mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 17:47:50 +00:00
Compare commits
995 Commits
phase-1
...
experiment
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f6dab0477b | ||
|
|
ce4a226615 | ||
|
|
78fc0c0680 | ||
|
|
2c4f2fbb12 | ||
|
|
63545c86ed | ||
|
|
aa78d00158 | ||
|
|
6a0e73e332 | ||
|
|
fa6b8c87e4 | ||
|
|
801c66aae2 | ||
|
|
f60c347a48 | ||
|
|
649bb3bd0f | ||
|
|
6051ad54bc | ||
|
|
95d24d8e20 | ||
|
|
6c449edece | ||
|
|
d051f93d55 | ||
|
|
ee92011b21 | ||
|
|
9861a22ef9 | ||
|
|
59f9f35817 | ||
|
|
1bb475671d | ||
|
|
566dedbdbb | ||
|
|
b44c4cec16 | ||
|
|
93d11ba408 | ||
|
|
637670fcfa | ||
|
|
7836297708 | ||
|
|
1f8b4ab9a2 | ||
|
|
05eb312f4a | ||
|
|
a98e244abd | ||
|
|
c945bc40fe | ||
|
|
749b9287a9 | ||
|
|
202c76bd6e | ||
|
|
eec0943ca2 | ||
|
|
06d59a5834 | ||
|
|
94949d955b | ||
|
|
b74d0a4919 | ||
|
|
c8fa7635e0 | ||
|
|
4c6cfbda5d | ||
|
|
80e9423590 | ||
|
|
78010aaaef | ||
|
|
3857ab1dbb | ||
|
|
dbb09e4108 | ||
|
|
94a8f3568a | ||
|
|
ae7c9321d0 | ||
|
|
648cc3a8e5 | ||
|
|
f9e0d18a9d | ||
|
|
2d57fd9f85 | ||
|
|
f053f32301 | ||
|
|
8e9d715e9f | ||
|
|
9fd55a5289 | ||
|
|
914d0dbecd | ||
|
|
c38fe72ff7 | ||
|
|
80f63d32ed | ||
|
|
9030f8f84f | ||
|
|
0d5f1c7d80 | ||
|
|
5bc42332cd | ||
|
|
093b85d4a3 | ||
|
|
0efa0d310d | ||
|
|
8eb5980ca9 | ||
|
|
754be7ca08 | ||
|
|
c5c5b693f2 | ||
|
|
7f816eb6e7 | ||
|
|
1009b44d2a | ||
|
|
3b61c6ca4c | ||
|
|
cc11bd186c | ||
|
|
0d1225824e | ||
|
|
a2ecfd924c | ||
|
|
95c3c9c488 | ||
|
|
11033a284f | ||
|
|
357e6cbf18 | ||
|
|
bfa6d29908 | ||
|
|
21e0589e7f | ||
|
|
4d836246ec | ||
|
|
566943a099 | ||
|
|
a4c1ea1f55 | ||
|
|
6b10ed15f8 | ||
|
|
c8daa5ed8c | ||
|
|
0b03725295 | ||
|
|
ee5e64408d | ||
|
|
b96ffe6c7b | ||
|
|
3b981853d4 | ||
|
|
6fa3ef8df1 | ||
|
|
1b2b048b47 | ||
|
|
94c5281260 | ||
|
|
7da4ec08d8 | ||
|
|
2b473d26d3 | ||
|
|
9e74e8b0a0 | ||
|
|
648039521e | ||
|
|
24bc023a07 | ||
|
|
19c2ae7f7a | ||
|
|
9f6894a176 | ||
|
|
a094568d6e | ||
|
|
f728d96d07 | ||
|
|
6b1fb7061f | ||
|
|
7ef505f259 | ||
|
|
c8d394348d | ||
|
|
0daa1c3e8c | ||
|
|
60bafd114d | ||
|
|
11509f5686 | ||
|
|
785c823fa2 | ||
|
|
9faf6430a5 | ||
|
|
01c566a325 | ||
|
|
baa9171315 | ||
|
|
2e50337f38 | ||
|
|
8daa298699 | ||
|
|
76cdd5dc71 | ||
|
|
07eb2dd13a | ||
|
|
04e764d024 | ||
|
|
05ccb14e5d | ||
|
|
f60d035e66 | ||
|
|
0823f8de46 | ||
|
|
a453c57996 | ||
|
|
2f84bb5286 | ||
|
|
7b8e68aea9 | ||
|
|
8d553a255f | ||
|
|
2766e37438 | ||
|
|
f56e64410b | ||
|
|
15ea7218e9 | ||
|
|
db28011c61 | ||
|
|
faccc23018 | ||
|
|
49514c0c70 | ||
|
|
0b1557fdf1 | ||
|
|
46f89aa770 | ||
|
|
3548ed74e2 | ||
|
|
145653df6e | ||
|
|
c7589e0bca | ||
|
|
531810cc85 | ||
|
|
63a6256b5e | ||
|
|
c3febb6db4 | ||
|
|
8b1d8b3479 | ||
|
|
3168603908 | ||
|
|
a2128227bd | ||
|
|
376826b3ae | ||
|
|
4b258cdf2e | ||
|
|
fbdd132a3d | ||
|
|
eebcebb33d | ||
|
|
20152036ff | ||
|
|
2a477071a0 | ||
|
|
f02d11e8bc | ||
|
|
0d542f22a7 | ||
|
|
5af195bd2b | ||
|
|
7ab93e7cd9 | ||
|
|
0aec47ddeb | ||
|
|
9a54dbab43 | ||
|
|
fc03be8bbe | ||
|
|
32f10a4507 | ||
|
|
04544d41f6 | ||
|
|
c87be89e07 | ||
|
|
efa05f0653 | ||
|
|
4cf4db9bc2 | ||
|
|
16434c5737 | ||
|
|
14ee9c9a91 | ||
|
|
7cfc4bd1ec | ||
|
|
9d55cde50d | ||
|
|
72183c24da | ||
|
|
4d1a628488 | ||
|
|
fdeaf75361 | ||
|
|
5695fafac6 | ||
|
|
0fe1d195a3 | ||
|
|
ed1aa0aa03 | ||
|
|
3fc024f5ba | ||
|
|
4f8177908f | ||
|
|
ad64595d75 | ||
|
|
80133e9521 | ||
|
|
de58d7d7c2 | ||
|
|
491a05c5a7 | ||
|
|
1d791aa295 | ||
|
|
58921bc346 | ||
|
|
ab6a91692b | ||
|
|
3b45968799 | ||
|
|
c7d69b9a99 | ||
|
|
1eeed78430 | ||
|
|
1cdafbae0f | ||
|
|
47b4f87bc5 | ||
|
|
e24b766cdc | ||
|
|
51fb6bd68e | ||
|
|
7e405a0514 | ||
|
|
194a13e607 | ||
|
|
856f07e707 | ||
|
|
4582aed895 | ||
|
|
734b6dfef4 | ||
|
|
da6e4f33a4 | ||
|
|
5a1e3f30b3 | ||
|
|
094af16792 | ||
|
|
9474ff17de | ||
|
|
c675f5bd38 | ||
|
|
2556658e68 | ||
|
|
4d5d10935a | ||
|
|
eb87e36781 | ||
|
|
14d8d793f3 | ||
|
|
bc4b6642a0 | ||
|
|
fe2b39ee3b | ||
|
|
d56c91ca7f | ||
|
|
25819fadf5 | ||
|
|
0cacb8851d | ||
|
|
14f98836ed | ||
|
|
82ce3384ba | ||
|
|
1f1877f7a9 | ||
|
|
db26ce07db | ||
|
|
e08ae9c959 | ||
|
|
2de1b5567a | ||
|
|
639b379a5b | ||
|
|
0465397b1d | ||
|
|
d3ec39d506 | ||
|
|
bfe68a5948 | ||
|
|
2ea3363613 | ||
|
|
89cce6e6a3 | ||
|
|
0f10ac706c | ||
|
|
66d26f0ffa | ||
|
|
3c96914482 | ||
|
|
61b1e73362 | ||
|
|
03435079cc | ||
|
|
6661907c1d | ||
|
|
fe811f725c | ||
|
|
80eced85ec | ||
|
|
2960d307fa | ||
|
|
c41cddfff5 | ||
|
|
8598e6591f | ||
|
|
5e2259062c | ||
|
|
d483802a86 | ||
|
|
9a0eece69c | ||
|
|
1657bfd05f | ||
|
|
49bf558916 | ||
|
|
99f44a597b | ||
|
|
a21f3fe6ee | ||
|
|
0ccbb2960c | ||
|
|
c577a75725 | ||
|
|
8827e0cf6f | ||
|
|
b0012fe399 | ||
|
|
31e634615b | ||
|
|
8300a55e39 | ||
|
|
5b939bc57a | ||
|
|
2f1ab9cc50 | ||
|
|
42ba3eb98d | ||
|
|
9eb87fc8e1 | ||
|
|
8fab9bb945 | ||
|
|
1ead232a78 | ||
|
|
b15c8c60ab | ||
|
|
66bdeb0e4d | ||
|
|
1a2e090104 | ||
|
|
a8e280e29b | ||
|
|
edb54b02ac | ||
|
|
83d3f32fe0 | ||
|
|
085a379592 | ||
|
|
37bd5d0404 | ||
|
|
f788b81d21 | ||
|
|
2ff1ce6b34 | ||
|
|
41a1e40d14 | ||
|
|
921e8d2d3c | ||
|
|
c009d28f7d | ||
|
|
898eada097 | ||
|
|
bdfc55e801 | ||
|
|
57f264bedb | ||
|
|
fbe4fa3cf0 | ||
|
|
b2ef345f35 | ||
|
|
471ea7dfba | ||
|
|
1b52f638ff | ||
|
|
84ab38a75f | ||
|
|
916e5377f8 | ||
|
|
534bfd881e | ||
|
|
7c4015324d | ||
|
|
8499ee52f4 | ||
|
|
cc1123863c | ||
|
|
ca382806f6 | ||
|
|
3559fc61c2 | ||
|
|
33581cdcc9 | ||
|
|
991eb02964 | ||
|
|
286e321a2d | ||
|
|
56f158113d | ||
|
|
024f6ff963 | ||
|
|
8118a0f4f4 | ||
|
|
eb89d8fd86 | ||
|
|
a938c1738b | ||
|
|
4f88882513 | ||
|
|
4e8d8b7ddd | ||
|
|
afb7d75749 | ||
|
|
488d0e1fe8 | ||
|
|
708442e4cd | ||
|
|
a2d905dfb1 | ||
|
|
d564fe3e2a | ||
|
|
ea21cce1c0 | ||
|
|
aa9b4aefbe | ||
|
|
8655030e59 | ||
|
|
8107ddeb79 | ||
|
|
76c8e55f06 | ||
|
|
a7b1ab47d8 | ||
|
|
879f587ab9 | ||
|
|
8af2d80219 | ||
|
|
315eea1f55 | ||
|
|
b61e541e15 | ||
|
|
81f88e78c7 | ||
|
|
87cc3dac00 | ||
|
|
89e28cc7be | ||
|
|
2ba29a78c5 | ||
|
|
f990a6c1be | ||
|
|
424e5a4786 | ||
|
|
6a7a04ebb1 | ||
|
|
0366fc2956 | ||
|
|
48b7d71f02 | ||
|
|
715baf2a1c | ||
|
|
e55cea776e | ||
|
|
b388d143fd | ||
|
|
c592c572d8 | ||
|
|
dfa0a26a28 | ||
|
|
609cd94798 | ||
|
|
022f743db1 | ||
|
|
1957beb1b6 | ||
|
|
9ca72d6105 | ||
|
|
e8e126a6ce | ||
|
|
7849782173 | ||
|
|
149a0da8c9 | ||
|
|
1e7c70a59b | ||
|
|
c9d8282e7f | ||
|
|
e7084a2c29 | ||
|
|
d79d2e0724 | ||
|
|
402155c225 | ||
|
|
e5ec669419 | ||
|
|
8f424e8c9d | ||
|
|
fea2b84bb9 | ||
|
|
0c918940c4 | ||
|
|
a63a6ac0ec | ||
|
|
9f58b914d2 | ||
|
|
029bac4b03 | ||
|
|
a27ad57220 | ||
|
|
8d31d924f2 | ||
|
|
8c3b514f90 | ||
|
|
3df27fe315 | ||
|
|
a6087ce354 | ||
|
|
aae0382523 | ||
|
|
b0c2acb1b5 | ||
|
|
a52c96ae2e | ||
|
|
bf28821b5b | ||
|
|
328bd6ea71 | ||
|
|
ec9eb8d054 | ||
|
|
f8c8526045 | ||
|
|
d8c236bb44 | ||
|
|
33ff0910b8 | ||
|
|
faa69917d9 | ||
|
|
d9f5ca9827 | ||
|
|
c817ef7335 | ||
|
|
07de489d6b | ||
|
|
acafc78456 | ||
|
|
325721545e | ||
|
|
dbe2bf560c | ||
|
|
7872cc2203 | ||
|
|
25b4d0e755 | ||
|
|
9af1c90664 | ||
|
|
6b4d44a3f1 | ||
|
|
2faf8d2cdd | ||
|
|
676c94ddf2 | ||
|
|
6f93b64f84 | ||
|
|
54bf426472 | ||
|
|
1862ce9104 | ||
|
|
3771c13d32 | ||
|
|
f1d0230dad | ||
|
|
182929cc96 | ||
|
|
81585c5a86 | ||
|
|
2f52c11589 | ||
|
|
0f4d8573cf | ||
|
|
660b8b3c6e | ||
|
|
71d6a1138c | ||
|
|
a6e741d8fe | ||
|
|
58bcf65cf6 | ||
|
|
27ce55de38 | ||
|
|
36ca22db9b | ||
|
|
33a8de9b39 | ||
|
|
22b76e36db | ||
|
|
528ff31590 | ||
|
|
4d6966cbd3 | ||
|
|
9c9e3be967 | ||
|
|
2dd4745ef7 | ||
|
|
4e786a32b5 | ||
|
|
6ecb2c85e2 | ||
|
|
cd234a909b | ||
|
|
c249f44ea1 | ||
|
|
ed1f51393a | ||
|
|
8bd43130ab | ||
|
|
6c975a53a1 | ||
|
|
8a1001cd40 | ||
|
|
beb2b576aa | ||
|
|
8f3923046b | ||
|
|
88c68d2065 | ||
|
|
8bcde72a10 | ||
|
|
4653dbcf4b | ||
|
|
cde08b32a4 | ||
|
|
2eed891f8d | ||
|
|
c0b84e84c8 | ||
|
|
2c20fd3f9f | ||
|
|
f4db56ca29 | ||
|
|
5b6d58ac7d | ||
|
|
ecb8bd9fbe | ||
|
|
2f9385451f | ||
|
|
1a1346461b | ||
|
|
27dcd29074 | ||
|
|
93986f36c3 | ||
|
|
a6ab8055b1 | ||
|
|
31ea479d7f | ||
|
|
89fb2e047b | ||
|
|
8f705e6173 | ||
|
|
8f735316f5 | ||
|
|
0d7a1871a1 | ||
|
|
33832b3d25 | ||
|
|
4da7f0cc38 | ||
|
|
e29f8485ea | ||
|
|
2da344a563 | ||
|
|
2a0cb8e14f | ||
|
|
e1dc3dc357 | ||
|
|
8259124f73 | ||
|
|
0422956ac6 | ||
|
|
ff82c5171b | ||
|
|
f9bd6310f1 | ||
|
|
471eab126e | ||
|
|
6ad011d12d | ||
|
|
561c8aff85 | ||
|
|
5cf5dd2234 | ||
|
|
fb9915d301 | ||
|
|
7ab67194d6 | ||
|
|
603ac9d8c5 | ||
|
|
a3c7811e9d | ||
|
|
a3778dfe8b | ||
|
|
2dff934612 | ||
|
|
89d666948e | ||
|
|
c3499142b0 | ||
|
|
d8feccc715 | ||
|
|
16173355f3 | ||
|
|
f46134fda5 | ||
|
|
bfecff0412 | ||
|
|
168f1891cf | ||
|
|
862845b4ac | ||
|
|
b7a5dbff49 | ||
|
|
5be30d89a7 | ||
|
|
d94dc51d88 | ||
|
|
22acd88d44 | ||
|
|
fd406c106b | ||
|
|
16134b5caf | ||
|
|
2c485efced | ||
|
|
279d08a0e8 | ||
|
|
1d4a8998e1 | ||
|
|
47a41e7980 | ||
|
|
ecfc4a8cb2 | ||
|
|
2d66b6266b | ||
|
|
b7afb5f9d2 | ||
|
|
58c16a59ac | ||
|
|
f09789f5ef | ||
|
|
b2e12cd3e0 | ||
|
|
71b157a8ba | ||
|
|
cb8affe9b2 | ||
|
|
3f7180c706 | ||
|
|
f0bc2dc62f | ||
|
|
9c95fd6b69 | ||
|
|
c0fda8c3a2 | ||
|
|
bac20af381 | ||
|
|
626211a320 | ||
|
|
783aaa8cb4 | ||
|
|
768bd8af19 | ||
|
|
3894f52194 | ||
|
|
dcfa9edb1c | ||
|
|
4ebdb5629c | ||
|
|
75b0668fc2 | ||
|
|
5fe94ed463 | ||
|
|
db21b97603 | ||
|
|
8074d0c548 | ||
|
|
2d611afbb0 | ||
|
|
bc42507724 | ||
|
|
ff82ab5718 | ||
|
|
62fe374e15 | ||
|
|
e519a3bc39 | ||
|
|
4f146d12ee | ||
|
|
46d6074ad5 | ||
|
|
cbb61f1240 | ||
|
|
0e9f3c3576 | ||
|
|
92f11dc075 | ||
|
|
3aa0a0999b | ||
|
|
e86fbcfa5b | ||
|
|
0b2ee6fdaf | ||
|
|
35f3866882 | ||
|
|
d86bea80d3 | ||
|
|
13b4b5072f | ||
|
|
efae43f122 | ||
|
|
45e8c8692b | ||
|
|
f8fc2a5050 | ||
|
|
3c20d57cc4 | ||
|
|
2cb3858330 | ||
|
|
925d36a561 | ||
|
|
0ffaca91cc | ||
|
|
d3a0f1d969 | ||
|
|
37704db583 | ||
|
|
aadd038bbe | ||
|
|
6d601b4267 | ||
|
|
194798d881 | ||
|
|
1a10495645 | ||
|
|
0e2316513e | ||
|
|
72ce4e2fad | ||
|
|
4ad7311e18 | ||
|
|
fa2b0e8fad | ||
|
|
78eb926693 | ||
|
|
3613efbaab | ||
|
|
2e732854b3 | ||
|
|
f9560d6b1d | ||
|
|
51b0826398 | ||
|
|
af0adb454d | ||
|
|
cdd4c571b0 | ||
|
|
9c440764c7 | ||
|
|
6e94834033 | ||
|
|
1720ed23c9 | ||
|
|
137fab1d92 | ||
|
|
0fee63fa81 | ||
|
|
d5f0d80eed | ||
|
|
b7d4d43f56 | ||
|
|
c0379a1981 | ||
|
|
e5db8e42d1 | ||
|
|
27cf9806f0 | ||
|
|
5dbb5cd112 | ||
|
|
af75569eb8 | ||
|
|
aebf2ff270 | ||
|
|
3bcdeda3e9 | ||
|
|
7433667243 | ||
|
|
d7c009167f | ||
|
|
79f198d6fe | ||
|
|
315a12b9df | ||
|
|
e14d145f2c | ||
|
|
f839da39f0 | ||
|
|
45ca7a63ed | ||
|
|
5d187255ae | ||
|
|
7adf6aed59 | ||
|
|
b22a7a0234 | ||
|
|
8805723114 | ||
|
|
88db4358f5 | ||
|
|
a5d9685caf | ||
|
|
94ff8e6beb | ||
|
|
f3400d9bc1 | ||
|
|
6a6591e41d | ||
|
|
a3a53f3b06 | ||
|
|
2f39abfdb8 | ||
|
|
92239d66fc | ||
|
|
178813806f | ||
|
|
265dbffc53 | ||
|
|
a67a08a4d0 | ||
|
|
6d15f55304 | ||
|
|
0dbcd1f265 | ||
|
|
a0f6380f90 | ||
|
|
ab69cf5bf4 | ||
|
|
3e55a5526a | ||
|
|
b6216bb701 | ||
|
|
fa3ea3aaa7 | ||
|
|
7b56e3a6c3 | ||
|
|
00ad542a11 | ||
|
|
c3e00eea2c | ||
|
|
5c8dd911e3 | ||
|
|
407fd62da5 | ||
|
|
c92f7ca0d8 | ||
|
|
676901e113 | ||
|
|
c099b53a03 | ||
|
|
fd065e4e7c | ||
|
|
fd97527561 | ||
|
|
7b9647a063 | ||
|
|
bf943f1347 | ||
|
|
dbff610d77 | ||
|
|
46aae9486e | ||
|
|
70066de390 | ||
|
|
106af9d444 | ||
|
|
f0be267f9f | ||
|
|
edbaec7265 | ||
|
|
f4537a538b | ||
|
|
d6eb6f33d2 | ||
|
|
7a139c261a | ||
|
|
2e7aa213ed | ||
|
|
d9344287e4 | ||
|
|
b9768a81e9 | ||
|
|
3418c07512 | ||
|
|
5f8621c224 | ||
|
|
c05f3555a3 | ||
|
|
f21827395b | ||
|
|
894c7bb17a | ||
|
|
2028cfae4d | ||
|
|
2064f65c04 | ||
|
|
1de4a4eaa2 | ||
|
|
06ff45d0c2 | ||
|
|
81474e252e | ||
|
|
0069265905 | ||
|
|
dec15f6797 | ||
|
|
f6041cd844 | ||
|
|
ec20d3981b | ||
|
|
08a867ef5a | ||
|
|
76c8296a5d | ||
|
|
f65059dd7f | ||
|
|
e23fef3f64 | ||
|
|
30234f913c | ||
|
|
2dd017bddc | ||
|
|
b25a298087 | ||
|
|
8635a7c182 | ||
|
|
46d25df241 | ||
|
|
0338ccb08f | ||
|
|
8899a575b8 | ||
|
|
b4407b1ff3 | ||
|
|
75f0aebe8f | ||
|
|
5a2dd53636 | ||
|
|
3555154c3e | ||
|
|
6c92c282e7 | ||
|
|
bd1847e5ba | ||
|
|
38727d6203 | ||
|
|
7e6d557d01 | ||
|
|
5d3ce91839 | ||
|
|
1f34e3005e | ||
|
|
8e27437086 | ||
|
|
b4cbe8029e | ||
|
|
92f3fd2063 | ||
|
|
1112b331ef | ||
|
|
ec34e84a3a | ||
|
|
bc9eee326a | ||
|
|
c9106c3a6f | ||
|
|
fa949f977a | ||
|
|
4c2d61bb9b | ||
|
|
ec7b14da8c | ||
|
|
771af4991c | ||
|
|
a08ce9ecb7 | ||
|
|
4d84a4f528 | ||
|
|
5d92baf35e | ||
|
|
ac5171e95e | ||
|
|
697ac311fe | ||
|
|
c22d1173af | ||
|
|
c0cc5fa9fd | ||
|
|
4bd9a9cdda | ||
|
|
63f8139dbc | ||
|
|
be731a5977 | ||
|
|
dd4ce4cea4 | ||
|
|
2548a2eee8 | ||
|
|
03948d6785 | ||
|
|
4c1c17eea6 | ||
|
|
b258d22d25 | ||
|
|
aef43e6bca | ||
|
|
3d7362743d | ||
|
|
96f3d5a805 | ||
|
|
2df500e027 | ||
|
|
346f24022a | ||
|
|
cb45c7ef16 | ||
|
|
9cfb57dc4b | ||
|
|
020d852758 | ||
|
|
8d97fcd735 | ||
|
|
097fe3114e | ||
|
|
5e0fd265ff | ||
|
|
6af137a085 | ||
|
|
3cdc8511a8 | ||
|
|
2d515eea4c | ||
|
|
61289119cb | ||
|
|
b6bc995e40 | ||
|
|
b0bb41bac6 | ||
|
|
0927a92652 | ||
|
|
f51061d650 | ||
|
|
74314f00ca | ||
|
|
81c5ef4a23 | ||
|
|
72e329b08e | ||
|
|
50f884663f | ||
|
|
0d81eb4b29 | ||
|
|
978a9407fa | ||
|
|
2c3b74cdc1 | ||
|
|
448e0f54be | ||
|
|
17f638e991 | ||
|
|
b78d3d8eda | ||
|
|
02a7e467e2 | ||
|
|
15304890f5 | ||
|
|
9ea96e431c | ||
|
|
7b3bfea614 | ||
|
|
d68637c2c8 | ||
|
|
f009306030 | ||
|
|
ca97cba18b | ||
|
|
a46c8c5398 | ||
|
|
88c2e2bd70 | ||
|
|
1bbcee8715 | ||
|
|
39a8fa3335 | ||
|
|
fe067e5367 | ||
|
|
5efbd17829 | ||
|
|
fa3e54a747 | ||
|
|
603beccb01 | ||
|
|
4b20afd599 | ||
|
|
adbe283c83 | ||
|
|
1908d7e29a | ||
|
|
7c6e16cfbc | ||
|
|
1480d23088 | ||
|
|
4be3522209 | ||
|
|
5381e0300f | ||
|
|
cde822ebf8 | ||
|
|
72d3525da1 | ||
|
|
dc867fa051 | ||
|
|
eaf3fcade8 | ||
|
|
3df270e4ac | ||
|
|
7937392dfc | ||
|
|
9c1c0f8d1f | ||
|
|
ad2ab0d164 | ||
|
|
c4bed94eb0 | ||
|
|
edc8eb55de | ||
|
|
f4f9868381 | ||
|
|
f103bebe05 | ||
|
|
c168af46bc | ||
|
|
7d82248903 | ||
|
|
e6cb269754 | ||
|
|
ac8a96398a | ||
|
|
86c79c7c60 | ||
|
|
0c47b3f3ea | ||
|
|
b2b500c5dc | ||
|
|
efc8468268 | ||
|
|
205baebd48 | ||
|
|
af9ba2750d | ||
|
|
e04afdbe4c | ||
|
|
e94fd9590e | ||
|
|
4f4f05abdf | ||
|
|
bcf93e1d9f | ||
|
|
48198bdd89 | ||
|
|
fbb4f3e5dd | ||
|
|
cefd1cf030 | ||
|
|
f8fa544e31 | ||
|
|
27885a4cbc | ||
|
|
185a62958f | ||
|
|
1ba748f2a4 | ||
|
|
90a75a9b3d | ||
|
|
215295efb1 | ||
|
|
2413bd9e0d | ||
|
|
356ae650fd | ||
|
|
2444c24545 | ||
|
|
7727708a3a | ||
|
|
0bfacd84f4 | ||
|
|
b271c1ca3c | ||
|
|
75660febc1 | ||
|
|
13aaa174e1 | ||
|
|
d112c728fc | ||
|
|
826af4a9fd | ||
|
|
c9693d355f | ||
|
|
9f37cb8ce6 | ||
|
|
d99e8ca565 | ||
|
|
44312125ab | ||
|
|
7558721642 | ||
|
|
fb49f7fb5d | ||
|
|
ee7f2c2f47 | ||
|
|
833fe006af | ||
|
|
9be0607b2e | ||
|
|
6dc3f2ffa6 | ||
|
|
df7cbf0b76 | ||
|
|
19b6378b1a | ||
|
|
29cb2b50a8 | ||
|
|
5932c014a0 | ||
|
|
a3f75e9af0 | ||
|
|
9ed31e2c4e | ||
|
|
8599f63fbf | ||
|
|
07de78cb05 | ||
|
|
f764bbe080 | ||
|
|
7aa343b767 | ||
|
|
69198779a7 | ||
|
|
3088032ad8 | ||
|
|
dfaa12598d | ||
|
|
1c724cdc6c | ||
|
|
b59423fb01 | ||
|
|
96bceed102 | ||
|
|
f8e146b9b9 | ||
|
|
c54ddb644a | ||
|
|
2be616411f | ||
|
|
7415744807 | ||
|
|
23905a90f4 | ||
|
|
83444b329e | ||
|
|
9898dc85a9 | ||
|
|
661287f600 | ||
|
|
353c6a77e9 | ||
|
|
8c006fec3f | ||
|
|
5896b7ce6a | ||
|
|
f831f6cb2c | ||
|
|
b505a1ae01 | ||
|
|
a0fac17c0e | ||
|
|
851f606fc0 | ||
|
|
8940430ee0 | ||
|
|
06d3927275 | ||
|
|
7cea13e90d | ||
|
|
de2a504078 | ||
|
|
df14b441a3 | ||
|
|
ab1391440f | ||
|
|
310d32dcea | ||
|
|
f8cd822c92 | ||
|
|
3ade885e41 | ||
|
|
008a88192c | ||
|
|
639e7f012c | ||
|
|
c8ecc16648 | ||
|
|
225fb1ec0c | ||
|
|
c943e0e9b4 | ||
|
|
3d8ac83fcc | ||
|
|
06399ca8af | ||
|
|
8f8fc13ded | ||
|
|
2b018cb9a5 | ||
|
|
9577f4c9a3 | ||
|
|
771d98cc10 | ||
|
|
91e875d54c | ||
|
|
da39f1489f | ||
|
|
2940576681 | ||
|
|
a49c137b78 | ||
|
|
87e748cd83 | ||
|
|
94c2e332bb | ||
|
|
1437b6010e | ||
|
|
5fc203482d | ||
|
|
ff6d81b749 | ||
|
|
167e644bd0 | ||
|
|
d1c7489768 | ||
|
|
a783e165dd | ||
|
|
45bdd82864 | ||
|
|
79c5cb6b78 | ||
|
|
63ade5fdef | ||
|
|
853b8c7aa3 | ||
|
|
0655fb60de | ||
|
|
69b28e3508 | ||
|
|
5c16d9539f | ||
|
|
e3acf02bde | ||
|
|
10268e82d4 | ||
|
|
bc44bf726a | ||
|
|
9839681bc0 | ||
|
|
beb292cb07 | ||
|
|
29c4134f60 | ||
|
|
a6157f328d | ||
|
|
c6432e2c28 | ||
|
|
4a756bf2a9 | ||
|
|
b77cc5cd40 | ||
|
|
9f94af6ff7 | ||
|
|
7aba40cd5b | ||
|
|
fb6c17c5ff | ||
|
|
4504d80c80 | ||
|
|
8a8c8989cb | ||
|
|
20731dbe4b | ||
|
|
55393ca9eb | ||
|
|
e9aa4d5601 | ||
|
|
6d49769df9 | ||
|
|
0333e9d094 | ||
|
|
53bedca50a | ||
|
|
b9518ca987 | ||
|
|
794e713d6d | ||
|
|
5e1fd7501e | ||
|
|
c86ea206d9 | ||
|
|
b810cf84c2 | ||
|
|
15bc5db2ed | ||
|
|
4845d9005e | ||
|
|
bed4e9f1e1 | ||
|
|
7b20db10cc | ||
|
|
d59b3e8c46 | ||
|
|
8fccbb0ac2 | ||
|
|
f36a610e52 | ||
|
|
479a2f358e | ||
|
|
8795c357ae | ||
|
|
d8cb7526bb | ||
|
|
6ead8e391b | ||
|
|
362f45083d | ||
|
|
36218037ec | ||
|
|
584b56bc83 | ||
|
|
d33602e131 | ||
|
|
4304b49bf0 | ||
|
|
4f5325acac | ||
|
|
f8a40bfaf0 | ||
|
|
52dfb20a2b | ||
|
|
34b20cdfe0 | ||
|
|
f462201499 | ||
|
|
5106bdf634 | ||
|
|
b93c6dbcbd | ||
|
|
2ca141baba | ||
|
|
01fe5d2147 | ||
|
|
74830cede4 | ||
|
|
2f21cc29f7 | ||
|
|
05f8d97d68 | ||
|
|
04c4795192 | ||
|
|
ff6e379b6f | ||
|
|
25cfc375bc | ||
|
|
627184ef2d | ||
|
|
180e1178ef | ||
|
|
1c33454ce3 | ||
|
|
c7abe11dd8 | ||
|
|
7a6feccc8b | ||
|
|
f05e578f51 | ||
|
|
277ebea2b5 | ||
|
|
4982c5e147 | ||
|
|
726e217205 | ||
|
|
695c538ee5 | ||
|
|
e9b287ceac | ||
|
|
ecdae68b62 | ||
|
|
e737564b32 | ||
|
|
75c4a8d96d | ||
|
|
28dc1b050f | ||
|
|
4a9a7e31ba | ||
|
|
92da31f905 | ||
|
|
afd264c816 | ||
|
|
d676e3e217 | ||
|
|
4af117aacf | ||
|
|
b27e567a5e | ||
|
|
8ec9a5bf99 | ||
|
|
f129f92cfd | ||
|
|
ef87373d4b | ||
|
|
ff938d4ced | ||
|
|
ae555e0ce1 | ||
|
|
44db6093f5 | ||
|
|
d4bf6ce201 | ||
|
|
0b1c7bfa30 | ||
|
|
80f8a345b5 | ||
|
|
c929ce0257 | ||
|
|
7d3ab357d0 | ||
|
|
84d87602b8 | ||
|
|
14938ea7dd | ||
|
|
be0c052e5e | ||
|
|
af90a6658e | ||
|
|
9720c979b3 | ||
|
|
7c86186416 | ||
|
|
404dbfe725 | ||
|
|
02eac208dd | ||
|
|
bc9a0432cd | ||
|
|
dba7846d6c | ||
|
|
238d7723bb | ||
|
|
d2724bb1a5 | ||
|
|
8e046a9b50 | ||
|
|
1b808afd5d | ||
|
|
8d6f69eb05 | ||
|
|
c4562df955 | ||
|
|
8e1e8a8be3 | ||
|
|
363e92e072 | ||
|
|
c5a52fdb6d | ||
|
|
2dd096cfab | ||
|
|
80e1ce12ce | ||
|
|
2777d957e4 | ||
|
|
898aa4f41a | ||
|
|
c9ece6ad7c | ||
|
|
a6265c1b8d | ||
|
|
5646714c13 | ||
|
|
8ab13537a9 | ||
|
|
25e14e4846 | ||
|
|
55d67f890d | ||
|
|
9b3d7614f5 | ||
|
|
a3273d24b5 | ||
|
|
ffd7bec485 | ||
|
|
0aef76407d | ||
|
|
f2ad236863 | ||
|
|
487237638e | ||
|
|
3a78ccafce | ||
|
|
e99b9c286c | ||
|
|
8c3ffdfd4e | ||
|
|
a4c7395cfe | ||
|
|
398124e841 | ||
|
|
07cc3fc079 | ||
|
|
27bae162d6 | ||
|
|
d4392e5a7a | ||
|
|
a0aab0918a | ||
|
|
2461385a94 | ||
|
|
ba06a0e104 | ||
|
|
48f9c448e4 | ||
|
|
2e0d01bc0b | ||
|
|
0d3a86f1d8 | ||
|
|
a30cd0f721 | ||
|
|
1491c2361f | ||
|
|
ca7b993d95 | ||
|
|
8c75c4f9d7 | ||
|
|
b730b1a4f4 | ||
|
|
a7d3c00e5b | ||
|
|
9146290ecd | ||
|
|
3fae7210d8 | ||
|
|
002f1dfa36 | ||
|
|
b3c1e6af95 | ||
|
|
58ac717f8d | ||
|
|
f193fb261a | ||
|
|
55d8d23b25 | ||
|
|
ca642e3dfc | ||
|
|
bfb7b466eb | ||
|
|
6467cb5819 | ||
|
|
ba215d8a07 | ||
|
|
4dc0913825 | ||
|
|
fedebc7038 | ||
|
|
b42715f003 | ||
|
|
48ae4252db | ||
|
|
0b4dd58c2a | ||
|
|
81b863122d | ||
|
|
732749d459 | ||
|
|
014e5fd966 | ||
|
|
dc7a459697 | ||
|
|
7f378e5479 | ||
|
|
d91e279294 | ||
|
|
c5abc4109f | ||
|
|
c8ce640a2a | ||
|
|
029877604e | ||
|
|
7ee1ad2a92 | ||
|
|
24f3e135ad | ||
|
|
a5718911c5 | ||
|
|
660d9c8c49 | ||
|
|
2ec50c4e07 | ||
|
|
32b4eda3f9 | ||
|
|
d5f5ee5595 | ||
|
|
f0545c57a8 | ||
|
|
815f4d2810 | ||
|
|
bd474151ab | ||
|
|
2c585faef6 | ||
|
|
b15be2cf0d | ||
|
|
3cc98ae388 | ||
|
|
09d1dbf927 | ||
|
|
cda7f5d50b | ||
|
|
1047bbc37c | ||
|
|
b1cb759164 | ||
|
|
2640912baa | ||
|
|
8676daed3a | ||
|
|
db31986d28 | ||
|
|
7823eca871 | ||
|
|
572d7d6999 |
1
.codecov.yml
Normal file
1
.codecov.yml
Normal file
@@ -0,0 +1 @@
|
||||
comment: off
|
||||
3
.docker-entry.sh
Executable file
3
.docker-entry.sh
Executable file
@@ -0,0 +1,3 @@
|
||||
#!/bin/bash
|
||||
cp -nr /opt/application/oopt-gnpy/gnpy/example-data /shared
|
||||
exec "$@"
|
||||
47
.docker-travis.sh
Executable file
47
.docker-travis.sh
Executable file
@@ -0,0 +1,47 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
IMAGE_NAME=telecominfraproject/oopt-gnpy
|
||||
IMAGE_TAG=$(git describe --tags)
|
||||
|
||||
ALREADY_FOUND=0
|
||||
docker pull ${IMAGE_NAME}:${IMAGE_TAG} && ALREADY_FOUND=1
|
||||
|
||||
if [[ $ALREADY_FOUND == 0 ]]; then
|
||||
docker build . -t ${IMAGE_NAME}
|
||||
docker tag ${IMAGE_NAME} ${IMAGE_NAME}:${IMAGE_TAG}
|
||||
|
||||
# shared directory setup: do not clobber the real data
|
||||
mkdir trash
|
||||
cd trash
|
||||
docker run -it --rm --volume $(pwd):/shared ${IMAGE_NAME} gnpy-transmission-example
|
||||
else
|
||||
echo "Image ${IMAGE_NAME}:${IMAGE_TAG} already available, will just update the other tags"
|
||||
fi
|
||||
|
||||
docker images
|
||||
|
||||
do_docker_login() {
|
||||
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
|
||||
}
|
||||
|
||||
if [[ "${TRAVIS_PULL_REQUEST}" == "false" ]]; then
|
||||
if [[ "${TRAVIS_BRANCH}" == "develop" || "${TRAVIS_BRANCH}" == "docker" ]]; then
|
||||
echo "Publishing latest"
|
||||
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:latest
|
||||
do_docker_login
|
||||
if [[ $ALREADY_FOUND == 0 ]]; then
|
||||
docker push ${IMAGE_NAME}:${IMAGE_TAG}
|
||||
fi
|
||||
docker push ${IMAGE_NAME}:latest
|
||||
elif [[ "${TRAVIS_BRANCH}" == "master" ]]; then
|
||||
echo "Publishing stable"
|
||||
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:stable
|
||||
do_docker_login
|
||||
if [[ $ALREADY_FOUND == 0 ]]; then
|
||||
docker push ${IMAGE_NAME}:${IMAGE_TAG}
|
||||
fi
|
||||
docker push ${IMAGE_NAME}:stable
|
||||
fi
|
||||
fi
|
||||
1
.dockerignore
Normal file
1
.dockerignore
Normal file
@@ -0,0 +1 @@
|
||||
venv/
|
||||
@@ -1,21 +0,0 @@
|
||||
# http://editorconfig.org
|
||||
|
||||
root = true
|
||||
|
||||
[*]
|
||||
indent_style = space
|
||||
indent_size = 4
|
||||
trim_trailing_whitespace = true
|
||||
insert_final_newline = true
|
||||
charset = utf-8
|
||||
end_of_line = lf
|
||||
|
||||
[*.bat]
|
||||
indent_style = tab
|
||||
end_of_line = crlf
|
||||
|
||||
[LICENSE]
|
||||
insert_final_newline = false
|
||||
|
||||
[Makefile]
|
||||
indent_style = tab
|
||||
15
.github/ISSUE_TEMPLATE.md
vendored
15
.github/ISSUE_TEMPLATE.md
vendored
@@ -1,15 +0,0 @@
|
||||
* gnpy version:
|
||||
* Python version:
|
||||
* Operating System:
|
||||
|
||||
### Description
|
||||
|
||||
Describe what you were trying to get done.
|
||||
Tell us what happened, what went wrong, and what you expected to happen.
|
||||
|
||||
### What I Did
|
||||
|
||||
```
|
||||
Paste the command(s) you ran and the output.
|
||||
If there was a crash, please include the traceback here.
|
||||
```
|
||||
29
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
29
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**To Reproduce**
|
||||
Steps to reproduce the behavior:
|
||||
1. Go to '...'
|
||||
2. Click on '....'
|
||||
3. Scroll down to '....'
|
||||
4. See error
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**Environment:**
|
||||
- OS: [e.g. Windows]
|
||||
- Python Version [e.g, 3.7]
|
||||
- Anaconda Version [e.g. 3.7]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
||||
17
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
17
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
||||
7
.gitignore
vendored
7
.gitignore
vendored
@@ -2,6 +2,8 @@
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
.ipynb_checkpoints
|
||||
.idea
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
@@ -60,3 +62,8 @@ target/
|
||||
|
||||
# pyenv python configuration file
|
||||
.python-version
|
||||
|
||||
# MacOS DS_store
|
||||
.DS_Store
|
||||
|
||||
venv/
|
||||
|
||||
5
.gitreview
Normal file
5
.gitreview
Normal file
@@ -0,0 +1,5 @@
|
||||
[gerrit]
|
||||
host=review.gerrithub.io
|
||||
project=Telecominfraproject/oopt-gnpy
|
||||
defaultrebase=0
|
||||
defaultbranch=develop
|
||||
4
.readthedocs.yml
Normal file
4
.readthedocs.yml
Normal file
@@ -0,0 +1,4 @@
|
||||
build:
|
||||
image: latest
|
||||
python:
|
||||
version: 3.6
|
||||
49
.travis.yml
49
.travis.yml
@@ -1,29 +1,24 @@
|
||||
# Config file for automatic testing at travis-ci.org
|
||||
# This file will be regenerated if you run travis_pypi_setup.py
|
||||
|
||||
dist: xenial
|
||||
sudo: false
|
||||
language: python
|
||||
services: docker
|
||||
python:
|
||||
- 3.5
|
||||
- 3.4
|
||||
- 3.3
|
||||
- 2.7
|
||||
- 2.6
|
||||
|
||||
# command to install dependencies, e.g. pip install -r requirements.txt --use-mirrors
|
||||
install: pip install -U tox-travis
|
||||
|
||||
# command to run tests, e.g. python setup.py test
|
||||
script: tox
|
||||
|
||||
# After you create the Github repo and add it to Travis, run the
|
||||
# travis_pypi_setup.py script to finish PyPI deployment setup
|
||||
deploy:
|
||||
provider: pypi
|
||||
distributions: sdist bdist_wheel
|
||||
user: <TBD>
|
||||
password:
|
||||
secure: PLEASE_REPLACE_ME
|
||||
on:
|
||||
tags: true
|
||||
repo: <TBD>/gnpy
|
||||
python: 2.7
|
||||
- "3.6"
|
||||
- "3.7"
|
||||
install: skip
|
||||
script:
|
||||
- python setup.py develop
|
||||
- pip install pytest-cov rstcheck
|
||||
- pytest --cov-report=xml --cov=gnpy -v
|
||||
- rstcheck --ignore-roles cite *.rst
|
||||
- sphinx-build -W --keep-going docs/ x-throwaway-location
|
||||
after_success:
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
jobs:
|
||||
include:
|
||||
- stage: test
|
||||
name: Docker image
|
||||
script:
|
||||
- git fetch --unshallow
|
||||
- ./.docker-travis.sh
|
||||
- docker images
|
||||
|
||||
44
.zuul.yaml
Normal file
44
.zuul.yaml
Normal file
@@ -0,0 +1,44 @@
|
||||
---
|
||||
- project:
|
||||
check:
|
||||
jobs:
|
||||
- tox-py36-cover
|
||||
- coverage-diff:
|
||||
voting: false
|
||||
dependencies:
|
||||
- tox-py36-cover-previous
|
||||
- tox-py36-cover
|
||||
vars:
|
||||
coverage_job_name_previous: tox-py36-cover-previous
|
||||
coverage_job_name_current: tox-py36-cover
|
||||
- tox-linters-diff:
|
||||
voting: false
|
||||
- tox-docs-el8
|
||||
- tox-py36-cover-previous
|
||||
gate:
|
||||
jobs:
|
||||
- tox-py36-el8
|
||||
- tox-docs-el8
|
||||
tag:
|
||||
jobs:
|
||||
- oopt-release-python:
|
||||
secrets:
|
||||
- secret: pypi-oopt-gnpy
|
||||
name: pypi_info
|
||||
pass-to-parent: true
|
||||
|
||||
- secret:
|
||||
name: pypi-oopt-gnpy
|
||||
data:
|
||||
username: __token__
|
||||
password: !encrypted/pkcs1-oaep
|
||||
- Taod9JmSMtVAvC5ShSbB3UWuccktQvutdySrj0G7a1Nk4tKFQIdwDXEnBuLpHsZVvsU9Q
|
||||
6uk4wRVQABDSdNNI/+M/1FwmZfoxuOXa02U5S1deuxW/rBHTxzYcuB8xriwhArBvTiDMk
|
||||
zyWHVysgDsjlR+85h/DkEhvsaMRDLYWqFwYgXizMoGNKVkwDVIH+qkhBmbggQfDpcYPKT
|
||||
1gq0d6fw0eKVJtO8+vonMEcE0sWZvHmZvSSu0H++gxoe1W/JtzbCteH3Ak0zktwBHI8Qt
|
||||
WBqFvY3laad335tpkFJN5b949N+DP8svCWwRwXmkZlHplPYZWF6QpYbEEXL/6Q0H6VwL+
|
||||
om4f7ybYpKe9Gl939uv2INnXaKe5EU6CMsSw40r2XZCjnSTjWOTgh9pUn2PsoHnqUlALW
|
||||
VR4Z+ipnCrEbu8aTmX3ROcnwYNS7OXkq4uhwDU1u9QjzyMHet6NQQhwhGtimsTo9KhL4E
|
||||
TEUNiRlbAgow9WOwM5r3vRzddO8T2HZZSGaWj75qNRX46XPQWRWgB7ItAwyXgwLZ8UzWl
|
||||
HdztjS3D7Hlsqno3zxNOVlhA5/vl9uVnhFbJnMtUOJAB07YoTJOeR+LjQ0avx/VzopxXc
|
||||
RA/WvJXVZSBrlAHY0+ip4wPZvdi4Ph90gpmvHJvoH82KVfp2j5jxzUhsage94I=
|
||||
36
AUTHORS.rst
36
AUTHORS.rst
@@ -1,13 +1,29 @@
|
||||
=======
|
||||
Credits
|
||||
=======
|
||||
gnpy is written and maintained by the Telecom Infra Project with work
|
||||
contributed by the following TIP members.
