',
'example-data/Juniper-BoosterHG.json',
'parameters.DEFAULT_EDFA_CONFIG']
_help_footer = '''
This program is part of GNPy, https://github.com/TelecomInfraProject/oopt-gnpy
@@ -43,14 +49,35 @@ _help_fname_json_csv = 'FILE.(json|csv)'
def show_example_data_dir():
"""Print the example data directory path."""
print(f'{_examples_dir}/')
def load_common_data(equipment_filename, topology_filename, simulation_filename, save_raw_network_filename):
'''Load common configuration from JSON files'''
def load_common_data(equipment_filename: Path,
extra_equipment_filenames: List[Path], extra_config_filenames: List[Path],
topology_filename: Path, simulation_filename: Path, save_raw_network_filename: Path):
"""Load common configuration from JSON files, merging additional equipment if provided.
:param equipment_filename: Path to the main equipment configuration file.
:type equipment_filename: Path
:param extra_equipment_filenames: List of additional equipment configuration files.
:type extra_equipment_filenames: List[Path]
:param extra_config_filenames: List of additional configuration files.
:type extra_config_filenames: List[Path]
:param topology_filename: Path to the network topology file.
:type topology_filename: Path
:param simulation_filename: Path to the simulation parameters file.
:type simulation_filename: Path
:param save_raw_network_filename: Path to save the raw network configuration.
:type save_raw_network_filename: Path
:raises exceptions.EquipmentConfigError: If there is a configuration error in the equipment library.
:raises exceptions.NetworkTopologyError: If the network definition is invalid.
:raises exceptions.ParametersError: If there is an error with simulation parameters.
:raises exceptions.ConfigurationError: If there is a general configuration error.
:raises exceptions.ServiceError: If there is a service-related error.
"""
try:
equipment = load_equipment(equipment_filename)
equipment = load_equipments_and_configs(equipment_filename, extra_equipment_filenames, extra_config_filenames)
network = load_network(topology_filename, equipment)
if save_raw_network_filename is not None:
save_network(network, save_raw_network_filename)
@@ -83,18 +110,30 @@ def load_common_data(equipment_filename, topology_filename, simulation_filename,
return (equipment, network)
def _setup_logging(args):
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.CRITICAL}.get(args.verbose, logging.DEBUG))
def _setup_logging(args: argparse.Namespace):
"""Set up logging based on verbosity level.
:param args: The parsed command-line arguments.
:type args: argparse.Namespace
"""
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.WARNING}.get(args.verbose, logging.DEBUG))
def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
"""Add common command-line options to the argument parser.
:param parser: The argument parser to which options will be added.
:type parser: argparse.ArgumentParser
:param network_default: The default path for the network topology file.
:type network_default: Path
"""
parser.add_argument('topology', nargs='?', type=Path, metavar='NETWORK-TOPOLOGY.(json|xls|xlsx)',
default=network_default,
help='Input network topology')
parser.add_argument('-v', '--verbose', action='count', default=0,
help='Increase verbosity (can be specified several times)')
parser.add_argument('-e', '--equipment', type=Path, metavar=_help_fname_json,
default=_examples_dir / 'eqpt_config.json', help='Equipment library')
default=DEFAULT_EQPT_CONFIG, help='Equipment library')
parser.add_argument('--sim-params', type=Path, metavar=_help_fname_json,
default=None, help='Path to the JSON containing simulation parameters (required for Raman). '
f'Example: {_examples_dir / "sim_params.json"}')
@@ -105,26 +144,44 @@ def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
parser.add_argument('--no-insert-edfas', action='store_true',
help='Disable insertion of EDFAs after ROADMs and fibers '
'as well as splitting of fibers by auto-design.')
# Option for additional equipment files
parser.add_argument('--extra-equipment', nargs='+', type=Path,
metavar=_help_fname_json, default=None,
help='List of additional equipment files to complement the main equipment file.')
# Option for additional config files
parser.add_argument('--extra-config', nargs='+', type=Path,
metavar=_help_fname_json,
help='List of additional config files as referenced in equipment files with '
'"advanced_config_from_json" or "default_config_from_json".'
f'Existing configs:\n{_default_config_files}')
def transmission_main_example(args=None):
def transmission_main_example(args: Union[List[str], None] = None):
"""Main script running a single simulation. It returns the detailed power across crossed elements and
average performance accross all channels.
:param args: Command-line arguments (default is None).
:type args: Union[List[str], None]
"""
parser = argparse.ArgumentParser(
description='Send a full spectrum load through the network from point A to point B',
epilog=_help_footer,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
)
_add_common_options(parser, network_default=_examples_dir / 'edfa_example_network.json')
parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR and GSNR summary')
parser.add_argument('-pl', '--plot', action='store_true')
parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes')
parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm')
parser.add_argument('--spectrum', type=Path, help='user defined mixed rate spectrum JSON file')
parser.add_argument('source', nargs='?', help='source node')
parser.add_argument('destination', nargs='?', help='destination node')
args = parser.parse_args(args if args is not None else sys.argv[1:])
_setup_logging(args)
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
(equipment, network) = load_common_data(args.equipment, args.extra_equipment, args.extra_config, args.topology,
args.sim_params, args.save_network_before_autodesign)
if args.plot:
plot_baseline(network)
@@ -142,19 +199,17 @@ def transmission_main_example(args=None):
sys.exit()
# First try to find exact match if source/destination provided
source = None
if args.source:
source = transceivers.pop(args.source, None)
valid_source = True if source else False
else:
source = None
_logger.info('No source node specified: picking random transceiver')
valid_source = bool(source)
destination = None
nodes_list = []
loose_list = []
if args.destination:
destination = transceivers.pop(args.destination, None)
valid_destination = True if destination else False
else:
destination = None
_logger.info('No destination node specified: picking random transceiver')
valid_destination = bool(destination)
# If no exact match try to find partial match
if args.source and not source:
@@ -171,79 +226,77 @@ def transmission_main_example(args=None):
if not source:
source = list(transceivers.values())[0]
del transceivers[source.uid]
_logger.info('No source node specified: picking random transceiver')
if not destination:
destination = list(transceivers.values())[0]
nodes_list = [destination.uid]
loose_list = ['STRICT']
_logger.info('No destination node specified: picking random transceiver')
_logger.info(f'source = {args.source!r}')
_logger.info(f'destination = {args.destination!r}')
params = {}
params['request_id'] = 0
params['trx_type'] = ''
params['trx_mode'] = ''
params['source'] = source.uid
params['destination'] = destination.uid
params['bidir'] = False
params['nodes_list'] = [destination.uid]
params['loose_list'] = ['strict']
params['format'] = ''
params['path_bandwidth'] = 0
params['effective_freq_slot'] = None
trx_params = trx_mode_params(equipment)
if args.power:
trx_params['power'] = db2lin(float(args.power)) * 1e-3
params.update(trx_params)
req = PathRequest(**params)
_logger.info(f'source = {source.uid!r}')
_logger.info(f'destination = {destination.uid!r}')
initial_spectrum = None
if args.spectrum:
# use the spectrum defined by user for the propagation.
# the nb of channel for design remains the one of the reference channel
initial_spectrum = load_initial_spectrum(args.spectrum)
print('User input for spectrum used for propagation instead of SI')
power_mode = equipment['Span']['default'].power_mode
print('\n'.join([f'Power mode is set to {power_mode}',
f'=> it can be modified in eqpt_config.json - Span']))
'=> it can be modified in eqpt_config.json - Span']))
pref_ch_db = lin2db(req.power * 1e3) # reference channel power / span (SL=20dB)
pref_total_db = pref_ch_db + lin2db(req.nb_channel) # reference total power / span (SL=20dB)
# Simulate !
try:
build_network(network, equipment, pref_ch_db, pref_total_db, args.no_insert_edfas)
network, req, ref_req = designed_network(equipment, network, source.uid, destination.uid,
nodes_list=nodes_list, loose_list=loose_list,
args_power=args.power,
initial_spectrum=initial_spectrum,
no_insert_edfas=args.no_insert_edfas)
path, propagations_for_path, powers_dbm, infos = transmission_simulation(equipment, network, req, ref_req)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
path = compute_constrained_path(network, req)
spans = [s.params.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} '
except exceptions.ServiceError as e:
print(f'Service error: {e}')
sys.exit(1)
except ValueError:
sys.exit(1)
# print or export results
spans = [s.params.length for s in path if isinstance(s, (Fiber, RamanFiber))]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans) / 1000:.0f} km between {source.uid} '
f'and {destination.uid}')
print(f'\nNow propagating between {source.uid} and {destination.uid}:')
power_range = [0]
if power_mode:
# power cannot be changed in gain mode
try:
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
power_range = list(linspace(p_start, p_stop, p_num))
except TypeError:
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
for dp_db in power_range:
req.power = db2lin(pref_ch_db + dp_db) * 1e-3
print(f'Reference used for design: (Input optical power reference in span = {watt2dbm(ref_req.power):.2f}dBm,\n'
+ f' spacing = {ref_req.spacing * 1e-9:.2f}GHz\n'
+ f' nb_channels = {ref_req.nb_channel})')
print('\nChannels propagating: (Input optical power deviation in span = '
+ f'{pretty_summary_print(per_label_average(infos.delta_pdb_per_channel, infos.label))}dB,\n'
+ ' spacing = '
+ f'{pretty_summary_print(per_label_average(infos.slot_width * 1e-9, infos.label))}GHz,\n'
+ ' transceiver output power = '
+ f'{pretty_summary_print(per_label_average(watt2dbm(infos.tx_power), infos.label))}dBm,\n'
+ f' nb_channels = {infos.number_of_channels})')
for mypath, power_dbm in zip(propagations_for_path, powers_dbm):
if power_mode:
print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:')
print(f'Input optical power reference in span = {ansi_escapes.cyan}{power_dbm:.2f} '
+ f'dBm{ansi_escapes.reset}:')
else:
print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
infos = propagate(path, req, equipment)
if len(power_range) == 1:
for elem in path:
print('\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
if len(powers_dbm) == 1:
for elem in mypath:
print(elem)
if power_mode:
print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f} dBm:')
print(f'\nTransmission result for input optical power reference in span = {power_dbm:.2f} dBm:')
else:
print(f'\nTransmission results:')
print('\nTransmission results:')
print(f' Final GSNR (0.1 nm): {ansi_escapes.cyan}{mean(destination.snr_01nm):.02f} dB{ansi_escapes.reset}')
else:
print(path[-1])
print(mypath[-1])
if args.save_network is not None:
save_network(network, args.save_network)
@@ -264,9 +317,9 @@ def transmission_main_example(args=None):
ch_freq = final_carrier.frequency * 1e-12
ch_power = lin2db(final_carrier.power.signal * 1e3)
print(
'{:5}{:26.2f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
'{:5}{:26.5f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
final_carrier.channel_number, round(
ch_freq, 2), round(
ch_freq, 5), round(
ch_power, 2), round(
ch_osnr, 2), round(
ch_snr_nl, 2), round(
@@ -291,11 +344,17 @@ def _path_result_json(pathresult):
def path_requests_run(args=None):
"""Main script running several services simulations. It returns a summary of the average performance
for each service.
:param args: Command-line arguments (default is None).
:type args: Union[List[str], None]
"""
parser = argparse.ArgumentParser(
description='Compute performance for a list of services provided in a json file or an excel sheet',
epilog=_help_footer,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
)
_add_common_options(parser, network_default=_examples_dir / 'meshTopologyExampleV2.xls')
parser.add_argument('service_filename', nargs='?', type=Path, metavar='SERVICES-REQUESTS.(json|xls|xlsx)',
default=_examples_dir / 'meshTopologyExampleV2.xls',
@@ -304,84 +363,49 @@ def path_requests_run(args=None):
help='considers that all demands are bidir')
parser.add_argument('-o', '--output', type=Path, metavar=_help_fname_json_csv,
help='Store satisifed requests into a JSON or CSV file')
parser.add_argument('--redesign-per-request', action='store_true', help='Redesign the network at each request'
+ ' computation using the request as the reference channel')
args = parser.parse_args(args if args is not None else sys.argv[1:])
_setup_logging(args)
_logger.info(f'Computing path requests {args.service_filename} into JSON format')
_logger.info(f'Computing path requests {args.service_filename.name} into JSON format')
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
(equipment, network) = \
load_common_data(args.equipment, args.extra_equipment, args.extra_config, args.topology, args.sim_params,
args.save_network_before_autodesign)
# Build the network once using the default power defined in SI in eqpt config
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
try:
build_network(network, equipment, p_db, p_total_db, args.no_insert_edfas)
network, _, _ = designed_network(equipment, network, no_insert_edfas=args.no_insert_edfas)
data = load_requests(args.service_filename, equipment, bidir=args.bidir,
network=network, network_filename=args.topology)
_data = requests_from_json(data, equipment)
_, propagatedpths, reversed_propagatedpths, rqs, dsjn, result = \
planning(network, equipment, data, redesign=args.redesign_per_request)
except exceptions.NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
sys.exit(1)
except exceptions.ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
sys.exit(1)
if args.save_network is not None:
save_network(network, args.save_network)
print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}')
oms_list = build_oms_list(network, equipment)
try:
data = load_requests(args.service_filename, equipment, bidir=args.bidir,
network=network, network_filename=args.topology)
rqs = requests_from_json(data, equipment)
except exceptions.ServiceError as e:
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}')
sys.exit(1)
# check that request ids are unique. Non unique ids, may
# mess the computation: better to stop the computation
all_ids = [r.request_id for r in rqs]
if len(all_ids) != len(set(all_ids)):
for item in list(set(all_ids)):
all_ids.remove(item)
msg = f'Requests id {all_ids} are not unique'
_logger.critical(msg)
sys.exit()
rqs = correct_json_route_list(network, rqs)
# pths = compute_path(network, equipment, rqs)
dsjn = disjunctions_from_json(data)
print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}')
print(dsjn)
# need to warn or correct in case of wrong disjunction form
# disjunction must not be repeated with same or different ids
dsjn = deduplicate_disjunctions(dsjn)
# Aggregate demands with same exact constraints
print(f'{ansi_escapes.blue}Aggregating similar requests{ansi_escapes.reset}')
rqs, dsjn = requests_aggregation(rqs, dsjn)
# TODO export novel set of aggregated demands in a json file
print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}')
print(rqs)
print(f'{ansi_escapes.blue}Computing all paths with constraints{ansi_escapes.reset}')
try:
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
except exceptions.DisjunctionError as this_e:
print(f'{ansi_escapes.red}Disjunction error:{ansi_escapes.reset} {this_e}')
sys.exit(1)
except exceptions.ServiceError as e:
print(f'Service error: {e}')
sys.exit(1)
except ValueError:
sys.exit(1)
print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}')
print(dsjn)
print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}')
print(_data)
print(f'{ansi_escapes.blue}Propagating on selected path{ansi_escapes.reset}')
propagatedpths, reversed_pths, reversed_propagatedpths = compute_path_with_disjunction(network, equipment, rqs, pths)
# Note that deepcopy used in compute_path_with_disjunction returns
# a list of nodes which are not belonging to network (they are copies of the node objects).
# so there can not be propagation on these nodes.
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
if args.save_network is not None:
save_network(network, args.save_network)
print(f'Network (after autodesign) saved to {args.save_network}')
print(f'{ansi_escapes.blue}Result summary{ansi_escapes.reset}')
header = ['req id', ' demand', ' GSNR@bandwidth A-Z (Z-A)', ' GSNR@0.1nm A-Z (Z-A)',
@@ -392,27 +416,27 @@ def path_requests_run(args=None):
for i, this_p in enumerate(propagatedpths):
rev_pth = reversed_propagatedpths[i]
if rev_pth and this_p:
psnrb = f'{round(mean(this_p[-1].snr),2)} ({round(mean(rev_pth[-1].snr),2)})'
psnrb = f'{round(mean(this_p[-1].snr), 2)} ({round(mean(rev_pth[-1].snr), 2)})'
psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}' +\
f' ({round(mean(rev_pth[-1].snr_01nm),2)})'
f' ({round(mean(rev_pth[-1].snr_01nm), 2)})'
elif this_p:
psnrb = f'{round(mean(this_p[-1].snr),2)}'
psnr = f'{round(mean(this_p[-1].snr_01nm),2)}'
psnrb = f'{round(mean(this_p[-1].snr), 2)}'
psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}'
try:
if rqs[i].blocking_reason in BLOCKING_NOPATH:
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} :',
f'-', f'-', f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
f'-', f'{rqs[i].blocking_reason}']
'-', '-', '-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
'-', '{rqs[i].blocking_reason}']
else:
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
psnr, f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
f'-', f'{rqs[i].blocking_reason}']
psnr, '-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
'-', f'{rqs[i].blocking_reason}']
except AttributeError:
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
psnr, f'{rqs[i].OSNR + equipment["SI"]["default"].sys_margins}',
f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate) }', f'({rqs[i].N},{rqs[i].M})']
f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate)}', f'({rqs[i].N},{rqs[i].M})']
data.append(line)
col_width = max(len(word) for row in data for word in row[2:]) # padding

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,243 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# JSON files format conversion legacy <-> YANG
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
YANG formatted to legacy format conversion
==========================================
"""
from argparse import ArgumentParser
from pathlib import Path
from copy import deepcopy
import json
from typing import Dict
from gnpy.tools.yang_convert_utils import convert_degree, convert_back_degree, \
convert_delta_power_range, convert_back_delta_power_range, \
convert_dict, convert_back, \
remove_null_region_city, remove_union_that_fail, \
convert_design_band, convert_back_design_band, \
convert_none_to_empty, convert_empty_to_none, \
convert_loss_coeff_list, convert_back_loss_coeff_list, \
ELEMENTS_KEY, PATH_REQUEST_KEY, RESPONSE_KEY, SPECTRUM_KEY, EQPT_TYPES, EDFA_CONFIG_KEYS, SIM_PARAMS_KEYS, \
TOPO_NMSP, SERV_NMSP, EQPT_NMSP, SPECTRUM_NMSP, SIM_PARAMS_NMSP, EDFA_CONFIG_NMSP, RESP_NMSP, \
dump_data, add_missing_default_type_variety, \
remove_namespace_context, load_data, reorder_route_objects, reorder_lumped_losses_objects, \
reorder_raman_pumps, convert_raman_coef, convert_back_raman_coef, convert_raman_efficiency, \
convert_back_raman_efficiency, convert_nf_coef, convert_back_nf_coef, \
convert_nf_fit_coef, convert_back_nf_fit_coef
def legacy_to_yang(json_data: Dict) -> Dict:
"""Convert legacy format to GNPy YANG format.
This function adds the required namespace if not present and processes the input JSON data
based on its structure to convert it to the appropriate YANG format. There is no validation
of yang formatted data.
:param json_data: The input JSON data to convert.
:type json_data: Dict
:return: The converted JSON data in GNPy YANG format.
:rtype: Dict
"""
json_data = convert_none_to_empty(deepcopy(json_data))
# case of topology json
if ELEMENTS_KEY in json_data:
json_data = reorder_raman_pumps(json_data)
json_data = reorder_lumped_losses_objects(json_data)
json_data = remove_null_region_city(json_data)
json_data = convert_degree(json_data)
json_data = convert_design_band(json_data)
json_data = convert_loss_coeff_list(json_data)
json_data = convert_raman_coef(json_data)
json_data = {TOPO_NMSP: json_data}
elif TOPO_NMSP in json_data:
# then this is a new format topology json, ensure that there are no issues
json_data[TOPO_NMSP] = convert_degree(json_data[TOPO_NMSP])
json_data[TOPO_NMSP] = convert_design_band(json_data[TOPO_NMSP])
json_data[TOPO_NMSP] = convert_loss_coeff_list(json_data[TOPO_NMSP])
json_data[TOPO_NMSP] = remove_null_region_city(json_data[TOPO_NMSP])
# case of equipment json
elif any(k in json_data for k in EQPT_TYPES):
json_data = convert_raman_efficiency(json_data)
json_data = convert_delta_power_range(json_data)
json_data = convert_nf_coef(json_data)
json_data = add_missing_default_type_variety(json_data)
json_data = {EQPT_NMSP: json_data}
elif EQPT_NMSP in json_data:
# then this is already a new format topology json, ensure that there are no issues
json_data[EQPT_NMSP] = convert_raman_efficiency(json_data[EQPT_NMSP])
json_data[EQPT_NMSP] = convert_delta_power_range(json_data[EQPT_NMSP])
json_data[EQPT_NMSP] = convert_nf_coef(json_data[EQPT_NMSP])
json_data[EQPT_NMSP] = add_missing_default_type_variety(json_data[EQPT_NMSP])
# case of service json
elif PATH_REQUEST_KEY in json_data:
json_data = reorder_route_objects(json_data)
json_data = remove_union_that_fail(json_data)
json_data = {SERV_NMSP: json_data}
elif SERV_NMSP in json_data:
json_data[SERV_NMSP] = reorder_route_objects(json_data[SERV_NMSP])
json_data[SERV_NMSP] = remove_union_that_fail(json_data[SERV_NMSP])
# case of edfa_config json
elif any(k in json_data for k in EDFA_CONFIG_KEYS):
json_data = convert_nf_fit_coef(json_data)
json_data = {EDFA_CONFIG_NMSP: json_data}
elif EDFA_CONFIG_NMSP in json_data:
json_data[EDFA_CONFIG_NMSP] = convert_nf_fit_coef(json_data[EDFA_CONFIG_NMSP])
# case of spectrum json
elif SPECTRUM_KEY in json_data:
json_data = {SPECTRUM_NMSP: json_data[SPECTRUM_KEY]}
# case of sim_params json
elif any(k in json_data for k in SIM_PARAMS_KEYS):
json_data = {SIM_PARAMS_NMSP: json_data}
# case of response json
elif RESPONSE_KEY in json_data:
json_data = {RESP_NMSP: json_data}
elif any(k in json_data for k in [SPECTRUM_NMSP, SIM_PARAMS_NMSP, RESP_NMSP]):
# then this is a new format json, nothing to convert
pass
else:
raise ValueError('Unrecognized type of content (not topology, service or equipment)')
json_data = convert_dict(json_data)
return json_data
def yang_to_legacy(json_data: Dict) -> Dict:
"""Convert GNPy YANG format to legacy format.
This function processes the input JSON data to convert it from the new GNPy YANG format
back to the legacy format. It handles various types of content, including topology,
equipment, and service jsons, ensuring that the necessary conversions are applied.
The input data is validated with oopt-gnpy-libyang.
:param json_data: The input JSON data in GNPy YANG format to convert.
:type json_data: Dict
:return: The converted JSON data in legacy format.
:rtype: Dict
:raises ValueError: If the input JSON data does not match any recognized content type
(not topology, service, or equipment).
"""
# validate data compliance: make sure that this is yang formated data before validation.
load_data(json.dumps(legacy_to_yang(json_data)))
json_data = convert_empty_to_none(json_data)
json_data = convert_back(json_data)
# case of topology json
if ELEMENTS_KEY in json_data:
json_data = convert_back_degree(json_data)
json_data = convert_back_design_band(json_data)
json_data = convert_back_loss_coeff_list(json_data)
json_data = convert_back_raman_coef(json_data)
elif TOPO_NMSP in json_data:
json_data = convert_back_degree(json_data[TOPO_NMSP])
json_data = convert_back_design_band(json_data)
json_data = convert_back_loss_coeff_list(json_data)
json_data = convert_back_raman_coef(json_data)
# case of equipment json
elif any(k in json_data for k in EQPT_TYPES):
json_data = convert_back_delta_power_range(json_data)
json_data = convert_back_raman_efficiency(json_data)
json_data = convert_back_nf_coef(json_data)
json_data = remove_namespace_context(json_data, "gnpy-eqpt-config:")
elif EQPT_NMSP in json_data:
json_data[EQPT_NMSP] = convert_back_delta_power_range(json_data[EQPT_NMSP])
json_data[EQPT_NMSP] = convert_back_raman_efficiency(json_data[EQPT_NMSP])
json_data[EQPT_NMSP] = convert_back_nf_coef(json_data[EQPT_NMSP])
json_data = remove_namespace_context(json_data[EQPT_NMSP], "gnpy-eqpt-config:")
# case of EDFA config json
elif any(k in json_data for k in EDFA_CONFIG_KEYS):
json_data = convert_back_nf_fit_coef(json_data)
elif EDFA_CONFIG_NMSP in json_data:
json_data[EDFA_CONFIG_NMSP] = convert_back_nf_fit_coef(json_data[EDFA_CONFIG_NMSP])
# case of service json
elif SERV_NMSP in json_data:
json_data = json_data[SERV_NMSP]
# case of sim_params json
elif SIM_PARAMS_NMSP in json_data:
json_data = json_data[SIM_PARAMS_NMSP]
# case of spectrum json
elif SPECTRUM_NMSP in json_data:
json_data = {SPECTRUM_KEY: json_data[SPECTRUM_NMSP]}
# case of planning response json
elif RESP_NMSP in json_data:
json_data = json_data[RESP_NMSP]
elif any(k in json_data for k in SIM_PARAMS_KEYS + [SPECTRUM_KEY, RESPONSE_KEY, PATH_REQUEST_KEY]):
# then this is a legacy format json, nothing to convert
pass
else:
raise ValueError('Unrecognized type of content (not topology, service or equipment)')
return json_data
def main():
"""Conversion function
"""
parser = ArgumentParser()
parser.add_argument('--legacy-to-yang', nargs='?', type=Path,
help='convert file with this name into yangconformedname.json')
parser.add_argument('--yang-to-legacy', nargs='?', type=Path,
help='convert file with this name into gnpy'
+ ' using decimal instead of strings and null instead of [null]')
parser.add_argument('--validate', nargs='?', type=Path,
help='validate yang conformity')
parser.add_argument('-o', '--output', type=Path,
help='Stores into file with this name; default = GNPy_legacy_formatted-<file_name>.json or'
+ 'GNPy_yang_formatted-<file_name>.json')
args = parser.parse_args()
if not (args.legacy_to_yang or args.yang_to_legacy or args.validate):
parser.error("You must specify at least one of --legacy-to-yang, --yang-to-legacy, or --validate ")
output = None
converted = None
if args.validate:
with open(args.validate, 'r', encoding='utf-8') as f:
json_data = json.load(f)
load_data(json.dumps(json_data))
return 0
elif args.legacy_to_yang:
prefix = 'GNPy_yang_formatted-'
with open(args.legacy_to_yang, 'r', encoding='utf-8') as f:
json_data = json.load(f)
# note that dump_data automatically validate date against yang models
converted = dump_data(legacy_to_yang(json_data))
output = prefix + str(args.legacy_to_yang.name)
elif args.yang_to_legacy:
prefix = 'GNPy_legacy_formatted-'
with open(args.yang_to_legacy, 'r', encoding='utf-8') as f:
json_data = json.load(f)
converted = json.dumps(yang_to_legacy(json_data), indent=2, ensure_ascii=False)
output = prefix + str(args.yang_to_legacy.name)
if args.output:
output = args.output
with open(output, 'w', encoding='utf-8') as f:
f.write(converted)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,149 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# Utility functions that creates an Eqpt sheet template
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
create_eqpt_sheet.py
====================
XLS parser that can be called to create a "City" column in the "Eqpt" sheet.
If not present in the "Nodes" sheet, the "Type" column will be implicitly
determined based on the topology.
"""
from argparse import ArgumentParser
from pathlib import Path
import csv
from typing import List, Dict, Optional
from logging import getLogger
import dataclasses
from gnpy.core.exceptions import NetworkTopologyError
from gnpy.tools.xls_utils import generic_open_workbook, get_sheet, XLS_EXCEPTIONS, all_rows, fast_get_sheet_rows, \
WorkbookType, SheetType
logger = getLogger(__name__)
EXAMPLE_DATA_DIR = Path(__file__).parent.parent / 'example-data'
PARSER = ArgumentParser()
PARSER.add_argument('workbook', type=Path, nargs='?', default=f'{EXAMPLE_DATA_DIR}/meshTopologyExampleV2.xls',
help='create the mandatory columns in Eqpt sheet')
PARSER.add_argument('-o', '--output', type=Path, help='Store CSV file')
@dataclasses.dataclass
class Node:
"""Represents a network node with a unique identifier, connected nodes, and equipment type.
:param uid: Unique identifier of the node.
:type uid: str
:param to_node: List of connected node identifiers.
:type to_node: List[str.]
:param eqpt: Equipment type associated with the node (ROADM, ILA, FUSED).
:type eqpt: str
"""
def __init__(self, uid: str, to_node: List[str], eqpt: str = None):
self.uid = uid
self.to_node = to_node
self.eqpt = eqpt
def open_sheet_with_error_handling(wb: WorkbookType, sheet_name: str, is_xlsx: bool) -> SheetType:
"""Opens a sheet from the workbook with error handling.
:param wb: The opened workbook.
:type wb: WorkbookType
:param sheet_name: Name of the sheet to open.
:type sheet_name: str
:param is_xlsx: Boolean indicating if the file is XLSX format.
:type is_xlsx: bool
:return: The worksheet object.
:rtype: SheetType
:raises NetworkTopologyError: If the sheet is not found.
"""
try:
sheet = get_sheet(wb, sheet_name, is_xlsx)
return sheet
except XLS_EXCEPTIONS as exc:
msg = f'Error: no {sheet_name} sheet in the file.'
raise NetworkTopologyError(msg) from exc
def read_excel(input_filename: Path) -> Dict[str, Node]:
"""Reads the 'Nodes' and 'Links' sheets from an Excel file to build a network graph.
:param input_filename: Path to the Excel file.
:type input_filename: Path
:return: Dictionary of nodes with their connectivity and equipment type.
:rtype: Dict[str, Node]
"""
wobo, is_xlsx = generic_open_workbook(input_filename)
links_sheet = open_sheet_with_error_handling(wobo, 'Links', is_xlsx)
get_rows_links = fast_get_sheet_rows(links_sheet) if is_xlsx else None
nodes = {}
for row in all_rows(links_sheet, is_xlsx, start=5, get_rows=get_rows_links):
node_a, node_z = row[0].value, row[1].value
# Add connection in both directions
for node1, node2 in [(node_a, node_z), (node_z, node_a)]:
if node1 in nodes:
nodes[node1].to_node.append(node2)
else:
nodes[node1] = Node(node1, [node2])
nodes_sheet = open_sheet_with_error_handling(wobo, 'Nodes', is_xlsx)
get_rows_nodes = fast_get_sheet_rows(nodes_sheet) if is_xlsx else None
for row in all_rows(nodes_sheet, is_xlsx, start=5, get_rows=get_rows_nodes):
node = row[0].value
eqpt = row[6].value
if node not in nodes:
raise NetworkTopologyError(f'Error: node {node} is not listed on the links sheet.')
if eqpt == 'ILA' and len(nodes[node].to_node) != 2:
degree = len(nodes[node].to_node)
raise NetworkTopologyError(f'Error: node {node} has an incompatible node degree ({degree}) '
+ 'for its equipment type (ILA).')
if eqpt == '' and len(nodes[node].to_node) == 2:
nodes[node].eqpt = 'ILA'
elif eqpt == '' and len(nodes[node].to_node) != 2:
nodes[node].eqpt = 'ROADM'
else:
nodes[node].eqpt = eqpt
return nodes
def create_eqpt_template(nodes: Dict[str, Node], input_filename: Path, output_filename: Optional[Path] = None):
"""Creates a CSV template to help users populate equipment types for nodes.
:param nodes: Dictionary of nodes.
:type nodes: Dict[str, Node]
:param input_filename: Path to the original Excel file.
:type input_filename: Path
:param output_filename: Path to save the CSV file; generated if None.
:type output_filename: Optional(Path)
"""
if output_filename is None:
output_filename = input_filename.parent / (input_filename.with_suffix('').stem + '_eqpt_sheet.csv')
with open(output_filename, mode='w', encoding='utf-8', newline='') as output_file:
output_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
amp_header = ['amp_type', 'att_in', 'amp_gain', 'tilt', 'att_out', 'delta_p']
output_writer.writerow(['node_a', 'node_z'] + amp_header + amp_header)
for node in nodes.values():
if node.eqpt == 'ILA':
output_writer.writerow([node.uid, node.to_node[0]])
if node.eqpt == 'ROADM':
for to_node in node.to_node:
output_writer.writerow([node.uid, to_node])
msg = f'File {output_filename} successfully created.'
logger.info(msg)
if __name__ == '__main__':
ARGS = PARSER.parse_args()
create_eqpt_template(read_excel(ARGS.workbook), ARGS.workbook, ARGS.output)

View File

@@ -0,0 +1,72 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.tools.default_edfa_configs: loads JSON configuration files at module initialization time
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.tools.default_edfa_config
==============================
Default configs for pre defined amplifiers:
- Juniper-BoosterHG.json,
- std_medium_gain_advanced_config.json
"""
from logging import getLogger
from typing import Dict, Optional
from json import JSONDecodeError, load
from pathlib import Path
from gnpy.core.exceptions import ConfigurationError
from gnpy.tools.convert_legacy_yang import yang_to_legacy
_logger = getLogger(__name__)
_examples_dir = Path(__file__).parent.parent / 'example-data'
def _load_json_file(file_path: Path) -> Optional[Dict]:
"""Load and parse a JSON file.
:param file_path: Path to the JSON file to load
:type file_path: Path
:return: Dict containing the parsed JSON data or None if loading fails
:rtype: Optional[Dict]
"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return yang_to_legacy(load(file))
except FileNotFoundError:
msg = f"Configuration file not found: {file_path}"
_logger.error(msg)
return None
except JSONDecodeError as e:
msg = f"Invalid JSON in configuration file {file_path}: {e}"
_logger.error(msg)
return None
# Default files to load
_files_to_load = {
"std_medium_gain_advanced_config.json": _examples_dir / "std_medium_gain_advanced_config.json",
"Juniper-BoosterHG.json": _examples_dir / "Juniper-BoosterHG.json"
}
# Load configurations
_configs: Dict = {}
for key, filepath in _files_to_load.items():
config_data = _load_json_file(filepath)
if config_data is not None:
_configs[key] = config_data
else:
_msg = f"Failed to load configuration: {key}. Using empty dict as fallback."
_logger.error(_msg)
raise ConfigurationError
# Expose the constant
DEFAULT_EXTRA_CONFIG: Dict[str, Dict] = _configs
DEFAULT_EQPT_CONFIG: Path = _examples_dir / "eqpt_config.json"

