248 Commits
v1.1 ... v1.8

Author SHA1 Message Date
Jan Kundrát
b0c2acb1b5 Merge pull request #302 from Telecominfraproject/develop
Merge develop into master in preparation for the 1.8 release

Highlights for the upcoming release:

- Raman simulation
- automatic building of Docker images
- bugfixes, refactoring, CI and docs improvements
2019-09-23 16:51:28 +00:00
Jan Kundrát
a52c96ae2e Merge pull request #301 from jktjkt/develop
docs: Explain how to use Docker
2019-09-22 23:36:44 +00:00
Jan Kundrát
bf28821b5b Merge pull request #299 from jktjkt/cleanup-printing
(This replaces #261 by me and #293 by Jonas.)

##     Remove debug printing from propagate()
This is inspired by #293. The original issue was that the transponder OSNR was not accounted for. Rather than making the `propagate()` and `propagate2()` more complex, let's move the actual path printing to the demo code. There's no secret sauce in there, it's just a simple for-each-print thingy, so let's remove it from the library code.
    
fixes #262

## doc: fiber length summary in km, not meters

Reading `80000m` is a bit more complex than just `80 km`. Also let's add a space between the numebr and the unit for better readability.

## examples: color highlighting of the "most interesting output"
    
I think that this SNR value represents the most important output of this  example. There's plenty of debugging info on display already, so let's make this one more prominent.
    
I was thinking about moving the highlighting to elements' each `__str__()` function, but that felt a bit like layering violation to me. I could have also changed just the transponder's `__str__()`. In the end, I think that repeating just the final GSNR at the link-end transponder makes most sense here. This is aligned with what we talked about at yesterday's (on 2019-09-18 -- note that this is a backport from #261) demo for Microsoft, after all.
2019-09-22 23:32:36 +00:00
Jan Kundrát
328bd6ea71 docs: Explain how to use Docker 2019-09-23 00:29:59 +01:00
Jan Kundrát
ec9eb8d054 examples: commented-out path printing for Esther
I'm trying to clean up the core code while not causing too much trouble
to our users. Esther pointed out that there's an internal use case at
Orange where people are looking at the incremental results when
computing paths.

I strongly dislike commented-out debugging code, but for the sake of
progress, let's put it in here. It's roughly as good as that unused
`show` parameter, and it allowed a refactoring to make the code more
readable.
2019-09-23 00:14:56 +01:00
Jan Kundrát
f8c8526045 docs: remove duplicate cd
This whole section should be nuked, but that will have to wait until
after the next release for simplicity.

fix #283
2019-09-23 01:03:30 +02:00
Jan Kundrát
d8c236bb44 examples: do not measure time taken
This is an equivalent of 9c9e3be967 for
the other example.
2019-09-22 16:44:00 +01:00
Jan Kundrát
33ff0910b8 Remove unused function
This has been marked obsolete for 11 months. It's also one of the
callers of the propagate(), so it's being touched by that change which
removes the `show` parameter. This commit will make it easier to put
debug path printing just where it's really needed.
2019-09-22 12:20:11 +02:00
Jan Kundrát
faa69917d9 example: Use "Total SNR", not "GSNR"
Various presentations from Polito are slowly changing to use "GSNR" as a
"Generalized SNR", but it's true that our code does not use this term
anywhere, and that it is not properly explained. Let's wait a bit for
this term to become a bit more mainstream and for updated docs on our
side; then this commit can be safely reverted.

Thanks to Jonas for reporting this.
2019-09-20 17:11:42 +02:00
Jan Kundrát
d9f5ca9827 docs: Document Transceiver.mode.OSNR
I am not changing the JSON key name now because of the plan to go with a
full-blown YANG model (see #266).

fixes #298
2019-09-19 09:44:56 +02:00
Jan Kundrát
c817ef7335 examples: color highlighting of the "most interesting output"
I think that this SNR value represents the most important output of this
example. There's plenty of debugging info on display already, so let's
make this one more prominent.

I was thinking about moving the highlighting to elements' each __str__()
function, but that felt a bit like layering violation to me. I could
have also changed just the transponder's __str__(). In the end, I think
that repeating just the final GSNR at the link-end transponder makes
most sense here. This is aligned with what we talked about at
yesterday's (on 2019-09-18 -- note that this is a backport from #261)
demo for Microsoft, after all.
2019-09-19 09:25:31 +02:00
Jan Kundrát
07de489d6b doc: fiber length summary in km, not meters
reading "80000m" is a bit more complex than just "80 km". Also let's add
a space between the numebr and the unit for better readability.
2019-09-19 09:25:31 +02:00
Jan Kundrát
acafc78456 Remove debug printing from propagate()
This is inspired by #293. The original issue was that the transponder
OSNR was not accounted for. Rather than making the propagate() and
propagate2() more complex, let's move the actual path printing to the
demo code. There's no secret sauce in there, it's just a simple
for-each-print thingy, so let's remove it from the library code.

fixes #262
2019-09-19 09:25:31 +02:00
Jan Kundrát
325721545e Docker: array for CMD is more idiomatic
Co-Authored-By: Jonas Mårtensson <jonas.martensson@ri.se>
2019-09-18 13:15:20 +02:00
Jan Kundrát
dbe2bf560c Travis: Docker: Fix version numbers
This is due to travis-ci/travis-ci@7422.
2019-09-17 21:03:58 +02:00
Jan Kundrát
7872cc2203 Merge pull request #295 from jktjkt/docker
Automatic building of Docker images
2019-09-17 18:44:50 +00:00
Jan Kundrát
25b4d0e755 Automatic building of Docker images
A third, independent job in Travis CI just for building a container
image (and testing it a little bit). Here's how to use it once it is
built and published and pulled:

  $ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy

One can also pass commands to it directly. Note that the *relative* path
specifier given as `./` is required. One could possibly get around it by
$PATH manipulation, but hey, I have to stop somewhere.

  $ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy ./transmission_main_example.py

Thanks to Jonas for the --volume option trick and for that early
non-overwriting copying for the example directory.

The `install` phase in Travis CI is apparently common for all jobs in
the build matrix (it's rather confusing what they call a "stage" and
what is a "job" for them, and what their mutual relation is). Because
there's no point in doing any kind of installation in case when we're
building for Docker, let's just move the old `install` block into
`script`. With just that, however, Travis adds an implicit `pip install
-r requirements.txt` in an attempt at being helpful. In short, having
completely different "stuff to be done as a check" is very painful with
Travis.

The individual "script lines" in a job's `script` section are always
executed, all of them, even if a previous one failed. That's why I moved
the actual Docker invocation into an external shell script. When they
were not in a shell script and the script lines contained `set -e`, then
a failure of a particular command would cause the build to be marked as
"errored" instead of "failed" within Travis. Also, the multiline if
conditionals were rather painful to write.

One commit might end up in different branches. If that happens, the
second build would overwrite the image tag in the docker registry, which
is rather suboptimal. Let's try to fetch that image first, and only
update the latest/stable tags if the image was already available
beforehand.

fixes #260
2019-09-17 20:37:45 +02:00
Jan Kundrát
9af1c90664 Merge pull request #249 from jktjkt/bug-243
Do not mix THz and Hz
2019-09-04 08:18:49 +00:00
Jan Kundrát
6b4d44a3f1 Merge pull request #292 from ojnas/fix-snr-per-channel
Fix per-channel SNR output
2019-09-03 08:23:28 +00:00
Jonas Mårtensson
2faf8d2cdd - Fix output per-channel SNR to include contribution from add_drop_sonr and tx_osnr
- Avoid recalculating SNRs in transmission main example since they are already calculated and stored in the Transceiver class
- Also include per channel power (useful for checking tilt) and OSNR ASE in the output
2019-09-03 09:25:09 +02:00
Jan Kundrát
676c94ddf2 Merge pull request #289 from jktjkt/raman-nli-interpolation 2019-09-02 21:02:58 +00:00
Jan Kundrát
6f93b64f84 Simplify logic for showing per-channel results
As Jonas pointed out, the code used to contain a check for non-nan
values, effectively skipping channels where the Raman gain was not
explicitly computed.

Now that we do not introduce NaNs into some channels anymore, this
shortcut no longer works. We could either add explicit filtering for
only showing those channels which are covered by the Raman engine, but
then the result would be rather confusing in the non-Raman case. One
could also add another column with the simulated vs. approximated NLI,
but when I tried this, the output looked a bit cluttered.

I think that the best course of action for now is to just show info
about all channels (if asked by the user). So this is just a cleanup for
a condition which is now always on.
2019-09-02 21:10:20 +02:00
Jan Kundrát
54bf426472 Raman: linear interpolation of channel NLI
The Raman engine computes NLI just for a subset of channels; this is an
important speed optimization because the computation is rather CPU
heavy. However, the code just left NaNs in place for NLI of those
channels which were not explicitly simulated.

This is wrong because these NaNs propagate all the way to the total
input/output powers per the whole spectrum, etc, leading to NaNs being
shown to the user.

This patch uses a very simple linear approximation just in order to
prevent these NaNs.

fixes #288
2019-09-02 21:10:20 +02:00
Jan Kundrát
1862ce9104 Merge pull request #263 from aleFerrari/raman_feature
Raman feature

I've added some very basic documentation (really, just usage instructions). What is still missing:

- more specific docs
- test coverage (right now, there's none!)

We've agreed to merge this sooner rather than later so that more people can reasonably test it. There's a bunch of things that I'm not happy with, such as the default example showing NaNs as the OSNR to the user at the end transponders, etc (I suspect this is due to simulating just some channels and no approximation, right?), but let's solve these based on feedback from testing.

As proposed in my earlier comments, I went ahead and merged the wrapper example code into the `transmission_main_example.py`. So here's what needs to be done in order to "use Raman amplifiers" in a basic example, with no autodesign:

- replace some `Fiber` elements with a `RamanFiber` in the network topology JSON
- invoke the example with a `--sim examples/sim_params.json` which activates the Raman engine
- pass the `--show-channels` flag so that the actual results are visible

This is more or less covered by the docs skeleton.
2019-08-08 12:05:53 +00:00
Jan Kundrát
3771c13d32 docs: basic usage instructions for Raman 2019-08-08 13:38:23 +02:00
Jan Kundrát
f1d0230dad docs: skeleton of Raman-specific properties
What I'm including here are comments from Vittorio (thanks!). It seems
that the majority of actual numeric parameters which drive the
simulation are undocumented, so this one will have to wait for Alessio
or someone else from the Polito team to fill the blanks.
2019-08-08 13:38:23 +02:00
Jan Kundrát
182929cc96 Unify transmission_main_example and the Raman wrapper
There were just these substantial differences:

- the Raman code showed a per-channel SNR summary, this is now
  controlled via the `--show-channels` option

- when a Raman fiber is used the `--sim` option for specifying input
  simulation parameters is now mandatory

I'm therefore merging these two files even though we've rpeviously
decided not to do this -- consult the review comment at
https://github.com/Telecominfraproject/oopt-gnpy/pull/263#discussion_r310506082
and the discussion during this Tuesday's coders call). If this turns out
to be a problem for autodesign, we can always revert this.

One possible catch is that the final "SNR total" shows NaN for the
default Raman example. That's just the way the simulation engine works
right now, I'm afraid. The `--show-channels` options helps a lot.
2019-08-08 13:38:23 +02:00
Jan Kundrát
81585c5a86 Unify implementations of psi computation
Both of these places referred to "eq. 123 from arXiv:1209.0394", the
only difference (apart from the source of the input parameters, beta2
and asymptotic_length) was calling the two branches "SCI" and "XCI" vs.
"SPM" and "XPM".

In this commit I've only moved the code to a single implementation. The
input data are still being read from the same parameters, of course.
2019-08-08 13:38:23 +02:00
Jan Kundrát
2f52c11589 More intuitive name for list of channels where Raman gain is computed 2019-08-08 11:34:33 +02:00
Jan Kundrát
0f4d8573cf Move Raman parameter propagation to gnpy.core.network
Conceptually, this is just about propagating the input parameters (which
drive the simulation) into all RamanFiber instances. The network module
already contains similar functions, let's move it there.
2019-08-08 11:19:25 +02:00
Jan Kundrát
660b8b3c6e Use lin2db() when we have it 2019-08-08 11:16:26 +02:00
Jan Kundrát
71d6a1138c Fix a typo in my e-mail address
This has been around since before 1a104956, but I haven't noticed the
missing `.com`.
2019-08-08 10:53:52 +02:00
Jan Kundrát
a6e741d8fe Do not copy the whole Fiber class 2019-08-08 09:55:23 +02:00
Jan Kundrát
58bcf65cf6 Raman: do not introduce a new copy of the equipment library
Compared to `eqpt_config.json`, the only extra content in the new copy
was the `RamanFiber` block. There's no disadvantage in just using one
equipment library; the traditional code can easily ignore the RamanFiber
stanza.
2019-08-07 23:45:44 +02:00
Jan Kundrát
27ce55de38 diagnostics: Correctly report all spans, not just the Raman ones
It's just a harmless message, the path traversal was still using all
connections as defined in the topology JSON.
2019-08-07 23:41:30 +02:00
Jan Kundrát
36ca22db9b Raman: use logging instead of debugging print()s 2019-08-07 23:31:20 +02:00
Jan Kundrát
33a8de9b39 Raman: stricter validation of input parameters
The goal here is to try to prevent typos in configuration from slipping
in undetected.
2019-08-07 13:36:21 +02:00
Jan Kundrát
22b76e36db Fix typos in Raman's frequency offset
This is a typo, the parameters were clearly supposed to be uniformly
spaced. It doesn't affect the results (much), because the remaining
values are "close enough" for a reasonable interpolation.