|
||||
|
||||
Development Lead
|
||||
----------------
|
||||
To learn how to contribute, please see CONTRIBUTING.md
|
||||
|
||||
* <TBD> <<TBD>@<TBD>.com>
|
||||
(*in alphabetical order*)
|
||||
|
||||
Contributors
|
||||
------------
|
||||
|
||||
None yet. Why not be the first?
|
||||
- Alessio Ferrari (Politecnico di Torino) <alessio.ferrari@polito.it>
|
||||
- Anders Lindgren (Telia Company) <Anders.X.Lindgren@teliacompany.com>
|
||||
- Andrea D'Amico (Politecnico di Torino) <andrea.damico@polito.it>
|
||||
- Brian Taylor (Facebook) <briantaylor@fb.com>
|
||||
- David Boertjes (Ciena) <dboertje@ciena.com>
|
||||
- Diego Landa (Facebook) <dlanda@fb.com>
|
||||
- Esther Le Rouzic (Orange) <esther.lerouzic@orange.com>
|
||||
- Gabriele Galimberti (Cisco) <ggalimbe@cisco.com>
|
||||
- Gert Grammel (Juniper Networks) <ggrammel@juniper.net>
|
||||
- Gilad Goldfarb (Facebook) <giladg@fb.com>
|
||||
- James Powell (Telecom Infra Project) <james.powell@telecominfraproject.com>
|
||||
- Jan Kundrát (Telecom Infra Project) <jan.kundrat@telecominfraproject.com>
|
||||
- Jeanluc Augé (Orange) <jeanluc.auge@orange.com>
|
||||
- Jonas Mårtensson (RISE) <jonas.martensson@ri.se>
|
||||
- Mattia Cantono (Politecnico di Torino) <mattia.cantono@polito.it>
|
||||
- Miguel Garrich (University Catalunya) <miquel.garrich@upct.es>
|
||||
- Raj Nagarajan (Lumentum) <raj.nagarajan@lumentum.com>
|
||||
- Roberts Miculens (Lattelecom) <roberts.miculens@lattelecom.lv>
|
||||
- Shengxiang Zhu (University of Arizona) <szhu@email.arizona.edu>
|
||||
- Stefan Melin (Telia Company) <Stefan.Melin@teliacompany.com>
|
||||
- Vittorio Curri (Politecnico di Torino) <vittorio.curri@polito.it>
|
||||
- Xufeng Liu (Jabil) <xufeng_liu@jabil.com>
|
||||
|
||||
114
CONTRIBUTING.rst
114
CONTRIBUTING.rst
@@ -1,114 +0,0 @@
|
||||
.. highlight:: shell
|
||||
|
||||
============
|
||||
Contributing
|
||||
============
|
||||
|
||||
Contributions are welcome, and they are greatly appreciated! Every
|
||||
little bit helps, and credit will always be given.
|
||||
|
||||
You can contribute in many ways:
|
||||
|
||||
Types of Contributions
|
||||
----------------------
|
||||
|
||||
Report Bugs
|
||||
~~~~~~~~~~~
|
||||
|
||||
Report bugs at https://github.com/<TBD>/gnpy/issues.
|
||||
|
||||
If you are reporting a bug, please include:
|
||||
|
||||
* Your operating system name and version.
|
||||
* Any details about your local setup that might be helpful in troubleshooting.
|
||||
* Detailed steps to reproduce the bug.
|
||||
|
||||
Fix Bugs
|
||||
~~~~~~~~
|
||||
|
||||
Look through the GitHub issues for bugs. Anything tagged with "bug"
|
||||
and "help wanted" is open to whoever wants to implement it.
|
||||
|
||||
Implement Features
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Look through the GitHub issues for features. Anything tagged with "enhancement"
|
||||
and "help wanted" is open to whoever wants to implement it.
|
||||
|
||||
Write Documentation
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
gnpy could always use more documentation, whether as part of the
|
||||
official gnpy docs, in docstrings, or even on the web in blog posts,
|
||||
articles, and such.
|
||||
|
||||
Submit Feedback
|
||||
~~~~~~~~~~~~~~~
|
||||
|
||||
The best way to send feedback is to file an issue at https://github.com/<TBD>/gnpy/issues.
|
||||
|
||||
If you are proposing a feature:
|
||||
|
||||
* Explain in detail how it would work.
|
||||
* Keep the scope as narrow as possible, to make it easier to implement.
|
||||
* Remember that this is a volunteer-driven project, and that contributions
|
||||
are welcome :)
|
||||
|
||||
Get Started!
|
||||
------------
|
||||
|
||||
Ready to contribute? Here's how to set up `gnpy` for local development.
|
||||
|
||||
1. Fork the `gnpy` repo on GitHub.
|
||||
2. Clone your fork locally::
|
||||
|
||||
$ git clone git@github.com:your_name_here/gnpy.git
|
||||
|
||||
3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development::
|
||||
|
||||
$ mkvirtualenv gnpy
|
||||
$ cd gnpy/
|
||||
$ python setup.py develop
|
||||
|
||||
4. Create a branch for local development::
|
||||
|
||||
$ git checkout -b name-of-your-bugfix-or-feature
|
||||
|
||||
Now you can make your changes locally.
|
||||
|
||||
5. When you're done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox::
|
||||
|
||||
$ flake8 gnpy tests
|
||||
$ python setup.py test or py.test
|
||||
$ tox
|
||||
|
||||
To get flake8 and tox, just pip install them into your virtualenv.
|
||||
|
||||
6. Commit your changes and push your branch to GitHub::
|
||||
|
||||
$ git add .
|
||||
$ git commit -m "Your detailed description of your changes."
|
||||
$ git push origin name-of-your-bugfix-or-feature
|
||||
|
||||
7. Submit a pull request through the GitHub website.
|
||||
|
||||
Pull Request Guidelines
|
||||
-----------------------
|
||||
|
||||
Before you submit a pull request, check that it meets these guidelines:
|
||||
|
||||
1. The pull request should include tests.
|
||||
2. If the pull request adds functionality, the docs should be updated. Put
|
||||
your new functionality into a function with a docstring, and add the
|
||||
feature to the list in README.rst.
|
||||
3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
|
||||
https://travis-ci.org/<TBD>/gnpy/pull_requests
|
||||
and make sure that the tests pass for all supported Python versions.
|
||||
|
||||
Tips
|
||||
----
|
||||
|
||||
To run a subset of tests::
|
||||
|
||||
$ py.test tests.test_gnpy
|
||||
|
||||
18
Dockerfile
Normal file
18
Dockerfile
Normal file
@@ -0,0 +1,18 @@
|
||||
FROM python:3.7-slim
|
||||
WORKDIR /opt/application/oopt-gnpy
|
||||
RUN mkdir -p /shared/example-data \
|
||||
&& groupadd gnpy \
|
||||
&& useradd -u 1000 -g gnpy -m gnpy \
|
||||
&& apt-get update \
|
||||
&& apt-get install git -y \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
COPY . /opt/application/oopt-gnpy
|
||||
WORKDIR /opt/application/oopt-gnpy
|
||||
RUN mkdir topology \
|
||||
&& mkdir equipment \
|
||||
&& mkdir autodesign \
|
||||
&& pip install . \
|
||||
&& chown -Rc gnpy:gnpy /opt/application/oopt-gnpy /shared/example-data
|
||||
USER gnpy
|
||||
ENTRYPOINT ["/opt/application/oopt-gnpy/.docker-entry.sh"]
|
||||
CMD ["/bin/bash"]
|
||||
@@ -1,8 +0,0 @@
|
||||
=======
|
||||
History
|
||||
=======
|
||||
|
||||
0.1.0 (2017-06-29)
|
||||
------------------
|
||||
|
||||
* First release on PyPI.
|
||||
40
LICENSE
40
LICENSE
@@ -1,31 +1,29 @@
|
||||
BSD 3-Clause License
|
||||
|
||||
BSD License
|
||||
|
||||
Copyright (c) 2017, <TBD>
|
||||
Copyright (c) 2018, Telecom Infra Project
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice, this
|
||||
list of conditions and the following disclaimer in the documentation and/or
|
||||
other materials provided with the distribution.
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from this
|
||||
software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
||||
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||||
OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
11
MANIFEST.in
11
MANIFEST.in
@@ -1,11 +0,0 @@
|
||||
include AUTHORS.rst
|
||||
include CONTRIBUTING.rst
|
||||
include HISTORY.rst
|
||||
include LICENSE
|
||||
include README.rst
|
||||
|
||||
recursive-include tests *
|
||||
recursive-exclude * __pycache__
|
||||
recursive-exclude * *.py[co]
|
||||
|
||||
recursive-include docs *.rst conf.py Makefile make.bat *.jpg *.png *.gif
|
||||
87
Makefile
87
Makefile
@@ -1,87 +0,0 @@
|
||||
.PHONY: clean clean-test clean-pyc clean-build docs help
|
||||
.DEFAULT_GOAL := help
|
||||
define BROWSER_PYSCRIPT
|
||||
import os, webbrowser, sys
|
||||
try:
|
||||
from urllib import pathname2url
|
||||
except:
|
||||
from urllib.request import pathname2url
|
||||
|
||||
webbrowser.open("file://" + pathname2url(os.path.abspath(sys.argv[1])))
|
||||
endef
|
||||
export BROWSER_PYSCRIPT
|
||||
|
||||
define PRINT_HELP_PYSCRIPT
|
||||
import re, sys
|
||||
|
||||
for line in sys.stdin:
|
||||
match = re.match(r'^([a-zA-Z_-]+):.*?## (.*)$$', line)
|
||||
if match:
|
||||
target, help = match.groups()
|
||||
print("%-20s %s" % (target, help))
|
||||
endef
|
||||
export PRINT_HELP_PYSCRIPT
|
||||
BROWSER := python -c "$$BROWSER_PYSCRIPT"
|
||||
|
||||
help:
|
||||
@python -c "$$PRINT_HELP_PYSCRIPT" < $(MAKEFILE_LIST)
|
||||
|
||||
clean: clean-build clean-pyc clean-test ## remove all build, test, coverage and Python artifacts
|
||||
|
||||
|
||||
clean-build: ## remove build artifacts
|
||||
rm -fr build/
|
||||
rm -fr dist/
|
||||
rm -fr .eggs/
|
||||
find . -name '*.egg-info' -exec rm -fr {} +
|
||||
find . -name '*.egg' -exec rm -f {} +
|
||||
|
||||
clean-pyc: ## remove Python file artifacts
|
||||
find . -name '*.pyc' -exec rm -f {} +
|
||||
find . -name '*.pyo' -exec rm -f {} +
|
||||
find . -name '*~' -exec rm -f {} +
|
||||
find . -name '__pycache__' -exec rm -fr {} +
|
||||
|
||||
clean-test: ## remove test and coverage artifacts
|
||||
rm -fr .tox/
|
||||
rm -f .coverage
|
||||
rm -fr htmlcov/
|
||||
|
||||
lint: ## check style with flake8
|
||||
flake8 gnpy tests
|
||||
|
||||
test: ## run tests quickly with the default Python
|
||||
py.test
|
||||
|
||||
|
||||
test-all: ## run tests on every Python version with tox
|
||||
tox
|
||||
|
||||
coverage: ## check code coverage quickly with the default Python
|
||||
coverage run --source gnpy -m pytest
|
||||
coverage report -m
|
||||
coverage html
|
||||
$(BROWSER) htmlcov/index.html
|
||||
|
||||
docs: ## generate Sphinx HTML documentation, including API docs
|
||||
rm -f docs/gnpy.rst
|
||||
rm -f docs/modules.rst
|
||||
sphinx-apidoc -o docs/ gnpy
|
||||
$(MAKE) -C docs clean
|
||||
$(MAKE) -C docs html
|
||||
$(BROWSER) docs/_build/html/index.html
|
||||
|
||||
servedocs: docs ## compile the docs watching for changes
|
||||
watchmedo shell-command -p '*.rst' -c '$(MAKE) -C docs html' -R -D .
|
||||
|
||||
release: clean ## package and upload a release
|
||||
python setup.py sdist upload
|
||||
python setup.py bdist_wheel upload
|
||||
|
||||
dist: clean ## builds source and wheel package
|
||||
python setup.py sdist
|
||||
python setup.py bdist_wheel
|
||||
ls -l dist
|
||||
|
||||
install: clean ## install the package to the active Python's site-packages
|
||||
python setup.py install
|
||||
277
README.rst
277
README.rst
@@ -1,32 +1,271 @@
|
||||
====
|
||||
gnpy
|
||||
====
|
||||
.. image:: docs/images/GNPy-banner.png
|
||||
:width: 100%
|
||||
:align: left
|
||||
:alt: GNPy with an OLS system
|
||||
|
||||
====================================================================
|
||||
`gnpy`: mesh optical network route planning and optimization library
|
||||
====================================================================
|
||||
|
||||
|docs| |travis| |doi| |contributors| |codacy-quality| |codecov|
|
||||
|
||||
**`gnpy` is an open-source, community-developed library for building route
|
||||
planning and optimization tools in real-world mesh optical networks.**
|
||||
|
||||
`gnpy <http://github.com/telecominfraproject/oopt-gnpy>`__ is:
|
||||
--------------------------------------------------------------
|
||||
|
||||
- a sponsored project of the `OOPT/PSE <https://telecominfraproject.com/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_
|
||||
- fully community-driven, fully open source library
|
||||
- driven by a consortium of operators, vendors, and academic researchers
|
||||
- intended for rapid development of production-grade route planning tools
|
||||
- easily extensible to include custom network elements
|
||||
- performant to the scale of real-world mesh optical networks
|
||||
|
||||
Documentation: https://gnpy.readthedocs.io
|
||||
|
||||
Get In Touch
|
||||
~~~~~~~~~~~~
|
||||
|
||||
There are `weekly calls <https://telecominfraproject.workplace.com/events/702894886867547/>`__ about our progress.
|
||||
Newcomers, users and telecom operators are especially welcome there.
|
||||
We encourage all interested people outside the TIP to `join the project <https://telecominfraproject.com/apply-for-membership/>`__.
|
||||
|
||||
How to Install
|
||||
--------------
|
||||
|
||||
Install either via `Docker <docs/install.rst#install-docker>`__, or as a `Python package <docs/install.rst#install-pip>`__.
|
||||
|
||||
Instructions for First Use
|
||||
--------------------------
|
||||
|
||||
``gnpy`` is a library for building route planning and optimization tools.
|
||||
|
||||
It ships with a number of example programs. Release versions will ship with
|
||||
fully-functional programs.
|
||||
|
||||
**Note**: *If you are a network operator or involved in route planning and
|
||||
optimization for your organization, please contact project maintainer Jan
|
||||
Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking for users with
|
||||
specific, delineated use cases to drive requirements for future
|
||||
development.*
|
||||
|
||||
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
|
||||
|
||||
.. image:: https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg
|
||||
:width: 100%
|
||||
:align: left
|
||||
:alt: Running a simple simulation example
|
||||
:target: https://asciinema.org/a/252295
|
||||
|
||||
By default, this script operates on a single span network defined in
|
||||
`gnpy/example-data/edfa_example_network.json <gnpy/example-data/edfa_example_network.json>`_
|
||||
|
||||
You can specify a different network at the command line as follows. For
|
||||
example, to use the CORONET Global network defined in
|
||||
`gnpy/example-data/CORONET_Global_Topology.json <gnpy/example-data/CORONET_Global_Topology.json>`_:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-transmission-example $(gnpy-example-data)/CORONET_Global_Topology.json
|
||||
|
||||
It is also possible to use an Excel file input (for example
|
||||
`gnpy/example-data/CORONET_Global_Topology.xlsx <gnpy/example-data/CORONET_Global_Topology.xlsx>`_).
|
||||
The Excel file will be processed into a JSON file with the same prefix.
|
||||
Further details about the Excel data structure are available `in the documentation <docs/excel.rst>`__.
|
||||
|
||||
The main transmission example will calculate the average signal OSNR and SNR
|
||||
across network elements (transceiver, ROADMs, fibers, and amplifiers)
|
||||
between two transceivers selected by the user. Additional details are provided by doing ``gnpy-transmission-example -h``. (By default, for the CORONET Global
|
||||
network, it will show the transmission of spectral information between Abilene and Albany)
|
||||
|
||||
This script calculates the average signal OSNR = |OSNR| and SNR = |SNR|.
|
||||
|
||||
.. |OSNR| replace:: P\ :sub:`ch`\ /P\ :sub:`ase`
|
||||
.. |SNR| replace:: P\ :sub:`ch`\ /(P\ :sub:`nli`\ +\ P\ :sub:`ase`)
|
||||
|
||||
|Pase| is the amplified spontaneous emission noise, and |Pnli| the non-linear
|
||||
interference noise.
|
||||
|
||||
.. |Pase| replace:: P\ :sub:`ase`
|
||||
.. |Pnli| replace:: P\ :sub:`nli`
|
||||
|
||||
Further Instructions for Use
|
||||
----------------------------
|
||||
|
||||
Simulations are driven by a set of `JSON <docs/json.rst>`__ or `XLS <docs/excel.rst>`__ files.
|
||||
|
||||
The ``gnpy-transmission-example`` script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
|
||||
Launch power can be overridden by using the ``--power`` argument.
|
||||
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
|
||||
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
|
||||
|
||||
An experimental support for Raman amplification is available:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-transmission-example \
|
||||
$(gnpy-example-data)/raman_edfa_example_network.json \
|
||||
--sim $(gnpy-example-data)/sim_params.json --show-channels
|
||||
|
||||
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <gnpy/example-data/raman_edfa_example_network.json>`_.
|
||||
General numeric parameters for simulaiton control are provided in the `gnpy/example-data/sim_params.json <gnpy/example-data/sim_params.json>`_.
|
||||
|
||||
Use ``gnpy-path-request`` to request several paths at once:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ cd $(gnpy-example-data)
|
||||
$ gnpy-path-request -o output_file.json \
|
||||
meshTopologyExampleV2.xls meshTopologyExampleV2_services.json
|
||||
|
||||
This program operates on a network topology (`JSON <docs/json.rst>`__ or `Excel <docs/excel.rst>`__ format), processing the list of service requests (JSON or XLS again).
|
||||
The service requests and reply formats are based on the `draft-ietf-teas-yang-path-computation-01 <https://tools.ietf.org/html/draft-ietf-teas-yang-path-computation-01>`__ with custom extensions (e.g., for transponder modes).
|
||||
An example of the JSON input is provided in file `service-template.json`, while results are shown in `path_result_template.json`.
|
||||
|
||||
Important note: ``gnpy-path-request`` is not a network dimensionning tool: each service does not reserve spectrum, or occupy ressources such as transponders. It only computes path feasibility assuming the spectrum (between defined frequencies) is loaded with "nb of channels" spaced by "spacing" values as specified in the system parameters input in the service file, each cannel having the same characteristics in terms of baudrate, format,... as the service transponder. The transceiver element acts as a "logical starting/stopping point" for the spectral information propagation. At that point it is not meant to represent the capacity of add drop ports.
|
||||
As a result transponder type is not part of the network info. it is related to the list of services requests.
|
||||
|
||||
The current version includes a spectrum assigment features that enables to compute a candidate spectrum assignment for each service based on a first fit policy. Spectrum is assigned based on service specified spacing value, path_bandwidth value and selected mode for the transceiver. This spectrum assignment includes a basic capacity planning capability so that the spectrum resource is limited by the frequency min and max values defined for the links. If the requested services reach the link spectrum capacity, additional services feasibility are computed but marked as blocked due to spectrum reason.
|
||||
|
||||
REST API (experimental)
|
||||
-----------------------
|
||||
``gnpy`` provides an experimental api for requesting several paths at once. It is based on Flask server.
|
||||
You can run it through command line or Docker.
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ gnpy-rest
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ docker run -p 8080:8080 -it emmanuelledelfour/gnpy-experimental:candi-1.0 gnpy-rest
|
||||
|
||||
When starting the api server will aks for an encryption/decryption key. This key i used to encrypt equipment file when using /api/v1/equipments endpoint.
|
||||
This key is a Fernet key and can be generated this way:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from cryptography.fernet import Fernet
|
||||
Fernet.generate_key()
|
||||
|
||||
|
||||
.. image:: https://img.shields.io/pypi/v/gnpy.svg
|
||||
:target: https://pypi.python.org/pypi/gnpy
|
||||
After typing the key, you can detach the container by typing ^P^Q.
|
||||
After starting the api server, you can launch a request
|
||||
|
||||
.. image:: https://img.shields.io/travis/<TBD>/gnpy.svg
|
||||
:target: https://travis-ci.org/<TBD>/gnpy
|
||||
.. code-block:: shell-session
|
||||
|
||||
.. image:: https://readthedocs.org/projects/gnpy/badge/?version=latest
|
||||
:target: https://gnpy.readthedocs.io/en/latest/?badge=latest
|
||||
:alt: Documentation Status
|
||||
$ curl -v -X POST -H "Content-Type: application/json" -d @<PATH_TO_JSON_REQUEST_FILE> https://localhost:8080/api/v1/path-computation -k
|
||||
|
||||
.. image:: https://pyup.io/repos/github/<TBD>/gnpy/shield.svg
|
||||
:target: https://pyup.io/repos/github/<TBD>/gnpy/
|
||||
:alt: Updates
|
||||
TODO: api documentation, unit tests, real WSGI server with trusted certificates
|
||||
|
||||
Contributing
|
||||
------------
|
||||
|
||||
Gaussian Noise (GN) modeling library
|
||||
``gnpy`` is looking for additional contributors, especially those with experience
|
||||
planning and maintaining large-scale, real-world mesh optical networks.
|
||||
|
||||
To get involved, please contact Jan Kundrát
|
||||
<jan.kundrat@telecominfraproject.com> or Gert Grammel <ggrammel@juniper.net>.
|
||||
|
||||
* Free software: BSD license
|
||||
* Documentation: https://gnpy.readthedocs.io.
|
||||
``gnpy`` contributions are currently limited to members of `TIP
|
||||
<http://telecominfraproject.com>`_. Membership is free and open to all.
|
||||
|
||||
See the `Onboarding Guide
|
||||
<https://github.com/Telecominfraproject/gnpy/wiki/Onboarding-Guide>`_ for
|
||||
specific details on code contributions.
|
||||
|
||||
Features
|
||||
--------
|
||||
See `AUTHORS.rst <AUTHORS.rst>`_ for past and present contributors.
|
||||
|
||||
* TODO
|
||||
Project Background
|
||||
------------------
|
||||
|
||||
Data Centers are built upon interchangeable, highly standardized node and
|
||||
network architectures rather than a sum of isolated solutions. This also
|
||||
translates to optical networking. It leads to a push in enabling multi-vendor
|
||||
optical network by disaggregating HW and SW functions and focusing on
|
||||
interoperability. In this paradigm, the burden of responsibility for ensuring
|
||||
the performance of such disaggregated open optical systems falls on the
|
||||
operators. Consequently, operators and vendors are collaborating in defining
|
||||
control models that can be readily used by off-the-shelf controllers. However,
|
||||
node and network models are only part of the answer. To take reasonable
|
||||
decisions, controllers need to incorporate logic to simulate and assess optical
|
||||
performance. Hence, a vendor-independent optical quality estimator is required.
|
||||
Given its vendor-agnostic nature, such an estimator needs to be driven by a
|
||||
consortium of operators, system and component suppliers.
|
||||
|
||||
Founded in February 2016, the Telecom Infra Project (TIP) is an
|
||||
engineering-focused initiative which is operator driven, but features
|
||||
collaboration across operators, suppliers, developers, integrators, and
|
||||
startups with the goal of disaggregating the traditional network deployment
|
||||
approach. The group’s ultimate goal is to help provide better connectivity for
|
||||
communities all over the world as more people come on-line and demand more
|
||||
bandwidth- intensive experiences like video, virtual reality and augmented
|
||||
reality.
|
||||
|
||||
Within TIP, the Open Optical Packet Transport (OOPT) project group is chartered
|
||||
with unbundling monolithic packet-optical network technologies in order to
|
||||
unlock innovation and support new, more flexible connectivity paradigms.
|
||||
|
||||
The key to unbundling is the ability to accurately plan and predict the
|
||||
performance of optical line systems based on an accurate simulation of optical
|
||||
parameters. Under that OOPT umbrella, the Physical Simulation Environment (PSE)
|
||||
working group set out to disrupt the planning landscape by providing an open
|
||||
source simulation model which can be used freely across multiple vendor
|
||||
implementations.
|
||||
|
||||
.. |docs| image:: https://readthedocs.org/projects/gnpy/badge/?version=master
|
||||
:target: http://gnpy.readthedocs.io/en/master/?badge=master
|
||||
:alt: Documentation Status
|
||||
:scale: 100%
|
||||
|
||||
.. |travis| image:: https://travis-ci.com/Telecominfraproject/oopt-gnpy.svg?branch=master
|
||||
:target: https://travis-ci.com/Telecominfraproject/oopt-gnpy
|
||||
:alt: Build Status via Travis CI
|
||||
:scale: 100%
|
||||
|
||||
.. |doi| image:: https://zenodo.org/badge/96894149.svg
|
||||
:target: https://zenodo.org/badge/latestdoi/96894149
|
||||
:alt: DOI
|
||||
:scale: 100%
|
||||
|
||||
.. |contributors| image:: https://img.shields.io/github/contributors-anon/Telecominfraproject/oopt-gnpy
|
||||
:target: https://github.com/Telecominfraproject/oopt-gnpy/graphs/contributors
|
||||
:alt: Code Contributors via GitHub
|
||||
:scale: 100%
|
||||
|
||||
.. |codacy-quality| image:: https://img.shields.io/lgtm/grade/python/github/Telecominfraproject/oopt-gnpy
|
||||
:target: https://lgtm.com/projects/g/Telecominfraproject/oopt-gnpy/
|
||||
:alt: Code Quality via LGTM.com
|
||||
:scale: 100%
|
||||
|
||||
.. |codecov| image:: https://img.shields.io/codecov/c/github/Telecominfraproject/oopt-gnpy
|
||||
:target: https://codecov.io/gh/Telecominfraproject/oopt-gnpy
|
||||
:alt: Code Coverage via codecov
|
||||
:scale: 100%
|
||||
|
||||
TIP OOPT/PSE & PSE WG Charter
|
||||
-----------------------------
|
||||
|
||||
We believe that openly sharing ideas, specifications, and other intellectual
|
||||
property is the key to maximizing innovation and reducing complexity
|
||||
|
||||
TIP OOPT/PSE's goal is to build an end-to-end simulation environment which
|
||||
defines the network models of the optical device transfer functions and their
|
||||
parameters. This environment will provide validation of the optical
|
||||
performance requirements for the TIP OLS building blocks.
|
||||
|
||||
- The model may be approximate or complete depending on the network complexity.
|
||||
Each model shall be validated against the proposed network scenario.
|
||||
- The environment must be able to process network models from multiple vendors,
|
||||
and also allow users to pick any implementation in an open source framework.
|
||||
- The PSE will influence and benefit from the innovation of the DTC, API, and
|
||||
OLS working groups.
|
||||
- The PSE represents a step along the journey towards multi-layer optimization.
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
``gnpy`` is distributed under a standard BSD 3-Clause License.
|
||||
|
||||
See `LICENSE <LICENSE>`__ for more details.
|
||||
|
||||
3
docs/.gitignore
vendored
3
docs/.gitignore
vendored
@@ -1,3 +0,0 @@
|
||||
/gnpy.rst
|
||||
/gnpy.*.rst
|
||||
/modules.rst
|
||||
179
docs/Makefile
179
docs/Makefile
@@ -1,177 +1,20 @@
|
||||
# Makefile for Sphinx documentation
|
||||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line.
|
||||
SPHINXOPTS =
|
||||
SPHINXBUILD = sphinx-build
|
||||
PAPER =
|
||||
SPHINXBUILD = python -msphinx
|
||||
SPHINXPROJ = GNpy
|
||||
SOURCEDIR = .
|
||||
BUILDDIR = _build
|
||||
|
||||
# User-friendly check for sphinx-build
|
||||
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1)
|
||||
$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/)
|
||||
endif
|
||||
|
||||
# Internal variables.
|
||||
PAPEROPT_a4 = -D latex_paper_size=a4
|
||||
PAPEROPT_letter = -D latex_paper_size=letter
|
||||
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
|
||||
# the i18n builder cannot share the environment and doctrees with the others
|
||||
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
|
||||
|
||||
.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@echo "Please use \`make <target>' where <target> is one of"
|
||||
@echo " html to make standalone HTML files"
|
||||
@echo " dirhtml to make HTML files named index.html in directories"
|
||||
@echo " singlehtml to make a single large HTML file"
|
||||
@echo " pickle to make pickle files"
|
||||
@echo " json to make JSON files"
|
||||
@echo " htmlhelp to make HTML files and a HTML help project"
|
||||
@echo " qthelp to make HTML files and a qthelp project"
|
||||
@echo " devhelp to make HTML files and a Devhelp project"
|
||||
@echo " epub to make an epub"
|
||||
@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
|
||||
@echo " latexpdf to make LaTeX files and run them through pdflatex"
|
||||
@echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx"
|
||||
@echo " text to make text files"
|
||||
@echo " man to make manual pages"
|
||||
@echo " texinfo to make Texinfo files"
|
||||
@echo " info to make Texinfo files and run them through makeinfo"
|
||||
@echo " gettext to make PO message catalogs"
|
||||
@echo " changes to make an overview of all changed/added/deprecated items"
|
||||
@echo " xml to make Docutils-native XML files"
|
||||
@echo " pseudoxml to make pseudoxml-XML files for display purposes"
|
||||
@echo " linkcheck to check all external links for integrity"
|
||||
@echo " doctest to run all doctests embedded in the documentation (if enabled)"
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
clean:
|
||||
rm -rf $(BUILDDIR)/*
|
||||
.PHONY: help Makefile
|
||||
|
||||
html:
|
||||
$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
|
||||
@echo
|
||||
@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
|
||||
|
||||
dirhtml:
|
||||
$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
|
||||
@echo
|
||||
@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."
|
||||
|
||||
singlehtml:
|
||||
$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
|
||||
@echo
|
||||
@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."
|
||||
|
||||
pickle:
|
||||
$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
|
||||
@echo
|
||||
@echo "Build finished; now you can process the pickle files."
|
||||
|
||||
json:
|
||||
$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
|
||||
@echo
|
||||
@echo "Build finished; now you can process the JSON files."
|
||||
|
||||
htmlhelp:
|
||||
$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
|
||||
@echo
|
||||
@echo "Build finished; now you can run HTML Help Workshop with the" \
|
||||
".hhp project file in $(BUILDDIR)/htmlhelp."
|
||||
|
||||
qthelp:
|
||||
$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
|
||||
@echo
|
||||
@echo "Build finished; now you can run "qcollectiongenerator" with the" \
|
||||
".qhcp project file in $(BUILDDIR)/qthelp, like this:"
|
||||
@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/gnpy.qhcp"
|
||||
@echo "To view the help file:"
|
||||
@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/gnpy.qhc"
|
||||
|
||||
devhelp:
|
||||
$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
|
||||
@echo
|
||||
@echo "Build finished."
|
||||
@echo "To view the help file:"
|
||||
@echo "# mkdir -p $$HOME/.local/share/devhelp/gnpy"
|
||||
@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/gnpy"
|
||||
@echo "# devhelp"
|
||||
|
||||
epub:
|
||||
$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
|
||||
@echo
|
||||
@echo "Build finished. The epub file is in $(BUILDDIR)/epub."
|
||||
|
||||
latex:
|
||||
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo
|
||||
@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
|
||||
@echo "Run \`make' in that directory to run these through (pdf)latex" \
|
||||
"(use \`make latexpdf' here to do that automatically)."
|
||||
|
||||
latexpdf:
|
||||
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo "Running LaTeX files through pdflatex..."
|
||||
$(MAKE) -C $(BUILDDIR)/latex all-pdf
|
||||
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
|
||||
|
||||
latexpdfja:
|
||||
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo "Running LaTeX files through platex and dvipdfmx..."
|
||||
$(MAKE) -C $(BUILDDIR)/latex all-pdf-ja
|
||||
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
|
||||
|
||||
text:
|
||||
$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
|
||||
@echo
|
||||
@echo "Build finished. The text files are in $(BUILDDIR)/text."
|
||||
|
||||
man:
|
||||
$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
|
||||
@echo
|
||||
@echo "Build finished. The manual pages are in $(BUILDDIR)/man."
|
||||
|
||||
texinfo:
|
||||
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
|
||||
@echo
|
||||
@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
|
||||
@echo "Run \`make' in that directory to run these through makeinfo" \
|
||||
"(use \`make info' here to do that automatically)."
|
||||
|
||||
info:
|
||||
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
|
||||
@echo "Running Texinfo files through makeinfo..."
|
||||
make -C $(BUILDDIR)/texinfo info
|
||||
@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."
|
||||
|
||||
gettext:
|
||||
$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
|
||||
@echo
|
||||
@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."
|
||||
|
||||
changes:
|
||||
$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
|
||||
@echo
|
||||
@echo "The overview file is in $(BUILDDIR)/changes."
|
||||
|
||||
linkcheck:
|
||||
$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
|
||||
@echo
|
||||
@echo "Link check complete; look for any errors in the above output " \
|
||||
"or in $(BUILDDIR)/linkcheck/output.txt."
|
||||
|
||||
doctest:
|
||||
$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
|
||||
@echo "Testing of doctests in the sources finished, look at the " \
|
||||
"results in $(BUILDDIR)/doctest/output.txt."
|
||||
|
||||
xml:
|
||||
$(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml
|
||||
@echo
|
||||
@echo "Build finished. The XML files are in $(BUILDDIR)/xml."
|
||||
|
||||
pseudoxml:
|
||||
$(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml
|
||||
@echo
|
||||
@echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml."
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
@@ -1 +0,0 @@
|
||||
.. include:: ../AUTHORS.rst
|
||||
1850
docs/biblio.bib
Normal file
1850
docs/biblio.bib
Normal file
File diff suppressed because it is too large
Load Diff
288
docs/conf.py
Executable file → Normal file
288
docs/conf.py
Executable file → Normal file
@@ -1,8 +1,8 @@
|
||||
#!/usr/bin/env python
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# gnpy documentation build configuration file, created by
|
||||
# sphinx-quickstart on Tue Jul 9 22:26:36 2013.
|
||||
# sphinx-quickstart on Mon Dec 18 14:41:01 2017.
|
||||
#
|
||||
# This file is execfile()d with the current directory set to its
|
||||
# containing dir.
|
||||
@@ -13,263 +13,171 @@
|
||||
# All configuration values have a default; values that are commented out
|
||||
# serve to show the default.
|
||||
|
||||
import sys
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
import os
|
||||
import sys
|
||||
sys.path.insert(0, os.path.abspath('../'))
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another
|
||||
# directory, add these directories to sys.path here. If the directory is
|
||||
# relative to the documentation root, use os.path.abspath to make it
|
||||
# absolute, like shown here.
|
||||
#sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
# Get the project root dir, which is the parent dir of this
|
||||
cwd = os.getcwd()
|
||||
project_root = os.path.dirname(cwd)
|
||||
|
||||
# Insert the project root dir as the first element in the PYTHONPATH.
|
||||
# This lets us ensure that the source package is imported, and that its
|
||||
# version is used.
|
||||
sys.path.insert(0, project_root)
|
||||
|
||||
import gnpy
|
||||
|
||||
# -- General configuration ---------------------------------------------
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
# If your documentation needs a minimal Sphinx version, state it here.
|
||||
#needs_sphinx = '1.0'
|
||||
#
|
||||
# needs_sphinx = '1.0'
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
|
||||
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode']
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = ['sphinx.ext.autodoc',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.githubpages',
|
||||
'sphinxcontrib.bibtex',
|
||||
'pbr.sphinxext',]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
# The suffix of source filenames.
|
||||
source_suffix = '.rst'
|
||||
# The suffix(es) of source filenames.
|
||||
# You can specify multiple suffix as a list of string:
|
||||
#
|
||||
source_suffix = ['.rst', '.md']
|
||||
|
||||
# The encoding of source files.
|
||||
#source_encoding = 'utf-8-sig'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
|
||||
# General information about the project.
|
||||
project = u'gnpy'
|
||||
copyright = u"2017, <TBD>"
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement
|
||||
# for |version| and |release|, also used in various other places throughout
|
||||
# the built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = gnpy.__version__
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = gnpy.__version__
|
||||
project = 'gnpy'
|
||||
copyright = '2018, Telecom InfraProject - OOPT PSE Group'
|
||||
author = 'Telecom InfraProject - OOPT PSE Group'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
#language = None
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to
|
||||
# some non-false value, then it is used:
|
||||
#today = ''
|
||||
# Else, today_fmt is used as the format for a strftime call.
|
||||
#today_fmt = '%B %d, %Y'
|
||||
#
|
||||
# This is also used if you do content translation via gettext catalogs.
|
||||
# Usually you set "language" from the command line for these cases.
|
||||
language = None
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
exclude_patterns = ['_build']
|
||||
|
||||
# The reST default role (used for this markup: `text`) to use for all
|
||||
# documents.
|
||||
#default_role = None
|
||||
|
||||
# If true, '()' will be appended to :func: etc. cross-reference text.
|
||||
#add_function_parentheses = True
|
||||
|
||||
# If true, the current module name will be prepended to all description
|
||||
# unit titles (such as .. function::).
|
||||
#add_module_names = True
|
||||
|
||||
# If true, sectionauthor and moduleauthor directives will be shown in the
|
||||
# output. They are ignored by default.
|
||||
#show_authors = False
|
||||
# This patterns also effect to html_static_path and html_extra_path
|
||||
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
|
||||
# A list of ignored prefixes for module index sorting.
|
||||
#modindex_common_prefix = []
|
||||
|
||||
# If true, keep warnings as "system message" paragraphs in the built
|
||||
# documents.
|
||||
#keep_warnings = False
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = False
|
||||
|
||||
|
||||
# -- Options for HTML output -------------------------------------------
|
||||
# -- Options for HTML output ----------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
html_theme = 'default'
|
||||
#
|
||||
on_rtd = os.environ.get('READTHEDOCS') == 'True'
|
||||
if on_rtd:
|
||||
html_theme = 'default'
|
||||
html_theme_options = {
|
||||
'logo_only': True,
|
||||
}
|
||||
else:
|
||||
html_theme = 'alabaster'
|
||||
html_theme_options = {
|
||||
'logo': 'images/GNPy-logo.png',
|
||||
'logo_name': False,
|
||||
}
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a
|
||||
# theme further. For a list of options available for each theme, see the
|
||||
html_logo = 'images/GNPy-logo.png'
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
#html_theme_options = {}
|
||||
#
|
||||
# html_theme_options = {}
|
||||
|
||||
# Add any paths that contain custom themes here, relative to this directory.
|
||||
#html_theme_path = []
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = []
|
||||
|
||||
# The name for this set of Sphinx documents. If None, it defaults to
|
||||
# "<project> v<release> documentation".
|
||||
#html_title = None
|
||||
|
||||
# A shorter title for the navigation bar. Default is the same as
|
||||
# html_title.
|
||||
#html_short_title = None
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the
|
||||
# top of the sidebar.
|
||||
#html_logo = None
|
||||
|
||||
# The name of an image file (within the static path) to use as favicon
|
||||
# of the docs. This file should be a Windows icon file (.ico) being
|
||||
# 16x16 or 32x32 pixels large.
|
||||
#html_favicon = None
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets)
|
||||
# here, relative to this directory. They are copied after the builtin
|
||||
# static files, so a file named "default.css" will overwrite the builtin
|
||||
# "default.css".
|
||||
html_static_path = ['_static']
|
||||
|
||||
# If not '', a 'Last updated on:' timestamp is inserted at every page
|
||||
# bottom, using the given strftime format.
|
||||
#html_last_updated_fmt = '%b %d, %Y'
|
||||
|
||||
# If true, SmartyPants will be used to convert quotes and dashes to
|
||||
# typographically correct entities.
|
||||
#html_use_smartypants = True
|
||||
|
||||
# Custom sidebar templates, maps document names to template names.
|
||||
#html_sidebars = {}
|
||||
|
||||
# Additional templates that should be rendered to pages, maps page names
|
||||
# Custom sidebar templates, must be a dictionary that maps document names
|
||||
# to template names.
|
||||
#html_additional_pages = {}
|
||||
#
|
||||
# This is required for the alabaster theme
|
||||
# refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars
|
||||
html_sidebars = {
|
||||
'**': [
|
||||
'about.html',
|
||||
'navigation.html',
|
||||
'relations.html', # needs 'show_related': True theme option to display
|
||||
'searchbox.html',
|
||||
'donate.html',
|
||||
]
|
||||
}
|
||||
|
||||
# If false, no module index is generated.
|
||||
#html_domain_indices = True
|
||||
|
||||
# If false, no index is generated.
|
||||
#html_use_index = True
|
||||
|
||||
# If true, the index is split into individual pages for each letter.
|
||||
#html_split_index = False
|
||||
|
||||
# If true, links to the reST sources are added to the pages.
|
||||
#html_show_sourcelink = True
|
||||
|
||||
# If true, "Created using Sphinx" is shown in the HTML footer.
|
||||
# Default is True.
|
||||
#html_show_sphinx = True
|
||||
|
||||
# If true, "(C) Copyright ..." is shown in the HTML footer.
|
||||
# Default is True.
|
||||
#html_show_copyright = True
|
||||
|
||||
# If true, an OpenSearch description file will be output, and all pages
|
||||
# will contain a <link> tag referring to it. The value of this option
|
||||
# must be the base URL from which the finished HTML is served.
|
||||
#html_use_opensearch = ''
|
||||
|
||||
# This is the file name suffix for HTML files (e.g. ".xhtml").
|
||||
#html_file_suffix = None
|
||||
# -- Options for HTMLHelp output ------------------------------------------
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'gnpydoc'
|
||||
|
||||
|
||||
# -- Options for LaTeX output ------------------------------------------
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
|
||||
latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#'papersize': 'letterpaper',
|
||||
#
|
||||
# 'papersize': 'letterpaper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
#
|
||||
# 'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
#
|
||||
# 'preamble': '',
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#
|
||||
# 'figure_align': 'htbp',
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title, author, documentclass
|
||||
# [howto/manual]).
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
('index', 'gnpy.tex',
|
||||
u'gnpy Documentation',
|
||||
u'<TBD>', 'manual'),
|
||||
(master_doc, 'gnpy.tex', 'gnpy Documentation',
|
||||
'Telecom InfraProject - OOPT PSE Group', 'manual'),
|
||||
]
|
||||
|
||||
# The name of an image file (relative to this directory) to place at
|
||||
# the top of the title page.
|
||||
#latex_logo = None
|
||||
|
||||
# For "manual" documents, if this is true, then toplevel headings
|
||||
# are parts, not chapters.
|
||||
#latex_use_parts = False
|
||||
|
||||
# If true, show page references after internal links.
|
||||
#latex_show_pagerefs = False
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#latex_show_urls = False
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#latex_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#latex_domain_indices = True
|
||||
|
||||
|
||||
# -- Options for manual page output ------------------------------------
|
||||
# -- Options for manual page output ---------------------------------------
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [
|
||||
('index', 'gnpy',
|
||||
u'gnpy Documentation',
|
||||
[u'<TBD>'], 1)
|
||||
(master_doc, 'gnpy', 'gnpy Documentation',
|
||||
[author], 1)
|
||||
]
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#man_show_urls = False
|
||||
|
||||
|
||||
# -- Options for Texinfo output ----------------------------------------
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
|
||||
# Grouping the document tree into Texinfo files. List of tuples
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
('index', 'gnpy',
|
||||
u'gnpy Documentation',
|
||||
u'<TBD>',
|
||||
'gnpy',
|
||||
'One line description of project.',
|
||||
(master_doc, 'gnpy', 'gnpy Documentation',
|
||||
author, 'gnpy', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#texinfo_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#texinfo_domain_indices = True
|
||||
|
||||
# How to display URL addresses: 'footnote', 'no', or 'inline'.
|
||||
#texinfo_show_urls = 'footnote'
|
||||
|
||||
# If true, do not generate a @detailmenu in the "Top" node's menu.
|
||||
#texinfo_no_detailmenu = False
|
||||
autodoc_default_options = {
|
||||
'members': True,
|
||||
'undoc-members': True,
|
||||
'private-members': True,
|
||||
'show-inheritance': True,
|
||||
}
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
.. include:: ../CONTRIBUTING.rst
|
||||
228
docs/excel.rst
Normal file
228
docs/excel.rst
Normal file
@@ -0,0 +1,228 @@
|
||||
Excel (XLS, XLSX) input files
|
||||
=============================
|
||||
|
||||
``gnpy-transmission-example`` gives the possibility to use an excel input file instead of a json file. The program then will generate the corresponding json file for you.