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,17 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.tools.plots: Graphs and plots usable from a CLI application
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.tools.plots
================
Graphs and plots usable from a CLI application
'''
"""
from matplotlib.pyplot import show, axis, figure, title, text
from networkx import draw_networkx

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.tools.service_sheet: XLS parser that can be called to create a JSON request file
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.tools.service_sheet
========================
@@ -11,109 +16,181 @@ Yang model for requesting path computation.
See: draft-ietf-teas-yang-path-computation-01.txt
"""
from xlrd import open_workbook, XL_CELL_EMPTY
from collections import namedtuple
from logging import getLogger
from copy import deepcopy
from pathlib import Path
from typing import Dict, List, Generator
from networkx import DiGraph
from gnpy.core.utils import db2lin
from gnpy.core.exceptions import ServiceError
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fiber
import gnpy.core.ansi_escapes as ansi_escapes
from gnpy.tools.convert import corresp_names, corresp_next_node
from gnpy.tools.convert import corresp_names, corresp_next_node, all_rows, generic_open_workbook, get_sheet, \
parse_row, parse_headers
from gnpy.tools.xls_utils import correct_cell_int_to_str, get_sheet_name, is_type_cell_empty
SERVICES_COLUMN = 12
def all_rows(sheet, start=0):
return (sheet.row(x) for x in range(start, sheet.nrows))
SERVICE_LINE = 4
logger = getLogger(__name__)
class Request(namedtuple('Request', 'request_id source destination trx_type mode \
spacing power nb_channel disjoint_from nodes_list is_loose path_bandwidth')):
def __new__(cls, request_id, source, destination, trx_type, mode=None, spacing=None, power=None, nb_channel=None, disjoint_from='', nodes_list=None, is_loose='', path_bandwidth=None):
return super().__new__(cls, request_id, source, destination, trx_type, mode, spacing, power, nb_channel, disjoint_from, nodes_list, is_loose, path_bandwidth)
class Request:
"""DATA class for a request.
:params request_id (int): The unique identifier for the request.
:params source (str): The source node for the communication.
:params destination (str): The destination node for the communication.
:params trx_type (str): The type of transmission for the communication.
:params mode (str, optional): The mode of transmission. Defaults to None.
:params spacing (float, optional): The spacing between channels. Defaults to None.
:params power (float, optional): The power level for the communication. Defaults to None.
:params nb_channel (int, optional): The number of channels required for the communication. Defaults to None.
:params disjoint_from (str, optional): The node to be disjoint from. Defaults to ''.
:params nodes_list (list, optional): The list of nodes involved in the communication. Defaults to None.
:params is_loose (str, optional): Indicates if the communication is loose. Defaults to ''.
:params path_bandwidth (float, optional): The bandwidth required for the communication. Defaults to None.
"""
def __init__(self, **kwargs):
"""Constructor method
"""
super().__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
"""Updates the attributes of the node based on provided keyword arguments.
:param kwargs: A dictionary of attributes to update.
"""
clean_kwargs = {k: v for k, v in kwargs.items() if v != '' and v is not None}
for k, v in self.default_values.items():
v = clean_kwargs.get(k, v)
if k != 'is_loose':
if k in ['request_id', 'trx_type', 'mode', 'disjoint_from']:
v = correct_cell_int_to_str(v)
setattr(self, k, v)
else:
self.is_loose = v in ['', None, 'yes', 'Yes', 'YES']
default_values = {
'request_id': None,
'source': None,
'destination': None,
'trx_type': None,
'mode': None,
'spacing': None,
'power': None,
'nb_channel': None,
'disjoint_from': '',
'nodes_list': '',
'is_loose': None,
'path_bandwidth': None
}
class Element:
"""
"""
def __init__(self, uid):
self.uid = uid
def __eq__(self, other):
return type(self) == type(other) and self.uid == other.uid
return isinstance(other, type(self)) and self.uid == other.ui
def __hash__(self):
return hash((type(self), self.uid))
class Request_element(Element):
def __init__(self, Request, equipment, bidir):
"""Class that generate the request in the json format
:params request_param (Request): The request object containing the information for the element.
:params equipment (dict): The equipment configuration for the communication.
:params bidir (bool): Indicates if the communication is bidirectional.
Attributes:
request_id (str): The unique identifier for the request.
source (str): The source node for the communication.
destination (str): The destination node for the communication.
srctpid (str): The source TP ID for the communication.
dsttpid (str): The destination TP ID for the communication.
bidir (bool): Indicates if the communication is bidirectional.
trx_type (str): The type of transmission for the communication.
mode (str): The mode of transmission for the communication.
spacing (float): The spacing between channels for the communication.
power (float): The power level for the communication.
nb_channel (int): The number of channels required for the communication.
disjoint_from (list): The list of nodes to be disjoint from.
nodes_list (list): The list of nodes involved in the communication.
loose (str): Indicates if the communication is loose or strict.
path_bandwidth (float): The bandwidth required for the communication.
"""
def __init__(self, request_param: Request, equipment: Dict, bidir: bool):
"""
"""
super().__init__(uid=request_param.request_id)
# request_id is str
# excel has automatic number formatting that adds .0 on integer values
# the next lines recover the pure int value, assuming this .0 is unwanted
self.request_id = correct_xlrd_int_to_str_reading(Request.request_id)
self.source = f'trx {Request.source}'
self.destination = f'trx {Request.destination}'
# TODO: the automatic naming generated by excel parser requires that source and dest name
self.request_id = request_param.request_id
self.source = f'trx {request_param.source}'
self.destination = f'trx {request_param.destination}'
# The automatic naming generated by excel parser requires that source and dest name
# be a string starting with 'trx' : this is manually added here.
self.srctpid = f'trx {Request.source}'
self.dsttpid = f'trx {Request.destination}'
self.srctpid = f'trx {request_param.source}'
self.dsttpid = f'trx {request_param.destination}'
self.bidir = bidir
# test that trx_type belongs to eqpt_config.json
# if not replace it with a default
self.mode = None
try:
if equipment['Transceiver'][Request.trx_type]:
self.trx_type = correct_xlrd_int_to_str_reading(Request.trx_type)
if Request.mode is not None:
Requestmode = correct_xlrd_int_to_str_reading(Request.mode)
if [mode for mode in equipment['Transceiver'][Request.trx_type].mode if mode['format'] == Requestmode]:
self.mode = Requestmode
available_modes = [mode['format'] for mode in equipment['Transceiver'][request_param.trx_type].mode]
self.trx_type = request_param.trx_type
if request_param.mode not in [None, '']:
if request_param.mode in available_modes:
self.mode = request_param.mode
else:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
msg = f'Request Id: {self.request_id} - could not find tsp : \'{request_param.trx_type}\' ' \
+ f'with mode: \'{request_param.mode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg)
else:
Requestmode = None
self.mode = Request.mode
except KeyError:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
# print(msg)
logger.critical(msg)
raise ServiceError(msg)
except KeyError as e:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{request_param.trx_type}\' with mode: ' \
+ f'\'{request_param.mode}\' in eqpt library \nComputation stopped.'
raise ServiceError(msg) from e
# excel input are in GHz and dBm
if Request.spacing is not None:
self.spacing = Request.spacing * 1e9
if request_param.spacing:
self.spacing = request_param.spacing * 1e9
else:
msg = f'Request {self.request_id} missing spacing: spacing is mandatory.\ncomputation stopped'
logger.critical(msg)
raise ServiceError(msg)
if Request.power is not None:
self.power = db2lin(Request.power) * 1e-3
else:
self.power = None
if Request.nb_channel is not None:
self.nb_channel = int(Request.nb_channel)
else:
self.nb_channel = None
value = correct_xlrd_int_to_str_reading(Request.disjoint_from)
self.disjoint_from = [n for n in value.split(' | ') if value]
self.power = None
if request_param.power is not None:
self.power = db2lin(request_param.power) * 1e-3
self.nb_channel = None
if request_param.nb_channel is not None:
self.nb_channel = int(request_param.nb_channel)
self.disjoint_from = [n for n in request_param.disjoint_from.split(' | ') if request_param.disjoint_from]
self.nodes_list = []
if Request.nodes_list:
self.nodes_list = Request.nodes_list.split(' | ')
self.loose = 'LOOSE'
if Request.is_loose.lower() == 'no':
self.loose = 'STRICT'
self.path_bandwidth = None
if Request.path_bandwidth is not None:
self.path_bandwidth = Request.path_bandwidth * 1e9
else:
self.path_bandwidth = 0
if request_param.nodes_list:
self.nodes_list = request_param.nodes_list.split(' | ')
uid = property(lambda self: repr(self))
self.loose = 'LOOSE'
if not request_param.is_loose:
self.loose = 'STRICT'
self.path_bandwidth = 0
if request_param.path_bandwidth is not None:
self.path_bandwidth = request_param.path_bandwidth * 1e9
@property
def pathrequest(self):
"""Creates json dictionnary for the request
"""
# Default assumption for bidir is False
req_dictionnary = {
'request-id': self.request_id,
@@ -138,14 +215,15 @@ class Request_element(Element):
if self.nodes_list:
req_dictionnary['explicit-route-objects'] = {}
temp = {'route-object-include-exclude': [
{'explicit-route-usage': 'route-include-ero',
'index': self.nodes_list.index(node),
'num-unnum-hop': {
'node-id': f'{node}',
'link-tp-id': 'link-tp-id is not used',
'hop-type': f'{self.loose}',
}
}
{
'index': self.nodes_list.index(node),
'explicit-route-usage': 'route-include-ero',
'num-unnum-hop': {
'node-id': f'{node}',
'link-tp-id': 'link-tp-id is not used',
'hop-type': f'{self.loose}',
}
}
for node in self.nodes_list]
}
req_dictionnary['explicit-route-objects'] = temp
@@ -156,29 +234,32 @@ class Request_element(Element):
@property
def pathsync(self):
"""Creates json dictionnary for disjunction list (synchronization vector)
"""
if self.disjoint_from:
return {'synchronization-id': self.request_id,
'svec': {
'relaxable': 'false',
'disjointness': 'node link',
'request-id-number': [self.request_id] + [n for n in self.disjoint_from]
'request-id-number': [self.request_id] + list(self.disjoint_from)
}
}
else:
return None
return None
# TO-DO: avoid multiple entries with same synchronisation vectors
@property
def json(self):
"""Returns the json dictionnary for requests and for synchronisation vector
"""
return self.pathrequest, self.pathsync
def read_service_sheet(
input_filename,
eqpt,
network,
network_filename=None,
bidir=False):
input_filename: Path,
eqpt: Dict,
network: DiGraph,
network_filename: Path = None,
bidir: bool = False) -> Dict:
""" converts a service sheet into a json structure
"""
if network_filename is None:
@@ -188,70 +269,86 @@ def read_service_sheet(
req = correct_xls_route_list(network_filename, network, req)
# if there is no sync vector , do not write any synchronization
synchro = [n.json[1] for n in req if n.json[1] is not None]
data = {'path-request': [n.json[0] for n in req]}
if synchro:
data = {
'path-request': [n.json[0] for n in req],
'synchronization': synchro
}
else:
data = {
'path-request': [n.json[0] for n in req]
}
data['synchronization'] = synchro
return data
def correct_xlrd_int_to_str_reading(v):
if not isinstance(v, str):
value = str(int(v))
if value.endswith('.0'):
value = value[:-2]
else:
value = v
return value
def parse_row(row, fieldnames):
return {f: r.value for f, r in zip(fieldnames, row[0:SERVICES_COLUMN])
if r.ctype != XL_CELL_EMPTY}
def parse_excel(input_filename):
with open_workbook(input_filename) as wb:
service_sheet = wb.sheet_by_name('Service')
services = list(parse_service_sheet(service_sheet))
def parse_excel(input_filename: Path) -> List[Request]:
"""Open xls_file and reads 'Service' sheet
Returns the list of services data in Request class
"""
wb, is_xlsx = generic_open_workbook(input_filename)
service_sheet = get_sheet(wb, 'Service', is_xlsx)
services = list(parse_service_sheet(service_sheet, is_xlsx))
return services
def parse_service_sheet(service_sheet):
def parse_service_sheet(service_sheet, is_xlsx) -> Generator[Request, None, None]:
""" reads each column according to authorized fieldnames. order is not important.
"""
logger.info(f'Validating headers on {service_sheet.name!r}')
logger.debug('Validating headers on %r', get_sheet_name(service_sheet, is_xlsx))
# add a test on field to enable the '' field case that arises when columns on the
# right hand side are used as comments or drawing in the excel sheet
header = [x.value.strip() for x in service_sheet.row(4)[0:SERVICES_COLUMN]
if len(x.value.strip()) > 0]
# create a service_fieldname independant from the excel column order
# to be compatible with any version of the sheet
# the following dictionnary records the excel field names and the corresponding parameter's name
authorized_fieldnames = {
'route id': 'request_id', 'Source': 'source', 'Destination': 'destination',
'TRX type': 'trx_type', 'Mode': 'mode', 'System: spacing': 'spacing',
'System: input power (dBm)': 'power', 'System: nb of channels': 'nb_channel',
'routing: disjoint from': 'disjoint_from', 'routing: path': 'nodes_list',
'routing: is loose?': 'is_loose', 'path bandwidth': 'path_bandwidth'}
try:
service_fieldnames = [authorized_fieldnames[e] for e in header]
except KeyError:
msg = f'Malformed header on Service sheet: {header} field not in {authorized_fieldnames}'
header = parse_headers(service_sheet, is_xlsx, authorized_fieldnames, {}, SERVICE_LINE, (0, SERVICES_COLUMN))
# create a service_fieldname independant from the excel column order
# to be compatible with any version of the sheet
# the following dictionnary records the excel field names and the corresponding parameter's name
for row in all_rows(service_sheet, is_xlsx, start=5):
if not is_type_cell_empty(row[0], is_xlsx):
# Check required because openpyxl in read_only mode can return "ghost" rows at the end of the document
# (ReadOnlyCell cells with no actual value but formatting information even for empty rows).
yield Request(**parse_row(row[0:SERVICES_COLUMN], header))
def check_end_points(pathreq: Request_element, network: DiGraph):
"""Raise error if end point is not correct
"""
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
if pathreq.source not in transponders:
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.'
logger.critical(msg)
raise ValueError(msg)
for row in all_rows(service_sheet, start=5):
yield Request(**parse_row(row[0:SERVICES_COLUMN], service_fieldnames))
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.'
logger.critical(msg)
raise ServiceError(msg)
def correct_xls_route_list(network_filename, network, pathreqlist):
def find_node_sugestion(n_id, corresp_roadm, corresp_fused, corresp_ila, network):
"""
"""
roadmtype = [n.uid for n in network.nodes() if isinstance(n, Roadm)]
edfatype = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
# check that n_id is in the node list, if not find a correspondance name
if n_id in roadmtype + edfatype:
return [n_id]
# checks first roadm, fused, and ila in this order, because ila automatic name
# contains roadm names. If it is a fused node, next ila names might be correct
# suggestions, especially if following fibers were splitted and ila names
# created with the name of the fused node
if n_id in corresp_roadm.keys():
return corresp_roadm[n_id]
if n_id in corresp_fused.keys():
return corresp_fused[n_id] + corresp_ila[n_id]
if n_id in corresp_ila.keys():
return corresp_ila[n_id]
return []
def correct_xls_route_list(network_filename: Path, network: DiGraph,
pathreqlist: List[Request_element]) -> List[Request_element]:
""" prepares the format of route list of nodes to be consistant with nodes names:
remove wrong names, find correct names for ila, roadm and fused if the entry was
xls.
@@ -265,32 +362,17 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
corresp_ila, next_node = corresp_next_node(network, corresp_ila, corresp_roadm)
# finally correct constraints based on these dict
trxfibertype = [n.uid for n in network.nodes() if isinstance(n, (Transceiver, Fiber))]
roadmtype = [n.uid for n in network.nodes() if isinstance(n, Roadm)]
edfatype = [n.uid for n in network.nodes() if isinstance(n, Edfa)]
# TODO there is a problem of identification of fibers in case of parallel
# fibers between two adjacent roadms so fiber constraint is not supported
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
for pathreq in pathreqlist:
# first check that source and dest are transceivers
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder source : {pathreq.source}.{ansi_escapes.reset}'
logger.critical(msg)
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find' +\
f' transponder destination: {pathreq.destination}.{ansi_escapes.reset}'
logger.critical(msg)
raise ServiceError(msg)
check_end_points(pathreq, network)
# silently pop source and dest nodes from the list if they were added by the user as first
# and last elem in the constraints respectively. Other positions must lead to an error
# caught later on
if pathreq.nodes_list and pathreq.source == pathreq.nodes_list[0]:
pathreq.loose_list.pop(0)
pathreq.nodes_list.pop(0)
if pathreq.nodes_list and pathreq.destination == pathreq.nodes_list[-1]:
pathreq.loose_list.pop(-1)
pathreq.nodes_list.pop(-1)
# Then process user defined constraints with respect to automatic namings
temp = deepcopy(pathreq)
@@ -300,79 +382,57 @@ def correct_xls_route_list(network_filename, network, pathreqlist):
# n_id must not be a transceiver and must not be a fiber (non supported, user
# can not enter fiber names in excel)
if n_id not in trxfibertype:
# check that n_id is in the node list, if not find a correspondance name
if n_id in roadmtype + edfatype:
nodes_suggestion = [n_id]
else:
# checks first roadm, fused, and ila in this order, because ila automatic name
# contain roadm names. If it is a fused node, next ila names might be correct
# suggestions, especially if following fibers were splitted and ila names
# created with the name of the fused node
if n_id in corresp_roadm.keys():
nodes_suggestion = corresp_roadm[n_id]
elif n_id in corresp_fused.keys():
nodes_suggestion = corresp_fused[n_id] + corresp_ila[n_id]
elif n_id in corresp_ila.keys():
nodes_suggestion = corresp_ila[n_id]
nodes_suggestion = find_node_sugestion(n_id, corresp_roadm, corresp_fused, corresp_ila, network)
try:
if len(nodes_suggestion) > 1:
# if there is more than one suggestion, we need to choose the direction
# we rely on the next node provided by the user for this purpose
new_n = next(n for n in nodes_suggestion
if n in next_node
and next_node[n] in temp.nodes_list[i:] + [pathreq.destination]
and next_node[n] not in temp.nodes_list[:i])
elif len(nodes_suggestion) == 1:
new_n = nodes_suggestion[0]
else:
nodes_suggestion = []
if nodes_suggestion:
try:
if len(nodes_suggestion) > 1:
# if there is more than one suggestion, we need to choose the direction
# we rely on the next node provided by the user for this purpose
new_n = next(n for n in nodes_suggestion
if n in next_node.keys() and next_node[n]
in temp.nodes_list[i:] + [pathreq.destination] and
next_node[n] not in temp.nodes_list[:i])
else:
new_n = nodes_suggestion[0]
if new_n != n_id:
# warns the user when the correct name is used only in verbose mode,
# eg 'a' is a roadm and correct name is 'roadm a' or when there was
# too much ambiguity, 'b' is an ila, its name can be:
# Edfa0_fiber (a → b)-xx if next node is c or
# Edfa0_fiber (c → b)-xx if next node is a
msg = f'{ansi_escapes.yellow}Invalid route node specified:' +\
f'\n\t\'{n_id}\', replaced with \'{new_n}\'{ansi_escapes.reset}'
if temp.loose == 'LOOSE':
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{pathreq.request_id}: Invalid node specified:\n\t\'{n_id}\'' \
+ ', could not use it as constraint, skipped!'
print(msg)
logger.info(msg)
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
except StopIteration:
# shall not come in this case, unless requested direction does not exist
msg = f'{ansi_escapes.yellow}Invalid route specified {n_id}: could' +\
f' not decide on direction, skipped!.\nPlease add a valid' +\
f' direction in constraints (next neighbour node){ansi_escapes.reset}'
print(msg)
logger.info(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
if temp.loose_list[i] == 'LOOSE':
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}Invalid node specified:\n\t\'{n_id}\'' +\
f', could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
logger.info(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Could not find node:\n\t\'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
pathreq.nodes_list.remove(n_id)
continue
msg = f'{pathreq.request_id}: Could not find node:\n\t\'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
if new_n != n_id:
# warns the user when the correct name is used only in verbose mode,
# eg 'a' is a roadm and correct name is 'roadm a' or when there was
# too much ambiguity, 'b' is an ila, its name can be:
# "east edfa in b to c", or "west edfa in b to a" if next node is c or
# "west edfa in b to c", or "east edfa in b to a" if next node is a
msg = f'{pathreq.request_id}: Invalid route node specified:' \
+ f'\n\t\'{n_id}\', replaced with \'{new_n}\''
logger.info(msg)
pathreq.nodes_list[pathreq.nodes_list.index(n_id)] = new_n
except StopIteration:
# shall not come in this case, unless requested direction does not exist
msg = f'{pathreq.request_id}: Invalid route specified {n_id}: could' \
+ ' not decide on direction, skipped!.\nPlease add a valid' \
+ ' direction in constraints (next neighbour node)'
logger.info(msg)
pathreq.nodes_list.remove(n_id)
else:
if temp.loose_list[i] == 'LOOSE':
print(f'{ansi_escapes.yellow}Invalid route node specified:\n\t\'{n_id}\'' +
f' type is not supported as constraint with xls network input,' +
f' skipped!{ansi_escapes.reset}')
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
if temp.loose == 'LOOSE':
msg = f'{pathreq.request_id}: Invalid route node specified:\n\t\'{n_id}\'' \
+ ' type is not supported as constraint with xls network input, skipped!'
logger.warning(msg)
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}Invalid route node specified \n\t\'{n_id}\'' +\
f' type is not supported as constraint with xls network input,' +\
f', Strict constraint can not be applied.{ansi_escapes.reset}'
logger.critical(msg)
msg = f'{pathreq.request_id}: Invalid route node specified \n\t\'{n_id}\'' \
+ ' type is not supported as constraint with xls network input,' \
+ ', Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist

253
gnpy/tools/worker_utils.py Normal file
View File

@@ -0,0 +1,253 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.tools.worker_utils: Common code for CLI examples and API
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.tools.worker_utils
=======================
Common code for CLI examples and API
"""
import logging
from copy import deepcopy
from typing import Union, List, Tuple
from numpy import linspace
from networkx import DiGraph
from gnpy.core.utils import automatic_nch, watt2dbm, dbm2watt, pretty_summary_print, per_label_average
from gnpy.core.equipment import trx_mode_params
from gnpy.core.network import add_missing_elements_in_network, design_network
from gnpy.core import exceptions
from gnpy.core.info import SpectralInformation
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum, OMS
from gnpy.topology.request import correct_json_route_list, deduplicate_disjunctions, requests_aggregation, \
compute_path_dsjctn, compute_path_with_disjunction, ResultElement, PathRequest, Disjunction, \
compute_constrained_path, propagate
from gnpy.tools.json_io import requests_from_json, disjunctions_from_json
logger = logging.getLogger(__name__)
def designed_network(equipment: dict, network: DiGraph, source: str = None, destination: str = None,
nodes_list: List[str] = None, loose_list: List[str] = None,
initial_spectrum: dict = None, no_insert_edfas: bool = False,
args_power: Union[str, float, int] = None,
service_req: PathRequest = None) -> Tuple[DiGraph, PathRequest, PathRequest]:
"""Build the reference channels based on inputs and design the network for this reference channel, and build the
channel to be propagated for the single transmission script.
Reference channel (target input power in spans, nb of channels, transceiver output power) is built using
equipment['SI'] information. If indicated, with target input power in spans is updated with args_power.
Channel to be propagated is using the same channel reference, except if different settings are provided
with service_req and initial_spectrum. The service to be propagated uses specified source, destination
and list nodes_list of include nodes constraint except if the service_req is specified.
Args:
- equipment: a dictionary containing equipment information.
- network: a directed graph representing the initial network.
- no_insert_edfas: a boolean indicating whether to insert EDFAs in the network.
- args_power: the power to be used for the network design.
- service_req: the service request the user wants to propagate.
- source: the source node for the channel to be propagated if no service_req is specified.
- destination: the destination node for the channel to be propagated if no service_req is specified.
- nodes_list: a list of nodes to be included ifor the channel to be propagated if no service_req is specified.
- loose_list: a list of loose nodes to be included in the network design.
- initial_spectrum: a dictionary representing the initial spectrum to propagate.
Returns:
- The designed network.
- The channel to propagate.
- The reference channel used for the design.
"""
if loose_list is None:
loose_list = []
if nodes_list is None:
nodes_list = []
if not no_insert_edfas:
add_missing_elements_in_network(network, equipment)
if not nodes_list:
if destination:
nodes_list = [destination]
loose_list = ['STRICT']
else:
nodes_list = []
loose_list = []
params = {
'request_id': 'reference',
'trx_type': '',
'trx_mode': '',
'source': source,
'destination': destination,
'bidir': False,
'nodes_list': nodes_list,
'loose_list': loose_list,
'format': '',
'path_bandwidth': 0,
'effective_freq_slot': None,
'nb_channel': None if equipment['SI']['default'].use_si_channel_count_for_design is False
else automatic_nch(equipment['SI']['default'].f_min, equipment['SI']['default'].f_max,
equipment['SI']['default'].spacing),
'power': dbm2watt(equipment['SI']['default'].power_dbm),
'tx_power': dbm2watt(equipment['SI']['default'].power_dbm)
}
if equipment['SI']['default'].tx_power_dbm is not None:
# use SI tx_power if present
params['tx_power'] = dbm2watt(equipment['SI']['default'].tx_power_dbm)
trx_params = trx_mode_params(equipment)
params.update(trx_params)
# use args_power instead of si
if args_power:
params['power'] = dbm2watt(float(args_power))
if equipment['SI']['default'].tx_power_dbm is None:
params['tx_power'] = params['power']
# use si as reference channel
reference_channel = PathRequest(**params)
if service_req:
# use service_req as reference channel with si tx_power if service_req tx_power is None
if service_req.tx_power is None:
service_req.tx_power = params['tx_power']
reference_channel = deepcopy(service_req)
if equipment['SI']['default'].use_si_channel_count_for_design is False:
reference_channel.nb_channel = None
design_network(reference_channel, network, equipment, set_connector_losses=True, verbose=True)
if initial_spectrum:
params['nb_channel'] = len(initial_spectrum)
req = PathRequest(**params)
if service_req:
req = service_req
req.initial_spectrum = initial_spectrum
return network, req, reference_channel
def check_request_path_ids(rqs: List[PathRequest]):
"""check that request ids are unique. Non unique ids, may
mess the computation: better to stop the computation
"""
all_ids = [r.request_id for r in rqs]
if len(all_ids) != len(set(all_ids)):
for item in list(set(all_ids)):
all_ids.remove(item)
msg = f'Requests id {all_ids} are not unique'
logger.error(msg)
raise ValueError(msg)
def planning(network: DiGraph, equipment: dict, data: dict, redesign: bool = False) \
-> Tuple[List[OMS], list, list, List[PathRequest], List[Disjunction], List[ResultElement]]:
"""Run planning
data contain the service dict from json
redesign True means that network is redesign using each request as reference channel
when False it means that the design is made once and successive propagation use the settings
computed with this design.
"""
oms_list = build_oms_list(network, equipment)
rqs = requests_from_json(data, equipment)
# check that request ids are unique.
check_request_path_ids(rqs)
rqs = correct_json_route_list(network, rqs)
dsjn = disjunctions_from_json(data)
logger.info('List of disjunctions:\n%s', dsjn)
# need to warn or correct in case of wrong disjunction form
# disjunction must not be repeated with same or different ids
dsjn = deduplicate_disjunctions(dsjn)
logger.info('Aggregating similar requests')
rqs, dsjn = requests_aggregation(rqs, dsjn)
logger.info('The following services have been requested:\n%s', rqs)
# logger.info('Computing all paths with constraints for request %s', optical_path_result_id)
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
logger.info('Propagating on selected path')
propagatedpths, reversed_pths, reversed_propagatedpths = \
compute_path_with_disjunction(network, equipment, rqs, pths, redesign=redesign)
# Note that deepcopy used in compute_path_with_disjunction returns
# a list of nodes which are not belonging to network (they are copies of the node objects).
# so there can not be propagation on these nodes.
# Allowed user_policy are first_fit and 2partition
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
for i, rq in enumerate(rqs):
if hasattr(rq, 'OSNR') and rq.OSNR:
rq.osnr_with_sys_margin = rq.OSNR + equipment["SI"]["default"].sys_margins
# assumes that list of rqs and list of propgatedpths have same order
result = [ResultElement(rq, pth, rpth) for rq, pth, rpth in zip(rqs, propagatedpths, reversed_propagatedpths)]
return oms_list, propagatedpths, reversed_propagatedpths, rqs, dsjn, result
def transmission_simulation(equipment: dict, network: DiGraph, req: PathRequest, ref_req: PathRequest) \
-> Tuple[list, List[list], List[Union[float, int]], SpectralInformation]:
"""Run simulation and returms the propagation result for each power sweep iteration.
Args:
- equipment: a dictionary containing equipment information.
- network: network after being designed using ref_req. Any missing information (amp gain or delta_p) must have
been filled using ref_req as reference channel previuos to this function.
- req: channel to be propagated.
- ref_req: the reference channel used for filling missing information in the network.
In case of power sweep, network is redesigned using ref_req whose target input power in span is
updated with the power step.
Returns a tuple containing:
- path: last propagated path. Power sweep is not possible with gain mode (as gain targets are used)
- propagations: list of propagated path for each power iteration
- powers_dbm: list of power used for the power sweep
- infos: last propagated spectral information
"""
power_mode = equipment['Span']['default'].power_mode
logger.info('Power mode is set to %s=> it can be modified in eqpt_config.json - Span', power_mode)
# initial network is designed using ref_req. that is that any missing information (amp gain or delta_p) is filled
# using this ref_req.power, previous to any sweep requested later on.
pref_ch_db = watt2dbm(ref_req.power)
p_ch_db = watt2dbm(req.power)
path = compute_constrained_path(network, req)
power_range = [0]
if power_mode:
# power cannot be changed in gain mode
try:
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
power_range = list(linspace(p_start, p_stop, p_num))
except TypeError as e:
msg = 'invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]'
logger.error(msg)
raise exceptions.EquipmentConfigError(msg) from e
logger.info('Now propagating between %s and %s', req.source, req.destination)
propagations = []
powers_dbm = []
for dp_db in power_range:
ref_req.power = dbm2watt(pref_ch_db + dp_db)
req.power = dbm2watt(p_ch_db + dp_db)
# Power sweep is made to evaluate different span input powers, so redesign is mandatory for each power,
# but no need to redesign if there are no power sweep
if len(power_range) > 1:
design_network(ref_req, network.subgraph(path), equipment, set_connector_losses=False, verbose=False)
infos = propagate(path, req, equipment)
propagations.append(deepcopy(path))
powers_dbm.append(pref_ch_db + dp_db)
logger.info('\nChannels propagating: (Input optical power deviation in span = '
+ f'{pretty_summary_print(per_label_average(infos.delta_pdb_per_channel, infos.label))}dB,\n'
+ ' spacing = '
+ f'{pretty_summary_print(per_label_average(infos.slot_width * 1e-9, infos.label))}GHz,\n'
+ ' transceiver output power = '
+ f'{pretty_summary_print(per_label_average(watt2dbm(infos.tx_power), infos.label))}dBm,\n'
+ f' nb_channels = {infos.number_of_channels})')
if not power_mode:
logger.info('\n\tPropagating using gain targets: Input optical power deviation in span ignored')
return path, propagations, powers_dbm, infos

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# Reads JSON path result file and writes results to a CSV file
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
write_path_jsontocsv.py
========================