Using the existing Raman example, the difference in OSNR ASE at the
signal bandwidth is 0.01 dB (31.46 -> 31.47 dB).

Perhaps it would make sense to enforce that these offsets are a
monotonic sequence.
2019-08-07 13:19:17 +02:00
Jan Kundrát
528ff31590 CI: Run the Raman example as well 2019-08-06 11:56:01 +02:00
Jan Kundrát
4d6966cbd3 Remove unused imports 2019-08-06 11:51:25 +02:00
Jan Kundrát
9c9e3be967 Do not measure time from the example directly
Let users wrap this with the Unix `time` command if they are interested
in the time spent.
2019-08-06 11:49:32 +02:00
Jan Kundrát
2dd4745ef7 Merge pull request #281 from jktjkt/no-convenience-access
Remove property aliases
2019-08-06 09:46:36 +00:00
Jan Kundrát
4e786a32b5 Merge branch 'no-convenience-access' into raman
This required some adaptations in the new Raman code now that the
property aliases are gone.
2019-08-06 11:43:16 +02:00
Jan Kundrát
6ecb2c85e2 Merge remote-tracking branch 'origin/develop' into raman
Required fix-ups:
- ROADM restrictions
2019-08-06 11:34:39 +02:00
Jan Kundrát
cd234a909b Remove unimplemented and unused code 2019-08-06 11:22:56 +02:00
Jan Kundrát
c249f44ea1 Remove property aliases
For some reason, the code allowed using "convenience names" for
accessing properties since commit 58ac717f. To me, this looks like an
obvious anti-pattern because accessing a single property via three
different names only makes the code less readable. Let's kill this
"feature".

In case of the `Power` class, the code used "ase" and "nli" on the
majority of places, so let's use these abbreviations instead of their
spelt-out variants.

SpectralInformation was "clean" already, but there were calls to the
`update()` wrapper around the `namedtuple._replace`.  Given that there
were no property aliases, it's safe to just call `_replace()` directly.

In case of the `Pref` class, once again always use `p_span0`, `p_spani`
instead of `p0` and `pi` -- it's a trivial change.
2019-08-06 11:14:28 +02:00
Alessio Ferrari
ed1f51393a method name for computing NLI updated in sim_params.json 2019-08-01 14:54:33 +02:00
Alessio Ferrari
8bd43130ab modified Raman pumps in the example raman_edfa_example_network.json to make Raman effect more evident 2019-08-01 14:48:16 +02:00
Alessio Ferrari
6c975a53a1 minor fix to eqpt_with_raman_config.json 2019-08-01 14:45:17 +02:00
Alessio Ferrari
8a1001cd40 dynamic evaluation of threshold frequency between near XPM and far XPM 2019-08-01 14:42:47 +02:00
Alessio Ferrari
beb2b576aa changed output of propagate_raman_fiber to return a list 2019-08-01 14:41:40 +02:00
Alessio Ferrari
8f3923046b alpha0 computation moved from NLI solver to Fiber Params 2019-08-01 11:36:32 +02:00
Alessio Ferrari
88c68d2065 introduced classes for the parameters 2019-08-01 11:32:07 +02:00
Alessio Ferrari
8bcde72a10 changes on variable names to be more clear 2019-08-01 10:49:25 +02:00
Alessio Ferrari
4653dbcf4b introduced a faster computation for XPM 2019-08-01 10:48:02 +02:00
Alessio Ferrari
cde08b32a4 output fixes on transmission_with_raman_main_example.py 2019-08-01 10:45:20 +02:00
Alessio Ferrari
2eed891f8d new variable names for SPM and XPM 2019-07-31 11:29:25 +02:00
Alessio Ferrari
c0b84e84c8 double underscore replaced with single one for some attributes 2019-07-31 11:24:16 +02:00
Alessio Ferrari
2c20fd3f9f strings 'XPM' and 'SPM' removed while computing NLI, now it is implicit 2019-07-31 11:20:34 +02:00
Alessio Ferrari
f4db56ca29 minor fix to comments 2019-07-31 11:18:46 +02:00
Alessio Ferrari
5b6d58ac7d minor fix to printed text 2019-07-29 14:45:32 +02:00
Alessio Ferrari
ecb8bd9fbe new print of final propagation 2019-07-29 14:17:27 +02:00
Alessio Ferrari
2f9385451f removed old printing of spectral information 2019-07-29 14:16:49 +02:00
Alessio Ferrari
1a1346461b self.pch_out_db in RamanFiber now takes into account Raman gain 2019-07-29 12:33:05 +02:00
Jan Kundrát
27dcd29074 CI: Attempt to builds docs during regular CI, too
Since ReadTheDocs does not support [1] running as a CI check on GitHub
yet, let's make sure that we at least run sphinx. This would have caught
a recent docs breakage (see parent commit).

[1] https://github.com/readthedocs/readthedocs.org/issues/1340
2019-07-04 00:37:58 +02:00
Jan Kundrát
93986f36c3 docs: Fix docs building
Docs building started failing after our dependency update. The reason is
that the updated sphinx bibtex extension started being a bit stricter in
their interpretation of bibliography files:

  parsing bibtex file /home/jkt/work/TIP/oopt-gnpy/docs/biblio.bib...
  Exception occurred:
    File "/home/jkt/work/TIP/_py/lib64/python3.6/site-packages/pybtex/errors.py", line 78, in report_error
      raise exception
  pybtex.database.input.bibtex.DuplicatePersonField: entry with key bononi_modeling_2012 has a duplicate year field

Fix this by using `date` as field name when a full date is given.
2019-07-04 00:37:23 +02:00
Jan Kundrát
a6ab8055b1 CI: do not attempt to cd twice
I misunderstood how Travis CI works; it's not a subshell, it's something
which affects the other commands. Let's just run everything from the
top-level directory.
2019-07-04 00:28:33 +02:00
Jan Kundrát
31ea479d7f Merge pull request #268 from jktjkt/prune-dependencies
Update and rework dependency handling

fixes #269
2019-06-25 15:25:48 +02:00
Jan Kundrát
89fb2e047b Update dependencies
Pinning dependencies to a specific version is safe in terms of
preventing accidental breakage, but it has a cost of possibly using
outdated dependencies.

Let's see if we can rely on the semantic versioning of our dependencies
here.

I'm doing this instead of other approaches (such as splitting the
top-level deps from "the rest of the dep chain" [1][2]) because I require
additional tools in my venv, such as the python-lnaguage-server. There
would be little point in injecting these into requirements to be used by
other people.

[1] https://www.kennethreitz.org/essays/a-better-pip-workflow
[2] 59eb51c026
2019-06-21 12:13:38 +02:00
Jan Kundrát
8f705e6173 requirements: only list what we really need
Listing all transitive dependencies, including their respective versions
(as done by `pip freeze`, for example) is something which effectively
leads to installing outdated and possibly vulnerable software.

Let's get rid of the transitive dependencies.

Thanks to Esther for noticing.
2019-06-21 11:46:17 +02:00
Jan Kundrát
8f735316f5 Merge pull request #264 from Telecominfraproject/master
Merge master into develop

...so that the docs are updated and synced.
2019-06-19 14:28:45 +02:00
Jan Kundrát
0d7a1871a1 Merge pull request #259 from jktjkt/docs
docs: Show a pretty picture of GNPy in action

Thanks to Esther for suggesting this, and to Gert and Esther for their reviews.
2019-06-19 11:57:55 +02:00
Jan Kundrát
33832b3d25 docs: Animated invocation of transmission_main_example.py
Tools used:
- [asciinema](https://asciinema.org/) for recording the session
- `$EDITOR` for a few simple fix-ups
- [termtosvg](https://github.com/nbedos/termtosvg) for creating the
resulting SVG so that it's fully self-contained
- pushing the results to the `gh-pages` so that it's available and not
subject to [random filtering and
breakage](https://stackoverflow.com/questions/13808020/include-an-svg-hosted-on-github-in-markdown),
such as the animated SVG not actually animating

I'm still linking to asciinema.org because that site offers nice
cut-and-oaste capabilities, playback control, etc.

Co-Authored-By: Gert Grammel <ggrammel@juniper.net>
2019-06-19 11:54:44 +02:00
Alessio Ferrari
4da7f0cc38 added evaluation of the SNR at the end of the line 2019-06-18 13:31:50 +02:00
Alessio Ferrari
e29f8485ea integration of the GGN-model with spectral separation 2019-06-18 13:31:01 +02:00
Alessio Ferrari
2da344a563 sim_params now include GGN model 2019-06-18 13:27:02 +02:00
Alessio Ferrari
2a0cb8e14f raman pump powers reduced in raman_edfa_example_network.json 2019-06-18 13:21:05 +02:00
Jan Kundrát
e1dc3dc357 docs: no need to cd examples first
The code determines these paths relative to the actual example .py file
already. Given that `pytest` and other bits expect to run from the
top-levle directory, let's remove this misleading instruction from the
docs.
2019-06-17 20:01:36 +02:00
Jan Kundrát
8259124f73 docs: Show a pretty picture of GNPy in action
I do not have a vector image of this one, unfortunately. The data
apparently comes from "someone at TIP", perhaps a hired graphic
designer. It was passed to me by Diego Landa when I asked for the
original dataset.
2019-06-17 19:55:00 +02:00
Alessio Ferrari
0422956ac6 RamanFiber propagate method now call the propagate_raman_fiber in the science_utils module 2019-06-11 13:40:42 +02:00
Alessio Ferrari
ff82c5171b propagate_raman_fiber function introduced 2019-06-11 13:39:41 +02:00
Alessio Ferrari
f9bd6310f1 introcude NLI solver 2019-06-11 13:38:39 +02:00
Alessio Ferrari
471eab126e fix raman solver parameters 2019-06-11 13:38:05 +02:00
Alessio Ferrari
6ad011d12d raman_efficiency included in RamanFiber equipment 2019-06-11 13:28:39 +02:00
Alessio Ferrari
561c8aff85 modified sim_params for transmission_with_raman_main_example.py 2019-06-11 13:27:40 +02:00
Alessio Ferrari
5cf5dd2234 add temperature parameter in fiber 2019-06-11 13:24:12 +02:00
Alessio Ferrari
fb9915d301 add raman efficiency in SSMF equipment 2019-06-11 13:23:38 +02:00
Jan Kundrát
7ab67194d6 Merge a3778dfe8b into 603ac9d8c5 2019-06-11 08:47:09 +00:00
Jan Kundrát
603ac9d8c5 Merge pull request #257 from jktjkt/fixes
Python: do not use a mutable default value
2019-06-11 10:46:25 +02:00
Jan Kundrát
a3c7811e9d Merge pull request #256 from jktjkt/docs
Documentation fixes (plus an equipment.Fiber.beta2 change)
2019-06-11 10:45:23 +02:00
Jan Kundrát
a3778dfe8b Merge pull request #255 from jktjkt/weekly-calls
Encourage people to join us and to join the VCs
2019-06-11 10:45:00 +02:00
Jan Kundrát
2dff934612 CI: run the examples as well
We are not checking their results or anything, but it is nice to be able
to say "hey, these still work".
2019-06-07 00:02:53 +02:00
Jan Kundrát
89d666948e Fiber: beta2: use a default value directly
Rather than do the None-dance and document the default value within a
docstring, let's use the default value directly. This is safe because
numbers are immutable.
2019-06-06 23:55:16 +02:00
Jan Kundrát
c3499142b0 doc: hyperlinks++ 2019-06-06 23:47:52 +02:00
Jan Kundrát
d8feccc715 Python: do not use a mutable default value
Because default arguments are evaluated *once*, not every time they are
called, a mutable default value is not "reset", and this happens:

>>> from gnpy.core.node import Node
>>> x=Node('123')
>>> y=Node('456')
>>> print(x.metadata)
{'location': Location(latitude=0, longitude=0, city=None, region=None)}
>>> print(y.metadata)
{'location': Location(latitude=0, longitude=0, city=None, region=None)}
>>> y.metadata['foo']=123
>>> print(x.metadata)
{'location': Location(latitude=0, longitude=0, city=None, region=None), 'foo': 123}

This is easily fixable by using an immutable value as a placeholder
here.
2019-06-06 23:29:07 +02:00
Jan Kundrát
16173355f3 docs: random improvements and Sphinxiation 2019-06-06 23:26:12 +02:00
Jan Kundrát
f46134fda5 docs: document the _private methods
This is a reference documentation, so it makes sense for it to be
reasonably complete.
2019-06-06 23:05:42 +02:00
Jan Kundrát
bfecff0412 docs: use a default preset here to prevent extra repetitions 2019-06-06 23:04:34 +02:00
Jan Kundrát
168f1891cf docs: ensure that all modules are documented 2019-06-06 22:55:56 +02:00
Jan Kundrát
862845b4ac docs: minor grammar fixes 2019-06-06 21:51:48 +02:00
Jan Kundrát
b7a5dbff49 Encourage people to join us and to join the VCs
This was suggested by Esther on today's PSE group call.
2019-06-06 18:39:21 +02:00
Jan Kundrát
5be30d89a7 Merge pull request #230 from Orange-OpenSource/build_no_amp_in_roadm
ROADMs can now specify which amplifiers can be used as their preamps and boosters.
2019-06-06 12:47:06 +02:00
Esther Le Rouzic
d94dc51d88 Restrictions on auto-adding amplifiers into ROADMs
This feature is intended to support designs such as OpenROADM where the
line degree integrates a specific preamp/booster pair. In that case, it
does not make sense for our autodesign to "pick an amplifier". The
restrictions can be activated by:

- Listing them in `eqpt_config.json`, so that they are effective for all
ROADM instances.
- On a per-ROADM basis within the Excel sheet or the JSON definitions.

