mirror of
				https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
				synced 2025-11-04 04:38:02 +00:00 
			
		
		
		
	port_probe: Fix whitespace
Signed-off-by: Matthew Stidham <stidmatt@gmail.com>
This commit is contained in:
		@@ -6,7 +6,6 @@ import sys
 | 
				
			|||||||
import os
 | 
					import os
 | 
				
			||||||
from pprint import pprint
 | 
					from pprint import pprint
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../")))
 | 
					sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../")))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
lfcli_base = importlib.import_module("py-json.LANforge.lfcli_base")
 | 
					lfcli_base = importlib.import_module("py-json.LANforge.lfcli_base")
 | 
				
			||||||
@@ -83,7 +82,8 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        print("tx_bitrate {tx_bitrate}".format(tx_bitrate=tx_bitrate))
 | 
					        print("tx_bitrate {tx_bitrate}".format(tx_bitrate=tx_bitrate))
 | 
				
			||||||
        self.tx_bitrate = tx_bitrate.split(':')[-1].strip(' ')
 | 
					        self.tx_bitrate = tx_bitrate.split(':')[-1].strip(' ')
 | 
				
			||||||
        if 'MHz' in tx_bitrate:
 | 
					        if 'MHz' in tx_bitrate:
 | 
				
			||||||
            self.tx_mhz = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(' ')
 | 
					            self.tx_mhz = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(
 | 
				
			||||||
 | 
					                ' ')
 | 
				
			||||||
            print("tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz))
 | 
					            print("tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
@@ -117,7 +117,8 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        # rx will received : 6Mbps encoding is legacy frame
 | 
					        # rx will received : 6Mbps encoding is legacy frame
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            if 'MHz' in rx_bitrate:
 | 
					            if 'MHz' in rx_bitrate:
 | 
				
			||||||
                self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(' ')
 | 
					                self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[
 | 
				
			||||||
 | 
					                    -1].strip(' ')
 | 
				
			||||||
                print("rx_mhz {rx_mhz}".format(rx_mhz=self.rx_mhz))
 | 
					                print("rx_mhz {rx_mhz}".format(rx_mhz=self.rx_mhz))
 | 
				
			||||||
                self.rx_mgt_6Mb_frame = False
 | 
					                self.rx_mgt_6Mb_frame = False
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
@@ -177,9 +178,9 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
        N_ss = 0  # Number of Spatial Streams
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
					        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
				
			||||||
        T_gi_short = .4 * 10**-6  # Guard index.
 | 
					        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
				
			||||||
        T_gi_long = .8 * 10**-6  # Guard index.
 | 
					        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
				
			||||||
        bw = 20
 | 
					        bw = 20
 | 
				
			||||||
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
@@ -239,13 +240,15 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
            R = 5 / 6
 | 
					            R = 5 / 6
 | 
				
			||||||
            N_bpscs = 6
 | 
					            N_bpscs = 6
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
					        print(
 | 
				
			||||||
 | 
					            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
					                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
					        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
					        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
					        print(
 | 
				
			||||||
 | 
					            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
					                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
					        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
@@ -263,9 +266,9 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
        N_ss = 0  # Number of Spatial Streams
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
					        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
				
			||||||
        T_gi_short = .4 * 10**-6  # Guard index.
 | 
					        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
				
			||||||
        T_gi_long = .8 * 10**-6  # Guard index.
 | 
					        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
				
			||||||
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
        if self.rx_mgt_6Mb_frame:
 | 
					        if self.rx_mgt_6Mb_frame:
 | 
				
			||||||
@@ -329,35 +332,37 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
                R = 5 / 6
 | 
					                R = 5 / 6
 | 
				
			||||||
                N_bpscs = 6
 | 
					                N_bpscs = 6
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
					            print(
 | 
				
			||||||
 | 
					                "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
					                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
					            self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
            print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
					            print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
					            print(
 | 
				
			||||||
 | 
					                "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
					                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
					            self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
            print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
					            print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
					            if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | 
				
			||||||
 | 
					                    self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
				
			||||||
                self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
					                self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
				
			||||||
                self.rx_gi = T_gi_short
 | 
					                self.rx_gi = T_gi_short
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
					                self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps
 | 
				
			||||||
                self.rx_gi = T_gi_long
 | 
					                self.rx_gi = T_gi_long
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
    def calculated_data_rate_tx_VHT(self):
 | 
					    def calculated_data_rate_tx_VHT(self):
 | 
				
			||||||
        # TODO compare with standard for 40 MHz if values change
 | 
					        # TODO compare with standard for 40 MHz if values change
 | 
				