324
gnpy/tools/xls_utils.py Normal file
View File

@@ -0,0 +1,324 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.tools.worker_utils: Utilities for reading and writing XLS, XLSX
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.tools.xls_utils
====================
This module contains utilities for reading and writing XLS, XLSX
"""
from pathlib import Path
from typing import Generator, Tuple, List, Union, Optional, Iterator, Callable
from openpyxl import load_workbook, Workbook
from openpyxl.worksheet.worksheet import Worksheet
from openpyxl.cell.cell import Cell as OpenpyxlCell
from openpyxl.cell.read_only import ReadOnlyCell as OpenpyxlReadOnlyCell
from openpyxl.utils.exceptions import InvalidFileException
from xlrd import Book, open_workbook, XL_CELL_EMPTY
from xlrd.sheet import Sheet as XlrdSheet, Cell as XlrdCell
from xlrd.biffh import XLRDError
SheetType = Union[Worksheet, XlrdSheet]
WorkbookType = Union[Workbook, Book]
CellType = Union[OpenpyxlCell, OpenpyxlReadOnlyCell, XlrdCell]
XLS_EXCEPTIONS = (InvalidFileException, KeyError, XLRDError)
def generic_open_workbook(file_path: Union[str, Path]) -> Tuple[WorkbookType, bool]:
"""Open an Excel file supporting both XLS or XLSX.
:param file_path: Path of excel file
:type file_path: Union[str, Path]
:return: Tuple (workbook, is_xlsx) where is_xlsx inidcate if the file is XLSX or not
:rtype: Tuple[WorkbookType, bool]
"""
file_path = Path(file_path) if isinstance(file_path, str) else file_path
if file_path.suffix.lower() in ['.xlsx', '.xlsm']:
return load_workbook(file_path, read_only=True, data_only=True), True
return open_workbook(file_path), False
def get_sheet(workbook: WorkbookType,
sheet_name: str,
is_xlsx: bool) -> SheetType:
"""Get the Excel Sheet by name
:param workbook: Opened Excel workbook
:type workbook: WorkbookType
:param sheet_name: Sheet name
:type sheet_name: SheetType
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:return: Excel sheet
:rtype: SheetType
"""
if is_xlsx:
return workbook[sheet_name]
return workbook.sheet_by_name(sheet_name)
def get_cell_value(sheet: SheetType, row: int, col: int, is_xlsx: bool) -> Optional[Union[str, int, float]]:
"""Get the cell value
:param sheet: Excel sheet
:type sheet: SheetType
:param row: Line index (0-based)
:type row: int
:param col: Column index (0-based)
:type: int
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:return: cell value
:rtype: Optional[Union[str, int, float]]
"""
if is_xlsx:
# openpyxl uses a 1-based index
cell = sheet.cell(row=row + 1, column=col + 1)
return cell.value
# xlrd uses a 0-base index
return sheet.cell(row, col).value
def get_row(sheet: SheetType, row_index: int, is_xlsx: bool, get_rows=None) -> List[CellType]:
"""Get row in a workbook sheet.
:param sheet: Excel sheet
:type sheet: SheetType
:param row_index: Line index (0-based)
:type row_index: int
:param is_xlsx: True si c'est un fichier XLSX, False si XLS
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:param get_rows: Optional function that returns preloaded rows (from fast_get_sheet_rows)
:type get_rows: Optional[Callable]
:return: List row cells
:rtype: List[CellType]
"""
if is_xlsx:
if get_rows is not None:
# use fast access with aclosure function
rows = get_rows()
else:
rows = list(sheet.rows)
return rows[row_index] if row_index < len(rows) else []
return sheet.row(row_index)
def fast_get_sheet_rows(sheet: Worksheet) -> Callable:
"""Preloads all rows from an Excel sheet for fast access.
This function loads the sheet data only once and returns a function
that provides access to this preloaded data without having to query
the Excel sheet on each access, which significantly improves performance,
particularly with openpyxl.
:param sheet: Excel worksheet (openpyxl.worksheet.worksheet.Worksheet object)
:type sheet: Worksheet
:return: Function that returns the preloaded rows
:rtype: Callable[[], List[Tuple[Cell, ...]]]
Usage example:
> get_rows = fast_get_sheet_rows(sheet)
> rows = get_rows() # Access to preloaded data
> first_row = rows[0] # First row
"""
# Load all sheet rows into memory only once
# This operation can be expensive, but it's performed only once
# load the rows only once.
preloaded_data = list(sheet.rows)
def get_rows():
"""Inner function (clodure function) that returns the preloaded data.
This function doesn't reload the data on each call,
it simply returns the reference to the already loaded data.
:return: List of preloaded rows
:rtype: List[Tuple[Cell, ...]]
"""
return preloaded_data
return get_rows
def get_row_slice(sheet: SheetType, row_index: int, start_col: int, end_col: int, is_xlsx: bool,
get_rows: Callable = None) -> Union[Tuple[CellType], List[CellType]]:
"""Get a row slice.
:param sheet: Excel sheet
:type sheet: SheetType
:param row_index: Line index (0-based)
:type row_index: int
:param start_col: Index of start column (0-based)
:type start_col: int
:param end_col: Index of end column (0-based)
:type end_col: int
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:param get_rows: Optional function that returns preloaded rows (from fast_get_sheet_rows)
:type get_rows: Optional[Callable]
:return: List of cells in the selected slice
:rtype: List[CellType]
"""
if is_xlsx:
if get_rows is not None:
rows = get_rows()
else:
rows = list(sheet.rows)
return rows[row_index][start_col:end_col] if row_index < len(rows) else []
return sheet.row_slice(row_index, start_col, end_col)
def convert_empty(cell_value: Optional[Union[str, int, float]]) -> Optional[Union[str, int, float]]:
"""Convert empty string into None
:param cell_value: Cell value
:type cell_value: Optional[Union[str, int, float]]
>>> convert_empty('')
>>> convert_empty('data')
'data'
>>> convert_empty(123)
123
"""
if cell_value == '':
return None
return cell_value
def get_num_rows(sheet: SheetType, is_xlsx: bool, get_rows: Callable = None) -> int:
"""Get the number of lines of an Excel sheet. Note that openpyxl in read_only mode can return "ghost" rows
at the end (ReadOnlyCell cells with no actual value but formatting information even for empty rows).
:param sheet: Excel sheet
:type sheet: SheetType
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:param get_rows: Optional function that returns preloaded rows (from fast_get_sheet_rows)
:type get_rows: Optional[Callable]
:return: Number of lines
:rtype: int
"""
if is_xlsx:
if get_rows is not None:
return len(list(get_rows()))
else:
return len(list(sheet.rows))
return sheet.nrows
def is_type_cell_empty(cell, is_xlsx: bool) -> bool:
"""Check is a cell is empty.
:param sheet: Excel sheet
:type sheet: SheetType
:param row: Line index (0-based)
:type row: int
:param col: Column index (0-based)
:type: int
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:return: True if cell is empty, else returns False
:rtype: bool
"""
if is_xlsx:
return cell.value in [None, '']
return cell.ctype == XL_CELL_EMPTY
def get_sheet_name(sheet: SheetType, is_xlsx: bool) -> str:
"""Get the name of the current sheet
:param sheet: Excel sheet
:type sheet: SheetType
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:return: Name of the sheet
:rtype: str
"""
if is_xlsx:
return sheet.title
return sheet.name
def all_rows(sh: Worksheet, is_xlsx: bool, start: int = 0, get_rows: Callable = None) -> Generator[list, None, None]:
"""Returns all rows of the xls(x) sheet starting from start row.
:param sh: sheet: Excel sheet
:type sheet: SheetType
:param start: The starting row index (0-based).
:type start: int
:param get_rows: Optional function that returns preloaded rows (from fast_get_sheet_rows)
:type get_rows: Optional[Callable]
:return: A generator yielding all rows from the specified starting index.
:rtype: Generator[list, None, None]
"""
return (get_row(sh, x, is_xlsx, get_rows) for x in range(start, get_num_rows(sh, is_xlsx, get_rows)))
def correct_cell_int_to_str(v: Optional[Union[str, int, float]]) -> Optional[Union[str, int, float]]:
"""Ensure that int values in "id" cells are read as strings containing the int and
do not use the automatic float conversion from xlrd or openpyxl
:param v: cell value to convert
:type v: Optional[Union[str, int, float]]
:return: corrected cell value
:rtype: Optional[Union[str, int, float]]
>>> correct_cell_int_to_str(123)
'123'
>>> correct_cell_int_to_str(123.0)
'123'
>>> correct_cell_int_to_str('abc')
'abc'
>>> correct_cell_int_to_str(None)
"""
if not isinstance(v, str) and v is not None:
value = str(int(v))
if value.endswith('.0'):
value = value[:-2]
else:
value = v
return value
def get_all_sheets(workbook: WorkbookType, is_xlsx: bool) -> Iterator[SheetType]:
"""Get all sheets from an Excel workbook.
:param workbook: Opened Excel workbook
:type workbook: WorkbookType
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:return: Iterator of all sheets in the workbook
:rtype: Iterator[SheetType]
"""
if is_xlsx:
for sheet in workbook.worksheets:
yield sheet
else:
for i in range(workbook.nsheets):
yield workbook.sheet_by_index(i)
def get_sheet_names(workbook: WorkbookType, is_xlsx: bool) -> List[str]:
"""Get all sheet names from an Excel workbook.
:param workbook: Opened Excel workbook
:type workbook: WorkbookType
:param is_xlsx: True if this is an XLSX workbook, False if XLS
:type is_xlsx: bool
:return: List of sheet names
:rtype: List[str]
"""
if is_xlsx:
return workbook.sheetnames
return workbook.sheet_names()

View File

@@ -0,0 +1,960 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# Utils for yang <-> legacy format conversion
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
Utils for yang <-> legacy format conversion
===========================================
Format conversion utils.
"""
from pathlib import Path
from copy import deepcopy
from typing import Dict, Union, List, Any, NamedTuple
import json
import os
import oopt_gnpy_libyang as ly
from gnpy.yang.precision_dict import PRECISION_DICT
ELEMENTS_KEY = 'elements'
ROADM_KEY = 'Roadm'
PARAMS_KEY = 'params'
METADATA_KEY = 'metadata'
LOCATION_KEY = 'location'
DEGREE_KEY = 'degree_uid'
PATH_REQUEST_KEY = 'path-request'
RESPONSE_KEY = 'response'
SPECTRUM_KEY = 'spectrum'
LOSS_COEF_KEY = 'loss_coef'
LOSS_COEF_KEY_PER_FREQ = 'loss_coef_per_frequency'
RAMAN_COEF_KEY = 'raman_coefficient'
RAMAN_EFFICIENCY_KEY = 'raman_efficiency'
EQPT_TYPES = ['Edfa', 'Transceiver', 'Fiber', 'Roadm']
EDFA_CONFIG_KEYS = ['nf_fit_coeff', 'nf_ripple', 'gain_ripple', 'dgt']
SIM_PARAMS_KEYS = ['raman_params', 'nli_params']
TOPO_NMSP = 'gnpy-network-topology:topology'
EQPT_NMSP = 'gnpy-eqpt-config:equipment'
SERV_NMSP = 'gnpy-path-computation:services'
RESP_NMSP = 'gnpy-path-computation:responses'
EDFA_CONFIG_NMSP = 'gnpy-edfa-config:edfa-config'
SIM_PARAMS_NMSP = 'gnpy-sim-params:sim-params'
SPECTRUM_NMSP = 'gnpy-spectrum:spectrum'
class PrettyFloat(float):
""""A float subclass for formatting according to specific fraction digit requirements.
>>> PrettyFloat(3.1245)
3.12
>>> PrettyFloat(100.65, 5)
100.65
>>> PrettyFloat(2.1e-5, 8)
0.000021
>>> PrettyFloat(10, 3)
10.0
>>> PrettyFloat(-0.3110761646066259, 18)
-0.3110761646066259
"""
def __new__(cls, value: float, fraction_digit: int = 2):
"""Create a new instance of PrettyFloat"""
instance = super().__new__(cls, value)
instance.fraction_digit = fraction_digit
instance.value = value
return instance
def __repr__(self) -> str:
"""Return the string representation of the float formatted to the specified fraction digits. It removes
scientific notation ("e-x").
"""
# When fraction digit is over 16, the usual formatting does not works properly because of floating point issues.
# For example -0.3110761646066259 is represented as "-0.311076164606625905". The following function makes
# sure that the unwanted floating point issue does not change the value. Maximum fraction digit in YANG is 18.
if self.fraction_digit in range(0, 19):
temp = str(self.value)
if 'e' in temp or '.' not in temp or self.fraction_digit < 17:
formatted_value = f'{self:.{self.fraction_digit}f}' # noqa E231
if '.' in formatted_value:
formatted_value = formatted_value.rstrip('0')
if formatted_value.endswith('.'):
formatted_value += '0'
return formatted_value
if '.' in temp:
parts = temp.split('.')
formatted_value = parts[0] + '.' + parts[1][0:min(self.fraction_digit, len(parts[1]))]
formatted_value = formatted_value.rstrip('0')
if formatted_value.endswith('.'):
formatted_value += '0'
return formatted_value
return temp
raise ValueError(f'Fraction digit {self.fraction_digit} not handled')
def gnpy_precision_dict() -> Dict[str, int]:
"""Return a dictionary of fraction-digit definitions for GNPy.
Precision correspond to fraction digit number if it is a decimal64 yang type, or 0 if it is an
(u)int < 64 or -1 if it is a string or an (u)int64 type.
:return: Dictionnary mapping key names with digit numbers for values.
:rtype: Dict[str, int]
"""
return PRECISION_DICT
def convert_dict(data: Dict, fraction_digit: int = 2, precision: Union[Dict[str, int], None] = None) \
-> Union[Dict, List, float, int, str, None]:
"""Recursive conversion from float to str, conformed to RFC7951
does not work for int64 (will not returm str as stated in standard)
If nothing is stated precision is using gnpy_precision_dict.
:param data: the input dictionary to convert.
:type data: data: Dict
:param fraction_digit: the number of decimal places to format.
:type fraction_digit: int
:param precision: A dictionary defining precision for specific keys.
:type precision: Union[Dict[str, int], None]
:return: A new dictionary with converted values.
:rtype: Dict
>>> convert_dict({"y": "amp", "t": "vn", "g": 25, "gamma": 0.0016, "p": 21.5, "o": True, \
"output-power": 14.12457896})
{'y': 'amp', 't': 'vn', 'g': '25.0', 'gamma': '0.0016', 'p': '21.5', 'o': True, 'output-power': '14.12457896'}
"""
if not precision:
precision = gnpy_precision_dict()
if isinstance(data, dict):
for k, v in data.items():
fraction_digit = precision.get(k, 2)
data[k] = convert_dict(v, fraction_digit, precision=precision)
elif isinstance(data, list):
temp = deepcopy(data)
for i, el in enumerate(temp):
if isinstance(el, float):
data[i] = PrettyFloat(el, fraction_digit)
data[i] = str(data[i])
else:
data[i] = convert_dict(el, fraction_digit=fraction_digit, precision=precision)
elif isinstance(data, bool):
return data
elif isinstance(data, int):
data = PrettyFloat(data)
data.fraction_digit = fraction_digit
if fraction_digit > 0:
return str(data)
if fraction_digit < 0:
return data
return int(data)
elif isinstance(data, float):
data = PrettyFloat(data)
data.fraction_digit = fraction_digit
return str(data)
return data
def convert_back(data: Dict, fraction_digit: Union[int, None] = None, precision: Union[Dict[str, int], None] = None) \
-> Union[Dict, List, float, int, str, None]:
"""Recursively convert strings back to their original types int, float according to RFC7951.
:param data: the input dictionary to convert.
:type data: Dict
:param fraction_digit: the number of decimal places to format.
:type fraction_digit: Union[int, None]
:param precision: A dictionary defining precision for specific keys.
:type precision: Union[Dict[str, int], None]
:return: A new dictionary with converted values.
:rtype: Dict
>>> a = {'y': 'amp', 't': 'vn', 'N': '25', 'gamma': '0.0000000000000016', 'p': '21.50', 'o': True, \
'output-power': '14.12458'}
>>> convert_back({'a': a, 'delta_power_range_db': ['12.3', '10.6', True]})
{'a': {'y': 'amp', 't': 'vn', 'N': 25, 'gamma': 1.6e-15, 'p': '21.50', 'o': True, 'output-power': 14.12458}, \
'delta_power_range_db': ['12.3', '10.6', True]}
"""
if not precision:
precision = gnpy_precision_dict()
if isinstance(data, dict):
for k, v in data.items():
fraction_digit = None
if k in precision:
fraction_digit = precision[k]
data[k] = convert_back(v, fraction_digit, precision=precision)
elif isinstance(data, list):
for i, el in enumerate(data):
if isinstance(el, str) and fraction_digit not in [None, -1]:
data[i] = float(data[i])
else:
data[i] = convert_back(el, fraction_digit=fraction_digit, precision=precision)
elif isinstance(data, (bool, int, float)):
return data
elif isinstance(data, str) and fraction_digit is not None:
if fraction_digit > 0:
return float(data)
if fraction_digit < 0:
return data
return int(data)
return data
def model_path() -> Path:
"""Filesystem path to YANG models.
return: path to the GNPy YANG modules.
rtype: Path
"""
return Path(__file__).parent.parent / 'yang'
def external_yang() -> Path:
"""Filesystem to the IETF external yang modules.
return: path to the IETF modules.
rtype: Path
"""
return Path(__file__).parent.parent / 'yang' / 'ext'
def yang_lib() -> Path:
"""Path to the json library of needed yang modules.
return: path to the library describing all modules and revisions for this gnpy release.
rtype: Path
"""
return Path(__file__).parent.parent / 'yang' / 'yang-library-gnpy.json'
def _create_context(yang_library) -> ly.Context:
"""Prepare a libyang context for validating data against GNPy YANG models.
:param yang_library: path to the library describing all modules and revisions to be considered for the formatted
string generation.
:type yang_library: Path
:return: Context used to hold all information about schemas.
:rtype: ly.Context
"""
ly.set_log_options(ly.LogOptions.Log | ly.LogOptions.Store)
ctx = ly.Context(str(model_path()) + os.pathsep + str(external_yang()),
ly.ContextOptions.AllImplemented | ly.ContextOptions.DisableSearchCwd)
with open(yang_library, 'r', encoding='utf-8') as file:
data = json.load(file)
yang_modules = [{'name': e['name'], 'revision': e['revision']}
for e in data['ietf-yang-library:modules-state']['module']]
for module in yang_modules:
ctx.load_module(module['name'], revision=module['revision'])
return ctx
class ErrorMessage(NamedTuple):
# pylint: disable=C0115
what: str
where: str
def load_data(s: str, yang_library: Path = yang_lib()) -> ly.DataNode:
"""Load data from YANG-based JSON input and validate them.
:param data: a string contating the json data to be loaded.
:type data: str
:param yang_library: path to the library describing all modules and revisions to be considered for the formatted
string generation.
:type yang_library: Path
:return: DataNode containing the loaded data
:rtype: ly.DataNode
"""
ctx = _create_context(yang_library)
try:
data = ctx.parse_data(s, ly.DataFormat.JSON,
ly.ParseOptions.Strict | ly.ParseOptions.Ordered,
ly.ValidationOptions.Present
| ly.ValidationOptions.MultiError)
except ly.Error as exc:
raise ly.Error(exc, [ErrorMessage(err.message, err.path) for err in ctx.errors()]) from None
return data
def dump_data(data: Dict, yang_library: Path = yang_lib()) -> str:
"""Creates a formatted string using oopt-gnpy-libyang.
:param data: a json dict with data already formatted
:type data: Dict
:param yang_library: path to the library describing all modules and revisions to be considered for the formatted
string generation.
:type yang_library: Path
:return: formatted string data
:rtype: str
"""
return load_data(json.dumps(data), yang_library).print(ly.DataFormat.JSON, ly.PrintFlags.WithSiblings)
def convert_degree(json_data: Dict) -> Dict:
"""Convert legacy json topology format to gnpy yang format revision 2025-01-20:
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: Dict
"""
for elem in json_data[ELEMENTS_KEY]:
if elem['type'] == ROADM_KEY and PARAMS_KEY in elem:
new_targets = []
for equalization_type in ['per_degree_pch_out_db', 'per_degree_psd_out_mWperGHz',
'per_degree_psd_out_mWperSlotWidth']:
targets = elem[PARAMS_KEY].pop(equalization_type, None)
if targets:
new_targets.extend([{DEGREE_KEY: degree, equalization_type: target}
for degree, target in targets.items()])
if new_targets:
elem[PARAMS_KEY]['per_degree_power_targets'] = new_targets
return json_data
def convert_back_degree(json_data: Dict) -> Dict:
"""Convert gnpy yang format back to legacy json topology format.
:param json_data: The input JSON topology data to convert back.
:type json_data: Dict
:return: the converted JSON data
:rtype: Dict
"""
for elem in json_data[ELEMENTS_KEY]:
if elem['type'] != ROADM_KEY or PARAMS_KEY not in elem:
continue
power_targets = elem[PARAMS_KEY].pop('per_degree_power_targets', None)
if not power_targets:
continue
# Process each power target
process_power_targets(elem, power_targets)
return json_data
def process_power_targets(elem: Dict, power_targets: List[Dict]) -> None:
"""Process power targets and update element parameters.
:param elem: The element to update
:type elem: Dict
:param power_targets: List of power target configurations
:type power_targets: List[Dict]
"""
equalization_types = [
'per_degree_pch_out_db',
'per_degree_psd_out_mWperGHz',
'per_degree_psd_out_mWperSlotWidth'
]
for target in power_targets:
degree_uid = target[DEGREE_KEY]
for eq_type in equalization_types:
if eq_type not in target:
continue
# Initialize the equalization type dict if needed
if eq_type not in elem[PARAMS_KEY]:
elem[PARAMS_KEY][eq_type] = {}
# Set the value for this degree
elem[PARAMS_KEY][eq_type][degree_uid] = target[eq_type]
def convert_loss_coeff_list(json_data: Dict) -> Dict:
"""Convert legacy json topology format to gnpy yang format revision 2025-01-20:
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: Dict
"""
for elem in json_data[ELEMENTS_KEY]:
if PARAMS_KEY in elem and LOSS_COEF_KEY in elem[PARAMS_KEY] \
and isinstance(elem[PARAMS_KEY][LOSS_COEF_KEY], dict):
loss_coef_per_frequency = elem[PARAMS_KEY].pop(LOSS_COEF_KEY)
loss_coef_list = loss_coef_per_frequency.pop('loss_coef_value', None)
frequency_list = loss_coef_per_frequency.pop('frequency', None)
if loss_coef_list:
new_loss_coef_per_frequency = [{'frequency': f, 'loss_coef_value': v}
for f, v in zip(frequency_list, loss_coef_list)]
elem[PARAMS_KEY][LOSS_COEF_KEY_PER_FREQ] = new_loss_coef_per_frequency
return json_data
def convert_back_loss_coeff_list(json_data: Dict) -> Dict:
"""Convert gnpy yang format revision 2025-01-20 back to legacy json topology format
:param json_data: The input JSON topology data to convert back
:type json_data: Dict
:return: the converted JSON data
:rtype: Dict
"""
for elem in json_data[ELEMENTS_KEY]:
if PARAMS_KEY in elem and LOSS_COEF_KEY_PER_FREQ in elem[PARAMS_KEY]:
loss_coef_per_frequency = elem[PARAMS_KEY].pop(LOSS_COEF_KEY_PER_FREQ)
if loss_coef_per_frequency:
new_loss_coef_per_frequency = {
'frequency': [item['frequency'] for item in loss_coef_per_frequency],
'loss_coef_value': [item['loss_coef_value'] for item in loss_coef_per_frequency]}
elem[PARAMS_KEY]['loss_coef'] = new_loss_coef_per_frequency
return json_data
def convert_design_band(json_data: Dict) -> Dict:
"""Convert legacy json topology format to gnpy yang format revision 2025-01-20:
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: Dict
"""
for elem in json_data[ELEMENTS_KEY]:
if elem['type'] == ROADM_KEY and PARAMS_KEY in elem:
new_targets = []
targets = elem[PARAMS_KEY].pop('per_degree_design_bands', None)
if targets:
new_targets.extend([{DEGREE_KEY: degree, 'design_bands': target}
for degree, target in targets.items()])
if new_targets:
elem[PARAMS_KEY]['per_degree_design_bands_targets'] = new_targets
return json_data
def convert_back_design_band(json_data: Dict) -> Dict:
"""Convert gnpy yang format revision 2025-01-20 back to legacy json topology format
:param json_data: The input JSON topology data to convert back
:type json_data: Dict
:return: the converted JSON data
:rtype: Dict
"""
for elem in json_data[ELEMENTS_KEY]:
if elem['type'] == ROADM_KEY and PARAMS_KEY in elem:
targets = elem[PARAMS_KEY].pop('per_degree_design_bands_targets', None)
if targets:
design_bands = {}
for target in targets:
design_bands[target[DEGREE_KEY]] = target['design_bands']
if design_bands:
elem[PARAMS_KEY]['per_degree_design_bands'] = design_bands
return json_data
def convert_range_to_dict(range_values: List[float]) -> Dict[str, float]:
"""Convert a range list to a dictionary format:
:param range_values: range of loat values defined with the format [min, max, step].
:type range_value: List[float]
:return: range formatted as a dict {"min_value": min, "max_value": max, "step": step}
:rtype: Dict[str, float]
"""
return {
'min_value': range_values[0],
'max_value': range_values[1],
'step': range_values[2]
}
def process_span_data(span: Dict) -> None:
"""Convert Span data with range in dict format
:param span: The span data to process.
:type span: Dict
"""
if 'delta_power_range_dict_db' in span:
return
if 'delta_power_range_db' not in span:
raise KeyError('delta_power_range or delta_power_range_dict_db missing in Span dict.')
delta_power_range_db = span.get('delta_power_range_db', [0, 0, 0])
span['delta_power_range_dict_db'] = convert_range_to_dict(delta_power_range_db)
del span['delta_power_range_db']
def process_si_data(si: Dict) -> None:
"""Convert Span data with range in dict format
:param si: The span data to process.
:type si: Dict
"""
if 'power_range_dict_db' in si:
return
if 'power_range_db' not in si:
raise KeyError('power_range_db or power_range_dict_db missing in SI dict.')
power_range_db = si.get('power_range_db', [0, 0, 0])
si['power_range_dict_db'] = convert_range_to_dict(power_range_db)
del si['power_range_db']
def convert_delta_power_range(json_data: Dict) -> Dict:
"""Convert legacy json equipment format to GNPy yang format revision 2025-01-20
:param json_data: the input JSON data to convert.
:type json_data: Dict
:return: The converted JSON data.
:rtype: Dict
"""
if 'Span' in json_data:
for span in json_data['Span']:
process_span_data(span)
if 'SI' in json_data:
for si in json_data['SI']:
process_si_data(si)
return json_data
def convert_back_delta_power_range(json_data: Dict) -> Dict:
"""Convert Yang JSON revision 2025-01-20 equipment format to legacy GNPy format.
:param json_data: the input JSON data to convert.
:type json_data: Dict
:return: The converted JSON data.
:rtype: Dict
"""
if 'Span' in json_data and 'delta_power_range_dict_db' in json_data['Span'][0]:
delta_power_range_db = json_data['Span'][0]['delta_power_range_dict_db']
json_data['Span'][0]['delta_power_range_db'] = [
delta_power_range_db['min_value'],
delta_power_range_db['max_value'],
delta_power_range_db['step']]
del json_data['Span'][0]['delta_power_range_dict_db']
if 'SI' in json_data and 'power_range_dict_db' in json_data['SI'][0]:
power_range_db = json_data['SI'][0]['power_range_dict_db']
json_data['SI'][0]['power_range_db'] = [
power_range_db['min_value'],
power_range_db['max_value'],
power_range_db['step']]
del json_data['SI'][0]['power_range_dict_db']
return json_data
def add_missing_default_type_variety(json_data: Dict) -> Dict:
"""Case of ROADM: legacy does not enforce type_variety to be present.
This utils ensures that 'default' type_variety is inserted if the key is missing.
:param json_data: the input JSON data to convert.
:type json_data: Dict
:return: The converted JSON data.
:rtype: Dict
"""
if 'Roadm' not in json_data:
return json_data
for i, elem in enumerate(json_data['Roadm']):
if 'type_variety' not in elem:
# make sure type_variety is the first key in the elem
temp = {'type_variety': 'default'}
temp.update(elem)
json_data['Roadm'][i] = temp
break
return json_data
def remove_null_region_city(json_data: Dict) -> Dict:
"""if present, name should not be None.
:param json_data: the input JSON data to convert.
:type json_data: Dict
:return: The converted JSON data.
:rtype: Dict
"""
for elem in json_data[ELEMENTS_KEY]:
if "metadata" in elem and "location" in elem[METADATA_KEY]:
for name in ['city', 'region']:
if name in elem[METADATA_KEY][LOCATION_KEY] \
and elem[METADATA_KEY][LOCATION_KEY][name] is None:
elem[METADATA_KEY][LOCATION_KEY][name] = ""
return json_data
def remove_union_that_fail(json_data: Dict) -> Dict:
"""Convert GNPy legacy JSON request format to GNPy yang format revision 2025-01-20
If present "N": or "M": should not contain empy data.
If present max-nb-of-channel should not contain empty data.
:param json_data: the input JSON data to convert.
:type json_data: Dict
:return: The converted JSON data.
:rtype: Dict
"""
for elem in json_data[PATH_REQUEST_KEY]:
te = elem['path-constraints']['te-bandwidth']
freq_slot = te.get('effective-freq-slot', None)
if freq_slot:
for slot in freq_slot:
if slot.get('N', None) is None:
slot.pop('N', None)
if slot.get('M', None) is None:
slot.pop('M', None)
if not slot:
te['effective-freq-slot'].remove(slot)
if not te['effective-freq-slot']:
te.pop('effective-freq-slot', None)
for attribute in ['max-nb-of-channel', 'trx_mode', 'output-power']:
if te.get(attribute) is None:
te.pop(attribute, None)
return json_data
def convert_none_to_empty(json_data: Any):
"""Convert all instances of None in the input to [None].
This function recursively traverses the input and replaces any None
values with a list containing None. If the input is already a list
containing None, it returns the input unchanged.
:param json_data: The input data to process, which can be of any type.
:type json_data: Any
:return: A new representation of the input with None values replaced by [None].
:rtype: Any
:example:
>>> a = {'uid': '[930/WRT-2-2-SIG=>923/WRT-1-9-SIG]-923/AMP-1-13', 'type_variety': 'AMP',
... 'metadata': {'location': {'latitude': 0.0, 'longitude': 0.0, 'city': 'Zion', 'region': ''}},
... 'type': 'Multiband_amplifier', 'amplifiers': [{'type_variety': 'AMP_LOW_C',
... 'operational': {'gain_target': 12.22, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0,
... 'f_min': 191.3, 'f_max': 196.1}}, {'type_variety': 'AMP_LOW_L',
... 'operational': {'gain_target': 12.05, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0,
... 'f_min': 186.1, 'f_max': 190.9}}]}
>>> convert_none_to_empty(a)
{'uid': '[930/WRT-2-2-SIG=>923/WRT-1-9-SIG]-923/AMP-1-13', 'type_variety': 'AMP', \
'metadata': {'location': {'latitude': 0.0, 'longitude': 0.0, 'city': 'Zion', 'region': ''}}, \
'type': 'Multiband_amplifier', 'amplifiers': [{'type_variety': 'AMP_LOW_C', \
'operational': {'gain_target': 12.22, 'delta_p': 4.19, 'out_voa': [None], 'tilt_target': 0.0, \
'f_min': 191.3, 'f_max': 196.1}}, {'type_variety': 'AMP_LOW_L', \
'operational': {'gain_target': 12.05, 'delta_p': 4.19, 'out_voa': [None], 'tilt_target': 0.0, \
'f_min': 186.1, 'f_max': 190.9}}]}
"""
if json_data == [None]:
# already conformed
return json_data
if isinstance(json_data, dict):
for key, value in json_data.items():
json_data[key] = convert_none_to_empty(value)
elif isinstance(json_data, list):
for i, elem in enumerate(json_data):
json_data[i] = convert_none_to_empty(elem)
elif json_data is None:
return [None]
return json_data
def convert_empty_to_none(json_data: Any):
"""Convert all instances of [None] in the input to None.
This function recursively traverses the input data and replaces any
lists containing a single None element with None. If the input is
already None, it returns None unchanged.
:param json_data: The input data to process, which can be of any type.
:type json_data: Any
:return: A new representation of the input with [None] replaced by None.
:rtype: Any
>>> json_data = {
... "uid": "[930/WRT-2-2-SIG=>923/WRT-1-9-SIG]-923/AMP-1-13",
... "type_variety": "AMP",
... "metadata": {
... "location": {
... "latitude": 0.000000,
... "longitude": 0.000000,
... "city": "Zion",
... "region": ""
... }
... },
... "type": "Multiband_amplifier",
... "amplifiers": [{
... "type_variety": "AMP_LOW_C",
... "operational": {
... "gain_target": 12.22,
... "delta_p": 4.19,
... "out_voa": [None],
... "tilt_target": 0.00,
... "f_min": 191.3,
... "f_max": 196.1
... }
... }, {
... "type_variety": "AMP_LOW_L",
... "operational": {
... "gain_target": 12.05,
... "delta_p": 4.19,
... "out_voa": [None],
... "tilt_target": 0.00,
... "f_min": 186.1,
... "f_max": 190.9
... }
... }
... ]
... }
>>> convert_empty_to_none(json_data)
{'uid': '[930/WRT-2-2-SIG=>923/WRT-1-9-SIG]-923/AMP-1-13', 'type_variety': 'AMP', \
'metadata': {'location': {'latitude': 0.0, 'longitude': 0.0, 'city': 'Zion', 'region': ''}}, \
'type': 'Multiband_amplifier', 'amplifiers': [{'type_variety': 'AMP_LOW_C', \
'operational': {'gain_target': 12.22, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0, \
'f_min': 191.3, 'f_max': 196.1}}, {'type_variety': 'AMP_LOW_L', \
'operational': {'gain_target': 12.05, 'delta_p': 4.19, 'out_voa': None, 'tilt_target': 0.0, \
'f_min': 186.1, 'f_max': 190.9}}]}
"""
if isinstance(json_data, dict):
for key, value in json_data.items():
json_data[key] = convert_empty_to_none(value)
elif isinstance(json_data, list):
if len(json_data) == 1 and json_data[0] is None:
return None
for i, elem in enumerate(json_data):
json_data[i] = convert_empty_to_none(elem)
return json_data
def remove_namespace_context(json_data: Union[Dict, List, float, int, str, bool, None], namespace: str) \
-> Union[Dict, List, float, int, str, bool, None]:
"""Serialisation with yang introduces a namespace in values that
are defined as identity. this function filter them out.
:param json_data: The input JSON topology data to process.
:type json_data: Union[Dict, List, float, int, str, bool, None]
:param namespace: a namespace string
:type namespace: str
:return: the converted JSON data
:rtype: Union[Dict, List, float, int, str, bool, None]
>>> a = [{"a": 123, "b": "123:alkdje"}, {"a": 456, "c": "123", "d": "123:123"}]
>>> remove_namespace_context(a, "123:")
[{'a': 123, 'b': 'alkdje'}, {'a': 456, 'c': '123', 'd': '123'}]
"""
if isinstance(json_data, dict):
for key, value in json_data.items():
json_data[key] = remove_namespace_context(value, namespace)
elif isinstance(json_data, list):
for i, elem in enumerate(json_data):
json_data[i] = remove_namespace_context(elem, namespace)
elif isinstance(json_data, str) and namespace in json_data:
return json_data.split(namespace)[1]
return json_data
def convert_nf_coef(json_data: Dict) -> Dict:
"""Convert gnpy legacy format yang topology format.
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: dict
"""
if 'Edfa' not in json_data:
return json_data
for edfa in json_data['Edfa']:
if 'nf_coef' in edfa and not isinstance(edfa['nf_coef'][0], dict):
nf_coef = edfa.pop('nf_coef')
new_nf_coef = [{'coef_order': i, 'nf_coef': c} for i, c in enumerate(nf_coef)]
edfa['nf_coef'] = new_nf_coef
return json_data
def convert_back_nf_coef(json_data: Dict) -> Dict:
"""Convert gnpy yang format back to legacy json topology format.
:param json_data: The input JSON topology data to convert back.
:type json_data: Dict
:return: the converted back JSON data
:rtype: dict
"""
if 'Edfa' not in json_data:
return json_data
for edfa in json_data['Edfa']:
if 'nf_coef' in edfa and isinstance(edfa['nf_coef'][0], dict):
nf_coef = edfa.pop('nf_coef')
sorted_nf_coef = sorted(nf_coef, key=lambda x: x['coef_order'])
new_nf_coef = [c['nf_coef'] for c in sorted_nf_coef]
edfa['nf_coef'] = new_nf_coef
return json_data
def convert_nf_fit_coef(json_data: Dict) -> Dict:
"""Convert gnpy legacy format yang topology format.
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: dict
"""
if 'nf_fit_coeff' in json_data and not isinstance(json_data['nf_fit_coeff'][0], dict):
nf_coef = json_data.pop('nf_fit_coeff')
new_nf_coef = [{'coef_order': i, 'nf_coef': c} for i, c in enumerate(nf_coef)]
json_data['nf_fit_coeff'] = new_nf_coef
return json_data
def convert_back_nf_fit_coef(json_data: Dict) -> Dict:
"""Convert gnpy yang format back to legacy json topology format.
:param json_data: The input JSON topology data to convert back.
:type json_data: Dict
:return: the converted back JSON data
:rtype: dict
"""
if 'nf_fit_coeff' in json_data and isinstance(json_data['nf_fit_coeff'][0], dict):
nf_coef = json_data.pop('nf_fit_coeff')
sorted_nf_coef = sorted(nf_coef, key=lambda x: x['coef_order'])
new_nf_coef = [c['nf_coef'] for c in sorted_nf_coef]
json_data['nf_fit_coeff'] = new_nf_coef
return json_data
def convert_raman_coef(json_data: Dict) -> Dict:
"""Convert gnpy legacy format yang topology format.
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: dict
"""
for elem in json_data[ELEMENTS_KEY]:
if PARAMS_KEY in elem and RAMAN_COEF_KEY in elem[PARAMS_KEY] \
and 'g0' in elem[PARAMS_KEY][RAMAN_COEF_KEY]:
raman_coef = elem[PARAMS_KEY].pop(RAMAN_COEF_KEY)
g0_list = raman_coef.pop('g0', [])
frequency_offset_list = raman_coef.pop('frequency_offset', [])
if frequency_offset_list:
new_raman_coef = {'reference_frequency': raman_coef['reference_frequency'],
'g0_per_frequency': [{'frequency_offset': f, 'g0': v}
for f, v in zip(frequency_offset_list, g0_list)]}
elem[PARAMS_KEY][RAMAN_COEF_KEY] = new_raman_coef
return json_data
def convert_back_raman_coef(json_data: Dict) -> Dict:
"""Convert gnpy yang format back to legacy json topology format.
:param json_data: The input JSON topology data to convert back.
:type json_data: Dict
:return: the converted back JSON data
:rtype: dict
"""
for elem in json_data[ELEMENTS_KEY]:
if PARAMS_KEY in elem and RAMAN_COEF_KEY in elem[PARAMS_KEY] \
and 'g0_per_frequency' in elem[PARAMS_KEY][RAMAN_COEF_KEY]:
raman_coef = elem[PARAMS_KEY].pop(RAMAN_COEF_KEY)
g0_list = [g['g0'] for g in raman_coef.pop('g0_per_frequency', [])]
frequency_offset_list = [f['frequency_offset'] for f in raman_coef.pop('g0_per_frequency', [])]
if frequency_offset_list:
new_raman_coef = {'reference_frequency': raman_coef['reference_frequency'],
'g0': g0_list,
'frequency_offset': frequency_offset_list}
elem[PARAMS_KEY][RAMAN_COEF_KEY] = new_raman_coef
return json_data
def convert_raman_efficiency(json_data: Dict) -> Dict:
"""Convert gnpy legacy format yang topology format.
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: dict
"""
if 'RamanFiber' not in json_data:
return json_data
for fiber_eqpt in json_data['RamanFiber']:
if RAMAN_EFFICIENCY_KEY in fiber_eqpt \
and 'cr' in fiber_eqpt[RAMAN_EFFICIENCY_KEY]:
raman_efficiency = fiber_eqpt.pop(RAMAN_EFFICIENCY_KEY)
cr_list = raman_efficiency.pop('cr', [])
frequency_offset_list = raman_efficiency.pop('frequency_offset', [])
if frequency_offset_list:
new_raman_efficiency = [{'frequency_offset': f, 'cr': v}
for f, v in zip(frequency_offset_list, cr_list)]
fiber_eqpt[RAMAN_EFFICIENCY_KEY] = new_raman_efficiency
return json_data
def convert_back_raman_efficiency(json_data: Dict) -> Dict:
"""Convert gnpy yang format back to legacy json topology format.
:param json_data: The input JSON topology data to convert back.
:type json_data: Dict
:return: the converted back JSON data
:rtype: dict
"""
if 'RamanFiber' not in json_data:
return json_data
for fiber_eqpt in json_data['RamanFiber']:
if RAMAN_EFFICIENCY_KEY in fiber_eqpt and isinstance(fiber_eqpt[RAMAN_EFFICIENCY_KEY], list):
raman_efficiency = fiber_eqpt.pop(RAMAN_EFFICIENCY_KEY)
cr_list = [c['cr'] for c in raman_efficiency]
frequency_offset_list = [f['frequency_offset'] for f in raman_efficiency]
if frequency_offset_list:
old_raman_efficiency = {'cr': cr_list,
'frequency_offset': frequency_offset_list}
fiber_eqpt[RAMAN_COEF_KEY] = old_raman_efficiency
return json_data
def reorder_keys(data_list: List, key: str) -> List:
"""Roarder item in a dict placing the key (the key of a list with YANG meaning) first.
This is required because oopt-gnpy-libyang does not recognize the key when it is not placed first in the data node.
:param json_data: the list of dictionary items.
:type data_list: List
:return: the converted back JSON data
:rtype: List
"""
for item in data_list:
index_value = item.pop(key, None)
if index_value is not None:
# Place key first
new_item = {key: index_value}
# add other items
new_item.update(item)
# replace old element with new element
for k in list(item.keys()):
item.pop(k)
item.update(new_item)
return data_list
# next functions because ly requires that the key of a list be in the first position in the item
def reorder_route_objects(json_data: Dict) -> Dict:
"""Make sure that the index of a route object is placed first in the object.
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: dict
"""
for request in json_data['path-request']:
if "explicit-route-objects" in request:
request["explicit-route-objects"]["route-object-include-exclude"] = \
reorder_keys(request["explicit-route-objects"]["route-object-include-exclude"], "index")
return json_data
def reorder_lumped_losses_objects(json_data: Dict) -> Dict:
"""Make sure that the position of a lumped loss object is placed first in the object.
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: dict
"""
for element in json_data['elements']:
if "params" in element and "lumped_losses" in element["params"]:
element["params"]["lumped_losses"] = reorder_keys(element["params"]["lumped_losses"], "position")
return json_data
def reorder_raman_pumps(json_data: Dict) -> Dict:
"""Make sure that the frequency of a Raman pum object is placed first in the object.
:param json_data: The input JSON topology data to convert.
:type json_data: Dict
:return: the converted JSON data
:rtype: dict
"""
for element in json_data['elements']:
if "operational" in element and "raman_pumps" in element["operational"]:
element["operational"]["raman_pumps"] = reorder_keys(element["operational"]["raman_pumps"], "frequency")
return json_data