Restrictions apply to an entire ROADM as a whole, not to the individual
degrees.

If a per-degree exception is needed, the amplifier of this degree can be
defined in the equipment sheet or in the network definition.

If no booster amplifier should be placed on a degree, use the `Fused`
node in place of an amplifier.

Signed-off-by: Esther Le Rouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2019-06-06 11:58:45 +02:00
Jan Kundrát
22acd88d44 Utility functions for pruning and merging
Co-authored-by: Esther Le Rouzic <esther.lerouzic@orange.com>
2019-06-06 11:42:05 +02:00
Alessio Ferrari
fd406c106b gn model introduced in the science utils module 2019-06-03 16:33:26 +02:00
Alessio Ferrari
16134b5caf +1 and -1 replaced with coporop and counterprop strings for Raman pumps description 2019-06-03 16:27:58 +02:00
Jan Kundrát
2c485efced Merge pull request #252 from Orange-OpenSource/bug_fixes_create_eqpt_sheet
Refactoring and bug fixes in an auxiliary transformation tool.
2019-05-31 16:26:10 +02:00
EstherLerouzic
279d08a0e8 Correct testTopology file
testTopology listed corlay twice in Eqpt although it is a ILA.
should appear only once in node A column

update expected parser results for this change in tests/data

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-05-31 11:31:46 +01:00
EstherLerouzic
1d4a8998e1 Bug fix on create_eqpt_sheet.py
program was not correctly listing nodes when links duplicate EDFA entries.
I refactored it to make it simpler to understand.

I added coordinates on ../tests/data/testTopology.xls for plot purpose

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-05-31 11:31:46 +01:00
Jan Kundrát
47a41e7980 Merge pull request #251 from jktjkt/json-parsing-exceptions
Use exceptions instead of `sys.exit()` when reporting configuration errors
2019-05-31 11:24:55 +02:00
Jan Kundrát
ecfc4a8cb2 One fewer exit() in a library scope 2019-05-30 13:58:33 +02:00
Jan Kundrát
2d66b6266b Add a missing FIXME for direct-printing of diagnostics 2019-05-30 12:39:42 +02:00
Jan Kundrát
b7afb5f9d2 Exceptions for errors in network topologies 2019-05-30 12:39:10 +02:00
Jan Kundrát
58c16a59ac Distinguish between "equipment library errors" and other "config errors"
And because no code for these "other config errors" has been merged yet,
this is just a placeholder for future work.
2019-05-30 12:28:47 +02:00
Jan Kundrát
f09789f5ef Refactor color temrinal escaping into a common module
I have no idea which one of the existing pypi modules is best for these,
and given that we're using just two escape codes, I think it makes sense
not to bother with a more capable third-party module just for two magic
strings.
2019-05-30 12:25:53 +02:00
Jan Kundrát
b2e12cd3e0 Use exceptions instead of direct-exit when parsing equipment JSON 2019-05-30 12:06:54 +02:00
Jan Kundrát
71b157a8ba Infrastructure for reporting configuration errors via exceptions
Once the actual config-parsing code start raising these exceptions
instead of directly calling sys.exit(), the user experience would
deteriorate due to raw exception traces. There's little value in the
trace itself, so just wrap the whole config loading with pretty error
formatting.

We still do not point to a specific place where that error is defined
(such as a line/column in a given JSON file) because that information is
already lost by the time we perform these checks.

Also, these checks are largely open-coded ad-hoc stuff. Some required
items are not covered, raising KeyError instead. We should get a formal
schema for these...
2019-05-30 12:06:54 +02:00
Alessio Ferrari
cb8affe9b2 transmission with raman integrated with sim_params configuration 2019-05-28 12:19:01 +02:00
Alessio Ferrari
3f7180c706 configure_network function created to configure the RamanFiber.sim_params in a network 2019-05-28 11:35:42 +02:00
Alessio Ferrari
f0bc2dc62f attribute sim_params added to RamanFiber 2019-05-28 11:11:40 +02:00
Jan Kundrát
9c95fd6b69 Do not mix THz and Hz
While the `itufl()` function uses THz by default, its values depend on
the frequency range that is passed via arguments. In this context, the
f_min and f_max come from the default SpectralInformation which is in
Hz.

Thanks to @ojnas for reporting this.

fixes #243
2019-05-27 18:35:14 +02:00
Alessio Ferrari
c0fda8c3a2 fix to Raman solver 2019-05-27 17:09:34 +02:00
Alessio Ferrari
bac20af381 eqpt_with_raman_config.json copied from eqpt_config.json and RamanFiber added into it 2019-05-27 17:08:36 +02:00
Alessio Ferrari
626211a320 Introduce RamanFiber in equipment 2019-05-27 17:04:33 +02:00
Jan Kundrát
783aaa8cb4 Merge remote-tracking branch 'origin/master' into develop 2019-05-27 12:27:23 +02:00
Jan Kundrát
768bd8af19 Merge pull request #247 from jktjkt/rst-fixes
docs: fix RST formatting and introduce CI coverage
2019-05-27 12:26:42 +02:00
Jan Kundrát
3894f52194 CI: test the RST files for validity
fixes #245
2019-05-27 12:08:02 +02:00
Jan Kundrát
dcfa9edb1c docs: Fix JSON syntax 2019-05-27 11:36:02 +02:00
Jan Kundrát
4ebdb5629c docs: specify code-block highlighter 2019-05-27 11:35:56 +02:00
Jan Kundrát
75b0668fc2 docs: Fix JSON syntax -- standard ASCII quotes 2019-05-27 11:35:52 +02:00
Jan Kundrát
5fe94ed463 docs: specify a correct markup language for JSON snippets
Some of these are "pseudo-JSON" with `...` etc, so one has to use `none`
for these.
2019-05-27 11:35:49 +02:00
Jan Kundrát
db21b97603 docs: fix table markup syntax
Oh boy, this is annoying.
2019-05-27 11:35:47 +02:00
Jan Kundrát
8074d0c548 docs: fix code markup
- use a correct highlighter
- ensure that the code is not parsed as RST code-block options
2019-05-27 11:07:53 +02:00
Jan Kundrát
2d611afbb0 Merge pull request #241 from Telecominfraproject/master
Merge master into develop
2019-05-24 11:36:46 +02:00
Jan Kundrát
bc42507724 Merge pull request #239 from jktjkt/spectrial-info-fixes
docs: Fix rendering of the SpectralInformation docs
2019-05-24 11:24:00 +02:00
Jan Kundrát
ff82ab5718 docs: Fix rendering of the SpectralInformation docs
Due to a misaligned |, the table was not rendered at all in the GitHub
overview.

Thanks to Gert for catching this in his brownfield doc.
2019-05-24 11:00:14 +02:00
Alessio Ferrari
62fe374e15 modified fiber type in raman_edfa_example_network.json to use new class RamanFiber 2019-05-24 10:38:24 +02:00
Alessio Ferrari
e519a3bc39 add class RamanFiber 2019-05-24 10:36:29 +02:00
Jan Kundrát
4f146d12ee Merge branch 'pytest-warnings' into develop 2019-05-24 01:45:53 +02:00
Jan Kundrát
46d6074ad5 Merge branch 'trivial-bugfixes' into develop 2019-05-24 01:40:07 +02:00
Jan Kundrát
cbb61f1240 tests: consult the doctests as well
There are no doctests right now, but they will (might?) be added (see
PR #230).
2019-05-24 01:38:12 +02:00
Jan Kundrát
0e9f3c3576 tests: re-enable warnings
For some reason, warnings were disabled in commit 07de78c, but it is not
clear to me what the purpose was back then. It passes without warnings
locally, and I think that warnings are useful in general, so let's give
the CI a try.
2019-05-24 01:37:49 +02:00
Alessio Ferrari
92f11dc075 add an example of json including Raman pumps in fiber 2019-05-23 15:05:08 +02:00
Jan Kundrát
3aa0a0999b Update networkx and xlrd
...in an attempt to kill some deprecation warnings under Python 3.7.
2019-05-22 17:46:41 +02:00
Jan Kundrát
e86fbcfa5b CI: Disable Codecov comments
The results are still perfectly visible within the *Checks* tab, so
let's cut the comment spam a little bit.

I've already done the same for lgtm.com; for that app, it's done in
their service's configuration within the web app.
2019-05-22 17:33:13 +02:00
Alessio Ferrari
0b2ee6fdaf add Raman solver 2019-05-22 12:05:51 +02:00
Alessio Ferrari
35f3866882 load_sim_params used to parse sim_params.json and new default filename 2019-05-22 11:06:58 +02:00
Alessio Ferrari
d86bea80d3 fix load_sim_params 2019-05-22 11:00:02 +02:00
Alessio Ferrari
13b4b5072f fix sim params 2019-05-22 10:59:00 +02:00
Alessio Ferrari
efae43f122 utility to load sim params from json 2019-05-22 10:26:24 +02:00
Alessio Ferrari
45e8c8692b add science utils module 2019-05-22 10:09:27 +02:00
Alessio Ferrari
f8fc2a5050 simparams enriched with Raman and NLI parameters 2019-05-22 10:02:45 +02:00
Jan Kundrát
3c20d57cc4 Be sure that both nf_min and nf_max are removed
If `nf_min` was not present, then `nf_max` would be left remaining
because an attempt to nuke `nf_min` raised an exception.

Thanks to codecov.io for making it easy to spot this on the coverage
page.
2019-05-21 16:29:09 +02:00
Jan Kundrát
2cb3858330 Exceptions must be raised, not just instantiated
Found by lgtm.com code scanner, thanks!
2019-05-21 16:20:26 +02:00
Jan Kundrát
925d36a561 CI: do not require sudo
...which might give us a faster, container-based build environment as
long as some legacy, several-years-old docs are still correct. Let's
give it a try.
2019-05-21 13:04:44 +02:00
Jan Kundrát
0ffaca91cc CI: Test on Python 3.7 as well
According to the Travis-CI docs, this requires switching to a newer base
OS image. It might not require an explicit pin like this in near future
as the default is, apparently, being migrated at this very time, but I
do not feel like working with a random rolling-update process of a
third-party service, thank you.
2019-05-21 12:27:41 +02:00
Jan Kundrát
d3a0f1d969 CI: remove unused section 2019-05-21 12:17:33 +02:00
Jan Kundrát
37704db583 CI: Report test code coverage to codecov.io 2019-05-21 12:09:24 +02:00
Alessio Ferrari
aadd038bbe transmission w Raman gets sim params 2019-05-20 17:17:34 +02:00
diegolaunch
6d601b4267 Merge pull request #232 from jktjkt/unify-authors-list
Add all missing authors and sync the two lists of contributors
2019-05-20 08:10:24 -07:00
Jan Kundrát
194798d881 Add all missing authors and sync the two lists of contributors
These two lists were not synced with each other, and some contributors
whose commits have been merged in git were missing. The resulting list
is a bit longer because not everybody who contributes does that strictly
via commits pushed to GitHub.
2019-05-20 12:31:07 +02:00
Jan Kundrát
1a10495645 Replace James with myself as a maintainer
The credits/attributions have not been touched of course.
2019-05-20 12:31:04 +02:00
Alessio Ferrari
0e2316513e add raman transmission 2019-05-18 15:41:59 +02:00
Alessio Ferrari
72ce4e2fad add json sim_params 2019-05-18 15:39:48 +02:00
Jan Kundrát
4ad7311e18 Merge branch 'develop' 2019-05-17 21:25:08 +02:00
Jan Kundrát
fa2b0e8fad docs: use github for release management
Teh changelog is available over GitHub (and also within the git tags,
now that I added the missing v1.2 tag), so let's cut the verbosity a bit
by just linking to a dedicated page for this trivia.
2019-05-17 20:57:38 +02:00
Jan Kundrát
78eb926693 docs: prune the list of branches
The README is way too long already. Welcoming potential users and
contributors with an overview of the project's history does not help,
IMHO.
2019-05-17 20:46:37 +02:00
Jan Kundrát
3613efbaab docs: there's the --power argument for launch power config 2019-05-17 20:31:50 +02:00
Jan Kundrát
2e732854b3 docs: Improve typography and fix typos in the README
It's quite common to use a ``monospace font`` for referring to
identifiers, so let's use that for GitHub's rendering of the main
project's README.
2019-05-17 20:29:14 +02:00
Jan Kundrát
f9560d6b1d Merge branch 'master' into develop
This is mainly to resolve one conflict in README and to have CI run its
tasks.
2019-05-16 13:09:42 +02:00
Jan Kundrát
51b0826398 Merge pull request #226 from Orange-OpenSource/bugs_correction
correction of 2 bugs
2019-05-16 13:06:09 +02:00
Jan Kundrát
af0adb454d Fix RST syntax in the ROADM table
The table was completely hidden from the HTML rendering at GitHub. The
space between the "left edge" of the table and the text content appears
to be substantial.
2019-05-16 12:41:01 +02:00
EstherLerouzic
cdd4c571b0 correction of bugs
exception KeyError type in service sheet not correctly catched
print Request.mode instead of Requestmode (not defined at this point)

selection of modes did not respect min spacing criterium:
constraint added

transmission_main did not give SNR in 0.1 nm: added in std out

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-05-07 12:28:28 +01:00
James
9c440764c7 Merge pull request #224 from Orange-OpenSource/auto_design3
Auto design3
2019-04-18 11:42:09 -04:00
James
6e94834033 Merge pull request #223 from Orange-OpenSource/addWeightEdge
Add weight edge
2019-04-18 11:41:46 -04:00
EstherLerouzic
1720ed23c9 Sort all simple paths using length instead of hop
when constraints such as include noe or disjuntion is applied
the candidates are sorted with shortest path in length first