			||||||
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
					        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
				
			||||||
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
        N_ss = 0  # Number of Spatial Streams
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
					        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
				
			||||||
        T_gi_short = .4 * 10**-6  # Guard index.
 | 
					        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
				
			||||||
        T_gi_long = .8 * 10**-6  # Guard index.
 | 
					        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
				
			||||||
        bw = 20
 | 
					        bw = 20
 | 
				
			||||||
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
@@ -385,53 +390,55 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        # MCS (Modulation Coding Scheme) determines the constands
 | 
					        # MCS (Modulation Coding Scheme) determines the constands
 | 
				
			||||||
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
					        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
				
			||||||
        # Only for HT configuration
 | 
					        # Only for HT configuration
 | 
				
			||||||
        if self.tx_mcs == 0 :
 | 
					        if self.tx_mcs == 0:
 | 
				
			||||||
            R = 1 / 2
 | 
					            R = 1 / 2
 | 
				
			||||||
            N_bpscs = 1
 | 
					            N_bpscs = 1
 | 
				
			||||||
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
					        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
				
			||||||
        elif self.tx_mcs == 1 :
 | 
					        elif self.tx_mcs == 1:
 | 
				
			||||||
            R = 1 / 2
 | 
					            R = 1 / 2
 | 
				
			||||||
            N_bpscs = 2
 | 
					            N_bpscs = 2
 | 
				
			||||||
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
					        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
				
			||||||
        elif self.tx_mcs == 2 :
 | 
					        elif self.tx_mcs == 2:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 2
 | 
					            N_bpscs = 2
 | 
				
			||||||
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
					        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
				
			||||||
        elif self.tx_mcs == 3 :
 | 
					        elif self.tx_mcs == 3:
 | 
				
			||||||
            R = 1 / 2
 | 
					            R = 1 / 2
 | 
				
			||||||
            N_bpscs = 4
 | 
					            N_bpscs = 4
 | 
				
			||||||
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
					        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
				
			||||||
        elif self.tx_mcs == 4 :
 | 
					        elif self.tx_mcs == 4:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 4
 | 
					            N_bpscs = 4
 | 
				
			||||||
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
					        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
				
			||||||
        elif self.tx_mcs == 5 :
 | 
					        elif self.tx_mcs == 5:
 | 
				
			||||||
            R = 2 / 3
 | 
					            R = 2 / 3
 | 
				
			||||||
            N_bpscs = 6
 | 
					            N_bpscs = 6
 | 
				
			||||||
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
					        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
				
			||||||
        elif self.tx_mcs == 6 :
 | 
					        elif self.tx_mcs == 6:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 6
 | 
					            N_bpscs = 6
 | 
				
			||||||
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
					        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
				
			||||||
        elif self.tx_mcs == 7 :
 | 
					        elif self.tx_mcs == 7:
 | 
				
			||||||
            R = 5 / 6
 | 
					            R = 5 / 6
 | 
				
			||||||
            N_bpscs = 6
 | 
					            N_bpscs = 6
 | 
				
			||||||
        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
					        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
				
			||||||
        elif self.tx_mcs == 8 :
 | 
					        elif self.tx_mcs == 8:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 8
 | 
					            N_bpscs = 8
 | 
				
			||||||
        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
					        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
				
			||||||
        elif self.tx_mcs == 9 :
 | 
					        elif self.tx_mcs == 9:
 | 
				
			||||||
            R = 5 / 6
 | 
					            R = 5 / 6
 | 
				
			||||||
            N_bpscs = 8
 | 
					            N_bpscs = 8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
					        print(
 | 
				
			||||||
 | 
					            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
					                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
					        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
					        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
					        print(
 | 
				
			||||||
 | 
					            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
					                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
					        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
@@ -449,9 +456,9 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
        N_ss = 0  # Number of Spatial Streams
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
					        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
				
			||||||
        T_gi_short = .4 * 10**-6  # Guard index.
 | 
					        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
				
			||||||
        T_gi_long = .8 * 10**-6  # Guard index.
 | 
					        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
				
			||||||
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
        if self.rx_mgt_6Mb_frame is True:
 | 
					        if self.rx_mgt_6Mb_frame is True:
 | 
				
			||||||
@@ -483,59 +490,62 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
            # MCS (Modulation Coding Scheme) determines the constands
 | 
					            # MCS (Modulation Coding Scheme) determines the constands
 | 
				
			||||||
            # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
					            # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
				