|
||||
|
||||
The file named 'meshTopologyExampleV2.xls' is an example.
|
||||
|
||||
In order to work the excel file MUST contain at least 2 sheets:
|
||||
|
||||
- Nodes
|
||||
- Links
|
||||
|
||||
(In progress) The File MAY contain an additional sheet:
|
||||
|
||||
- Eqt
|
||||
- Service
|
||||
|
||||
.. _excel-nodes-sheet:
|
||||
|
||||
Nodes sheet
|
||||
-----------
|
||||
|
||||
Nodes sheet contains nine columns.
|
||||
Each line represents a 'node' (ROADM site or an in line amplifier site ILA or a Fused)::
|
||||
|
||||
City (Mandatory) ; State ; Country ; Region ; Latitude ; Longitude ; Type
|
||||
|
||||
- **City** is used for the name of a node of the graph. It accepts letters, numbers,underscore,dash, blank... (not exhaustive). The user may want to avoid commas for future CSV exports.
|
||||
|
||||
**City name MUST be unique**
|
||||
|
||||
- **Type** is not mandatory.
|
||||
|
||||
- If not filled, it will be interpreted as an 'ILA' site if node degree is 2 and as a ROADM otherwise.
|
||||
- If filled, it can take "ROADM", "FUSED" or "ILA" values. If another string is used, it will be considered as not filled. FUSED means that ingress and egress spans will be fused together.
|
||||
|
||||
- *State*, *Country*, *Region* are not mandatory.
|
||||
"Region" is a holdover from the CORONET topology reference file `CORONET_Global_Topology.xlsx <gnpy/example-data/CORONET_Global_Topology.xlsx>`_. CORONET separates its network into geographical regions (Europe, Asia, Continental US.) This information is not used by gnpy.
|
||||
|
||||
- *Longitude*, *Latitude* are not mandatory. If filled they should contain numbers.
|
||||
|
||||
- **Booster_restriction** and **Preamp_restriction** are not mandatory.
|
||||
If used, they must contain one or several amplifier type_variety names separated by ' | '. This information is used to restrict types of amplifiers used in a ROADM node during autodesign. If a ROADM booster or preamp is already specified in the Eqpt sheet , the field is ignored. The field is also ignored if the node is not a ROADM node.
|
||||
|
||||
**There MUST NOT be empty line(s) between two nodes lines**
|
||||
|
||||
|
||||
.. _excel-links-sheet:
|
||||
|
||||
Links sheet
|
||||
-----------
|
||||
|
||||
Links sheet must contain sixteen columns::
|
||||
|
||||
<-- east cable from a to z --> <-- west from z to -->
|
||||
NodeA ; NodeZ ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ; Cable Id ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ; Cable Id
|
||||
|
||||
|
||||
Links sheets MUST contain all links between nodes defined in Nodes sheet.
|
||||
Each line represents a 'bidir link' between two nodes. The two directions are represented on a single line with "east cable from a to z" fields and "west from z to a" fields. Values for 'a to z' may be different from values from 'z to a'.
|
||||
Since both direction of a bidir 'a-z' link are described on the same line (east and west), 'z to a' direction MUST NOT be repeated in a different line. If repeated, it will generate another parrallel bidir link between the same end nodes.
|
||||
|
||||
|
||||
Parameters for "east cable from a to z" and "west from z to a" are detailed in 2x7 columns. If not filled, "west from z to a" is copied from "east cable from a to z".
|
||||
|
||||
For example, a line filled with::
|
||||
|
||||
node6 ; node3 ; 80 ; SSMF ; 0.2 ; 0.5 ; 0.5 ; 0.1 ; cableB ; ; ; 0.21 ; 0.2 ; ; ;
|
||||
|
||||
will generate a unidir fiber span from node6 to node3 with::
|
||||
|
||||
[node6 node3 80 SSMF 0.2 0.5 0.5 0.1 cableB]
|
||||
|
||||
and a fiber span from node3 to node6::
|
||||
|
||||
[node6 node3 80 SSMF 0.21 0.2 0.5 0.1 cableB] attributes.
|
||||
|
||||
- **NodeA** and **NodeZ** are Mandatory.
|
||||
They are the two endpoints of the link. They MUST contain a node name from the **City** names listed in Nodes sheet.
|
||||
|
||||
- **Distance km** is not mandatory.
|
||||
It is the link length.
|
||||
|
||||
- If filled it MUST contain numbers. If empty it is replaced by a default "80" km value.
|
||||
- If value is below 150 km, it is considered as a single (bidirectional) fiber span.
|
||||
- If value is over 150 km the `gnpy-transmission-example`` program will automatically suppose that intermediate span description are required and will generate fiber spans elements with "_1","_2", ... trailing strings which are not visible in the json output. The reason for the splitting is that current edfa usually do not support large span loss. The current assumption is that links larger than 150km will require intermediate amplification. This value will be revisited when Raman amplification is added”
|
||||
|
||||
- **Fiber type** is not mandatory.
|
||||
|
||||
If filled it must contain types listed in `eqpt_config.json <gnpy/example-data/eqpt_config.json>`_ in "Fiber" list "type_variety".
|
||||
If not filled it takes "SSMF" as default value.
|
||||
|
||||
- **Lineic att** is not mandatory.
|
||||
|
||||
It is the lineic attenuation expressed in dB/km.
|
||||
If filled it must contain positive numbers.
|
||||
If not filled it takes "0.2" dB/km value
|
||||
|
||||
- *Con_in*, *Con_out* are not mandatory.
|
||||
|
||||
They are the connector loss in dB at ingress and egress of the fiber spans.
|
||||
If filled they must contain positive numbers.
|
||||
If not filled they take "0.5" dB default value.
|
||||
|
||||
- *PMD* is not mandatory and and is not used yet.
|
||||
|
||||
It is the PMD value of the link in ps.
|
||||
If filled they must contain positive numbers.
|
||||
If not filled, it takes "0.1" ps value.
|
||||
|
||||
- *Cable Id* is not mandatory.
|
||||
If filled they must contain strings with the same constraint as "City" names. Its value is used to differenate links having the same end points. In this case different Id should be used. Cable Ids are not meant to be unique in general.
|
||||
|
||||
|
||||
|
||||
|
||||
(in progress)
|
||||
|
||||
.. _excel-equipment-sheet:
|
||||
|
||||
Eqpt sheet
|
||||
----------
|
||||
|
||||
Eqt sheet is optional. It lists the amplifiers types and characteristics on each degree of the *Node A* line.
|
||||
Eqpt sheet must contain twelve columns::
|
||||
|
||||
<-- east cable from a to z --> <-- west from z to a -->
|
||||
Node A ; Node Z ; amp type ; att_in ; amp gain ; tilt ; att_out ; delta_p ; amp type ; att_in ; amp gain ; tilt ; att_out ; delta_p
|
||||
|
||||
If the sheet is present, it MUST have as many lines as egress directions of ROADMs defined in Links Sheet.
|
||||
|
||||
For example, consider the following list of links (A,B and C being a ROADM and amp# ILAs)
|
||||
|
||||
::
|
||||
|
||||
A - amp1
|
||||
amp1 - amp2
|
||||
Amp2 - B
|
||||
A - amp3
|
||||
amp3 - C
|
||||
|
||||
then Eqpt sheet should contain:
|
||||
- one line for each ILAs: amp1, amp2, amp3
|
||||
- one line for each degree 1 ROADMs B and C
|
||||
- two lines for ROADM A which is a degree 2 ROADM
|
||||
|
||||
::
|
||||
|
||||
A - amp1
|
||||
amp1 - amp2
|
||||
Amp2 - B
|
||||
A - amp3
|
||||
amp3 - C
|
||||
B - amp2
|
||||
C - amp3
|
||||
|
||||
|
||||
In case you already have filled Nodes and Links sheets `create_eqpt_sheet.py <gnpy/example-data/create_eqpt_sheet.py>`_ can be used to automatically create a template for the mandatory entries of the list.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
$ cd $(gnpy-example-data)
|
||||
$ python create_eqpt_sheet.py meshTopologyExampleV2.xls
|
||||
|
||||
This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content can be directly copied into the Eqt sheet of the excel file. The user then can fill the values in the rest of the columns.
|
||||
|
||||
|
||||
- **Node A** is mandatory. It is the name of the node (as listed in Nodes sheet).
|
||||
If Node A is a 'ROADM' (Type attribute in sheet Node), its number of occurence must be equal to its degree.
|
||||
If Node A is an 'ILA' it should appear only once.
|
||||
|
||||
- **Node Z** is mandatory. It is the egress direction from the *Node A* site. Multiple Links between the same Node A and NodeZ is not supported.
|
||||
|
||||
- **amp type** is not mandatory.
|
||||
If filled it must contain types listed in `eqpt_config.json <gnpy/example-data/eqpt_config.json>`_ in "Edfa" list "type_variety".
|
||||
If not filled it takes "std_medium_gain" as default value.
|
||||
If filled with fused, a fused element with 0.0 dB loss will be placed instead of an amplifier. This might be used to avoid booster amplifier on a ROADM direction.
|
||||
|
||||
- **amp_gain** is not mandatory. It is the value to be set on the amplifier (in dB).
|
||||
If not filled, it will be determined with design rules in the convert.py file.
|
||||
If filled, it must contain positive numbers.
|
||||
|
||||
- *att_in* and *att_out* are not mandatory and are not used yet. They are the value of the attenuator at input and output of amplifier (in dB).
|
||||
If filled they must contain positive numbers.
|
||||
|
||||
- *tilt* --TODO--
|
||||
|
||||
- **delta_p**, in dBm, is not mandatory. If filled it is used to set the output target power per channel at the output of the amplifier, if power_mode is True. The output power is then set to power_dbm + delta_power.
|
||||
|
||||
# to be completed #
|
||||
|
||||
(in progress)
|
||||
|
||||
.. _excel-service-sheet:
|
||||
|
||||
Service sheet
|
||||
-------------
|
||||
|
||||
Service sheet is optional. It lists the services for which path and feasibility must be computed with ``gnpy-path_request``.
|
||||
|
||||
Service sheet must contain 11 columns::
|
||||
|
||||
route id ; Source ; Destination ; TRX type ; Mode ; System: spacing ; System: input power (dBm) ; System: nb of channels ; routing: disjoint from ; routing: path ; routing: is loose?
|
||||
|
||||
- **route id** is mandatory. It must be unique. It is the identifier of the request. It can be an integer or a string (do not use blank or dash or coma)
|
||||
|
||||
- **Source** is mandatory. It is the name of the source node (as listed in Nodes sheet). Source MUST be a ROADM node. (TODO: relax this and accept trx entries)
|
||||
|
||||
- **Destination** is mandatory. It is the name of the destination node (as listed in Nodes sheet). Source MUST be a ROADM node. (TODO: relax this and accept trx entries)
|
||||
|
||||
- **TRX type** is mandatory. They are the variety type and selected mode of the transceiver to be used for the propagation simulation. These modes MUST be defined in the equipment library. The format of the mode is used as the name of the mode. (TODO: maybe add another mode id on Transceiver library ?). In particular the mode selection defines the channel baudrate to be used for the propagation simulation.
|
||||
|
||||
- **mode** is optional. If not specified, the program will search for the mode of the defined transponder with the highest baudrate fitting within the spacing value.
|
||||
|
||||
- **System: spacing** is mandatory. Spacing is the channel spacing defined in GHz difined for the feasibility propagation simulation, assuming system full load.
|
||||
|
||||
- **System: input power (dBm) ; System: nb of channels** are optional input defining the system parameters for the propagation simulation.
|
||||
|
||||
- input power is the channel optical input power in dBm
|
||||
- nb of channels is the number of channels to be used for the simulation.
|
||||
|
||||
- **routing: disjoint from ; routing: path ; routing: is loose?** are optional.
|
||||
|
||||
- disjoint from: identifies the requests from which this request must be disjoint. If filled it must contain request ids separated by ' | '
|
||||
- path: is the set of ROADM nodes that must be used by the path. It must contain the list of ROADM names that the path must cross. TODO : only ROADM nodes are accepted in this release. Relax this with any type of nodes. If filled it must contain ROADM ids separated by ' | '. Exact names are required.
|
||||
- is loose? 'no' value means that the list of nodes should be strictly followed, while any other value means that the constraint may be relaxed if the node is not reachable.
|
||||
|
||||
- **path bandwidth** is mandatory. It is the amount of capacity required between source and destination in Gbit/s. Value should be positive (non zero). It is used to compute the amount of required spectrum for the service.
|
||||
13
docs/gnpy-api-core.rst
Normal file
13
docs/gnpy-api-core.rst
Normal file
@@ -0,0 +1,13 @@
|
||||
``gnpy.core``
|
||||
-------------
|
||||
|
||||
.. automodule:: gnpy.core
|
||||
.. automodule:: gnpy.core.ansi_escapes
|
||||
.. automodule:: gnpy.core.elements
|
||||
.. automodule:: gnpy.core.equipment
|
||||
.. automodule:: gnpy.core.exceptions
|
||||
.. automodule:: gnpy.core.info
|
||||
.. automodule:: gnpy.core.network
|
||||
.. automodule:: gnpy.core.parameters
|
||||
.. automodule:: gnpy.core.science_utils
|
||||
.. automodule:: gnpy.core.utils
|
||||
9
docs/gnpy-api-tools.rst
Normal file
9
docs/gnpy-api-tools.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
``gnpy.tools``
|
||||
--------------
|
||||
|
||||
.. automodule:: gnpy.tools
|
||||
.. automodule:: gnpy.tools.cli_examples
|
||||
.. automodule:: gnpy.tools.convert
|
||||
.. automodule:: gnpy.tools.json_io
|
||||
.. automodule:: gnpy.tools.plots
|
||||
.. automodule:: gnpy.tools.service_sheet
|
||||
6
docs/gnpy-api-topology.rst
Normal file
6
docs/gnpy-api-topology.rst
Normal file
@@ -0,0 +1,6 @@
|
||||
``gnpy.topology``
|
||||
-----------------
|
||||
|
||||
.. automodule:: gnpy.topology
|
||||
.. automodule:: gnpy.topology.request
|
||||
.. automodule:: gnpy.topology.spectrum_assignment
|
||||
14
docs/gnpy-api.rst
Normal file
14
docs/gnpy-api.rst
Normal file
@@ -0,0 +1,14 @@
|
||||
***************************
|
||||
API Reference Documentation
|
||||
***************************
|
||||
|
||||
``gnpy`` package
|
||||
================
|
||||
|
||||
.. automodule:: gnpy
|
||||
|
||||
.. toctree::
|
||||
|
||||
gnpy-api-core
|
||||
gnpy-api-topology
|
||||
gnpy-api-tools
|
||||
@@ -1 +0,0 @@
|
||||
.. include:: ../HISTORY.rst
|
||||
BIN
docs/images/GNPy-banner.png
Normal file
BIN
docs/images/GNPy-banner.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 518 KiB |
BIN
docs/images/GNPy-logo.png
Normal file
BIN
docs/images/GNPy-logo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 20 KiB |
@@ -1,18 +1,18 @@
|
||||
Welcome to gnpy's documentation!
|
||||
======================================
|
||||
GNPy: Optical Route Planning Library
|
||||
=====================================================================
|
||||
|
||||
Contents:
|
||||
`GNPy <http://github.com/telecominfraproject/gnpy>`_ is an open-source,
|
||||
community-developed library for building route planning and optimization tools
|
||||
in real-world mesh optical networks. It is based on the Gaussian Noise Model.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:maxdepth: 4
|
||||
|
||||
readme
|
||||
installation
|
||||
usage
|
||||
modules
|
||||
contributing
|
||||
authors
|
||||
history
|
||||
install
|
||||
json
|
||||
excel
|
||||
model
|
||||
gnpy-api
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
@@ -20,3 +20,4 @@ Indices and tables
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
|
||||
|
||||
111
docs/install.rst
Normal file
111
docs/install.rst
Normal file
@@ -0,0 +1,111 @@
|
||||
Installing GNPy
|
||||
---------------
|
||||
|
||||
There are several methods on how to obtain GNPy.
|
||||
The easiest option for a non-developer is probably going via our :ref:`Docker images<install-docker>`.
|
||||
Developers are encouraged to install the :ref:`Python package in the same way as any other Python package<install-pip>`.
|
||||
Note that this needs a :ref:`working installation of Python<install-python>`, for example :ref:`via Anaconda<install-anaconda>`.
|
||||
|
||||
.. _install-docker:
|
||||
|
||||
Using prebuilt Docker images
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Our `Docker images <https://hub.docker.com/r/telecominfraproject/oopt-gnpy>`_ contain everything needed to run all examples from this guide.
|
||||
Docker transparently fetches the image over the network upon first use.
|
||||
On Linux and Mac, run:
|
||||
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy
|
||||
root@bea050f186f7:/shared/example-data#
|
||||
|
||||
On Windows, launch from Powershell as:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
PS C:\> docker run -it --rm --volume ${PWD}:/shared telecominfraproject/oopt-gnpy
|
||||
root@89784e577d44:/shared/example-data#
|
||||
|
||||
In both cases, a directory named ``example-data/`` will appear in your current working directory.
|
||||
GNPy automaticallly populates it with example files from the current release.
|
||||
Remove that directory if you want to start from scratch.
|
||||
|
||||
.. _install-python:
|
||||
|
||||
Using Python on your computer
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**Note**: `gnpy` supports Python 3 only. Python 2 is not supported.
|
||||
`gnpy` requires Python ≥3.6
|
||||
|
||||
**Note**: the `gnpy` maintainers strongly recommend the use of Anaconda for
|
||||
managing dependencies.
|
||||
|
||||
It is recommended that you use a "virtual environment" when installing `gnpy`.
|
||||
Do not install `gnpy` on your system Python.
|
||||
|
||||
.. _install-anaconda:
|
||||
|
||||
We recommend the use of the `Anaconda Python distribution <https://www.anaconda.com/download>`_ which comes with many scientific computing
|
||||
dependencies pre-installed. Anaconda creates a base "virtual environment" for
|
||||
you automatically. You can also create and manage your ``conda`` "virtual
|
||||
environments" yourself (see:
|
||||
https://conda.io/docs/user-guide/tasks/manage-environments.html)
|
||||
|
||||
To activate your Anaconda virtual environment, you may need to do the
|
||||
following:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ source /path/to/anaconda/bin/activate # activate Anaconda base environment
|
||||
(base) $ # note the change to the prompt
|
||||
|
||||
You can check which Anaconda environment you are using with:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
(base) $ conda env list # list all environments
|
||||
# conda environments:
|
||||
#
|
||||
base * /src/install/anaconda3
|
||||
|
||||
(base) $ echo $CONDA_DEFAULT_ENV # show default environment
|
||||
base
|
||||
|
||||
You can check your version of Python with the following. If you are using
|
||||
Anaconda's Python 3, you should see similar output as below. Your results may
|
||||
be slightly different depending on your Anaconda installation path and the
|
||||
exact version of Python you are using.
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ which python # check which Python executable is used
|
||||
/path/to/anaconda/bin/python
|
||||
$ python -V # check your Python version
|
||||
Python 3.6.5 :: Anaconda, Inc.
|
||||
|
||||
.. _install-pip:
|
||||
|
||||
Installing the Python package
|
||||
*****************************
|
||||
|
||||
From within your Anaconda Python 3 environment, you can clone the master branch
|
||||
of the `gnpy` repo and install it with:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ git clone https://github.com/Telecominfraproject/oopt-gnpy # clone the repo
|
||||
$ cd oopt-gnpy
|
||||
$ python setup.py develop
|
||||
|
||||
To test that `gnpy` was successfully installed, you can run this command. If it
|
||||
executes without a ``ModuleNotFoundError``, you have successfully installed
|
||||
`gnpy`.
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
$ python -c 'import gnpy' # attempt to import gnpy
|
||||
|
||||
$ pytest # run tests
|
||||
@@ -1,51 +0,0 @@
|
||||
.. highlight:: shell
|
||||
|
||||
============
|
||||
Installation
|
||||
============
|
||||
|
||||
|
||||
Stable release
|
||||
--------------
|
||||
|
||||
To install gnpy, run this command in your terminal:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install gnpy
|
||||
|
||||
This is the preferred method to install gnpy, as it will always install the most recent stable release.
|
||||
|
||||
If you don't have `pip`_ installed, this `Python installation guide`_ can guide
|
||||
you through the process.
|
||||
|
||||
.. _pip: https://pip.pypa.io
|
||||
.. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/
|
||||
|
||||
|
||||
From sources
|
||||
------------
|
||||
|
||||
The sources for gnpy can be downloaded from the `Github repo`_.
|
||||
|
||||
You can either clone the public repository:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ git clone git://github.com/<TBD>/gnpy
|
||||
|
||||
Or download the `tarball`_:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ curl -OL https://github.com/<TBD>/gnpy/tarball/master
|
||||
|
||||
Once you have a copy of the source, you can install it with:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ python setup.py install
|
||||
|
||||
|
||||
.. _Github repo: https://github.com/<TBD>/gnpy
|
||||
.. _tarball: https://github.com/<TBD>/gnpy/tarball/master
|
||||
339
docs/json.rst
Normal file
339
docs/json.rst
Normal file
@@ -0,0 +1,339 @@
|
||||
JSON Input Files
|
||||
================
|
||||
|
||||
GNPy uses a set of JSON files for modeling the network.
|
||||
Some data (such as network topology or the service requests) can be also passed via :ref:`XLS files<excel-service-sheet>`.
|
||||
|
||||
Equipment Library
|
||||
-----------------
|
||||
|
||||
Design and transmission parameters are defined in a dedicated json file. By
|
||||
default, this information is read from `gnpy/example-data/eqpt_config.json
|
||||
<gnpy/example-data/eqpt_config.json>`_. This file defines the equipment libraries that
|
||||
can be customized (EDFAs, fibers, and transceivers).
|
||||
|
||||
It also defines the simulation parameters (spans, ROADMs, and the spectral
|
||||
information to transmit.)
|
||||
|
||||
EDFA
|
||||
~~~~
|
||||
|
||||
The EDFA equipment library is a list of supported amplifiers. New amplifiers
|
||||
can be added and existing ones removed. Three different noise models are available:
|
||||
|
||||
1. ``'type_def': 'variable_gain'`` is a simplified model simulating a 2-coil EDFA with internal, input and output VOAs. The NF vs gain response is calculated accordingly based on the input parameters: ``nf_min``, ``nf_max``, and ``gain_flatmax``. It is not a simple interpolation but a 2-stage NF calculation.
|
||||
2. ``'type_def': 'fixed_gain'`` is a fixed gain model. `NF == Cte == nf0` if `gain_min < gain < gain_flatmax`
|
||||
3. ``'type_def': None`` is an advanced model. A detailed JSON configuration file is required (by default `gnpy/example-data/std_medium_gain_advanced_config.json <gnpy/example-data/std_medium_gain_advanced_config.json>`_). It uses a 3rd order polynomial where NF = f(gain), NF_ripple = f(frequency), gain_ripple = f(frequency), N-array dgt = f(frequency). Compared to the previous models, NF ripple and gain ripple are modelled.
|
||||
|
||||
For all amplifier models:
|
||||
|
||||
+------------------------+-----------+-----------------------------------------+
|
||||
| field | type | description |
|
||||
+========================+===========+=========================================+
|
||||
| ``type_variety`` | (string) | a unique name to ID the amplifier in the|
|
||||
| | | JSON/Excel template topology input file |
|
||||
+------------------------+-----------+-----------------------------------------+
|
||||
| ``out_voa_auto`` | (boolean) | auto_design feature to optimize the |
|
||||
| | | amplifier output VOA. If true, output |
|
||||
| | | VOA is present and will be used to push |
|
||||
| | | amplifier gain to its maximum, within |
|
||||
| | | EOL power margins. |
|
||||
+------------------------+-----------+-----------------------------------------+
|
||||
| ``allowed_for_design`` | (boolean) | If false, the amplifier will not be |
|
||||
| | | picked by auto-design but it can still |
|
||||
| | | be used as a manual input (from JSON or |
|
||||
| | | Excel template topology files.) |
|
||||
+------------------------+-----------+-----------------------------------------+
|
||||
|
||||
Fiber
|
||||
~~~~~
|
||||
|
||||
The fiber library currently describes SSMF and NZDF but additional fiber types can be entered by the user following the same model:
|
||||
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| field | type | description |
|
||||
+======================+===========+=========================================+
|
||||
| ``type_variety`` | (string) | a unique name to ID the fiber in the |
|
||||
| | | JSON or Excel template topology input |
|
||||
| | | file |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``dispersion`` | (number) | (s.m-1.m-1) |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``dispersion_slope`` | (number) | (s.m-1.m-1.m-1) |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``gamma`` | (number) | 2pi.n2/(lambda*Aeff) (w-1.m-1) |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``pmd_coef`` | (number) | Polarization mode dispersion (PMD) |
|
||||
| | | coefficient. (s.sqrt(m)-1) |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
|
||||
Transceiver
|
||||
~~~~~~~~~~~
|
||||
|
||||
The transceiver equipment library is a list of supported transceivers. New
|
||||
transceivers can be added and existing ones removed at will by the user. It is
|
||||
used to determine the service list path feasibility when running the
|
||||
`path_request_run.py routine <gnpy/example-data/path_request_run.py>`_.
|
||||
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| field | type | description |
|
||||
+======================+===========+=========================================+
|
||||
| ``type_variety`` | (string) | A unique name to ID the transceiver in |
|
||||
| | | the JSON or Excel template topology |
|
||||
| | | input file |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``frequency`` | (number) | Min/max as below. |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``mode`` | (number) | A list of modes supported by the |
|
||||
| | | transponder. New modes can be added at |
|
||||
| | | will by the user. The modes are specific|
|
||||
| | | to each transponder type_variety. |
|
||||
| | | Each mode is described as below. |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
|
||||
The modes are defined as follows:
|
||||
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| field | type | description |
|
||||
+======================+===========+=========================================+
|
||||
| ``format`` | (string) | a unique name to ID the mode |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``baud_rate`` | (number) | in Hz |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``OSNR`` | (number) | min required OSNR in 0.1nm (dB) |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``bit_rate`` | (number) | in bit/s |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``roll_off`` | (number) | Pure number between 0 and 1. TX signal |
|
||||
| | | roll-off shape. Used by Raman-aware |
|
||||
| | | simulation code. |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``tx_osnr`` | (number) | In dB. OSNR out from transponder. |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
| ``cost`` | (number) | Arbitrary unit |
|
||||
+----------------------+-----------+-----------------------------------------+
|
||||
|
||||
Simulation parameters
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Auto-design automatically creates EDFA amplifier network elements when they are
|
||||
missing, after a fiber, or between a ROADM and a fiber. This auto-design
|
||||
functionality can be manually and locally deactivated by introducing a ``Fused``
|
||||
network element after a ``Fiber`` or a ``Roadm`` that doesn't need amplification.
|
||||
The amplifier is chosen in the EDFA list of the equipment library based on
|
||||
gain, power, and NF criteria. Only the EDFA that are marked
|
||||
``'allowed_for_design': true`` are considered.
|
||||
|
||||
For amplifiers defined in the topology JSON input but whose ``gain = 0``
|
||||
(placeholder), auto-design will set its gain automatically: see ``power_mode`` in
|
||||
the ``Spans`` library to find out how the gain is calculated.
|
||||
|
||||
Span
|
||||
~~~~
|
||||
|
||||
Span configuration is not a list (which may change
|
||||
in later releases) and the user can only modify the value of existing
|
||||
parameters:
|
||||
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| field | type | description |
|
||||
+=====================================+===========+=============================================+
|
||||
| ``power_mode`` | (boolean) | If false, gain mode. Auto-design sets |
|
||||
| | | amplifier gain = preceding span loss, |
|
||||
| | | unless the amplifier exists and its |
|
||||
| | | gain > 0 in the topology input JSON. |
|
||||
| | | If true, power mode (recommended for |
|
||||
| | | auto-design and power sweep.) |
|
||||
| | | Auto-design sets amplifier power |
|
||||
| | | according to delta_power_range. If the |
|
||||
| | | amplifier exists with gain > 0 in the |
|
||||
| | | topology JSON input, then its gain is |
|
||||
| | | translated into a power target/channel. |
|
||||
| | | Moreover, when performing a power sweep |
|
||||
| | | (see ``power_range_db`` in the SI |
|
||||
| | | configuration library) the power sweep |
|
||||
| | | is performed w/r/t this power target, |
|
||||
| | | regardless of preceding amplifiers |
|
||||
| | | power saturation/limitations. |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``delta_power_range_db`` | (number) | Auto-design only, power-mode |
|
||||
| | | only. Specifies the [min, max, step] |
|
||||
| | | power excursion/span. It is a relative |
|
||||
| | | power excursion w/r/t the |
|
||||
| | | power_dbm + power_range_db |
|
||||
| | | (power sweep if applicable) defined in |
|
||||
| | | the SI configuration library. This |
|
||||
| | | relative power excursion is = 1/3 of |
|
||||
| | | the span loss difference with the |
|
||||
| | | reference 20 dB span. The 1/3 slope is |
|
||||
| | | derived from the GN model equations. |
|
||||
| | | For example, a 23 dB span loss will be |
|
||||
| | | set to 1 dB more power than a 20 dB |
|
||||
| | | span loss. The 20 dB reference spans |
|
||||
| | | will *always* be set to |
|
||||
| | | power = power_dbm + power_range_db. |
|
||||
| | | To configure the same power in all |
|
||||
| | | spans, use `[0, 0, 0]`. All spans will |
|
||||
| | | be set to |
|
||||
| | | power = power_dbm + power_range_db. |
|
||||
| | | To configure the same power in all spans |
|
||||
| | | and 3 dB more power just for the longest |
|
||||
| | | spans: `[0, 3, 3]`. The longest spans are |
|
||||
| | | set to |
|
||||
| | | power = power_dbm + power_range_db + 3. |
|
||||
| | | To configure a 4 dB power range across |
|
||||
| | | all spans in 0.5 dB steps: `[-2, 2, 0.5]`. |
|
||||
| | | A 17 dB span is set to |
|
||||
| | | power = power_dbm + power_range_db - 1, |
|
||||
| | | a 20 dB span to |
|
||||
| | | power = power_dbm + power_range_db and |
|
||||
| | | a 23 dB span to |
|
||||
| | | power = power_dbm + power_range_db + 1 |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``max_fiber_lineic_loss_for_raman`` | (number) | Maximum linear fiber loss for Raman |
|
||||
| | | amplification use. |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``max_length`` | (number) | Split fiber lengths > max_length. |
|
||||
| | | Interest to support high level |
|
||||
| | | topologies that do not specify in line |
|
||||
| | | amplification sites. For example the |
|
||||
| | | CORONET_Global_Topology.xlsx defines |
|
||||
| | | links > 1000km between 2 sites: it |
|
||||
| | | couldn't be simulated if these links |
|
||||
| | | were not split in shorter span lengths. |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``length_unit`` | "m"/"km" | Unit for ``max_length``. |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``max_loss`` | (number) | Not used in the current code |
|
||||
| | | implementation. |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``padding`` | (number) | In dB. Min span loss before putting an |
|
||||
| | | attenuator before fiber. Attenuator |
|
||||
| | | value |
|
||||
| | | Fiber.att_in = max(0, padding - span_loss). |
|
||||
| | | Padding can be set manually to reach a |
|
||||
| | | higher padding value for a given fiber |
|
||||
| | | by filling in the Fiber/params/att_in |
|
||||
| | | field in the topology json input [1] |
|
||||
| | | but if span_loss = length * loss_coef |
|
||||
| | | + att_in + con_in + con_out < padding, |
|
||||
| | | the specified att_in value will be |
|
||||
| | | completed to have span_loss = padding. |
|
||||
| | | Therefore it is not possible to set |
|
||||
| | | span_loss < padding. |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``EOL`` | (number) | All fiber span loss ageing. The value |
|
||||
| | | is added to the con_out (fiber output |
|
||||
| | | connector). So the design and the path |
|
||||
| | | feasibility are performed with |
|
||||
| | | span_loss + EOL. EOL cannot be set |
|
||||
| | | manually for a given fiber span |
|
||||
| | | (workaround is to specify higher |
|
||||
| | | ``con_out`` loss for this fiber). |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
| ``con_in``, | (number) | Default values if Fiber/params/con_in/out |
|
||||
| ``con_out`` | | is None in the topology input |
|
||||
| | | description. This default value is |
|
||||
| | | ignored if a Fiber/params/con_in/out |
|
||||
| | | value is input in the topology for a |
|
||||
| | | given Fiber. |
|
||||
+-------------------------------------+-----------+---------------------------------------------+
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"uid": "fiber (A1->A2)",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params":
|
||||
{
|
||||
"length": 120.0,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
}
|
||||
|
||||
ROADM
|
||||
~~~~~
|
||||
|
||||
The user can only modify the value of existing parameters:
|
||||
|
||||
+--------------------------+-----------+---------------------------------------------+
|
||||
| field | type | description |
|
||||
+==========================+===========+=============================================+
|
||||
| ``target_pch_out_db`` | (number) | Auto-design sets the ROADM egress channel |
|
||||
| | | power. This reflects typical control loop |
|
||||
| | | algorithms that adjust ROADM losses to |
|
||||
| | | equalize channels (eg coming from different |
|
||||
| | | ingress direction or add ports) |
|
||||
| | | This is the default value |
|
||||
| | | Roadm/params/target_pch_out_db if no value |
|
||||
| | | is given in the ``Roadm`` element in the |
|
||||
| | | topology input description. |
|
||||
| | | This default value is ignored if a |
|
||||
| | | params/target_pch_out_db value is input in |
|
||||
| | | the topology for a given ROADM. |
|
||||
+--------------------------+-----------+---------------------------------------------+
|
||||
| ``add_drop_osnr`` | (number) | OSNR contribution from the add/drop ports |
|
||||
+--------------------------+-----------+---------------------------------------------+
|
||||
| ``pmd`` | (number) | Polarization mode dispersion (PMD). (s) |
|
||||
+--------------------------+-----------+---------------------------------------------+
|
||||
| ``restrictions`` | (dict of | If non-empty, keys ``preamp_variety_list`` |
|
||||
| | strings) | and ``booster_variety_list`` represent |
|
||||
| | | list of ``type_variety`` amplifiers which |
|
||||
| | | are allowed for auto-design within ROADM's |
|
||||
| | | line degrees. |
|
||||
| | | |
|
||||
| | | If no booster should be placed on a degree, |
|
||||
| | | insert a ``Fused`` node on the degree |
|
||||
| | | output. |
|
||||
+--------------------------+-----------+---------------------------------------------+
|
||||
|
||||
SpectralInformation
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The user can only modify the value of existing parameters. It defines a spectrum of N
|
||||
identical carriers. While the code libraries allow for different carriers and
|
||||
power levels, the current user parametrization only allows one carrier type and
|
||||
one power/channel definition.
|
||||
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| field | type | description |
|
||||
+======================+===========+===========================================+
|
||||
| ``f_min``, | (number) | In Hz. Carrier min max excursion. |
|
||||
| ``f_max`` | | |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| ``baud_rate`` | (number) | In Hz. Simulated baud rate. |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| ``spacing`` | (number) | In Hz. Carrier spacing. |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| ``roll_off`` | (number) | Pure number between 0 and 1. TX signal |
|
||||
| | | roll-off shape. Used by Raman-aware |
|
||||
| | | simulation code. |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| ``tx_osnr`` | (number) | In dB. OSNR out from transponder. |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| ``power_dbm`` | (number) | Reference channel power. In gain mode |
|
||||
| | | (see spans/power_mode = false), all gain |
|
||||
| | | settings are offset w/r/t this reference |
|
||||
| | | power. In power mode, it is the |
|
||||
| | | reference power for |
|
||||
| | | Spans/delta_power_range_db. For example, |
|
||||
| | | if delta_power_range_db = `[0,0,0]`, the |
|
||||
| | | same power=power_dbm is launched in every |
|
||||
| | | spans. The network design is performed |
|
||||
| | | with the power_dbm value: even if a |
|
||||
| | | power sweep is defined (see after) the |
|
||||
| | | design is not repeated. |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| ``power_range_db`` | (number) | Power sweep excursion around power_dbm. |
|
||||
| | | It is not the min and max channel power |
|
||||
| | | values! The reference power becomes: |
|
||||
| | | power_range_db + power_dbm. |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
| ``sys_margins`` | (number) | In dB. Added margin on min required |
|
||||
| | | transceiver OSNR. |
|
||||
+----------------------+-----------+-------------------------------------------+
|
||||
278
docs/make.bat
278
docs/make.bat
@@ -1,242 +1,36 @@
|
||||
@ECHO OFF
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set BUILDDIR=_build
|
||||
set ALLSPHINXOPTS=-d %BUILDDIR%/doctrees %SPHINXOPTS% .
|
||||
set I18NSPHINXOPTS=%SPHINXOPTS% .
|
||||
if NOT "%PAPER%" == "" (
|
||||
set ALLSPHINXOPTS=-D latex_paper_size=%PAPER% %ALLSPHINXOPTS%
|
||||
set I18NSPHINXOPTS=-D latex_paper_size=%PAPER% %I18NSPHINXOPTS%
|
||||
)
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
if "%1" == "help" (
|
||||
:help
|
||||
echo.Please use `make ^<target^>` where ^<target^> is one of
|
||||
echo. html to make standalone HTML files
|
||||
echo. dirhtml to make HTML files named index.html in directories
|
||||
echo. singlehtml to make a single large HTML file
|
||||
echo. pickle to make pickle files
|
||||
echo. json to make JSON files
|
||||
echo. htmlhelp to make HTML files and a HTML help project
|
||||
echo. qthelp to make HTML files and a qthelp project
|
||||
echo. devhelp to make HTML files and a Devhelp project
|
||||
echo. epub to make an epub
|
||||
echo. latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
|
||||
echo. text to make text files
|
||||
echo. man to make manual pages
|
||||
echo. texinfo to make Texinfo files
|
||||
echo. gettext to make PO message catalogs
|
||||
echo. changes to make an overview over all changed/added/deprecated items
|
||||
echo. xml to make Docutils-native XML files
|
||||
echo. pseudoxml to make pseudoxml-XML files for display purposes
|
||||
echo. linkcheck to check all external links for integrity
|
||||
echo. doctest to run all doctests embedded in the documentation if enabled
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "clean" (
|
||||
for /d %%i in (%BUILDDIR%\*) do rmdir /q /s %%i
|
||||
del /q /s %BUILDDIR%\*
|
||||
goto end
|
||||
)
|
||||
|
||||
|
||||
%SPHINXBUILD% 2> nul
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.http://sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if "%1" == "html" (
|
||||
%SPHINXBUILD% -b html %ALLSPHINXOPTS% %BUILDDIR%/html
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The HTML pages are in %BUILDDIR%/html.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "dirhtml" (
|
||||
%SPHINXBUILD% -b dirhtml %ALLSPHINXOPTS% %BUILDDIR%/dirhtml
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The HTML pages are in %BUILDDIR%/dirhtml.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "singlehtml" (
|
||||
%SPHINXBUILD% -b singlehtml %ALLSPHINXOPTS% %BUILDDIR%/singlehtml
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The HTML pages are in %BUILDDIR%/singlehtml.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "pickle" (
|
||||
%SPHINXBUILD% -b pickle %ALLSPHINXOPTS% %BUILDDIR%/pickle
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished; now you can process the pickle files.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "json" (
|
||||
%SPHINXBUILD% -b json %ALLSPHINXOPTS% %BUILDDIR%/json
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished; now you can process the JSON files.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "htmlhelp" (
|
||||
%SPHINXBUILD% -b htmlhelp %ALLSPHINXOPTS% %BUILDDIR%/htmlhelp
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished; now you can run HTML Help Workshop with the ^
|
||||
.hhp project file in %BUILDDIR%/htmlhelp.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "qthelp" (
|
||||
%SPHINXBUILD% -b qthelp %ALLSPHINXOPTS% %BUILDDIR%/qthelp
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished; now you can run "qcollectiongenerator" with the ^
|
||||
.qhcp project file in %BUILDDIR%/qthelp, like this:
|
||||
echo.^> qcollectiongenerator %BUILDDIR%\qthelp\gnpy.qhcp
|
||||
echo.To view the help file:
|
||||
echo.^> assistant -collectionFile %BUILDDIR%\qthelp\gnpy.ghc
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "devhelp" (
|
||||
%SPHINXBUILD% -b devhelp %ALLSPHINXOPTS% %BUILDDIR%/devhelp
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "epub" (
|
||||
%SPHINXBUILD% -b epub %ALLSPHINXOPTS% %BUILDDIR%/epub
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The epub file is in %BUILDDIR%/epub.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "latex" (
|
||||
%SPHINXBUILD% -b latex %ALLSPHINXOPTS% %BUILDDIR%/latex
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished; the LaTeX files are in %BUILDDIR%/latex.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "latexpdf" (
|
||||
%SPHINXBUILD% -b latex %ALLSPHINXOPTS% %BUILDDIR%/latex
|
||||
cd %BUILDDIR%/latex
|
||||
make all-pdf
|
||||
cd %BUILDDIR%/..
|
||||
echo.
|
||||
echo.Build finished; the PDF files are in %BUILDDIR%/latex.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "latexpdfja" (
|
||||
%SPHINXBUILD% -b latex %ALLSPHINXOPTS% %BUILDDIR%/latex
|
||||
cd %BUILDDIR%/latex
|
||||
make all-pdf-ja
|
||||
cd %BUILDDIR%/..
|
||||
echo.
|
||||
echo.Build finished; the PDF files are in %BUILDDIR%/latex.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "text" (
|
||||
%SPHINXBUILD% -b text %ALLSPHINXOPTS% %BUILDDIR%/text
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The text files are in %BUILDDIR%/text.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "man" (
|
||||
%SPHINXBUILD% -b man %ALLSPHINXOPTS% %BUILDDIR%/man
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The manual pages are in %BUILDDIR%/man.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "texinfo" (
|
||||
%SPHINXBUILD% -b texinfo %ALLSPHINXOPTS% %BUILDDIR%/texinfo
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The Texinfo files are in %BUILDDIR%/texinfo.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "gettext" (
|
||||
%SPHINXBUILD% -b gettext %I18NSPHINXOPTS% %BUILDDIR%/locale
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The message catalogs are in %BUILDDIR%/locale.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "changes" (
|
||||
%SPHINXBUILD% -b changes %ALLSPHINXOPTS% %BUILDDIR%/changes
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.The overview file is in %BUILDDIR%/changes.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "linkcheck" (
|
||||
%SPHINXBUILD% -b linkcheck %ALLSPHINXOPTS% %BUILDDIR%/linkcheck
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Link check complete; look for any errors in the above output ^
|
||||
or in %BUILDDIR%/linkcheck/output.txt.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "doctest" (
|
||||
%SPHINXBUILD% -b doctest %ALLSPHINXOPTS% %BUILDDIR%/doctest
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Testing of doctests in the sources finished, look at the ^
|
||||
results in %BUILDDIR%/doctest/output.txt.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "xml" (
|
||||
%SPHINXBUILD% -b xml %ALLSPHINXOPTS% %BUILDDIR%/xml
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The XML files are in %BUILDDIR%/xml.