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-18 11:16:07 +01:00
EstherLerouzic
137fab1d92 Adding weights on edges to have shortest path in length instead of hops
add weight = length of fiber nodes on connections wher from_node is a fiber
add weight = 0.01 km on other edges

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-18 11:16:07 +01:00
Jean-Luc Auge
0fee63fa81 manage empty edfa requirement list in auto_design
code exit if no edfa are available and raman do not fill min gain
requirement

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
d5f0d80eed clean up auto_design code
replace lambdas, filter and map functions with comprehension list

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
b7d4d43f56 improve auto_design selection of raman
-separate edfa and raman_list of acceptable amplifiers to better
customize criteria between edfa and raman amplifiers
for example min gian requirement: no extended min gain range for raman
amplifiers because there is always an edfa solution, which is better for
small gains.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
c0379a1981 verbose possibility for paht_request_run
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
e5db8e42d1 Display warning when Raman is used above max fiber lineic loss
- in auto-design, Raman is already not used if lineic fiber loss >
eqpt_config.json [Span][max_fiber_lineic_loss_for_raman]
- this commit ensures that a warning is displayed even when auto-desing
is not used (when the network equipment configuration is imported from
json or xls topology)

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
27cf9806f0 bug fix in mixed auto/imported design with output voa
non zero voa values were transferd to the following node

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
5dbb5cd112 bug fix with FUSED spans and EOL
EOL span ageing was added for each connector "to be fused" span
=> now, EOL ageing is only added to the last span of the fused spans
section.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
af75569eb8 clarify code on connector and EOL default loss
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
James
aebf2ff270 Merge pull request #216 from Orange-OpenSource/automatic_design_test
Automatic design test
2019-04-16 12:21:29 -04:00
EstherLerouzic
3bcdeda3e9 Small fix
Coordinates in files changed during the autodesign compared
to previous autodesign version: autodesign_expeted test
files updated

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:55:19 +01:00
EstherLerouzic
7433667243 Update of README.rst wrt Roadm equalization feature and addresses issue #210
TODO update README with dual stage Edfa type_def
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
d7c009167f add units on the stdout answer given by transmission_main_example.py (issue 201)
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
79f198d6fe reduce the number of test files
- use the same file to test different configuration: with and without Eqpt sheet defined,
   add the abcdfgh topo for disjunction tests in the same file
 - change the name of files to avoid mixing with examples/meshTopologyExampleV2.xxx

TODO: test if examples/ files pass for both path_requests_run and trasmission_main_example

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
315a12b9df Update parser test files in order wrt novel road_equalization branch
- update eqpt_config.json to power-mode : false to take into account gain target
    of the eqpt sheet
  - correct eqpt-config.json with new parameters
  - add gain target in meshTopolgyExampleV2Eqpt.xls
  - correct test_parser.py test function names
  - suppress Exceltestfile
  - change power_mode in test_parser to True in eqpt_config.json for all tests
    except for parser: changed in the function to False to enable
    Eqpt files gain target reading

Next: reduce the number of test files and include examples/ files in the tests

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
e14d145f2c Adding a test on autodesign self consistency
tests it the autodesign applied on an autodesigned file gives exactly the same result

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:29 +01:00
EstherLerouzic
f839da39f0 adding a test on autodesign verfication
- tests if networ autodesign does not change some reference files
- changed the meshTopologyExampleV2 files to account for newest features:
  empty columns in mode, power, nb channels, disjuntion examples ...
- added a tsp type with more modes for diversification of tests

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:29 +01:00
James
45ca7a63ed Merge pull request #222 from Orange-OpenSource/edfa_model_doc
Edfa model doc
2019-04-09 11:01:42 -04:00
James
5d187255ae Merge pull request #215 from Orange-OpenSource/roadm_equalization
Roadm equalization
2019-04-09 11:00:48 -04:00
Jean-Luc Auge
7adf6aed59 doc file description of all amplifier models!!
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-08 15:03:30 +02:00
Jean-Luc Auge
b22a7a0234 refactor amplifier build build_OA_json.py
update the advanced json model generator

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-05 16:06:08 +02:00
Jean-Luc Auge
8805723114 clean edfa_model repo
remove unused obsolete files

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-05 10:59:03 +02:00
Jean-Luc Auge
88db4358f5 import Juniper amp model example
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-04 17:25:53 +02:00
Jean-Luc Auge
a5d9685caf modify std_medium_gain_advanced_config.json
reflect interpolation code changes

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-04 17:17:47 +02:00
Jean-Luc Auge
94ff8e6beb Advanced amplifier model improvement
-add f_min & f_max frequency definition in amplifier json
-improve interpolation algorithm to support length differences between the spectrum information and the amplifier ripple and dgt frequency definition

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-04 17:14:25 +02:00
Jean-Luc Auge
f3400d9bc1 update eqpt_config.json
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:51:12 +02:00
Jean-Luc Auge
6a6591e41d Add a warning message when attributes are missing in eqpt_config.json
new code provides default values when attribute is missing in the
eqpt_config.json, which can cause unexpected beahaviour
=> provide a warning message when a missing attribute is set to a
default value.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:51:12 +02:00
Jean-Luc Auge
a3a53f3b06 info message in gain mode
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:51:12 +02:00
Jean-Luc Auge
2f39abfdb8 power reduction warning message in auto-design
warning message when extended gain range or power requirements cannot be met
and power is reduced

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:09:45 +02:00
Jean-Luc Auge
92239d66fc pass tests
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:09:45 +02:00
Jean-Luc Auge
178813806f update eqpt_config and example files
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:09:45 +02:00
Jean-Luc Auge
265dbffc53 Roadm channels power equalization
set individual channel powers wrto the target reference power
tilt and ripple is eliminated after the Roadm

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
a67a08a4d0 Power reference tracking to roadm target power
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
6d15f55304 bug fix : Roadms & Spans vs Roadm & Span
discrepancy between topology and eqpt_config json descriptions

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
0dbcd1f265 manage operational vs calculated values
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
a0f6380f90 improve power mode and gain mode
power mode no longer reads operational_gain:
	now reads operational.dp_db
	or calculate optimum dp_db from next span loss
gain_mode:
	reads operational.gain_target
	or use gain_from_dp

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

squash to dp

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
ab69cf5bf4 improve Edfa class element
manage default values

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

squash to improve edfa element

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
3e55a5526a improve power saturation handling
fix issue with low power level (after very long spans) where signal gian
was depleted

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
b6216bb701 operational amplifier delta P target power support
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
fa3ea3aaa7 convert headers restriction management
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
7b56e3a6c3 bug fix in dual stage NF calculation
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
00ad542a11 auto-design: relax min_gain restriction
tolerate 3dB below min gain in amplifier selection
this is to allow selection of high power amps even if they are below min
gain

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
c3e00eea2c manage inter-stage padding for dual stage typedef
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
5c8dd911e3 reduce power when the extended_gain_range limit is reached
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
407fd62da5 improve auto_design algorithm for amplifier selection
remove gain_max limit and use gain+power limit selection instead

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
c92f7ca0d8 parametrization of amplifier extended_gain_range
used for amplifier selection in auto-design
but it is possible to manually use and set an amplifier beyond its
extended_gain_range

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
676901e113 remove hybrid type_def implementation
replaced by dual_stage type_def

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
c099b53a03 parametrization of the max_fiber_lineic_loss_for_raman
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
fd065e4e7c raman tag in eqpt description
manage raman restrictions

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
fd97527561 raman restrictions
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
7b9647a063 dual stage
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
bf943f1347 insert a raman hybrid example in eqpt_config.json
auto_design over meshTopologyToy.xls will show raman use
run:
python transmission_main.py meshTopologyToy.xls

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
dbff610d77 Improve auto-design amplifier selection algorithm
support min gain for raman auto-design:
raman amplification is only considered for a span if its gain > specified
min gain of the raman hybrid in eqpt_config

auto-design was checked succesfully when enabling a mix of 6 possible different
amplifiers: low gain, medium gain, hybrid ramans, high power and high
gain amplifiers. They were picked as expected.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
Jean-Luc Auge
46aae9486e update raman model to work in auto-design
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
Jean-Luc Auge
70066de390 remove namedtuple class structure for network elements
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
Jean-Luc Auge
106af9d444 hybrid raman/edfa model
quick & dirty 1st implementation:
-fixed raman nf and gain,
-no tilt, no ripple,
-no nonlinear contribution,
-no pump power reduction from egress con loss

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
James Powell
f0be267f9f Merge branch 'develop' 2019-03-05 19:31:28 -05:00
James Powell
edbaec7265 small fixes 2019-03-05 19:11:17 -05:00
James Powell
f4537a538b interpolate fiber positions 2019-03-05 01:07:05 -05:00
James Powell
d6eb6f33d2 fixed ordering, display of SI details 2019-03-04 17:05:56 -05:00
James Powell
7a139c261a removed redundant files 2019-03-04 17:01:34 -05:00
James Powell
2e7aa213ed add units to OSNR 2019-03-04 17:00:41 -05:00
James Powell
d9344287e4 tweaks for OFC 2019-03-04 13:58:09 -05:00
James Powell
b9768a81e9 update README for v1.2 2019-03-04 12:50:35 -05:00
James Powell
3418c07512 changes for OFC demo 2019-03-04 12:35:12 -05:00
James Powell
5f8621c224 changes for OFC demo 2019-03-04 12:32:26 -05:00
James
c05f3555a3 Merge pull request #213 from Orange-OpenSource/features-description
more precise description on README for v1.1
2019-03-04 11:18:08 -05:00
EstherLerouzic
f21827395b update of the descriptioon json structure
- adding the different types of amplifiers

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-02-27 10:26:15 +00:00
EstherLerouzic
894c7bb17a update Excel_userguide.rst wrt convert-service_sheet issue #214
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-02-26 14:33:39 +00:00
Esther LE ROUZIC
2028cfae4d more precise description on README for v1.
Signed-off-by: Esther LE ROUZIC <esther.lerouzic@orange.com>
2019-02-04 09:59:58 +01:00
James Powell
2064f65c04 Merge branch 'develop' 2019-01-30 16:00:38 -05:00
James Powell
1de4a4eaa2 README table fix 2019-01-30 15:59:27 -05:00
75 changed files with 213538 additions and 5078 deletions

1
.codecov.yml Normal file
View File

@@ -0,0 +1 @@
comment: off

3
.docker-entry.sh Executable file
View File

@@ -0,0 +1,3 @@
#!/bin/bash
cp -nr /oopt-gnpy/examples /shared
exec "$@"

47
.docker-travis.sh Executable file
View File

@@ -0,0 +1,47 @@
#!/bin/bash
set -e
IMAGE_NAME=telecominfraproject/oopt-gnpy
IMAGE_TAG=$(git describe --tags)
ALREADY_FOUND=0
docker pull ${IMAGE_NAME}:${IMAGE_TAG} && ALREADY_FOUND=1
if [[ $ALREADY_FOUND == 0 ]]; then
docker build . -t ${IMAGE_NAME}
docker tag ${IMAGE_NAME} ${IMAGE_NAME}:${IMAGE_TAG}
# shared directory setup: do not clobber the real data
mkdir trash
cd trash
docker run -it --rm --volume $(pwd):/shared ${IMAGE_NAME} ./transmission_main_example.py
else
echo "Image ${IMAGE_NAME}:${IMAGE_TAG} already available, will just update the other tags"
fi
docker images
do_docker_login() {
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
}
if [[ "${TRAVIS_PULL_REQUEST}" == "false" ]]; then
if [[ "${TRAVIS_BRANCH}" == "develop" || "${TRAVIS_BRANCH}" == "docker" ]]; then
echo "Publishing latest"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:latest
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:latest
elif [[ "${TRAVIS_BRANCH}" == "master" ]]; then
echo "Publishing stable"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:stable
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:stable
fi
fi