			||||||
            # Only for HT configuration
 | 
					            # Only for HT configuration
 | 
				
			||||||
            if self.rx_mcs == 0 :
 | 
					            if self.rx_mcs == 0:
 | 
				
			||||||
                R = 1 / 2
 | 
					                R = 1 / 2
 | 
				
			||||||
                N_bpscs = 1
 | 
					                N_bpscs = 1
 | 
				
			||||||
            # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
					            # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
				
			||||||
            elif self.rx_mcs == 1 :
 | 
					            elif self.rx_mcs == 1:
 | 
				
			||||||
                R = 1 / 2
 | 
					                R = 1 / 2
 | 
				
			||||||
                N_bpscs = 2
 | 
					                N_bpscs = 2
 | 
				
			||||||
            # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
					            # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
				
			||||||
            elif self.rx_mcs == 2 :
 | 
					            elif self.rx_mcs == 2:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 2
 | 
					                N_bpscs = 2
 | 
				
			||||||
            # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
					            # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
				
			||||||
            elif self.rx_mcs == 3 :
 | 
					            elif self.rx_mcs == 3:
 | 
				
			||||||
                R = 1 / 2
 | 
					                R = 1 / 2
 | 
				
			||||||
                N_bpscs = 4
 | 
					                N_bpscs = 4
 | 
				
			||||||
            # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
					            # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
				
			||||||
            elif self.rx_mcs == 4 :
 | 
					            elif self.rx_mcs == 4:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 4
 | 
					                N_bpscs = 4
 | 
				
			||||||
            # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
					            # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
				
			||||||
            elif self.rx_mcs == 5 :
 | 
					            elif self.rx_mcs == 5:
 | 
				
			||||||
                R = 2 / 3
 | 
					                R = 2 / 3
 | 
				
			||||||
                N_bpscs = 6
 | 
					                N_bpscs = 6
 | 
				
			||||||
            # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
					            # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
				
			||||||
            elif self.rx_mcs == 6 :
 | 
					            elif self.rx_mcs == 6:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 6
 | 
					                N_bpscs = 6
 | 
				
			||||||
            # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
					            # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
				
			||||||
            elif self.rx_mcs == 7 :
 | 
					            elif self.rx_mcs == 7:
 | 
				
			||||||
                R = 5 / 6
 | 
					                R = 5 / 6
 | 
				
			||||||
                N_bpscs = 6
 | 
					                N_bpscs = 6
 | 
				
			||||||
            # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
					            # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
				
			||||||
            elif self.rx_mcs == 8 :
 | 
					            elif self.rx_mcs == 8:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 8
 | 
					                N_bpscs = 8
 | 
				
			||||||
            # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
					            # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
				
			||||||
            elif self.rx_mcs == 9 :
 | 
					            elif self.rx_mcs == 9:
 | 
				
			||||||
                R = 5 / 6
 | 
					                R = 5 / 6
 | 
				
			||||||
                N_bpscs = 8
 | 
					                N_bpscs = 8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
					            print(
 | 
				
			||||||
 | 
					                "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
					                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
					            self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
            print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
					            print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
					            print(
 | 
				
			||||||
 | 
					                "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
					                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
					            self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
            print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
					            print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
					            if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | 
				
			||||||
 | 
					                    self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
				
			||||||
                self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
					                self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
				
			||||||
                self.rx_gi = T_gi_short
 | 
					                self.rx_gi = T_gi_short
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
@@ -547,15 +557,16 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        # HE no OFDMA - changes the calculations
 | 
					        # HE no OFDMA - changes the calculations
 | 
				
			||||||
        #
 | 
					        #
 | 
				
			||||||
        ###########################################
 | 
					        ###########################################
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def calculated_data_rate_tx_HE(self):
 | 
					    def calculated_data_rate_tx_HE(self):
 | 
				
			||||||
        # TODO compare with standard for 40 MHz if values change
 | 
					        # TODO compare with standard for 40 MHz if values change
 | 
				
			||||||
        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
					        N_sd = 0  # Number of Data Subcarriers based on modulation and bandwith
 | 
				
			||||||
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
        N_ss = 0  # Number of Spatial Streams
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
					        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
				
			||||||
        T_gi_short = .4 * 10**-6  # Guard index.
 | 
					        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
				
			||||||
        T_gi_long = .8 * 10**-6  # Guard index.
 | 
					        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
				
			||||||
        bw = 20
 | 
					        bw = 20
 | 
				
			||||||
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
@@ -583,53 +594,55 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        # MCS (Modulation Coding Scheme) determines the constands
 | 
					        # MCS (Modulation Coding Scheme) determines the constands
 | 
				