|
||||
goto end
|
||||
)
|
||||
|
||||
if "%1" == "pseudoxml" (
|
||||
%SPHINXBUILD% -b pseudoxml %ALLSPHINXOPTS% %BUILDDIR%/pseudoxml
|
||||
if errorlevel 1 exit /b 1
|
||||
echo.
|
||||
echo.Build finished. The pseudo-XML files are in %BUILDDIR%/pseudoxml.
|
||||
goto end
|
||||
)
|
||||
|
||||
:end
|
||||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=python -msphinx
|
||||
)
|
||||
set SOURCEDIR=.
|
||||
set BUILDDIR=_build
|
||||
set SPHINXPROJ=GNpy
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The Sphinx module was not found. Make sure you have Sphinx installed,
|
||||
echo.then set the SPHINXBUILD environment variable to point to the full
|
||||
echo.path of the 'sphinx-build' executable. Alternatively you may add the
|
||||
echo.Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.http://sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
||||
|
||||
:end
|
||||
popd
|
||||
|
||||
146
docs/model.rst
Normal file
146
docs/model.rst
Normal file
@@ -0,0 +1,146 @@
|
||||
Physical Model used in GNPy
|
||||
===========================
|
||||
|
||||
QoT-E including ASE noise and NLI accumulation
|
||||
----------------------------------------------
|
||||
|
||||
The operations of PSE simulative framework are based on the capability to
|
||||
estimate the QoT of one or more channels operating lightpaths over a given
|
||||
network route. For backbone transport networks, we can suppose that
|
||||
transceivers are operating polarization-division-multiplexed multilevel
|
||||
modulation formats with DSP-based coherent receivers, including equalization.
|
||||
For the optical links, we focus on state-of-the-art amplified and uncompensated
|
||||
fiber links, connecting network nodes including ROADMs, where add and drop
|
||||
operations on data traffic are performed. In such a transmission scenario, it
|
||||
is well accepted
|
||||
:cite:`vacondio_nonlinear_2012,bononi_modeling_2012,carena_modeling_2012,mecozzi_nonlinear_2012,secondini_analytical_2012,johannisson_perturbation_2013,dar_properties_2013,serena_alternative_2013,secondini_achievable_2013,poggiolini_gn-model_2014,dar_accumulation_2014,poggiolini_analytical_2011,savory_approximations_2013,bononi_single-_2013,johannisson_modeling_2014`
|
||||
to assume that transmission performances are limited by the amplified
|
||||
spontaneous emission (ASE) noise generated by optical amplifiers and and
|
||||
by nonlinear propagation effects: accumulation of a Gaussian disturbance
|
||||
defined as nonlinear interference (NLI) and generation of phase noise.
|
||||
State-of-the-art DSP in commercial transceivers are typically able to
|
||||
compensate for most of the phase noise through carrier-phase estimator
|
||||
(CPE) algorithms, for modulation formats with cardinality up to 16, per
|
||||
polarization state
|
||||
:cite:`poggiolini_recent_2017,schmidt_experimental_2015,fehenberger_experimental_2016`.
|
||||
So, for backbone networks covering medium-to-wide geographical areas, we
|
||||
can suppose that propagation is limited by the accumulation of two
|
||||
Gaussian disturbances: the ASE noise and the NLI. Additional impairments
|
||||
such as filtering effects introduced by ROADMs can be considered as
|
||||
additional equivalent power penalties depending on the ratio between the
|
||||
channel bandwidth and the ROADMs filters and the number of traversed
|
||||
ROADMs (hops) of the route under analysis. Modeling the two major
|
||||
sources of impairments as Gaussian disturbances, and being the receivers
|
||||
*coherent*, the unique QoT parameter determining the bit error rate
|
||||
(BER) for the considered transmission scenario is the generalized
|
||||
signal-to-noise ratio (SNR) defined as
|
||||
|
||||
.. math::
|
||||
|
||||
{\text{SNR}}= L_F \frac{P_{\text{ch}}}{P_{\text{ASE}}+P_{\text{NLI}}} = L_F \left(\frac{1}{{\text{SNR}}_{\text{LIN}}}+\frac{1}{{\text{SNR}}_{\text{NL}}}\right)^{-1}
|
||||
|
||||
|
||||
where :math:`P_{\text{ch}}` is the channel power,
|
||||
:math:`P_{\text{ASE}}` and :math:`P_{\text{NLI}}` are the power levels of the disturbances
|
||||
in the channel bandwidth for ASE noise and NLI, respectively.
|
||||
:math:`L_F` is a parameter assuming values smaller or equal than one
|
||||
that summarizes the equivalent power penalty loss such as
|
||||
filtering effects. Note that for state-of-the art equipment, filtering
|
||||
effects can be typically neglected over routes with few hops
|
||||
:cite:`rahman_mitigation_2014,foggi_overcoming_2015`.
|
||||
|
||||
To properly estimate :math:`P_{\text{ch}}` and :math:`P_{\text{ASE}}`
|
||||
the transmitted power at the beginning of the considered route must be
|
||||
known, and losses and amplifiers gain and noise figure, including their
|
||||
variation with frequency, must be characterized. So, the evaluation of
|
||||
:math:`{\text{SNR}}_{\text{LIN}}` *just* requires an accurate
|
||||
knowledge of equipment, which is not a trivial aspect, but it is not
|
||||
related to physical-model issues. For the evaluation of the NLI, several
|
||||
models have been proposed and validated in the technical literature
|
||||
:cite:`vacondio_nonlinear_2012,bononi_modeling_2012,carena_modeling_2012,mecozzi_nonlinear_2012,secondini_analytical_2012,johannisson_perturbation_2013,dar_properties_2013,serena_alternative_2013,secondini_achievable_2013,poggiolini_gn-model_2014,dar_accumulation_2014,poggiolini_analytical_2011,savory_approximations_2013,bononi_single-_2013,johannisson_modeling_2014`.
|
||||
The decision about which model to test within the PSE activities was
|
||||
driven by requirements of the entire PSE framework:
|
||||
|
||||
i. the model must be *local*, i.e., related individually to each network
|
||||
element (i.e. fiber span) generating NLI, independently of preceding and
|
||||
subsequent elements; and ii. the related computational time must be compatible
|
||||
with interactive operations.
|
||||
|
||||
So, the choice fell on the Gaussian Noise
|
||||
(GN) model with incoherent accumulation of NLI over fiber spans
|
||||
:cite:`poggiolini_gn-model_2014`. We implemented both the
|
||||
exact GN-model evaluation of NLI based on a double integral (Eq. (11) of
|
||||
:cite:`poggiolini_gn-model_2014`) and its analytical
|
||||
approximation (Eq. (120-121) of
|
||||
:cite:`poggiolini_analytical_2011`). We performed several
|
||||
validation analyses comparing results of the two implementations with
|
||||
split-step simulations over wide bandwidths
|
||||
:cite:`pilori_ffss_2017`, and results clearly showed that
|
||||
for fiber types with chromatic dispersion roughly larger than 4
|
||||
ps/nm/km, the analytical approximation ensures an excellent accuracy
|
||||
with a computational time compatible with real-time operations.
|
||||
|
||||
The Gaussian Noise Model to evaluate the NLI
|
||||
--------------------------------------------
|
||||
|
||||
As previously stated, fiber propagation of multilevel modulation formats
|
||||
relying on the polarization-division-multiplexing generates impairments that
|
||||
can be summarized as a disturbance called nonlinear interference (NLI), when
|
||||
exploiting a DSP-based coherent receiver, as in all state-of-the-art equipment.
|
||||
From a practical point of view, the NLI can be modeled as an additive Gaussian
|
||||
random process added by each fiber span, and whose strength depends on the cube
|
||||
of the input power spectral density and on the fiber-span parameters.
|
||||
|
||||
Since the introduction in the market in 2007 of the first transponder based on
|
||||
such a transmission technique, the scientific community has intensively worked
|
||||
to define the propagation behavior of such a trasnmission technique. First,
|
||||
the role of in-line chromatic dispersion compensation has been investigated,
|
||||
deducing that besides being not essential, it is indeed detrimental for
|
||||
performances :cite:`curri_dispersion_2008`. Then, it has been observed that
|
||||
the fiber propagation impairments are practically summarized by the sole NLI,
|
||||
being all the other phenomena compensated for by the blind equalizer
|
||||
implemented in the receiver DSP :cite:`carena_statistical_2010`. Once these
|
||||
assessments have been accepted by the community, several prestigious research
|
||||
groups have started to work on deriving analytical models able to estimating
|
||||
the NLI accumulation, and consequentially the generalized SNR that sets the
|
||||
BER, according to the transponder BER vs. SNR performance. Many models
|
||||
delivering different levels of accuracy have been developed and validated. As
|
||||
previously clarified, for the purposes of the PSE framework, the GN-model with
|
||||
incoherent accumulation of NLI over fiber spans has been selected as adequate.
|
||||
The reason for such a choice is first such a model being a "local" model, so
|
||||
related to each fiber spans, independently of the preceding and succeeding
|
||||
network elements. The other model characteristic driving the choice is the
|
||||
availability of a closed form for the model, so permitting a real-time
|
||||
evaluation, as required by the PSE framework. For a detailed derivation of the
|
||||
model, please refer to :cite:`poggiolini_analytical_2011`, while a qualitative
|
||||
description can be summarized as in the following. The GN-model assumes that
|
||||
the channel comb propagating in the fiber is well approximated by unpolarized
|
||||
spectrally shaped Gaussian noise. In such a scenario, supposing to rely - as in
|
||||
state-of-the-art equipment - on a receiver entirely compensating for linear
|
||||
propagation effects, propagation in the fiber only excites the four-wave mixing
|
||||
(FWM) process among the continuity of the tones occupying the bandwidth. Such a
|
||||
FWM generates an unpolarized complex Gaussian disturbance in each spectral slot
|
||||
that can be easily evaluated extending the FWM theory from a set of discrete
|
||||
tones - the standard FWM theory introduced back in the 90s by Inoue
|
||||
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
|
||||
Signals propagating in the fiber are not equivalent to Gaussian noise, but
|
||||
thanks to the absence of in-line compensation for choromatic dispersion, the
|
||||
become so, over short distances. So, the Gaussian noise model with incoherent
|
||||
accumulation of NLI has estensively proved to be a quick yet accurate and
|
||||
conservative tool to estimate propagation impairments of fiber propagation.
|
||||
Note that the GN-model has not been derived with the aim of an *exact*
|
||||
performance estimation, but to pursue a conservative performance prediction.
|
||||
So, considering these characteristics, and the fact that the NLI is always a
|
||||
secondary effect with respect to the ASE noise accumulation, and - most
|
||||
importantly - that typically linear propagation parameters (losses, gains and
|
||||
noise figures) are known within a variation range, a QoT estimator based on the
|
||||
GN model is adequate to deliver performance predictions in terms of a
|
||||
reasonable SNR range, rather than an exact value. As final remark, it must be
|
||||
clarified that the GN-model is adequate to be used when relying on a relatively
|
||||
narrow bandwidth up to few THz. When exceeding such a bandwidth occupation, the
|
||||
GN-model must be generalized introducing the interaction with the Stimulated
|
||||
Raman Scattering in order to give a proper estimation for all channels
|
||||
:cite:`cantono2018modeling`. This will be the main upgrade required within the
|
||||
PSE framework.
|
||||
|
||||
.. bibliography:: biblio.bib
|
||||
@@ -1 +0,0 @@
|
||||
.. include:: ../README.rst
|
||||
@@ -1,7 +0,0 @@
|
||||
=====
|
||||
Usage
|
||||
=====
|
||||
|
||||
To use gnpy in a project::
|
||||
|
||||
import gnpy
|
||||
@@ -1,7 +1,8 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks. It is based on the Gaussian Noise Model.
|
||||
|
||||
from .gnpy import (raised_cosine_comb, analytic_formula, compute_psi, fwm_eff,
|
||||
get_f_computed_interp, get_freqarray, gn_analytic, gn_model,
|
||||
interpolate_in_range, GN_integral)
|
||||
|
||||
__all__ = ['gnpy']
|
||||
Signal propagation is implemented in :py:mod:`.core`.
|
||||
Path finding and spectrum assignment is in :py:mod:`.topology`.
|
||||
Various tools and auxiliary code, including the JSON I/O handling, is in
|
||||
:py:mod:`.tools`.
|
||||
'''
|
||||
|
||||
@@ -1,75 +0,0 @@
|
||||
import gnpy as gn
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# Accuracy parameters
|
||||
flag_analytic = True
|
||||
num_computed_values = 2
|
||||
interp_method = 'linear'
|
||||
threshold_fwm = 50
|
||||
n_points = 500
|
||||
n_points_min = 4
|
||||
accuracy_param = {'is_analytic': flag_analytic, 'points_not_interp': num_computed_values, 'kind_interp': interp_method,
|
||||
'th_fwm': threshold_fwm, 'n_points': n_points, 'n_points_min': n_points_min}
|
||||
|
||||
# Parallelization Parameters
|
||||
n_cores = 1
|
||||
|
||||
# Spectrum parameters
|
||||
num_ch = 95
|
||||
rs = np.ones(num_ch) * 0.032
|
||||
b_ch = rs # For root raised cosine shapes, the -3 dB band is equal to the symbol rate
|
||||
roll_off = np.ones(num_ch) * 0.05
|
||||
power = np.ones(num_ch) * 0.001
|
||||
central_freq = 193.5
|
||||
if num_ch % 2 == 1: # odd number of channels
|
||||
fch = np.arange(-(num_ch // 2), (num_ch // 2) + 1, 1) * 0.05 # noqa: E501
|
||||
else:
|
||||
fch = (np.arange(0, num_ch) - (num_ch / 2.0) + 0.5) * 0.05
|
||||
spectrum_param = {'num_ch': num_ch, 'f_ch': fch, 'b_ch': b_ch, 'roll_off': roll_off, 'power': power}
|
||||
|
||||
# Fiber Parameters
|
||||
beta2 = 21.27
|
||||
l_span = 100.0
|
||||
loss = 0.2
|
||||
gam = 1.27
|
||||
fiber_param = {'alpha': loss, 'span_length': l_span, 'beta_2': beta2, 'gamma': gam}
|
||||
|
||||
# EDFA Parameters
|
||||
noise_fig = 5.5
|
||||
gain_zero = 25.0
|
||||
gain_tilting = 0.5
|
||||
|
||||
# Compute the GN model
|
||||
t = time.time()
|
||||
nli_cmp, f_nli_cmp, nli_int, f_nli_int = gn.gn_model(spectrum_param, fiber_param, accuracy_param, n_cores) # noqa: E501
|
||||
print('Elapsed: %s' % (time.time() - t))
|
||||
|
||||
# Compute the EDFA profile
|
||||
gain, g_ase = gn.compute_edfa_profile(gain_zero, gain_tilting, noise_fig, central_freq, fch)
|
||||
|
||||
# Compute the raised cosine comb
|
||||
f1_array = np.linspace(np.amin(fch), np.amax(fch), 1e3)
|
||||
gtx = gn.raised_cosine_comb(f1_array, rs, roll_off, fch, power)
|
||||
gtx = gtx + 10 ** -6 # To avoid log10 issues.
|
||||
|
||||
# Plot the results
|
||||
plt.figure(1)
|
||||
plt.plot(f1_array, 10 * np.log10(gtx), '-b', label='WDM comb')
|
||||
plt.plot(f_nli_cmp, 10 * np.log10(nli_cmp), 'ro', label='GNLI computed')
|
||||
plt.plot(f_nli_int, 10 * np.log10(nli_int), 'g+', label='GNLI interpolated')
|
||||
plt.plot(fch, 10 * np.log10(g_ase), 'yo', label='GASE')
|
||||
plt.ylabel('PSD [dB(W/THz)]')
|
||||
plt.xlabel('f [THz]')
|
||||
plt.legend(loc='upper left')
|
||||
plt.grid()
|
||||
plt.draw()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,84 +0,0 @@
|
||||
import os
|
||||
import gnpy as gn
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
|
||||
|
||||
def main_ole():
|
||||
|
||||
# String indicating the folder in which outputs will be saved
|
||||
string_date_time = time.strftime("%Y-%m-%d") + '_' + time.strftime("%H-%M-%S")
|
||||
output_path = './output/' + string_date_time + '/'
|
||||
|
||||
# Creates the directory if it doesn't exist
|
||||
if not os.path.isdir(output_path):
|
||||
os.makedirs(output_path)
|
||||
|
||||
from configuration.fiber_parameters import fibers
|
||||
from configuration.general_parameters import sys_param, control_param
|
||||
from configuration.link_description import link
|
||||
from input.spectrum_in import spectrum
|
||||
|
||||
# adapt the laser position to the grid
|
||||
if len(spectrum['laser_position']) < sys_param['ns']:
|
||||
n = sys_param['ns'] - len(spectrum['laser_position'])
|
||||
missing_zeros = [0 for _ in range(n)]
|
||||
spectrum['laser_position'] += missing_zeros
|
||||
elif len(spectrum['laser_position']) > sys_param['ns']:
|
||||
print('Error: the spectrum definition requires a larger number of slots ns in the spectrum grid')
|
||||
|
||||
delta_f = 6.25E-3
|
||||
f_0 = sys_param['f0']
|
||||
f_cent = f_0 + ((sys_param['ns'] // 2.0) * delta_f)
|
||||
|
||||
n_ch = spectrum['laser_position'].count(1)
|
||||
# Get comb parameters
|
||||
f_ch = np.zeros(n_ch)
|
||||
count = 0
|
||||
for index, bool_laser in enumerate(spectrum['laser_position']):
|
||||
if bool_laser:
|
||||
f_ch[count] = delta_f * index + (f_0 - f_cent)
|
||||
count += 1
|
||||
|
||||
t = time.time()
|
||||
# It runs the OLE
|
||||
osnr_nl_db, osnr_lin_db = gn.ole(spectrum, link, fibers, sys_param, control_param, output_path=output_path)
|
||||
print('Elapsed: %s' % (time.time() - t))
|
||||
|
||||
# Compute the raised cosine comb
|
||||
power, rs, roll_off, p_ase, p_nli, n_ch = gn.get_spectrum_param(spectrum)
|
||||
f1_array = np.linspace(np.amin(f_ch), np.amax(f_ch), 1e3)
|
||||
gtx = gn.raised_cosine_comb(f1_array, rs, roll_off, f_ch, power)
|
||||
gtx = gtx + 10 ** -6 # To avoid log10 issues.
|
||||
|
||||
# OSNR at in the central channel
|
||||
ind_c = n_ch // 2
|
||||
osnr_lin_central_db = osnr_lin_db[ind_c]
|
||||
osnr_nl_central_db = osnr_nl_db[ind_c]
|
||||
print('The linear OSNR in the central channel is: ' + str(osnr_lin_central_db) + ' dB')
|
||||
print('The non linear OSNR in the central channel is: ' + str(osnr_nl_central_db) + ' dB')
|
||||
|
||||
# Plot the results
|
||||
plt.figure(1)
|
||||
plt.plot(f1_array, 10 * np.log10(gtx), '-b', label='WDM comb PSD [dB(W/THz)]')
|
||||
plt.plot(f_ch, 10 * np.log10(p_nli), 'ro', label='NLI [dBw]')
|
||||
plt.plot(f_ch, 10 * np.log10(p_ase), 'g+', label='ASE noise [dBw]')
|
||||
plt.ylabel('')
|
||||
plt.xlabel('f [THz]')
|
||||
plt.legend(loc='upper right')
|
||||
plt.grid()
|
||||
plt.draw()
|
||||
|
||||
plt.figure(2)
|
||||
plt.plot(f_ch, osnr_nl_db, 'ro', label='non-linear OSNR')
|
||||
plt.plot(f_ch, osnr_lin_db, 'g+', label='linear OSNR')
|
||||
plt.ylabel('OSNR [dB]')
|
||||
plt.xlabel('f [THz]')
|
||||
plt.legend(loc='lower left')
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main_ole()
|
||||
9
gnpy/api/__init__.py
Normal file
9
gnpy/api/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
||||
# coding: utf-8
|
||||
from flask import Flask
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
import gnpy.api.route.path_request_route
|
||||
import gnpy.api.route.status_route
|
||||
import gnpy.api.route.topology_route
|
||||
import gnpy.api.route.equipments_route
|
||||
1
gnpy/api/exception/__init__.py
Normal file
1
gnpy/api/exception/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
# coding: utf-8
|
||||
14
gnpy/api/exception/config_error.py
Normal file
14
gnpy/api/exception/config_error.py
Normal file
@@ -0,0 +1,14 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class ConfigError(Exception):
|
||||
""" Exception raise for configuration file error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
14
gnpy/api/exception/equipment_error.py
Normal file
14
gnpy/api/exception/equipment_error.py
Normal file
@@ -0,0 +1,14 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class EquipmentError(Exception):
|
||||
""" Exception raise for equipment error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
33
gnpy/api/exception/exception_handler.py
Normal file
33
gnpy/api/exception/exception_handler.py
Normal file
@@ -0,0 +1,33 @@
|
||||
# coding: utf-8
|
||||
import json
|
||||
import re
|
||||
|
||||
import werkzeug
|
||||
|
||||
from gnpy.api.model.error import Error
|
||||
|
||||
_reaesc = re.compile(r'\x1b[^m]*m')
|
||||
|
||||
|
||||
def common_error_handler(exception):
|
||||
"""
|
||||
|
||||
:type exception: Exception
|
||||
|
||||
"""
|
||||
status_code = 500
|
||||
if not isinstance(exception, werkzeug.exceptions.HTTPException):
|
||||
exception = werkzeug.exceptions.InternalServerError()
|
||||
exception.description = "Something went wrong on our side."
|
||||
else:
|
||||
status_code = exception.code
|
||||
response = Error(message=exception.name, description=exception.description,
|
||||
code=status_code)
|
||||
|
||||
return werkzeug.Response(response=json.dumps(response.__dict__), status=status_code, mimetype='application/json')
|
||||
|
||||
|
||||
def bad_request_handler(exception):
|
||||
response = Error(message='bad request', description=_reaesc.sub('', str(exception)),
|
||||
code=400)
|
||||
return werkzeug.Response(response=json.dumps(response.__dict__), status=400, mimetype='application/json')
|
||||
14
gnpy/api/exception/path_computation_error.py
Normal file
14
gnpy/api/exception/path_computation_error.py
Normal file
@@ -0,0 +1,14 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class PathComputationError(Exception):
|
||||
""" Exception raise for path computation error error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
14
gnpy/api/exception/topology_error.py
Normal file
14
gnpy/api/exception/topology_error.py
Normal file
@@ -0,0 +1,14 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class TopologyError(Exception):
|
||||
""" Exception raise for topology error
|
||||
Attributes:
|
||||
message -- explanation of the error
|
||||
"""
|
||||
|
||||
def __init__(self, message):
|
||||
self.message = message
|
||||
|
||||
def __str__(self):
|
||||
return self.message
|
||||
1
gnpy/api/model/__init__.py
Normal file
1
gnpy/api/model/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
# coding: utf-8
|
||||
17
gnpy/api/model/error.py
Normal file
17
gnpy/api/model/error.py
Normal file
@@ -0,0 +1,17 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class Error:
|
||||
|
||||
def __init__(self, code: int = None, message: str = None, description: str = None):
|
||||
"""Error
|
||||
:param code: The code of this Error.
|
||||
:type code: int
|
||||
:param message: The message of this Error.
|
||||
:type message: str
|
||||
:param description: The description of this Error.
|
||||
:type description: str
|
||||
"""
|
||||
self.code = code
|
||||
self.message = message
|
||||
self.description = description
|
||||
8
gnpy/api/model/result.py
Normal file
8
gnpy/api/model/result.py
Normal file
@@ -0,0 +1,8 @@
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
class Result:
|
||||
|
||||
def __init__(self, message: str = None, description: str = None):
|
||||
self.message = message
|
||||
self.description = description
|
||||
83
gnpy/api/rest_example.py
Normal file
83
gnpy/api/rest_example.py
Normal file
@@ -0,0 +1,83 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.tools.rest_example
|
||||
=======================
|
||||
|
||||
GNPy as a rest API example
|
||||
'''
|
||||
|
||||
import logging
|
||||
from logging.handlers import RotatingFileHandler
|
||||
|
||||
import werkzeug
|
||||
from flask_injector import FlaskInjector
|
||||
from injector import singleton
|
||||
from werkzeug.exceptions import InternalServerError
|
||||
|
||||
import gnpy.core.exceptions as exceptions
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.exception_handler import bad_request_handler, common_error_handler
|
||||
from gnpy.api.exception.path_computation_error import PathComputationError
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.service import config_service
|
||||
from gnpy.api.service.encryption_service import EncryptionService
|
||||
from gnpy.api.service.equipment_service import EquipmentService
|
||||
from gnpy.api.service.path_request_service import PathRequestService
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _init_logger():
|
||||
handler = RotatingFileHandler('api.log', maxBytes=1024 * 1024, backupCount=5, encoding='utf-8')
|
||||
ch = logging.StreamHandler()
|
||||
logging.basicConfig(level=logging.INFO, handlers=[handler, ch],
|
||||
format="%(asctime)s %(levelname)s %(name)s(%(lineno)s) [%(threadName)s - %(thread)d] - %("
|
||||
"message)s")
|
||||
|
||||
|
||||
def _init_app(key):
|
||||
app.register_error_handler(KeyError, bad_request_handler)
|
||||
app.register_error_handler(TypeError, bad_request_handler)
|
||||
app.register_error_handler(ValueError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.ConfigurationError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.DisjunctionError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.EquipmentConfigError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.NetworkTopologyError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.ServiceError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.SpectrumError, bad_request_handler)
|
||||
app.register_error_handler(exceptions.ParametersError, bad_request_handler)
|
||||
app.register_error_handler(AssertionError, bad_request_handler)
|
||||
app.register_error_handler(InternalServerError, common_error_handler)
|
||||
app.register_error_handler(TopologyError, bad_request_handler)
|
||||
app.register_error_handler(PathComputationError, bad_request_handler)
|
||||
for error_code in werkzeug.exceptions.default_exceptions:
|
||||
app.register_error_handler(error_code, common_error_handler)
|
||||
config = config_service.init_config()
|
||||
config.add_section('SECRET')
|
||||
config.set('SECRET', 'equipment', key)
|
||||
app.config['properties'] = config
|
||||
|
||||
|
||||
def _configure(binder):
|
||||
binder.bind(EquipmentService,
|
||||
to=EquipmentService(EncryptionService(app.config['properties'].get('SECRET', 'equipment'))),
|
||||
scope=singleton)
|
||||
binder.bind(PathRequestService,
|
||||
to=PathRequestService(EncryptionService(app.config['properties'].get('SECRET', 'equipment'))),
|
||||
scope=singleton)
|
||||
app.config['properties'].pop('SECRET', None)
|
||||
|
||||
|
||||
def main():
|
||||
key = input('Enter encryption/decryption key: ')
|
||||
_init_logger()
|
||||
_init_app(key)
|
||||
FlaskInjector(app=app, modules=[_configure])
|
||||
|
||||
app.run(host='0.0.0.0', port=8080, ssl_context='adhoc')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
2
gnpy/api/route/__init__.py
Normal file
2
gnpy/api/route/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
# coding: utf-8
|
||||
|
||||
38
gnpy/api/route/equipments_route.py
Normal file
38
gnpy/api/route/equipments_route.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# coding: utf-8
|
||||
import http
|
||||
import json
|
||||
|
||||
from flask import request
|
||||
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.equipment_error import EquipmentError
|
||||
from gnpy.api.model.result import Result
|
||||
from gnpy.api.service.equipment_service import EquipmentService
|
||||
|
||||
EQUIPMENT_BASE_PATH = '/api/v1/equipments'
|
||||
EQUIPMENT_ID_PATH = EQUIPMENT_BASE_PATH + '/<equipment_id>'
|
||||
|
||||
|
||||
@app.route(EQUIPMENT_BASE_PATH, methods=['POST'])
|
||||
def create_equipment(equipment_service: EquipmentService):
|
||||
if not request.is_json:
|
||||
raise EquipmentError('Request body is not json')
|
||||
equipment_identifier = equipment_service.save_equipment(request.json)
|
||||
response = Result(message='Equipment creation ok', description=equipment_identifier)
|
||||
return json.dumps(response.__dict__), 201, {'location': EQUIPMENT_BASE_PATH + '/' + equipment_identifier}
|
||||
|
||||
|
||||
@app.route(EQUIPMENT_ID_PATH, methods=['PUT'])
|
||||
def update_equipment(equipment_id, equipment_service: EquipmentService):
|
||||
if not request.is_json:
|
||||
raise EquipmentError('Request body is not json')
|
||||
equipment_identifier = equipment_service.update_equipment(request.json, equipment_id)
|
||||
response = Result(message='Equipment update ok', description=equipment_identifier)
|
||||
return json.dumps(response.__dict__), http.HTTPStatus.OK, {
|
||||
'location': EQUIPMENT_BASE_PATH + '/' + equipment_identifier}
|
||||
|
||||
|
||||
@app.route(EQUIPMENT_ID_PATH, methods=['DELETE'])
|
||||
def delete_equipment(equipment_id, equipment_service: EquipmentService):
|
||||
equipment_service.delete_equipment(equipment_id)
|
||||
return '', http.HTTPStatus.NO_CONTENT
|
||||
63
gnpy/api/route/path_request_route.py
Normal file
63
gnpy/api/route/path_request_route.py
Normal file
@@ -0,0 +1,63 @@
|
||||
# coding: utf-8
|
||||
import http
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from flask import request
|
||||
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.equipment_error import EquipmentError
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.service import topology_service
|
||||
from gnpy.api.service.equipment_service import EquipmentService
|
||||
from gnpy.api.service.path_request_service import PathRequestService
|
||||
from gnpy.tools.json_io import _equipment_from_json, network_from_json
|
||||
from gnpy.topology.request import ResultElement
|
||||
|
||||
PATH_COMPUTATION_BASE_PATH = '/api/v1/path-computation'
|
||||
AUTODESIGN_PATH = PATH_COMPUTATION_BASE_PATH + '/<path_computation_id>/autodesign'
|
||||
|
||||
_examples_dir = Path(__file__).parent.parent.parent / 'example-data'
|
||||
|
||||
|
||||
@app.route(PATH_COMPUTATION_BASE_PATH, methods=['POST'])
|
||||
def compute_path(equipment_service: EquipmentService, path_request_service: PathRequestService):
|
||||
data = request.json
|
||||
service = data['gnpy-api:service']
|
||||
if 'gnpy-api:topology' in data:
|
||||
topology = data['gnpy-api:topology']
|
||||
elif 'gnpy-api:topology_id' in data:
|
||||
topology = topology_service.get_topology(data['gnpy-api:topology_id'])
|
||||
else:
|
||||
raise TopologyError('No topology found in request')
|
||||
if 'gnpy-api:equipment' in data:
|
||||
equipment = data['gnpy-api:equipment']
|
||||
elif 'gnpy-api:equipment_id' in data:
|
||||
equipment = equipment_service.get_equipment(data['gnpy-api:equipment_id'])
|
||||
else:
|
||||
raise EquipmentError('No equipment found in request')
|
||||
equipment = _equipment_from_json(equipment,
|
||||
os.path.join(_examples_dir, 'std_medium_gain_advanced_config.json'))
|
||||
network = network_from_json(topology, equipment)
|
||||
|
||||
propagatedpths, reversed_propagatedpths, rqs, path_computation_id = path_request_service.path_requests_run(service,
|
||||
network,
|
||||
equipment)
|
||||
# Generate the output
|
||||
result = []
|
||||
# assumes that list of rqs and list of propgatedpths have same order
|
||||
for i, pth in enumerate(propagatedpths):
|
||||
result.append(ResultElement(rqs[i], pth, reversed_propagatedpths[i]))
|
||||
return {"result": {"response": [n.json for n in result]}}, 201, {
|
||||
'location': AUTODESIGN_PATH.replace('<path_computation_id>', path_computation_id)}
|
||||
|
||||
|
||||
@app.route(AUTODESIGN_PATH, methods=['GET'])
|
||||
def get_autodesign(path_computation_id, path_request_service: PathRequestService):
|
||||
return path_request_service.get_autodesign(path_computation_id), http.HTTPStatus.OK
|
||||
|
||||
|
||||
@app.route(AUTODESIGN_PATH, methods=['DELETE'])
|
||||
def delete_autodesign(path_computation_id, path_request_service: PathRequestService):
|
||||
path_request_service.delete_autodesign(path_computation_id)
|
||||
return '', http.HTTPStatus.NO_CONTENT
|
||||
7
gnpy/api/route/status_route.py
Normal file
7
gnpy/api/route/status_route.py
Normal file
@@ -0,0 +1,7 @@
|
||||
# coding: utf-8
|
||||
from gnpy.api import app
|
||||
|
||||
|
||||
@app.route('/api/v1/status', methods=['GET'])
|
||||
def api_status():
|
||||
return {"version": "v1", "status": "ok"}, 200
|
||||
43
gnpy/api/route/topology_route.py
Normal file
43
gnpy/api/route/topology_route.py
Normal file
@@ -0,0 +1,43 @@
|
||||
# coding: utf-8
|
||||
import http
|
||||
import json
|
||||
|
||||
from flask import request
|
||||
|
||||
from gnpy.api import app
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.model.result import Result
|
||||
from gnpy.api.service import topology_service
|
||||
|
||||
TOPOLOGY_BASE_PATH = '/api/v1/topologies'
|
||||
TOPOLOGY_ID_PATH = TOPOLOGY_BASE_PATH + '/<topology_id>'
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_BASE_PATH, methods=['POST'])
|
||||
def create_topology():
|
||||
if not request.is_json:
|
||||
raise TopologyError('Request body is not json')
|
||||
topology_identifier = topology_service.save_topology(request.json)
|
||||
response = Result(message='Topology creation ok', description=topology_identifier)
|
||||
return json.dumps(response.__dict__), 201, {'location': TOPOLOGY_BASE_PATH + '/' + topology_identifier}
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_ID_PATH, methods=['PUT'])
|
||||
def update_topology(topology_id):
|
||||
if not request.is_json:
|
||||
raise TopologyError('Request body is not json')
|
||||
topology_identifier = topology_service.update_topology(request.json, topology_id)
|
||||
response = Result(message='Topology update ok', description=topology_identifier)
|
||||
return json.dumps(response.__dict__), http.HTTPStatus.OK, {
|
||||
'location': TOPOLOGY_BASE_PATH + '/' + topology_identifier}
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_ID_PATH, methods=['GET'])
|
||||
def get_topology(topology_id):
|
||||
return topology_service.get_topology(topology_id), http.HTTPStatus.OK
|
||||
|
||||
|
||||
@app.route(TOPOLOGY_ID_PATH, methods=['DELETE'])
|
||||
def delete_topology(topology_id):
|
||||
topology_service.delete_topology(topology_id)
|
||||
return '', http.HTTPStatus.NO_CONTENT
|
||||
1
gnpy/api/service/__init__.py
Normal file
1
gnpy/api/service/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
# coding: utf-8
|
||||
45
gnpy/api/service/config_service.py
Normal file
45
gnpy/api/service/config_service.py
Normal file
@@ -0,0 +1,45 @@
|
||||
# coding: utf-8
|
||||
import configparser
|
||||
import os
|
||||
|
||||
from flask import current_app
|
||||
|
||||
from gnpy.api.exception.config_error import ConfigError
|
||||
|
||||
|
||||
def init_config(properties_file_path: str = os.path.join(os.path.dirname(__file__),
|
||||
'properties.ini')) -> configparser.ConfigParser:
|
||||
"""
|
||||
Read config from properties_file_path
|
||||
@param properties_file_path: the properties file to read
|
||||
@return: config parser
|
||||
"""
|
||||
if not os.path.exists(properties_file_path):
|
||||
raise ConfigError('Properties file does not exist ' + properties_file_path)
|
||||
config = configparser.ConfigParser()
|
||||
config.read(properties_file_path)
|
||||
return config
|
||||
|
||||
|
||||
def get_topology_dir() -> str:
|
||||
"""
|
||||
Get the base dir where topologies are saved
|
||||
@return: the directory of topologies
|
||||
"""
|
||||
return current_app.config['properties'].get('DIRECTORY', 'topology')
|
||||
|
||||
|
||||
def get_equipment_dir() -> str:
|
||||
"""
|
||||
Get the base dir where equipments are saved
|
||||
@return: the directory of equipments
|
||||
"""
|
||||
return current_app.config['properties'].get('DIRECTORY', 'equipment')
|
||||
|
||||
|
||||
def get_autodesign_dir() -> str:
|
||||
"""
|
||||
Get the base dir where autodesign are saved
|
||||
@return: the directory of equipments
|
||||
"""
|
||||
return current_app.config['properties'].get('DIRECTORY', 'autodesign')
|
||||
13
gnpy/api/service/encryption_service.py
Normal file
13
gnpy/api/service/encryption_service.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# coding: utf-8
|
||||
from cryptography.fernet import Fernet
|
||||
|
||||
|
||||
class EncryptionService:
|
||||
def __init__(self, key):
|
||||
self._fernet = Fernet(key)
|
||||
|
||||
def encrypt(self, data):
|
||||
return self._fernet.encrypt(data)
|
||||
|
||||
def decrypt(self, data):
|
||||
return self._fernet.decrypt(data)
|
||||
66
gnpy/api/service/equipment_service.py
Normal file
66
gnpy/api/service/equipment_service.py
Normal file
@@ -0,0 +1,66 @@
|
||||
# coding: utf-
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from injector import Inject
|
||||
|
||||
from gnpy.api.exception.equipment_error import EquipmentError
|
||||
from gnpy.api.service import config_service
|
||||
from gnpy.api.service.encryption_service import EncryptionService
|
||||
|
||||
|
||||
class EquipmentService:
|
||||
|
||||
def __init__(self, encryption_service: EncryptionService):
|
||||
self.encryption = encryption_service
|
||||
|
||||
def save_equipment(self, equipment):
|
||||
"""
|
||||
Save equipment to file.
|
||||
@param equipment: json content
|
||||
@return: a UUID identifier to identify the equipment
|
||||
"""
|
||||
equipment_identifier = str(uuid.uuid4())
|
||||
# TODO: validate json content
|
||||
self._write_equipment(equipment, equipment_identifier)
|
||||
return equipment_identifier
|
||||
|
||||
def update_equipment(self, equipment, equipment_identifier):
|
||||
"""
|
||||
Update equipment with identifier equipment_identifier.
|
||||
@param equipment_identifier: the identifier of the equipment to be updated
|
||||
@param equipment: json content
|
||||
@return: a UUID identifier to identify the equipment
|
||||
"""
|
||||
# TODO: validate json content
|
||||
self._write_equipment(equipment, equipment_identifier)
|
||||
return equipment_identifier
|
||||
|
||||
def _write_equipment(self, equipment, equipment_identifier):
|
||||
equipment_dir = config_service.get_equipment_dir()
|
||||
with(open(os.path.join(equipment_dir, '.'.join([equipment_identifier, 'json'])), 'wb')) as file:
|
||||
file.write(self.encryption.encrypt(json.dumps(equipment).encode()))
|
||||
|
||||
def get_equipment(self, equipment_id: str) -> dict:
|
||||
"""
|
||||
Get the equipment with id equipment_id
|
||||
@param equipment_id:
|
||||
@return: the equipment in json format
|
||||
"""
|
||||
equipment_dir = config_service.get_equipment_dir()
|
||||
equipment_file = os.path.join(equipment_dir, '.'.join([equipment_id, 'json']))
|
||||
if not os.path.exists(equipment_file):
|
||||
raise EquipmentError('Equipment with id {} does not exist '.format(equipment_id))
|
||||
with(open(equipment_file, 'rb')) as file:
|
||||
return json.loads(self.encryption.decrypt(file.read()))
|
||||
|
||||
def delete_equipment(self, equipment_id: str):
|
||||
"""
|
||||
Delete equipment with id equipment_id
|
||||
@param equipment_id:
|
||||
"""
|
||||
equipment_dir = config_service.get_equipment_dir()
|
||||
equipment_file = os.path.join(equipment_dir, '.'.join([equipment_id, 'json']))
|
||||
if os.path.exists(equipment_file):
|
||||
os.remove(equipment_file)
|
||||
100
gnpy/api/service/path_request_service.py
Normal file
100
gnpy/api/service/path_request_service.py
Normal file
@@ -0,0 +1,100 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
|
||||
import gnpy.core.ansi_escapes as ansi_escapes
|
||||
from gnpy.api.exception.path_computation_error import PathComputationError
|
||||
from gnpy.api.service import config_service
|
||||
from gnpy.api.service.encryption_service import EncryptionService
|
||||
from gnpy.core.network import build_network
|
||||
from gnpy.core.utils import lin2db, automatic_nch
|
||||
from gnpy.tools.json_io import requests_from_json, disjunctions_from_json, network_to_json
|
||||
from gnpy.topology.request import (compute_path_dsjctn, requests_aggregation,
|
||||
correct_json_route_list,
|
||||
deduplicate_disjunctions, compute_path_with_disjunction)
|
||||
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PathRequestService:
|
||||
|
||||
def __init__(self, encryption_service: EncryptionService):
|
||||
self.encryption = encryption_service
|
||||
|
||||
def path_requests_run(self, service, network, equipment):
|
||||
# Build the network once using the default power defined in SI in eqpt config
|
||||
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
|
||||
# spacing, f_min and f_max
|
||||
p_db = equipment['SI']['default'].power_dbm
|
||||
|
||||
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
|
||||
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
|
||||
build_network(network, equipment, p_db, p_total_db)
|
||||
path_computation_identifier = str(uuid.uuid4())
|
||||
autodesign_dir = config_service.get_autodesign_dir()
|
||||
with(open(os.path.join(autodesign_dir, '.'.join([path_computation_identifier, 'json'])), 'wb')) as file:
|
||||
file.write(self.encryption.encrypt(json.dumps(network_to_json(network)).encode()))
|
||||
oms_list = build_oms_list(network, equipment)
|
||||
rqs = requests_from_json(service, equipment)
|
||||
|
||||
# check that request ids are unique. Non unique ids, may
|
||||
# mess the computation: better to stop the computation
|
||||
all_ids = [r.request_id for r in rqs]
|
||||
if len(all_ids) != len(set(all_ids)):
|
||||
for item in list(set(all_ids)):
|
||||
all_ids.remove(item)
|
||||
msg = f'Requests id {all_ids} are not unique'
|
||||
_logger.critical(msg)
|
||||
raise ValueError('Requests id ' + all_ids + ' are not unique')
|
||||
rqs = correct_json_route_list(network, rqs)
|
||||
|
||||
# pths = compute_path(network, equipment, rqs)
|
||||
dsjn = disjunctions_from_json(service)
|
||||
|
||||
# need to warn or correct in case of wrong disjunction form
|
||||
# disjunction must not be repeated with same or different ids
|
||||
dsjn = deduplicate_disjunctions(dsjn)
|
||||
|
||||
rqs, dsjn = requests_aggregation(rqs, dsjn)
|
||||
# TODO export novel set of aggregated demands in a json file
|
||||
|
||||
_logger.info(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}' + str(rqs))
|
||||
|
||||
_logger.info(f'{ansi_escapes.blue}Computing all paths with constraints{ansi_escapes.reset}')
|
||||
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
|
||||
|
||||
_logger.info(f'{ansi_escapes.blue}Propagating on selected path{ansi_escapes.reset}')
|
||||
propagatedpths, reversed_pths, reversed_propagatedpths = compute_path_with_disjunction(network, equipment, rqs,
|
||||
pths)
|
||||
# Note that deepcopy used in compute_path_with_disjunction returns
|
||||
# a list of nodes which are not belonging to network (they are copies of the node objects).
|
||||
# so there can not be propagation on these nodes.
|
||||
|
||||
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
|
||||
return propagatedpths, reversed_propagatedpths, rqs, path_computation_identifier
|
||||
|
||||
def get_autodesign(self, path_computation_id):
|
||||
"""
|
||||
Get the autodesign with id topology_id
|
||||
@param path_computation_id:
|
||||
@return: the autodesign in json format
|
||||
"""
|
||||
autodesign_dir = config_service.get_autodesign_dir()
|
||||
autodesign_file = os.path.join(autodesign_dir, '.'.join([path_computation_id, 'json']))
|
||||
if not os.path.exists(autodesign_file):
|
||||
raise PathComputationError('Autodesign with id {} does not exist '.format(path_computation_id))
|
||||
with(open(autodesign_file, 'rb')) as file:
|
||||
return json.loads(self.encryption.decrypt(file.read()))
|
||||
|
||||
def delete_autodesign(self, path_computation_id: str):
|
||||
"""
|
||||
Delete autodesign with id equipment_id
|
||||
@param path_computation_id:
|
||||
"""
|
||||
autodesign_dir = config_service.get_autodesign_dir()
|
||||
autodesign_file = os.path.join(autodesign_dir, '.'.join([path_computation_id, 'json']))
|
||||
if os.path.exists(autodesign_file):
|
||||
os.remove(autodesign_file)
|
||||
4
gnpy/api/service/properties.ini
Normal file
4
gnpy/api/service/properties.ini
Normal file
@@ -0,0 +1,4 @@
|
||||
[DIRECTORY]
|
||||
topology: /opt/application/oopt-gnpy/topology
|
||||
equipment: /opt/application/oopt-gnpy/equipment
|
||||
autodesign: /opt/application/oopt-gnpy/autodesign
|
||||
62
gnpy/api/service/topology_service.py
Normal file
62
gnpy/api/service/topology_service.py
Normal file
@@ -0,0 +1,62 @@
|
||||
# coding: utf-
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from gnpy.api.exception.topology_error import TopologyError
|
||||
from gnpy.api.service import config_service
|
||||
|
||||
|
||||
def save_topology(topology):
|
||||
"""
|
||||
Save topology to file.