View File

@@ -1,10 +1,27 @@
dist: xenial
sudo: false
language: python
services: docker
python:
- "3.6"
# command to install dependencies
install:
- python setup.py install
# command to run tests
before_script:
- "3.7"
install: skip
script:
- pytest
- python setup.py install
- pip install pytest-cov rstcheck
- pytest --cov-report=xml --cov=gnpy
- rstcheck --ignore-roles cite --ignore-directives automodule --recursive --ignore-messages '(Duplicate explicit target name.*)' .
- ./examples/transmission_main_example.py
- ./examples/path_requests_run.py
- ./examples/transmission_main_example.py examples/raman_edfa_example_network.json --sim examples/sim_params.json --show-channels
- sphinx-build docs/ x-throwaway-location
after_success:
- bash <(curl -s https://codecov.io/bash)
jobs:
include:
- stage: test
name: Docker image
script:
- git fetch --unshallow
- ./.docker-travis.sh
- docker images

View File

@@ -6,16 +6,24 @@ To learn how to contribute, please see CONTRIBUTING.md
(*in alphabetical order*)
- Alessio Ferrari (Politecnico di Torino) <alessio.ferrari@polito.it>
- Anders Lindgren (Telia Company) <Anders.X.Lindgren@teliacompany.com>
- Andrea d'Amico (Politecnico di Torino) <andrea.damico@polito.it>
- Brian Taylor (Facebook) <briantaylor@fb.com>
- David Boertjes (Ciena) <dboertje@ciena.com>
- Diego Landa (Facebook) <dlanda@fb.com>
- Esther Le Rouzic (Orange) <esther.lerouzic@orange.com>
- Gabriele Galimberti (Cisco) <ggalimbe@cisco.com>
- Gert Grammel (Juniper Networks) <ggrammel@juniper.net>
- Gilad Goldfarb (Facebook) <giladg@fb.com>
- James Powell (Telecom Infra Project) <james.powell@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jan.kundrat@telecominfraproject.com>
- Jeanluc Augé (Orange) <jeanluc.auge@orange.com>
- Jonas Mårtensson (RISE) <jonas.martensson@ri.se>
- Mattia Cantono (Politecnico di Torino) <mattia.cantono@polito.it>
- Miguel Garrich (University Catalunya) <miquel.garrich@upct.es>
- Raj Nagarajan (Lumentum) <raj.nagarajan@lumentum.com>
- Roberts Miculens (Lattelecom) <roberts.miculens@lattelecom.lv>
- Shengxiang Zhu (University of Arizona) <szhu@email.arizona.edu>
- Stefan Melin (Telia Company) <Stefan.Melin@teliacompany.com>
- Vittorio Curri (Politecnico di Torino) <vittorio.curri@polito.it>
- Xufeng Liu (Jabil) <xufeng_liu@jabil.com>

7
Dockerfile Normal file
View File

@@ -0,0 +1,7 @@
FROM python:3.7-slim
COPY . /oopt-gnpy
WORKDIR /oopt-gnpy
RUN python setup.py install
WORKDIR /shared/examples
ENTRYPOINT ["/oopt-gnpy/.docker-entry.sh"]
CMD ["/bin/bash"]

View File

@@ -19,8 +19,8 @@ In order to work the excel file MUST contain at least 2 sheets:
Nodes sheet
-----------
Nodes sheet contains seven columns.
Each line represents a 'node' (ROADM site or an in line amplifier site ILA)::
Nodes sheet contains nine columns.
Each line represents a 'node' (ROADM site or an in line amplifier site ILA or a Fused)::
City (Mandatory) ; State ; Country ; Region ; Latitude ; Longitude ; Type
@@ -38,6 +38,9 @@ Each line represents a 'node' (ROADM site or an in line amplifier site ILA)::
- *Longitude*, *Latitude* are not mandatory. If filled they should contain numbers.
- **Booster_restriction** and **Preamp_restriction** are not mandatory.
If used, they must contain one or several amplifier type_variety names separated by ' | '. This information is used to restrict types of amplifiers used in a ROADM node during autodesign. If a ROADM booster or preamp is already specified in the Eqpt sheet , the field is ignored. The field is also ignored if the node is not a ROADM node.
**There MUST NOT be empty line(s) between two nodes lines**
@@ -166,6 +169,7 @@ This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content ca
- **amp type** is not mandatory.
If filled it must contain types listed in `eqpt_config.json <examples/eqpt_config.json>`_ in "Edfa" list "type_variety".
If not filled it takes "std_medium_gain" as default value.
If filled with fused, a fused element with 0.0 dB loss will be placed instead of an amplifier. This might be used to avoid booster amplifier on a ROADM direction.
- **amp_gain** is not mandatory. It is the value to be set on the amplifier (in dB).
If not filled, it will be determined with design rules in the convert.py file.
@@ -195,7 +199,7 @@ Service sheet must contain 11 columns::
- **Destination** is mandatory. It is the name of the destination node (as listed in Nodes sheet). Source MUST be a ROADM node. (TODO: relax this and accept trx entries)
- **TRX type ** is mandatory. They are the variety type and selected mode of the transceiver to be used for the propagation simulation. These modes MUST be defined in the equipment library. The format of the mode is used as the name of the mode. (TODO: maybe add another mode id on Transceiver library ?). In particular the mode selection defines the channel baudrate to be used for the propagation simulation.
- **TRX type** is mandatory. They are the variety type and selected mode of the transceiver to be used for the propagation simulation. These modes MUST be defined in the equipment library. The format of the mode is used as the name of the mode. (TODO: maybe add another mode id on Transceiver library ?). In particular the mode selection defines the channel baudrate to be used for the propagation simulation.
- **mode** is optional. If not specified, the program will search for the mode of the defined transponder with the highest baudrate fitting within the spacing value.
@@ -214,26 +218,6 @@ Service sheet must contain 11 columns::
- ** path bandwidth** is optional. It is the amount of capacity required between source and destination in Gbit/s. Default value is 0.0 Gbit/s.
convert_service_sheet.py
------------------------
`convert_service_sheet.py <examples/convert_service_sheet.py>`_ converts the service sheet to a json file following the Yang model for requesting Path Computation defined in `draft-ietf-teas-yang-path-computation-01.txt <https://www.ietf.org/id/draft-ietf-teas-yang-path-computation-01.pdf>`_. TODO: verify that this implementation is correct + give feedback to ietf on what is missing for our specific application.
For PSE use, additional fields with trx type and mode have been added to the te-bandwidth field.
**Usage**: convert_service_sheet.py [-h] [-v] [-o OUTPUT] [workbook_name.xls]
.. code-block:: shell
$ cd examples
$ python convert_service_sheet.py meshTopologyExampleV2.xls -o service_file.json
-o output_file.json is an optional parameter:
- if not used, the program output the json data on standard output and on a json file with name 'workbook_name_services.json'.
A template for the json file can be found here: `service_template.json <service_template.json>`_
path_requests_run.py
------------------------
@@ -247,6 +231,11 @@ path_requests_run.py
A function that computes performances for a list of services provided in the service file (accepts json or excel format.
if the service <file.xls> is in xls format, path_requests_run.py converts it to a json file <file_services.json> following the Yang model for requesting Path Computation defined in `draft-ietf-teas-yang-path-computation-01.txt <https://www.ietf.org/id/draft-ietf-teas-yang-path-computation-01.pdf>`_. For PSE use, additional fields with trx type and mode have been added to the te-bandwidth field.
A template for the json file can be found here: `service_template.json <service_template.json>`_
If no output file is given, the computation is shown on standard output for demo.
If a file is specified with the optional -o argument, the result of the computation is converted into a json format following the Yang model for requesting Path Computation defined in `draft-ietf-teas-yang-path-computation-01.txt <https://www.ietf.org/id/draft-ietf-teas-yang-path-computation-01.pdf>`_. TODO: verify that this implementation is correct + give feedback to ietf on what is missing for our specific application.