View File

@@ -1,3 +1,3 @@
'''
"""
Tracking :py:mod:`.request` for spectrum and their :py:mod:`.spectrum_assignment`.
'''
"""

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.topology.request: path computation functionality
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.topology.request
=====================
@@ -16,34 +21,40 @@ See: draft-ietf-teas-yang-path-computation-01.txt
"""
from collections import namedtuple, OrderedDict
from typing import List
from logging import getLogger
from networkx import (dijkstra_path, NetworkXNoPath,
all_simple_paths, shortest_simple_paths)
from networkx.utils import pairwise
from numpy import mean, argmin
from gnpy.core.elements import Transceiver, Roadm
from gnpy.core.utils import lin2db
from gnpy.core.info import create_input_spectral_information
from gnpy.core.elements import Transceiver, Roadm, Edfa, Multiband_amplifier
from gnpy.core.utils import lin2db, unique_ordered, find_common_range
from gnpy.core.info import create_input_spectral_information, carriers_to_spectral_information, \
demuxed_spectral_information, muxed_spectral_information, SpectralInformation
from gnpy.core import network as network_module
from gnpy.core.exceptions import ServiceError, DisjunctionError
import gnpy.core.ansi_escapes as ansi_escapes
from copy import deepcopy
from csv import writer
from math import ceil
LOGGER = getLogger(__name__)
RequestParams = namedtuple('RequestParams', 'request_id source destination bidir trx_type'
' trx_mode nodes_list loose_list spacing power nb_channel f_min'
' f_max format baud_rate OSNR penalties bit_rate'
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot')
' roll_off tx_osnr min_spacing cost path_bandwidth effective_freq_slot'
' equalization_offset_db, tx_power')
DisjunctionParams = namedtuple('DisjunctionParams', 'disjunction_id relaxable link_diverse'
' node_diverse disjunctions_req')
class PathRequest:
""" the class that contains all attributes related to a request
"""
"""the class that contains all attributes related to a request"""
def __init__(self, *args, **params):
params = RequestParams(**params)
self.request_id = params.request_id
@@ -66,12 +77,15 @@ class PathRequest:
self.bit_rate = params.bit_rate
self.roll_off = params.roll_off
self.tx_osnr = params.tx_osnr
self.tx_power = params.tx_power
self.min_spacing = params.min_spacing
self.cost = params.cost
self.path_bandwidth = params.path_bandwidth
if params.effective_freq_slot is not None:
self.N = params.effective_freq_slot['N']
self.M = params.effective_freq_slot['M']
self.N = [s['N'] for s in params.effective_freq_slot]
self.M = [s['M'] for s in params.effective_freq_slot]
self.initial_spectrum = None
self.offset_db = params.equalization_offset_db
def __str__(self):
return '\n\t'.join([f'{type(self).__name__} {self.request_id}',
@@ -94,7 +108,8 @@ class PathRequest:
f'baud_rate:\t{temp} Gbaud',
f'bit_rate:\t{temp2} Gb/s',
f'spacing:\t{self.spacing * 1e-9} GHz',
f'power: \t{round(lin2db(self.power)+30, 2)} dBm',
f'power: \t{round(lin2db(self.power) + 30, 2)} dBm',
f'tx_power_dbm: \t{round(lin2db(self.tx_power) + 30, 2)} dBm',
f'nb channels: \t{self.nb_channel}',
f'path_bandwidth: \t{round(self.path_bandwidth * 1e-9, 2)} Gbit/s',
f'nodes-list:\t{self.nodes_list}',
@@ -103,8 +118,7 @@ class PathRequest:
class Disjunction:
""" the class that contains all attributes related to disjunction constraints
"""
"""the class that contains all attributes related to disjunction constraints"""
def __init__(self, *args, **params):
params = DisjunctionParams(**params)
@@ -149,8 +163,7 @@ class ResultElement:
@property
def detailed_path_json(self):
""" a function that builds path object for normal and blocking cases
"""
"""a function that builds path object for normal and blocking cases"""
index = 0
pro_list = []
for element in self.computed_path:
@@ -174,10 +187,10 @@ class ResultElement:
temp = {
'path-route-object': {
'index': index,
"label-hop": {
"N": self.path_request.N,
"M": self.path_request.M
},
"label-hop": [{
"N": n,
"M": m
} for n, m in zip(self.path_request.N, self.path_request.M)],
}
}
pro_list.append(temp)
@@ -206,11 +219,9 @@ class ResultElement:
@property
def path_properties(self):
""" a function that returns the path properties (metrics, crossed elements) into a dict
"""
"""a function that returns the path properties (metrics, crossed elements) into a dict"""
def path_metric(pth, req):
""" creates the metrics dictionary
"""
"""creates the metrics dictionary"""
return [
{
'metric-type': 'SNR-bandwidth',
@@ -252,8 +263,7 @@ class ResultElement:
@property
def pathresult(self):
""" create the result dictionnary (response for a request)
"""
"""create the result dictionnary (response for a request)"""
try:
if self.path_request.blocking_reason in BLOCKING_NOPATH:
response = {
@@ -291,7 +301,6 @@ def compute_constrained_path(network, req):
# been corrected and harmonized before
msg = (f'Request {req.request_id} malformed list of nodes: last node should '
'be destination trx')
LOGGER.critical(msg)
raise ValueError()
trx = [n for n in network if isinstance(n, Transceiver)]
@@ -301,15 +310,16 @@ def compute_constrained_path(network, req):
nodes_list = []
for node in req.nodes_list[:-1]:
nodes_list.append(next(el for el in network if el.uid == node))
total_path = explicit_path(nodes_list, source, destination, network)
if total_path is not None:
return total_path
try:
path_generator = shortest_simple_paths(network, source, destination, weight='weight')
total_path = next(path for path in path_generator if ispart(nodes_list, path))
except NetworkXNoPath:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path from'
f' {source.uid} to node: {destination.uid} in network topology')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH'
total_path = []
except StopIteration:
@@ -318,82 +328,114 @@ def compute_constrained_path(network, req):
# last node which is the transceiver)
# if all nodes i n node_list are LOOSE constraint, skip the constraints and find
# a path w/o constraints, else there is no possible path
print(f'{ansi_escapes.yellow}Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology{ansi_escapes.reset}')
LOGGER.warning(f'Request {req.request_id} could not find a path crossing '
f'{[el.uid for el in nodes_list[:-1]]} in network topology')
if 'STRICT' not in req.loose_list[:-1]:
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user_'
f'include node constraints{ansi_escapes.reset}')
LOGGER.info(msg)
print(f'constraint ignored')
msg = (f'Request {req.request_id} could not find a path with user_'
f'include node constraints. Constraint ignored')
LOGGER.warning(msg)
total_path = dijkstra_path(network, source, destination, weight='weight')
else:
# one STRICT makes the whole list STRICT
msg = (f'{ansi_escapes.yellow}Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed{ansi_escapes.reset}')
msg = (f'Request {req.request_id} could not find a path with user '
f'include node constraints.\nNo path computed')
LOGGER.critical(msg)
print(msg)
req.blocking_reason = 'NO_PATH_WITH_CONSTRAINT'
total_path = []
return total_path
def filter_si(path: list, equipment: dict, si: SpectralInformation) -> SpectralInformation:
"""Filter spectral information based on the amplifiers common range"""
# First retrieve f_min, f_max spectrum according to amplifiers' spectrum on the path
common_range = find_elements_common_range(path, equipment)
# filter out frequencies that should not be created
filtered_si = []
for band in common_range:
temp = demuxed_spectral_information(si, band)
if temp:
filtered_si.append(temp)
if not filtered_si:
raise ValueError('Defined propagation band does not match amplifiers band.')
return muxed_spectral_information(filtered_si)
def propagate(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
"""propagates signals in each element according to initial spectrum set by user
Spectrum is specified in request through f_min, f_max and spacing, or initial_spectrum
and amps frequency band on the path is used to filter out frequencies"""
# generates spectrum based on request
if req.initial_spectrum is not None:
si = carriers_to_spectral_information(initial_spectrum=req.initial_spectrum, power=req.power)
else:
si = create_input_spectral_information(
f_min=req.f_min, f_max=req.f_max, roll_off=req.roll_off, baud_rate=req.baud_rate,
spacing=req.spacing, tx_osnr=req.tx_osnr, tx_power=req.tx_power, delta_pdb=req.offset_db)
# filter out frequencies that should not be created
si = filter_si(path, equipment, si)
roadm_osnr = []
for i, el in enumerate(path):
if isinstance(el, Roadm):
si = el(si, degree=path[i+1].uid)
si = el(si, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
roadm_osnr.append(el.get_impairment('roadm-osnr', si.frequency,
from_degree=path[i - 1].uid, degree=path[i + 1].uid))
else:
si = el(si)
path[0].update_snr(req.tx_osnr)
path[0].update_snr(si.tx_osnr)
path[0].calc_penalties(req.penalties)
if any(isinstance(el, Roadm) for el in path):
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
else:
path[-1].update_snr(req.tx_osnr)
roadm_osnr.append(si.tx_osnr)
path[-1].update_snr(*roadm_osnr)
path[-1].calc_penalties(req.penalties)
return si
def propagate_and_optimize_mode(path, req, equipment):
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
# step 1: create an ordered list of modes based on baudrate
baudrate_to_explore = list(set([this_mode['baud_rate']
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# step 1: create an ordered list of modes based on baudrate and power offset
# order higher baudrate with higher power offset first
baudrate_offset_to_explore = list(set([(this_mode['baud_rate'], this_mode['equalization_offset_db'])
for this_mode in equipment['Transceiver'][req.tsp].mode
if float(this_mode['min_spacing']) <= req.spacing]))
# TODO be carefull on limits cases if spacing very close to req spacing eg 50.001 50.000
baudrate_to_explore = sorted(baudrate_to_explore, reverse=True)
if baudrate_to_explore:
baudrate_offset_to_explore = sorted(baudrate_offset_to_explore, reverse=True)
if baudrate_offset_to_explore:
# at least 1 baudrate can be tested wrt spacing
for this_br in baudrate_to_explore:
for (this_br, this_offset) in baudrate_offset_to_explore:
modes_to_explore = [this_mode for this_mode in equipment['Transceiver'][req.tsp].mode
if this_mode['baud_rate'] == this_br and
float(this_mode['min_spacing']) <= req.spacing]
if this_mode['baud_rate'] == this_br
and float(this_mode['min_spacing']) <= req.spacing]
modes_to_explore = sorted(modes_to_explore,
key=lambda x: x['bit_rate'], reverse=True)
# print(modes_to_explore)
key=lambda x: (x['bit_rate'], x['equalization_offset_db']), reverse=True)
# step2: computes propagation for each baudrate: stop and select the first that passes
# TODO: the case of roll of is not included: for now use SI one
# TODO: the case of roll off is not included: for now use SI one
# TODO: if the loop in mode optimization does not have a feasible path, then bugs
spc_info = create_input_spectral_information(req.f_min, req.f_max,
equipment['SI']['default'].roll_off,
this_br, req.power, req.spacing)
if req.initial_spectrum is not None:
# this case is not yet handled: spectrum can not be defined for the path-request-run function
# and this function is only called in this case. so coming here should not be considered yet.
msg = f'Request: {req.request_id} contains a unexpected initial_spectrum.'
raise ServiceError(msg)
spc_info = create_input_spectral_information(f_min=req.f_min, f_max=req.f_max,
roll_off=equipment['SI']['default'].roll_off,
baud_rate=this_br, spacing=req.spacing,
delta_pdb=this_offset, tx_osnr=req.tx_osnr,
tx_power=req.tx_power)
spc_info = filter_si(path, equipment, spc_info)
roadm_osnr = []
for i, el in enumerate(path):
if isinstance(el, Roadm):
spc_info = el(spc_info, degree=path[i+1].uid)
spc_info = el(spc_info, degree=path[i + 1].uid, from_degree=path[i - 1].uid)
roadm_osnr.append(el.get_impairment('roadm-osnr', spc_info.frequency,
from_degree=path[i - 1].uid, degree=path[i + 1].uid))
else:
spc_info = el(spc_info)
for this_mode in modes_to_explore:
if path[-1].snr is not None:
path[0].update_snr(this_mode['tx_osnr'])
path[0].calc_penalties(this_mode['penalties'])
if any(isinstance(el, Roadm) for el in path):
path[-1].update_snr(this_mode['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
else:
path[-1].update_snr(this_mode['tx_osnr'])
roadm_osnr.append(this_mode['tx_osnr'])
path[-1].update_snr(*roadm_osnr)
# remove the tx_osnr from roadm_osnr list for the next iteration
del roadm_osnr[-1]
path[-1].calc_penalties(this_mode['penalties'])
if round(min(path[-1].snr_01nm - path[-1].total_penalty), 2) \
> this_mode['OSNR'] + equipment['SI']['default'].sys_margins:
@@ -407,22 +449,19 @@ def propagate_and_optimize_mode(path, req, equipment):
# returns the last propagated path and mode
msg = f'\tWarning! Request {req.request_id}: no mode satisfies path SNR requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_MODE'
return path, last_explored_mode
else:
# no baudrate satisfying spacing
msg = f'\tWarning! Request {req.request_id}: no baudrate satisfies spacing requirement.\n'
print(msg)
LOGGER.info(msg)
LOGGER.warning(msg)
req.blocking_reason = 'NO_FEASIBLE_BAUDRATE_WITH_SPACING'
return [], None
def jsontopath_metric(path_metric):
""" a functions that reads resulting metric from json string
"""
"""a functions that reads resulting metric from json string"""
output_snr = next(e['accumulative-value']
for e in path_metric if e['metric-type'] == 'SNR-0.1nm')
output_snrbandwidth = next(e['accumulative-value']
@@ -440,9 +479,7 @@ def jsontopath_metric(path_metric):
def jsontoparams(my_p, tsp, mode, equipment):
""" a function that derives optical params from transponder type and mode
supports the no mode case
"""
"""a function that derives optical params from transponder type and mode supports the no mode case"""
temp = []
for elem in my_p['path-properties']['path-route-objects']:
if 'num-unnum-hop' in elem['path-route-object']:
@@ -452,8 +489,8 @@ def jsontoparams(my_p, tsp, mode, equipment):
temp2 = []
for elem in my_p['path-properties']['path-route-objects']:
if 'label-hop' in elem['path-route-object'].keys():
temp2.append(f'{elem["path-route-object"]["label-hop"]["N"]}, ' +
f'{elem["path-route-object"]["label-hop"]["M"]}')
temp2.append(f'{[e["N"] for e in elem["path-route-object"]["label-hop"]]}, '
+ f'{[e["M"] for e in elem["path-route-object"]["label-hop"]]}')
# OrderedDict.fromkeys returns the unique set of strings.
# TODO: if spectrum changes along the path, we should be able to give the segments
# eg for regeneration case
@@ -477,10 +514,10 @@ def jsontoparams(my_p, tsp, mode, equipment):
def jsontocsv(json_data, equipment, fileout):
""" reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""reads json path result file in accordance with:
Yang model for requesting Path Computation
draft-ietf-teas-yang-path-computation-01.txt.
and write results in an CSV file
"""
mywriter = writer(fileout)
mywriter.writerow(('response-id', 'source', 'destination', 'path_bandwidth', 'Pass?',
@@ -815,13 +852,13 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
if not ispart(allpaths[id(pth)].req.nodes_list, pth):
testispartok = False
if 'STRICT' in allpaths[id(pth)].req.loose_list:
LOGGER.info(f'removing solution from candidate paths\n{pth}')
LOGGER.debug(f'removing solution from candidate paths\n{pth}')
testispartnokloose = False
break
if testispartok:
temp.append(sol)
elif testispartnokloose:
LOGGER.info(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
LOGGER.debug(f'Adding solution as alternate solution not satisfying constraint\n{pth}')
alternatetemp.append(sol)
if temp:
candidates[this_d.disjunction_id] = temp
@@ -843,9 +880,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# remove duplicated candidates
candidates = remove_candidate(candidates, allpaths, allpaths[id(pth)].req, pth)
else:
msg = f'No disjoint path found with added constraint'
LOGGER.critical(msg)
print(f'{msg}\nComputation stopped.')
msg = 'No disjoint path found with added constraint\nComputation stopped.'
# TODO in this case: replay step 5 with the candidate without constraints
raise DisjunctionError(msg)
@@ -866,8 +901,7 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
def isdisjoint(pth1, pth2):
""" returns 0 if disjoint
"""
"""returns 0 if disjoint"""
edge1 = list(pairwise(pth1))
edge2 = list(pairwise(pth2))
for edge in edge1:
@@ -877,9 +911,9 @@ def isdisjoint(pth1, pth2):
def find_reversed_path(pth):
""" select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""select of intermediate roadms and find the path between them
note that this function may not give an exact result in case of multiple
links between two adjacent nodes.
"""
# TODO add some indication on elements to indicate from which other they
# are the reversed direction. This is partly done with oms indication
@@ -902,9 +936,8 @@ def find_reversed_path(pth):
# concatenation should be [roadma el1 el2 roadmb el3 el4 roadmc]
reversed_path = list(OrderedDict.fromkeys(reversed_path))
else:
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' +\
' can not handle unidir topology. TO DO.'
LOGGER.critical(msg)
msg = f'Error while handling reversed path {pth[-1].uid} to {pth[0].uid}:' \
+ ' can not handle unidir topology. TO DO.'
raise ValueError(msg)
reversed_path.append(pth[0])
@@ -912,9 +945,7 @@ def find_reversed_path(pth):
def ispart(ptha, pthb):
""" the functions takes two paths a and b and retrns True
if all a elements are part of b and in the same order
"""
"""the functions takes two paths a and b and retrns True if all a elements are part of b and in the same order"""
j = 0
for elem in ptha:
if elem in pthb:
@@ -928,8 +959,7 @@ def ispart(ptha, pthb):
def remove_candidate(candidates, allpaths, rqst, pth):
""" filter duplicate candidates
"""
"""filter duplicate candidates"""
# print(f'coucou {rqst.request_id}')
for key, candidate in candidates.items():
temp = candidate.copy()
@@ -944,8 +974,7 @@ def remove_candidate(candidates, allpaths, rqst, pth):
def compare_reqs(req1, req2, disjlist):
""" compare two requests: returns True or False
"""
"""compare two requests: returns True or False"""
dis1 = [d for d in disjlist if req1.request_id in d.disjunctions_req]
dis2 = [d for d in disjlist if req2.request_id in d.disjunctions_req]
same_disj = False
@@ -978,28 +1007,32 @@ def compare_reqs(req1, req2, disjlist):
req1.format == req2.format and \
req1.OSNR == req2.OSNR and \
req1.roll_off == req2.roll_off and \
same_disj and \
getattr(req1, 'N', None) is None and getattr(req2, 'N', None) is None and \
getattr(req1, 'M', None) is None and getattr(req2, 'M', None) is None:
req1.tx_power == req2.tx_power and \
same_disj:
return True
else:
return False
def requests_aggregation(pathreqlist, disjlist):
""" this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
"""this function aggregates requests so that if several requests
exist between same source and destination and with same transponder type
If transponder mode is defined and identical, then also agregates demands.
"""
# todo maybe add conditions on mode ??, spacing ...
# currently if undefined takes the default values
local_list = pathreqlist.copy()
for req in pathreqlist:
for this_r in local_list:
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist):
if req.request_id != this_r.request_id and compare_reqs(req, this_r, disjlist) and\
this_r.tsp_mode is not None:
# aggregate
this_r.path_bandwidth += req.path_bandwidth
this_r.N = this_r.N + req.N
this_r.M = this_r.M + req.M
temp_r_id = this_r.request_id
this_r.request_id = ' | '.join((this_r.request_id, req.request_id))
# remove request from list
local_list.remove(req)
# todo change also disjunction req with new demand
@@ -1016,23 +1049,22 @@ def requests_aggregation(pathreqlist, disjlist):
def correct_json_route_list(network, pathreqlist):
""" all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""all names in list should be exact name in the network, and there is no ambiguity
This function only checks that list is correct, warns user if the name is incorrect and
suppresses the constraint it it is loose or raises an error if it is strict
"""
all_uid = [n.uid for n in network.nodes()]
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
for pathreq in pathreqlist:
if pathreq.source not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' source : {pathreq.source}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' source : {pathreq.source}.'
raise ServiceError(msg)
if pathreq.destination not in transponders:
msg = f'{ansi_escapes.red}Request: {pathreq.request_id}: could not find transponder' +\
f' destination : {pathreq.destination}.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'Request: {pathreq.request_id}: could not find transponder' \
+ f' destination : {pathreq.destination}.'
raise ServiceError(msg)
# silently remove source and dest nodes from the list
@@ -1051,24 +1083,21 @@ def correct_json_route_list(network, pathreqlist):
# if no matching can be found in the network just ignore this constraint
# if it is a loose constraint
# warns the user that this node is not part of the topology
msg = f'{ansi_escapes.yellow}invalid route node specified:\n\t\'{n_id}\',' +\
f' could not use it as constraint, skipped!{ansi_escapes.reset}'
print(msg)
LOGGER.info(msg)
msg = f'invalid route node specified:\n\t\'{n_id}\',' \
+ ' could not use it as constraint, skipped!'
LOGGER.warning(msg)
pathreq.loose_list.pop(pathreq.nodes_list.index(n_id))
pathreq.nodes_list.remove(n_id)
else:
msg = f'{ansi_escapes.red}could not find node:\n\t \'{n_id}\' in network' +\
f' topology. Strict constraint can not be applied.{ansi_escapes.reset}'
LOGGER.critical(msg)
msg = f'could not find node:\n\t \'{n_id}\' in network' \
+ ' topology. Strict constraint can not be applied.'
raise ServiceError(msg)
return pathreqlist
def deduplicate_disjunctions(disjn):
""" clean disjunctions to remove possible repetition
"""
"""clean disjunctions to remove possible repetition"""
local_disjn = disjn.copy()
for elem in local_disjn:
for dis_elem in local_disjn:
@@ -1078,23 +1107,28 @@ def deduplicate_disjunctions(disjn):
return local_disjn
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
""" use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist, redesign=False):
"""use a list but a dictionnary might be helpful to find path based on request_id
TODO change all these req, dsjct, res lists into dict !
"""
path_res_list = []
reversed_path_res_list = []
propagated_reversed_path_res_list = []
total_nb_requests = len(pathreqlist)
if redesign:
LOGGER.warning('Redesign the network for each request channel, '
+ 'using the request channel as the reference channel for the design.')
for i, pathreq in enumerate(pathreqlist):
# use the power specified in requests but might be different from the one
# specified for design the power is an optional parameter for requests
# definition if optional, use the one defines in eqt_config.json
print(f'request {pathreq.request_id}')
print(f'Computing path from {pathreq.source} to {pathreq.destination}')
# adding first node to be clearer on the output
print(f'with path constraint: {[pathreq.source] + pathreq.nodes_list}')
msg = f'\n\trequest {pathreq.request_id}\n' \
+ f'\tComputing path from {pathreq.source} to {pathreq.destination}\n' \
+ f'\twith path constraint: {[pathreq.source] + pathreq.nodes_list}'
# # adding first node to be clearer on the output
# pathlist[i] contains the whole path information for request i
# last element is a transciver and where the result of the propagation is
@@ -1103,8 +1137,19 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# elements to simulate performance, several demands having the same destination
# may use the same transponder for the performance simulation. This is why
# we use deepcopy: to ensure that each propagation is recorded and not overwritten
# reversed path is needed for correct spectrum assignment
if redesign:
# this is the legacy case where network was automatically redesigned using the
# request channel as reference (nb and power used for amplifiers total power out)
reversed_path = []
if pathlist[i]:
reversed_path = find_reversed_path(pathlist[i])
network_nodes_for_redesign = pathlist[i] + reversed_path
network_module.design_network(pathreq, network.subgraph(network_nodes_for_redesign), equipment,
set_connector_losses=False, verbose=False)
total_path = deepcopy(pathlist[i])
print(f'Computed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}')
msg = msg + f'\n\tComputed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}'
LOGGER.info(msg)
# for debug
# print(f'{pathreq.baud_rate} {pathreq.power} {pathreq.spacing} {pathreq.nb_channel}')
if total_path:
@@ -1115,14 +1160,12 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
snr01nm_with_penalty = total_path[-1].snr_01nm - total_path[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}' +\
f'\n\tCD penalty = {round(total_path[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
f'\n\tPMD penalty = {round(total_path[-1].penalties["pmd"][min_ind], 2)}' +\
f'\n\trequired osnr = {pathreq.OSNR}' +\
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
print(msg)
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(total_path[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(total_path, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
pathreq.blocking_reason = 'MODE_NOT_FEASIBLE'
else:
@@ -1142,6 +1185,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
pathreq.OSNR = mode['OSNR']
pathreq.tx_osnr = mode['tx_osnr']
pathreq.bit_rate = mode['bit_rate']
pathreq.penalties = mode['penalties']
pathreq.offset_db = mode['equalization_offset_db']
# other blocking reason should not appear at this point
except AttributeError:
pathreq.baud_rate = mode['baud_rate']
@@ -1150,28 +1195,28 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
pathreq.OSNR = mode['OSNR']
pathreq.tx_osnr = mode['tx_osnr']
pathreq.bit_rate = mode['bit_rate']
pathreq.penalties = mode['penalties']
pathreq.offset_db = mode['equalization_offset_db']
# reversed path is needed for correct spectrum assignment
reversed_path = find_reversed_path(pathlist[i])
if pathreq.bidir and pathreq.baud_rate is not None:
# Both directions requested, and a feasible mode was found
rev_p = deepcopy(reversed_path)
print(f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}')
print(f'\tPath (roadsm) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n')
msg = f'\n\tPropagating Z to A direction {pathreq.destination} to {pathreq.source}\n' \
+ f'\tPath (roadms) {[r.uid for r in rev_p if isinstance(r,Roadm)]}\n'
LOGGER.info(msg)
propagate(rev_p, pathreq, equipment)
propagated_reversed_path = rev_p
snr01nm_with_penalty = rev_p[-1].snr_01nm - rev_p[-1].total_penalty
min_ind = argmin(snr01nm_with_penalty)
if round(snr01nm_with_penalty[min_ind], 2) < pathreq.OSNR + equipment['SI']['default'].sys_margins:
msg = f'\tWarning! Request {pathreq.request_id} computed path from' +\
f' {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}' +\
f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}' +\
f'\n\tCD penalty = {round(rev_p[-1].penalties["chromatic_dispersion"][min_ind], 2)}' +\
f'\n\tPMD penalty = {round(rev_p[-1].penalties["pmd"][min_ind], 2)}' +\
f'\n\trequired osnr = {pathreq.OSNR}' +\
f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
print(msg)
msg = f'\tWarning! Request {pathreq.request_id} computed path from' \
+ f' {pathreq.destination} to {pathreq.source} does not pass with {pathreq.tsp_mode}' \
+ f'\n\tcomputed SNR in 0.1nm = {round(rev_p[-1].snr_01nm[min_ind], 2)}'
msg = _penalty_msg(rev_p, msg, min_ind) \
+ f'\n\trequired osnr = {pathreq.OSNR}' \
+ f'\n\tsystem margin = {equipment["SI"]["default"].sys_margins}'
LOGGER.warning(msg)
# TODO selection of mode should also be on reversed direction !!
if not hasattr(pathreq, 'blocking_reason'):
@@ -1179,9 +1224,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
else:
propagated_reversed_path = []
else:
msg = 'Total path is empty. No propagation'
print(msg)
LOGGER.info(msg)
msg = f'Request {pathreq.request_id}: Total path is empty. No propagation'
LOGGER.warning(msg)
reversed_path = []
propagated_reversed_path = []
@@ -1189,12 +1233,12 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
reversed_path_res_list.append(reversed_path)
propagated_reversed_path_res_list.append(propagated_reversed_path)
# print to have a nice output
print('')
return path_res_list, reversed_path_res_list, propagated_reversed_path_res_list
def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=0.0125e12):
""" Compute the number of required wavelengths and the M value (number of consumed slots)
"""Compute the number of required wavelengths and the M value (number of consumed slots)
Each wavelength consumes one `spacing`, and the result is rounded up to consume a natural number of slots.
>>> compute_spectrum_slot_vs_bandwidth(400e9, 50e9, 200e9)
@@ -1203,3 +1247,66 @@ def compute_spectrum_slot_vs_bandwidth(bandwidth, spacing, bit_rate, slot_width=
number_of_wavelengths = ceil(bandwidth / bit_rate)
total_number_of_slots = ceil(spacing / slot_width) * number_of_wavelengths
return number_of_wavelengths, total_number_of_slots
def _penalty_msg(total_path, msg, min_ind):
"""formatting helper for reporting unfeasible paths
The penalty info are optional, so this checks that penalty exists before creating a message."""
penalty_dict = {
'pdl': 'PDL',
'chromatic_dispersion': 'CD',
'pmd': 'PMD'}
for key, pretty in penalty_dict.items():
if key in total_path[-1].penalties:
msg += f'\n\t{pretty} penalty = {round(total_path[-1].penalties[key][min_ind], 2)}'
else:
msg += f'\n\t{pretty} penalty not evaluated'
return msg
def is_adjacent(oms1, oms2):
""" oms1's egress ROADM is oms2's ingress ROADM
"""
return oms1.el_list[-1] == oms2.el_list[0]
def explicit_path(node_list, source, destination, network):
""" if list of nodes leads to adjacent oms, then means that the path is explicit, and no need to compute
the function returns the explicit path (including source and destination ROADMs)
"""
path_oms = []
for elem in node_list:
if hasattr(elem, 'oms'):
path_oms.append(elem.oms)
if not path_oms:
return None
path_oms = unique_ordered(path_oms)
try:
next_node = next(network.successors(source))
source_roadm = next_node if isinstance(next_node, Roadm) else source
previous_node = next(network.predecessors(destination))
destination_roadm = previous_node if isinstance(previous_node, Roadm) else destination
if not (path_oms[0].el_list[0] == source_roadm and path_oms[-1].el_list[-1] == destination_roadm):
return None
except StopIteration:
return None
oms0 = path_oms[0]
path = [source] + oms0.el_list
for oms in path_oms[1:]:
if not is_adjacent(oms0, oms):
return None
oms0 = oms
path.extend(oms.el_list)
path.append(destination)
return unique_ordered(path)
def find_elements_common_range(el_list: list, equipment: dict) -> List[dict]:
"""Find the common frequency range of amps of a given list of elements (for example an OMS or a path)
If there are no amplifiers in the path, then use the SI
"""
amp_bands = [n.params.bands for n in el_list if isinstance(n, (Edfa, Multiband_amplifier))]
return find_common_range(amp_bands, equipment['SI']['default'].f_min, equipment['SI']['default'].f_max,
equipment['SI']['default'].spacing)