|
||||
@param topology: json content
|
||||
@return: a UUID identifier to identify the topology
|
||||
"""
|
||||
topology_identifier = str(uuid.uuid4())
|
||||
# TODO: validate json content
|
||||
_write_topology(topology, topology_identifier)
|
||||
return topology_identifier
|
||||
|
||||
|
||||
def update_topology(topology, topology_identifier):
|
||||
"""
|
||||
Update topology with identifier topology_identifier.
|
||||
@param topology_identifier: the identifier of the topology to be updated
|
||||
@param topology: json content
|
||||
@return: a UUID identifier to identify the topology
|
||||
"""
|
||||
# TODO: validate json content
|
||||
_write_topology(topology, topology_identifier)
|
||||
return topology_identifier
|
||||
|
||||
|
||||
def _write_topology(topology, topology_identifier):
|
||||
topology_dir = config_service.get_topology_dir()
|
||||
with(open(os.path.join(topology_dir, '.'.join([topology_identifier, 'json'])), 'w')) as file:
|
||||
json.dump(topology, file)
|
||||
|
||||
|
||||
def get_topology(topology_id: str) -> dict:
|
||||
"""
|
||||
Get the topology with id topology_id
|
||||
@param topology_id:
|
||||
@return: the topology in json format
|
||||
"""
|
||||
topology_dir = config_service.get_topology_dir()
|
||||
topology_file = os.path.join(topology_dir, '.'.join([topology_id, 'json']))
|
||||
if not os.path.exists(topology_file):
|
||||
raise TopologyError('Topology with id {} does not exist '.format(topology_id))
|
||||
with(open(topology_file, 'r')) as file:
|
||||
return json.load(file)
|
||||
|
||||
|
||||
def delete_topology(topology_id: str):
|
||||
"""
|
||||
Delete topology with id topology_id
|
||||
@param topology_id:
|
||||
"""
|
||||
topology_dir = config_service.get_topology_dir()
|
||||
topology_file = os.path.join(topology_dir, '.'.join([topology_id, 'json']))
|
||||
if os.path.exists(topology_file):
|
||||
os.remove(topology_file)
|
||||
17
gnpy/cli.py
17
gnpy/cli.py
@@ -1,17 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""Console script for gnpy."""
|
||||
|
||||
import click
|
||||
|
||||
|
||||
@click.command()
|
||||
def main(args=None):
|
||||
"""Console script for gnpy."""
|
||||
click.echo("Replace this message by putting your code into "
|
||||
"gnpy.cli.main")
|
||||
click.echo("See click documentation at http://click.pocoo.org/")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1 +0,0 @@
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
# coding=utf-8
|
||||
""" fiber_parameters.py describes the fiber parameters.
|
||||
fibers is a dictionary containing a dictionary for each kind of fiber
|
||||
each dictionary has to report:
|
||||
reference_frequency: the frequency at which the parameters are evaluated [THz]
|
||||
alpha: the attenuation coefficient [dB/km]
|
||||
alpha_1st: the first derivative of alpha indicating the alpha slope [dB/km/THz]
|
||||
if you assume a flat attenuation with respect to the frequency you put it as zero
|
||||
beta_2: the dispersion coefficient [ps^2/km]
|
||||
n_2: second-order nonlinear refractive index [m^2/W]
|
||||
a typical value is 2.5E-20 m^2/W
|
||||
a_eff: the effective area of the fiber [um^2]
|
||||
"""
|
||||
|
||||
fibers = {
|
||||
'SMF': {
|
||||
'reference_frequency': 193.5,
|
||||
'alpha': 0.2,
|
||||
'alpha_1st': 0,
|
||||
'beta_2': 21.27,
|
||||
'n_2': 2.5E-20,
|
||||
'a_eff': 77.77,
|
||||
},
|
||||
'NZDF': {
|
||||
'reference_frequency': 193.5,
|
||||
'alpha': 0.22,
|
||||
'alpha_1st': 0,
|
||||
'beta_2': 21,
|
||||
'n_2': 2.5E-20,
|
||||
'a_eff': 70,
|
||||
}
|
||||
}
|
||||
@@ -1,40 +0,0 @@
|
||||
# -*- coding: utf-8 -*
|
||||
"""general_parameters.py contains the general configuration settings
|
||||
|
||||
The sectings are subdivided in two dictionaries:
|
||||
sys_param: a dictionary containing the general system parameters:
|
||||
f0: the starting frequency of the laser grid used to describe the WDM system [THz]
|
||||
ns: the number of 6.25 GHz slots in the grid
|
||||
|
||||
control_param:
|
||||
save_each_comp: a boolean flag. If true, it saves in output folder one spectrum file at the output of each
|
||||
component, otherwise it saves just the last spectrum
|
||||
is_linear: a bool flag. If true, is doesn't compute NLI, if false, OLE will consider NLI
|
||||
is_analytic: a boolean flag. If true, the NLI is computed through the analytic formula, otherwise it uses
|
||||
the double integral. Warning: the double integral is very slow.
|
||||
points_not_interp: if the double integral is used, it indicates how much points are calculated, others will
|
||||
be interpolated
|
||||
kind_interp: a string indicating the interpolation method for the double integral
|
||||
th_fwm: the threshold of the four wave mixing efficiency for the double integral
|
||||
n_points: number of points in which the double integral is computed in the high FWM efficiency region
|
||||
n_points_min: number of points in which the double integral is computed in the low FWM efficiency region
|
||||
n_cores: number of cores for parallel computation [not yet implemented]
|
||||
"""
|
||||
# System parameters
|
||||
sys_param = {
|
||||
'f0': 192.075,
|
||||
'ns': 328
|
||||
}
|
||||
|
||||
# control parameters
|
||||
control_param = {
|
||||
'save_each_comp': True,
|
||||
'is_linear': False,
|
||||
'is_analytic': True,
|
||||
'points_not_interp': 2,
|
||||
'kind_interp': 'linear',
|
||||
'th_fwm': 50,
|
||||
'n_points': 500,
|
||||
'n_points_min': 4,
|
||||
'n_cores': 1
|
||||
}
|
||||
@@ -1,59 +0,0 @@
|
||||
# coding=utf-8
|
||||
""" link_description.py contains the full description of that OLE has to emulate.
|
||||
It contains a list of dictionaries, following the structure of the link and each element of the list describes one
|
||||
component.
|
||||
|
||||
'comp_cat': the kind of link component:
|
||||
PC: a passive component defined by a loss at a certain frequency and a loss tilt
|
||||
OA: an optical amplifier defined by a gain at a certain frequency, a gain tilt and a noise figure
|
||||
fiber: a span of fiber described by the type and the length
|
||||
'comp_id': is an id identifying the component. It has to be unique for each component!
|
||||
|
||||
extra fields for PC:
|
||||
'ref_freq': the frequency at which the 'loss' parameter is evaluated [THz]
|
||||
'loss': the loss at the frequency 'ref_freq' [dB]
|
||||
'loss_tlt': the frequency dependent loss [dB/THz]
|
||||
extra fields for OA:
|
||||
'ref_freq': the frequency at which the 'gain' parameter is evaluated [THz]
|
||||
'gain': the gain at the frequency 'ref_freq' [dB]
|
||||
'gain_tlt': the frequency dependent gain [dB/THz]
|
||||
'noise_figure': the noise figure of the optical amplifier [dB]
|
||||
extra fields for fiber:
|
||||
'fiber_type': a string calling the type of fiber described in the file fiber_parameters.py
|
||||
'length': the fiber length [km]
|
||||
|
||||
"""
|
||||
smf = {
|
||||
'comp_cat': 'fiber',
|
||||
'comp_id': '',
|
||||
'fiber_type': 'SMF',
|
||||
'length': 100
|
||||
}
|
||||
|
||||
oa = {
|
||||
'comp_cat': 'OA',
|
||||
'comp_id': '',
|
||||
'ref_freq': 193.5,
|
||||
'gain': 20,
|
||||
'gain_tlt': 0.0,
|
||||
'noise_figure': 5
|
||||
}
|
||||
|
||||
pc = {
|
||||
'comp_cat': 'PC',
|
||||
'comp_id': '04',
|
||||
'ref_freq': 193.,
|
||||
'loss': 2.0,
|
||||
'loss_tlt': 0.0
|
||||
}
|
||||
|
||||
link = []
|
||||
|
||||
for index in range(20):
|
||||
smf['comp_id'] = '%03d' % (2 * index)
|
||||
oa['comp_id'] = '%03d' % (2 * index + 1)
|
||||
link += [dict(smf)]
|
||||
link += [dict(oa)]
|
||||
|
||||
pc['comp_id'] = '%03d' % 40
|
||||
link += [dict(pc)]
|
||||
9
gnpy/core/__init__.py
Normal file
9
gnpy/core/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
||||
'''
|
||||
Simulation of signal propagation in the DWDM network
|
||||
|
||||
Optical signals, as defined via :class:`.info.SpectralInformation`, enter
|
||||
:py:mod:`.elements` which compute how these signals are affected as they travel
|
||||
through the :py:mod:`.network`.
|
||||
The simulation is controlled via :py:mod:`.parameters` and implemented mainly
|
||||
via :py:mod:`.science_utils`.
|
||||
'''
|
||||
15
gnpy/core/ansi_escapes.py
Normal file
15
gnpy/core/ansi_escapes.py
Normal file
@@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.core.ansi_escapes
|
||||
======================
|
||||
|
||||
A random subset of ANSI terminal escape codes for colored messages
|
||||
'''
|
||||
|
||||
red = '\x1b[1;31;40m'
|
||||
blue = '\x1b[1;34;40m'
|
||||
cyan = '\x1b[1;36;40m'
|
||||
yellow = '\x1b[1;33;40m'
|
||||
reset = '\x1b[0m'
|
||||
941
gnpy/core/elements.py
Normal file
941
gnpy/core/elements.py
Normal file
@@ -0,0 +1,941 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.core.elements
|
||||
==================
|
||||
|
||||
Standard network elements which propagate optical spectrum
|
||||
|
||||
A network element is a Python callable. It takes a :class:`.info.SpectralInformation`
|
||||
object and returns a copy with appropriate fields affected. This structure
|
||||
represents spectral information that is "propogated" by this network element.
|
||||
Network elements must have only a local "view" of the network and propogate
|
||||
:class:`.info.SpectralInformation` using only this information. They should be independent and
|
||||
self-contained.
|
||||
|
||||
Network elements MUST implement two attributes :py:attr:`uid` and :py:attr:`name` representing a
|
||||
unique identifier and a printable name, and provide the :py:meth:`__call__` method taking a
|
||||
:class:`SpectralInformation` as an input and returning another :class:`SpectralInformation`
|
||||
instance as a result.
|
||||
'''
|
||||
|
||||
from numpy import abs, arange, array, divide, errstate, ones
|
||||
from numpy import interp, mean, pi, polyfit, polyval, sum, sqrt
|
||||
from scipy.constants import h, c
|
||||
from collections import namedtuple
|
||||
|
||||
from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum
|
||||
from gnpy.core.parameters import FiberParams, PumpParams
|
||||
from gnpy.core.science_utils import NliSolver, RamanSolver, propagate_raman_fiber, _psi
|
||||
|
||||
|
||||
class Location(namedtuple('Location', 'latitude longitude city region')):
|
||||
def __new__(cls, latitude=0, longitude=0, city=None, region=None):
|
||||
return super().__new__(cls, latitude, longitude, city, region)
|
||||
|
||||
|
||||
class _Node:
|
||||
'''Convenience class for providing common functionality of all network elements
|
||||
|
||||
This class is just an internal implementation detail; do **not** assume that all network elements
|
||||
inherit from :class:`_Node`.
|
||||
'''
|
||||
def __init__(self, uid, name=None, params=None, metadata=None, operational=None, type_variety=None):
|
||||
if name is None:
|
||||
name = uid
|
||||
self.uid, self.name = uid, name
|
||||
if metadata is None:
|
||||
metadata = {'location': {}}
|
||||
if metadata and not isinstance(metadata.get('location'), Location):
|
||||
metadata['location'] = Location(**metadata.pop('location', {}))
|
||||
self.params, self.metadata, self.operational = params, metadata, operational
|
||||
if type_variety:
|
||||
self.type_variety = type_variety
|
||||
|
||||
@property
|
||||
def coords(self):
|
||||
return self.lng, self.lat
|
||||
|
||||
@property
|
||||
def location(self):
|
||||
return self.metadata['location']
|
||||
loc = location
|
||||
|
||||
@property
|
||||
def longitude(self):
|
||||
return self.location.longitude
|
||||
lng = longitude
|
||||
|
||||
@property
|
||||
def latitude(self):
|
||||
return self.location.latitude
|
||||
lat = latitude
|
||||
|
||||
|
||||
class Transceiver(_Node):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.osnr_ase_01nm = None
|
||||
self.osnr_ase = None
|
||||
self.osnr_nli = None
|
||||
self.snr = None
|
||||
self.passive = False
|
||||
self.baud_rate = None
|
||||
self.chromatic_dispersion = None
|
||||
self.pmd = None
|
||||
|
||||
def _calc_cd(self, spectral_info):
|
||||
""" Updates the Transceiver property with the CD of the received channels. CD in ps/nm.
|
||||
"""
|
||||
self.chromatic_dispersion = [carrier.chromatic_dispersion * 1e3 for carrier in spectral_info.carriers]
|
||||
|
||||
def _calc_pmd(self, spectral_info):
|
||||
"""Updates the Transceiver property with the PMD of the received channels. PMD in ps.
|
||||
"""
|
||||
self.pmd = [carrier.pmd*1e12 for carrier in spectral_info.carriers]
|
||||
|
||||
def _calc_snr(self, spectral_info):
|
||||
with errstate(divide='ignore'):
|
||||
self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
|
||||
ratio_01nm = [lin2db(12.5e9 / b_rate) for b_rate in self.baud_rate]
|
||||
# set raw values to record original calculation, before update_snr()
|
||||
self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
|
||||
for c in spectral_info.carriers]
|
||||
self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
|
||||
in zip(self.raw_osnr_ase, ratio_01nm)]
|
||||
self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
|
||||
for c in spectral_info.carriers]
|
||||
self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli + c.power.ase))
|
||||
for c in spectral_info.carriers]
|
||||
self.raw_snr_01nm = [snr - ratio for snr, ratio
|
||||
in zip(self.raw_snr, ratio_01nm)]
|
||||
|
||||
self.osnr_ase = self.raw_osnr_ase
|
||||
self.osnr_ase_01nm = self.raw_osnr_ase_01nm
|
||||
self.osnr_nli = self.raw_osnr_nli
|
||||
self.snr = self.raw_snr
|
||||
self.snr_01nm = self.raw_snr_01nm
|
||||
|
||||
def update_snr(self, *args):
|
||||
"""
|
||||
snr_added in 0.1nm
|
||||
compute SNR penalties such as transponder Tx_osnr or Roadm add_drop_osnr
|
||||
only applied in request.py / propagate on the last Trasceiver node of the path
|
||||
all penalties are added in a single call because to avoid uncontrolled cumul
|
||||
"""
|
||||
# use raw_values so that the added SNR penalties are not cumulated
|
||||
snr_added = 0
|
||||
for s in args:
|
||||
snr_added += db2lin(-s)
|
||||
snr_added = -lin2db(snr_added)
|
||||
self.osnr_ase = list(map(lambda x, y: snr_sum(x, y, snr_added),
|
||||
self.raw_osnr_ase, self.baud_rate))
|
||||
self.snr = list(map(lambda x, y: snr_sum(x, y, snr_added),
|
||||
self.raw_snr, self.baud_rate))
|
||||
self.osnr_ase_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
|
||||
self.raw_osnr_ase_01nm))
|
||||
self.snr_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
|
||||
self.raw_snr_01nm))
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
return {'uid': self.uid,
|
||||
'type': type(self).__name__,
|
||||
'metadata': {
|
||||
'location': self.metadata['location']._asdict()
|
||||
}
|
||||
}
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{type(self).__name__}('
|
||||
f'uid={self.uid!r}, '
|
||||
f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
|
||||
f'osnr_ase={self.osnr_ase!r}, '
|
||||
f'osnr_nli={self.osnr_nli!r}, '
|
||||
f'snr={self.snr!r}, '
|
||||
f'chromatic_dispersion={self.chromatic_dispersion!r}, '
|
||||
f'pmd={self.pmd!r})')
|
||||
|
||||
def __str__(self):
|
||||
if self.snr is None or self.osnr_ase is None:
|
||||
return f'{type(self).__name__} {self.uid}'
|
||||
|
||||
snr = round(mean(self.snr), 2)
|
||||
osnr_ase = round(mean(self.osnr_ase), 2)
|
||||
osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
|
||||
snr_01nm = round(mean(self.snr_01nm), 2)
|
||||
cd = mean(self.chromatic_dispersion)
|
||||
pmd = mean(self.pmd)
|
||||
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
|
||||
f' OSNR ASE (0.1nm, dB): {osnr_ase_01nm:.2f}',
|
||||
f' OSNR ASE (signal bw, dB): {osnr_ase:.2f}',
|
||||
f' SNR total (signal bw, dB): {snr:.2f}',
|
||||
f' SNR total (0.1nm, dB): {snr_01nm:.2f}',
|
||||
f' CD (ps/nm): {cd:.2f}',
|
||||
f' PMD (ps): {pmd:.2f}'])
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
self._calc_snr(spectral_info)
|
||||
self._calc_cd(spectral_info)
|
||||
self._calc_pmd(spectral_info)
|
||||
return spectral_info
|
||||
|
||||
|
||||
RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr pmd restrictions')
|
||||
|
||||
|
||||
class Roadm(_Node):
|
||||
def __init__(self, *args, params, **kwargs):
|
||||
super().__init__(*args, params=RoadmParams(**params), **kwargs)
|
||||
self.loss = 0 # auto-design interest
|
||||
self.effective_loss = None
|
||||
self.effective_pch_out_db = self.params.target_pch_out_db
|
||||
self.passive = True
|
||||
self.restrictions = self.params.restrictions
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
return {'uid': self.uid,
|
||||
'type': type(self).__name__,
|
||||
'params': {
|
||||
'target_pch_out_db': self.effective_pch_out_db,
|
||||
'restrictions': self.restrictions
|
||||
},
|
||||
'metadata': {
|
||||
'location': self.metadata['location']._asdict()
|
||||
}
|
||||
}
|
||||
|
||||
def __repr__(self):
|
||||
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
|
||||
|
||||
def __str__(self):
|
||||
if self.effective_loss is None:
|
||||
return f'{type(self).__name__} {self.uid}'
|
||||
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
f' effective loss (dB): {self.effective_loss:.2f}',
|
||||
f' pch out (dBm): {self.effective_pch_out_db!r}'])
|
||||
|
||||
def propagate(self, pref, *carriers):
|
||||
# pin_target and loss are read from eqpt_config.json['Roadm']
|
||||
# all ingress channels in xpress are set to this power level
|
||||
# but add channels are not, so we define an effective loss
|
||||
# in the case of add channels
|
||||
self.effective_pch_out_db = min(pref.p_spani, self.params.target_pch_out_db)
|
||||
self.effective_loss = pref.p_spani - self.effective_pch_out_db
|
||||
carriers_power = array([c.power.signal + c.power.nli + c.power.ase for c in carriers])
|
||||
carriers_att = list(map(lambda x: lin2db(x * 1e3) - self.params.target_pch_out_db, carriers_power))
|
||||
exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default=0)
|
||||
carriers_att = list(map(lambda x: db2lin(x + exceeding_att), carriers_att))
|
||||
for carrier_att, carrier in zip(carriers_att, carriers):
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / carrier_att,
|
||||
nli=pwr.nli / carrier_att,
|
||||
ase=pwr.ase / carrier_att)
|
||||
pmd = sqrt(carrier.pmd**2 + self.params.pmd**2)
|
||||
yield carrier._replace(power=pwr, pmd=pmd)
|
||||
|
||||
def update_pref(self, pref):
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=self.effective_pch_out_db)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
|
||||
|
||||
FusedParams = namedtuple('FusedParams', 'loss')
|
||||
|
||||
|
||||
class Fused(_Node):
|
||||
def __init__(self, *args, params=None, **kwargs):
|
||||
if params is None:
|
||||
# default loss value if not mentioned in loaded network json
|
||||
params = {'loss': 1}
|
||||
super().__init__(*args, params=FusedParams(**params), **kwargs)
|
||||
self.loss = self.params.loss
|
||||
self.passive = True
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
return {'uid': self.uid,
|
||||
'type': type(self).__name__,
|
||||
'params': {
|
||||
'loss': self.loss
|
||||
},
|
||||
'metadata': {
|
||||
'location': self.metadata['location']._asdict()
|
||||
}
|
||||
}
|
||||
|
||||
def __repr__(self):
|
||||
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
|
||||
|
||||
def __str__(self):
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
f' loss (dB): {self.loss:.2f}'])
|
||||
|
||||
def propagate(self, *carriers):
|
||||
attenuation = db2lin(self.loss)
|
||||
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / attenuation,
|
||||
nli=pwr.nli / attenuation,
|
||||
ase=pwr.ase / attenuation)
|
||||
yield carrier._replace(power=pwr)
|
||||
|
||||
def update_pref(self, pref):
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=pref.p_spani - self.loss)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
carriers = tuple(self.propagate(*spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
|
||||
|
||||
class Fiber(_Node):
|
||||
def __init__(self, *args, params=None, **kwargs):
|
||||
if not params:
|
||||
params = {}
|
||||
super().__init__(*args, params=FiberParams(**params), **kwargs)
|
||||
self.carriers_in = None
|
||||
self.carriers_out = None
|
||||
self.pch_out_db = None
|
||||
self.nli_solver = NliSolver(self)
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
return {'uid': self.uid,
|
||||
'type': type(self).__name__,
|
||||
'type_variety': self.type_variety,
|
||||
'params': {
|
||||
# have to specify each because namedtupple cannot be updated :(
|
||||
'length': round(self.params.length * 1e-3, 6),
|
||||
'loss_coef': self.params.loss_coef * 1e3,
|
||||
'length_units': 'km',
|
||||
'att_in': self.params.att_in,
|
||||
'con_in': self.params.con_in,
|
||||
'con_out': self.params.con_out
|
||||
},
|
||||
'metadata': {
|
||||
'location': self.metadata['location']._asdict()
|
||||
}
|
||||
}
|
||||
|
||||
def __repr__(self):
|
||||
return f'{type(self).__name__}(uid={self.uid!r}, ' \
|
||||
f'length={round(self.params.length * 1e-3,1)!r}km, ' \
|
||||
f'loss={round(self.loss,1)!r}dB)'
|
||||
|
||||
def __str__(self):
|
||||
if self.pch_out_db is None:
|
||||
return f'{type(self).__name__} {self.uid}'
|
||||
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
f' type_variety: {self.type_variety}',
|
||||
f' length (km): '
|
||||
f'{round(self.params.length * 1e-3):.2f}',
|
||||
f' pad att_in (dB): {self.params.att_in:.2f}',
|
||||
f' total loss (dB): {self.loss:.2f}',
|
||||
f' (includes conn loss (dB) in: {self.params.con_in:.2f} out: {self.params.con_out:.2f})',
|
||||
f' (conn loss out includes EOL margin defined in eqpt_config.json)',
|
||||
f' pch out (dBm): {self.pch_out_db!r}'])
|
||||
|
||||
@property
|
||||
def fiber_loss(self):
|
||||
"""Fiber loss in dB, not including padding attenuator"""
|
||||
return self.params.loss_coef * self.params.length + self.params.con_in + self.params.con_out
|
||||
|
||||
@property
|
||||
def loss(self):
|
||||
"""total loss including padding att_in: useful for polymorphism with roadm loss"""
|
||||
return self.params.loss_coef * self.params.length + self.params.con_in + self.params.con_out + self.params.att_in
|
||||
|
||||
@property
|
||||
def passive(self):
|
||||
return True
|
||||
|
||||
def carriers(self, loc, attr):
|
||||
"""retrieve carriers information
|
||||
|
||||
:param loc: (in, out) of the class element
|
||||
:param attr: (ase, nli, signal, total) power information
|
||||
"""
|
||||
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
|
||||
yield None
|
||||
return
|
||||
loc_attr = 'carriers_' + loc
|
||||
for c in getattr(self, loc_attr):
|
||||
if attr == 'total':
|
||||
yield c.power.ase + c.power.nli + c.power.signal
|
||||
else:
|
||||
yield c.power._asdict().get(attr, None)
|
||||
|
||||
def alpha(self, frequencies):
|
||||
"""It returns the values of the series expansion of attenuation coefficient alpha(f) for all f in frequencies
|
||||
|
||||
:param frequencies: frequencies of series expansion [Hz]
|
||||
:return: alpha: power attenuation coefficient for f in frequencies [Neper/m]
|
||||
"""
|
||||
if type(self.params.loss_coef) == dict:
|
||||
alpha = interp(frequencies, self.params.f_loss_ref, self.params.lin_loss_exp)
|
||||
else:
|
||||
alpha = self.params.lin_loss_exp * ones(frequencies.shape)
|
||||
|
||||
return alpha
|
||||
|
||||
def alpha0(self, f_ref=193.5e12):
|
||||
"""It returns the zero element of the series expansion of attenuation coefficient alpha(f) in the
|
||||
reference frequency f_ref
|
||||
|
||||
:param f_ref: reference frequency of series expansion [Hz]
|
||||
:return: alpha0: power attenuation coefficient in f_ref [Neper/m]
|
||||
"""
|
||||
return self.alpha(f_ref * ones(1))[0]
|
||||
|
||||
def chromatic_dispersion(self, freq=193.5e12):
|
||||
"""Returns accumulated chromatic dispersion (CD).
|
||||
|
||||
:param freq: the frequency at which the chromatic dispersion is computed
|
||||
:return: chromatic dispersion: the accumulated dispersion [s/m]
|
||||
"""
|
||||
beta2 = self.params.beta2
|
||||
beta3 = self.params.beta3
|
||||
ref_f = self.params.ref_frequency
|
||||
length = self.params.length
|
||||
beta = beta2 + 2 * pi * beta3 * (freq - ref_f)
|
||||
dispersion = -beta * 2 * pi * ref_f**2 / c
|
||||
return dispersion * length
|
||||
|
||||
@property
|
||||
def pmd(self):
|
||||
"""differential group delay (PMD) [s]"""
|
||||
return self.params.pmd_coef * sqrt(self.params.length)
|
||||
|
||||
def _gn_analytic(self, carrier, *carriers):
|
||||
"""Computes the nonlinear interference power on a single carrier.
|
||||
The method uses eq. 120 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__.
|
||||
|
||||
:param carrier: the signal under analysis
|
||||
:param carriers: the full WDM comb
|
||||
:return: carrier_nli: the amount of nonlinear interference in W on the under analysis
|
||||
"""
|
||||
|
||||
g_nli = 0
|
||||
for interfering_carrier in carriers:
|
||||
psi = _psi(carrier, interfering_carrier, beta2=self.params.beta2,
|
||||
asymptotic_length=self.params.asymptotic_length)
|
||||
g_nli += (interfering_carrier.power.signal / interfering_carrier.baud_rate)**2 \
|
||||
* (carrier.power.signal / carrier.baud_rate) * psi
|
||||
|
||||
g_nli *= (16 / 27) * (self.params.gamma * self.params.effective_length)**2 \
|
||||
/ (2 * pi * abs(self.params.beta2) * self.params.asymptotic_length)
|
||||
|
||||
carrier_nli = carrier.baud_rate * g_nli
|
||||
return carrier_nli
|
||||
|
||||
def propagate(self, *carriers):
|
||||
r"""Generator that computes the fiber propagation: attenuation, non-linear interference generation, CD
|
||||
accumulation and PMD accumulation.
|
||||
|
||||
:param: \*carriers: the channels at the input of the fiber
|
||||
:yield: carrier: the next channel at the output of the fiber
|
||||
"""
|
||||
|
||||
# apply connector_att_in on all carriers before computing gn analytics premiere partie pas bonne
|
||||
attenuation = db2lin(self.params.con_in + self.params.att_in)
|
||||
|
||||
chan = []
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / attenuation,
|
||||
nli=pwr.nli / attenuation,
|
||||
ase=pwr.ase / attenuation)
|
||||
carrier = carrier._replace(power=pwr)
|
||||
chan.append(carrier)
|
||||
|
||||
carriers = tuple(f for f in chan)
|
||||
|
||||
# propagate in the fiber and apply attenuation out
|
||||
attenuation = db2lin(self.params.con_out)
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
carrier_nli = self._gn_analytic(carrier, *carriers)
|
||||
pwr = pwr._replace(signal=pwr.signal / self.params.lin_attenuation / attenuation,
|
||||
nli=(pwr.nli + carrier_nli) / self.params.lin_attenuation / attenuation,
|
||||
ase=pwr.ase / self.params.lin_attenuation / attenuation)
|
||||
chromatic_dispersion = carrier.chromatic_dispersion + self.chromatic_dispersion(carrier.frequency)
|
||||
pmd = sqrt(carrier.pmd**2 + self.pmd**2)
|
||||
yield carrier._replace(power=pwr, chromatic_dispersion=chromatic_dispersion, pmd=pmd)
|
||||
|
||||
def update_pref(self, pref):
|
||||
self.pch_out_db = round(pref.p_spani - self.loss, 2)
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
self.carriers_in = spectral_info.carriers
|
||||
carriers = tuple(self.propagate(*spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
self.carriers_out = carriers
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
|
||||
|
||||
class RamanFiber(Fiber):
|
||||
def __init__(self, *args, params=None, **kwargs):
|
||||
super().__init__(*args, params=params, **kwargs)
|
||||
if self.operational and 'raman_pumps' in self.operational:
|
||||
self.raman_pumps = tuple(PumpParams(p['power'], p['frequency'], p['propagation_direction'])
|
||||
for p in self.operational['raman_pumps'])
|
||||
else:
|
||||
self.raman_pumps = None
|
||||
self.raman_solver = RamanSolver(self)
|
||||
|
||||
def update_pref(self, pref, *carriers):
|
||||
pch_out_db = lin2db(mean([carrier.power.signal for carrier in carriers])) + 30
|
||||
self.pch_out_db = round(pch_out_db, 2)
|
||||
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
self.carriers_in = spectral_info.carriers
|
||||
carriers = tuple(self.propagate(*spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref, *carriers)
|
||||
self.carriers_out = carriers
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
|
||||
def propagate(self, *carriers):
|
||||
for propagated_carrier in propagate_raman_fiber(self, *carriers):
|
||||
chromatic_dispersion = propagated_carrier.chromatic_dispersion + \
|
||||
self.chromatic_dispersion(propagated_carrier.frequency)
|
||||
pmd = sqrt(propagated_carrier.pmd**2 + self.pmd**2)
|
||||
propagated_carrier = propagated_carrier._replace(chromatic_dispersion=chromatic_dispersion, pmd=pmd)
|
||||
yield propagated_carrier
|
||||
|
||||
|
||||
class EdfaParams:
|
||||
def __init__(self, **params):
|
||||
self.update_params(params)
|
||||
if params == {}:
|
||||
self.type_variety = ''
|
||||
self.type_def = ''
|
||||
# self.gain_flatmax = 0
|
||||
# self.gain_min = 0
|
||||
# self.p_max = 0
|
||||
# self.nf_model = None
|
||||
# self.nf_fit_coeff = None
|
||||
# self.nf_ripple = None
|
||||
# self.dgt = None
|
||||
# self.gain_ripple = None
|
||||
# self.out_voa_auto = False
|
||||
# self.allowed_for_design = None
|
||||
|
||||
def update_params(self, kwargs):
|
||||
for k, v in kwargs.items():
|
||||
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
|
||||
|
||||
|
||||
class EdfaOperational:
|
||||
default_values = {
|
||||
'gain_target': None,
|
||||
'delta_p': None,
|
||||
'out_voa': None,
|
||||
'tilt_target': 0
|
||||
}
|
||||
|
||||
def __init__(self, **operational):
|
||||
self.update_attr(operational)
|
||||
|
||||
def update_attr(self, kwargs):
|
||||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||||
for k, v in self.default_values.items():
|
||||
setattr(self, k, clean_kwargs.get(k, v))
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{type(self).__name__}('
|
||||
f'gain_target={self.gain_target!r}, '
|
||||
f'tilt_target={self.tilt_target!r})')
|
||||
|
||||
|
||||
class Edfa(_Node):
|
||||
def __init__(self, *args, params=None, operational=None, **kwargs):
|
||||
if params is None:
|
||||
params = {}
|
||||
if operational is None:
|
||||
operational = {}
|
||||
super().__init__(
|
||||
*args,
|
||||
params=EdfaParams(**params),
|
||||
operational=EdfaOperational(**operational),
|
||||
**kwargs
|
||||
)
|
||||
self.interpol_dgt = None # interpolated dynamic gain tilt
|
||||
self.interpol_gain_ripple = None # gain ripple
|
||||
self.interpol_nf_ripple = None # nf_ripple
|
||||
self.channel_freq = None # SI channel frequencies
|
||||
# nf, gprofile, pin and pout attributes are set by interpol_params
|
||||
self.nf = None # dB edfa nf at operational.gain_target
|
||||
self.gprofile = None
|
||||
self.pin_db = None
|
||||
self.nch = None
|
||||
self.pout_db = None
|
||||
self.target_pch_out_db = None
|
||||
self.effective_pch_out_db = None
|
||||
self.passive = False
|
||||
self.att_in = None
|
||||
self.carriers_in = None
|
||||
self.carriers_out = None
|
||||
self.effective_gain = self.operational.gain_target
|
||||
self.delta_p = self.operational.delta_p # delta P with Pref (power swwep) in power mode
|
||||
self.tilt_target = self.operational.tilt_target
|
||||
self.out_voa = self.operational.out_voa
|
||||
|
||||
@property
|
||||
def to_json(self):
|
||||
return {'uid': self.uid,
|
||||
'type': type(self).__name__,
|
||||
'type_variety': self.params.type_variety,
|
||||
'operational': {
|
||||
'gain_target': self.effective_gain,
|
||||
'delta_p': self.delta_p,
|
||||
'tilt_target': self.tilt_target,
|
||||
'out_voa': self.out_voa
|
||||
},
|
||||
'metadata': {
|
||||
'location': self.metadata['location']._asdict()
|
||||
}
|
||||
}
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{type(self).__name__}(uid={self.uid!r}, '
|
||||
f'type_variety={self.params.type_variety!r}, '
|
||||
f'interpol_dgt={self.interpol_dgt!r}, '
|
||||
f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
|
||||
f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
|
||||
f'channel_freq={self.channel_freq!r}, '
|
||||
f'nf={self.nf!r}, '
|
||||
f'gprofile={self.gprofile!r}, '
|
||||
f'pin_db={self.pin_db!r}, '
|
||||
f'pout_db={self.pout_db!r})')
|
||||
|
||||
def __str__(self):
|
||||
if self.pin_db is None or self.pout_db is None:
|
||||
return f'{type(self).__name__} {self.uid}'
|
||||
nf = mean(self.nf)
|
||||
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
||||
f' type_variety: {self.params.type_variety}',
|
||||
f' effective gain(dB): {self.effective_gain:.2f}',
|
||||
f' (before att_in and before output VOA)',
|
||||
f' noise figure (dB): {nf:.2f}',
|
||||
f' (including att_in)',
|
||||
f' pad att_in (dB): {self.att_in:.2f}',
|
||||
f' Power In (dBm): {self.pin_db:.2f}',
|
||||
f' Power Out (dBm): {self.pout_db:.2f}',
|
||||
f' Delta_P (dB): {self.delta_p!r}',
|
||||
f' target pch (dBm): {self.target_pch_out_db!r}',
|
||||
f' effective pch (dBm): {self.effective_pch_out_db!r}',
|
||||
f' output VOA (dB): {self.out_voa:.2f}'])
|
||||
|
||||
def carriers(self, loc, attr):
|
||||
"""retrieve carriers information
|
||||
|
||||
:param loc: (in, out) of the class element
|
||||
:param attr: (ase, nli, signal, total) power information
|
||||
"""
|
||||
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
|
||||
yield None
|
||||
return
|
||||
loc_attr = 'carriers_' + loc
|
||||
for c in getattr(self, loc_attr):
|
||||
if attr == 'total':
|
||||
yield c.power.ase + c.power.nli + c.power.signal
|
||||
else:
|
||||
yield c.power._asdict().get(attr, None)
|
||||
|
||||
def interpol_params(self, frequencies, pin, baud_rates, pref):
|
||||
"""interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
|
||||
"""
|
||||
# TODO|jla: read amplifier actual frequencies from additional params in json
|
||||
self.channel_freq = frequencies
|
||||
|
||||
amplifier_freq = arrange_frequencies(len(self.params.dgt), self.params.f_min, self.params.f_max) # Hz
|
||||
self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
|
||||
|
||||
amplifier_freq = arrange_frequencies(len(self.params.gain_ripple), self.params.f_min, self.params.f_max) # Hz
|
||||
self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
|
||||
|
||||
amplifier_freq = arrange_frequencies(len(self.params.nf_ripple), self.params.f_min, self.params.f_max) # Hz
|
||||
self.interpol_nf_ripple = interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
|
||||
|
||||
self.nch = frequencies.size
|
||||
self.pin_db = lin2db(sum(pin * 1e3))
|
||||
|
||||
"""in power mode: delta_p is defined and can be used to calculate the power target
|
||||
This power target is used calculate the amplifier gain"""
|
||||
if self.delta_p is not None:
|
||||
self.target_pch_out_db = round(self.delta_p + pref.p_span0, 2)
|
||||
self.effective_gain = self.target_pch_out_db - pref.p_spani
|
||||
|
||||
"""check power saturation and correct effective gain & power accordingly:"""
|
||||
self.effective_gain = min(
|
||||
self.effective_gain,
|
||||
self.params.p_max - (pref.p_spani + pref.neq_ch)
|
||||
)
|
||||
#print(self.uid, self.effective_gain, self.operational.gain_target)
|
||||
self.effective_pch_out_db = round(pref.p_spani + self.effective_gain, 2)
|
||||
|
||||
"""check power saturation and correct target_gain accordingly:"""
|
||||
#print(self.uid, self.effective_gain, self.pin_db, pref.p_spani)
|
||||
self.nf = self._calc_nf()
|
||||
self.gprofile = self._gain_profile(pin)
|
||||
|
||||
pout = (pin + self.noise_profile(baud_rates)) * db2lin(self.gprofile)
|
||||
self.pout_db = lin2db(sum(pout * 1e3))
|
||||
# ase & nli are only calculated in signal bandwidth
|
||||
# pout_db is not the absolute full output power (negligible if sufficient channels)
|
||||
|
||||
def _nf(self, type_def, nf_model, nf_fit_coeff, gain_min, gain_flatmax, gain_target):
|
||||
# if hybrid raman, use edfa_gain_flatmax attribute, else use gain_flatmax
|
||||
#gain_flatmax = getattr(params, 'edfa_gain_flatmax', params.gain_flatmax)
|
||||
pad = max(gain_min - gain_target, 0)
|
||||
gain_target += pad
|
||||
dg = max(gain_flatmax - gain_target, 0)
|
||||
if type_def == 'variable_gain':
|
||||
g1a = gain_target - nf_model.delta_p - dg
|
||||
nf_avg = lin2db(db2lin(nf_model.nf1) + db2lin(nf_model.nf2) / db2lin(g1a))
|
||||
elif type_def == 'fixed_gain':
|
||||
nf_avg = nf_model.nf0
|
||||
elif type_def == 'openroadm':
|
||||
pin_ch = self.pin_db - lin2db(self.nch)
|
||||
# model OSNR = f(Pin)
|
||||
nf_avg = pin_ch - polyval(nf_model.nf_coef, pin_ch) + 58
|
||||
elif type_def == 'advanced_model':
|
||||
nf_avg = polyval(nf_fit_coeff, -dg)
|
||||
else:
|
||||
assert False, "Unrecognized amplifier type, this should have been checked by the JSON loader"
|
||||
return nf_avg + pad, pad
|
||||
|
||||
def _calc_nf(self, avg=False):
|
||||
"""nf calculation based on 2 models: self.params.nf_model.enabled from json import:
|
||||
True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
|
||||
False => polynomial fit based on self.params.nf_fit_coeff"""
|
||||
# gain_min > gain_target TBD:
|
||||
if self.params.type_def == 'dual_stage':
|
||||
g1 = self.params.preamp_gain_flatmax
|
||||
g2 = self.effective_gain - g1
|
||||
nf1_avg, pad = self._nf(self.params.preamp_type_def,
|
||||
self.params.preamp_nf_model,
|
||||
self.params.preamp_nf_fit_coeff,
|
||||
self.params.preamp_gain_min,
|
||||
self.params.preamp_gain_flatmax,
|
||||
g1)
|
||||
# no padding expected for the 1stage because g1 = gain_max
|
||||
nf2_avg, pad = self._nf(self.params.booster_type_def,
|
||||
self.params.booster_nf_model,
|
||||
self.params.booster_nf_fit_coeff,
|
||||
self.params.booster_gain_min,
|
||||
self.params.booster_gain_flatmax,
|
||||
g2)
|
||||
nf_avg = lin2db(db2lin(nf1_avg) + db2lin(nf2_avg - g1))
|
||||
# no padding expected for the 1stage because g1 = gain_max
|
||||
pad = 0
|
||||
else:
|
||||
nf_avg, pad = self._nf(self.params.type_def,
|
||||
self.params.nf_model,
|
||||
self.params.nf_fit_coeff,
|
||||
self.params.gain_min,
|
||||
self.params.gain_flatmax,
|
||||
self.effective_gain)
|
||||
|
||||
self.att_in = pad # not used to attenuate carriers, only used in _repr_ and _str_
|
||||
if avg:
|
||||
return nf_avg
|
||||
else:
|
||||
return self.interpol_nf_ripple + nf_avg # input VOA = 1 for 1 NF degradation
|
||||
|
||||
def noise_profile(self, df):
|
||||
"""noise_profile(bw) computes amplifier ASE (W) in signal bandwidth (Hz)
|
||||
|
||||
Noise is calculated at amplifier input
|
||||
|
||||
:bw: signal bandwidth = baud rate in Hz
|
||||
:type bw: float
|
||||
|
||||
:return: the asepower in W in the signal bandwidth bw for 96 channels
|
||||
:return type: numpy array of float
|
||||
|
||||
ASE power using per channel gain profile inputs:
|
||||
|
||||
NF_dB - Noise figure in dB, vector of length number of channels or
|
||||
spectral slices
|
||||
G_dB - Actual gain calculated for the EDFA, vector of length number of
|
||||
channels or spectral slices
|
||||
ffs - Center frequency grid of the channels or spectral slices in
|
||||
THz, vector of length number of channels or spectral slices
|
||||
dF - width of each channel or spectral slice in THz,
|
||||
vector of length number of channels or spectral slices
|
||||
|
||||
OUTPUT:
|
||||
|
||||
ase_dBm - ase in dBm per channel or spectral slice
|
||||
|
||||
NOTE:
|
||||
|
||||
The output is the total ASE in the channel or spectral slice. For
|
||||
50GHz channels the ASE BW is effectively 0.4nm. To get to noise power
|
||||
in 0.1nm, subtract 6dB.
|
||||
|
||||
ONSR is usually quoted as channel power divided by
|
||||
the ASE power in 0.1nm RBW, regardless of the width of the actual
|
||||
channel. This is a historical convention from the days when optical
|
||||
signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
|
||||
resolution of the OSAs that were used to measure spectral power which
|
||||
were set to 0.1nm resolution for convenience. Moving forward into
|
||||
flexible grid and high baud rate signals, it may be convenient to begin
|
||||
quoting power spectral density in the same BW for both signal and ASE,
|
||||
e.g. 12.5GHz."""