View File

@@ -1,3 +1,8 @@
.. image:: docs/images/GNPy-banner.png
:width: 100%
:align: left
:alt: GNPy with an OLS system
====================================================================
`gnpy`: mesh optical network route planning and optimization library
====================================================================
@@ -8,6 +13,7 @@
planning and optimization tools in real-world mesh optical networks.**
`gnpy <http://github.com/telecominfraproject/oopt-gnpy>`__ is:
--------------------------------------------------------------
- a sponsored project of the `OOPT/PSE <https://telecominfraproject.com/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_
- fully community-driven, fully open source library
@@ -18,31 +24,50 @@ planning and optimization tools in real-world mesh optical networks.**
Documentation: https://gnpy.readthedocs.io
Get In Touch
~~~~~~~~~~~~
There are `weekly calls <https://telecominfraproject.workplace.com/events/458339931322799/>`__ about our progress.
Newcomers, users and telecom operators are especially welcome there.
We encourage all interested people outside the TIP to `join the project <https://telecominfraproject.com/apply-for-membership/>`__.
Branches and Tagged Releases
----------------------------
- the `master <https://github.com/Telecominfraproject/oopt-gnpy/tree/master>`_ branch contains stable, validated code. It is updated from develop on a release schedule determined by the OOPT-PSE Working Group. For more information about the validation process, see: https://github.com/Telecominfraproject/oopt-gnpy/wiki/Testing-for-Quality
- all releases are `available via GitHub <https://github.com/Telecominfraproject/oopt-gnpy/releases>`_
- the `master <https://github.com/Telecominfraproject/oopt-gnpy/tree/master>`_ branch contains stable, `validated code <https://github.com/Telecominfraproject/oopt-gnpy/wiki/Testing-for-Quality>`_. It is updated from develop on a release schedule determined by the OOPT-PSE Working Group.
- the `develop <https://github.com/Telecominfraproject/oopt-gnpy/tree/develop>`_ branch contains the latest code under active development, which may not be fully validated and tested.
- the `phase-1 <https://github.com/Telecominfraproject/oopt-gnpy/tree/phase-1>`_ branch contains code for Phase I of the OOPT-PSE efforts and is kept only for reference. This branch is unmaintained.
A brief outline of major (tagged) `gnpy` releases:
+---------------+-------------+-----------------------------------------------+
| release date | version tag | notes |
+===============+=============+===============================================+
| Jan 30, 2019 | v1.1 | - XLS parser enhancements |
| | | - carrier probe feature |
| | | - bug fixes |
+---------------+-------------+-----------------------------------------------+
| Oct 16, 2018 | v1.0 | - first "production"-ready release |
| | | - open network element model (EDFA, GN-model) |
| | | - auto-design functionality |
| | | - path request functionality |
+---------------+-------------+-----------------------------------------------+
How to Install
--------------
Using prebuilt Docker images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Our `Docker images <https://hub.docker.com/r/telecominfraproject/oopt-gnpy>`_ contain everything needed to run all examples from this guide.
Docker transparently fetches the image over the network upon first use.
On Linux and Mac, run:
.. code-block:: shell-session
$ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy
root@bea050f186f7:/shared/examples#
On Windows, launch from Powershell as:
.. code-block:: powershell
PS C:\> docker run -it --rm --volume ${PWD}:/shared telecominfraproject/oopt-gnpy
root@89784e577d44:/shared/examples#
In both cases, a directory named ``examples/`` will appear in your current working directory.
GNPy automaticallly populates it with example files from the current release.
Remove that directory if you want to start from scratch.
Using Python on your computer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note**: `gnpy` supports Python 3 only. Python 2 is not supported.
`gnpy` requires Python ≥3.6
@@ -52,10 +77,9 @@ How to Install
It is recommended that you use a "virtual environment" when installing `gnpy`.
Do not install `gnpy` on your system Python.
We recommend the use of the Anaconda Python distribution
(https://www.anaconda.com/download) which comes with many scientific computing
We recommend the use of the `Anaconda Python distribution <https://www.anaconda.com/download>`_ which comes with many scientific computing
dependencies pre-installed. Anaconda creates a base "virtual environment" for
you automatically. You can also create and manage your conda "virtual
you automatically. You can also create and manage your ``conda`` "virtual
environments" yourself (see:
https://conda.io/docs/user-guide/tasks/manage-environments.html)
@@ -101,14 +125,13 @@ of the `gnpy` repo and install it with:
$ python setup.py install # install
To test that `gnpy` was successfully installed, you can run this command. If it
executes without a `ModuleNotFoundError`, you have successfully installed
executes without a ``ModuleNotFoundError``, you have successfully installed
`gnpy`.
.. code-block:: shell
$ python -c 'import gnpy' # attempt to import gnpy
$ cd oopt-gnpy
$ pytest # run tests
Instructions for First Use
@@ -120,20 +143,18 @@ It ships with a number of example programs. Release versions will ship with
fully-functional programs.
**Note**: *If you are a network operator or involved in route planning and
optimization for your organization, please contact project maintainer James
Powell <james.powell@telecominfraproject>. gnpy is looking for users with
optimization for your organization, please contact project maintainer Jan
Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking for users with
specific, delineated use cases to drive requirements for future
development.*
**To get started, run the main transmission example:**
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
**Note**: *Examples should be run from the examples/ folder.*
.. code-block:: shell
$ pwd
/path/to/oopt-gnpy
$ cd examples
$ python transmission_main_example.py
.. image:: https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg
:width: 100%
:align: left
:alt: Running a simple simulation example
:target: https://asciinema.org/a/252295
By default, this script operates on a single span network defined in
`examples/edfa_example_network.json <examples/edfa_example_network.json>`_
@@ -142,10 +163,9 @@ You can specify a different network at the command line as follows. For
example, to use the CORONET Global network defined in
`examples/CORONET_Global_Topology.json <examples/CORONET_Global_Topology.json>`_:
.. code-block:: shell
.. code-block:: shell-session
$ cd examples
$ python transmission_main_example.py CORONET_Global_Topology.json
$ ./examples/transmission_main_example.py examples/CORONET_Global_Topology.json
It is also possible to use an Excel file input (for example
`examples/CORONET_Global_Topology.xls <examples/CORONET_Global_Topology.xls>`_).
@@ -183,59 +203,59 @@ information to transmit.)
The EDFA equipment library is a list of supported amplifiers. New amplifiers
can be added and existing ones removed. Three different noise models are available:
1. `'type_def': 'variable_gain'` is a simplified model simulating a 2-coil EDFA with internal, input and output VOAs. The NF vs gain response is calculated accordingly based on the input parameters: `nf_min`, `nf_max`, and `gain_flatmax`. It is not a simple interpolation but a 2-stage NF calculation.
2. `'type_def': 'fixed_gain'` is a fixed gain model. `NF == Cte == nf0` if `gain_min < gain < gain_flatmax`
3. `'type_def': None` is an advanced model. A detailed json configuration file is required (by default `examples/std_medium_gain_advanced_config.json <examples/std_medium_gain_advanced_config.json>`_.) It uses a 3rd order polynomial where NF = f(gain), NF_ripple = f(frequency), gain_ripple = f(frequency), N-array dgt = f(frequency). Compared to the previous models, NF ripple and gain ripple are modelled.
1. ``'type_def': 'variable_gain'`` is a simplified model simulating a 2-coil EDFA with internal, input and output VOAs. The NF vs gain response is calculated accordingly based on the input parameters: ``nf_min``, ``nf_max``, and ``gain_flatmax``. It is not a simple interpolation but a 2-stage NF calculation.
2. ``'type_def': 'fixed_gain'`` is a fixed gain model. `NF == Cte == nf0` if `gain_min < gain < gain_flatmax`
3. ``'type_def': None`` is an advanced model. A detailed JSON configuration file is required (by default `examples/std_medium_gain_advanced_config.json <examples/std_medium_gain_advanced_config.json>`_). It uses a 3rd order polynomial where NF = f(gain), NF_ripple = f(frequency), gain_ripple = f(frequency), N-array dgt = f(frequency). Compared to the previous models, NF ripple and gain ripple are modelled.
For all amplifier models:
+----------------------+-----------+-----------------------------------------+
| field | type | description |
+======================+===========+=========================================+
| `type_variety` | (string) | a unique name to ID the amplifier in the|
| | | JSON/Excel template topology input file |
+----------------------+-----------+-----------------------------------------+
| `out_voa_auto` | (boolean) | auto_design feature to optimize the |
| | | amplifier output VOA. If true, output |
| | | VOA is present and will be used to push |
| | | amplifier gain to its maximum, within |
| | | EOL power margins. |
+----------------------+-----------+-----------------------------------------+
| `allowed_for_design` | (boolean) | If false, the amplifier will not be |
| | | picked by auto-design but it can still |
| | | be used as a manual input (from JSON or |
| | | Excel template topology files.) |
+----------------------+-----------+-----------------------------------------+
+------------------------+-----------+-----------------------------------------+
| field | type | description |
+========================+===========+=========================================+
| ``type_variety`` | (string) | a unique name to ID the amplifier in the|
| | | JSON/Excel template topology input file |
+------------------------+-----------+-----------------------------------------+
| ``out_voa_auto`` | (boolean) | auto_design feature to optimize the |
| | | amplifier output VOA. If true, output |
| | | VOA is present and will be used to push |
| | | amplifier gain to its maximum, within |
| | | EOL power margins. |
+------------------------+-----------+-----------------------------------------+
| ``allowed_for_design`` | (boolean) | If false, the amplifier will not be |
| | | picked by auto-design but it can still |
| | | be used as a manual input (from JSON or |
| | | Excel template topology files.) |
+------------------------+-----------+-----------------------------------------+
The fiber library currently describes SSMF and NZDF but additional fiber types can be entered by the user following the same model:
+----------------------+-----------+-----------------------------------------+
| field | type | description |
+======================+===========+=========================================+
| `type_variety` | (string) | a unique name to ID the fiber in the |
| ``type_variety`` | (string) | a unique name to ID the fiber in the |
| | | JSON or Excel template topology input |
| | | file |
+----------------------+-----------+-----------------------------------------+
| `dispersion` | (number) | (s.m-1.m-1) |
| ``dispersion`` | (number) | (s.m-1.m-1) |
+----------------------+-----------+-----------------------------------------+
| `gamma` | (number) | 2pi.n2/(lambda*Aeff) (w-2.m-1) |
| ``gamma`` | (number) | 2pi.n2/(lambda*Aeff) (w-2.m-1) |
+----------------------+-----------+-----------------------------------------+
The transceiver equipment library is a list of supported transceivers. New
transceivers can be added and existing ones removed at will by the user. It is
used to determine the service list path feasibility when running the
path_request_run.py routine.
`path_request_run.py routine <examples/path_request_run.py>`_.
+----------------------+-----------+-----------------------------------------+
| field | type | description |
+======================+===========+=========================================+
| `type_variety` | (string) | a unique name to ID the transceiver in |
| ``type_variety`` | (string) | A unique name to ID the transceiver in |
| | | the JSON or Excel template topology |
| | | input file |
+----------------------+-----------+-----------------------------------------+
| `frequency` | (number) | Min/max as below. |
| ``frequency`` | (number) | Min/max as below. |
+----------------------+-----------+-----------------------------------------+
| `mode` | (number) | a list of modes supported by the |
| ``mode`` | (number) | A list of modes supported by the |
| | | transponder. New modes can be added at |
| | | will by the user. The modes are specific|
| | | to each transponder type_variety. |
@@ -247,142 +267,142 @@ The modes are defined as follows:
+----------------------+-----------+-----------------------------------------+
| field | type | description |
+======================+===========+=========================================+
| `format` | (string) | a unique name to ID the mode. |
| ``format`` | (string) | a unique name to ID the mode |
+----------------------+-----------+-----------------------------------------+
| `baud_rate` | (number) | in Hz |
| ``baud_rate`` | (number) | in Hz |
+----------------------+-----------+-----------------------------------------+
| `OSNR` | (number) | min required OSNR in 0.1nm (dB) |
| ``OSNR`` | (number) | min required OSNR in 0.1nm (dB) |
+----------------------+-----------+-----------------------------------------+
| `bit_rate` | (number) | in bit/s |
| ``bit_rate`` | (number) | in bit/s |
+----------------------+-----------+-----------------------------------------+
| `roll_off` | (number) | Not used. |
| ``roll_off`` | (number) | Not used. |
+----------------------+-----------+-----------------------------------------+
| `tx_osnr` | (number) | In dB. OSNR out from transponder. |
| ``tx_osnr`` | (number) | In dB. OSNR out from transponder. |
+----------------------+-----------+-----------------------------------------+
| `cost` | (number) | Arbitrary unit |
| ``cost`` | (number) | Arbitrary unit |
+----------------------+-----------+-----------------------------------------+
Simulation parameters are defined as follows.
Auto-design automatically creates EDFA amplifier network elements when they are
missing, after a fiber, or between a ROADM and a fiber. This auto-design
functionality can be manually and locally deactivated by introducing a `Fused`
network element after a `Fiber` or a `Roadm` that doesn't need amplification.
functionality can be manually and locally deactivated by introducing a ``Fused``
network element after a ``Fiber`` or a ``Roadm`` that doesn't need amplification.
The amplifier is chosen in the EDFA list of the equipment library based on
gain, power, and NF criteria. Only the EDFA that are marked
`'allowed_for_design': true` are considered.
``'allowed_for_design': true`` are considered.
For amplifiers defined in the topology JSON input but whose gain = 0
(placeholder), auto-design will set its gain automatically: see `power_mode` in
the `Spans` library to find out how the gain is calculated.
For amplifiers defined in the topology JSON input but whose ``gain = 0``
(placeholder), auto-design will set its gain automatically: see ``power_mode`` in
the ``Spans`` library to find out how the gain is calculated.