View File

@@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.topology.spectrum_assignment: spectrum assignment functionality
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.topology.spectrum_assignment
=================================
@@ -15,28 +20,31 @@ element/oms correspondace
from collections import namedtuple
from logging import getLogger
from gnpy.core.elements import Roadm, Transceiver
from gnpy.core.elements import Roadm, Transceiver, Edfa, Multiband_amplifier
from gnpy.core.exceptions import ServiceError, SpectrumError
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth
from gnpy.core.utils import order_slots, restore_order
from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth, find_elements_common_range
LOGGER = getLogger(__name__)
GUARDBAND = 25e9
class Bitmap:
""" records the spectrum occupation
"""
"""records the spectrum occupation"""
def __init__(self, f_min, f_max, grid, guardband=0.15e12, bitmap=None):
# n is the min index including guardband. Guardband is require to be sure
def __init__(self, f_min, f_max, grid, guardband=GUARDBAND, bitmap=None):
# n is the min index including guardband. Guardband is required to be sure
# that a channel can be assigned with center frequency fmin (means that its
# slot occupation goes below freq_index_min
n_min = frequency_to_n(f_min - guardband, grid)
n_max = frequency_to_n(f_max + guardband, grid) - 1
n_min = frequency_to_n(f_min, grid)
n_max = frequency_to_n(f_max, grid)
self.n_min = n_min
self.n_max = n_max
self.freq_index_min = frequency_to_n(f_min)
self.freq_index_max = frequency_to_n(f_max)
self.freq_index_min = frequency_to_n(f_min + guardband)
self.freq_index_max = frequency_to_n(f_max - guardband)
self.freq_index = list(range(n_min, n_max + 1))
self.guardband = guardband
if bitmap is None:
self.bitmap = [1] * (n_max - n_min + 1)
elif len(bitmap) == len(self.freq_index):
@@ -45,26 +53,22 @@ class Bitmap:
raise SpectrumError(f'bitmap is not consistant with f_min{f_min} - n: {n_min} and f_max{f_max}- n :{n_max}')
def getn(self, i):
""" converts the n (itu grid) into a local index
"""
"""converts the n (itu grid) into a local index"""
return self.freq_index[i]
def geti(self, nvalue):
""" converts the local index into n (itu grid)
"""
"""converts the local index into n (itu grid)"""
return self.freq_index.index(nvalue)
def insert_left(self, newbitmap):
""" insert bitmap on the left to align oms bitmaps if their start frequencies are different
"""
"""insert bitmap on the left to align oms bitmaps if their start frequencies are different"""
self.bitmap = newbitmap + self.bitmap
temp = list(range(self.n_min - len(newbitmap), self.n_min))
self.freq_index = temp + self.freq_index
self.n_min = self.freq_index[0]
def insert_right(self, newbitmap):
""" insert bitmap on the right to align oms bitmaps if their stop frequencies are different
"""
"""insert bitmap on the right to align oms bitmaps if their stop frequencies are different"""
self.bitmap = self.bitmap + newbitmap
self.freq_index = self.freq_index + list(range(self.n_max, self.n_max + len(newbitmap)))
self.n_max = self.freq_index[-1]
@@ -75,8 +79,8 @@ OMSParams = namedtuple('OMSParams', 'oms_id el_id_list el_list')
class OMS:
""" OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""OMS class is the logical container that represent a link between two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""
def __init__(self, *args, **params):
@@ -87,7 +91,6 @@ class OMS:
self.spectrum_bitmap = []
self.nb_channels = 0
self.service_list = []
# TODO
def __str__(self):
return '\n\t'.join([f'{type(self).__name__} {self.oms_id}',
@@ -98,36 +101,28 @@ class OMS:
f'{self.el_id_list[0]} - {self.el_id_list[-1]}', '\n'])
def add_element(self, elem):
""" records oms elements
"""
"""records oms elements"""
self.el_id_list.append(elem.uid)
self.el_list.append(elem)
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None,
grid=0.00625e12):
""" frequencies expressed in Hz
def update_spectrum(self, f_min, f_max, guardband=GUARDBAND, existing_spectrum=None, grid=0.00625e12):
"""Frequencies expressed in Hz.
Add 150 GHz margin to enable a center channel on f_min
Use ITU-T G694.1 Flexible DWDM grid definition
For the flexible DWDM grid, the allowed frequency slots have a nominal central frequency (in THz) defined by:
193.1 + n × 0.00625 where n is a positive or negative integer including 0
and 0.00625 is the nominal central frequency granularity in THz
and a slot width defined by:
12.5 × m where m is a positive integer and 12.5 is the slot width granularity in GHz.
Any combination of frequency slots is allowed as long as no two frequency slots overlap.
If bitmap is not None, then use it: Bitmap checks its consistency with f_min f_max
else a brand new bitmap is created
"""
if existing_spectrum is None:
# add some 150 GHz margin to enable a center channel on f_min
# use ITU-T G694.1
# Flexible DWDM grid definition
# For the flexible DWDM grid, the allowed frequency slots have a nominal
# central frequency (in THz) defined by:
# 193.1 + n × 0.00625 where n is a positive or negative integer including 0
# and 0.00625 is the nominal central frequency granularity in THz
# and a slot width defined by:
# 12.5 × m where m is a positive integer and 12.5 is the slot width granularity in
# GHz.
# Any combination of frequency slots is allowed as long as no two frequency
# slots overlap.
# TODO : add explaination on that / parametrize ....
self.spectrum_bitmap = Bitmap(f_min, f_max, grid, guardband)
# print(len(self.spectrum_bitmap.bitmap))
self.spectrum_bitmap = Bitmap(f_min=f_min, f_max=f_max, grid=grid, guardband=guardband,
bitmap=existing_spectrum)
def assign_spectrum(self, nvalue, mvalue):
""" change oms spectrum to mark spectrum assigned
"""
"""change oms spectrum to mark spectrum assigned"""
if not isinstance(nvalue, int):
raise SpectrumError(f'N must be a signed integer, got {nvalue}')
if not isinstance(mvalue, int):
@@ -146,16 +141,16 @@ class OMS:
self.spectrum_bitmap.bitmap[self.spectrum_bitmap.geti(startn):self.spectrum_bitmap.geti(stopn) + 1] = [0] * (stopn - startn + 1)
def add_service(self, service_id, nb_wl):
""" record service and mark spectrum as occupied
"""
"""record service and mark spectrum as occupied"""
self.service_list.append(service_id)
self.nb_channels += nb_wl
def frequency_to_n(freq, grid=0.00625e12):
""" converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts frequency into the n value (ITU grid)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> frequency_to_n(193.1375e12)
6
@@ -167,9 +162,10 @@ def frequency_to_n(freq, grid=0.00625e12):
def nvalue_to_frequency(nvalue, grid=0.00625e12):
""" converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts n value into a frequency
reference to Recommendation G.694.1 (02/12), Table 1
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nvalue_to_frequency(6)
193137500000000.0
@@ -181,17 +177,17 @@ def nvalue_to_frequency(nvalue, grid=0.00625e12):
def mvalue_to_slots(nvalue, mvalue):
""" convert center n an m into start and stop n
"""
"""convert center n an m into start and stop n"""
startn = nvalue - mvalue
stopn = nvalue + mvalue - 1
return startn, stopn
def slots_to_m(startn, stopn):
""" converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts the start and stop n values to the center n and m value
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> nval, mval = slots_to_m(6, 20)
>>> nval
@@ -206,10 +202,11 @@ def slots_to_m(startn, stopn):
def m_to_freq(nvalue, mvalue, grid=0.00625e12):
""" converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
"""converts m into frequency range
spectrum(13,7) is (193137500000000.0, 193225000000000.0)
reference to Recommendation G.694.1 (02/12), Figure I.3
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
>>> fstart, fstop = m_to_freq(13, 7)
>>> fstart
@@ -225,9 +222,7 @@ def m_to_freq(nvalue, mvalue, grid=0.00625e12):
def align_grids(oms_list):
""" used to apply same grid to all oms : same starting n, stop n and slot size
out of grid slots are set to 0
"""
"""Used to apply same grid to all oms : same starting n, stop n and slot size. Out of grid slots are set to 0."""
n_min = min([o.spectrum_bitmap.n_min for o in oms_list])
n_max = max([o.spectrum_bitmap.n_max for o in oms_list])
for this_o in oms_list:
@@ -238,17 +233,60 @@ def align_grids(oms_list):
return oms_list
def find_network_freq_range(network, equipment):
"""Find the lowest freq from amps and highest freq among all amps to determine the resulting bitmap
"""
amp_bands = [band for n in network.nodes() if isinstance(n, (Edfa, Multiband_amplifier)) for band in n.params.bands]
min_frequencies = [a['f_min'] for a in amp_bands]
max_frequencies = [a['f_max'] for a in amp_bands]
return min(min_frequencies), max(max_frequencies)
def create_oms_bitmap(oms, equipment, f_min, f_max, guardband, grid):
"""Find the highest low freq from oms amps and lowest high freq among oms amps to determine
the possible bitmap window.
f_min and f_max represent the useable spectrum (not the useable center frequencies)
ie n smaller than frequency_to_n(min_freq, grid) are not useable
"""
n_min = frequency_to_n(f_min, grid)
n_max = frequency_to_n(f_max, grid) - 1
common_range = find_elements_common_range(oms.el_list, equipment)
band0 = common_range[0]
band0_n_min = frequency_to_n(band0['f_min'], grid)
band0_n_max = frequency_to_n(band0['f_max'], grid)
bitmap = [0] * (band0_n_min - n_min) + [1] * (band0_n_max - band0_n_min + 1)
i = 1
while i < len(common_range):
band = common_range[i]
band_n_min = frequency_to_n(band['f_min'], grid)
band_n_max = frequency_to_n(band['f_max'], grid)
bitmap = bitmap + [0] * (band_n_min - band0_n_max - 1) + [1] * (band_n_max - band_n_min + 1)
band0_n_max = band_n_max
i += 1
bitmap = bitmap + [0] * (n_max - band0_n_max)
return bitmap
def build_oms_list(network, equipment):
""" initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""
oms_id = 0
oms_list = []
for node in [n for n in network.nodes() if isinstance(n, Roadm)]:
# identify all vertices of OMS: of course ROADM, but aso links to external chassis transponders
oms_vertices = [n for n in network.nodes() if isinstance(n, Roadm)] +\
[n for n in network.nodes() if isinstance(n, Transceiver)
and not isinstance(next(network.successors(n)), Roadm)]
# determine the size of the bitmap common to all the omses: find min and max frequencies of all amps
# in the network. These gives the band not the center frequency. Thhen we use a reference channel
# slot width (50GHz) to set the f_min, f_max
f_min, f_max = find_network_freq_range(network, equipment)
for node in oms_vertices:
for edge in network.edges([node]):
if not isinstance(edge[1], Transceiver):
nd_in = edge[0] # nd_in is a Roadm
@@ -282,8 +320,9 @@ def build_oms_list(network, equipment):
nd_out.oms_list = []
nd_out.oms_list.append(oms_id)
oms.update_spectrum(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, grid=0.00625e12)
bitmap = create_oms_bitmap(oms, equipment, f_min=f_min, f_max=f_max, guardband=GUARDBAND,
grid=0.00625e12)
oms.update_spectrum(f_min, f_max, guardband=GUARDBAND, grid=0.00625e12, existing_spectrum=bitmap)
# oms.assign_spectrum(13,7) gives back (193137500000000.0, 193225000000000.0)
# as in the example in the standard
# oms.assign_spectrum(13,7)
@@ -296,8 +335,9 @@ def build_oms_list(network, equipment):
def reversed_oms(oms_list):
""" identifies reversed OMS
only applicable for non parallel OMS
"""identifies reversed OMS
only applicable for non parallel OMS
"""
for oms in oms_list:
has_reversed = False
@@ -322,28 +362,42 @@ def bitmap_sum(band1, band2):
return res
def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
# use indexes instead of ITU-T n values
def build_path_oms_id_list(pth):
path_oms = []
for elem in pth:
if not isinstance(elem, Roadm) and not isinstance(elem, Transceiver):
# only edfa, fused and fibers have oms_id attribute
path_oms.append(elem.oms_id)
# remove duplicate oms_id, order is not important
path_oms = list(set(path_oms))
# assuming all oms have same freq index
if not path_oms:
candidate = (None, None, None)
return candidate, path_oms
freq_index = oms_list[path_oms[0]].spectrum_bitmap.freq_index
freq_index_min = oms_list[path_oms[0]].spectrum_bitmap.freq_index_min
freq_index_max = oms_list[path_oms[0]].spectrum_bitmap.freq_index_max
return list(set(path_oms))
freq_availability = oms_list[path_oms[0]].spectrum_bitmap.bitmap
def aggregate_oms_bitmap(path_oms, oms_list):
spectrum = oms_list[path_oms[0]].spectrum_bitmap
bitmap = spectrum.bitmap
# assuming all oms have same freq indices
for oms in path_oms[1:]:
freq_availability = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, freq_availability)
bitmap = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, bitmap)
params = {
'oms_id': 0,
'el_id_list': 0,
'el_list': []
}
freq_min = nvalue_to_frequency(spectrum.n_min)
freq_max = nvalue_to_frequency(spectrum.n_max)
aggregate_oms = OMS(**params)
aggregate_oms.update_spectrum(freq_min, freq_max, grid=0.00625e12, guardband=spectrum.guardband,
existing_spectrum=bitmap)
return aggregate_oms
def spectrum_selection(test_oms, requested_m, requested_n=None):
"""Collects spectrum availability and call the select_candidate function"""
freq_index = test_oms.spectrum_bitmap.freq_index
freq_index_min = test_oms.spectrum_bitmap.freq_index_min
freq_index_max = test_oms.spectrum_bitmap.freq_index_max
freq_availability = test_oms.spectrum_bitmap.bitmap
if requested_n is None:
# avoid slots reserved on the edge 0.15e-12 on both sides -> 24
candidates = [(freq_index[i] + requested_m, freq_index[i], freq_index[i] + 2 * requested_m - 1)
@@ -354,29 +408,36 @@ def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
candidate = select_candidate(candidates, policy='first_fit')
else:
i = oms_list[path_oms[0]].spectrum_bitmap.geti(requested_n)
# print(f'N {requested_n} i {i}')
# print(freq_availability[i-m:i+m] )
# print(freq_index[i-m:i+m])
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m) and
freq_index[i - requested_m] >= freq_index_min
i = test_oms.spectrum_bitmap.geti(requested_n)
if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m)
and freq_index[i - requested_m] >= freq_index_min
and freq_index[i + requested_m - 1] <= freq_index_max):
# candidate is the triplet center_n, startn and stopn
candidate = (requested_n, requested_n - requested_m, requested_n + requested_m - 1)
else:
candidate = (None, None, None)
# print("coucou11")
# print(candidate)
# print(freq_availability[321:321+2*m])
# a = [i+321 for i in range(2*m)]
# print(a)
# print(candidate)
return candidate, path_oms
return candidate
def determine_slot_numbers(test_oms, requested_n, required_m, per_channel_m):
"""determines max availability around requested_n. requested_n should not be None"""
bitmap = test_oms.spectrum_bitmap
freq_index = bitmap.freq_index
freq_index_min = bitmap.freq_index_min
freq_index_max = bitmap.freq_index_max
freq_availability = bitmap.bitmap
center_i = bitmap.geti(requested_n)
i = per_channel_m
while (freq_availability[center_i - i:center_i + i] == [1] * (2 * i)
and freq_index[center_i - i] >= freq_index_min
and freq_index[center_i + i - 1] <= freq_index_max
and i <= required_m):
i += per_channel_m
return i - per_channel_m
def select_candidate(candidates, policy):
""" selects a candidate among all available spectrum
"""
"""selects a candidate among all available spectrum"""
if policy == 'first_fit':
if candidates:
return candidates[0]
@@ -386,44 +447,112 @@ def select_candidate(candidates, policy):
raise ServiceError('Only first_fit spectrum assignment policy is implemented.')
def compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m, policy='first_fit'):
""" based on requested path_bandwidth fill in M=None values with uint values, using per_channel_m
and center frequency, with first fit strategy. The function checks the available spectrum but check
consistencies among M values of the request, but not with other requests.
For example, if request is for 32 slots corresponding to 8 x 4 slots of 32Gbauds channels,
the following frequency slots will result in the following assignment
N = 0, 8, 16, 32 -> 0, 8, 16, 32
M = 8, None, 8, None -> 8, 8, 8, 8
N = 0, 8, 16, 32 -> 0, , 16
M = None, None, 8, None -> 24, , 8
"""
selected_m = []
selected_n = []
remaining_slots_to_serve = required_m
# order slots for the computation: assign biggest m first
rq_N, rq_M, order = order_slots([{'N': n, 'M': m} for n, m in zip(rq.N, rq.M)])
# Create an oms that represents current assignments of all oms listed in path_oms, and test N and M on it.
# If M is defined, checks that proposed N, M is free
test_oms = aggregate_oms_bitmap(path_oms, oms_list)
for n, m in zip(rq_N, rq_M):
if m is not None and n is not None:
# check availabilityfor this n, m
available_slots = determine_slot_numbers(test_oms, n, m, m)
if available_slots == 0:
# if n, m are not feasible, break at this point no have non zero remaining_slots_to_serve
# in order to blocks the request (even is other N,M where feasible)
break
elif m is not None and n is None:
# find a candidate n
n, _, _ = spectrum_selection(test_oms, m, None)
if n is None:
# if no n is feasible for the m, block the request
break
elif m is None and n is not None:
# find a feasible m for this n. If None is found, then block the request
m = determine_slot_numbers(test_oms, n, remaining_slots_to_serve, per_channel_m)
if m == 0 or remaining_slots_to_serve == 0:
break
else:
# if n and m are not defined, try to find a single assignment to fits the remaining slots to serve
# (first fit strategy)
n, _, _ = spectrum_selection(test_oms, remaining_slots_to_serve, None)
if n is None or remaining_slots_to_serve == 0:
break
else:
m = remaining_slots_to_serve
selected_m.append(m)
selected_n.append(n)
test_oms.assign_spectrum(n, m)
remaining_slots_to_serve = remaining_slots_to_serve - m
# re-order selected_m and selected_n according to initial request N, M order, ignoring None values
not_selected = [None for i in range(len(rq_N) - len(selected_n))]
selected_m = restore_order(selected_m + not_selected, order)
selected_n = restore_order(selected_n + not_selected, order)
return selected_n, selected_m, remaining_slots_to_serve
def pth_assign_spectrum(pths, rqs, oms_list, rpths):
""" basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""basic first fit assignment
if reversed path are provided, means that occupation is bidir
"""
for pth, rq, rpth in zip(pths, rqs, rpths):
# computes the number of channels required
if hasattr(rq, 'blocking_reason'):
rq.N = None
rq.M = None
else:
nb_wl, requested_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
rq.spacing, rq.bit_rate)
if getattr(rq, 'M', None) is not None:
# Consistency check between the requested M and path_bandwidth
# M value should be bigger than the computed requested_m (simple estimate)
# TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of
# computes the number of channels required for path_bandwidth and the min required nb of slots
# for one channel (corresponds to the spacing)
nb_wl, required_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth,
rq.spacing, rq.bit_rate)
_, per_channel_m = compute_spectrum_slot_vs_bandwidth(rq.bit_rate,
rq.spacing, rq.bit_rate)
# find oms ids that are concerned both by pth and rpth
path_oms = build_path_oms_id_list(pth + rpth)
if getattr(rq, 'M', None) is not None and all(rq.M):
# if all M are well defined: Consistency check that the requested M are enough to carry the nb_wl:
# check that the integer number of per_channel_m carried in each M value is enough to carry nb_wl.
# if not, blocks the demand
nb_channels_of_request = sum([m // per_channel_m for m in rq.M])
# TODO: elaborate a more accurate estimate with nb_wl * min_spacing + possibly guardbands in case of
# superchannel closed packing.
if requested_m > rq.M:
if nb_wl > nb_channels_of_request:
rq.N = None
rq.M = None
rq.blocking_reason = 'NOT_ENOUGH_RESERVED_SPECTRUM'
# need to stop here for this request and not go though spectrum selection process with requested_m
# need to stop here for this request and not go though spectrum selection process
continue
# use the req.M even if requested_m is smaller
requested_m = rq.M
requested_n = getattr(rq, 'N', None)
(center_n, startn, stopn), path_oms = spectrum_selection(pth + rpth, oms_list, requested_m,
requested_n)
# if requested n and m concern already occupied spectrum the previous function returns a None candidate
# if not None, center_n and start, stop frequencies are applicable to all oms of pth
# checks that spectrum is not None else indicate blocking reason
if center_n is not None:
for oms_elem in path_oms:
oms_list[oms_elem].assign_spectrum(center_n, requested_m)
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
rq.N = center_n
rq.M = requested_m
else:
# Use the req.M even if nb_wl and required_m are smaller.
# first fit strategy: assign as many lambda as possible in the None remaining N, M values
selected_n, selected_m, remaining_slots_to_serve = \
compute_n_m(required_m, rq, path_oms, oms_list, per_channel_m)
# if there are some remaining_slots_to_serve, this means that provided rq.M and rq.N values were
# not possible. Then do not go though spectrum assignment process and blocks the demand
if remaining_slots_to_serve > 0:
rq.N = None
rq.M = None
rq.blocking_reason = 'NO_SPECTRUM'
continue
for oms_elem in path_oms:
for this_n, this_m in zip(selected_n, selected_m):
if this_m is not None:
oms_list[oms_elem].assign_spectrum(this_n, this_m)
oms_list[oms_elem].add_service(rq.request_id, nb_wl)
rq.N = selected_n
rq.M = selected_m

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,294 @@
module ietf-network-topology {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-network-topology";
prefix nt;
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types";
}
import ietf-network {
prefix nw;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
organization
"IETF I2RS (Interface to the Routing System) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/i2rs/>
WG List: <mailto:i2rs@ietf.org>
Editor: Alexander Clemm
<mailto:ludwig@clemm.org>
Editor: Jan Medved
<mailto:jmedved@cisco.com>
Editor: Robert Varga
<mailto:robert.varga@pantheon.tech>
Editor: Nitin Bahadur
<mailto:nitin_bahadur@yahoo.com>
Editor: Hariharan Ananthakrishnan
<mailto:hari@packetdesign.com>
Editor: Xufeng Liu
<mailto:xufeng.liu.ietf@gmail.com>";
description
"This module defines a common base model for a network topology,
augmenting the base network data model with links to connect
nodes, as well as termination points to terminate links
on nodes.
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.";
revision 2018-02-26 {
description
"Initial revision.";
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
typedef link-id {
type inet:uri;
description
"An identifier for a link in a topology. The precise
structure of the link-id will be up to the implementation.
The identifier SHOULD be chosen such that the same link in a
real network topology will always be identified through the
same identifier, even if the data model is instantiated in
separate datastores. An implementation MAY choose to capture
semantics in the identifier -- for example, to indicate the
type of link and/or the type of topology of which the link is
a part.";
}
typedef tp-id {
type inet:uri;
description
"An identifier for termination points on a node. The precise
structure of the tp-id will be up to the implementation.
The identifier SHOULD be chosen such that the same termination
point in a real network topology will always be identified
through the same identifier, even if the data model is
instantiated in separate datastores. An implementation MAY
choose to capture semantics in the identifier -- for example,
to indicate the type of termination point and/or the type of
node that contains the termination point.";
}
grouping link-ref {
description
"This grouping can be used to reference a link in a specific
network. Although it is not used in this module, it is
defined here for the convenience of augmenting modules.";
leaf link-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"+
"network-ref]/nt:link/nt:link-id";
require-instance false;
}
description
"A type for an absolute reference to a link instance.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
}
uses nw:network-ref;
}
grouping tp-ref {
description
"This grouping can be used to reference a termination point
in a specific node. Although it is not used in this module,
it is defined here for the convenience of augmenting
modules.";
leaf tp-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"+
"network-ref]/nw:node[nw:node-id=current()/../"+
"node-ref]/nt:termination-point/nt:tp-id";
require-instance false;
}
description
"A type for an absolute reference to a termination point.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
}
uses nw:node-ref;
}
augment "/nw:networks/nw:network" {
description
"Add links to the network data model.";
list link {
key "link-id";
description
"A network link connects a local (source) node and
a remote (destination) node via a set of the respective
node's termination points. It is possible to have several
links between the same source and destination nodes.
Likewise, a link could potentially be re-homed between
termination points. Therefore, in order to ensure that we
would always know to distinguish between links, every link
is identified by a dedicated link identifier. Note that a
link models a point-to-point link, not a multipoint link.";
leaf link-id {
type link-id;
description
"The identifier of a link in the topology.
A link is specific to a topology to which it belongs.";
}
container source {
description
"This container holds the logical source of a particular
link.";
leaf source-node {
type leafref {
path "../../../nw:node/nw:node-id";
require-instance false;
}
description
"Source node identifier. Must be in the same topology.";
}
leaf source-tp {
type leafref {
path "../../../nw:node[nw:node-id=current()/../"+
"source-node]/termination-point/tp-id";
require-instance false;
}
description
"This termination point is located within the source node
and terminates the link.";
}
}
container destination {
description
"This container holds the logical destination of a
particular link.";
leaf dest-node {
type leafref {
path "../../../nw:node/nw:node-id";
require-instance false;
}
description
"Destination node identifier. Must be in the same
network.";
}
leaf dest-tp {
type leafref {
path "../../../nw:node[nw:node-id=current()/../"+
"dest-node]/termination-point/tp-id";
require-instance false;
}
description
"This termination point is located within the
destination node and terminates the link.";
}
}
list supporting-link {
key "network-ref link-ref";
description
"Identifies the link or links on which this link depends.";
leaf network-ref {
type leafref {
path "../../../nw:supporting-network/nw:network-ref";
require-instance false;
}
description
"This leaf identifies in which underlay topology
the supporting link is present.";
}
leaf link-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/"+
"../network-ref]/link/link-id";
require-instance false;
}
description
"This leaf identifies a link that is a part
of this link's underlay. Reference loops in which
a link identifies itself as its underlay, either
directly or transitively, are not allowed.";
}
}
}
}
augment "/nw:networks/nw:network/nw:node" {
description
"Augments termination points that terminate links.
Termination points can ultimately be mapped to interfaces.";
list termination-point {
key "tp-id";
description
"A termination point can terminate a link.
Depending on the type of topology, a termination point
could, for example, refer to a port or an interface.";
leaf tp-id {
type tp-id;
description
"Termination point identifier.";
}
list supporting-termination-point {
key "network-ref node-ref tp-ref";
description
"This list identifies any termination points on which a
given termination point depends or onto which it maps.
Those termination points will themselves be contained
in a supporting node. This dependency information can be
inferred from the dependencies between links. Therefore,
this item is not separately configurable. Hence, no
corresponding constraint needs to be articulated.
The corresponding information is simply provided by the
implementing system.";
leaf network-ref {
type leafref {
path "../../../nw:supporting-node/nw:network-ref";
require-instance false;
}
description
"This leaf identifies in which topology the
supporting termination point is present.";
}
leaf node-ref {
type leafref {
path "../../../nw:supporting-node/nw:node-ref";
require-instance false;
}
description
"This leaf identifies in which node the supporting
termination point is present.";
}
leaf tp-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/"+
"../network-ref]/nw:node[nw:node-id=current()/../"+
"node-ref]/termination-point/tp-id";
require-instance false;
}
description
"Reference to the underlay node (the underlay node must
be in a different topology).";
}
}
}
}
}