|
||||
|
||||
ase = h * df * self.channel_freq * db2lin(self.nf) # W
|
||||
return ase # in W at amplifier input
|
||||
|
||||
def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
|
||||
"""
|
||||
Pin : input power / channel in W
|
||||
|
||||
:param gain_ripple: design flat gain
|
||||
:param dgt: design gain tilt
|
||||
:param Pin: total input power in W
|
||||
:param gp: Average gain setpoint in dB units (provisioned gain)
|
||||
:param gtp: gain tilt setting (provisioned tilt)
|
||||
:type gain_ripple: numpy.ndarray
|
||||
:type dgt: numpy.ndarray
|
||||
:type Pin: numpy.ndarray
|
||||
:type gp: float
|
||||
:type gtp: float
|
||||
:return: gain profile in dBm, per channel or spectral slice
|
||||
:rtype: numpy.ndarray
|
||||
|
||||
Checking of output power clamping is implemented in interpol_params().
|
||||
|
||||
|
||||
Based on:
|
||||
|
||||
R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
|
||||
gain tilt technique", Journal of Lightwave Technology, Vol. 18,
|
||||
Iss. 3, Pp. 343-347, 2000.
|
||||
|
||||
Ported from Matlab version written by David Boerges at Ciena.
|
||||
"""
|
||||
|
||||
# TODO|jla: check what param should be used (currently length(dgt))
|
||||
if len(self.interpol_dgt) == 1:
|
||||
return array([self.effective_gain])
|
||||
|
||||
nb_channel = arange(len(self.interpol_dgt))
|
||||
|
||||
# TODO|jla: find a way to use these or lose them. Primarily we should have
|
||||
# a way to determine if exceeding the gain or output power of the amp
|
||||
tot_in_power_db = self.pin_db # Pin in W
|
||||
|
||||
# linear fit to get the
|
||||
p = polyfit(nb_channel, self.interpol_dgt, 1)
|
||||
dgt_slope = p[0]
|
||||
|
||||
# Calculate the target slope - currently assumes equal spaced channels
|
||||
# TODO|jla: support arbitrary channel spacing
|
||||
targ_slope = self.tilt_target / (len(nb_channel) - 1)
|
||||
|
||||
# first estimate of DGT scaling
|
||||
if abs(dgt_slope) > 0.001: # check for zero value due to flat dgt
|
||||
dgts1 = targ_slope / dgt_slope
|
||||
else:
|
||||
dgts1 = 0
|
||||
|
||||
# when simple_opt is true, make 2 attempts to compute gain and
|
||||
# the internal voa value. This is currently here to provide direct
|
||||
# comparison with original Matlab code. Will be removed.
|
||||
# TODO|jla: replace with loop
|
||||
|
||||
if not simple_opt:
|
||||
return
|
||||
|
||||
# first estimate of Er gain & VOA loss
|
||||
g1st = array(self.interpol_gain_ripple) + self.params.gain_flatmax \
|
||||
+ array(self.interpol_dgt) * dgts1
|
||||
voa = lin2db(mean(db2lin(g1st))) - self.effective_gain
|
||||
|
||||
# second estimate of amp ch gain using the channel input profile
|
||||
g2nd = g1st - voa
|
||||
|
||||
pout_db = lin2db(sum(pin * 1e3 * db2lin(g2nd)))
|
||||
dgts2 = self.effective_gain - (pout_db - tot_in_power_db)
|
||||
|
||||
# center estimate of amp ch gain
|
||||
xcent = dgts2
|
||||
gcent = g1st - voa + array(self.interpol_dgt) * xcent
|
||||
pout_db = lin2db(sum(pin * 1e3 * db2lin(gcent)))
|
||||
gavg_cent = pout_db - tot_in_power_db
|
||||
|
||||
# Lower estimate of amp ch gain
|
||||
deltax = max(g1st) - min(g1st)
|
||||
# if no ripple deltax = 0 and xlow = xcent: div 0
|
||||
# TODO|jla: add check for flat gain response
|
||||
if abs(deltax) <= 0.05: # not enough ripple to consider calculation
|
||||
return g1st - voa
|
||||
|
||||
xlow = dgts2 - deltax
|
||||
glow = g1st - voa + array(self.interpol_dgt) * xlow
|
||||
pout_db = lin2db(sum(pin * 1e3 * db2lin(glow)))
|
||||
gavg_low = pout_db - tot_in_power_db
|
||||
|
||||
# upper gain estimate
|
||||
xhigh = dgts2 + deltax
|
||||
ghigh = g1st - voa + array(self.interpol_dgt) * xhigh
|
||||
pout_db = lin2db(sum(pin * 1e3 * db2lin(ghigh)))
|
||||
gavg_high = pout_db - tot_in_power_db
|
||||
|
||||
# compute slope
|
||||
slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
|
||||
slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
|
||||
|
||||
if abs(self.effective_gain - gavg_cent) <= err_tolerance:
|
||||
dgts3 = xcent
|
||||
elif self.effective_gain < gavg_cent:
|
||||
dgts3 = xcent - (gavg_cent - self.effective_gain) / slope1
|
||||
else:
|
||||
dgts3 = xcent + (-gavg_cent + self.effective_gain) / slope2
|
||||
|
||||
return g1st - voa + array(self.interpol_dgt) * dgts3
|
||||
|
||||
def propagate(self, pref, *carriers):
|
||||
"""add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
|
||||
pin = array([c.power.signal + c.power.nli + c.power.ase for c in carriers]) # pin in W
|
||||
freq = array([c.frequency for c in carriers])
|
||||
brate = array([c.baud_rate for c in carriers])
|
||||
# interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
|
||||
self.interpol_params(freq, pin, brate, pref)
|
||||
|
||||
gains = db2lin(self.gprofile)
|
||||
carrier_ases = self.noise_profile(brate)
|
||||
att = db2lin(self.out_voa)
|
||||
|
||||
for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal * gain / att,
|
||||
nli=pwr.nli * gain / att,
|
||||
ase=(pwr.ase + carrier_ase) * gain / att)
|
||||
yield carrier._replace(power=pwr)
|
||||
|
||||
def update_pref(self, pref):
|
||||
return pref._replace(p_span0=pref.p_span0,
|
||||
p_spani=pref.p_spani + self.effective_gain - self.out_voa)
|
||||
|
||||
def __call__(self, spectral_info):
|
||||
self.carriers_in = spectral_info.carriers
|
||||
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
|
||||
pref = self.update_pref(spectral_info.pref)
|
||||
self.carriers_out = carriers
|
||||
return spectral_info._replace(carriers=carriers, pref=pref)
|
||||
73
gnpy/core/equipment.py
Normal file
73
gnpy/core/equipment.py
Normal file
@@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.core.equipment
|
||||
===================
|
||||
|
||||
This module contains functionality for specifying equipment.
|
||||
'''
|
||||
|
||||
from gnpy.core.utils import automatic_nch, db2lin
|
||||
from gnpy.core.exceptions import EquipmentConfigError
|
||||
|
||||
|
||||
def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=False):
|
||||
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)"""
|
||||
trx_params = {}
|
||||
default_si_data = equipment['SI']['default']
|
||||
|
||||
try:
|
||||
trxs = equipment['Transceiver']
|
||||
# if called from path_requests_run.py, trx_mode is filled with None when not specified by user
|
||||
# if called from transmission_main.py, trx_mode is ''
|
||||
if trx_mode is not None:
|
||||
mode_params = next(mode for trx in trxs
|
||||
if trx == trx_type_variety
|
||||
for mode in trxs[trx].mode
|
||||
if mode['format'] == trx_mode)
|
||||
trx_params = {**mode_params}
|
||||
# sanity check: spacing baudrate must be smaller than min spacing
|
||||
if trx_params['baud_rate'] > trx_params['min_spacing']:
|
||||
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" ' +
|
||||
f'has baud rate {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
|
||||
else:
|
||||
mode_params = {"format": "undetermined",
|
||||
"baud_rate": None,
|
||||
"OSNR": None,
|
||||
"bit_rate": None,
|
||||
"roll_off": None,
|
||||
"tx_osnr": None,
|
||||
"min_spacing": None,
|
||||
"cost": None}
|
||||
trx_params = {**mode_params}
|
||||
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
|
||||
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
|
||||
|
||||
# TODO: novel automatic feature maybe unwanted if spacing is specified
|
||||
# trx_params['spacing'] = _automatic_spacing(trx_params['baud_rate'])
|
||||
# temp = trx_params['spacing']
|
||||
# print(f'spacing {temp}')
|
||||
except StopIteration:
|
||||
if error_message:
|
||||
raise EquipmentConfigError(f'Could not find transponder "{trx_type_variety}" with mode "{trx_mode}" in equipment library')
|
||||
else:
|
||||
# default transponder charcteristics
|
||||
# mainly used with transmission_main_example.py
|
||||
trx_params['f_min'] = default_si_data.f_min
|
||||
trx_params['f_max'] = default_si_data.f_max
|
||||
trx_params['baud_rate'] = default_si_data.baud_rate
|
||||
trx_params['spacing'] = default_si_data.spacing
|
||||
trx_params['OSNR'] = None
|
||||
trx_params['bit_rate'] = None
|
||||
trx_params['cost'] = None
|
||||
trx_params['roll_off'] = default_si_data.roll_off
|
||||
trx_params['tx_osnr'] = default_si_data.tx_osnr
|
||||
trx_params['min_spacing'] = None
|
||||
nch = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
|
||||
trx_params['nb_channel'] = nch
|
||||
print(f'There are {nch} channels propagating')
|
||||
|
||||
trx_params['power'] = db2lin(default_si_data.power_dbm) * 1e-3
|
||||
|
||||
return trx_params
|
||||
37
gnpy/core/exceptions.py
Normal file
37
gnpy/core/exceptions.py
Normal file
@@ -0,0 +1,37 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.core.exceptions
|
||||
====================
|
||||
|
||||
Exceptions thrown by other gnpy modules
|
||||
'''
|
||||
|
||||
|
||||
class ConfigurationError(Exception):
|
||||
'''User-provided configuration contains an error'''
|
||||
|
||||
|
||||
class EquipmentConfigError(ConfigurationError):
|
||||
'''Incomplete or wrong configuration within the equipment library'''
|
||||
|
||||
|
||||
class NetworkTopologyError(ConfigurationError):
|
||||
'''Topology of user-provided network is wrong'''
|
||||
|
||||
|
||||
class ServiceError(Exception):
|
||||
'''Service of user-provided request is wrong'''
|
||||
|
||||
|
||||
class DisjunctionError(ServiceError):
|
||||
'''Disjunction of user-provided request can not be satisfied'''
|
||||
|
||||
|
||||
class SpectrumError(Exception):
|
||||
'''Spectrum errors of the program'''
|
||||
|
||||
|
||||
class ParametersError(ConfigurationError):
|
||||
'''Incomplete or wrong configurations within parameters json'''
|
||||
57
gnpy/core/info.py
Normal file
57
gnpy/core/info.py
Normal file
@@ -0,0 +1,57 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.core.info
|
||||
==============
|
||||
|
||||
This module contains classes for modelling :class:`SpectralInformation`.
|
||||
'''
|
||||
|
||||
|
||||
from collections import namedtuple
|
||||
from gnpy.core.utils import automatic_nch, lin2db
|
||||
|
||||
|
||||
class Power(namedtuple('Power', 'signal nli ase')):
|
||||
"""carriers power in W"""
|
||||
|
||||
|
||||
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power chromatic_dispersion pmd')):
|
||||
""" Class containing the parameters of a WDM signal.
|
||||
|
||||
:param channel_number: channel number in the WDM grid
|
||||
:param frequency: central frequency of the signal (Hz)
|
||||
:param baud_rate: the symbol rate of the signal (Baud)
|
||||
:param roll_off: the roll off of the signal. It is a pure number between 0 and 1
|
||||
:param power (gnpy.core.info.Power): power of signal, ASE noise and NLI (W)
|
||||
:param chromatic_dispersion: chromatic dispersion (s/m)
|
||||
:param pmd: polarization mode dispersion (s)
|
||||
"""
|
||||
|
||||
|
||||
class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
|
||||
"""noiseless reference power in dBm:
|
||||
p_span0: inital target carrier power
|
||||
p_spani: carrier power after element i
|
||||
neq_ch: equivalent channel count in dB"""
|
||||
|
||||
|
||||
class SpectralInformation(namedtuple('SpectralInformation', 'pref carriers')):
|
||||
|
||||
def __new__(cls, pref, carriers):
|
||||
return super().__new__(cls, pref, carriers)
|
||||
|
||||
|
||||
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
|
||||
# pref in dB : convert power lin into power in dB
|
||||
pref = lin2db(power * 1e3)
|
||||
nb_channel = automatic_nch(f_min, f_max, spacing)
|
||||
si = SpectralInformation(
|
||||
pref=Pref(pref, pref, lin2db(nb_channel)),
|
||||
carriers=[
|
||||
Channel(f, (f_min + spacing * f),
|
||||
baud_rate, roll_off, Power(power, 0, 0), 0, 0) for f in range(1, nb_channel + 1)
|
||||
]
|
||||
)
|
||||
return si
|
||||
484
gnpy/core/network.py
Normal file
484
gnpy/core/network.py
Normal file
@@ -0,0 +1,484 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.core.network
|
||||
=================
|
||||
|
||||
Working with networks which consist of network elements
|
||||
'''
|
||||
|
||||
from scipy.interpolate import interp1d
|
||||
from operator import attrgetter
|
||||
from gnpy.core import ansi_escapes, elements
|
||||
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
|
||||
from gnpy.core.utils import round2float, convert_length
|
||||
from collections import namedtuple
|
||||
|
||||
|
||||
def edfa_nf(gain_target, variety_type, equipment):
|
||||
amp_params = equipment['Edfa'][variety_type]
|
||||
amp = elements.Edfa(
|
||||
uid='calc_NF',
|
||||
params=amp_params.__dict__,
|
||||
operational={
|
||||
'gain_target': gain_target,
|
||||
'tilt_target': 0
|
||||
}
|
||||
)
|
||||
amp.pin_db = 0
|
||||
amp.nch = 88
|
||||
return amp._calc_nf(True)
|
||||
|
||||
|
||||
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
|
||||
"""amplifer selection algorithm
|
||||
@Orange Jean-Luc Augé
|
||||
"""
|
||||
Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf')
|
||||
TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain
|
||||
|
||||
# for roadm restriction only: create a dict including not allowed for design amps
|
||||
# because main use case is to have specific radm amp which are not allowed for ILA
|
||||
# with the auto design
|
||||
edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items()
|
||||
if restrictions is None or name in restrictions}
|
||||
|
||||
pin = power_target - gain_target
|
||||
|
||||
# create 2 list of available amplifiers with relevant attributes for their selection
|
||||
|
||||
# edfa list with:
|
||||
# extended gain min allowance of 3dB: could be parametrized, but a bit complex
|
||||
# extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json
|
||||
# power attribut include power AND gain limitations
|
||||
edfa_list = [Edfa_list(
|
||||
variety=edfa_variety,
|
||||
power=min(
|
||||
pin
|
||||
+ edfa.gain_flatmax
|
||||
+ TARGET_EXTENDED_GAIN,
|
||||
edfa.p_max
|
||||
)
|
||||
- power_target,
|
||||
gain_min=gain_target + 3
|
||||
- edfa.gain_min,
|
||||
nf=edfa_nf(gain_target, edfa_variety, equipment))
|
||||
for edfa_variety, edfa in edfa_dict.items()
|
||||
if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
|
||||
|
||||
# consider a Raman list because of different gain_min requirement:
|
||||
# do not allow extended gain min for Raman
|
||||
raman_list = [Edfa_list(
|
||||
variety=edfa_variety,
|
||||
power=min(
|
||||
pin
|
||||
+ edfa.gain_flatmax
|
||||
+ TARGET_EXTENDED_GAIN,
|
||||
edfa.p_max
|
||||
)
|
||||
- power_target,
|
||||
gain_min=gain_target
|
||||
- edfa.gain_min,
|
||||
nf=edfa_nf(gain_target, edfa_variety, equipment))
|
||||
for edfa_variety, edfa in edfa_dict.items()
|
||||
if (edfa.allowed_for_design and edfa.raman)] \
|
||||
if raman_allowed else []
|
||||
|
||||
# merge raman and edfa lists
|
||||
amp_list = edfa_list + raman_list
|
||||
|
||||
# filter on min gain limitation:
|
||||
acceptable_gain_min_list = [x for x in amp_list if x.gain_min > 0]
|
||||
|
||||
if len(acceptable_gain_min_list) < 1:
|
||||
# do not take this empty list into account for the rest of the code
|
||||
# but issue a warning to the user and do not consider Raman
|
||||
# Raman below min gain should not be allowed because i is meant to be a design requirement
|
||||
# and raman padding at the amplifier input is impossible!
|
||||
|
||||
if len(edfa_list) < 1:
|
||||
raise ConfigurationError(f'auto_design could not find any amplifier \
|
||||
to satisfy min gain requirement in node {uid} \
|
||||
please increase span fiber padding')
|
||||
else:
|
||||
# TODO: convert to logging
|
||||
print(
|
||||
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain in node {uid} is below all available amplifiers min gain: \
|
||||
amplifier input padding will be assumed, consider increase span fiber padding instead'
|
||||
)
|
||||
acceptable_gain_min_list = edfa_list
|
||||
|
||||
# filter on gain+power limitation:
|
||||
# this list checks both the gain and the power requirement
|
||||
# because of the way .power is calculated in the list
|
||||
acceptable_power_list = [x for x in acceptable_gain_min_list if x.power > 0]
|
||||
if len(acceptable_power_list) < 1:
|
||||
# no amplifier satisfies the required power, so pick the highest power(s):
|
||||
power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power
|
||||
# check and pick if other amplifiers may have a similar gain/power
|
||||
# allow a 0.3dB power range
|
||||
# this allows to chose an amplifier with a better NF subsequentely
|
||||
acceptable_power_list = [x for x in acceptable_gain_min_list
|
||||
if x.power - power_max > -0.3]
|
||||
|
||||
# gain and power requirements are resolved,
|
||||
# =>chose the amp with the best NF among the acceptable ones:
|
||||
selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) # filter on NF
|
||||
# check what are the gain and power limitations of this amp
|
||||
power_reduction = round(min(selected_edfa.power, 0), 2)
|
||||
if power_reduction < -0.5:
|
||||
print(
|
||||
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain and power in node {uid}\n \
|
||||
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
|
||||
a power reduction of {power_reduction} is applied\n'
|
||||
)
|
||||
|
||||
return selected_edfa.variety, power_reduction
|
||||
|
||||
|
||||
def target_power(network, node, equipment): # get_fiber_dp
|
||||
SPAN_LOSS_REF = 20
|
||||
POWER_SLOPE = 0.3
|
||||
dp_range = list(equipment['Span']['default'].delta_power_range_db)
|
||||
node_loss = span_loss(network, node)
|
||||
|
||||
try:
|
||||
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
|
||||
dp = max(dp_range[0], dp)
|
||||
dp = min(dp_range[1], dp)
|
||||
except KeyError:
|
||||
raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
|
||||
f'delta_power_range_db: [lower_bound, upper_bound, step]')
|
||||
|
||||
if isinstance(node, elements.Roadm):
|
||||
dp = 0
|
||||
|
||||
return dp
|
||||
|
||||
|
||||
def prev_node_generator(network, node):
|
||||
"""fused spans interest:
|
||||
iterate over all predecessors while they are Fused or Fiber type"""
|
||||
try:
|
||||
prev_node = next(n for n in network.predecessors(node))
|
||||
except StopIteration:
|
||||
raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
|
||||
# yield and re-iterate
|
||||
if isinstance(prev_node, elements.Fused) or isinstance(node, elements.Fused):
|
||||
yield prev_node
|
||||
yield from prev_node_generator(network, prev_node)
|
||||
else:
|
||||
StopIteration
|
||||
|
||||
|
||||
def next_node_generator(network, node):
|
||||
"""fused spans interest:
|
||||
iterate over all successors while they are Fused or Fiber type"""
|
||||
try:
|
||||
next_node = next(n for n in network.successors(node))
|
||||
except StopIteration:
|
||||
raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology')
|
||||
# yield and re-iterate
|
||||
if isinstance(next_node, elements.Fused) or isinstance(node, elements.Fused):
|
||||
yield next_node
|
||||
yield from next_node_generator(network, next_node)
|
||||
else:
|
||||
StopIteration
|
||||
|
||||
|
||||
def span_loss(network, node):
|
||||
"""Fused span interest:
|
||||
return the total span loss of all the fibers spliced by a Fused node"""
|
||||
loss = node.loss if node.passive else 0
|
||||
try:
|
||||
prev_node = next(n for n in network.predecessors(node))
|
||||
if isinstance(prev_node, elements.Fused):
|
||||
loss += sum(n.loss for n in prev_node_generator(network, node))
|
||||
except StopIteration:
|
||||
pass
|
||||
try:
|
||||
next_node = next(n for n in network.successors(node))
|
||||
if isinstance(next_node, elements.Fused):
|
||||
loss += sum(n.loss for n in next_node_generator(network, node))
|
||||
except StopIteration:
|
||||
pass
|
||||
return loss
|
||||
|
||||
|
||||
def find_first_node(network, node):
|
||||
"""Fused node interest:
|
||||
returns the 1st node at the origin of a succession of fused nodes
|
||||
(aka no amp in between)"""
|
||||
this_node = node
|
||||
for this_node in prev_node_generator(network, node):
|
||||
pass
|
||||
return this_node
|
||||
|
||||
|
||||
def find_last_node(network, node):
|
||||
"""Fused node interest:
|
||||
returns the last node in a succession of fused nodes
|
||||
(aka no amp in between)"""
|
||||
this_node = node
|
||||
for this_node in next_node_generator(network, node):
|
||||
pass
|
||||
return this_node
|
||||
|
||||
|
||||
def set_amplifier_voa(amp, power_target, power_mode):
|
||||
VOA_MARGIN = 1 # do not maximize the VOA optimization
|
||||
if amp.out_voa is None:
|
||||
if power_mode:
|
||||
voa = min(amp.params.p_max - power_target,
|
||||
amp.params.gain_flatmax - amp.effective_gain)
|
||||
voa = max(round2float(max(voa, 0), 0.5) - VOA_MARGIN, 0) if amp.params.out_voa_auto else 0
|
||||
amp.delta_p = amp.delta_p + voa
|
||||
amp.effective_gain = amp.effective_gain + voa
|
||||
else:
|
||||
voa = 0 # no output voa optimization in gain mode
|
||||
amp.out_voa = voa
|
||||
|
||||
|
||||
def set_egress_amplifier(network, roadm, equipment, pref_total_db):
|
||||
power_mode = equipment['Span']['default'].power_mode
|
||||
next_oms = (n for n in network.successors(roadm) if not isinstance(n, elements.Transceiver))
|
||||
for oms in next_oms:
|
||||
# go through all the OMS departing from the Roadm
|
||||
node = roadm
|
||||
prev_node = roadm
|
||||
next_node = oms
|
||||
# if isinstance(next_node, elements.Fused): #support ROADM wo egress amp for metro applications
|
||||
# node = find_last_node(next_node)
|
||||
# next_node = next(n for n in network.successors(node))
|
||||
# next_node = find_last_node(next_node)
|
||||
prev_dp = getattr(node.params, 'target_pch_out_db', 0)
|
||||
dp = prev_dp
|
||||
prev_voa = 0
|
||||
voa = 0
|
||||
while True:
|
||||
# go through all nodes in the OMS (loop until next Roadm instance)
|
||||
if isinstance(node, elements.Edfa):
|
||||
node_loss = span_loss(network, prev_node)
|
||||
voa = node.out_voa if node.out_voa else 0
|
||||
if node.delta_p is None:
|
||||
dp = target_power(network, next_node, equipment)
|
||||
else:
|
||||
dp = node.delta_p
|
||||
gain_from_dp = node_loss + dp - prev_dp + prev_voa
|
||||
if node.effective_gain is None or power_mode:
|
||||
gain_target = gain_from_dp
|
||||
else: # gain mode with effective_gain
|
||||
gain_target = node.effective_gain
|
||||
dp = prev_dp - node_loss + gain_target
|
||||
|
||||
power_target = pref_total_db + dp
|
||||
|
||||
raman_allowed = False
|
||||
if isinstance(prev_node, elements.Fiber):
|
||||
max_fiber_lineic_loss_for_raman = \
|
||||
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
|
||||
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
|
||||
|
||||
# implementation of restrictions on roadm boosters
|
||||
if isinstance(prev_node, elements.Roadm):
|
||||
if prev_node.restrictions['booster_variety_list']:
|
||||
restrictions = prev_node.restrictions['booster_variety_list']
|
||||
else:
|
||||
restrictions = None
|
||||
elif isinstance(next_node, elements.Roadm):
|
||||
# implementation of restrictions on roadm preamp
|
||||
if next_node.restrictions['preamp_variety_list']:
|
||||
restrictions = next_node.restrictions['preamp_variety_list']
|
||||
else:
|
||||
restrictions = None
|
||||
else:
|
||||
restrictions = None
|
||||
|
||||
if node.params.type_variety == '':
|
||||
edfa_variety, power_reduction = select_edfa(raman_allowed, gain_target, power_target, equipment, node.uid, restrictions)
|
||||
extra_params = equipment['Edfa'][edfa_variety]
|
||||
node.params.update_params(extra_params.__dict__)
|
||||
dp += power_reduction
|
||||
gain_target += power_reduction
|
||||
elif node.params.raman and not raman_allowed:
|
||||
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n but fiber lineic loss is above threshold\n')
|
||||
|
||||
node.delta_p = dp if power_mode else None
|
||||
node.effective_gain = gain_target
|
||||
set_amplifier_voa(node, power_target, power_mode)
|
||||
if isinstance(next_node, elements.Roadm) or isinstance(next_node, elements.Transceiver):
|
||||
break
|
||||
prev_dp = dp
|
||||
prev_voa = voa
|
||||
prev_node = node
|
||||
node = next_node
|
||||
# print(f'{node.uid}')
|
||||
next_node = next(n for n in network.successors(node))
|
||||
|
||||
|
||||
def add_egress_amplifier(network, node):
|
||||
next_nodes = [n for n in network.successors(node)
|
||||
if not (isinstance(n, elements.Transceiver) or isinstance(n, elements.Fused) or isinstance(n, elements.Edfa))]
|
||||
# no amplification for fused spans or TRX
|
||||
for i, next_node in enumerate(next_nodes):
|
||||
network.remove_edge(node, next_node)
|
||||
amp = elements.Edfa(
|
||||
uid=f'Edfa{i}_{node.uid}',
|
||||
params={},
|
||||
metadata={
|
||||
'location': {
|
||||
'latitude': (node.lat * 2 + next_node.lat * 2) / 4,
|
||||
'longitude': (node.lng * 2 + next_node.lng * 2) / 4,
|
||||
'city': node.loc.city,
|
||||
'region': node.loc.region,
|
||||
}
|
||||
},
|
||||
operational={
|
||||
'gain_target': None,
|
||||
'tilt_target': 0,
|
||||
})
|
||||
network.add_node(amp)
|
||||
if isinstance(node, elements.Fiber):
|
||||
edgeweight = node.params.length
|
||||
else:
|
||||
edgeweight = 0.01
|
||||
network.add_edge(node, amp, weight=edgeweight)
|
||||
network.add_edge(amp, next_node, weight=0.01)
|
||||
|
||||
|
||||
def calculate_new_length(fiber_length, bounds, target_length):
|
||||
if fiber_length < bounds.stop:
|
||||
return fiber_length, 1
|
||||
|
||||
n_spans = int(fiber_length // target_length)
|
||||
|
||||
length1 = fiber_length / (n_spans + 1)
|
||||
delta1 = target_length - length1
|
||||
result1 = (length1, n_spans + 1)
|
||||
|
||||
length2 = fiber_length / n_spans
|
||||
delta2 = length2 - target_length
|
||||
result2 = (length2, n_spans)
|
||||
|
||||
if (bounds.start <= length1 <= bounds.stop) and not(bounds.start <= length2 <= bounds.stop):
|
||||
result = result1
|
||||
elif (bounds.start <= length2 <= bounds.stop) and not(bounds.start <= length1 <= bounds.stop):
|
||||
result = result2
|
||||
else:
|
||||
result = result1 if delta1 < delta2 else result2
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def split_fiber(network, fiber, bounds, target_length, equipment):
|
||||
new_length, n_spans = calculate_new_length(fiber.params.length, bounds, target_length)
|
||||
if n_spans == 1:
|
||||
return
|
||||
|
||||
try:
|
||||
next_node = next(network.successors(fiber))
|
||||
prev_node = next(network.predecessors(fiber))
|
||||
except StopIteration:
|
||||
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
|
||||
|
||||
network.remove_node(fiber)
|
||||
|
||||
fiber.params.length = new_length
|
||||
|
||||
f = interp1d([prev_node.lng, next_node.lng], [prev_node.lat, next_node.lat])
|
||||
xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n + 1) / (n_spans + 1) for n in range(n_spans)]
|
||||
ypos = f(xpos)
|
||||
for span, lng, lat in zip(range(n_spans), xpos, ypos):
|
||||
new_span = elements.Fiber(uid=f'{fiber.uid}_({span+1}/{n_spans})',
|
||||
type_variety=fiber.type_variety,
|
||||
metadata={
|
||||
'location': {
|
||||
'latitude': lat,
|
||||
'longitude': lng,
|
||||
'city': fiber.loc.city,
|
||||
'region': fiber.loc.region,
|
||||
}
|
||||
},
|
||||
params=fiber.params.asdict())
|
||||
if isinstance(prev_node, elements.Fiber):
|
||||
edgeweight = prev_node.params.length
|
||||
else:
|
||||
edgeweight = 0.01
|
||||
network.add_edge(prev_node, new_span, weight=edgeweight)
|
||||
prev_node = new_span
|
||||
if isinstance(prev_node, elements.Fiber):
|
||||
edgeweight = prev_node.params.length
|
||||
else:
|
||||
edgeweight = 0.01
|
||||
network.add_edge(prev_node, next_node, weight=edgeweight)
|
||||
|
||||
|
||||
def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
|
||||
for fiber in fibers:
|
||||
if fiber.params.con_in is None:
|
||||
fiber.params.con_in = default_con_in
|
||||
if fiber.params.con_out is None:
|
||||
fiber.params.con_out = default_con_out
|
||||
next_node = next(n for n in network.successors(fiber))
|
||||
if not isinstance(next_node, elements.Fused):
|
||||
fiber.params.con_out += EOL
|
||||
|
||||
|
||||
def add_fiber_padding(network, fibers, padding):
|
||||
"""last_fibers = (fiber for n in network.nodes()
|
||||
if not (isinstance(n, elements.Fiber) or isinstance(n, elements.Fused))
|
||||
for fiber in network.predecessors(n)
|
||||
if isinstance(fiber, elements.Fiber))"""
|
||||
for fiber in fibers:
|
||||
this_span_loss = span_loss(network, fiber)
|
||||
try:
|
||||
next_node = next(network.successors(fiber))
|
||||
except StopIteration:
|
||||
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
|
||||
if this_span_loss < padding and not (isinstance(next_node, elements.Fused)):
|
||||
# add a padding att_in at the input of the 1st fiber:
|
||||
# address the case when several fibers are spliced together
|
||||
first_fiber = find_first_node(network, fiber)
|
||||
# in order to support no booster , fused might be placed
|
||||
# just after a roadm: need to check that first_fiber is really a fiber
|
||||
if isinstance(first_fiber, elements.Fiber):
|
||||
if first_fiber.params.att_in is None:
|
||||
first_fiber.params.att_in = padding - this_span_loss
|
||||
else:
|
||||
first_fiber.params.att_in = first_fiber.params.att_in + padding - this_span_loss
|
||||
|
||||
|
||||
def build_network(network, equipment, pref_ch_db, pref_total_db):
|
||||
default_span_data = equipment['Span']['default']
|
||||
max_length = int(convert_length(default_span_data.max_length, default_span_data.length_units))
|
||||
min_length = max(int(default_span_data.padding / 0.2 * 1e3), 50_000)
|
||||
bounds = range(min_length, max_length)
|
||||
target_length = max(min_length, 90_000)
|
||||
default_con_in = default_span_data.con_in
|
||||
default_con_out = default_span_data.con_out
|
||||
padding = default_span_data.padding
|
||||
|
||||
# set roadm loss for gain_mode before to build network
|
||||
fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
|
||||
add_connector_loss(network, fibers, default_con_in, default_con_out, default_span_data.EOL)
|
||||
add_fiber_padding(network, fibers, padding)
|
||||
# don't group split fiber and add amp in the same loop
|
||||
# =>for code clarity (at the expense of speed):
|
||||
for fiber in fibers:
|
||||
split_fiber(network, fiber, bounds, target_length, equipment)
|
||||
|
||||
amplified_nodes = [n for n in network.nodes() if isinstance(n, elements.Fiber) or isinstance(n, elements.Roadm)]
|
||||
|
||||
for node in amplified_nodes:
|
||||
add_egress_amplifier(network, node)
|
||||
|
||||
roadms = [r for r in network.nodes() if isinstance(r, elements.Roadm)]
|
||||
for roadm in roadms:
|
||||
set_egress_amplifier(network, roadm, equipment, pref_total_db)
|
||||
|
||||
# support older json input topology wo Roadms:
|
||||
if len(roadms) == 0:
|
||||
trx = [t for t in network.nodes() if isinstance(t, elements.Transceiver)]
|
||||
for t in trx:
|
||||
set_egress_amplifier(network, t, equipment, pref_total_db)
|
||||
287
gnpy/core/parameters.py
Normal file
287
gnpy/core/parameters.py
Normal file
@@ -0,0 +1,287 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
gnpy.core.parameters
|
||||
====================
|
||||
|
||||
This module contains all parameters to configure standard network elements.
|
||||
|
||||
"""
|
||||
|
||||
from scipy.constants import c, pi
|
||||
from numpy import squeeze, log10, exp
|
||||
|
||||
|
||||
from gnpy.core.utils import db2lin, convert_length
|
||||
from gnpy.core.exceptions import ParametersError
|
||||
|
||||
|
||||
class Parameters:
|
||||
def asdict(self):
|
||||
class_dict = self.__class__.__dict__
|
||||
instance_dict = self.__dict__
|
||||
new_dict = {}
|
||||
for key in class_dict:
|
||||
if isinstance(class_dict[key], property):
|
||||
new_dict[key] = instance_dict['_' + key]
|
||||
return new_dict
|
||||
|
||||
|
||||
class PumpParams(Parameters):
|
||||
def __init__(self, power, frequency, propagation_direction):
|
||||
self._power = power
|
||||
self._frequency = frequency
|
||||
self._propagation_direction = propagation_direction
|
||||
|
||||
@property
|
||||
def power(self):
|
||||
return self._power
|
||||
|
||||
@property
|
||||
def frequency(self):
|
||||
return self._frequency
|
||||
|
||||
@property
|
||||
def propagation_direction(self):
|
||||
return self._propagation_direction
|
||||
|
||||
|
||||
class RamanParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self._flag_raman = kwargs['flag_raman']
|
||||
self._space_resolution = kwargs['space_resolution'] if 'space_resolution' in kwargs else None
|
||||
self._tolerance = kwargs['tolerance'] if 'tolerance' in kwargs else None
|
||||
|
||||
@property
|
||||
def flag_raman(self):
|
||||
return self._flag_raman
|
||||
|
||||
@property
|
||||
def space_resolution(self):
|
||||
return self._space_resolution
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
return self._tolerance
|
||||
|
||||
|
||||
class NLIParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
self._nli_method_name = kwargs['nli_method_name']
|
||||
self._wdm_grid_size = kwargs['wdm_grid_size']
|
||||
self._dispersion_tolerance = kwargs['dispersion_tolerance']
|
||||
self._phase_shift_tolerance = kwargs['phase_shift_tolerance']
|
||||
self._f_cut_resolution = None
|
||||
self._f_pump_resolution = None
|
||||
self._computed_channels = kwargs['computed_channels'] if 'computed_channels' in kwargs else None
|
||||
|
||||
@property
|
||||
def nli_method_name(self):
|
||||
return self._nli_method_name
|
||||
|
||||
@property
|
||||
def wdm_grid_size(self):
|
||||
return self._wdm_grid_size
|
||||
|
||||
@property
|
||||
def dispersion_tolerance(self):
|
||||
return self._dispersion_tolerance
|
||||
|
||||
@property
|
||||
def phase_shift_tolerance(self):
|
||||
return self._phase_shift_tolerance
|
||||
|
||||
@property
|
||||
def f_cut_resolution(self):
|
||||
return self._f_cut_resolution
|
||||
|
||||
@f_cut_resolution.setter
|
||||
def f_cut_resolution(self, f_cut_resolution):
|
||||
self._f_cut_resolution = f_cut_resolution
|
||||
|
||||
@property
|
||||
def f_pump_resolution(self):
|
||||
return self._f_pump_resolution
|
||||
|
||||
@f_pump_resolution.setter
|
||||
def f_pump_resolution(self, f_pump_resolution):
|
||||
self._f_pump_resolution = f_pump_resolution
|
||||
|
||||
@property
|
||||
def computed_channels(self):
|
||||
return self._computed_channels
|
||||
|
||||
|
||||
class SimParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
try:
|
||||
if 'nli_parameters' in kwargs:
|
||||
self._nli_params = NLIParams(**kwargs['nli_parameters'])
|
||||
else:
|
||||
self._nli_params = None
|
||||
if 'raman_parameters' in kwargs:
|
||||
self._raman_params = RamanParams(**kwargs['raman_parameters'])
|
||||
else:
|
||||
self._raman_params = None
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Simulation parameters must include {e}. Configuration: {kwargs}')
|
||||
|
||||
@property
|
||||
def nli_params(self):
|
||||
return self._nli_params
|
||||
|
||||
@property
|
||||
def raman_params(self):
|
||||
return self._raman_params
|
||||
|
||||
|
||||
class FiberParams(Parameters):
|
||||
def __init__(self, **kwargs):
|
||||
try:
|
||||
self._length = convert_length(kwargs['length'], kwargs['length_units'])
|
||||
# fixed attenuator for padding
|
||||
self._att_in = kwargs['att_in'] if 'att_in' in kwargs else 0
|
||||
# if not defined in the network json connector loss in/out
|
||||
# the None value will be updated in network.py[build_network]
|
||||
# with default values from eqpt_config.json[Spans]
|
||||
self._con_in = kwargs['con_in'] if 'con_in' in kwargs else None
|
||||
self._con_out = kwargs['con_out'] if 'con_out' in kwargs else None
|
||||
if 'ref_wavelength' in kwargs:
|
||||
self._ref_wavelength = kwargs['ref_wavelength']
|
||||
self._ref_frequency = c / self.ref_wavelength
|
||||
elif 'ref_frequency' in kwargs:
|
||||
self._ref_frequency = kwargs['ref_frequency']
|
||||
self._ref_wavelength = c / self.ref_frequency
|
||||
else:
|
||||
self._ref_wavelength = 1550e-9
|
||||
self._ref_frequency = c / self.ref_wavelength
|
||||
self._dispersion = kwargs['dispersion'] # s/m/m
|
||||
self._dispersion_slope = kwargs['dispersion_slope'] if 'dispersion_slope' in kwargs else \