Span configuration is performed as follows. It is not a list (which may change
in later releases) and the user can only modify the value of existing
parameters:
+------------------------+-----------+---------------------------------------------+
| field | type | description |
+========================+===========+=============================================+
| `power_mode` | (boolean) | If false, gain mode. Auto-design sets |
| | | amplifier gain = preceding span loss, |
| | | unless the amplifier exists and its |
| | | gain > 0 in the topology input json. |
| | | If true, power mode (recommended for |
| | | auto-design and power sweep.) |
| | | Auto-design sets amplifier power |
| | | according to delta_power_range. If the |
| | | amplifier exists with gain > 0 in the |
| | | topology json input, then its gain is |
| | | translated into a power target/channel. |
| | | Moreover, when performing a power sweep |
| | | (see power_range_db in the SI |
| | | configuration library) the power sweep |
| | | is performed w/r/t this power target, |
| | | regardless of preceding amplifiers |
| | | power saturation/limitations. |
+------------------------+-----------+---------------------------------------------+
| `delta_power_range_db` | (number) | Auto-design only, power-mode |
| | | only. Specifies the [min, max, step] |
| | | power excursion/span. It is a relative |
| | | power excursion w/r/t the |
| | | power_dbm + power_range_db |
| | | (power sweep if applicable) defined in |
| | | the SI configuration library. This |
| | | relative power excursion is = 1/3 of |
| | | the span loss difference with the |
| | | reference 20 dB span. The 1/3 slope is |
| | | derived from the GN model equations. |
| | | For example, a 23 dB span loss will be |
| | | set to 1 dB more power than a 20 dB |
| | | span loss. The 20 dB reference spans |
| | | will *always* be set to |
| | | power = power_dbm + power_range_db. |
| | | To configure the same power in all |
| | | spans, use `[0, 0, 0]`. All spans will |
| | | be set to |
| | | power = power_dbm + power_range_db. |
| | | To configure the same power in all spans |
| | | and 3 dB more power just for the longest |
| | | spans: `[0, 3, 3]`. The longest spans are |
| | | set to |
| | | power = power_dbm + power_range_db + 3. |
| | | To configure a 4 dB power range across |
| | | all spans in 0.5 dB steps: `[-2, 2, 0.5]`. |
| | | A 17 dB span is set to |
| | | power = power_dbm + power_range_db - 1, |
| | | a 20 dB span to |
| | | power = power_dbm + power_range_db and |
| | | a 23 dB span to |
| | | power = power_dbm + power_range_db + 1 |
+------------------------+-----------+---------------------------------------------+
| `max_length` | (number) | Split fiber lengths > max_length. |
| | | Interest to support high level |
| | | topologies that do not specify in line |
| | | amplification sites. For example the |
| | | CORONET_Global_Topology.xls defines |
| | | links > 1000km between 2 sites: it |
| | | couldn't be simulated if these links |
| | | were not splitted in shorter span |
| | | lengths. |
+------------------------+-----------+---------------------------------------------+
| `length_unit` | "m"/"km" | Unit for max_length. |
+------------------------+-----------+---------------------------------------------+
| `max_loss` | (number) | Not used in the current code |
| | | implementation. |
+------------------------+-----------+---------------------------------------------+
| `padding` | (number) | In dB. Min span loss before putting an |
| | | attenuator before fiber. Attenuator |
| | | value |
| | | Fiber.att_in = max(0, padding - span_loss). |
| | | Padding can be set manually to reach a |
| | | higher padding value for a given fiber |
| | | by filling in the Fiber/params/att_in |
| | | field in the topology json input [1] |
| | | but if span_loss = length * loss_coef |
| | | + att_in + con_in + con_out < padding, |
| | | the specified att_in value will be |
| | | completed to have span_loss = padding. |
| | | Therefore it is not possible to set |
| | | span_loss < padding. |
+------------------------+-----------+---------------------------------------------+
| `EOL` | (number) | All fiber span loss ageing. The value |
| | | is added to the con_out (fiber output |
| | | connector). So the design and the path |
| | | feasibility are performed with |
| | | span_loss + EOL. EOL cannot be set |
| | | manually for a given fiber span |
| | | (workaround is to specify higher con_out |
| | | loss for this fiber). |
+------------------------+-----------+---------------------------------------------+
| `con_in`, `con_out` | (number) | Default values if Fiber/params/con_in/out |
| | | is None in the topology input |
| | | description. This default value is |
| | | ignored if a Fiber/params/con_in/out |
| | | value is input in the topology for a |
| | | given Fiber. |
+------------------------+-----------+---------------------------------------------+
**[1]**
+-------------------------------------+-----------+---------------------------------------------+
| field | type | description |
+=====================================+===========+=============================================+
| ``power_mode`` | (boolean) | If false, gain mode. Auto-design sets |
| | | amplifier gain = preceding span loss, |
| | | unless the amplifier exists and its |
| | | gain > 0 in the topology input JSON. |
| | | If true, power mode (recommended for |
| | | auto-design and power sweep.) |
| | | Auto-design sets amplifier power |
| | | according to delta_power_range. If the |
| | | amplifier exists with gain > 0 in the |
| | | topology JSON input, then its gain is |
| | | translated into a power target/channel. |
| | | Moreover, when performing a power sweep |
| | | (see ``power_range_db`` in the SI |
| | | configuration library) the power sweep |
| | | is performed w/r/t this power target, |
| | | regardless of preceding amplifiers |
| | | power saturation/limitations. |
+-------------------------------------+-----------+---------------------------------------------+
| ``delta_power_range_db`` | (number) | Auto-design only, power-mode |
| | | only. Specifies the [min, max, step] |
| | | power excursion/span. It is a relative |
| | | power excursion w/r/t the |
| | | power_dbm + power_range_db |
| | | (power sweep if applicable) defined in |
| | | the SI configuration library. This |
| | | relative power excursion is = 1/3 of |
| | | the span loss difference with the |
| | | reference 20 dB span. The 1/3 slope is |
| | | derived from the GN model equations. |
| | | For example, a 23 dB span loss will be |
| | | set to 1 dB more power than a 20 dB |
| | | span loss. The 20 dB reference spans |
| | | will *always* be set to |
| | | power = power_dbm + power_range_db. |
| | | To configure the same power in all |
| | | spans, use `[0, 0, 0]`. All spans will |
| | | be set to |
| | | power = power_dbm + power_range_db. |
| | | To configure the same power in all spans |
| | | and 3 dB more power just for the longest |
| | | spans: `[0, 3, 3]`. The longest spans are |
| | | set to |
| | | power = power_dbm + power_range_db + 3. |
| | | To configure a 4 dB power range across |
| | | all spans in 0.5 dB steps: `[-2, 2, 0.5]`. |
| | | A 17 dB span is set to |
| | | power = power_dbm + power_range_db - 1, |
| | | a 20 dB span to |
| | | power = power_dbm + power_range_db and |
| | | a 23 dB span to |
| | | power = power_dbm + power_range_db + 1 |
+-------------------------------------+-----------+---------------------------------------------+
| ``max_fiber_lineic_loss_for_raman`` | (number) | Maximum linear fiber loss for Raman |
| | | amplification use. |
+-------------------------------------+-----------+---------------------------------------------+
| ``max_length`` | (number) | Split fiber lengths > max_length. |
| | | Interest to support high level |
| | | topologies that do not specify in line |
| | | amplification sites. For example the |
| | | CORONET_Global_Topology.xls defines |
| | | links > 1000km between 2 sites: it |
| | | couldn't be simulated if these links |
| | | were not split in shorter span lengths. |
+-------------------------------------+-----------+---------------------------------------------+
| ``length_unit`` | "m"/"km" | Unit for ``max_length``. |
+-------------------------------------+-----------+---------------------------------------------+
| ``max_loss`` | (number) | Not used in the current code |
| | | implementation. |
+-------------------------------------+-----------+---------------------------------------------+
| ``padding`` | (number) | In dB. Min span loss before putting an |
| | | attenuator before fiber. Attenuator |
| | | value |
| | | Fiber.att_in = max(0, padding - span_loss). |
| | | Padding can be set manually to reach a |
| | | higher padding value for a given fiber |
| | | by filling in the Fiber/params/att_in |
| | | field in the topology json input [1] |
| | | but if span_loss = length * loss_coef |
| | | + att_in + con_in + con_out < padding, |
| | | the specified att_in value will be |
| | | completed to have span_loss = padding. |
| | | Therefore it is not possible to set |
| | | span_loss < padding. |
+-------------------------------------+-----------+---------------------------------------------+
| ``EOL`` | (number) | All fiber span loss ageing. The value |
| | | is added to the con_out (fiber output |
| | | connector). So the design and the path |
| | | feasibility are performed with |
| | | span_loss + EOL. EOL cannot be set |
| | | manually for a given fiber span |
| | | (workaround is to specify higher |
| | | ``con_out`` loss for this fiber). |
+-------------------------------------+-----------+---------------------------------------------+
| ``con_in``, | (number) | Default values if Fiber/params/con_in/out |
| ``con_out`` | | is None in the topology input |
| | | description. This default value is |
| | | ignored if a Fiber/params/con_in/out |
| | | value is input in the topology for a |
| | | given Fiber. |
+-------------------------------------+-----------+---------------------------------------------+
.. code-block:: json
@@ -405,33 +425,36 @@ parameters:
ROADMs can be configured as follows. The user can only modify the value of
existing parameters:
+-------------------------+-----------+---------------------------------------------+
| field | type | description |
+=========================+===========+=============================================+
|`gain_mode_default_loss` | (number) | Default value if Roadm/params/loss is |
| | | None in the topology input description. |
| | | This default value is ignored if a |
| | | params/loss value is input in the |
| | | topology for a given ROADM. |
+-------------------------+-----------+---------------------------------------------+
|`power_mode_pref` | (number) | Power mode only. Auto-design sets the |
| | | power of ROADM ingress amplifiers to |
| | | power_dbm + power_range_db, |
| | | regardless of existing gain settings |
| | | from the topology JSON input. |
| | | Auto-design sets the Roadm loss so that |
| | | its egress channel power = power_mode_pref, |
| | | regardless of existing loss settings |
| | | from the topology JSON input. It means |
| | | that the output power from a ROADM (and |
| | | therefore its OSNR contribution) is Cte |
| | | and not depending from power_dbm and |
| | | power_range_db sweep settings. This |
| | | choice is meant to reflect some typical |
| | | control loop algorithms. |
+-------------------------+-----------+---------------------------------------------+
+--------------------------+-----------+---------------------------------------------+
| field | type | description |
+==========================+===========+=============================================+
| ``target_pch_out_db`` | (number) | Auto-design sets the ROADM egress channel |
| | | power. This reflects typical control loop |
| | | algorithms that adjust ROADM losses to |
| | | equalize channels (eg coming from different |
| | | ingress direction or add ports) |
| | | This is the default value |
| | | Roadm/params/target_pch_out_db if no value |
| | | is given in the ``Roadm`` element in the |
| | | topology input description. |
| | | This default value is ignored if a |
| | | params/target_pch_out_db value is input in |
| | | the topology for a given ROADM. |
+--------------------------+-----------+---------------------------------------------+
| ``add_drop_osnr`` | (number) | OSNR contribution from the add/drop ports |
+--------------------------+-----------+---------------------------------------------+
| ``restrictions`` | (dict of | If non-empty, keys ``preamp_variety_list`` |
| | strings) | and ``booster_variety_list`` represent |
| | | list of ``type_variety`` amplifiers which |
| | | are allowed for auto-design within ROADM's |
| | | line degrees. |
| | | |
| | | If no booster should be placed on a degree, |
| | | insert a ``Fused`` node on the degree |
| | | output. |
+--------------------------+-----------+---------------------------------------------+
The `SpectralInformation` object can be configured as follows. The user can
The ``SpectralInformation`` object can be configured as follows. The user can
only modify the value of existing parameters. It defines a spectrum of N
identical carriers. While the code libraries allow for different carriers and
power levels, the current user parametrization only allows one carrier type and
@@ -440,21 +463,18 @@ one power/channel definition.
+----------------------+-----------+-------------------------------------------+
| field | type | description |
+======================+===========+===========================================+
| `f_min/max` | (number) | In Hz. Carrier min max excursion |
| ``f_min``, | (number) | In Hz. Carrier min max excursion. |
| ``f_max`` | | |
+----------------------+-----------+-------------------------------------------+
| `baud_rate` | (number) | In Hz. Simulated baud rate. |
| ``baud_rate`` | (number) | In Hz. Simulated baud rate. |
+----------------------+-----------+-------------------------------------------+
| `spacing` | (number) | In Hz. Carrier spacing. |
| ``spacing`` | (number) | In Hz. Carrier spacing. |
+----------------------+-----------+-------------------------------------------+
| `roll_off` | (number) | Not used. |
| ``roll_off`` | (number) | Not used. |
+----------------------+-----------+-------------------------------------------+
| `OSNR` | (number) | Not used. |
| ``tx_osnr`` | (number) | In dB. OSNR out from transponder. |
+----------------------+-----------+-------------------------------------------+
| `bit_rate` | (number) | Not used. |
+----------------------+-----------+-------------------------------------------+
| `tx_osnr` | (number) | In dB. OSNR out from transponder. |
+----------------------+-----------+-------------------------------------------+
| `power_dbm` | (number) | Reference channel power. In gain mode |
| ``power_dbm`` | (number) | Reference channel power. In gain mode |
| | | (see spans/power_mode = false), all gain |
| | | settings are offset w/r/t this reference |
| | | power. In power mode, it is the |
@@ -467,17 +487,30 @@ one power/channel definition.
| | | power sweep is defined (see after) the |
| | | design is not repeated. |
+----------------------+-----------+-------------------------------------------+
| `power_range_db` | (number) | Power sweep excursion around power_dbm. |
| ``power_range_db`` | (number) | Power sweep excursion around power_dbm. |
| | | It is not the min and max channel power |
| | | values! The reference power becomes: |
| | | power_range_db + power_dbm. |
+----------------------+-----------+-------------------------------------------+