View File

@@ -0,0 +1,192 @@
module ietf-network {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-network";
prefix nw;
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types";
}
organization
"IETF I2RS (Interface to the Routing System) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/i2rs/>
WG List: <mailto:i2rs@ietf.org>
Editor: Alexander Clemm
<mailto:ludwig@clemm.org>
Editor: Jan Medved
<mailto:jmedved@cisco.com>
Editor: Robert Varga
<mailto:robert.varga@pantheon.tech>
Editor: Nitin Bahadur
<mailto:nitin_bahadur@yahoo.com>
Editor: Hariharan Ananthakrishnan
<mailto:hari@packetdesign.com>
Editor: Xufeng Liu
<mailto:xufeng.liu.ietf@gmail.com>";
description
"This module defines a common base data model for a collection
of nodes in a network. Node definitions are further used
in network topologies and inventories.
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.";
revision 2018-02-26 {
description
"Initial revision.";
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
typedef node-id {
type inet:uri;
description
"Identifier for a node. The precise structure of the node-id
will be up to the implementation. For example, some
implementations MAY pick a URI that includes the network-id
as part of the path. The identifier SHOULD be chosen
such that the same node in a real network topology will
always be identified through the same identifier, even if
the data model is instantiated in separate datastores. An
implementation MAY choose to capture semantics in the
identifier -- for example, to indicate the type of node.";
}
typedef network-id {
type inet:uri;
description
"Identifier for a network. The precise structure of the
network-id will be up to the implementation. The identifier
SHOULD be chosen such that the same network will always be
identified through the same identifier, even if the data model
is instantiated in separate datastores. An implementation MAY
choose to capture semantics in the identifier -- for example,
to indicate the type of network.";
}
grouping network-ref {
description
"Contains the information necessary to reference a network --
for example, an underlay network.";
leaf network-ref {
type leafref {
path "/nw:networks/nw:network/nw:network-id";
require-instance false;
}
description
"Used to reference a network -- for example, an underlay
network.";
}
}
grouping node-ref {
description
"Contains the information necessary to reference a node.";
leaf node-ref {
type leafref {
path "/nw:networks/nw:network[nw:network-id=current()/../"+
"network-ref]/nw:node/nw:node-id";
require-instance false;
}
description
"Used to reference a node.
Nodes are identified relative to the network that
contains them.";
}
uses network-ref;
}
container networks {
description
"Serves as a top-level container for a list of networks.";
list network {
key "network-id";
description
"Describes a network.
A network typically contains an inventory of nodes,
topological information (augmented through the
network-topology data model), and layering information.";
leaf network-id {
type network-id;
description
"Identifies a network.";
}
container network-types {
description
"Serves as an augmentation target.
The network type is indicated through corresponding
presence containers augmented into this container.";
}
list supporting-network {
key "network-ref";
description
"An underlay network, used to represent layered network
topologies.";
leaf network-ref {
type leafref {
path "/nw:networks/nw:network/nw:network-id";
require-instance false;
}
description
"References the underlay network.";
}
}
list node {
key "node-id";
description
"The inventory of nodes of this network.";
leaf node-id {
type node-id;
description
"Uniquely identifies a node within the containing
network.";
}
list supporting-node {
key "network-ref node-ref";
description
"Represents another node that is in an underlay network
and that supports this node. Used to represent layering
structure.";
leaf network-ref {
type leafref {
path "../../../nw:supporting-network/nw:network-ref";
require-instance false;
}
description
"References the underlay network of which the
underlay node is a part.";
}
leaf node-ref {
type leafref {
path "/nw:networks/nw:network/nw:node/nw:node-id";
require-instance false;
}
description
"References the underlay node itself.";
}
}
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,771 @@
module ietf-routing-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types";
prefix rt-types;
import ietf-yang-types {
prefix yang;
}
import ietf-inet-types {
prefix inet;
}
organization
"IETF RTGWG - Routing Area Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/rtgwg/>
WG List: <mailto:rtgwg@ietf.org>
Editors: Xufeng Liu
<mailto:Xufeng_Liu@jabail.com>
Yingzhen Qu
<mailto:yingzhen.qu@huawei.com>
Acee Lindem
<mailto:acee@cisco.com>
Christian Hopps
<mailto:chopps@chopps.org>
Lou Berger
<mailto:lberger@labn.com>";
description
"This module contains a collection of YANG data types
considered generally useful for routing protocols.
Copyright (c) 2017 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8294; see
the RFC itself for full legal notices.";
revision 2017-12-04 {
description "Initial revision.";
reference
"RFC 8294: Common YANG Data Types for the Routing Area.
Section 3.";
}
/*** Identities related to MPLS/GMPLS ***/
identity mpls-label-special-purpose-value {
description
"Base identity for deriving identities describing
special-purpose Multiprotocol Label Switching (MPLS) label
values.";
reference
"RFC 7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
identity ipv4-explicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the IPv4 Explicit NULL Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity router-alert-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Router Alert Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity ipv6-explicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the IPv6 Explicit NULL Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity implicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Implicit NULL Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity entropy-label-indicator {
base mpls-label-special-purpose-value;
description
"This identity represents the Entropy Label Indicator.";
reference
"RFC 6790: The Use of Entropy Labels in MPLS Forwarding.
Sections 3 and 10.1.";
}
identity gal-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Generic Associated Channel
(G-ACh) Label (GAL).";
reference
"RFC 5586: MPLS Generic Associated Channel.
Sections 4 and 10.";
}
identity oam-alert-label {
base mpls-label-special-purpose-value;
description
"This identity represents the OAM Alert Label.";
reference
"RFC 3429: Assignment of the 'OAM Alert Label' for
Multiprotocol Label Switching Architecture (MPLS)
Operation and Maintenance (OAM) Functions.
Sections 3 and 6.";
}
identity extension-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Extension Label.";
reference
"RFC 7274: Allocating and Retiring Special-Purpose MPLS
Labels. Sections 3.1 and 5.";
}
/*** Collection of types related to routing ***/
typedef router-id {
type yang:dotted-quad;
description
"A 32-bit number in the dotted-quad format assigned to each
router. This number uniquely identifies the router within
an Autonomous System.";
}
/*** Collection of types related to VPNs ***/
typedef route-target {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A Route Target is an 8-octet BGP extended community
initially identifying a set of sites in a BGP VPN
(RFC 4364). However, it has since taken on a more general
role in BGP route filtering. A Route Target consists of two
or three fields: a 2-octet Type field, an administrator
field, and, optionally, an assigned number field.
According to the data formats for types 0, 1, 2, and 6 as
defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number
6:6-octet-mac-address
Additionally, a generic pattern is defined for future
Route Target types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100,
2:1234567890:203, and 6:26:00:08:92:78:00.";
reference
"RFC 4360: BGP Extended Communities Attribute.
RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 5668: 4-Octet AS Specific BGP Extended Community.
RFC 7432: BGP MPLS-Based Ethernet VPN.";
}
typedef ipv6-route-target {
type string {
pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
}
description
"An IPv6 Route Target is a 20-octet BGP IPv6 Address
Specific Extended Community serving the same function
as a standard 8-octet Route Target, except that it only
allows an IPv6 address as the global administrator.
The format is <ipv6-address:2-octet-number>.
Two valid examples are 2001:db8::1:6544 and
2001:db8::5eb1:791:6b37:17958.";
reference
"RFC 5701: IPv6 Address Specific BGP Extended Community
Attribute.";
}
typedef route-target-type {
type enumeration {
enum import {
value 0;
description
"The Route Target applies to route import.";
}
enum export {
value 1;
description
"The Route Target applies to route export.";
}
enum both {
value 2;
description
"The Route Target applies to both route import and
route export.";
}
}
description
"Indicates the role a Route Target takes in route filtering.";
reference
"RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
}
typedef route-distinguisher {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A Route Distinguisher is an 8-octet value used to
distinguish routes from different BGP VPNs (RFC 4364).
A Route Distinguisher will have the same format as a
Route Target as per RFC 4360 and will consist of
two or three fields: a 2-octet Type field, an administrator
field, and, optionally, an assigned number field.
According to the data formats for types 0, 1, 2, and 6 as
defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number
6:6-octet-mac-address
Additionally, a generic pattern is defined for future
route discriminator types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100,
2:1234567890:203, and 6:26:00:08:92:78:00.";
reference
"RFC 4360: BGP Extended Communities Attribute.
RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 5668: 4-Octet AS Specific BGP Extended Community.
RFC 7432: BGP MPLS-Based Ethernet VPN.";
}
typedef route-origin {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A Route Origin is an 8-octet BGP extended community
identifying the set of sites where the BGP route
originated (RFC 4364). A Route Origin will have the same
format as a Route Target as per RFC 4360 and will consist
of two or three fields: a 2-octet Type field, an
administrator field, and, optionally, an assigned number
field.
According to the data formats for types 0, 1, 2, and 6 as
defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number
6:6-octet-mac-address
Additionally, a generic pattern is defined for future
Route Origin types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100,
2:1234567890:203, and 6:26:00:08:92:78:00.";
reference
"RFC 4360: BGP Extended Communities Attribute.
RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 5668: 4-Octet AS Specific BGP Extended Community.
RFC 7432: BGP MPLS-Based Ethernet VPN.";
}
typedef ipv6-route-origin {
type string {
pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
}
description
"An IPv6 Route Origin is a 20-octet BGP IPv6 Address
Specific Extended Community serving the same function
as a standard 8-octet route, except that it only allows
an IPv6 address as the global administrator. The format
is <ipv6-address:2-octet-number>.
Two valid examples are 2001:db8::1:6544 and
2001:db8::5eb1:791:6b37:17958.";
reference
"RFC 5701: IPv6 Address Specific BGP Extended Community
Attribute.";
}
/*** Collection of types common to multicast ***/
typedef ipv4-multicast-group-address {
type inet:ipv4-address {
pattern '(2((2[4-9])|(3[0-9]))\.).*';
}
description
"This type represents an IPv4 multicast group address,
which is in the range of 224.0.0.0 to 239.255.255.255.";
reference
"RFC 1112: Host Extensions for IP Multicasting.";
}
typedef ipv6-multicast-group-address {
type inet:ipv6-address {
pattern '(([fF]{2}[0-9a-fA-F]{2}):).*';
}
description
"This type represents an IPv6 multicast group address,
which is in the range of ff00::/8.";
reference
"RFC 4291: IP Version 6 Addressing Architecture. Section 2.7.
RFC 7346: IPv6 Multicast Address Scopes.";
}
typedef ip-multicast-group-address {
type union {
type ipv4-multicast-group-address;
type ipv6-multicast-group-address;
}
description
"This type represents a version-neutral IP multicast group
address. The format of the textual representation implies
the IP version.";
}
typedef ipv4-multicast-source-address {
type union {
type enumeration {
enum * {
description
"Any source address.";
}
}
type inet:ipv4-address;
}
description
"Multicast source IPv4 address type.";
}
typedef ipv6-multicast-source-address {
type union {
type enumeration {
enum * {
description
"Any source address.";
}
}
type inet:ipv6-address;
}
description
"Multicast source IPv6 address type.";
}
/*** Collection of types common to protocols ***/
typedef bandwidth-ieee-float32 {
type string {
pattern
'0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
+ '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
+ '1[01][0-9]|0?[0-9]?[0-9])?)';
}
description
"Bandwidth in IEEE 754 floating-point 32-bit binary format:
(-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
where Exponent uses 8 bits and Fraction uses 23 bits.
The units are octets per second.
The encoding format is the external hexadecimal-significant
character sequences specified in IEEE 754 and ISO/IEC C99.
The format is restricted to be normalized, non-negative, and
non-fraction: 0x1.hhhhhhp{+}d, 0X1.HHHHHHP{+}D, or 0x0p0,
where 'h' and 'H' are hexadecimal digits and 'd' and 'D' are
integers in the range of [0..127].
When six hexadecimal digits are used for 'hhhhhh' or
'HHHHHH', the least significant digit must be an even
number. 'x' and 'X' indicate hexadecimal; 'p' and 'P'
indicate a power of two. Some examples are 0x0p0, 0x1p10,
and 0x1.abcde2p+20.";
reference
"IEEE Std 754-2008: IEEE Standard for Floating-Point
Arithmetic.
ISO/IEC C99: Information technology - Programming
Languages - C.";
}
typedef link-access-type {
type enumeration {
enum broadcast {
description
"Specify broadcast multi-access network.";
}
enum non-broadcast-multiaccess {
description
"Specify Non-Broadcast Multi-Access (NBMA) network.";
}
enum point-to-multipoint {
description
"Specify point-to-multipoint network.";
}
enum point-to-point {
description
"Specify point-to-point network.";
}
}
description
"Link access type.";
}
typedef timer-multiplier {
type uint8;
description
"The number of timer value intervals that should be
interpreted as a failure.";
}
typedef timer-value-seconds16 {
type union {
type uint16 {
range "1..65535";
}
type enumeration {
enum infinity {
description
"The timer is set to infinity.";
}
enum not-set {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (16-bit range).";
}
typedef timer-value-seconds32 {
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum infinity {
description
"The timer is set to infinity.";
}
enum not-set {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (32-bit range).";
}
typedef timer-value-milliseconds {
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum infinity {
description
"The timer is set to infinity.";
}
enum not-set {
description
"The timer is not set.";
}
}
}
units "milliseconds";
description
"Timer value type, in milliseconds.";
}
typedef percentage {
type uint8 {
range "0..100";
}
description
"Integer indicating a percentage value.";
}
typedef timeticks64 {
type uint64;
description
"This type is based on the timeticks type defined in
RFC 6991, but with 64-bit width. It represents the time,
modulo 2^64, in hundredths of a second between two epochs.";
reference
"RFC 6991: Common YANG Data Types.";
}
typedef uint24 {
type uint32 {
range "0..16777215";
}
description
"24-bit unsigned integer.";
}
/*** Collection of types related to MPLS/GMPLS ***/
typedef generalized-label {
type binary;
description
"Generalized Label. Nodes sending and receiving the
Generalized Label are aware of the link-specific
label context and type.";
reference
"RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Functional Description. Section 3.2.";
}
typedef mpls-label-special-purpose {
type identityref {
base mpls-label-special-purpose-value;
}
description
"This type represents the special-purpose MPLS label values.";
reference
"RFC 3032: MPLS Label Stack Encoding.
RFC 7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
typedef mpls-label-general-use {
type uint32 {
range "16..1048575";
}
description
"The 20-bit label value in an MPLS label stack as specified
in RFC 3032. This label value does not include the
encodings of Traffic Class and TTL (Time to Live).
The label range specified by this type is for general use,
with special-purpose MPLS label values excluded.";
reference
"RFC 3032: MPLS Label Stack Encoding.";
}
typedef mpls-label {
type union {
type mpls-label-special-purpose;
type mpls-label-general-use;
}
description
"The 20-bit label value in an MPLS label stack as specified
in RFC 3032. This label value does not include the
encodings of Traffic Class and TTL.";
reference
"RFC 3032: MPLS Label Stack Encoding.";
}
/*** Groupings **/
grouping mpls-label-stack {
description
"This grouping specifies an MPLS label stack. The label
stack is encoded as a list of label stack entries. The
list key is an identifier that indicates the relative
ordering of each entry, with the lowest-value identifier
corresponding to the top of the label stack.";
container mpls-label-stack {
description
"Container for a list of MPLS label stack entries.";
list entry {
key "id";
description
"List of MPLS label stack entries.";
leaf id {
type uint8;
description
"Identifies the entry in a sequence of MPLS label
stack entries. An entry with a smaller identifier
value precedes an entry with a larger identifier
value in the label stack. The value of this ID has
no semantic meaning other than relative ordering
and referencing the entry.";
}
leaf label {
type rt-types:mpls-label;
description
"Label value.";
}
leaf ttl {
type uint8;
description
"Time to Live (TTL).";
reference
"RFC 3032: MPLS Label Stack Encoding.";
}
leaf traffic-class {
type uint8 {
range "0..7";
}
description
"Traffic Class (TC).";
reference
"RFC 5462: Multiprotocol Label Switching (MPLS) Label
Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
Field.";
}
}
}
}
grouping vpn-route-targets {
description
"A grouping that specifies Route Target import-export rules
used in BGP-enabled VPNs.";
reference
"RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 4664: Framework for Layer 2 Virtual Private Networks
(L2VPNs).";
list vpn-target {
key "route-target";
description
"List of Route Targets.";
leaf route-target {
type rt-types:route-target;
description
"Route Target value.";
}
leaf route-target-type {
type rt-types:route-target-type;
mandatory true;
description
"Import/export type of the Route Target.";
}
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,474 @@
module ietf-yang-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
prefix "yang";
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: David Kessens
<mailto:david.kessens@nsn.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>";
description
"This module contains a collection of generally useful derived
YANG data types.
Copyright (c) 2013 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 6991; see
the RFC itself for full legal notices.";
revision 2013-07-15 {
description
"This revision adds the following new data types:
- yang-identifier
- hex-string
- uuid
- dotted-quad";
reference
"RFC 6991: Common YANG Data Types";
}
revision 2010-09-24 {
description
"Initial revision.";
reference
"RFC 6021: Common YANG Data Types";
}
/*** collection of counter and gauge types ***/
typedef counter32 {
type uint32;
description
"The counter32 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2^32-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.
Counters have no defined 'initial' value, and thus, a
single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the creation of
a schema node of type counter32 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.
The counter32 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter32.
In the value set and its semantics, this type is equivalent
to the Counter32 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef zero-based-counter32 {
type yang:counter32;
default "0";
description
"The zero-based-counter32 type represents a counter32
that has the defined 'initial' value zero.
A schema node of this type will be set to zero (0) on creation
and will thereafter increase monotonically until it reaches
a maximum value of 2^32-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.
Provided that an application discovers a new schema node
of this type within the minimum time to wrap, it can use the
'initial' value as a delta. It is important for a management
station to be aware of this minimum time and the actual time
between polls, and to discard data if the actual time is too
long or there is no defined minimum time.
In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter32 textual convention of the SMIv2.";
reference
"RFC 4502: Remote Network Monitoring Management Information
Base Version 2";
}
typedef counter64 {
type uint64;
description
"The counter64 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2^64-1 (18446744073709551615 decimal),
when it wraps around and starts increasing again from zero.
Counters have no defined 'initial' value, and thus, a
single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the creation of
a schema node of type counter64 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.
The counter64 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter64.
In the value set and its semantics, this type is equivalent
to the Counter64 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef zero-based-counter64 {
type yang:counter64;
default "0";
description
"The zero-based-counter64 type represents a counter64 that
has the defined 'initial' value zero.
A schema node of this type will be set to zero (0) on creation
and will thereafter increase monotonically until it reaches
a maximum value of 2^64-1 (18446744073709551615 decimal),
when it wraps around and starts increasing again from zero.
Provided that an application discovers a new schema node
of this type within the minimum time to wrap, it can use the
'initial' value as a delta. It is important for a management
station to be aware of this minimum time and the actual time
between polls, and to discard data if the actual time is too
long or there is no defined minimum time.
In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter64 textual convention of the SMIv2.";
reference
"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";
}
typedef gauge32 {
type uint32;
description
"The gauge32 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2^32-1 (4294967295 decimal), and
the minimum value cannot be smaller than 0. The value of
a gauge32 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge32 also decreases (increases).
In the value set and its semantics, this type is equivalent
to the Gauge32 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef gauge64 {
type uint64;
description
"The gauge64 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2^64-1 (18446744073709551615), and
the minimum value cannot be smaller than 0. The value of
a gauge64 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge64 also decreases (increases).
In the value set and its semantics, this type is equivalent
to the CounterBasedGauge64 SMIv2 textual convention defined
in RFC 2856";
reference
"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";
}
/*** collection of identifier-related types ***/
typedef object-identifier {
type string {
pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))'
+ '(\.(0|([1-9]\d*)))*';
}
description
"The object-identifier type represents administratively
assigned names in a registration-hierarchical-name tree.
Values of this type are denoted as a sequence of numerical
non-negative sub-identifier values. Each sub-identifier
value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
are separated by single dots and without any intermediate
whitespace.
The ASN.1 standard restricts the value space of the first
sub-identifier to 0, 1, or 2. Furthermore, the value space
of the second sub-identifier is restricted to the range
0 to 39 if the first sub-identifier is 0 or 1. Finally,
the ASN.1 standard requires that an object identifier
has always at least two sub-identifiers. The pattern
captures these restrictions.
Although the number of sub-identifiers is not limited,
module designers should realize that there may be
implementations that stick with the SMIv2 limit of 128
sub-identifiers.
This type is a superset of the SMIv2 OBJECT IDENTIFIER type
since it is not restricted to 128 sub-identifiers. Hence,
this type SHOULD NOT be used to represent the SMIv2 OBJECT
IDENTIFIER type; the object-identifier-128 type SHOULD be
used instead.";
reference
"ISO9834-1: Information technology -- Open Systems
Interconnection -- Procedures for the operation of OSI
Registration Authorities: General procedures and top
arcs of the ASN.1 Object Identifier tree";
}
typedef object-identifier-128 {
type object-identifier {
pattern '\d*(\.\d*){1,127}';
}
description
"This type represents object-identifiers restricted to 128
sub-identifiers.
In the value set and its semantics, this type is equivalent
to the OBJECT IDENTIFIER type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef yang-identifier {
type string {
length "1..max";
pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
}
description
"A YANG identifier string as defined by the 'identifier'
rule in Section 12 of RFC 6020. An identifier must
start with an alphabetic character or an underscore
followed by an arbitrary sequence of alphabetic or
numeric characters, underscores, hyphens, or dots.
A YANG identifier MUST NOT start with any possible
combination of the lowercase or uppercase character
sequence 'xml'.";
reference
"RFC 6020: YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)";
}
/*** collection of types related to date and time***/
typedef date-and-time {
type string {
pattern '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?'
+ '(Z|[\+\-]\d{2}:\d{2})';
}
description
"The date-and-time type is a profile of the ISO 8601
standard for representation of dates and times using the
Gregorian calendar. The profile is defined by the
date-time production in Section 5.6 of RFC 3339.
The date-and-time type is compatible with the dateTime XML
schema type with the following notable exceptions:
(a) The date-and-time type does not allow negative years.
(b) The date-and-time time-offset -00:00 indicates an unknown
time zone (see RFC 3339) while -00:00 and +00:00 and Z
all represent the same time zone in dateTime.
(c) The canonical format (see below) of data-and-time values
differs from the canonical format used by the dateTime XML
schema type, which requires all times to be in UTC using
the time-offset 'Z'.
This type is not equivalent to the DateAndTime textual
convention of the SMIv2 since RFC 3339 uses a different
separator between full-date and full-time and provides
higher resolution of time-secfrac.
The canonical format for date-and-time values with a known time
zone uses a numeric time zone offset that is calculated using
the device's configured known offset to UTC time. A change of
the device's offset to UTC time will cause date-and-time values
to change accordingly. Such changes might happen periodically
in case a server follows automatically daylight saving time
(DST) time zone offset changes. The canonical format for
date-and-time values with an unknown time zone (usually
referring to the notion of local time) uses the time-offset
-00:00.";
reference
"RFC 3339: Date and Time on the Internet: Timestamps
RFC 2579: Textual Conventions for SMIv2
XSD-TYPES: XML Schema Part 2: Datatypes Second Edition";
}
typedef timeticks {
type uint32;
description
"The timeticks type represents a non-negative integer that
represents the time, modulo 2^32 (4294967296 decimal), in
hundredths of a second between two epochs. When a schema
node is defined that uses this type, the description of
the schema node identifies both of the reference epochs.
In the value set and its semantics, this type is equivalent
to the TimeTicks type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef timestamp {
type yang:timeticks;
description
"The timestamp type represents the value of an associated
timeticks schema node at which a specific occurrence
happened. The specific occurrence must be defined in the
description of any schema node defined using this type. When
the specific occurrence occurred prior to the last time the
associated timeticks attribute was zero, then the timestamp
value is zero. Note that this requires all timestamp values
to be reset to zero when the value of the associated timeticks
attribute reaches 497+ days and wraps around to zero.
The associated timeticks schema node must be specified
in the description of any schema node using this type.
In the value set and its semantics, this type is equivalent
to the TimeStamp textual convention of the SMIv2.";
reference
"RFC 2579: Textual Conventions for SMIv2";
}
/*** collection of generic address types ***/
typedef phys-address {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
}
description
"Represents media- or physical-level addresses represented
as a sequence octets, each octet represented by two hexadecimal
numbers. Octets are separated by colons. The canonical
representation uses lowercase characters.
In the value set and its semantics, this type is equivalent
to the PhysAddress textual convention of the SMIv2.";
reference
"RFC 2579: Textual Conventions for SMIv2";
}
typedef mac-address {
type string {
pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
}
description
"The mac-address type represents an IEEE 802 MAC address.
The canonical representation uses lowercase characters.
In the value set and its semantics, this type is equivalent
to the MacAddress textual convention of the SMIv2.";
reference
"IEEE 802: IEEE Standard for Local and Metropolitan Area
Networks: Overview and Architecture
RFC 2579: Textual Conventions for SMIv2";
}
/*** collection of XML-specific types ***/
typedef xpath1.0 {
type string;
description
"This type represents an XPATH 1.0 expression.
When a schema node is defined that uses this type, the
description of the schema node MUST specify the XPath
context in which the XPath expression is evaluated.";
reference
"XPATH: XML Path Language (XPath) Version 1.0";
}
/*** collection of string types ***/
typedef hex-string {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
}
description
"A hexadecimal string with octets represented as hex digits
separated by colons. The canonical representation uses
lowercase characters.";
}
typedef uuid {
type string {
pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-'
+ '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
}
description
"A Universally Unique IDentifier in the string representation
defined in RFC 4122. The canonical representation uses
lowercase characters.
The following is an example of a UUID in string representation:
f81d4fae-7dec-11d0-a765-00a0c91e6bf6
";
reference
"RFC 4122: A Universally Unique IDentifier (UUID) URN
Namespace";
}
typedef dotted-quad {
type string {
pattern
'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
}
description
"An unsigned 32-bit number expressed in the dotted-quad
notation, i.e., four octets written as decimal numbers
and separated with the '.' (full stop) character.";
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,47 @@
module gnpy-api {
yang-version 1.1;
namespace "urn:gnpy-api";
prefix gapi;
organization
"Telecom Infra Project OOPT PSE Working Group";
contact
"WG Web: <https://github.com/Telecominfraproject/oopt-gnpy>
contact: <mailto:esther.lerouzic@orange.com>
";
description
"YANG model for gnpy network input for path computation simulation params- 2025";
revision 2025-06-13 {
description
"First yang model for api";
reference
"YANG model for network input for API path computation with gnpy";
}
container api {
description
"Top container for the API data.";
list extra-configs {
key name;
description
"List of extra configurations for the amplifiers defined in the
equipment libraries.";
leaf name {
type string;
description "Unique name used in the equipment library to reference this config.";
}
}
list extra-eqpts {
key name;
description
"List of additional libraries, eg for third party pluggables definitions.";
leaf name {
type string;
description "Unique name of the extra library.";
}
}
}
}

View File

@@ -0,0 +1,21 @@
module: gnpy-edfa-config
+--rw edfa-config
+--rw f_min decimal64
+--rw f_max decimal64
+--ro nf_ripple* decimal64
+--ro dgt* decimal64
+--ro gain_ripple* decimal64
+--ro nf_fit_coeff* [coef_order]
+--ro coef_order uint8
+--ro nf_coef? decimal64
augment /gapi:api/gapi:extra-configs:
+--rw edfa-config
+--rw f_min decimal64
+--rw f_max decimal64
+--ro nf_ripple* decimal64
+--ro dgt* decimal64
+--ro gain_ripple* decimal64
+--ro nf_fit_coeff* [coef_order]
+--ro coef_order uint8
+--ro nf_coef? decimal64

View File

@@ -0,0 +1,95 @@
module gnpy-edfa-config {
yang-version 1.1;
namespace "urn:gnpy-edaf-config";
prefix edfa-config;
import gnpy-api {
prefix "gapi";
revision-date 2025-06-13;
}
import gnpy-eqpt-config {
prefix "geqpt";
revision-date 2025-05-26;
}
organization
"Telecom Infra Project OOPT PSE Working Group";
contact
"WG Web: <https://github.com/Telecominfraproject/oopt-gnpy>
contact: <mailto:esther.lerouzic@orange.com>
";
description
"YANG model for gnpy network input for path computation extra edfa config- 2025";
revision 2025-04-10 {
description
"First yang model for extra edfa config option";
reference
"YANG model for network input for path computation with gnpy";
}
grouping edfa-config-grouping {
description
"Attributes for detailed configuration of EDFA.";
leaf f_min {
type decimal64 {
fraction-digits 1;
}
mandatory true;
description " Minimum and maximum frequency range for the amplifier.
Signal must fit entirely within this range (center frequency and spectrum width
";
}
leaf f_max {
type decimal64 {
fraction-digits 1;
}
mandatory true;
}
leaf-list nf_ripple {
config false;
type decimal64 {
fraction-digits 18;
}
}
leaf-list dgt {
config false;
type decimal64 {
fraction-digits 18;
}
}
leaf-list gain_ripple {
config false;
type decimal64 {
fraction-digits 18;
}
}
list nf_fit_coeff {
key coef_order;
config false;
uses geqpt:polynomial-coef;
must "./coef_order <= 3";
description "3rd order polynomial NF = f(-dg) coeficients list";
}
}
grouping edfa-config {
container edfa-config {
uses edfa-config-grouping;
}
}
container edfa-config {
uses edfa-config-grouping;
}
augment "/gapi:api/gapi:extra-configs" {
description "Add the list of additional configuration of EDFA in the API request.";
when "/gapi:api/gapi:extra-configs" ;
uses edfa-config;
}
}