			||||||
        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
					        # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
				
			||||||
        # Only for HT configuration
 | 
					        # Only for HT configuration
 | 
				
			||||||
        if self.tx_mcs == 0 :
 | 
					        if self.tx_mcs == 0:
 | 
				
			||||||
            R = 1 / 2
 | 
					            R = 1 / 2
 | 
				
			||||||
            N_bpscs = 1
 | 
					            N_bpscs = 1
 | 
				
			||||||
        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
					        # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
				
			||||||
        elif self.tx_mcs == 1 :
 | 
					        elif self.tx_mcs == 1:
 | 
				
			||||||
            R = 1 / 2
 | 
					            R = 1 / 2
 | 
				
			||||||
            N_bpscs = 2
 | 
					            N_bpscs = 2
 | 
				
			||||||
        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
					        # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
				
			||||||
        elif self.tx_mcs == 2 :
 | 
					        elif self.tx_mcs == 2:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 2
 | 
					            N_bpscs = 2
 | 
				
			||||||
        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
					        # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
				
			||||||
        elif self.tx_mcs == 3 :
 | 
					        elif self.tx_mcs == 3:
 | 
				
			||||||
            R = 1 / 2
 | 
					            R = 1 / 2
 | 
				
			||||||
            N_bpscs = 4
 | 
					            N_bpscs = 4
 | 
				
			||||||
        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
					        # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
				
			||||||
        elif self.tx_mcs == 4 :
 | 
					        elif self.tx_mcs == 4:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 4
 | 
					            N_bpscs = 4
 | 
				
			||||||
        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
					        # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
				
			||||||
        elif self.tx_mcs == 5 :
 | 
					        elif self.tx_mcs == 5:
 | 
				
			||||||
            R = 2 / 3
 | 
					            R = 2 / 3
 | 
				
			||||||
            N_bpscs = 6
 | 
					            N_bpscs = 6
 | 
				
			||||||
        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
					        # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
				
			||||||
        elif self.tx_mcs == 6 :
 | 
					        elif self.tx_mcs == 6:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 6
 | 
					            N_bpscs = 6
 | 
				
			||||||
        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
					        # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
				
			||||||
        elif self.tx_mcs == 7 :
 | 
					        elif self.tx_mcs == 7:
 | 
				
			||||||
            R = 5 / 6
 | 
					            R = 5 / 6
 | 
				
			||||||
            N_bpscs = 6
 | 
					            N_bpscs = 6
 | 
				
			||||||
        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
					        # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
				
			||||||
        elif self.tx_mcs == 8 :
 | 
					        elif self.tx_mcs == 8:
 | 
				
			||||||
            R = 3 / 4
 | 
					            R = 3 / 4
 | 
				
			||||||
            N_bpscs = 8
 | 
					            N_bpscs = 8
 | 
				
			||||||
        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
					        # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
				
			||||||
        elif self.tx_mcs == 9 :
 | 
					        elif self.tx_mcs == 9:
 | 
				
			||||||
            R = 5 / 6
 | 
					            R = 5 / 6
 | 
				
			||||||
            N_bpscs = 8
 | 
					            N_bpscs = 8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
					        print(
 | 
				
			||||||
 | 
					            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
					                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
					        self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
					        print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
					        print(
 | 
				
			||||||
 | 
					            "tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
					                mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
					        self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
@@ -647,9 +660,9 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
					        N_bpscs = 0  # Number of coded bits per Subcarrier(Determined by the modulation, MCS)
 | 
				
			||||||
        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
					        R = 0  # coding ,  (Determined by the modulation, MCS )
 | 
				
			||||||
        N_ss = 0  # Number of Spatial Streams
 | 
					        N_ss = 0  # Number of Spatial Streams
 | 
				
			||||||
        T_dft = 3.2 * 10**-6  # Constant for HT
 | 
					        T_dft = 3.2 * 10 ** -6  # Constant for HT
 | 
				
			||||||
        T_gi_short = .4 * 10**-6  # Guard index.
 | 
					        T_gi_short = .4 * 10 ** -6  # Guard index.
 | 
				
			||||||
        T_gi_long = .8 * 10**-6  # Guard index.
 | 
					        T_gi_long = .8 * 10 ** -6  # Guard index.
 | 
				
			||||||
        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
					        # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8
 | 
				
			||||||
        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
					        # the nubmer of Data Subcarriers is based on modulation and bandwith
 | 
				