|
||||
-2 * self._dispersion/self.ref_wavelength # s/m/m/m
|
||||
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
|
||||
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
|
||||
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
|
||||
# (accessed on 25 March 2018) (2005).
|
||||
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
|
||||
(2*pi*c/self.ref_wavelength**2)**2)
|
||||
self._gamma = kwargs['gamma'] # 1/W/m
|
||||
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
|
||||
if type(kwargs['loss_coef']) == dict:
|
||||
self._loss_coef = squeeze(kwargs['loss_coef']['loss_coef_power']) * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = squeeze(kwargs['loss_coef']['frequency']) # Hz
|
||||
else:
|
||||
self._loss_coef = kwargs['loss_coef'] * 1e-3 # lineic loss dB/m
|
||||
self._f_loss_ref = 193.5e12 # Hz
|
||||
self._lin_attenuation = db2lin(self.length * self.loss_coef)
|
||||
self._lin_loss_exp = self.loss_coef / (10 * log10(exp(1))) # linear power exponent loss Neper/m
|
||||
self._effective_length = (1 - exp(- self.lin_loss_exp * self.length)) / self.lin_loss_exp
|
||||
self._asymptotic_length = 1 / self.lin_loss_exp
|
||||
# raman parameters (not compulsory)
|
||||
self._raman_efficiency = kwargs['raman_efficiency'] if 'raman_efficiency' in kwargs else None
|
||||
self._pumps_loss_coef = kwargs['pumps_loss_coef'] if 'pumps_loss_coef' in kwargs else None
|
||||
except KeyError as e:
|
||||
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
|
||||
|
||||
@property
|
||||
def length(self):
|
||||
return self._length
|
||||
|
||||
@length.setter
|
||||
def length(self, length):
|
||||
"""length must be in m"""
|
||||
self._length = length
|
||||
|
||||
@property
|
||||
def att_in(self):
|
||||
return self._att_in
|
||||
|
||||
@att_in.setter
|
||||
def att_in(self, att_in):
|
||||
self._att_in = att_in
|
||||
|
||||
@property
|
||||
def con_in(self):
|
||||
return self._con_in
|
||||
|
||||
@con_in.setter
|
||||
def con_in(self, con_in):
|
||||
self._con_in = con_in
|
||||
|
||||
@property
|
||||
def con_out(self):
|
||||
return self._con_out
|
||||
|
||||
@con_out.setter
|
||||
def con_out(self, con_out):
|
||||
self._con_out = con_out
|
||||
|
||||
@property
|
||||
def dispersion(self):
|
||||
return self._dispersion
|
||||
|
||||
@property
|
||||
def dispersion_slope(self):
|
||||
return self._dispersion_slope
|
||||
|
||||
@property
|
||||
def gamma(self):
|
||||
return self._gamma
|
||||
|
||||
@property
|
||||
def pmd_coef(self):
|
||||
return self._pmd_coef
|
||||
|
||||
@property
|
||||
def ref_wavelength(self):
|
||||
return self._ref_wavelength
|
||||
|
||||
@property
|
||||
def ref_frequency(self):
|
||||
return self._ref_frequency
|
||||
|
||||
@property
|
||||
def beta2(self):
|
||||
return self._beta2
|
||||
|
||||
@property
|
||||
def beta3(self):
|
||||
return self._beta3
|
||||
|
||||
@property
|
||||
def loss_coef(self):
|
||||
return self._loss_coef
|
||||
|
||||
@property
|
||||
def f_loss_ref(self):
|
||||
return self._f_loss_ref
|
||||
|
||||
@property
|
||||
def lin_loss_exp(self):
|
||||
return self._lin_loss_exp
|
||||
|
||||
@property
|
||||
def lin_attenuation(self):
|
||||
return self._lin_attenuation
|
||||
|
||||
@property
|
||||
def effective_length(self):
|
||||
return self._effective_length
|
||||
|
||||
@property
|
||||
def asymptotic_length(self):
|
||||
return self._asymptotic_length
|
||||
|
||||
@property
|
||||
def raman_efficiency(self):
|
||||
return self._raman_efficiency
|
||||
|
||||
@property
|
||||
def pumps_loss_coef(self):
|
||||
return self._pumps_loss_coef
|
||||
|
||||
def asdict(self):
|
||||
dictionary = super().asdict()
|
||||
dictionary['loss_coef'] = self.loss_coef * 1e3
|
||||
dictionary['length_units'] = 'm'
|
||||
return dictionary
|
||||
732
gnpy/core/science_utils.py
Normal file
732
gnpy/core/science_utils.py
Normal file
@@ -0,0 +1,732 @@
|
||||
import numpy as np
|
||||
from operator import attrgetter
|
||||
from logging import getLogger
|
||||
import scipy.constants as ph
|
||||
from scipy.integrate import solve_bvp
|
||||
from scipy.integrate import cumtrapz
|
||||
from scipy.interpolate import interp1d
|
||||
from scipy.optimize import OptimizeResult
|
||||
from math import isclose
|
||||
|
||||
from gnpy.core.utils import db2lin, lin2db
|
||||
from gnpy.core.exceptions import EquipmentConfigError
|
||||
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
def propagate_raman_fiber(fiber, *carriers):
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
raman_params = sim_params.raman_params
|
||||
nli_params = sim_params.nli_params
|
||||
# apply input attenuation to carriers
|
||||
attenuation_in = db2lin(fiber.params.con_in + fiber.params.att_in)
|
||||
chan = []
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / attenuation_in,
|
||||
nli=pwr.nli / attenuation_in,
|
||||
ase=pwr.ase / attenuation_in)
|
||||
carrier = carrier._replace(power=pwr)
|
||||
chan.append(carrier)
|
||||
carriers = tuple(f for f in chan)
|
||||
|
||||
# evaluate fiber attenuation involving also SRS if required by sim_params
|
||||
raman_solver = fiber.raman_solver
|
||||
raman_solver.carriers = carriers
|
||||
raman_solver.raman_pumps = fiber.raman_pumps
|
||||
stimulated_raman_scattering = raman_solver.stimulated_raman_scattering
|
||||
|
||||
fiber_attenuation = (stimulated_raman_scattering.rho[:, -1])**-2
|
||||
if not raman_params.flag_raman:
|
||||
fiber_attenuation = tuple(fiber.params.lin_attenuation for _ in carriers)
|
||||
|
||||
# evaluate Raman ASE noise if required by sim_params and if raman pumps are present
|
||||
if raman_params.flag_raman and fiber.raman_pumps:
|
||||
raman_ase = raman_solver.spontaneous_raman_scattering.power[:, -1]
|
||||
else:
|
||||
raman_ase = tuple(0 for _ in carriers)
|
||||
|
||||
# evaluate nli and propagate in fiber
|
||||
attenuation_out = db2lin(fiber.params.con_out)
|
||||
nli_solver = fiber.nli_solver
|
||||
nli_solver.stimulated_raman_scattering = stimulated_raman_scattering
|
||||
|
||||
nli_frequencies = []
|
||||
computed_nli = []
|
||||
for carrier in (c for c in carriers if c.channel_number in sim_params.nli_params.computed_channels):
|
||||
resolution_param = frequency_resolution(carrier, carriers, sim_params, fiber)
|
||||
f_cut_resolution, f_pump_resolution, _, _ = resolution_param
|
||||
nli_params.f_cut_resolution = f_cut_resolution
|
||||
nli_params.f_pump_resolution = f_pump_resolution
|
||||
nli_frequencies.append(carrier.frequency)
|
||||
computed_nli.append(nli_solver.compute_nli(carrier, *carriers))
|
||||
|
||||
new_carriers = []
|
||||
for carrier, attenuation, rmn_ase in zip(carriers, fiber_attenuation, raman_ase):
|
||||
carrier_nli = np.interp(carrier.frequency, nli_frequencies, computed_nli)
|
||||
pwr = carrier.power
|
||||
pwr = pwr._replace(signal=pwr.signal / attenuation / attenuation_out,
|
||||
nli=(pwr.nli + carrier_nli) / attenuation / attenuation_out,
|
||||
ase=((pwr.ase / attenuation) + rmn_ase) / attenuation_out)
|
||||
new_carriers.append(carrier._replace(power=pwr))
|
||||
return new_carriers
|
||||
|
||||
|
||||
def frequency_resolution(carrier, carriers, sim_params, fiber):
|
||||
def _get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol):
|
||||
res_phi = _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol)
|
||||
res_k = _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol)
|
||||
res_dict = {'res_phi': res_phi, 'res_k': res_k}
|
||||
method = min(res_dict, key=res_dict.get)
|
||||
return res_dict[method], method, res_dict
|
||||
|
||||
def _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol):
|
||||
return k_tol * abs(alpha0) / abs(beta2) / (1 + delta_count) / (4 * np.pi ** 2 * grid_size)
|
||||
|
||||
def _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol):
|
||||
return phi_tol / abs(beta2) / (1 + delta_count) / delta_z / (4 * np.pi ** 2 * grid_size)
|
||||
|
||||
grid_size = sim_params.nli_params.wdm_grid_size
|
||||
delta_z = sim_params.raman_params.space_resolution
|
||||
alpha0 = fiber.alpha0()
|
||||
beta2 = fiber.params.beta2
|
||||
k_tol = sim_params.nli_params.dispersion_tolerance
|
||||
phi_tol = sim_params.nli_params.phase_shift_tolerance
|
||||
f_pump_resolution, method_f_pump, res_dict_pump = \
|
||||
_get_freq_res_k_phi(0, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
|
||||
f_cut_resolution = {}
|
||||
method_f_cut = {}
|
||||
res_dict_cut = {}
|
||||
for cut_carrier in carriers:
|
||||
delta_number = cut_carrier.channel_number - carrier.channel_number
|
||||
delta_count = abs(delta_number)
|
||||
f_res, method, res_dict = \
|
||||
_get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
|
||||
f_cut_resolution[f'delta_{delta_number}'] = f_res
|
||||
method_f_cut[delta_number] = method
|
||||
res_dict_cut[delta_number] = res_dict
|
||||
return [f_cut_resolution, f_pump_resolution, (method_f_cut, method_f_pump), (res_dict_cut, res_dict_pump)]
|
||||
|
||||
|
||||
def raised_cosine_comb(f, *carriers):
|
||||
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
|
||||
channels at the input frequencies defined in array f
|
||||
:param f: numpy array of frequencies in Hz
|
||||
:param carriers: namedtuple describing the WDM comb
|
||||
:return: PSD of the WDM comb evaluated over f
|
||||
"""
|
||||
psd = np.zeros(np.shape(f))
|
||||
for carrier in carriers:
|
||||
f_nch = carrier.frequency
|
||||
g_ch = carrier.power.signal / carrier.baud_rate
|
||||
ts = 1 / carrier.baud_rate
|
||||
passband = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
|
||||
stopband = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
|
||||
ff = np.abs(f - f_nch)
|
||||
tf = ff - passband
|
||||
if carrier.roll_off == 0:
|
||||
psd = np.where(tf <= 0, g_ch, 0.) + psd
|
||||
else:
|
||||
psd = g_ch * (np.where(tf <= 0, 1., 0.) + 1 / 2 * (1 + np.cos(np.pi * ts / carrier.roll_off * tf)) *
|
||||
np.where(tf > 0, 1., 0.) * np.where(np.abs(ff) <= stopband, 1., 0.)) + psd
|
||||
return psd
|
||||
|
||||
|
||||
class Simulation:
|
||||
_shared_dict = {}
|
||||
|
||||
def __init__(self):
|
||||
if type(self) == Simulation:
|
||||
raise NotImplementedError('Simulation cannot be instatiated')
|
||||
|
||||
@classmethod
|
||||
def set_params(cls, sim_params):
|
||||
cls._shared_dict['sim_params'] = sim_params
|
||||
|
||||
@classmethod
|
||||
def get_simulation(cls):
|
||||
self = cls.__new__(cls)
|
||||
return self
|
||||
|
||||
@property
|
||||
def sim_params(self):
|
||||
return self._shared_dict['sim_params']
|
||||
|
||||
|
||||
class SpontaneousRamanScattering:
|
||||
def __init__(self, frequency, z, power):
|
||||
self.frequency = frequency
|
||||
self.z = z
|
||||
self.power = power
|
||||
|
||||
|
||||
class StimulatedRamanScattering:
|
||||
def __init__(self, frequency, z, rho, power):
|
||||
self.frequency = frequency
|
||||
self.z = z
|
||||
self.rho = rho
|
||||
self.power = power
|
||||
|
||||
|
||||
class RamanSolver:
|
||||
def __init__(self, fiber=None):
|
||||
""" Initialize the Raman solver object.
|
||||
:param fiber: instance of elements.py/Fiber.
|
||||
:param carriers: tuple of carrier objects
|
||||
:param raman_pumps: tuple containing pumps characteristics
|
||||
"""
|
||||
self._fiber = fiber
|
||||
self._carriers = None
|
||||
self._raman_pumps = None
|
||||
self._stimulated_raman_scattering = None
|
||||
self._spontaneous_raman_scattering = None
|
||||
|
||||
@property
|
||||
def fiber(self):
|
||||
return self._fiber
|
||||
|
||||
@property
|
||||
def carriers(self):
|
||||
return self._carriers
|
||||
|
||||
@carriers.setter
|
||||
def carriers(self, carriers):
|
||||
self._carriers = carriers
|
||||
self._spontaneous_raman_scattering = None
|
||||
self._stimulated_raman_scattering = None
|
||||
|
||||
@property
|
||||
def raman_pumps(self):
|
||||
return self._raman_pumps
|
||||
|
||||
@raman_pumps.setter
|
||||
def raman_pumps(self, raman_pumps):
|
||||
self._raman_pumps = raman_pumps
|
||||
self._stimulated_raman_scattering = None
|
||||
|
||||
@property
|
||||
def stimulated_raman_scattering(self):
|
||||
if self._stimulated_raman_scattering is None:
|
||||
self.calculate_stimulated_raman_scattering(self.carriers, self.raman_pumps)
|
||||
return self._stimulated_raman_scattering
|
||||
|
||||
@property
|
||||
def spontaneous_raman_scattering(self):
|
||||
if self._spontaneous_raman_scattering is None:
|
||||
self.calculate_spontaneous_raman_scattering(self.carriers, self.raman_pumps)
|
||||
return self._spontaneous_raman_scattering
|
||||
|
||||
def calculate_spontaneous_raman_scattering(self, carriers, raman_pumps):
|
||||
raman_efficiency = self.fiber.params.raman_efficiency
|
||||
temperature = self.fiber.operational['temperature']
|
||||
|
||||
logger.debug('Start computing fiber Spontaneous Raman Scattering')
|
||||
power_spectrum, freq_array, prop_direct, bn_array = self._compute_power_spectrum(carriers, raman_pumps)
|
||||
|
||||
alphap_fiber = self.fiber.alpha(freq_array)
|
||||
|
||||
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
|
||||
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
||||
cr = interp_cr(freq_diff)
|
||||
|
||||
# z propagation axis
|
||||
z_array = self.stimulated_raman_scattering.z
|
||||
ase_bc = np.zeros(freq_array.shape)
|
||||
|
||||
# calculate ase power
|
||||
int_spontaneous_raman = self._int_spontaneous_raman(z_array, self._stimulated_raman_scattering.power,
|
||||
alphap_fiber, freq_array, cr, freq_diff, ase_bc,
|
||||
bn_array, temperature)
|
||||
|
||||
spontaneous_raman_scattering = SpontaneousRamanScattering(freq_array, z_array, int_spontaneous_raman.x)
|
||||
logger.debug("Spontaneous Raman Scattering evaluated successfully")
|
||||
self._spontaneous_raman_scattering = spontaneous_raman_scattering
|
||||
|
||||
@staticmethod
|
||||
def _compute_power_spectrum(carriers, raman_pumps=None):
|
||||
"""
|
||||
Rearrangement of spectral and Raman pump information to make them compatible with Raman solver
|
||||
:param carriers: a tuple of namedtuples describing the transmitted channels
|
||||
:param raman_pumps: a namedtuple describing the Raman pumps
|
||||
:return:
|
||||
"""
|
||||
|
||||
# Signal power spectrum
|
||||
pow_array = np.array([])
|
||||
f_array = np.array([])
|
||||
noise_bandwidth_array = np.array([])
|
||||
for carrier in sorted(carriers, key=attrgetter('frequency')):
|
||||
f_array = np.append(f_array, carrier.frequency)
|
||||
pow_array = np.append(pow_array, carrier.power.signal)
|
||||
ref_bw = carrier.baud_rate
|
||||
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
|
||||
|
||||
propagation_direction = np.ones(len(f_array))
|
||||
|
||||
# Raman pump power spectrum
|
||||
if raman_pumps:
|
||||
for pump in raman_pumps:
|
||||
pow_array = np.append(pow_array, pump.power)
|
||||
f_array = np.append(f_array, pump.frequency)
|
||||
direction = +1 if pump.propagation_direction.lower() == 'coprop' else -1
|
||||
propagation_direction = np.append(propagation_direction, direction)
|
||||
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
|
||||
|
||||
# Final sorting
|
||||
ind = np.argsort(f_array)
|
||||
f_array = f_array[ind]
|
||||
pow_array = pow_array[ind]
|
||||
propagation_direction = propagation_direction[ind]
|
||||
|
||||
return pow_array, f_array, propagation_direction, noise_bandwidth_array
|
||||
|
||||
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array,
|
||||
cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
|
||||
spontaneous_raman_scattering = OptimizeResult()
|
||||
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
|
||||
dx = sim_params.raman_params.space_resolution
|
||||
h = ph.value('Planck constant')
|
||||
kb = ph.value('Boltzmann constant')
|
||||
|
||||
power_ase = np.nan * np.ones(raman_matrix.shape)
|
||||
int_pump = cumtrapz(raman_matrix, z_array, dx=dx, axis=1, initial=0)
|
||||
|
||||
for f_ind, f_ase in enumerate(freq_array):
|
||||
cr_raman = cr_raman_matrix[f_ind, :]
|
||||
vibrational_loss = f_ase / freq_array[:f_ind]
|
||||
eta = 1 / (np.exp((h * freq_diff[f_ind, f_ind + 1:]) / (kb * temperature)) - 1)
|
||||
|
||||
int_fiber_loss = -alphap_fiber[f_ind] * z_array
|
||||
int_raman_loss = np.sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(),
|
||||
axis=0)
|
||||
int_raman_gain = np.sum((cr_raman[f_ind + 1:] * int_pump[f_ind + 1:, :].transpose()).transpose(), axis=0)
|
||||
|
||||
int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss
|
||||
|
||||
new_ase = np.sum((cr_raman[f_ind + 1:] * (1 + eta) * raman_matrix[f_ind + 1:, :].transpose()).transpose()
|
||||
* h * f_ase * bn_array[f_ind], axis=0)
|
||||
|
||||
bc_evolution = ase_bc[f_ind] * np.exp(int_gain_loss)
|
||||
ase_evolution = np.exp(int_gain_loss) * cumtrapz(new_ase *
|
||||
np.exp(-int_gain_loss), z_array, dx=dx, initial=0)
|
||||
|
||||
power_ase[f_ind, :] = bc_evolution + ase_evolution
|
||||
|
||||
spontaneous_raman_scattering.x = 2 * power_ase
|
||||
return spontaneous_raman_scattering
|
||||
|
||||
def calculate_stimulated_raman_scattering(self, carriers, raman_pumps):
|
||||
""" Returns stimulated Raman scattering solution including
|
||||
fiber gain/loss profile.
|
||||
:return: None
|
||||
"""
|
||||
# fiber parameters
|
||||
fiber_length = self.fiber.params.length
|
||||
raman_efficiency = self.fiber.params.raman_efficiency
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
|
||||
if not sim_params.raman_params.flag_raman:
|
||||
raman_efficiency['cr'] = np.zeros(len(raman_efficiency['cr']))
|
||||
# raman solver parameters
|
||||
z_resolution = sim_params.raman_params.space_resolution
|
||||
tolerance = sim_params.raman_params.tolerance
|
||||
|
||||
logger.debug('Start computing fiber Stimulated Raman Scattering')
|
||||
|
||||
power_spectrum, freq_array, prop_direct, _ = self._compute_power_spectrum(carriers, raman_pumps)
|
||||
|
||||
alphap_fiber = self.fiber.alpha(freq_array)
|
||||
|
||||
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
|
||||
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
||||
cr = interp_cr(freq_diff)
|
||||
|
||||
# z propagation axis
|
||||
z = np.arange(0, fiber_length + 1, z_resolution)
|
||||
|
||||
def ode_function(z, p):
|
||||
return self._ode_stimulated_raman(z, p, alphap_fiber, freq_array, cr, prop_direct)
|
||||
|
||||
def boundary_residual(ya, yb):
|
||||
return self._residuals_stimulated_raman(ya, yb, power_spectrum, prop_direct)
|
||||
|
||||
initial_guess_conditions = self._initial_guess_stimulated_raman(z, power_spectrum, alphap_fiber, prop_direct)
|
||||
|
||||
# ODE SOLVER
|
||||
bvp_solution = solve_bvp(ode_function, boundary_residual, z, initial_guess_conditions, tol=tolerance)
|
||||
|
||||
rho = (bvp_solution.y.transpose() / power_spectrum).transpose()
|
||||
rho = np.sqrt(rho) # From power attenuation to field attenuation
|
||||
stimulated_raman_scattering = StimulatedRamanScattering(freq_array, bvp_solution.x, rho, bvp_solution.y)
|
||||
|
||||
self._stimulated_raman_scattering = stimulated_raman_scattering
|
||||
|
||||
def _residuals_stimulated_raman(self, ya, yb, power_spectrum, prop_direct):
|
||||
|
||||
computed_boundary_value = np.zeros(ya.size)
|
||||
|
||||
for index, direction in enumerate(prop_direct):
|
||||
if direction == +1:
|
||||
computed_boundary_value[index] = ya[index]
|
||||
else:
|
||||
computed_boundary_value[index] = yb[index]
|
||||
|
||||
return power_spectrum - computed_boundary_value
|
||||
|
||||
def _initial_guess_stimulated_raman(self, z, power_spectrum, alphap_fiber, prop_direct):
|
||||
""" Computes the initial guess knowing the boundary conditions
|
||||
:param z: patial axis [m]. numpy array
|
||||
:param power_spectrum: power in each frequency slice [W].
|
||||
Frequency axis is defined by freq_array. numpy array
|
||||
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m].
|
||||
Frequency defined by freq_array. numpy array
|
||||
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
|
||||
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array
|
||||
:return: power_guess: guess on the initial conditions [W].
|
||||
The first ndarray index identifies the frequency slice,
|
||||
the second ndarray index identifies the step in z. ndarray
|
||||
"""
|
||||
|
||||
power_guess = np.empty((power_spectrum.size, z.size))
|
||||
for f_index, power_slice in enumerate(power_spectrum):
|
||||
if prop_direct[f_index] == +1:
|
||||
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z) * power_slice
|
||||
else:
|
||||
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z[::-1]) * power_slice
|
||||
|
||||
return power_guess
|
||||
|
||||
def _ode_stimulated_raman(self, z, power_spectrum, alphap_fiber, freq_array, cr_raman_matrix, prop_direct):
|
||||
""" Aim of ode_raman is to implement the set of ordinary differential equations (ODEs)
|
||||
describing the Raman effect.
|
||||
:param z: spatial axis (unused).
|
||||
:param power_spectrum: power in each frequency slice [W].
|
||||
Frequency axis is defined by freq_array. numpy array. Size n
|
||||
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m].
|
||||
Frequency defined by freq_array. numpy array. Size n
|
||||
:param freq_array: reference frequency axis [Hz]. numpy array. Size n
|
||||
:param cr_raman: Cr(f) Raman gain efficiency variation in frequency [1/W/m].
|
||||
Frequency defined by freq_array. numpy ndarray. Size nxn
|
||||
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
|
||||
+1 for forward propagation and -1 for backward propagation.
|
||||
Frequency defined by freq_array. numpy array. Size n
|
||||
:return: dP/dz: the power variation in dz [W/m]. numpy array. Size n
|
||||
"""
|
||||
|
||||
dpdz = np.nan * np.ones(power_spectrum.shape)
|
||||
for f_ind, power in enumerate(power_spectrum):
|
||||
cr_raman = cr_raman_matrix[f_ind, :]
|
||||
vibrational_loss = freq_array[f_ind] / freq_array[:f_ind]
|
||||
|
||||
for z_ind, power_sample in enumerate(power):
|
||||
raman_gain = np.sum(cr_raman[f_ind + 1:] * power_spectrum[f_ind + 1:, z_ind])
|
||||
raman_loss = np.sum(vibrational_loss * cr_raman[:f_ind] * power_spectrum[:f_ind, z_ind])
|
||||
|
||||
dpdz_element = prop_direct[f_ind] * (-alphap_fiber[f_ind] + raman_gain - raman_loss) * power_sample
|
||||
dpdz[f_ind][z_ind] = dpdz_element
|
||||
|
||||
return np.vstack(dpdz)
|
||||
|
||||
|
||||
class NliSolver:
|
||||
""" This class implements the NLI models.
|
||||
Model and method can be specified in `sim_params.nli_params.method`.
|
||||
List of implemented methods:
|
||||
'gn_model_analytic': brute force triple integral solution
|
||||
'ggn_spectrally_separated_xpm_spm': XPM plus SPM
|
||||
"""
|
||||
|
||||
def __init__(self, fiber=None):
|
||||
""" Initialize the Nli solver object.
|
||||
:param fiber: instance of elements.py/Fiber.
|
||||
"""
|
||||
self._fiber = fiber
|
||||
self._stimulated_raman_scattering = None
|
||||
|
||||
@property
|
||||
def fiber(self):
|
||||
return self._fiber
|
||||
|
||||
@property
|
||||
def stimulated_raman_scattering(self):
|
||||
return self._stimulated_raman_scattering
|
||||
|
||||
@stimulated_raman_scattering.setter
|
||||
def stimulated_raman_scattering(self, stimulated_raman_scattering):
|
||||
self._stimulated_raman_scattering = stimulated_raman_scattering
|
||||
|
||||
def compute_nli(self, carrier, *carriers):
|
||||
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
|
||||
at the end of the fiber span.
|
||||
"""
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
if 'gn_model_analytic' == sim_params.nli_params.nli_method_name.lower():
|
||||
carrier_nli = self._gn_analytic(carrier, *carriers)
|
||||
elif 'ggn_spectrally_separated' in sim_params.nli_params.nli_method_name.lower():
|
||||
eta_matrix = self._compute_eta_matrix(carrier, *carriers)
|
||||
carrier_nli = self._carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers)
|
||||
else:
|
||||
raise ValueError(f'Method {sim_params.nli_params.method_nli} not implemented.')
|
||||
|
||||
return carrier_nli
|
||||
|
||||
@staticmethod
|
||||
def _carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers):
|
||||
carrier_nli = 0
|
||||
for pump_carrier_1 in carriers:
|
||||
for pump_carrier_2 in carriers:
|
||||
carrier_nli += eta_matrix[pump_carrier_1.channel_number - 1, pump_carrier_2.channel_number - 1] * \
|
||||
pump_carrier_1.power.signal * pump_carrier_2.power.signal
|
||||
carrier_nli *= carrier.power.signal
|
||||
|
||||
return carrier_nli
|
||||
|
||||
def _compute_eta_matrix(self, carrier_cut, *carriers):
|
||||
cut_index = carrier_cut.channel_number - 1
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
# Matrix initialization
|
||||
matrix_size = max(carriers, key=lambda x: getattr(x, 'channel_number')).channel_number
|
||||
eta_matrix = np.zeros(shape=(matrix_size, matrix_size))
|
||||
|
||||
# SPM
|
||||
logger.debug(f'Start computing SPM on channel #{carrier_cut.channel_number}')
|
||||
# SPM GGN
|
||||
if 'ggn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._generalized_spectrally_separated_spm(carrier_cut)
|
||||
# SPM GN
|
||||
elif 'gn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._gn_analytic(carrier_cut, *[carrier_cut])
|
||||
eta_matrix[cut_index, cut_index] = partial_nli / (carrier_cut.power.signal**3)
|
||||
|
||||
# XPM
|
||||
for pump_carrier in carriers:
|
||||
pump_index = pump_carrier.channel_number - 1
|
||||
if not (cut_index == pump_index):
|
||||
logger.debug(f'Start computing XPM on channel #{carrier_cut.channel_number} '
|
||||
f'from channel #{pump_carrier.channel_number}')
|
||||
# XPM GGN
|
||||
if 'ggn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._generalized_spectrally_separated_xpm(carrier_cut, pump_carrier)
|
||||
# XPM GGN
|
||||
elif 'gn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._gn_analytic(carrier_cut, *[pump_carrier])
|
||||
eta_matrix[pump_index, pump_index] = partial_nli /\
|
||||
(carrier_cut.power.signal * pump_carrier.power.signal**2)
|
||||
return eta_matrix
|
||||
|
||||
# Methods for computing GN-model
|
||||
def _gn_analytic(self, carrier, *carriers):
|
||||
""" Computes the nonlinear interference power on a single carrier.
|
||||
The method uses eq. 120 from arXiv:1209.0394.
|
||||
:param carrier: the signal under analysis
|
||||
:param carriers: the full WDM comb
|
||||
:return: carrier_nli: the amount of nonlinear interference in W on the carrier under analysis
|
||||
"""
|
||||
beta2 = self.fiber.params.beta2
|
||||
gamma = self.fiber.params.gamma
|
||||
effective_length = self.fiber.params.effective_length
|
||||
asymptotic_length = self.fiber.params.asymptotic_length
|
||||
|
||||
g_nli = 0
|
||||
for interfering_carrier in carriers:
|
||||
g_interfearing = interfering_carrier.power.signal / interfering_carrier.baud_rate
|
||||
g_signal = carrier.power.signal / carrier.baud_rate
|
||||
g_nli += g_interfearing**2 * g_signal \
|
||||
* _psi(carrier, interfering_carrier, beta2=beta2, asymptotic_length=asymptotic_length)
|
||||
g_nli *= (16.0 / 27.0) * (gamma * effective_length) ** 2 /\
|
||||
(2 * np.pi * abs(beta2) * asymptotic_length)
|
||||
carrier_nli = carrier.baud_rate * g_nli
|
||||
return carrier_nli
|
||||
|
||||
# Methods for computing the GGN-model
|
||||
def _generalized_spectrally_separated_spm(self, carrier):
|
||||
gamma = self.fiber.params.gamma
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
f_cut_resolution = sim_params.nli_params.f_cut_resolution['delta_0']
|
||||
f_eval = carrier.frequency
|
||||
g_cut = (carrier.power.signal / carrier.baud_rate)
|
||||
|
||||
spm_nli = carrier.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_cut ** 3 * \
|
||||
self._generalized_psi(carrier, carrier, f_eval, f_cut_resolution, f_cut_resolution)
|
||||
return spm_nli
|
||||
|
||||
def _generalized_spectrally_separated_xpm(self, carrier_cut, pump_carrier):
|
||||
gamma = self.fiber.params.gamma
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
delta_index = pump_carrier.channel_number - carrier_cut.channel_number
|
||||
f_cut_resolution = sim_params.nli_params.f_cut_resolution[f'delta_{delta_index}']
|
||||
f_pump_resolution = sim_params.nli_params.f_pump_resolution
|
||||
f_eval = carrier_cut.frequency
|
||||
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
|
||||
g_cut = (carrier_cut.power.signal / carrier_cut.baud_rate)
|
||||
frequency_offset_threshold = self._frequency_offset_threshold(pump_carrier.baud_rate)
|
||||
if abs(carrier_cut.frequency - pump_carrier.frequency) <= frequency_offset_threshold:
|
||||
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_pump**2 * g_cut * \
|
||||
2 * self._generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution)
|
||||
else:
|
||||
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_pump**2 * g_cut * \
|
||||
2 * self._fast_generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution)
|
||||
return xpm_nli
|
||||
|
||||
def _fast_generalized_psi(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution):
|
||||
""" It computes the generalized psi function similarly to the one used in the GN model
|
||||
:return: generalized_psi
|
||||
"""
|
||||
# Fiber parameters
|
||||
alpha0 = self.fiber.alpha0(f_eval)
|
||||
beta2 = self.fiber.params.beta2
|
||||
beta3 = self.fiber.params.beta3
|
||||
f_ref_beta = self.fiber.params.ref_frequency
|
||||
z = self.stimulated_raman_scattering.z
|
||||
frequency_rho = self.stimulated_raman_scattering.frequency
|
||||
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
|
||||
if len(frequency_rho) == 1:
|
||||
def rho_function(f): return rho_norm[0, :]
|
||||
else:
|
||||
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
|
||||
rho_norm_pump = rho_function(pump_carrier.frequency)
|
||||
|
||||
f1_array = np.array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
|
||||
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)])
|
||||
f2_array = np.arange(carrier_cut.frequency,
|
||||
carrier_cut.frequency + (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
|
||||
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
|
||||
|
||||
integrand_f1 = np.zeros(len(f1_array))
|
||||
for f1_index, f1 in enumerate(f1_array):
|
||||
delta_beta = 4 * np.pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
|
||||
(beta2 + np.pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
|
||||
integrand_f2 = self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
|
||||
integrand_f1[f1_index] = 2 * np.trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
|
||||
generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate
|
||||
return generalized_psi
|
||||
|
||||
def _generalized_psi(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution):
|
||||
""" It computes the generalized psi function similarly to the one used in the GN model
|
||||
:return: generalized_psi
|
||||
"""
|
||||
# Fiber parameters
|
||||
alpha0 = self.fiber.alpha0(f_eval)
|
||||
beta2 = self.fiber.params.beta2
|
||||
beta3 = self.fiber.params.beta3
|
||||
f_ref_beta = self.fiber.params.ref_frequency
|
||||
z = self.stimulated_raman_scattering.z
|
||||
frequency_rho = self.stimulated_raman_scattering.frequency
|
||||
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
|
||||
if len(frequency_rho) == 1:
|
||||
def rho_function(f): return rho_norm[0, :]
|
||||
else:
|
||||
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
|
||||
rho_norm_pump = rho_function(pump_carrier.frequency)
|
||||
|
||||
f1_array = np.arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
|
||||
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
|
||||
f_pump_resolution)
|
||||
f2_array = np.arange(carrier_cut.frequency - (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
|
||||
carrier_cut.frequency + (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
|
||||
f_cut_resolution)
|
||||
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
|
||||
|
||||
integrand_f1 = np.zeros(len(f1_array))
|
||||
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
|
||||
f3_array = f1 + f2_array - f_eval
|
||||
psd2 = raised_cosine_comb(f2_array, carrier_cut) * (carrier_cut.baud_rate / carrier_cut.power.signal)
|
||||
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
|
||||
ggg = psd1_sample * psd2 * psd3
|
||||
|
||||
delta_beta = 4 * np.pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
|
||||
(beta2 + np.pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
|
||||
|
||||
integrand_f2 = ggg * self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
|
||||
integrand_f1[f1_index] = np.trapz(integrand_f2, f2_array)
|
||||
generalized_psi = np.trapz(integrand_f1, f1_array)
|
||||
return generalized_psi
|
||||
|
||||
@staticmethod
|
||||
def _generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0):
|
||||
w = 1j * delta_beta - alpha0
|
||||
generalized_rho_nli = (rho_norm_pump[-1]**2 * np.exp(w * z[-1]) - rho_norm_pump[0]**2 * np.exp(w * z[0])) / w
|
||||
for z_ind in range(0, len(z) - 1):
|
||||
derivative_rho = (rho_norm_pump[z_ind + 1]**2 - rho_norm_pump[z_ind]**2) / (z[z_ind + 1] - z[z_ind])
|
||||
generalized_rho_nli -= derivative_rho * (np.exp(w * z[z_ind + 1]) - np.exp(w * z[z_ind])) / (w**2)
|
||||
generalized_rho_nli = np.abs(generalized_rho_nli)**2
|
||||
return generalized_rho_nli
|
||||
|
||||
def _frequency_offset_threshold(self, symbol_rate):
|
||||
k_ref = 5
|
||||
beta2_ref = 21.3e-27
|
||||
delta_f_ref = 50e9
|
||||
rs_ref = 32e9
|
||||
beta2 = abs(self.fiber.params.beta2)
|
||||
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (beta2 * symbol_rate)
|
||||
return freq_offset_th
|
||||
|
||||
|
||||
def _psi(carrier, interfering_carrier, beta2, asymptotic_length):
|
||||
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
|
||||
|
||||
if carrier.channel_number == interfering_carrier.channel_number: # SCI, SPM
|
||||
psi = np.arcsinh(0.5 * np.pi**2 * asymptotic_length * abs(beta2) * carrier.baud_rate**2)
|
||||
else: # XCI, XPM
|
||||
delta_f = carrier.frequency - interfering_carrier.frequency
|
||||
psi = np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
|
||||
carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
|
||||
psi -= np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
|
||||
carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
|
||||
return psi
|
||||
|
||||
|
||||
def estimate_nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
|
||||
if nf_min < -10:
|
||||
raise EquipmentConfigError(f'Invalid nf_min value {nf_min!r} for amplifier {type_variety}')
|
||||
if nf_max < -10:
|
||||
raise EquipmentConfigError(f'Invalid nf_max value {nf_max!r} for amplifier {type_variety}')
|
||||
|
||||
# NF estimation model based on nf_min and nf_max
|
||||
# delta_p: max power dB difference between first and second stage coils
|
||||
# dB g1a: first stage gain - internal VOA attenuation
|
||||
# nf1, nf2: first and second stage coils
|
||||
# calculated by solving nf_{min,max} = nf1 + nf2 / g1a{min,max}
|
||||
delta_p = 5
|
||||
g1a_min = gain_min - (gain_max - gain_min) - delta_p
|
||||
g1a_max = gain_max - delta_p
|
||||
nf2 = lin2db((db2lin(nf_min) - db2lin(nf_max)) /
|
||||
(1 / db2lin(g1a_max) - 1 / db2lin(g1a_min)))
|
||||
nf1 = lin2db(db2lin(nf_min) - db2lin(nf2) / db2lin(g1a_max))
|
||||
|
||||
if nf1 < 4:
|
||||
raise EquipmentConfigError(f'First coil value too low {nf1} for amplifier {type_variety}')
|
||||
|
||||
# Check 1 dB < delta_p < 6 dB to ensure nf_min and nf_max values make sense.
|
||||
# There shouldn't be high nf differences between the two coils:
|
||||
# nf2 should be nf1 + 0.3 < nf2 < nf1 + 2
|
||||
# If not, recompute and check delta_p
|
||||
if not nf1 + 0.3 < nf2 < nf1 + 2:
|
||||
nf2 = np.clip(nf2, nf1 + 0.3, nf1 + 2)
|
||||
g1a_max = lin2db(db2lin(nf2) / (db2lin(nf_min) - db2lin(nf1)))
|
||||
delta_p = gain_max - g1a_max
|
||||
g1a_min = gain_min - (gain_max - gain_min) - delta_p
|
||||
if not 1 < delta_p < 11:
|
||||
raise EquipmentConfigError(f'Computed \N{greek capital letter delta}P invalid \
|
||||
\n 1st coil vs 2nd coil calculated DeltaP {delta_p:.2f} for \
|
||||
\n amplifier {type_variety} is not valid: revise inputs \
|
||||
\n calculated 1st coil NF = {nf1:.2f}, 2nd coil NF = {nf2:.2f}')
|
||||
# Check calculated values for nf1 and nf2
|
||||
calc_nf_min = lin2db(db2lin(nf1) + db2lin(nf2) / db2lin(g1a_max))
|
||||
if not isclose(nf_min, calc_nf_min, abs_tol=0.01):
|
||||
raise EquipmentConfigError(f'nf_min does not match calc_nf_min, {nf_min} vs {calc_nf_min} for amp {type_variety}')
|
||||
calc_nf_max = lin2db(db2lin(nf1) + db2lin(nf2) / db2lin(g1a_min))
|
||||
if not isclose(nf_max, calc_nf_max, abs_tol=0.01):
|
||||
raise EquipmentConfigError(f'nf_max does not match calc_nf_max, {nf_max} vs {calc_nf_max} for amp {type_variety}')
|
||||
|
||||
return nf1, nf2, delta_p
|
||||
298
gnpy/core/utils.py
Normal file
298
gnpy/core/utils.py
Normal file
@@ -0,0 +1,298 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
gnpy.core.utils
|
||||
===============
|
||||
|
||||
This module contains utility functions that are used with gnpy.
|
||||
'''
|
||||
|
||||
|
||||
from csv import writer
|
||||
import numpy as np
|
||||
from numpy import pi, cos, sqrt, log10
|
||||
from scipy import constants
|
||||
from gnpy.core.exceptions import ConfigurationError
|
||||
|
||||
|
||||
def write_csv(obj, filename):
|
||||
"""
|
||||
Convert dictionary items to a CSV file the dictionary format:
|
||||
::
|
||||
|
||||
{'result category 1':
|
||||
[
|
||||
# 1st line of results
|
||||
{'header 1' : value_xxx,
|
||||
'header 2' : value_yyy},
|
||||
# 2nd line of results: same headers, different results
|
||||
{'header 1' : value_www,
|
||||
'header 2' : value_zzz}
|
||||
],
|
||||
'result_category 2':
|
||||
[
|
||||
{},{}
|
||||
]
|
||||
}
|
||||
|
||||
The generated csv file will be:
|
||||
::
|
||||
|
||||
result_category 1
|
||||
header 1 header 2
|
||||
value_xxx value_yyy
|
||||
value_www value_zzz
|
||||
result_category 2
|
||||
...
|
||||
"""
|
||||
with open(filename, 'w', encoding='utf-8') as f:
|
||||
w = writer(f)
|
||||
for data_key, data_list in obj.items():
|
||||
# main header
|
||||
w.writerow([data_key])
|
||||
# sub headers:
|
||||
headers = [_ for _ in data_list[0].keys()]
|
||||
w.writerow(headers)
|
||||
for data_dict in data_list:
|
||||
w.writerow([_ for _ in data_dict.values()])
|
||||
|
||||
|
||||
def arrange_frequencies(length, start, stop):
|
||||
"""Create an array of frequencies
|
||||
|
||||
:param length: number of elements
|
||||
:param start: Start frequency in THz
|
||||
:param stop: Stop frequency in THz
|
||||
:type length: integer
|
||||
:type start: float
|
||||
:type stop: float
|
||||
:return: an array of frequencies determined by the spacing parameter
|
||||
:rtype: numpy.ndarray
|
||||
"""
|
||||
return np.linspace(start, stop, length)
|
||||
|
||||
|
||||
def lin2db(value):
|
||||
"""Convert linear unit to logarithmic (dB)
|
||||
|
||||
>>> lin2db(0.001)
|
||||
-30.0
|
||||
>>> round(lin2db(1.0), 2)
|
||||
0.0
|
||||
>>> round(lin2db(1.26), 2)
|
||||
1.0
|
||||
>>> round(lin2db(10.0), 2)
|
||||
10.0
|
||||
>>> round(lin2db(100.0), 2)
|
||||
20.0
|
||||
"""
|
||||
return 10 * log10(value)
|
||||
|
||||
|
||||
def db2lin(value):
|
||||
"""Convert logarithimic units to linear
|
||||
|
||||
>>> round(db2lin(10.0), 2)
|
||||
10.0
|
||||
>>> round(db2lin(20.0), 2)
|
||||
100.0
|
||||
>>> round(db2lin(1.0), 2)
|
||||
1.26
|
||||
>>> round(db2lin(0.0), 2)
|
||||
1.0
|
||||
>>> round(db2lin(-10.0), 2)
|
||||
0.1
|
||||
"""
|
||||
return 10**(value / 10)
|
||||
|
||||
|
||||
def round2float(number, step):
|
||||
step = round(step, 1)
|
||||
if step >= 0.01:
|
||||
number = round(number / step, 0)
|
||||
number = round(number * step, 1)
|
||||
else:
|
||||
number = round(number, 2)
|
||||
return number
|
||||
|
||||
|
||||
wavelength2freq = constants.lambda2nu
|
||||
freq2wavelength = constants.nu2lambda
|
||||
|
||||
|
||||
def freq2wavelength(value):
|
||||
""" Converts frequency units to wavelength units.
|
||||
|
||||
>>> round(freq2wavelength(191.35e12) * 1e9, 3)
|
||||
1566.723
|
||||
>>> round(freq2wavelength(196.1e12) * 1e9, 3)
|
||||
1528.773
|
||||
"""
|
||||
return constants.c / value
|
||||
|
||||
|
||||
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
|
||||
snr_added = snr_added - lin2db(bw / bw_added)
|
||||
snr = -lin2db(db2lin(-snr) + db2lin(-snr_added))
|
||||
return snr
|
||||
|
||||
|
||||
def deltawl2deltaf(delta_wl, wavelength):
|
||||
""" deltawl2deltaf(delta_wl, wavelength):
|
||||
delta_wl is BW in wavelength units
|
||||
wavelength is the center wl
|
||||
units for delta_wl and wavelength must be same
|
||||
|
||||
:param delta_wl: delta wavelength BW in same units as wavelength
|
||||
:param wavelength: wavelength BW is relevant for
|
||||
:type delta_wl: float or numpy.ndarray
|
||||
:type wavelength: float
|
||||
:return: The BW in frequency units
|
||||
:rtype: float or ndarray
|
||||
|
||||
"""
|
||||
f = wavelength2freq(wavelength)
|
||||
return delta_wl * f / wavelength
|
||||
|
||||
|
||||
def deltaf2deltawl(delta_f, frequency):
|
||||
""" deltawl2deltaf(delta_f, frequency):
|
||||
converts delta frequency to delta wavelength
|
||||
units for delta_wl and wavelength must be same
|
||||
|
||||
:param delta_f: delta frequency in same units as frequency
|
||||
:param frequency: frequency BW is relevant for
|
||||
:type delta_f: float or numpy.ndarray
|
||||
:type frequency: float
|
||||
:return: The BW in wavelength units
|
||||
:rtype: float or ndarray
|
||||
|
||||
"""
|
||||
wl = freq2wavelength(frequency)
|
||||
return delta_f * wl / frequency
|
||||
|
||||
|
||||
def rrc(ffs, baud_rate, alpha):
|
||||
""" rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
|
||||
function.
|
||||
|
||||
:param ffs: A numpy array of frequencies
|
||||
:param baud_rate: The Baud Rate of the System
|
||||
:param alpha: The roll-off factor of the filter
|
||||
:type ffs: numpy.ndarray
|
||||
:type baud_rate: float
|
||||
:type alpha: float
|
||||
:return: hf a numpy array of the filter shape
|
||||
:rtype: numpy.ndarray
|
||||
|
||||
"""
|
||||
Ts = 1 / baud_rate
|
||||
l_lim = (1 - alpha) / (2 * Ts)
|
||||
r_lim = (1 + alpha) / (2 * Ts)
|
||||
hf = np.zeros(np.shape(ffs))
|
||||
slope_inds = np.where(
|
||||
np.logical_and(np.abs(ffs) > l_lim, np.abs(ffs) < r_lim))
|
||||
hf[slope_inds] = 0.5 * (1 + cos((pi * Ts / alpha) *
|
||||
(np.abs(ffs[slope_inds]) - l_lim)))
|
||||
p_inds = np.where(np.logical_and(np.abs(ffs) > 0, np.abs(ffs) < l_lim))
|
||||
hf[p_inds] = 1
|
||||
return sqrt(hf)
|
||||
|
||||
|
||||
def merge_amplifier_restrictions(dict1, dict2):
|
||||
"""Updates contents of dicts recursively
|
||||
|
||||
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
|
||||
>>> d2 = {'params': {'target_pch_out_db': -20}}
|
||||
>>> merge_amplifier_restrictions(d1, d2)
|
||||
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}, 'target_pch_out_db': -20}}
|
||||
|
||||
>>> d3 = {'params': {'restrictions': {'preamp_variety_list': ['foo'], 'booster_variety_list': ['bar']}}}
|
||||
>>> merge_amplifier_restrictions(d1, d3)
|
||||
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
|
||||
"""
|
||||
|
||||
copy_dict1 = dict1.copy()
|
||||
for key in dict2:
|
||||
if key in dict1:
|
||||
if isinstance(dict1[key], dict):
|
||||
copy_dict1[key] = merge_amplifier_restrictions(copy_dict1[key], dict2[key])
|
||||
else:
|
||||
copy_dict1[key] = dict2[key]
|
||||
return copy_dict1
|
||||
|
||||
|
||||
def silent_remove(this_list, elem):
|
||||
"""Remove matching elements from a list without raising ValueError
|
||||
|
||||
>>> li = [0, 1]
|
||||
>>> li = silent_remove(li, 1)
|
||||
>>> li
|
||||
[0]
|
||||
>>> li = silent_remove(li, 1)
|
||||
>>> li
|
||||
[0]
|
||||
"""
|
||||
|
||||
try:
|
||||
this_list.remove(elem)
|
||||
except ValueError:
|
||||
pass
|
||||
return this_list
|
||||
|
||||
|
||||
def automatic_nch(f_min, f_max, spacing):
|
||||
"""How many channels are available in the spectrum
|
||||
|
||||
:param f_min Lowest frequenecy [Hz]
|
||||
:param f_max Highest frequency [Hz]
|
||||
:param spacing Channel width [Hz]
|
||||
:return Number of uniform channels
|
||||
|
||||
>>> automatic_nch(191.325e12, 196.125e12, 50e9)
|
||||
96
|
||||
>>> automatic_nch(193.475e12, 193.525e12, 50e9)
|
||||
1
|
||||
"""
|
||||
return int((f_max - f_min) // spacing)
|
||||
|
||||
|
||||
def automatic_fmax(f_min, spacing, nch):
|
||||
"""Find the high-frequenecy boundary of a spectrum
|
||||
|
||||
:param f_min Start of the spectrum (lowest frequency edge) [Hz]
|
||||
:param spacing Grid/channel spacing [Hz]
|
||||
:param nch Number of channels
|
||||
:return End of the spectrum (highest frequency) [Hz]
|
||||
|
||||
>>> automatic_fmax(191.325e12, 50e9, 96)
|
||||
196125000000000.0
|
||||
"""
|
||||
return f_min + spacing * nch
|
||||
|
||||
|
||||
def convert_length(value, units):
|
||||
"""Convert length into basic SI units
|
||||
|
||||
>>> convert_length(1, 'km')
|
||||
1000.0
|
||||
>>> convert_length(2.0, 'km')
|
||||
2000.0
|
||||
>>> convert_length(123, 'm')
|
||||
123.0
|
||||
>>> convert_length(123.0, 'm')
|
||||
123.0
|
||||
>>> convert_length(42.1, 'km')
|
||||
42100.0
|
||||
>>> convert_length(666, 'yards')
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
gnpy.core.exceptions.ConfigurationError: Cannot convert length in "yards" into meters
|
||||
"""
|
||||
if units == 'm':
|
||||
return value * 1e0
|
||||
elif units == 'km':
|
||||
return value * 1e3
|
||||
else:
|
||||
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
|
||||
7631
gnpy/example-data/CORONET_CONUS_Topology.json
Normal file
7631
gnpy/example-data/CORONET_CONUS_Topology.json
Normal file
File diff suppressed because it is too large
Load Diff
10278
gnpy/example-data/CORONET_Global_Topology.json
Normal file
10278
gnpy/example-data/CORONET_Global_Topology.json
Normal file
File diff suppressed because it is too large
Load Diff
BIN
gnpy/example-data/CORONET_Global_Topology.xls
Normal file
BIN
gnpy/example-data/CORONET_Global_Topology.xls
Normal file
Binary file not shown.