View File

@@ -0,0 +1,602 @@
module: gnpy-eqpt-config
+--rw equipment
+--rw library-information
| +--rw name? string
| +--rw content-schema
| | +--rw module* module-with-revision-date
| +--rw description* string
| +--rw contact* string
| +--rw organization? string
| +--rw revision* [date]
| +--rw date string
| +--rw description? string
+--rw Edfa* [type_variety]
| +--rw type_variety string
| +--rw other_name* string
| +--rw f_min? decimal64
| +--rw f_max? decimal64
| +--rw allowed_for_design? boolean
| +--rw gain_flatmax? decimal64
| +--rw gain_min? decimal64
| +--rw extended_gain_range? decimal64
| +--rw p_max? decimal64
| +--rw type_def? identityref
| +--rw raman? boolean
| +--rw out_voa_auto? boolean
| +--rw in_voa_auto? boolean
| +--rw voa_step? decimal64
| +--rw pmd? decimal64
| +--rw pdl? decimal64
| +--rw (type_of_model)?
| +--:(variable_gain)
| | +--rw nf_min? decimal64
| | +--rw nf_max? decimal64
| | +--rw default_config_from_json? string
| +--:(fixed_gain)
| | +--rw nf0? decimal64
| +--:(openroadm)
| | +--rw nf_coef* [coef_order]
| | +--rw coef_order uint8
| | +--rw nf_coef? decimal64
| +--:(dual_stage)
| | +--rw preamp_variety? union
| | +--rw booster_variety? union
| +--:(multi_band)
| | +--rw amplifiers* string
| +--:(advanced_model)
| +--rw advanced_config_from_json? string
+--rw Fiber* [type_variety]
| +--rw type_variety string
| +--rw dispersion? decimal64
| +--rw gamma? decimal64
| +--rw pmd_coef? decimal64
| +--rw effective_area? decimal64
| +--rw loss_coef_lut* [freq]
| | +--rw freq decimal64
| | +--rw loss_coef_value? decimal64
| +--rw (ref_freq_or_wl)?
| +--:(frequency)
| | +--rw ref_frequency? decimal64
| +--:(wavelength)
| +--rw ref_wavelength? decimal64
+--rw RamanFiber* [type_variety]
| +--rw type_variety string
| +--rw dispersion? decimal64
| +--rw gamma? decimal64
| +--rw pmd_coef? decimal64
| +--rw effective_area? decimal64
| +--rw loss_coef_lut* [freq]
| | +--rw freq decimal64
| | +--rw loss_coef_value? decimal64
| +--rw (ref_freq_or_wl)?
| | +--:(frequency)
| | | +--rw ref_frequency? decimal64
| | +--:(wavelength)
| | +--rw ref_wavelength? decimal64
| +--rw raman_efficiency* [frequency_offset]
| +--rw cr? decimal64
| +--rw frequency_offset decimal64
+--ro Span* []
| +--ro power_mode? boolean
| +--ro delta_power_range_dict_db
| | +--ro min_value? decimal64
| | +--ro max_value? decimal64
| | +--ro step? decimal64
| +--ro max_length? decimal64
| +--ro max_loss? decimal64
| +--ro max_fiber_lineic_loss_for_raman? decimal64
| +--ro target_extended_gain? decimal64
| +--ro length_units? string
| +--ro padding? decimal64
| +--ro EOL? decimal64
| +--ro con_in? decimal64
| +--ro con_out? decimal64
| +--ro span_loss_ref? decimal64
| +--ro power_slope? decimal64
| +--ro voa_margin? decimal64
| +--ro voa_step? decimal64
+--rw Roadm* [type_variety]
| +--rw type_variety string
| +--rw (target_type)?
| | +--:(constant_power)
| | | +--rw target_pch_out_db? decimal64
| | +--:(constant_psd)
| | | +--rw target_psd_out_mWperGHz? decimal64
| | +--:(constant_psw)
| | +--rw target_out_mWperSlotWidth? decimal64
| +--rw add_drop_osnr? decimal64
| +--rw pmd? decimal64
| +--rw pdl? decimal64
| +--rw restrictions
| | +--rw preamp_variety_list* string
| | +--rw booster_variety_list* string
| +--rw roadm-path-impairments* [roadm-path-impairments-id]
| +--rw roadm-path-impairments-id uint32
| +--rw (impairment-type)?
| +--:(roadm-express-path)
| | +--ro roadm-express-path* []
| | +--ro frequency-range
| | | +--ro lower-frequency union
| | | +--ro upper-frequency union
| | +--ro roadm-pmd? union
| | +--ro roadm-cd? l0-types:decimal-5-or-null
| | +--ro roadm-pdl? l0-types:power-loss-or-null
| | +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| | +--ro roadm-maxloss? l0-types:power-loss-or-null
| | +--ro roadm-osnr? l0-types:snr-or-null
| +--:(roadm-add-path)
| | +--ro roadm-add-path* []
| | +--ro frequency-range
| | | +--ro lower-frequency union
| | | +--ro upper-frequency union
| | +--ro roadm-pmd? union
| | +--ro roadm-cd? l0-types:decimal-5-or-null
| | +--ro roadm-pdl? l0-types:power-loss-or-null
| | +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| | +--ro roadm-maxloss? l0-types:power-loss-or-null
| | +--ro roadm-pmax? l0-types:power-dbm-or-null
| | +--ro roadm-osnr? l0-types:snr-or-null
| | +--ro roadm-noise-figure? l0-types:decimal-5-or-null
| +--:(roadm-drop-path)
| +--ro roadm-drop-path* []
| +--ro frequency-range
| | +--ro lower-frequency union
| | +--ro upper-frequency union
| +--ro roadm-pmd? union
| +--ro roadm-cd? l0-types:decimal-5-or-null
| +--ro roadm-pdl? l0-types:power-loss-or-null
| +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| +--ro roadm-maxloss? l0-types:power-loss-or-null
| +--ro roadm-minloss? l0-types:power-loss-or-null
| +--ro roadm-typloss? l0-types:power-loss-or-null
| +--ro roadm-pmin? l0-types:power-dbm-or-null
| +--ro roadm-pmax? l0-types:power-dbm-or-null
| +--ro roadm-ptyp? l0-types:power-dbm-or-null
| +--ro roadm-osnr? l0-types:snr-or-null
| +--ro roadm-noise-figure? l0-types:decimal-5-or-null
+--ro SI* []
| +--ro f_min? decimal64
| +--ro f_max? decimal64
| +--ro spacing? decimal64
| +--ro power_dbm? decimal64
| +--ro power_range_dict_db
| | +--ro min_value? decimal64
| | +--ro max_value? decimal64
| | +--ro step? decimal64
| +--ro type_variety? string
| +--ro sys_margins? decimal64
| +--ro use_si_channel_count_for_design? boolean
| +--ro baud_rate? decimal64
| +--ro tx_osnr? decimal64
| +--ro roll_off? union
| +--ro tx_power_dbm? decimal64
+--rw Transceiver* [type_variety]
+--rw type_variety string
+--rw other_name* string
+--rw comment? string
+--rw frequency
| +--rw min? decimal64
| +--rw max? decimal64
+--rw mode* [format]
+--rw format string
+--rw other_name* string
+--rw OSNR? decimal64
+--rw min_spacing? decimal64
+--rw bit_rate? decimal64
+--rw cost? decimal64
+--rw baud_rate? decimal64
+--rw tx_osnr? decimal64
+--rw roll_off? union
+--rw tx_power_dbm? decimal64
+--ro penalties* []
| +--ro chromatic_dispersion? decimal64
| +--ro pmd? decimal64
| +--ro pdl? decimal64
| +--ro rx-channel-power-value? decimal64
| +--ro penalty_value? decimal64
+--rw equalization_offset_db? decimal64
+--rw tx-channel-power-min? decimal64
+--rw tx-channel-power-max? decimal64
+--rw rx-channel-power-min? decimal64
+--rw rx-channel-power-max? decimal64
augment /gapi:api:
+--rw equipment
+--rw library-information
| +--rw name? string
| +--rw content-schema
| | +--rw module* module-with-revision-date
| +--rw description* string
| +--rw contact* string
| +--rw organization? string
| +--rw revision* [date]
| +--rw date string
| +--rw description? string
+--rw Edfa* [type_variety]
| +--rw type_variety string
| +--rw other_name* string
| +--rw f_min? decimal64
| +--rw f_max? decimal64
| +--rw allowed_for_design? boolean
| +--rw gain_flatmax? decimal64
| +--rw gain_min? decimal64
| +--rw extended_gain_range? decimal64
| +--rw p_max? decimal64
| +--rw type_def? identityref
| +--rw raman? boolean
| +--rw out_voa_auto? boolean
| +--rw in_voa_auto? boolean
| +--rw voa_step? decimal64
| +--rw pmd? decimal64
| +--rw pdl? decimal64
| +--rw (type_of_model)?
| +--:(variable_gain)
| | +--rw nf_min? decimal64
| | +--rw nf_max? decimal64
| | +--rw default_config_from_json? string
| +--:(fixed_gain)
| | +--rw nf0? decimal64
| +--:(openroadm)
| | +--rw nf_coef* [coef_order]
| | +--rw coef_order uint8
| | +--rw nf_coef? decimal64
| +--:(dual_stage)
| | +--rw preamp_variety? union
| | +--rw booster_variety? union
| +--:(multi_band)
| | +--rw amplifiers* string
| +--:(advanced_model)
| +--rw advanced_config_from_json? string
+--rw Fiber* [type_variety]
| +--rw type_variety string
| +--rw dispersion? decimal64
| +--rw gamma? decimal64
| +--rw pmd_coef? decimal64
| +--rw effective_area? decimal64
| +--rw loss_coef_lut* [freq]
| | +--rw freq decimal64
| | +--rw loss_coef_value? decimal64
| +--rw (ref_freq_or_wl)?
| +--:(frequency)
| | +--rw ref_frequency? decimal64
| +--:(wavelength)
| +--rw ref_wavelength? decimal64
+--rw RamanFiber* [type_variety]
| +--rw type_variety string
| +--rw dispersion? decimal64
| +--rw gamma? decimal64
| +--rw pmd_coef? decimal64
| +--rw effective_area? decimal64
| +--rw loss_coef_lut* [freq]
| | +--rw freq decimal64
| | +--rw loss_coef_value? decimal64
| +--rw (ref_freq_or_wl)?
| | +--:(frequency)
| | | +--rw ref_frequency? decimal64
| | +--:(wavelength)
| | +--rw ref_wavelength? decimal64
| +--rw raman_efficiency* [frequency_offset]
| +--rw cr? decimal64
| +--rw frequency_offset decimal64
+--ro Span* []
| +--ro power_mode? boolean
| +--ro delta_power_range_dict_db
| | +--ro min_value? decimal64
| | +--ro max_value? decimal64
| | +--ro step? decimal64
| +--ro max_length? decimal64
| +--ro max_loss? decimal64
| +--ro max_fiber_lineic_loss_for_raman? decimal64
| +--ro target_extended_gain? decimal64
| +--ro length_units? string
| +--ro padding? decimal64
| +--ro EOL? decimal64
| +--ro con_in? decimal64
| +--ro con_out? decimal64
| +--ro span_loss_ref? decimal64
| +--ro power_slope? decimal64
| +--ro voa_margin? decimal64
| +--ro voa_step? decimal64
+--rw Roadm* [type_variety]
| +--rw type_variety string
| +--rw (target_type)?
| | +--:(constant_power)
| | | +--rw target_pch_out_db? decimal64
| | +--:(constant_psd)
| | | +--rw target_psd_out_mWperGHz? decimal64
| | +--:(constant_psw)
| | +--rw target_out_mWperSlotWidth? decimal64
| +--rw add_drop_osnr? decimal64
| +--rw pmd? decimal64
| +--rw pdl? decimal64
| +--rw restrictions
| | +--rw preamp_variety_list* string
| | +--rw booster_variety_list* string
| +--rw roadm-path-impairments* [roadm-path-impairments-id]
| +--rw roadm-path-impairments-id uint32
| +--rw (impairment-type)?
| +--:(roadm-express-path)
| | +--ro roadm-express-path* []
| | +--ro frequency-range
| | | +--ro lower-frequency union
| | | +--ro upper-frequency union
| | +--ro roadm-pmd? union
| | +--ro roadm-cd? l0-types:decimal-5-or-null
| | +--ro roadm-pdl? l0-types:power-loss-or-null
| | +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| | +--ro roadm-maxloss? l0-types:power-loss-or-null
| +--:(roadm-add-path)
| | +--ro roadm-add-path* []
| | +--ro frequency-range
| | | +--ro lower-frequency union
| | | +--ro upper-frequency union
| | +--ro roadm-pmd? union
| | +--ro roadm-cd? l0-types:decimal-5-or-null
| | +--ro roadm-pdl? l0-types:power-loss-or-null
| | +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| | +--ro roadm-maxloss? l0-types:power-loss-or-null
| | +--ro roadm-pmax? l0-types:power-dbm-or-null
| | +--ro roadm-osnr? l0-types:snr-or-null
| | +--ro roadm-noise-figure? l0-types:decimal-5-or-null
| +--:(roadm-drop-path)
| +--ro roadm-drop-path* []
| +--ro frequency-range
| | +--ro lower-frequency union
| | +--ro upper-frequency union
| +--ro roadm-pmd? union
| +--ro roadm-cd? l0-types:decimal-5-or-null
| +--ro roadm-pdl? l0-types:power-loss-or-null
| +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| +--ro roadm-maxloss? l0-types:power-loss-or-null
| +--ro roadm-minloss? l0-types:power-loss-or-null
| +--ro roadm-typloss? l0-types:power-loss-or-null
| +--ro roadm-pmin? l0-types:power-dbm-or-null
| +--ro roadm-pmax? l0-types:power-dbm-or-null
| +--ro roadm-ptyp? l0-types:power-dbm-or-null
| +--ro roadm-osnr? l0-types:snr-or-null
| +--ro roadm-noise-figure? l0-types:decimal-5-or-null
+--ro SI* []
| +--ro f_min? decimal64
| +--ro f_max? decimal64
| +--ro spacing? decimal64
| +--ro power_dbm? decimal64
| +--ro power_range_dict_db
| | +--ro min_value? decimal64
| | +--ro max_value? decimal64
| | +--ro step? decimal64
| +--ro type_variety? string
| +--ro sys_margins? decimal64
| +--ro use_si_channel_count_for_design? boolean
| +--ro baud_rate? decimal64
| +--ro tx_osnr? decimal64
| +--ro roll_off? union
| +--ro tx_power_dbm? decimal64
+--rw Transceiver* [type_variety]
+--rw type_variety string
+--rw other_name* string
+--rw comment? string
+--rw frequency
| +--rw min? decimal64
| +--rw max? decimal64
+--rw mode* [format]
+--rw format string
+--rw other_name* string
+--rw OSNR? decimal64
+--rw min_spacing? decimal64
+--rw bit_rate? decimal64
+--rw cost? decimal64
+--rw baud_rate? decimal64
+--rw tx_osnr? decimal64
+--rw roll_off? union
+--rw tx_power_dbm? decimal64
+--ro penalties* []
| +--ro chromatic_dispersion? decimal64
| +--ro pmd? decimal64
| +--ro pdl? decimal64
| +--ro rx-channel-power-value? decimal64
| +--ro penalty_value? decimal64
+--rw equalization_offset_db? decimal64
+--rw tx-channel-power-min? decimal64
+--rw tx-channel-power-max? decimal64
+--rw rx-channel-power-min? decimal64
+--rw rx-channel-power-max? decimal64
augment /gapi:api/gapi:extra-eqpts:
+--rw equipment
+--rw library-information
| +--rw name? string
| +--rw content-schema
| | +--rw module* module-with-revision-date
| +--rw description* string
| +--rw contact* string
| +--rw organization? string
| +--rw revision* [date]
| +--rw date string
| +--rw description? string
+--rw Edfa* [type_variety]
| +--rw type_variety string
| +--rw other_name* string
| +--rw f_min? decimal64
| +--rw f_max? decimal64
| +--rw allowed_for_design? boolean
| +--rw gain_flatmax? decimal64
| +--rw gain_min? decimal64
| +--rw extended_gain_range? decimal64
| +--rw p_max? decimal64
| +--rw type_def? identityref
| +--rw raman? boolean
| +--rw out_voa_auto? boolean
| +--rw in_voa_auto? boolean
| +--rw voa_step? decimal64
| +--rw pmd? decimal64
| +--rw pdl? decimal64
| +--rw (type_of_model)?
| +--:(variable_gain)
| | +--rw nf_min? decimal64
| | +--rw nf_max? decimal64
| | +--rw default_config_from_json? string
| +--:(fixed_gain)
| | +--rw nf0? decimal64
| +--:(openroadm)
| | +--rw nf_coef* [coef_order]
| | +--rw coef_order uint8
| | +--rw nf_coef? decimal64
| +--:(dual_stage)
| | +--rw preamp_variety? union
| | +--rw booster_variety? union
| +--:(multi_band)
| | +--rw amplifiers* string
| +--:(advanced_model)
| +--rw advanced_config_from_json? string
+--rw Fiber* [type_variety]
| +--rw type_variety string
| +--rw dispersion? decimal64
| +--rw gamma? decimal64
| +--rw pmd_coef? decimal64
| +--rw effective_area? decimal64
| +--rw loss_coef_lut* [freq]
| | +--rw freq decimal64
| | +--rw loss_coef_value? decimal64
| +--rw (ref_freq_or_wl)?
| +--:(frequency)
| | +--rw ref_frequency? decimal64
| +--:(wavelength)
| +--rw ref_wavelength? decimal64
+--rw RamanFiber* [type_variety]
| +--rw type_variety string
| +--rw dispersion? decimal64
| +--rw gamma? decimal64
| +--rw pmd_coef? decimal64
| +--rw effective_area? decimal64
| +--rw loss_coef_lut* [freq]
| | +--rw freq decimal64
| | +--rw loss_coef_value? decimal64
| +--rw (ref_freq_or_wl)?
| | +--:(frequency)
| | | +--rw ref_frequency? decimal64
| | +--:(wavelength)
| | +--rw ref_wavelength? decimal64
| +--rw raman_efficiency* [frequency_offset]
| +--rw cr? decimal64
| +--rw frequency_offset decimal64
+--ro Span* []
| +--ro power_mode? boolean
| +--ro delta_power_range_dict_db
| | +--ro min_value? decimal64
| | +--ro max_value? decimal64
| | +--ro step? decimal64
| +--ro max_length? decimal64
| +--ro max_loss? decimal64
| +--ro max_fiber_lineic_loss_for_raman? decimal64
| +--ro target_extended_gain? decimal64
| +--ro length_units? string
| +--ro padding? decimal64
| +--ro EOL? decimal64
| +--ro con_in? decimal64
| +--ro con_out? decimal64
| +--ro span_loss_ref? decimal64
| +--ro power_slope? decimal64
| +--ro voa_margin? decimal64
| +--ro voa_step? decimal64
+--rw Roadm* [type_variety]
| +--rw type_variety string
| +--rw (target_type)?
| | +--:(constant_power)
| | | +--rw target_pch_out_db? decimal64
| | +--:(constant_psd)
| | | +--rw target_psd_out_mWperGHz? decimal64
| | +--:(constant_psw)
| | +--rw target_out_mWperSlotWidth? decimal64
| +--rw add_drop_osnr? decimal64
| +--rw pmd? decimal64
| +--rw pdl? decimal64
| +--rw restrictions
| | +--rw preamp_variety_list* string
| | +--rw booster_variety_list* string
| +--rw roadm-path-impairments* [roadm-path-impairments-id]
| +--rw roadm-path-impairments-id uint32
| +--rw (impairment-type)?
| +--:(roadm-express-path)
| | +--ro roadm-express-path* []
| | +--ro frequency-range
| | | +--ro lower-frequency union
| | | +--ro upper-frequency union
| | +--ro roadm-pmd? union
| | +--ro roadm-cd? l0-types:decimal-5-or-null
| | +--ro roadm-pdl? l0-types:power-loss-or-null
| | +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| | +--ro roadm-maxloss? l0-types:power-loss-or-null
| +--:(roadm-add-path)
| | +--ro roadm-add-path* []
| | +--ro frequency-range
| | | +--ro lower-frequency union
| | | +--ro upper-frequency union
| | +--ro roadm-pmd? union
| | +--ro roadm-cd? l0-types:decimal-5-or-null
| | +--ro roadm-pdl? l0-types:power-loss-or-null
| | +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| | +--ro roadm-maxloss? l0-types:power-loss-or-null
| | +--ro roadm-pmax? l0-types:power-dbm-or-null
| | +--ro roadm-osnr? l0-types:snr-or-null
| | +--ro roadm-noise-figure? l0-types:decimal-5-or-null
| +--:(roadm-drop-path)
| +--ro roadm-drop-path* []
| +--ro frequency-range
| | +--ro lower-frequency union
| | +--ro upper-frequency union
| +--ro roadm-pmd? union
| +--ro roadm-cd? l0-types:decimal-5-or-null
| +--ro roadm-pdl? l0-types:power-loss-or-null
| +--ro roadm-inband-crosstalk? l0-types:decimal-2-or-null
| +--ro roadm-maxloss? l0-types:power-loss-or-null
| +--ro roadm-minloss? l0-types:power-loss-or-null
| +--ro roadm-typloss? l0-types:power-loss-or-null
| +--ro roadm-pmin? l0-types:power-dbm-or-null
| +--ro roadm-pmax? l0-types:power-dbm-or-null
| +--ro roadm-ptyp? l0-types:power-dbm-or-null
| +--ro roadm-osnr? l0-types:snr-or-null
| +--ro roadm-noise-figure? l0-types:decimal-5-or-null
+--ro SI* []
| +--ro f_min? decimal64
| +--ro f_max? decimal64
| +--ro spacing? decimal64
| +--ro power_dbm? decimal64
| +--ro power_range_dict_db
| | +--ro min_value? decimal64
| | +--ro max_value? decimal64
| | +--ro step? decimal64
| +--ro type_variety? string
| +--ro sys_margins? decimal64
| +--ro use_si_channel_count_for_design? boolean
| +--ro baud_rate? decimal64
| +--ro tx_osnr? decimal64
| +--ro roll_off? union
| +--ro tx_power_dbm? decimal64
+--rw Transceiver* [type_variety]
+--rw type_variety string
+--rw other_name* string
+--rw comment? string
+--rw frequency
| +--rw min? decimal64
| +--rw max? decimal64
+--rw mode* [format]
+--rw format string
+--rw other_name* string
+--rw OSNR? decimal64
+--rw min_spacing? decimal64
+--rw bit_rate? decimal64
+--rw cost? decimal64
+--rw baud_rate? decimal64
+--rw tx_osnr? decimal64
+--rw roll_off? union
+--rw tx_power_dbm? decimal64
+--ro penalties* []
| +--ro chromatic_dispersion? decimal64
| +--ro pmd? decimal64
| +--ro pdl? decimal64
| +--ro rx-channel-power-value? decimal64
| +--ro penalty_value? decimal64
+--rw equalization_offset_db? decimal64
+--rw tx-channel-power-min? decimal64
+--rw tx-channel-power-max? decimal64
+--rw rx-channel-power-min? decimal64
+--rw rx-channel-power-max? decimal64

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,265 @@
module: gnpy-network-topology
+--rw topology
+--rw elements* [uid]
| +--rw uid string
| +--rw type identityref
| +--rw type_variety? string
| +--rw metadata
| | +--rw location
| | +--rw city? union
| | +--rw region? union
| | +--rw latitude? Coordinate
| | +--rw longitude? Coordinate
| +--rw operational
| | +--rw (ramanfiber)?
| | +--:(RamanFiber)
| | | +--rw temperature? decimal64
| | | +--rw raman_pumps* [frequency]
| | | +--rw power? decimal64
| | | +--rw frequency decimal64
| | | +--rw propagation_direction? identityref
| | +--:(Edfa)
| | +--rw gain_target? union
| | +--rw tilt_target? union
| | +--rw out_voa? union
| | +--rw in_voa? union
| | +--rw delta_p? union
| | +--rw f_min? decimal64
| | +--rw f_max? decimal64
| +--rw (element-type)?
| +--:(FiberRoadm)
| | +--rw params
| | +--rw (fiberroadmfused)?
| | +--:(Fiber)
| | | +--rw length decimal64
| | | +--rw pmd_coef? decimal64
| | | +--rw (ref_freq_or_wl)?
| | | | +--:(frequency)
| | | | | +--rw ref_frequency? decimal64
| | | | +--:(wavelength)
| | | | +--rw ref_wavelength? decimal64
| | | +--rw (dispersion-vector-or-scalar)?
| | | | +--:(scalar)
| | | | | +--rw dispersion? decimal64
| | | | | +--rw dispersion_slope? decimal64
| | | | +--:(vector)
| | | | +--rw dispersion_per_frequency* [frequency]
| | | | +--rw frequency decimal64
| | | | +--rw dispersion? decimal64
| | | +--rw effective_area? decimal64
| | | +--rw gamma? decimal64
| | | +--rw raman_coefficient
| | | | +--rw reference_frequency? decimal64
| | | | +--rw g0_per_frequency* [frequency_offset]
| | | | +--rw frequency_offset decimal64
| | | | +--rw g0? decimal64
| | | +--rw lumped_losses* [position]
| | | | +--rw position decimal64
| | | | +--rw loss decimal64
| | | +--rw (loss_coef-vector-or-scalar)?
| | | | +--:(scalar)
| | | | | +--rw loss_coef decimal64
| | | | +--:(vector)
| | | | +--rw loss_coef_per_frequency* [frequency]
| | | | +--rw frequency decimal64
| | | | +--rw loss_coef_value? decimal64
| | | +--rw length_units identityref
| | | +--rw att_in? decimal64
| | | +--rw con_in? union
| | | +--rw con_out? union
| | +--:(RoadmTransceiver)
| | | +--rw design_bands* [f_min]
| | | | +--rw f_min decimal64
| | | | +--rw f_max? decimal64
| | | | +--rw (parameter-used-for-design)?
| | | | +--:(spacing)
| | | | | +--rw spacing? decimal64
| | | | +--:(number-of-channels)
| | | | +--rw number-of-channels? uint16
| | | +--rw per_degree_design_bands_targets* [degree_uid]
| | | | +--rw degree_uid -> ../../../../elements/uid
| | | | +--rw design_bands* [f_min]
| | | | +--rw f_min decimal64
| | | | +--rw f_max? decimal64
| | | | +--rw (parameter-used-for-design)?
| | | | +--:(spacing)
| | | | | +--rw spacing? decimal64
| | | | +--:(number-of-channels)
| | | | +--rw number-of-channels? uint16
| | | +--rw (roadm)?
| | | +--:(roadm)
| | | +--rw (target_type)?
| | | | +--:(constant_power)
| | | | | +--rw target_pch_out_db? decimal64
| | | | +--:(constant_psd)
| | | | | +--rw target_psd_out_mWperGHz? decimal64
| | | | +--:(constant_psw)
| | | | +--rw target_out_mWperSlotWidth? decimal64
| | | +--rw restrictions
| | | | +--rw preamp_variety_list* string
| | | | +--rw booster_variety_list* string
| | | +--rw per_degree_power_targets* [degree_uid]
| | | | +--rw degree_uid -> ../../../../elements/uid
| | | | +--rw (per_degree_target_type)?
| | | | +--:(constant_power)
| | | | | +--rw per_degree_pch_out_db? decimal64
| | | | +--:(constant_psd)
| | | | | +--rw per_degree_psd_out_mWperGHz? decimal64
| | | | +--:(constant_psw)
| | | | +--rw per_degree_psd_out_mWperSlotWidth? decimal64
| | | +--rw per_degree_impairments* [from_degree to_degree]
| | | +--rw from_degree -> ../../../../elements/uid
| | | +--rw to_degree -> ../../../../elements/uid
| | | +--rw impairment_id? uint32
| | +--:(Fused)
| | | +--rw loss? union
| | +--:(Multiband_amplifier)
| | +--rw variety_list* string
| +--:(Multiband_amplifier)
| +--rw amplifiers* [type_variety]
| +--rw type_variety string
| +--rw operational
| +--rw gain_target? union
| +--rw tilt_target? union
| +--rw out_voa? union
| +--rw in_voa? union
| +--rw delta_p? union
| +--rw f_min? decimal64
| +--rw f_max? decimal64
+--rw connections* [from_node to_node]
| +--rw from_node -> ../../elements/uid
| +--rw to_node -> ../../elements/uid
+--rw network_name? string
augment /gapi:api:
+--rw topology
+--rw elements* [uid]
| +--rw uid string
| +--rw type identityref
| +--rw type_variety? string
| +--rw metadata
| | +--rw location
| | +--rw city? union
| | +--rw region? union
| | +--rw latitude? Coordinate
| | +--rw longitude? Coordinate
| +--rw operational
| | +--rw (ramanfiber)?
| | +--:(RamanFiber)
| | | +--rw temperature? decimal64
| | | +--rw raman_pumps* [frequency]
| | | +--rw power? decimal64
| | | +--rw frequency decimal64
| | | +--rw propagation_direction? identityref
| | +--:(Edfa)
| | +--rw gain_target? union
| | +--rw tilt_target? union
| | +--rw out_voa? union
| | +--rw in_voa? union
| | +--rw delta_p? union
| | +--rw f_min? decimal64
| | +--rw f_max? decimal64
| +--rw (element-type)?
| +--:(FiberRoadm)
| | +--rw params
| | +--rw (fiberroadmfused)?
| | +--:(Fiber)
| | | +--rw length decimal64
| | | +--rw pmd_coef? decimal64
| | | +--rw (ref_freq_or_wl)?
| | | | +--:(frequency)
| | | | | +--rw ref_frequency? decimal64
| | | | +--:(wavelength)
| | | | +--rw ref_wavelength? decimal64
| | | +--rw (dispersion-vector-or-scalar)?
| | | | +--:(scalar)
| | | | | +--rw dispersion? decimal64
| | | | | +--rw dispersion_slope? decimal64
| | | | +--:(vector)
| | | | +--rw dispersion_per_frequency* [frequency]
| | | | +--rw frequency decimal64
| | | | +--rw dispersion? decimal64
| | | +--rw effective_area? decimal64
| | | +--rw gamma? decimal64
| | | +--rw raman_coefficient
| | | | +--rw reference_frequency? decimal64
| | | | +--rw g0_per_frequency* [frequency_offset]
| | | | +--rw frequency_offset decimal64
| | | | +--rw g0? decimal64
| | | +--rw lumped_losses* [position]
| | | | +--rw position decimal64
| | | | +--rw loss decimal64
| | | +--rw (loss_coef-vector-or-scalar)?
| | | | +--:(scalar)
| | | | | +--rw loss_coef decimal64
| | | | +--:(vector)
| | | | +--rw loss_coef_per_frequency* [frequency]
| | | | +--rw frequency decimal64
| | | | +--rw loss_coef_value? decimal64
| | | +--rw length_units identityref
| | | +--rw att_in? decimal64
| | | +--rw con_in? union
| | | +--rw con_out? union
| | +--:(RoadmTransceiver)
| | | +--rw design_bands* [f_min]
| | | | +--rw f_min decimal64
| | | | +--rw f_max? decimal64
| | | | +--rw (parameter-used-for-design)?
| | | | +--:(spacing)
| | | | | +--rw spacing? decimal64
| | | | +--:(number-of-channels)
| | | | +--rw number-of-channels? uint16
| | | +--rw per_degree_design_bands_targets* [degree_uid]
| | | | +--rw degree_uid -> ../../../../elements/uid
| | | | +--rw design_bands* [f_min]
| | | | +--rw f_min decimal64
| | | | +--rw f_max? decimal64
| | | | +--rw (parameter-used-for-design)?
| | | | +--:(spacing)
| | | | | +--rw spacing? decimal64
| | | | +--:(number-of-channels)
| | | | +--rw number-of-channels? uint16
| | | +--rw (roadm)?
| | | +--:(roadm)
| | | +--rw (target_type)?
| | | | +--:(constant_power)
| | | | | +--rw target_pch_out_db? decimal64
| | | | +--:(constant_psd)
| | | | | +--rw target_psd_out_mWperGHz? decimal64
| | | | +--:(constant_psw)
| | | | +--rw target_out_mWperSlotWidth? decimal64
| | | +--rw restrictions
| | | | +--rw preamp_variety_list* string
| | | | +--rw booster_variety_list* string
| | | +--rw per_degree_power_targets* [degree_uid]
| | | | +--rw degree_uid -> ../../../../elements/uid
| | | | +--rw (per_degree_target_type)?
| | | | +--:(constant_power)
| | | | | +--rw per_degree_pch_out_db? decimal64
| | | | +--:(constant_psd)
| | | | | +--rw per_degree_psd_out_mWperGHz? decimal64
| | | | +--:(constant_psw)
| | | | +--rw per_degree_psd_out_mWperSlotWidth? decimal64
| | | +--rw per_degree_impairments* [from_degree to_degree]
| | | +--rw from_degree -> ../../../../elements/uid
| | | +--rw to_degree -> ../../../../elements/uid
| | | +--rw impairment_id? uint32
| | +--:(Fused)
| | | +--rw loss? union
| | +--:(Multiband_amplifier)
| | +--rw variety_list* string
| +--:(Multiband_amplifier)
| +--rw amplifiers* [type_variety]
| +--rw type_variety string
| +--rw operational
| +--rw gain_target? union
| +--rw tilt_target? union
| +--rw out_voa? union
| +--rw in_voa? union
| +--rw delta_p? union
| +--rw f_min? decimal64
| +--rw f_max? decimal64
+--rw connections* [from_node to_node]
| +--rw from_node -> ../../elements/uid
| +--rw to_node -> ../../elements/uid
+--rw network_name? string

View File

@@ -0,0 +1,877 @@
module gnpy-network-topology {
yang-version 1.1;
namespace "gnpy:gnpy-network-topology";
prefix gnpynt;
import gnpy-api {
prefix "gapi";
revision-date 2025-06-13;
}
import gnpy-eqpt-config {
prefix "geqpt";
revision-date 2025-05-26;
}
organization
"Telecom Infra Project OOPT PSE Working Group";
contact
"WG Web: <https://github.com/Telecominfraproject/oopt-gnpy>
contact: <mailto:ahmed.triki@orange.com>
contact: <mailto:esther.lerouzic@orange.com>
";
description
"YANG model for gnpy network input for path computation - 2020 - candi preversion";
revision 2025-03-01 {
description
"spacing for design band and pmd_coef";
reference
"YANG model for network input for path computation with gnpy";
}
revision 2025-01-20 {
description
"Add RamanFiber, design bands, impairments";
reference
"YANG model for network input for path computation with gnpy";
}
revision 2024-02-21 {
description
"fix namespaces for identity-ref,
add roadm impairment";
reference
"YANG model for network input for path computation with gnpy";
}
revision 2023-02-01 {
description
"change per-degree roadm targets
set 6 digits for fiber length
set 6 digits for loss_coef
add type empty for con_in and con_out";
reference
"YANG model for network input for path computation with gnpy";
}
revision 2022-11-21 {
description
"draft for detecon - GNPy API";
reference
"YANG model for network input for path computation with gnpy";
}
revision 2020-10-22 {
description
"draft for experimental/2020-candi";
reference
"YANG model for network input for path computation with gnpy";
}
identity type-element {
description
"Base identity for element type";
}
identity Transceiver {
base type-element;
description
" Transceiver element";
}
identity Fiber {
base type-element;
description
"Fiber element (unidirectional)";
}
identity RamanFiber {
base type-element;
description
"RamanFiber element (unidirectional)";
}
identity Roadm {
base type-element;
description
"Roadm element";
}
identity Edfa {
base type-element;
description
"Edfa element";
}
identity Fused {
base type-element;
description
"Fused element ; non amplified connection between two fiber spans ;
can be used to model optical distribution frame, or losses due to
connectors or fused in a span";
}
identity Multiband_amplifier {
base type-element;
description
"Multiband_amplifier element";
}
identity length-unit {
description
"length unit";
}
identity km {
base length-unit;
description
"kilometers";
}
identity m {
base length-unit;
description
"meter";
}
typedef Coordinate {
type decimal64 {
fraction-digits 6;
}
description
"Latitude or longitude type";
}
identity pumping-direction {
description
"Raman pumping direction";
}
identity coprop {
base pumping-direction;
description
"forward pumping";
}
identity counterprop {
base pumping-direction;
description
"backward pumping";
}
grouping location-attributes {
description
"grouping for location imformation: city, region names
and coordinates.";
container location {
description
"Information for a node location: city, region names
and coordinates.";
leaf city {
type union {
type string;
type empty;
}
description
"City name.";
}
leaf region {
type union {
type string;
type empty;
}
description
"Region name. Used for filtering purpose.";
}
leaf latitude {
type Coordinate;
description
"Latitude coordinate.";
}
leaf longitude {
type Coordinate;
description
"Longitude coordinate.";
}
}
}
grouping fiber-common-params {
description
"Common attributes to fiber and raman fiber.";
leaf length {
type decimal64 {
fraction-digits 6;
}
mandatory true;
description
"Length of the fiber span.";
}
leaf pmd_coef {
type decimal64 {
fraction-digits 18;
}
units "s/km^0.5";
description "PMD coefficient of the fiber span (s/km^0.5)";
}
choice ref_freq_or_wl {
description
"Definition of the reference: frequency or wavelength.";
case frequency {
leaf ref_frequency {
type decimal64 {
fraction-digits 1;
}
units "Hz";
description
"Reference frequency for all parameters evaluation
(unique for all parameters: beta2, beta3, gamma, effective_area)";
}
}
case wavelength {
leaf ref_wavelength {
type decimal64 {
fraction-digits 12;
}
units "m";
description
"Reference wavelength for all parameters evaluation
(unique for all parameters: beta2, beta3, gamma, effective_area)";
}
}
}
choice dispersion-vector-or-scalar {
description
"Dispersion definition: scalar with its slope or array of
values and the slope is computed based on the values.";
case scalar {
leaf dispersion {
type decimal64 {
fraction-digits 8;
}
units "s.m-1.m-1";
description "Dispersion of the span fiber.";
}
leaf dispersion_slope {
type decimal64 {
fraction-digits 11;
}
units "s.m-1.m-1.m-1";
description "Dispersion slope of the span fiber.";
}
}
case vector {
list dispersion_per_frequency {
key "frequency";
description
"Dispersion per frequency value.";
leaf frequency {
type decimal64 {
fraction-digits 1;
}
units "Hz";
description "Frequency of the loss coef.";
}
leaf dispersion {
type decimal64 {
fraction-digits 8;
}
units "s.m-1.m-1";
description "Dispersion of the span fiber.";
}
}
}
}
leaf effective_area {
type decimal64 {
fraction-digits 14;
}
units "m^2";
description "Effective Area of the span fibery.";
}
leaf gamma{
type decimal64 {
fraction-digits 8;
}
units "w-1.m-1" ;
description "2pi.n2/(lambda*Aeff) (w-2.m-1)";
}
container raman_coefficient {
description
"Raman coeeficient definition (for Stimulated Raman Scattering
and Raman amplification)";
leaf reference_frequency {
type decimal64 {
fraction-digits 1;
}
units "Hz";
description
"Reference frequency used with frequency offset values
for Raman coefficient evaluation.";
}
list g0_per_frequency {
key frequency_offset;
description
"Raman gain coefficient in terms of optical power defined per frequency.";
leaf frequency_offset {
type decimal64 {
fraction-digits 1;
}
units "Hz";
description
"Frequency offset.";
}
leaf g0 {
type decimal64 {
fraction-digits 14;
}
units "1/(m.W)";
description "Raman gain coefficient in terms of optical power.";
}
}
}
list lumped_losses {
key "position";
description "Places along the fiber length with extra
losses. Specified as a loss in dB at each relevant position (in km).";
leaf position {
type decimal64 {
fraction-digits 6;
}
units "km";
mandatory true;
description "Position of the lumped loss on the fiber.";
}
leaf loss {
type decimal64 {
fraction-digits 2;
}
units "dB";
mandatory true;
description "Loss of the lumped loss on the fiber.";
}
}
choice loss_coef-vector-or-scalar {
description
"Loss coef definition: scalar or per frequency vector";
case scalar {
leaf loss_coef {
type decimal64 {
fraction-digits 6;
}
units "dB/km";
mandatory true;
description "Loss coefficient of the fiber span (dB/km)";
}
}
case vector {
list loss_coef_per_frequency {
key frequency;
description
"Per frequency loss_coef definition.";
leaf frequency {
type decimal64 {
fraction-digits 1;
}
units "Hz";
description
"Frequency of the loss coef value.";
}
leaf loss_coef_value {
type decimal64 {
fraction-digits 16;
}
units "dB/km";
description
"Loss coef oat the frequency value.";
}
}
}
}
leaf length_units {
type identityref {
base length-unit;
}
mandatory true;
description
"Length unit used for the length definition (m or km)";
}
leaf att_in {
type decimal64 {
fraction-digits 2;
}
units "dB";
description
"Padding attenuation placed at span input to reach min loss
target defined in the library.";
}
leaf con_in {
type union {
type decimal64 {
fraction-digits 2;
}
type empty;
}
units "dB";
description
"Input connector loss.";
}
leaf con_out {
type union {
type decimal64 {
fraction-digits 2;
}
type empty;
}
units "dB";
description
"Output connector loss.";
}
}
grouping raman-fiber-operational {
description
"Raman pumps definition of the Raman Fiber.";
leaf temperature {
type decimal64 {
fraction-digits 2;
}
description
"Temperature of the fiber.";
}
list raman_pumps {
description
"Definition of Raman pumps.";
key "frequency";
leaf power {
type decimal64 {
fraction-digits 9;
}
units "W";
description
"Total pump power considering a depolarized pump.";
}
leaf frequency {
type decimal64 {
fraction-digits 1;
}
units "Hz";
description
"Pump central frequency.";
}
leaf propagation_direction {
type identityref {
base pumping-direction;
}
description
"Pump injection direction: the pumps can propagate in
the same or opposite direction with respect the signal.
Valid choices are coprop and counterprop";
}
}
}
grouping edfa-params {
description
"Common parameters for amplifiers definition.";
leaf gain_target {
type union {
type decimal64 {
fraction-digits 6;
}
type empty;
}
units "dB";
description
"gain target of the amplifier (before VOA and after att_in)";
}
leaf tilt_target {
type union {
type decimal64 {
fraction-digits 6;
}
type empty;
}
units "dB";
description
"Tilt target on the whole wavelength range of the amplifier.";
}
leaf out_voa {
type union {
type decimal64 {
fraction-digits 2;
}
type empty;
}
units "dB";
description
"Output variable optical attenuator loss";
}
leaf in_voa {
type union {
type decimal64 {
fraction-digits 2;
}
type empty;
}
units "dB";
description
"Input variable optical attenuator loss";
}
leaf delta_p {
type union {
type decimal64 {
fraction-digits 6;
}
type empty;
}
units "dB";
description
"Per channel target output power deviation with respect to power settings in SI.";
}
}
grouping multiband-params {
description
"Attributes for multiband amplifiers";
list amplifiers {
key "type_variety";
description
"Definition of attributes of each amplifier of the multiband amplifier.";
leaf type_variety {
type string;
description
"Type_variety definition.";
}
container operational {
description
"Operational values for the Edfa ";
uses edfa-params;
uses geqpt:frequency-band;
}
}
}
grouping design-bands {
description "Values used to compute the maximum power in
amplifier during autodesign phase";
choice parameter-used-for-design {
description
"Values used to compute the maximum power in
amplifier during autodesign phase";
case spacing {
leaf spacing {
type decimal64 {
fraction-digits 2;
}
units "Hz";
description
"Spacing used to compute max power in the spans
during autodesign.";
}
}
case number-of-channels {
leaf number-of-channels {
type uint16 {
range "1 .. max";
}
description
"Number of channels used to compute max power in the spans
during autodesign.";
}
}
}
}
grouping roadm-trx-params {
description
"Design band attributes common to ROADM and Transceivers,
Used for autodesign";
list design_bands {
key "f_min";
uses geqpt:frequency-band;
uses design-bands;
description
"Value used to compute the maximum power in
amplifier during autodesign phase, same for all degrees.";
}
list per_degree_design_bands_targets {
key "degree_uid";
description
"Per degree definition of design bands used to compute the maximum power in
amplifier during autodesign phase.";
leaf degree_uid {
type leafref {
path "../../../../elements/uid";
}
description
"Degree identifier (= uid of the next element on this direction).";
}
list design_bands {
key "f_min";
uses geqpt:frequency-band;
uses design-bands;
description
"Value used to compute the maximum power in
amplifier during autodesign phase, same for all degrees.";
}
}
}
grouping roadm-params {
description
"Definition of ROADM configuration parameters.";
uses geqpt:roadm-equalization-params;
uses geqpt:restrictions;
list per_degree_power_targets {
key "degree_uid";
description
"Equalization strategy for this degree. If not defined, use the
one defined in ROADM.";
leaf degree_uid {
type leafref {
path "../../../../elements/uid";
}
description
"Degree identifier (= uid of the next element on this direction).";
}
choice per_degree_target_type {
description
"Equalization strategy for this ROADM. If not defined, the
one defined in library for this type_variety is used.";
case constant_power {
leaf per_degree_pch_out_db {
type decimal64 {
fraction-digits 2;
}
units "dBm";
description
"Equalization applied on all channels on this degree.
This target replaces the one defined for all degrees";
}
}
case constant_psd {
leaf per_degree_psd_out_mWperGHz {
type decimal64 {
fraction-digits 10;
}
units "mW/GHz";
description
"Equalization applied on all channels on this degree.
This target replaces the one defined for all degrees";
}
}
case constant_psw {
leaf per_degree_psd_out_mWperSlotWidth {
type decimal64 {
fraction-digits 10;
}
units "mW/GHz";
description
"Equalization applied on all channels on this degree.
This target replaces the one defined for all degrees";
}
}
}
}
list per_degree_impairments {
key "from_degree to_degree";
description
"Definition of impairments for this ROADM.";
leaf from_degree {
type leafref {
path "../../../../elements/uid";
}
description
"Degree identifier (= uid of the next element on this direction).";
}
leaf to_degree {
type leafref {
path "../../../../elements/uid";
}
description
"Degree identifier (= uid of the next element on this direction).";
}
leaf impairment_id {
type uint32;
description
"Reference to the impairment ID defined in the library.";
}
}
}
grouping fused-params{
description
"Parameters for Fused elements.";
leaf loss {
type union {
type decimal64 {
fraction-digits 2;
}
type empty;
}
units "dB";
description
"Concentrated loss of the fused element";
}
}
grouping element-type-choice {
description
"Definition of operational container for RamanFiber or Edfa, and of
params container for all elements.";
container operational {
when "../type = 'gnpynt:Edfa' or ../type = 'gnpynt:RamanFiber'";
description
"Operational values for the Edfa and the RamanFiber";
choice ramanfiber {
description
"Definition of operational parameters for RamanFibers";
case RamanFiber {
when "../type = 'gnpynt:RamanFiber'";
uses raman-fiber-operational;
}
case Edfa {
when "../type = 'gnpynt:Edfa'";
uses edfa-params;
uses geqpt:frequency-band;
}
}
}
choice element-type {
description
"Params content depending on element type.";
case FiberRoadm {
container params {
description
"parameters definition in case of Fiber, RamanFiber, Roadm, Fused, Transceivers";
choice fiberroadmfused {
description
"parameters definition in case of Fiber, RamanFiber, Roadm, Fused, Transceivers";
case Fiber {
when "../type = 'gnpynt:Fiber' or ../type = 'gnpynt:RamanFiber'";
uses fiber-common-params;
}
case RoadmTransceiver {
when "../type = 'gnpynt:Roadm' or ../type = 'gnpynt:Transceiver'";
uses roadm-trx-params;
choice roadm {
description
"parameters definition only in case of Roadm.";
case roadm {
when "../type = 'gnpynt:Roadm'";
uses roadm-params;
}
}
}
case Fused {
when "../type = 'gnpynt:Fused'";
uses fused-params;
}
case Multiband_amplifier {
when "../type = 'gnpynt:Multiband_amplifier'";
leaf-list variety_list {
type string;
description
"List of authorized type-variety";
}
}
}
}
}
case Multiband_amplifier {
when "type = 'gnpynt:Multiband_amplifier'";
uses multiband-params;
}
}
}
grouping topo {
description
"Definition of the topology: list of elements and connections.";
list elements {
description
"element definition.";
key "uid";
leaf uid {
type string;
description
"element unique identifier";
}
leaf type {
type identityref {
base type-element;
}
mandatory true;
description
"element type among possible types (Fiber, RamanFiber, Edfa,
Multiband_amplifier, Fused, Roadm, Transceiver).";
}
leaf type_variety {
type string;
description
"Valid reference to a library reference type variety for (Fiber,
RamanFiber, Edfa, Multiband_amplifier, Roadm).";
}
container metadata {
description
"Metadata definitions.";
uses location-attributes;
}
uses element-type-choice;
}
list connections {
key "from_node to_node";
description
"List on connections between elements.";
leaf from_node {
type leafref {
path "../../elements/uid";
}
description
"Ingress node of the connection, reference to a defined element in the topology";
}
leaf to_node {
type leafref {
path "../../elements/uid";
}
description
"Egress node of the connection, reference to a defined element in the topology";
}
}
}
grouping gnpytopo {
description
"Reusable grouping for topology definition.";
container topology {
description
"Describe the topology gnpy-formated for release 2.6 toaster (including mixed rate and multiband)";
uses topo;
leaf network_name {
type string;
}
}
}
container topology {
description
"Describe the topology gnpy-formated for release 2.6 toaster (including mixed rate and multiband)";
uses topo;
leaf network_name {
type string;
}
}
augment "/gapi:api" {
description "Add the gnpy-network-topology input in the API request.";
uses gnpytopo;
}
}