			||||||
        if self.rx_mgt_6Mb_frame is True:
 | 
					        if self.rx_mgt_6Mb_frame is True:
 | 
				
			||||||
@@ -681,59 +694,62 @@ class ProbePort(LFCliBase):
 | 
				
			|||||||
            # MCS (Modulation Coding Scheme) determines the constands
 | 
					            # MCS (Modulation Coding Scheme) determines the constands
 | 
				
			||||||
            # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
					            # MCS 0 == Modulation BPSK R = 1/2 ,  N_bpscs = 1,
 | 
				
			||||||
            # Only for HT configuration
 | 
					            # Only for HT configuration
 | 
				
			||||||
            if self.rx_mcs == 0 :
 | 
					            if self.rx_mcs == 0:
 | 
				
			||||||
                R = 1 / 2
 | 
					                R = 1 / 2
 | 
				
			||||||
                N_bpscs = 1
 | 
					                N_bpscs = 1
 | 
				
			||||||
            # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
					            # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2
 | 
				
			||||||
            elif self.rx_mcs == 1 :
 | 
					            elif self.rx_mcs == 1:
 | 
				
			||||||
                R = 1 / 2
 | 
					                R = 1 / 2
 | 
				
			||||||
                N_bpscs = 2
 | 
					                N_bpscs = 2
 | 
				
			||||||
            # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
					            # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2
 | 
				
			||||||
            elif self.rx_mcs == 2 :
 | 
					            elif self.rx_mcs == 2:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 2
 | 
					                N_bpscs = 2
 | 
				
			||||||
            # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
					            # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4
 | 
				
			||||||
            elif self.rx_mcs == 3 :
 | 
					            elif self.rx_mcs == 3:
 | 
				
			||||||
                R = 1 / 2
 | 
					                R = 1 / 2
 | 
				
			||||||
                N_bpscs = 4
 | 
					                N_bpscs = 4
 | 
				
			||||||
            # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
					            # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4
 | 
				
			||||||
            elif self.rx_mcs == 4 :
 | 
					            elif self.rx_mcs == 4:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 4
 | 
					                N_bpscs = 4
 | 
				
			||||||
            # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
					            # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6
 | 
				
			||||||
            elif self.rx_mcs == 5 :
 | 
					            elif self.rx_mcs == 5:
 | 
				
			||||||
                R = 2 / 3
 | 
					                R = 2 / 3
 | 
				
			||||||
                N_bpscs = 6
 | 
					                N_bpscs = 6
 | 
				
			||||||
            # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
					            # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6
 | 
				
			||||||
            elif self.rx_mcs == 6 :
 | 
					            elif self.rx_mcs == 6:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 6
 | 
					                N_bpscs = 6
 | 
				
			||||||
            # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
					            # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6
 | 
				
			||||||
            elif self.rx_mcs == 7 :
 | 
					            elif self.rx_mcs == 7:
 | 
				
			||||||
                R = 5 / 6
 | 
					                R = 5 / 6
 | 
				
			||||||
                N_bpscs = 6
 | 
					                N_bpscs = 6
 | 
				
			||||||
            # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
					            # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8
 | 
				
			||||||
            elif self.rx_mcs == 8 :
 | 
					            elif self.rx_mcs == 8:
 | 
				
			||||||
                R = 3 / 4
 | 
					                R = 3 / 4
 | 
				
			||||||
                N_bpscs = 8
 | 
					                N_bpscs = 8
 | 
				
			||||||
            # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
					            # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8
 | 
				
			||||||
            elif self.rx_mcs == 9 :
 | 
					            elif self.rx_mcs == 9:
 | 
				
			||||||
                R = 5 / 6
 | 
					                R = 5 / 6
 | 
				
			||||||
                N_bpscs = 8
 | 
					                N_bpscs = 8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
					            print(
 | 
				
			||||||
 | 
					                "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_short {T_gi_short}".format(
 | 
				
			||||||
                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
					                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
					            self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000
 | 
				
			||||||
            print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
					            print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
					            print(
 | 
				
			||||||
 | 
					                "mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss}  T_dft {T_dft} T_gi_long {T_gi_long}".format(
 | 
				
			||||||
                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
					                    mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
					            self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000
 | 
				
			||||||
            print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
					            print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
					            if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(
 | 
				
			||||||
 | 
					                    self.rx_mbit - self.rx_data_rate_gi_long_Mbps):
 | 
				
			||||||
                self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
					                self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps
 | 
				
			||||||
                self.rx_gi = T_gi_short
 | 
					                self.rx_gi = T_gi_short
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user