160
gnpy/example-data/Juniper-BoosterHG.json
Normal file
160
gnpy/example-data/Juniper-BoosterHG.json
Normal file
@@ -0,0 +1,160 @@
|
||||
{
|
||||
"nf_fit_coeff": [
|
||||
0.0008,
|
||||
0.0272,
|
||||
-0.2249,
|
||||
6.4902
|
||||
],
|
||||
"f_min": 191.35e12,
|
||||
"f_max": 196.1e12,
|
||||
"nf_ripple": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"gain_ripple": [
|
||||
0.15017064489112,
|
||||
0.14157768006701,
|
||||
0.00223094639866,
|
||||
-0.06701528475711,
|
||||
-0.05982935510889,
|
||||
-0.01028161641541,
|
||||
0.02740682579566,
|
||||
0.02795958961474,
|
||||
0.00107516750419,
|
||||
-0.02199015912898,
|
||||
-0.00877407872698,
|
||||
0.0453465242881,
|
||||
0.1204721524288,
|
||||
0.18936662479061,
|
||||
0.23826109715241,
|
||||
0.26956762981574,
|
||||
0.27836159966498,
|
||||
0.26941687604691,
|
||||
0.23579878559464,
|
||||
0.18147717755444,
|
||||
0.1191656197655,
|
||||
0.05921587102177,
|
||||
0.01509526800668,
|
||||
-0.01053287269681,
|
||||
-0.02475397822447,
|
||||
-0.01847257118928,
|
||||
-0.00420121440538,
|
||||
0.01584903685091,
|
||||
0.0399193886097,
|
||||
0.04494451423784,
|
||||
0.04961788107202,
|
||||
0.03378873534338,
|
||||
0.01027114740367,
|
||||
-0.01319618927973,
|
||||
-0.04962835008375,
|
||||
-0.0765630234506,
|
||||
-0.10606051088777,
|
||||
-0.13550774706866,
|
||||
-0.15460322445561,
|
||||
-0.17113588777219,
|
||||
-0.18053287269681,
|
||||
-0.18324644053602,
|
||||
-0.19440221943049,
|
||||
-0.20897508375209,
|
||||
-0.23575900335007,
|
||||
-0.25188965661642,
|
||||
-0.22244242043552,
|
||||
-0.15656302345061
|
||||
],
|
||||
"dgt": [
|
||||
2.4553191172498,
|
||||
2.44342862248888,
|
||||
2.41879254989742,
|
||||
2.38192717604575,
|
||||
2.33147727493671,
|
||||
2.26678136721453,
|
||||
2.19013043016015,
|
||||
2.10336369905543,
|
||||
2.01414465424155,
|
||||
1.92915262384742,
|
||||
1.85543800978691,
|
||||
1.79748596476494,
|
||||
1.75428006928365,
|
||||
1.72461030013125,
|
||||
1.70379790088896,
|
||||
1.68845480656382,
|
||||
1.6761448370895,
|
||||
1.66286684904577,
|
||||
1.64799163036252,
|
||||
1.63068023161292,
|
||||
1.61073904908309,
|
||||
1.58973304612691,
|
||||
1.56750088631614,
|
||||
1.54578500307573,
|
||||
1.5242627235492,
|
||||
1.50335352244996,
|
||||
1.48420288841848,
|
||||
1.46637521309853,
|
||||
1.44977369463316,
|
||||
1.43476940680732,
|
||||
1.42089447397912,
|
||||
1.40864903907609,
|
||||
1.3966294751726,
|
||||
1.38430337205545,
|
||||
1.3710092503689,
|
||||
1.35690844654118,
|
||||
1.3405812000038,
|
||||
1.32210817897091,
|
||||
1.30069883494415,
|
||||
1.27657903892303,
|
||||
1.24931318255134,
|
||||
1.21911100318577,
|
||||
1.18632744096844,
|
||||
1.15209185089701,
|
||||
1.11575888725852,
|
||||
1.07773189112355,
|
||||
1.03941448941778,
|
||||
1.0
|
||||
]
|
||||
}
|
||||
104
gnpy/example-data/create_eqpt_sheet.py
Normal file
104
gnpy/example-data/create_eqpt_sheet.py
Normal file
@@ -0,0 +1,104 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
create_eqpt_sheet.py
|
||||
====================
|
||||
|
||||
XLS parser that can be called to create a "City" column in the "Eqpt" sheet.
|
||||
|
||||
If not present in the "Nodes" sheet, the "Type" column will be implicitly
|
||||
determined based on the topology.
|
||||
"""
|
||||
|
||||
from xlrd import open_workbook
|
||||
from argparse import ArgumentParser
|
||||
|
||||
PARSER = ArgumentParser()
|
||||
PARSER.add_argument('workbook', nargs='?', default='meshTopologyExampleV2.xls',
|
||||
help='create the mandatory columns in Eqpt sheet')
|
||||
|
||||
|
||||
def ALL_ROWS(sh, start=0):
|
||||
return (sh.row(x) for x in range(start, sh.nrows))
|
||||
|
||||
|
||||
class Node:
|
||||
""" Node element contains uid, list of connected nodes and eqpt type
|
||||
"""
|
||||
|
||||
def __init__(self, uid, to_node):
|
||||
self.uid = uid
|
||||
self.to_node = to_node
|
||||
self.eqpt = None
|
||||
|
||||
def __repr__(self):
|
||||
return f'uid {self.uid} \nto_node {[node for node in self.to_node]}\neqpt {self.eqpt}\n'
|
||||
|
||||
def __str__(self):
|
||||
return f'uid {self.uid} \nto_node {[node for node in self.to_node]}\neqpt {self.eqpt}\n'
|
||||
|
||||
|
||||
def read_excel(input_filename):
|
||||
""" read excel Nodes and Links sheets and create a dict of nodes with
|
||||
their to_nodes and type of eqpt
|
||||
"""
|
||||
with open_workbook(input_filename) as wobo:
|
||||
# reading Links sheet
|
||||
links_sheet = wobo.sheet_by_name('Links')
|
||||
nodes = {}
|
||||
for row in ALL_ROWS(links_sheet, start=5):
|
||||
try:
|
||||
nodes[row[0].value].to_node.append(row[1].value)
|
||||
except KeyError:
|
||||
nodes[row[0].value] = Node(row[0].value, [row[1].value])
|
||||
try:
|
||||
nodes[row[1].value].to_node.append(row[0].value)
|
||||
except KeyError:
|
||||
nodes[row[1].value] = Node(row[1].value, [row[0].value])
|
||||
|
||||
nodes_sheet = wobo.sheet_by_name('Nodes')
|
||||
for row in ALL_ROWS(nodes_sheet, start=5):
|
||||
node = row[0].value
|
||||
eqpt = row[6].value
|
||||
try:
|
||||
if eqpt == 'ILA' and len(nodes[node].to_node) != 2:
|
||||
print(f'Inconsistancy ILA node with degree > 2: {node} ')
|
||||
exit()
|
||||
if eqpt == '' and len(nodes[node].to_node) == 2:
|
||||
nodes[node].eqpt = 'ILA'
|
||||
elif eqpt == '' and len(nodes[node].to_node) != 2:
|
||||
nodes[node].eqpt = 'ROADM'
|
||||
else:
|
||||
nodes[node].eqpt = eqpt
|
||||
except KeyError:
|
||||
print(f'inconsistancy between nodes and links sheet: {node} is not listed in links')
|
||||
exit()
|
||||
return nodes
|
||||
|
||||
|
||||
def create_eqt_template(nodes, input_filename):
|
||||
""" writes list of node A node Z corresponding to Nodes and Links sheets in order
|
||||
to help user populating Eqpt
|
||||
"""
|
||||
output_filename = f'{input_filename[:-4]}_eqpt_sheet.txt'
|
||||
with open(output_filename, 'w', encoding='utf-8') as my_file:
|
||||
# print header similar to excel
|
||||
my_file.write('OPTIONAL\n\n\n\
|
||||
\t\tNode a egress amp (from a to z)\t\t\t\t\tNode a ingress amp (from z to a) \
|
||||
\nNode A \tNode Z \tamp type \tatt_in \tamp gain \ttilt \tatt_out\
|
||||
amp type \tatt_in \tamp gain \ttilt \tatt_out\n')
|
||||
|
||||
for node in nodes.values():
|
||||
if node.eqpt == 'ILA':
|
||||
my_file.write(f'{node.uid}\t{node.to_node[0]}\n')
|
||||
if node.eqpt == 'ROADM':
|
||||
for to_node in node.to_node:
|
||||
my_file.write(f'{node.uid}\t{to_node}\n')
|
||||
|
||||
print(f'File {output_filename} successfully created with Node A - Node Z entries for Eqpt sheet in excel file.')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ARGS = PARSER.parse_args()
|
||||
create_eqt_template(read_excel(ARGS.workbook), ARGS.workbook)
|
||||
106
gnpy/example-data/default_edfa_config.json
Normal file
106
gnpy/example-data/default_edfa_config.json
Normal file
@@ -0,0 +1,106 @@
|
||||
{
|
||||
"nf_ripple": [
|
||||
0.0
|
||||
],
|
||||
"gain_ripple": [
|
||||
0.0
|
||||
],
|
||||
"dgt": [
|
||||
2.714526681131686,
|
||||
2.705443819238505,
|
||||
2.6947834587664494,
|
||||
2.6841217449620203,
|
||||
2.6681935771243177,
|
||||
2.6521732021128046,
|
||||
2.630396440815385,
|
||||
2.602860350286428,
|
||||
2.5696460593920065,
|
||||
2.5364027376452056,
|
||||
2.499446286796604,
|
||||
2.4587748041127506,
|
||||
2.414398437185221,
|
||||
2.3699990328716107,
|
||||
2.322373696229342,
|
||||
2.271520771371253,
|
||||
2.2174389328192197,
|
||||
2.16337565384239,
|
||||
2.1183028432496016,
|
||||
2.082225099873648,
|
||||
2.055100772005235,
|
||||
2.0279625371819305,
|
||||
2.0008103857988204,
|
||||
1.9736443063300082,
|
||||
1.9482128147680253,
|
||||
1.9245345552113182,
|
||||
1.9026104247588487,
|
||||
1.8806927939516411,
|
||||
1.862235672444246,
|
||||
1.847275503201129,
|
||||
1.835814081380705,
|
||||
1.824381436842932,
|
||||
1.8139629377087627,
|
||||
1.8045606557581335,
|
||||
1.7961751115773796,
|
||||
1.7877868031023945,
|
||||
1.7793941781790852,
|
||||
1.7709972329654864,
|
||||
1.7625959636196327,
|
||||
1.7541903672600494,
|
||||
1.7459181197626403,
|
||||
1.737780757913635,
|
||||
1.7297783508684146,
|
||||
1.7217732861435076,
|
||||
1.7137640932265894,
|
||||
1.7057507692361864,
|
||||
1.6918150918099673,
|
||||
1.6719047669939942,
|
||||
1.6460167077689267,
|
||||
1.6201194134191075,
|
||||
1.5986915141218316,
|
||||
1.5817353179379183,
|
||||
1.569199764184379,
|
||||
1.5566577309558969,
|
||||
1.545374152761467,
|
||||
1.5353620432989845,
|
||||
1.5266220576235803,
|
||||
1.5178910621476225,
|
||||
1.5097346239790443,
|
||||
1.502153039909686,
|
||||
1.495145456062699,
|
||||
1.488134243479226,
|
||||
1.48111939735681,
|
||||
1.474100442252211,
|
||||
1.4670307626366115,
|
||||
1.4599103316162523,
|
||||
1.45273959485914,
|
||||
1.445565137158368,
|
||||
1.4340878115214444,
|
||||
1.418273806730323,
|
||||
1.3981208704326855,
|
||||
1.3779439775587023,
|
||||
1.3598972673004606,
|
||||
1.3439818461440451,
|
||||
1.3301807335621048,
|
||||
1.316383926863083,
|
||||
1.3040618749785347,
|
||||
1.2932153453410835,
|
||||
1.2838336236692311,
|
||||
1.2744470198196236,
|
||||
1.2650555289898042,
|
||||
1.2556591482982988,
|
||||
1.2428104897182262,
|
||||
1.2264996957264114,
|
||||
1.2067249615595257,
|
||||
1.1869318618366975,
|
||||
1.1672278304018044,
|
||||
1.1476135933863398,
|
||||
1.1280891949729075,
|
||||
1.108555289615659,
|
||||
1.0895983485572227,
|
||||
1.0712204022764056,
|
||||
1.0534217504465226,
|
||||
1.0356155337864215,
|
||||
1.017807767853702,
|
||||
1.0
|
||||
]
|
||||
}
|
||||
80
gnpy/example-data/edfa_example_network.json
Normal file
80
gnpy/example-data/edfa_example_network.json
Normal file
@@ -0,0 +1,80 @@
|
||||
{
|
||||
"network_name": "EDFA Example Network - P2P",
|
||||
"elements": [{
|
||||
"uid": "Site_A",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Site A",
|
||||
"region": "",
|
||||
"latitude": 0,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Span1",
|
||||
"type": "Fiber",
|
||||
"type_variety": "SSMF",
|
||||
"params": {
|
||||
"length": 80,
|
||||
"loss_coef": 0.2,
|
||||
"length_units": "km",
|
||||
"att_in": 0,
|
||||
"con_in": 0.5,
|
||||
"con_out": 0.5
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"region": "",
|
||||
"latitude": 1,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Edfa1",
|
||||
"type": "Edfa",
|
||||
"type_variety": "std_low_gain",
|
||||
"operational": {
|
||||
"gain_target": 17,
|
||||
"tilt_target": 0,
|
||||
"out_voa": 0
|
||||
},
|
||||
"metadata": {
|
||||
"location": {
|
||||
"region": "",
|
||||
"latitude": 2,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"uid": "Site_B",
|
||||
"type": "Transceiver",
|
||||
"metadata": {
|
||||
"location": {
|
||||
"city": "Site B",
|
||||
"region": "",
|
||||
"latitude": 2,
|
||||
"longitude": 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
],
|
||||
"connections": [{
|
||||
"from_node": "Site_A",
|
||||
"to_node": "Span1"
|
||||
},
|
||||
{
|
||||
"from_node": "Span1",
|
||||
"to_node": "Edfa1"
|
||||
},
|
||||
{
|
||||
"from_node": "Edfa1",
|
||||
"to_node": "Site_B"
|
||||
}
|
||||
|
||||
]
|
||||
}
|
||||
1
gnpy/example-data/edfa_model/DFG_96.txt
Normal file
1
gnpy/example-data/edfa_model/DFG_96.txt
Normal file
@@ -0,0 +1 @@
|
||||
2.5135969849999999e+01 2.5118228139999999e+01 2.5095421330000001e+01 2.5062457710000000e+01 2.5026027650000000e+01 2.4996379529999999e+01 2.4981672549999999e+01 2.4975306679999999e+01 2.4983207260000000e+01 2.4997185649999999e+01 2.5017572470000001e+01 2.5038327809999998e+01 2.5054955849999999e+01 2.5067071899999998e+01 2.5070914110000000e+01 2.5070943650000000e+01 2.5071143240000001e+01 2.5075336270000001e+01 2.5087310179999999e+01 2.5103139360000000e+01 2.5122762040000001e+01 2.5142394790000001e+01 2.5159456330000001e+01 2.5173927039999999e+01 2.5176737670000001e+01 2.5170371410000001e+01 2.5152162539999999e+01 2.5131143099999999e+01 2.5108023350000000e+01 2.5085487770000000e+01 2.5069166750000001e+01 2.5058481759999999e+01 2.5054473130000002e+01 2.5051544410000002e+01 2.5049460589999999e+01 2.5047178490000000e+01 2.5045516559999999e+01 2.5044676490000001e+01 2.5040729200000001e+01 2.5032854080000000e+01 2.5023488300000000e+01 2.5016592339999999e+01 2.5013321359999999e+01 2.5011234340000001e+01 2.5010300149999999e+01 2.5009365480000000e+01 2.5008739640000002e+01 2.5008425350000000e+01 2.5006964660000001e+01 2.5004043100000001e+01 2.5000709980000000e+01 2.4998423200000001e+01 2.4993063320000001e+01 2.4983524209999999e+01 2.4971251030000001e+01 2.4960381080000001e+01 2.4948887209999999e+01 2.4935314890000001e+01 2.4921319270000001e+01 2.4908986970000001e+01 2.4898965140000001e+01 2.4889584630000002e+01 2.4880838700000002e+01 2.4872100920000001e+01 2.4864620259999999e+01 2.4858397730000000e+01 2.4854458380000001e+01 2.4851554430000000e+01 2.4851766009999999e+01 2.4854080140000001e+01 2.4859096240000000e+01 2.4864744580000000e+01 2.4872034859999999e+01 2.4880365200000000e+01 2.4889106689999998e+01 2.4897213130000001e+01 2.4902826040000001e+01 2.4906566900000001e+01 2.4908650800000000e+01 2.4910939440000000e+01 2.4913430790000000e+01 2.4915923440000000e+01 2.4921553509999999e+01 2.4930318610000000e+01 2.4940528120000000e+01 2.4949046689999999e+01 2.4957571229999999e+01 2.4967818449999999e+01 2.4981800929999999e+01 2.4997826860000000e+01 2.5013931830000001e+01 2.5028098459999999e+01 2.5040325750000001e+01 2.5052569810000001e+01 2.5064797009999999e+01 2.5077046970000001e+01
|
||||
1
gnpy/example-data/edfa_model/DGT_96.txt
Normal file
1
gnpy/example-data/edfa_model/DGT_96.txt
Normal file
@@ -0,0 +1 @@
|
||||
2.7145266811316859e+00 2.7054438192385049e+00 2.6947834587664494e+00 2.6841217449620203e+00 2.6681935771243177e+00 2.6521732021128046e+00 2.6303964408153848e+00 2.6028603502864280e+00 2.5696460593920065e+00 2.5364027376452056e+00 2.4994462867966041e+00 2.4587748041127506e+00 2.4143984371852212e+00 2.3699990328716107e+00 2.3223736962293420e+00 2.2715207713712529e+00 2.2174389328192197e+00 2.1633756538423898e+00 2.1183028432496016e+00 2.0822250998736478e+00 2.0551007720052352e+00 2.0279625371819305e+00 2.0008103857988204e+00 1.9736443063300082e+00 1.9482128147680253e+00 1.9245345552113182e+00 1.9026104247588487e+00 1.8806927939516411e+00 1.8622356724442459e+00 1.8472755032011290e+00 1.8358140813807049e+00 1.8243814368429321e+00 1.8139629377087627e+00 1.8045606557581335e+00 1.7961751115773796e+00 1.7877868031023945e+00 1.7793941781790852e+00 1.7709972329654864e+00 1.7625959636196327e+00 1.7541903672600494e+00 1.7459181197626403e+00 1.7377807579136351e+00 1.7297783508684146e+00 1.7217732861435076e+00 1.7137640932265894e+00 1.7057507692361864e+00 1.6918150918099673e+00 1.6719047669939942e+00 1.6460167077689267e+00 1.6201194134191075e+00 1.5986915141218316e+00 1.5817353179379183e+00 1.5691997641843789e+00 1.5566577309558969e+00 1.5453741527614671e+00 1.5353620432989845e+00 1.5266220576235803e+00 1.5178910621476225e+00 1.5097346239790443e+00 1.5021530399096861e+00 1.4951454560626991e+00 1.4881342434792260e+00 1.4811193973568100e+00 1.4741004422522110e+00 1.4670307626366115e+00 1.4599103316162523e+00 1.4527395948591399e+00 1.4455651371583680e+00 1.4340878115214444e+00 1.4182738067303231e+00 1.3981208704326855e+00 1.3779439775587023e+00 1.3598972673004606e+00 1.3439818461440451e+00 1.3301807335621048e+00 1.3163839268630830e+00 1.3040618749785347e+00 1.2932153453410835e+00 1.2838336236692311e+00 1.2744470198196236e+00 1.2650555289898042e+00 1.2556591482982988e+00 1.2428104897182262e+00 1.2264996957264114e+00 1.2067249615595257e+00 1.1869318618366975e+00 1.1672278304018044e+00 1.1476135933863398e+00 1.1280891949729075e+00 1.1085552896156590e+00 1.0895983485572227e+00 1.0712204022764056e+00 1.0534217504465226e+00 1.0356155337864215e+00 1.0178077678537021e+00 1.0000000000000000e+00
|
||||
1
gnpy/example-data/edfa_model/NFR_96.txt
Normal file
1
gnpy/example-data/edfa_model/NFR_96.txt
Normal file
@@ -0,0 +1 @@
|
||||
-3.1537433199999998e-01 -3.1537433199999998e-01 -3.1540091571002721e-01 -3.1849146117510951e-01 -3.2158358425400546e-01 -3.2467728615499991e-01 -3.2762368641496226e-01 -3.2054138461232762e-01 -3.1345546385118733e-01 -3.0636592135697482e-01 -2.9920267890990127e-01 -2.7061972852631744e-01 -2.4202215770774693e-01 -2.1340995523361256e-01 -1.8478227130158695e-01 -1.4809761118389625e-01 -1.1139416731807622e-01 -7.4671925273579881e-02 -3.8026748965679924e-02 -1.9958469399422092e-02 -1.8809287980157928e-03 1.6205879960573561e-02 3.4301964005709673e-02 5.2407330474054062e-02 7.0521986509597359e-02 7.9578036683472006e-02 8.8546647361909522e-02 9.7519863231965306e-02 1.0649768784154924e-01 9.7741380449907406e-02 8.8803437172660038e-02 7.9860899732845866e-02 7.0913764587403796e-02 6.3335892740565308e-02 5.5756212252058776e-02 4.8172631747863209e-02 4.0585148217162359e-02 3.3381591675710129e-02 2.6178308595650738e-02 1.8971315351761126e-02 1.1760609076833628e-02 1.6950294922759991e-02 2.2274991357701439e-02 2.7602433189104329e-02 3.2932622540790261e-02 3.8265561538776145e-02 4.3601252311271169e-02 3.4856990743481552e-02 2.5991055149117932e-02 1.7120541224980364e-02 8.2757587359203223e-03 1.9423214065246042e-03 -4.3943890171043590e-03 -1.0734375072893196e-02 -1.7077639301414434e-02 -2.4679702899572852e-02 -3.2297970403821680e-02 -3.9920180090477250e-02 -4.7534566327530239e-02 -4.9234003141433724e-02 -5.0934320036547187e-02 -5.2635517696692252e-02 -5.4337596806402461e-02 -5.6040558050919301e-02 -5.7718452237076875e-02 -5.6840590379175944e-02 -5.5962273198734966e-02 -5.5083500341416583e-02 -5.4204271452516814e-02 -5.8396088726955113e-02 -6.2627330169715334e-02 -6.6860769089203700e-02 -7.0901736256069450e-02 -5.2096097309052243e-02 -3.3280684121412940e-02 -1.4455489070928059e-02 4.3150387579057158e-03 1.4839202394482527e-02 2.5368841662503576e-02 3.5903960836465652e-02 4.6444564195321399e-02 5.6990656022467459e-02 6.7542240605774059e-02 1.0002709623672751e-01 1.3258013095133617e-01 1.6515013362773309e-01 1.9773711753599391e-01 2.3194802687829724e-01 2.6618779883837107e-01 3.0044543658085349e-01 3.3472095409250663e-01 3.5929034770587287e-01 3.8384389188855605e-01 4.0841026111391787e-01 4.3298946543290784e-01 4.3298946543290784e-01
|
||||
6
gnpy/example-data/edfa_model/OA.json
Normal file
6
gnpy/example-data/edfa_model/OA.json
Normal file
@@ -0,0 +1,6 @@
|
||||
{
|
||||
"nf_ripple": "NFR_96.txt",
|
||||
"gain_ripple": "DFG_96.txt",
|
||||
"dgt": "DGT_96.txt",
|
||||
"nf_fit_coeff": "pNFfit3.txt"
|
||||
}
|
||||
300
gnpy/example-data/edfa_model/amplifier_models_description.rst
Normal file
300
gnpy/example-data/edfa_model/amplifier_models_description.rst
Normal file
@@ -0,0 +1,300 @@
|
||||
*********************************************
|
||||
Amplifier models and configuration
|
||||
*********************************************
|
||||
|
||||
|
||||
1. Equipment configuration description
|
||||
#######################################
|
||||
|
||||
Equipment description defines equipment types and parameters.
|
||||
It takes place in the default **eqpt_config.json** file.
|
||||
By default **gnpy-transmission-example** uses **eqpt_config.json** file and that
|
||||
can be changed with **-e** or **--equipment** command line parameter.
|
||||
|
||||
2. Amplifier parameters and subtypes
|
||||
#######################################
|
||||
|
||||
Several amplifiers can be used by GNpy, so they are defined as an array of equipment parameters in **eqpt_config.json** file.
|
||||
|
||||
- *"type_variety"*:
|
||||
Each amplifier is identified by its unique *"type_variety"*, which is used in the topology files input to reference a specific amplifier. It is a user free defined id.
|
||||
|
||||
For each amplifier *type_variety*, specific parameters are describing its attributes and performance:
|
||||
|
||||
- *"type_def"*:
|
||||
Sets the amplifier model that the simulation will use to calculate the ase noise contribution. 5 models are defined with reserved words:
|
||||
|
||||
- *"advanced_model"*
|
||||
- *"variable_gain"*
|
||||
- *"fixed_gain"*
|
||||
- *"dual_stage"*
|
||||
- *"openroadm"*
|
||||
*see next section for a full description of these models*
|
||||
|
||||
- *"advanced_config_from_json"*:
|
||||
**This parameter is only applicable to the _"advanced_model"_ model**
|
||||
|
||||
json file name describing:
|
||||
|
||||
- nf_fit_coeff
|
||||
- f_min/max
|
||||
- gain_ripple
|
||||
- nf_ripple
|
||||
- dgt
|
||||
|
||||
*see next section for a full description*
|
||||
|
||||
- *"gain_flatmax"*:
|
||||
amplifier maximum gain in dB before its extended gain range: flat or nominal tilt output.
|
||||
|
||||
If gain > gain_flatmax, the amplifier will tilt, based on its dgt function
|
||||
|
||||
If gain > gain_flatmax + target_extended_gain, the amplifier output power is reduced to not exceed the extended gain range.
|
||||
|
||||
- *"gain_min"*:
|
||||
amplifier minimum gain in dB.
|
||||
|
||||
If gain < gain_min, the amplifier input is automatically padded, which results in
|
||||
|
||||
NF += gain_min - gain
|
||||
|
||||
- *"p_max"*:
|
||||
amplifier max output power, full load
|
||||
|
||||
Total signal output power will not be allowed beyond this value
|
||||
|
||||
- *"nf_min/max"*:
|
||||
**These parameters are only applicable to the _"variable_gain"_ model**
|
||||
|
||||
min & max NF values in dB
|
||||
|
||||
NF_min is the amplifier NF @ gain_max
|
||||
|
||||
NF_max is the amplifier NF @ gain_min
|
||||
|
||||
- *"nf_coef"*:
|
||||
**This parameter is only applicable to the *"openroadm"* model**
|
||||
|
||||
[a, b, c, d] 3rd order polynomial coefficients list to define the incremental OSNR vs Pin
|
||||
|
||||
Incremental OSNR is the amplifier OSNR contribution
|
||||
|
||||
Pin is the amplifier channel input power defined in a 50GHz bandwidth
|
||||
|
||||
Incremental OSNR = a*Pin³ + b*Pin² + c*Pin + d
|
||||
|
||||
- *"preamp_variety"*:
|
||||
**This parameter is only applicable to the _"dual_stage"_ model**
|
||||
|
||||
1st stage type_variety
|
||||
|
||||
- *"booster_variety"*:
|
||||
**This parameter is only applicable to the *"dual_stage"* model**
|
||||
|
||||
2nd stage type_variety
|
||||
|
||||
- *"out_voa_auto"*: true/false
|
||||
**power_mode only**
|
||||
|
||||
**This parameter is only applicable to the *"advanced_model"* and *"variable_gain"* models**
|
||||
|
||||
If "out_voa_auto": true, auto_design will chose the output_VOA value that maximizes the amplifier gain within its power capability and therefore minimizes its NF.
|
||||
|
||||
- *"allowed_for_design"*: true/false
|
||||
**auto_design only**
|
||||
|
||||
Tells auto_design if this amplifier can be picked for the design (deactivates unwanted amplifiers)
|
||||
|
||||
It does not prevent the use of an amplifier if it is placed in the topology input.
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{"Edfa": [{
|
||||
"type_variety": "std_medium_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 23,
|
||||
"nf_min": 6.5,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
}
|
||||
]}
|
||||
|
||||
|
||||
3. Amplifier models
|
||||
#######################################
|
||||
|
||||
In an opensource and multi-vendor environnement, it is needed to support different use cases and context. Therefore several models are supported for amplifiers.
|
||||
|
||||
5 types of EDFA definition are possible and referenced by the *"type_def"* parameter with the following reserved words:
|
||||
|
||||
- *"advanced_model"*
|
||||
This model is refered as a whitebox model because of the detailed level of knowledge that is required. The amplifier NF model and ripple definition are described by a json file referenced with *"advanced_config_from_json"*: json filename. This json file contains:
|
||||
|
||||
- nf_fit_coeff: [a,b,c,d]
|
||||
|
||||
3rd order polynomial NF = f(-dg) coeficients list
|
||||
|
||||
dg = gain - gain_max
|
||||
|
||||
- f_min/max: amplifier frequency range in Hz
|
||||
- gain_ripple : [...]
|
||||
|
||||
amplifier gain ripple excursion comb list in dB across the frequency range.
|
||||
- nf_ripple : [...]
|
||||
|
||||
amplifier nf ripple excursion comb list in dB across the frequency range.
|
||||
- dgt : [...]
|
||||
amplifier dynamic gain tilt comb list across the frequency range.
|
||||
|
||||
*See next section for the generation of this json file*
|
||||
|
||||
.. code-block:: json-object
|
||||
|
||||
"Edfa":[{
|
||||
"type_variety": "high_detail_model_example",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
}
|
||||
]
|
||||
|
||||
- *"variable_gain"*
|
||||
This model is refered as an operator model because a lower level of knowledge is required. A full polynomial description of the NF cross the gain range is not required. Instead, NF_min and NF_max values are required and used by the code to model a dual stage amplifier with an internal mid stage VOA. NF_min and NF_max values are typically available from equipment suppliers data-sheet.
|
||||
|
||||
There is a default JSON file ”default_edfa_config.json”* to enforce 0 tilt and ripple values because GNpy core algorithm is a multi-carrier propogation.
|
||||
- gain_ripple =[0,...,0]
|
||||
- nf_ripple = [0,...,0]
|
||||
- dgt = [...] generic dgt comb
|
||||
|
||||
.. code-block:: json-object
|
||||
|
||||
"Edfa":[{
|
||||
"type_variety": "std_medium_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
}
|
||||
]
|
||||
|
||||
- *"fixed_gain"*
|
||||
This model is also an operator model with a single NF value that emulates basic single coil amplifiers without internal VOA.
|
||||
|
||||
if gain_min < gain < gain_max, NF == nf0
|
||||
|
||||
if gain < gain_min, the amplifier input is automatically padded, which results in
|
||||
|
||||
NF += gain_min - gain
|
||||
|
||||
.. code-block:: json-object
|
||||
|
||||
"Edfa":[{
|
||||
"type_variety": "std_fixed_gain",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5.5,
|
||||
"allowed_for_design": false
|
||||
}
|
||||
]
|
||||
|
||||
- *"openroadm"*
|
||||
This model is a black box model replicating OpenRoadm MSA spec for ILA.
|
||||
|
||||
.. code-block:: json-object
|
||||
|
||||
"Edfa":[{
|
||||
"type_variety": "low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 12,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
|
||||
"allowed_for_design": false
|
||||
}
|
||||
]
|
||||
|
||||
- *"dual_stage"*
|
||||
This model allows the cascade (pre-defined combination) of any 2 amplifiers already described in the eqpt_config.json library.
|
||||
|
||||
- preamp_variety defines the 1st stge type variety
|
||||
|
||||
- booster variety defines the 2nd stage type variety
|
||||
|
||||
Both preamp and booster variety must exist in the eqpt libray
|
||||
The resulting NF is the sum of the 2 amplifiers
|
||||
The preamp is operated to its maximum gain
|
||||
|
||||
- gain_min indicates to auto_design when this dual_stage should be used
|
||||
|
||||
But unlike other models the 1st stage input will not be padded: it is always operated to its maximu gain and min NF. Therefore if gain adaptation and padding is needed it will be performed by the 2nd stage.
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"type_variety": "medium+low_gain",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
}
|
||||
|
||||
4. advanced_config_from_json
|
||||
#######################################
|
||||
|
||||
The build_oa_json.py library in ``gnpy/example-data/edfa_model/`` can be used to build the json file required for the amplifier advanced_model type_def:
|
||||
|
||||
Update an existing json file with all the 96ch txt files for a given amplifier type
|
||||
amplifier type 'OA_type1' is hard coded but can be modified and other types added
|
||||
returns an updated amplifier json file: output_json_file_name = 'edfa_config.json'
|
||||
amplifier file names
|
||||
|
||||
Convert a set of amplifier files + input json definiton file into a valid edfa_json_file:
|
||||
|
||||
nf_fit_coeff: NF 3rd order polynomial coefficients txt file
|
||||
|
||||
nf = f(dg) with dg = gain_operational - gain_max
|
||||
|
||||
nf_ripple: NF ripple excursion txt file
|
||||
|
||||
gain_ripple: gain ripple txt file
|
||||
|
||||
dgt: dynamic gain txt file
|
||||
|
||||
input json file in argument (defult = 'OA.json')
|
||||
|
||||
the json input file should have the following fields:
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"nf_fit_coeff": "nf_filename.txt",
|
||||
"nf_ripple": "nf_ripple_filename.txt",
|
||||
"gain_ripple": "DFG_filename.txt",
|
||||
"dgt": "DGT_filename.txt"
|
||||
}
|
||||
|
||||
89
gnpy/example-data/edfa_model/build_oa_json.py
Normal file
89
gnpy/example-data/edfa_model/build_oa_json.py
Normal file
@@ -0,0 +1,89 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Jan 30 12:32:00 2018
|
||||
|
||||
@author: jeanluc-auge
|
||||
|
||||
update an existing json file with all the 96ch txt files for a given amplifier type
|
||||
amplifier type 'OA_type1' is hard coded but can be modified and other types added
|
||||
returns an updated amplifier json file: output_json_file_name = 'edfa_config.json'
|
||||
"""
|
||||
import re
|
||||
import sys
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
"""amplifier file names
|
||||
convert a set of amplifier files + input json definiton file into a valid edfa_json_file:
|
||||
nf_fit_coeff: NF 3rd order polynomial coefficients txt file
|
||||
nf = f(dg)
|
||||
with dg = gain_operational - gain_max
|
||||
nf_ripple: NF ripple excursion txt file
|
||||
gain_ripple: gain ripple txt file
|
||||
dgt: dynamic gain txt file
|
||||
input json file in argument (defult = 'OA.json')
|
||||
|
||||
the json input file should have the following fields:
|
||||
{
|
||||
"nf_fit_coeff": "nf_filename.txt",
|
||||
"nf_ripple": "nf_ripple_filename.txt",
|
||||
"gain_ripple": "DFG_filename.txt",
|
||||
"dgt": "DGT_filename.txt",
|
||||
}
|
||||
|
||||
"""
|
||||
|
||||
input_json_file_name = "OA.json" # default path
|
||||
output_json_file_name = "default_edfa_config.json"
|
||||
gain_ripple_field = "gain_ripple"
|
||||
nf_ripple_field = "nf_ripple"
|
||||
nf_fit_coeff = "nf_fit_coeff"
|
||||
|
||||
|
||||
def read_file(field, file_name):
|
||||
"""read and format the 96 channels txt files describing the amplifier NF and ripple
|
||||
convert dfg into gain ripple by removing the mean component
|
||||
"""
|
||||
|
||||
# with open(path + file_name,'r') as this_file:
|
||||
# data = this_file.read()
|
||||
# data.strip()
|
||||
#data = re.sub(r"([0-9])([ ]{1,3})([0-9-+])",r"\1,\3",data)
|
||||
#data = list(data.split(","))
|
||||
#data = [float(x) for x in data]
|
||||
data = np.loadtxt(file_name)
|
||||
print(len(data), file_name)
|
||||
if field == gain_ripple_field or field == nf_ripple_field:
|
||||
# consider ripple excursion only to avoid redundant information
|
||||
# because the max flat_gain is already given by the 'gain_flat' field in json
|
||||
# remove the mean component
|
||||
print(file_name, ', mean value =', data.mean(), ' is substracted')
|
||||
data = data - data.mean()
|
||||
data = data.tolist()
|
||||
return data
|
||||
|
||||
|
||||
def input_json(path):
|
||||
"""read the json input file and add all the 96 channels txt files
|
||||
create the output json file with output_json_file_name"""
|
||||
with open(path, 'r') as edfa_json_file:
|
||||
amp_text = edfa_json_file.read()
|
||||
amp_dict = json.loads(amp_text)
|
||||
|
||||
for k, v in amp_dict.items():
|
||||
if re.search(r'.txt$', str(v)):
|
||||
amp_dict[k] = read_file(k, v)
|
||||
|
||||
amp_text = json.dumps(amp_dict, indent=4)
|
||||
# print(amp_text)
|
||||
with open(output_json_file_name, 'w') as edfa_json_file:
|
||||
edfa_json_file.write(amp_text)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) == 2:
|
||||
path = sys.argv[1]
|
||||
else:
|
||||
path = input_json_file_name
|
||||
input_json(path)
|
||||
1
gnpy/example-data/edfa_model/pNFfit3.txt
Normal file
1
gnpy/example-data/edfa_model/pNFfit3.txt
Normal file
@@ -0,0 +1 @@
|
||||
1.6824099999999999e-04 4.6996099999999999e-02 3.5954899999999998e-02 5.8285099999999996e+00
|
||||
312
gnpy/example-data/eqpt_config.json
Normal file
312
gnpy/example-data/eqpt_config.json
Normal file
@@ -0,0 +1,312 @@
|
||||
{ "Edfa":[{
|
||||
"type_variety": "high_detail_model_example",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 15,
|
||||
"p_max": 21,
|
||||
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
}, {
|
||||
"type_variety": "Juniper_BoosterHG",
|
||||
"type_def": "advanced_model",
|
||||
"gain_flatmax": 25,
|
||||
"gain_min": 10,
|
||||
"p_max": 21,
|
||||
"advanced_config_from_json": "Juniper-BoosterHG.json",
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "operator_model_example",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "low_noise",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 12,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "standard",
|
||||
"type_def": "openroadm",
|
||||
"gain_flatmax": 27,
|
||||
"gain_min": 12,
|
||||
"p_max": 22,
|
||||
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_high_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 35,
|
||||
"gain_min": 25,
|
||||
"p_max": 21,
|
||||
"nf_min": 5.5,
|
||||
"nf_max": 7,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_medium_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 26,
|
||||
"gain_min": 15,
|
||||
"p_max": 23,
|
||||
"nf_min": 6,
|
||||
"nf_max": 10,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "std_low_gain",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 23,
|
||||
"nf_min": 6.5,
|
||||
"nf_max": 11,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "high_power",
|
||||
"type_def": "variable_gain",
|
||||
"gain_flatmax": 16,
|
||||
"gain_min": 8,
|
||||
"p_max": 25,
|
||||
"nf_min": 9,
|
||||
"nf_max": 15,
|
||||
"out_voa_auto": false,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "std_fixed_gain",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 21,
|
||||
"gain_min": 20,
|
||||
"p_max": 21,
|
||||
"nf0": 5.5,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "4pumps_raman",
|
||||
"type_def": "fixed_gain",
|
||||
"gain_flatmax": 12,
|
||||
"gain_min": 12,
|
||||
"p_max": 21,
|
||||
"nf0": -1,
|
||||
"allowed_for_design": false
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_lowgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "hybrid_4pumps_mediumgain",
|
||||
"type_def": "dual_stage",
|
||||
"raman": true,
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "4pumps_raman",
|
||||
"booster_variety": "std_medium_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+low_gain",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "std_low_gain",
|
||||
"allowed_for_design": true
|
||||
},
|
||||
{
|
||||
"type_variety": "medium+high_power",
|
||||
"type_def": "dual_stage",
|
||||
"gain_min": 25,
|
||||
"preamp_variety": "std_medium_gain",
|
||||
"booster_variety": "high_power",
|
||||
"allowed_for_design": false
|
||||
}
|
||||
],
|
||||
"Fiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "NZDF",
|
||||
"dispersion": 0.5e-05,
|
||||
"gamma": 0.00146,
|
||||
"pmd_coef": 1.265e-15
|
||||
},
|
||||
{
|
||||
"type_variety": "LOF",
|
||||
"dispersion": 2.2e-05,
|
||||
"gamma": 0.000843,
|
||||
"pmd_coef": 1.265e-15
|
||||
}
|
||||
],
|
||||
"RamanFiber":[{
|
||||
"type_variety": "SSMF",
|
||||
"dispersion": 1.67e-05,
|
||||
"gamma": 0.00127,
|
||||
"pmd_coef": 1.265e-15,
|
||||
"raman_efficiency": {
|
||||
"cr":[
|
||||
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
|
||||
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
|
||||
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
|
||||
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
|
||||
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
|
||||
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
|
||||
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
|
||||
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
|
||||
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
|
||||
2E-07, 1E-07
|
||||
],
|
||||
"frequency_offset":[
|
||||
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
|
||||
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
|
||||
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
|
||||
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
|
||||
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
|
||||
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
|
||||
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
|
||||
41.5e12, 42e12
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"Span":[{
|
||||
"power_mode":true,
|
||||
"delta_power_range_db": [-2,3,0.5],
|
||||
"max_fiber_lineic_loss_for_raman": 0.25,
|
||||
"target_extended_gain": 2.5,
|
||||
"max_length": 150,
|
||||
"length_units": "km",
|
||||
"max_loss": 28,
|
||||
"padding": 10,
|
||||
"EOL": 0,
|
||||
"con_in": 0,
|
||||
"con_out": 0
|
||||
}
|
||||
],
|
||||
"Roadm":[{
|
||||
"target_pch_out_db": -20,
|
||||
"add_drop_osnr": 38,
|
||||
"pmd": 0,
|
||||
"restrictions": {
|
||||
"preamp_variety_list":[],
|
||||
"booster_variety_list":[]
|
||||
}
|
||||
}],
|
||||
"SI":[{
|
||||
"f_min": 191.3e12,
|
||||
"baud_rate": 32e9,
|
||||
"f_max":195.1e12,
|
||||
"spacing": 50e9,
|
||||
"power_dbm": 0,
|
||||
"power_range_db": [0,0,1],
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"sys_margins": 2
|
||||
}],
|
||||
"Transceiver":[
|
||||
{
|
||||
"type_variety": "vendorA_trx-type1",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode":[
|
||||
{
|
||||
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 11,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 15,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"type_variety": "Voyager",
|
||||
"frequency":{
|
||||
"min": 191.35e12,
|
||||
"max": 196.1e12
|
||||
},
|
||||
"mode":[
|
||||
{
|
||||
"format": "mode 1",
|
||||
"baud_rate": 32e9,
|
||||
"OSNR": 12,
|
||||
"bit_rate": 100e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 37.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 3",
|
||||
"baud_rate": 44e9,
|
||||
"OSNR": 18,
|
||||
"bit_rate": 300e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 62.5e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 2",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 21,
|
||||
"bit_rate": 400e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1
|
||||
},
|
||||
{
|
||||
"format": "mode 4",
|
||||
"baud_rate": 66e9,
|
||||
"OSNR": 16,
|
||||
"bit_rate": 200e9,
|
||||
"roll_off": 0.15,
|
||||
"tx_osnr": 40,
|
||||
"min_spacing": 75e9,
|
||||
"cost":1
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user