View File

@@ -0,0 +1,235 @@
module: gnpy-path-computation
+--rw services
| +--rw path-request* [request-id]
| | +--rw request-id string
| | +--rw bidirectional boolean
| | +--rw source? string
| | +--rw destination? string
| | +--rw src-tp-id? string
| | +--rw dst-tp-id? string
| | +--rw explicit-route-objects
| | | +--ro route-object-include-exclude* [index]
| | | +--ro explicit-route-usage? identityref
| | | +--ro index uint32
| | | +--ro (subobject-type)?
| | | +--:(num-unnum-hop)
| | | | +--ro num-unnum-hop
| | | | +--ro node-id? string
| | | | +--ro link-tp-id? string
| | | | +--ro hop-type? te-hop-type
| | | +--:(label)
| | | | +--ro label-hop* [N]
| | | | +--ro N union
| | | | +--ro M? union
| | | +--:(hop-attribute)
| | | +--ro (hop-type)?
| | | +--:(tsp)
| | | | +--ro transponder
| | | | +--ro transponder-type? string
| | | | +--ro transponder-mode? string
| | | +--:(regen)
| | | +--ro regenerator
| | | +--ro transponder-type? string
| | | +--ro transponder-mode? string
| | +--rw path-constraints
| | +--rw te-bandwidth
| | +--rw technology? string
| | +--rw trx_type string
| | +--rw trx_mode? union
| | +--rw effective-freq-slot* [N]
| | | +--rw N union
| | | +--rw M? union
| | +--rw spacing decimal64
| | +--rw max-nb-of-channel? union
| | +--rw output-power? union
| | +--rw tx_power? union
| | +--rw path_bandwidth decimal64
| +--rw synchronization* [synchronization-id]
| +--rw synchronization-id string
| +--rw svec
| +--rw relaxable? boolean
| +--rw disjointness? te-path-disjointness
| +--rw request-id-number* string
+--rw responses
+--rw response* [response-id]
+--rw response-id string
+--rw path-properties
| +--rw path-metric* [metric-type]
| | +--rw metric-type identityref
| | +--rw accumulative-value? union
| +--rw z-a-path-metric* [metric-type]
| | +--rw metric-type identityref
| | +--rw accumulative-value? union
| +--ro path-route-objects* []
| +--ro path-route-object
| +--ro index? uint32
| +--ro (subobject-type)?
| +--:(num-unnum-hop)
| | +--ro num-unnum-hop
| | +--ro node-id? string
| | +--ro link-tp-id? string
| | +--ro hop-type? te-hop-type
| +--:(label)
| | +--ro label-hop* [N]
| | +--ro N union
| | +--ro M? union
| +--:(hop-attribute)
| +--ro (hop-type)?
| +--:(tsp)
| | +--ro transponder
| | +--ro transponder-type? string
| | +--ro transponder-mode? string
| +--:(regen)
| +--ro regenerator
| +--ro transponder-type? string
| +--ro transponder-mode? string
+--rw no-path
+--rw no-path? identityref
+--rw path-properties
+--rw path-metric* [metric-type]
| +--rw metric-type identityref
| +--rw accumulative-value? union
+--rw z-a-path-metric* [metric-type]
| +--rw metric-type identityref
| +--rw accumulative-value? union
+--ro path-route-objects* []
+--ro path-route-object
+--ro index? uint32
+--ro (subobject-type)?
+--:(num-unnum-hop)
| +--ro num-unnum-hop
| +--ro node-id? string
| +--ro link-tp-id? string
| +--ro hop-type? te-hop-type
+--:(label)
| +--ro label-hop* [N]
| +--ro N union
| +--ro M? union
+--:(hop-attribute)
+--ro (hop-type)?
+--:(tsp)
| +--ro transponder
| +--ro transponder-type? string
| +--ro transponder-mode? string
+--:(regen)
+--ro regenerator
+--ro transponder-type? string
+--ro transponder-mode? string
augment /gapi:api:
+--rw services
| +--rw path-request* [request-id]
| | +--rw request-id string
| | +--rw bidirectional boolean
| | +--rw source? string
| | +--rw destination? string
| | +--rw src-tp-id? string
| | +--rw dst-tp-id? string
| | +--rw explicit-route-objects
| | | +--ro route-object-include-exclude* [index]
| | | +--ro explicit-route-usage? identityref
| | | +--ro index uint32
| | | +--ro (subobject-type)?
| | | +--:(num-unnum-hop)
| | | | +--ro num-unnum-hop
| | | | +--ro node-id? string
| | | | +--ro link-tp-id? string
| | | | +--ro hop-type? te-hop-type
| | | +--:(label)
| | | | +--ro label-hop* [N]
| | | | +--ro N union
| | | | +--ro M? union
| | | +--:(hop-attribute)
| | | +--ro (hop-type)?
| | | +--:(tsp)
| | | | +--ro transponder
| | | | +--ro transponder-type? string
| | | | +--ro transponder-mode? string
| | | +--:(regen)
| | | +--ro regenerator
| | | +--ro transponder-type? string
| | | +--ro transponder-mode? string
| | +--rw path-constraints
| | +--rw te-bandwidth
| | +--rw technology? string
| | +--rw trx_type string
| | +--rw trx_mode? union
| | +--rw effective-freq-slot* [N]
| | | +--rw N union
| | | +--rw M? union
| | +--rw spacing decimal64
| | +--rw max-nb-of-channel? union
| | +--rw output-power? union
| | +--rw tx_power? union
| | +--rw path_bandwidth decimal64
| +--rw synchronization* [synchronization-id]
| +--rw synchronization-id string
| +--rw svec
| +--rw relaxable? boolean
| +--rw disjointness? te-path-disjointness
| +--rw request-id-number* string
+--rw responses
+--rw response* [response-id]
+--rw response-id string
+--rw path-properties
| +--rw path-metric* [metric-type]
| | +--rw metric-type identityref
| | +--rw accumulative-value? union
| +--rw z-a-path-metric* [metric-type]
| | +--rw metric-type identityref
| | +--rw accumulative-value? union
| +--ro path-route-objects* []
| +--ro path-route-object
| +--ro index? uint32
| +--ro (subobject-type)?
| +--:(num-unnum-hop)
| | +--ro num-unnum-hop
| | +--ro node-id? string
| | +--ro link-tp-id? string
| | +--ro hop-type? te-hop-type
| +--:(label)
| | +--ro label-hop* [N]
| | +--ro N union
| | +--ro M? union
| +--:(hop-attribute)
| +--ro (hop-type)?
| +--:(tsp)
| | +--ro transponder
| | +--ro transponder-type? string
| | +--ro transponder-mode? string
| +--:(regen)
| +--ro regenerator
| +--ro transponder-type? string
| +--ro transponder-mode? string
+--rw no-path
+--rw no-path? identityref
+--rw path-properties
+--rw path-metric* [metric-type]
| +--rw metric-type identityref
| +--rw accumulative-value? union
+--rw z-a-path-metric* [metric-type]
| +--rw metric-type identityref
| +--rw accumulative-value? union
+--ro path-route-objects* []
+--ro path-route-object
+--ro index? uint32
+--ro (subobject-type)?
+--:(num-unnum-hop)
| +--ro num-unnum-hop
| +--ro node-id? string
| +--ro link-tp-id? string
| +--ro hop-type? te-hop-type
+--:(label)
| +--ro label-hop* [N]
| +--ro N union
| +--ro M? union
+--:(hop-attribute)
+--ro (hop-type)?
+--:(tsp)
| +--ro transponder
| +--ro transponder-type? string
| +--ro transponder-mode? string
+--:(regen)
+--ro regenerator
+--ro transponder-type? string
+--ro transponder-mode? string

View File

@@ -0,0 +1,728 @@
module gnpy-path-computation {
yang-version 1.1;
namespace "gnpy:gnpy-path-computation";
prefix "gnpypc";
import gnpy-api {
prefix "gapi";
revision-date 2025-06-13;
}
organization
"Telecom Infra Project OOPT PSE Working Group";
contact
"WG Web: <https://github.com/Telecominfraproject/oopt-gnpy>
contact: <mailto:ahmed.triki@orange.com>
contact: <mailto:esther.lerouzic@orange.com>
";
description "YANG model for gnpy path computation simplified for - 2020 - candi preversion";
revision "2025-01-20" {
description
"Add tx_power";
reference
"YANG model for path computation with gnpy inputs";
}
revision "2022-12-01" {
description
"draft for detecon - GNPy API";
reference
"YANG model for path computation with gnpy inputs";
}
grouping effective-freq-slot{
/* content copied from ietf-flexi-grid-media-channel, because only M and N are needed
from the initial grouping.
*/
description "The effective frequency slot is an attribute
of a media channel and, being a frequency slot, it is
described by its nominal central frequency and slot
width";
reference "rfc7698";
leaf N {
type union {
type int32;
type empty;
}
description
"Is used to determine the Nominal Central
Frequency. The set of nominal central frequencies
can be built using the following expression:
f = 193.1 THz + n x 0.00625 THz,
where 193.1 THz is ITU-T ''anchor frequency'' for
transmission over the C band, n is a positive or
negative integer including 0.";
reference "rfc7698";
}
leaf M {
type union {
type uint32;
type empty;
}
description
"Is used to determine the slot width. A slot width
is constrained to be M x SWG (that is, M x 12.5 GHz),
where M is an integer greater than or equal to 1.";
reference "rfc7698";
}
}
grouping gnpy-specific-parameters{
description
"This grouping defines the gnpy specific parameters for requests.";
leaf technology {
type string;
default "flexi-grid";
description
"Data plane technology type.";
}
leaf trx_type {
type string ;
mandatory true;
description "name of the transceiver type (to be read from equipment library";
}
leaf trx_mode {
type union {
type string;
type empty;
}
description "name of the transceiver mode (to be read from equipment library";
}
list effective-freq-slot {
key "N";
description
"Definition of a list of frequency slots using n and m values (ITU T G694.1)";
uses effective-freq-slot ;
}
leaf spacing {
type decimal64 {
fraction-digits 2;
}
units Hz;
mandatory true;
description
"It is the spacing between channels assuming full load with
same channels as the requested one. multiple of 12.5 GHz";
}
leaf max-nb-of-channel{
type union {
type int32;
type empty;
}
description "Nb of channel to take into account for the full load case.
";
}
leaf output-power{
type union {
type decimal64 {
fraction-digits 8;
}
type empty;
}
units W;
description "optical power setting to be used for the propagation";
}
leaf tx_power{
type union {
type decimal64 {
fraction-digits 5;
}
type empty;
}
units W;
description "optical power out of transceiver";
}
leaf path_bandwidth{
type decimal64 {
fraction-digits 1;
}
units bit/s;
mandatory true;
description "Capacity required";
}
}
identity SNR-bandwidth {
base path-metric-type;
description
"A metric that records SNR in signal bandwidth";
}
identity OSNR-bandwidth {
base path-metric-type;
description
"A metric that records OSNR in signal bandwidth";
}
identity SNR-0.1nm {
base path-metric-type;
description
"A metric that records SNR in 0.1nm";
}
identity OSNR-0.1nm {
base path-metric-type;
description
"A metric that records OSNR in 0.1nm";
}
identity lowest_SNR-0.1nm {
base path-metric-type;
description
"A metric that records the lowest SNR in 0.1nm in spectrum";
}
identity biggest_SNR-0.1nm {
base path-metric-type;
description
"A metric that records the lowest SNR in 0.1nm in spectrum";
}
identity PDL_penalty {
base path-metric-type;
description
"A metric that records the PDL penalty.";
}
identity PMD_penalty {
base path-metric-type;
description
"A metric that records the PMD penalty.";
}
identity CD_penalty {
base path-metric-type;
description
"A metric that records the CD penalty.";
}
identity reference_power {
base path-metric-type;
description
"to be revised";
}
identity path_bandwidth {
base path-metric-type;
description
"to be revised";
}
grouping transponder{
description
"Transponder type and mode used in the hop.";
leaf transponder-type {
type string ;
description
"transceiver type.";
}
leaf transponder-mode {
type string ;
description
"transceiver mode.";
}
}
grouping hop-attribute{
description
"This grouping defines the hop attribute parameters for request or response";
choice hop-type{
description
"Hop may be a regenerator or a terminal.";
case tsp {
container transponder {
description
"Transponder hop in the path. (at source and at destination)";
uses transponder ;
}
}
case regen {
container regenerator{
description
"Regenerator hop in the path.";
uses transponder ;
}
}
}
}
identity no-path-type {
description
"base for blocking reasons";
}
identity NO_PATH {
base no-path-type;
description
"Cause of feasibility failure: no path could be computed.";
}
identity NO_PATH_WITH_CONSTRAINT {
base no-path-type;
description
"Cause of feasibility failure: no path can meet the includec
node constraint.";
}
identity NO_FEASIBLE_BAUDRATE_WITH_SPACING {
base no-path-type;
description
"Cause of feasibility failure: no mode can fit in the
requested spectrum.";
}
identity NO_COMPUTED_SNR {
base no-path-type;
description
"Cause of feasibility failure: requests SNR performance
could not be computed";
}
identity MODE_NOT_FEASIBLE {
base no-path-type;
description
"Cause of feasibility failure: requested mode does not provide
enough performance for this path.";
}
identity NO_FEASIBLE_MODE {
base no-path-type;
description
"Cause of feasibility failure: no mode of this transceiver
can achieve enough performance for the path.";
}
identity NO_SPECTRUM {
base no-path-type;
description
"Cause of feasibility failure: requests requires more spectrum
than the actual available spectrum on the path.";
}
identity NOT_ENOUGH_RESERVED_SPECTRUM {
base no-path-type;
description
"Cause of feasibility failure: signal requires more spectrum
than the one defined in the request.";
}
identity path-metric-type {
description
"Base identity for path metric type";
}
identity route-usage-type {
description
"Base identity for route usage";
}
identity route-include-ero {
base route-usage-type;
description
"Include ERO from route";
}
identity route-exclude-ero {
base route-usage-type;
description
"Exclude ERO from route";
}
identity route-exclude-srlg {
base route-usage-type;
description
"Exclude SRLG from route";
}
typedef te-hop-type {
type enumeration {
enum LOOSE {
description
"loose hop in an explicit path";
}
enum STRICT {
description
"strict hop in an explicit path";
}
}
description
"enumerated type for specifying loose or strict
paths";
reference "RFC3209: section-4.3.2";
}
typedef te-path-disjointness {
type bits {
bit node {
position 0;
description "Node disjoint.";
}
bit link {
position 1;
description "Link disjoint.";
}
bit srlg {
position 2;
description "SRLG (Shared Risk Link Group) disjoint.";
}
}
description
"Type of the resource disjointness for a TE tunnel path.";
reference
"RFC4872: RSVP-TE Extensions in Support of End-to-End
Generalized Multi-Protocol Label Switching (GMPLS)
Recovery";
} // te-path-disjointness
typedef accumulated-metric-type {
type union {
type uint64;
type decimal64 {
fraction-digits 2;
}
}
description
"type useable for accumulative-value";
}
grouping path-route-objects {
description
"List of EROs to be included or excluded when performing
the path computation.";
container explicit-route-objects {
description
"Container for the route object list";
list route-object-include-exclude {
key "index";
config false;
description
"List of explicit route objects to include or
exclude in path computation";
leaf explicit-route-usage {
type identityref {
base route-usage-type;
}
description "Explicit-route usage.";
}
uses explicit-route-hop ;
}
}
}
grouping generic-path-disjointness {
description "Path disjointness grouping";
leaf disjointness {
type te-path-disjointness;
description
"The type of resource disjointness.
Under primary path, disjointness level applies to
all secondary LSPs. Under secondary, disjointness
level overrides the one under primary";
}
}
grouping common-path-constraints-attributes {
description
"Common path constraints configuration grouping";
uses common-constraints_config;
}
grouping generic-path-constraints {
description
"Global named path constraints configuration
grouping";
container path-constraints {
description "TE named path constraints container";
uses common-path-constraints-attributes;
}
}
grouping explicit-route-hop {
description
"The explicit route subobject grouping";
leaf index {
type uint32;
description "ERO subobject index";
}
choice subobject-type {
description
"The explicit route subobject type";
case num-unnum-hop {
container num-unnum-hop {
leaf node-id {
//type te-node-id;
type string;
description
"The identifier of a node in the TE topology.";
}
leaf link-tp-id {
//type te-tp-id;
type string;
description
"TE link termination point identifier. The combination
of TE link ID and the TE node ID is used to identify an
unnumbered TE link.";
}
leaf hop-type {
type te-hop-type;
description "strict or loose hop";
}
description
"Numbered and Unnumbered link/node explicit route
subobject";
}
}
case label {
list label-hop {
key "N";
config false;
description "Label hop type";
uses effective-freq-slot;
}
description
"The Label ERO subobject";
}
case hop-attribute{
uses gnpypc:hop-attribute ;
}
}
}
grouping common-constraints_config {
description
"Common constraints grouping that can be set on
a constraint set or directly on the tunnel";
container te-bandwidth {
uses gnpy-specific-parameters ;
description
"A requested bandwidth to use for path computation";
}
}
grouping end-points {
description
"Common grouping to define the TE tunnel end-points";
leaf source {
type string;
description "TE tunnel source address.";
}
leaf destination {
type string;
description "P2P tunnel destination address";
}
leaf src-tp-id {
type string;
description "TE tunnel source termination point identifier.";
}
leaf dst-tp-id {
type string;
description "TE tunnel destination termination point
identifier.";
}
}
grouping synchronization-info {
description "Information for sync";
list synchronization {
key "synchronization-id";
description "sync list";
leaf synchronization-id {
type string;
description "index";
}
container svec {
description
"Synchronization VECtor";
leaf relaxable {
type boolean;
default true;
description
"If this leaf is true, path computation process is free
to ignore svec content.
otherwise it must take into account this svec.";
}
uses generic-path-disjointness;
leaf-list request-id-number {
type string;
description "This list reports the set of M path computation requests that must be synchronized.";
}
}
}
}
grouping service {
description
"reusable grouping for path computation requests.";
list path-request {
key "request-id";
description "request-list";
leaf request-id {
type string;
mandatory true;
description "Each path computation request is uniquely identified by the request-id-number.";
}
leaf bidirectional {
type boolean;
mandatory true;
description "Specify the bidirectionality of the path";
}
uses end-points;
uses path-route-objects;
uses generic-path-constraints;
}
uses synchronization-info;
}
grouping accumulated-metric-object {
description
"Reusable grouping for performance metrics.";
leaf metric-type {
type identityref {
base path-metric-type;
}
description
"Metric type.";
}
leaf accumulative-value {
type union {
type decimal64 {
fraction-digits 8;
}
type decimal64 {
fraction-digits 2;
}
type decimal64 {
fraction-digits 1;
}
type string;
type empty;
}
description
"Accumulative value.";
}
}
grouping response-path-property {
description
"Reusable grouping for responses of a path computation request.";
list path-metric {
key metric-type;
description
"List of accumulated metrics at the end of the path.";
uses accumulated-metric-object;
}
list z-a-path-metric {
key metric-type;
description
"List of accumulated metrics at the end of the path.";
uses accumulated-metric-object;
}
}
grouping response-path-route-object {
description
"Definition of the explicit path of one response";
list path-route-objects {
config false;
description
"List of the explicit path hops.";
container path-route-object {
description
"Definition of the hop.";
uses explicit-route-hop ;
}
}
}
grouping response {
description
"Reusable grouping for path computation response.";
list response {
key response-id;
description
"List of responses for the path-computation request.";
leaf response-id {
type string;
mandatory true;
description "Each path computation response is uniquely identified by the response-id number.";
}
container path-properties {
description
"Definition of the content of the successful response";
uses response-path-property;
uses response-path-route-object;
}
container no-path {
description
"Definition of the content of the response when feasibility is not achieved.";
leaf no-path {
type identityref {
base no-path-type;
}
description
"Detailed reason for feasibility failure.";
}
container path-properties {
description
"Definition of the content of the failed response";
uses response-path-property;
uses response-path-route-object;
}
}
}
}
grouping path-computation {
description
"Reusable grouping that defined data for requests or for
responses of a path-computation";
container services {
description
"Definition of path-computation requests.";
uses service;
}
container responses {
description
"Definition of path-computation responses.";
uses response;
}
}
container services {
description
"Definition of path-computation requests.";
uses service;
}
container responses {
description
"Definition of path-computation responses.";
uses response;
}
augment "/gapi:api" {
description "Add the gnpy-path-computation imput in the API request.";
uses path-computation;
}
}

View File

@@ -0,0 +1,35 @@
module: gnpy-sim-params
+--rw sim-params
+--rw raman_params
| +--rw flag? boolean
| +--rw order? uint16
| +--rw method? identityref
| +--rw result_spatial_resolution? decimal64
| +--rw solver_spatial_resolution? decimal64
+--rw nli_params
+--rw method? identityref
+--rw dispersion_tolerance? decimal64
+--rw phase_shift_tolerance? decimal64
+--rw (computation)?
+--:(explicit-channels)
| +--rw computed_channels* uint16
+--:(nb_of_channels)
+--rw computed_number_of_channels? uint16
augment /gapi:api:
+--rw sim-params
+--rw raman_params
| +--rw flag? boolean
| +--rw order? uint16
| +--rw method? identityref
| +--rw result_spatial_resolution? decimal64
| +--rw solver_spatial_resolution? decimal64
+--rw nli_params
+--rw method? identityref
+--rw dispersion_tolerance? decimal64
+--rw phase_shift_tolerance? decimal64
+--rw (computation)?
+--:(explicit-channels)
| +--rw computed_channels* uint16
+--:(nb_of_channels)
+--rw computed_number_of_channels? uint16

View File

@@ -0,0 +1,176 @@
module gnpy-sim-params {
yang-version 1.1;
namespace "urn:gnpy-sim-params";
prefix sim-params;
import gnpy-api {
prefix "gapi";
revision-date 2025-06-13;
}
organization
"Telecom Infra Project OOPT PSE Working Group";
contact
"WG Web: <https://github.com/Telecominfraproject/oopt-gnpy>
contact: <mailto:esther.lerouzic@orange.com>
";
description
"YANG model for gnpy network input for path computation simulation params- 2025";
revision 2025-04-10 {
description
"First yang model for sim-params option";
reference
"YANG model for network input for path computation with gnpy";
}
identity nli-method {
description "Base identity for NLI calculation methods";
}
identity ggn_spectrally_separated {
base nli-method;
description "GGN spectrally separated method";
}
identity ggn_approx {
base nli-method;
description "GGN approximation method";
}
identity gn_model_analytic {
base nli-method;
description "GN model analytic method";
}
identity raman-method {
description "Base identity for Raman calculation methods";
}
identity perturbative {
base raman-method;
description "Raman perturbative method";
}
identity numerical {
base raman-method;
description "Raman numerical first order method";
}
grouping raman-sim-params {
description
"Raman simulation attributes";
container raman_params {
description
"Simulation parameters definition for Raman effect evaluation.";
leaf flag {
type boolean;
description
"boolean for enabling/disable the evaluation of the Raman power
profile in frequency and position
";
}
leaf order {
type uint16;
default 2;
description
"Solution order for perturbative method";
}
leaf method {
type identityref {
base raman-method;
}
description
"Method used for Raman effect evaluation.";
}
leaf result_spatial_resolution {
type decimal64 {
fraction-digits 3;
}
description
"Spatial resolution of the evaluated Raman power profile in m. Suggested value is 10e3m";
}
leaf solver_spatial_resolution {
type decimal64 {
fraction-digits 3;
}
description
"Spatial step for the iterative solution of the first order ode. a suggested value is 10e3 m";
}
}
}
grouping nli-sim-params {
description
"NLI simulation attributes";
container nli_params {
description
"Simulation parameters definition for Non Linear
Interference (NLI) effect evaluation.";
leaf method {
type identityref {
base nli-method;
}
description "Model used for the NLI evaluation.";
}
leaf dispersion_tolerance {
type decimal64 {
fraction-digits 1;
}
default "1.0";
description "Tuning parameter for ggn model solution";
}
leaf phase_shift_tolerance {
type decimal64 {
fraction-digits 1;
}
default "0.1";
description "Tuning parameter for ggn model solution";
}
choice computation {
description
"Definition of the channels on which the NLI is evaluated: explicir position or amount.";
case explicit-channels {
leaf-list computed_channels {
type uint16 {
range "1..max";
}
ordered-by user;
description "The exact channel indices (starting from 1) on which the NLI is evaluated";
}
}
case nb_of_channels {
leaf computed_number_of_channels {
type uint16;
description "The number of channels on which the NLI is evaluated";
}
}
}
}
}
grouping sim-params {
description
"Simulation parameters definition.";
container sim-params {
description
"Simulation parameters definition.";
uses raman-sim-params;
uses nli-sim-params;
}
}
container sim-params {
description
"Simulation parameters definition.";
uses raman-sim-params;
uses nli-sim-params;
}
augment "/gapi:api" {
description "Add the gnpy-sim-params input in the API request.";
uses sim-params;
}
}

View File

@@ -0,0 +1,23 @@
module: gnpy-spectrum
+--rw spectrum* [f_min]
+--rw f_min decimal64
+--rw f_max decimal64
+--rw slot_width decimal64
+--rw delta_pdb? decimal64
+--rw baud_rate? decimal64
+--rw tx_osnr? decimal64
+--rw roll_off? union
+--rw tx_power_dbm? decimal64
+--rw label? string
augment /gapi:api:
+--rw spectrum* [f_min]
+--rw f_min decimal64
+--rw f_max decimal64
+--rw slot_width decimal64
+--rw delta_pdb? decimal64
+--rw baud_rate? decimal64
+--rw tx_osnr? decimal64
+--rw roll_off? union
+--rw tx_power_dbm? decimal64
+--rw label? string

View File

@@ -0,0 +1,105 @@
module gnpy-spectrum {
yang-version 1.1;
namespace "urn:gnpy-spectrum";
prefix spectrum;
import gnpy-api {
prefix "gapi";
revision-date 2025-06-13;
}
import gnpy-eqpt-config {
prefix "geqpt";
revision-date 2025-05-26;
}
organization
"Telecom Infra Project OOPT PSE Working Group";
contact
"WG Web: <https://github.com/Telecominfraproject/oopt-gnpy>
contact: <mailto:esther.lerouzic@orange.com>
";
description
"YANG model for gnpy network input for path computation simulation params- 2025";
revision 2025-04-10 {
description
"First yang model for spectrum option";
reference
"YANG model for network input for path computation with gnpy";
}
grouping spectrum-grouping {
description
"Attributes of a spectrum partition.";
leaf f_min {
type decimal64 {
fraction-digits 1;
}
mandatory true;
description
"Partition definition: f_min is the first carrier central frequency
f_max is the last one. partitions must not overlap.
Note that the meaning of f_min and f_max is different than the one
in equipment_config SpectralInformation";
}
leaf f_max {
type decimal64 {
fraction-digits 1;
}
must ". >= ./../f_min";
mandatory true;
description
"Partition definition: f_min is the first carrier central frequency
f_max is the last one. partitions must not overlap.
Note that the meaning of f_min and f_max is different than the one
in equipment_config SpectralInformation";
}
leaf slot_width {
type decimal64 {
fraction-digits 2;
}
mandatory true;
description "Carrier spectrum occupation. Carriers of this partition
are spaced at slot_width offsets.";
}
leaf delta_pdb {
type decimal64 {
fraction-digits 2;
}
description "Power offset compared to the reference power used for design
(SI block in equipment library) to be applied by ROADM to equalize the
carriers in this partition. Default value is 0 dB.";
}
uses geqpt:SI-Transceiver;
leaf label {
type string;
description
"Unique label that identifies the spectrum partition.";
}
}
grouping spectrum {
description
"Definition of the spectrum to propagate.";
list spectrum {
description
"List of spectrum partitions.";
key f_min;
uses spectrum-grouping;
}
}
list spectrum {
description
"List of spectrum partitions.";
key f_min;
uses spectrum-grouping;
}
augment "/gapi:api" {
description "Add the gnpy-spectrum input in the API request.";
uses spectrum;
}
}

Some files were not shown because too many files have changed in this diff Show More