| ``sys_margins`` | (number) | In dB. Added margin on min required |
| | | transceiver OSNR. |
+----------------------+-----------+-------------------------------------------+
The `transmission_main_example.py <examples/transmission_main_example.py>`_
script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0
dBm/channel. These are not yet parametrized but can be modified directly in the
script (via the SpectralInformation structure) to accommodate any baud rate,
spacing, power or channel count demand.
The `transmission_main_example.py <examples/transmission_main_example.py>`_ script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
Launch power can be overridden by using the ``--power`` argument.
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
An experimental support for Raman amplification is available:
.. code-block:: shell
$ ./examples/transmission_main_example.py \
examples/raman_edfa_example_network.json \
--sim examples/sim_params.json --show-channels
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <examples/raman_edfa_example_network.json>`_.
General numeric parameters for simulaiton control are provided in the `examples/sim_params.json <examples/sim_params.json>`_.
Use `examples/path_requests_run.py <examples/path_requests_run.py>`_ to run multiple optimizations as follows:
@@ -486,7 +519,7 @@ Use `examples/path_requests_run.py <examples/path_requests_run.py>`_ to run mult
$ python path_requests_run.py -h
Usage: path_requests_run.py [-h] [-v] [-o OUTPUT] [network_filename] [service_filename] [eqpt_filename]
The `network_filename` and `service_filename` can be an XLS or JSON file. The `eqpt_filename` must be a JSON file.
The ``network_filename`` and ``service_filename`` can be an XLS or JSON file. The ``eqpt_filename`` must be a JSON file.
To see an example of it, run:
@@ -497,10 +530,10 @@ To see an example of it, run:
This program requires a list of connections to be estimated and the equipment
library. The program computes performances for the list of services (accepts
json or excel format) using the same spectrum propagation modules as
transmission_main_example.py. Explanation on the Excel template is provided in
JSON or Excel format) using the same spectrum propagation modules as
``transmission_main_example.py``. Explanation on the Excel template is provided in
the `Excel_userguide.rst <Excel_userguide.rst#service-sheet>`_. Template for
the json format can be found here: `service-template.json
the JSON format can be found here: `service-template.json
<service-template.json>`_.
Contributing
@@ -509,8 +542,8 @@ Contributing
``gnpy`` is looking for additional contributors, especially those with experience
planning and maintaining large-scale, real-world mesh optical networks.
To get involved, please contact James Powell
<james.powell@telecominfraproject.com> or Gert Grammel <ggrammel@juniper.net>.
To get involved, please contact Jan Kundrát
<jan.kundrat@telecominfraproject.com> or Gert Grammel <ggrammel@juniper.net>.
``gnpy`` contributions are currently limited to members of `TIP
<http://telecominfraproject.com>`_. Membership is free and open to all.

View File

@@ -874,7 +874,7 @@ month={Sept},}
number = {7},
journal = {Optics Express},
urlyear = {2017-11-14},
year = {2012-03-26},
date = {2012-03-26},
year = {2012},
pages = {7777},
author = {Bononi, A. and Serena, P. and Rossi, N. and Grellier, E. and Vacondio, F.}
@@ -1114,7 +1114,7 @@ month={Sept},}
number = {26},
journal = {Optics Express},
urlyear = {2017-11-16},
year = {2013-12-30},
date = {2013-12-30},
year = {2013},
pages = {32254},
author = {Bononi, Alberto and Beucher, Ottmar and Serena, Paolo}

View File

@@ -173,5 +173,4 @@ texinfo_documents = [
'Miscellaneous'),
]
autodoc_default_flags = ['members', 'undoc-members', 'private-members', 'show-inheritance']

BIN
docs/images/GNPy-banner.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 518 KiB

View File

@@ -51,6 +51,8 @@ Contributors in alphabetical order
+----------+------------+-----------------------+--------------------------------------+
| David | Boertjes | Ciena | dboertje@ciena.com |
+----------+------------+-----------------------+--------------------------------------+
| Diego | Landa | Facebook | dlanda@fb.com |
+----------+------------+-----------------------+--------------------------------------+
| Esther | Le Rouzic | Orange | esther.lerouzic@orange.com |
+----------+------------+-----------------------+--------------------------------------+
| Gabriele | Galimberti | Cisco | ggalimbe@cisco.com |
@@ -61,20 +63,28 @@ Contributors in alphabetical order
+----------+------------+-----------------------+--------------------------------------+
| James | Powell | Telecom Infra Project | james.powell@telecominfraproject.com |
+----------+------------+-----------------------+--------------------------------------+
| Jeanluc | Auge | Orange | jeanluc.auge@orange.com |
| Jan | Kundrát | Telecom Infra Project | jan.kundrat@telecominfraproject.com |
+----------+------------+-----------------------+--------------------------------------+
| Jonas | Martensson | RISE Research Sweden | jonas.martensson@ri.se |
| Jeanluc | Augé | Orange | jeanluc.auge@orange.com |
+----------+------------+-----------------------+--------------------------------------+
| Jonas | Mårtensson | RISE Research Sweden | jonas.martensson@ri.se |
+----------+------------+-----------------------+--------------------------------------+
| Mattia | Cantono | Politecnico di Torino | mattia.cantono@polito.it |
+----------+------------+-----------------------+--------------------------------------+
| Miguel | Garrich | University Catalunya | miquel.garrich@upct.es |
+----------+------------+-----------------------+--------------------------------------+
| Stefan | Melin | Telia Company | Stefan.Melin@teliacompany.com |
+----------+------------+-----------------------+--------------------------------------+
| Raj | Nagarajan | Lumentum | raj.nagarajan@lumentum.com |
+----------+------------+-----------------------+--------------------------------------+
| Roberts | Miculens | Lattelecom | roberts.miculens@lattelecom.lv |
+----------+------------+-----------------------+--------------------------------------+
| Shengxiang | Zhu | University of Arizona | szhu@email.arizona.edu |
+----------+------------+-----------------------+--------------------------------------+
| Stefan | Melin | Telia Company | Stefan.Melin@teliacompany.com |
+----------+------------+-----------------------+--------------------------------------+
| Vittorio | Curri | Politecnico di Torino | vittorio.curri@polito.it |
+----------+------------+-----------------------+--------------------------------------+
| Xufeng | Liu | Jabil | xufeng_liu@jabil.com |
+----------+------------+-----------------------+--------------------------------------+
--------------

View File

@@ -4,10 +4,39 @@ gnpy\.core package
Submodules
----------
gnpy\.core\.ansi_escapes module
-------------------------------
.. automodule:: gnpy.core.ansi_escapes
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.convert module
--------------------------
.. automodule:: gnpy.core.convert
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.elements module
---------------------------
.. automodule:: gnpy.core.elements
gnpy\.core\.equipment module
----------------------------
.. automodule:: gnpy.core.equipment
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.exceptions module
-----------------------------
.. automodule:: gnpy.core.exceptions
:members:
:undoc-members:
:show-inheritance:
@@ -16,30 +45,34 @@ gnpy\.core\.execute module
--------------------------
.. automodule:: gnpy.core.execute
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.info module
-----------------------
.. automodule:: gnpy.core.info
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.network module
--------------------------
.. automodule:: gnpy.core.network
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.node module
-----------------------
.. automodule:: gnpy.core.node
gnpy\.core\.request module
--------------------------
.. automodule:: gnpy.core.request
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.service_sheet module
--------------------------------
.. automodule:: gnpy.core.service_sheet
:members:
:undoc-members:
:show-inheritance:
@@ -48,23 +81,14 @@ gnpy\.core\.units module
------------------------
.. automodule:: gnpy.core.units
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.utils module
------------------------
.. automodule:: gnpy.core.utils
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: gnpy.core
:members:
:undoc-members:
:show-inheritance:

View File

@@ -12,6 +12,3 @@ Module contents
---------------
.. automodule:: gnpy
:members:
:undoc-members:
:show-inheritance:

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,160 @@
{
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
0.15017064489112,
0.14157768006701,
0.00223094639866,
-0.06701528475711,
-0.05982935510889,
-0.01028161641541,
0.02740682579566,
0.02795958961474,
0.00107516750419,
-0.02199015912898,
-0.00877407872698,
0.0453465242881,
0.1204721524288,
0.18936662479061,
0.23826109715241,
0.26956762981574,
0.27836159966498,
0.26941687604691,
0.23579878559464,
0.18147717755444,
0.1191656197655,
0.05921587102177,
0.01509526800668,
-0.01053287269681,
-0.02475397822447,
-0.01847257118928,
-0.00420121440538,
0.01584903685091,
0.0399193886097,
0.04494451423784,
0.04961788107202,
0.03378873534338,
0.01027114740367,
-0.01319618927973,
-0.04962835008375,
-0.0765630234506,
-0.10606051088777,
-0.13550774706866,
-0.15460322445561,
-0.17113588777219,
-0.18053287269681,
-0.18324644053602,
-0.19440221943049,
-0.20897508375209,
-0.23575900335007,
-0.25188965661642,
-0.22244242043552,
-0.15656302345061
],
"dgt": [
2.4553191172498,
2.44342862248888,
2.41879254989742,
2.38192717604575,
2.33147727493671,
2.26678136721453,
2.19013043016015,
2.10336369905543,
2.01414465424155,
1.92915262384742,
1.85543800978691,
1.79748596476494,
1.75428006928365,
1.72461030013125,
1.70379790088896,
1.68845480656382,
1.6761448370895,
1.66286684904577,
1.64799163036252,
1.63068023161292,
1.61073904908309,
1.58973304612691,
1.56750088631614,
1.54578500307573,
1.5242627235492,
1.50335352244996,
1.48420288841848,
1.46637521309853,
1.44977369463316,
1.43476940680732,
1.42089447397912,
1.40864903907609,
1.3966294751726,
1.38430337205545,
1.3710092503689,
1.35690844654118,
1.3405812000038,
1.32210817897091,
1.30069883494415,
1.27657903892303,
1.24931318255134,
1.21911100318577,
1.18632744096844,
1.15209185089701,
1.11575888725852,
1.07773189112355,
1.03941448941778,
1.0
]
}

View File

@@ -11,64 +11,72 @@ If not present in the "Nodes" sheet, the "Type" column will be implicitly
determined based on the topology.
"""
from sys import exit
try:
from xlrd import open_workbook
except ModuleNotFoundError:
exit('Required: `pip install xlrd`')
from argparse import ArgumentParser
from collections import namedtuple, defaultdict
PARSER = ArgumentParser()
PARSER.add_argument('workbook', nargs='?', default='meshTopologyExampleV2.xls',
help='create the mandatory columns in Eqpt sheet')
ALL_ROWS = lambda sh, start=0: (sh.row(x) for x in range(start, sh.nrows))
Shortlink = namedtuple('Link', 'src dest')
class Node:
""" Node element contains uid, list of connected nodes and eqpt type
"""
def __init__(self, uid, to_node):
self.uid = uid
self.to_node = to_node
self.eqpt = None
Shortnode = namedtuple('Node', 'nodename eqt')
def __repr__(self):
return f'uid {self.uid} \nto_node {[node for node in self.to_node]}\neqpt {self.eqpt}\n'
parser = ArgumentParser()
parser.add_argument('workbook', nargs='?', default='meshTopologyExampleV2.xls',
help = 'create the mandatory columns in Eqpt sheet ')
all_rows = lambda sh, start=0: (sh.row(x) for x in range(start, sh.nrows))
def __str__(self):
return f'uid {self.uid} \nto_node {[node for node in self.to_node]}\neqpt {self.eqpt}\n'
def read_excel(input_filename):
with open_workbook(input_filename) as wb:
""" read excel Nodes and Links sheets and create a dict of nodes with
their to_nodes and type of eqpt
"""
with open_workbook(input_filename) as wobo:
# reading Links sheet
links_sheet = wb.sheet_by_name('Links')
links = []
nodeoccuranceinlinks = []
links_by_src = defaultdict(list)
links_by_dest = defaultdict(list)
for row in all_rows(links_sheet, start=5):
links.append(Shortlink(row[0].value,row[1].value))
links_by_src[row[0].value].append(Shortnode(row[1].value,''))
links_by_dest[row[1].value].append(Shortnode(row[0].value,''))
#print(f'source {links[len(links)-1].src} dest {links[len(links)-1].dest}')
nodeoccuranceinlinks.append(row[0].value)
nodeoccuranceinlinks.append(row[1].value)
links_sheet = wobo.sheet_by_name('Links')
nodes = {}
for row in ALL_ROWS(links_sheet, start=5):
try:
nodes[row[0].value].to_node.append(row[1].value)
except KeyError:
nodes[row[0].value] = Node(row[0].value, [row[1].value])
try:
nodes[row[1].value].to_node.append(row[0].value)
except KeyError:
nodes[row[1].value] = Node(row[1].value, [row[0].value])
# reading Nodes sheet
nodes_sheet = wb.sheet_by_name('Nodes')
nodes = []
node_degree = []
for row in all_rows(nodes_sheet, start=5) :
nodes_sheet = wobo.sheet_by_name('Nodes')
for row in ALL_ROWS(nodes_sheet, start=5):
node = row[0].value
eqpt = row[6].value
try:
if eqpt == 'ILA' and len(nodes[node].to_node) != 2:
print(f'Inconsistancy ILA node with degree > 2: {node} ')
exit()
if eqpt == '' and len(nodes[node].to_node) == 2:
nodes[node].eqpt = 'ILA'
elif eqpt == '' and len(nodes[node].to_node) != 2:
nodes[node].eqpt = 'ROADM'
else:
nodes[node].eqpt = eqpt
except KeyError:
print(f'inconsistancy between nodes and links sheet: {node} is not listed in links')
exit()
return nodes
temp_eqt = row[6].value
# verify node degree to confirm eqt type
node_degree.append(nodeoccuranceinlinks.count(row[0].value))
if temp_eqt.lower() == 'ila' and nodeoccuranceinlinks.count(row[0].value) !=2 :
print(f'Inconsistancy: node {nodes[len(nodes)-1]} has degree \
{node_degree[len(nodes)-1]} and can not be an ILA ... replaced by ROADM')
temp_eqt = 'ROADM'
if temp_eqt == '' and nodeoccuranceinlinks.count(row[0].value) == 2 :
temp_eqt = 'ILA'
if temp_eqt == '' and nodeoccuranceinlinks.count(row[0].value) != 2 :
temp_eqt = 'ROADM'
# print(f'node {nodes[len(nodes)-1]} eqt {temp_eqt}')
nodes.append(Shortnode(row[0].value,temp_eqt))
# print(len(nodes)-1)
print(f'reading: node {nodes[len(nodes)-1].nodename} eqpt {temp_eqt}')
return links,nodes, links_by_src , links_by_dest
def create_eqt_template(links,nodes, links_by_src , links_by_dest, input_filename):
def create_eqt_template(nodes, input_filename):
""" writes list of node A node Z corresponding to Nodes and Links sheets in order
to help user populating Eqpt
"""
output_filename = f'{input_filename[:-4]}_eqpt_sheet.txt'
with open(output_filename, 'w', encoding='utf-8') as my_file:
# print header similar to excel
@@ -77,27 +85,17 @@ def create_eqt_template(links,nodes, links_by_src , links_by_dest, input_filenam
\nNode A \tNode Z \tamp type \tatt_in \tamp gain \ttilt \tatt_out\
amp type \tatt_in \tamp gain \ttilt \tatt_out\n')
tab = []
temp = []
i = 0
for lk in links:
if [e for n,e in nodes if n==lk.src][0] != 'FUSED' :
temp = [lk.src , lk.dest]
tab.append(temp)
my_file.write(f'{temp[0]}\t{temp[1]}\n')
for n in nodes :
if n.eqt.lower() == 'roadm' :
for src in links_by_dest[n.nodename] :
temp = [n.nodename , src.nodename]
tab.append(temp)
# print(temp)
my_file.write(f'{temp[0]}\t{temp[1]}\n')
i = i + 1
for node in nodes.values():
if node.eqpt == 'ILA':
my_file.write(f'{node.uid}\t{node.to_node[0]}\n')
if node.eqpt == 'ROADM':
for to_node in node.to_node:
my_file.write(f'{node.uid}\t{to_node}\n')
print(f'File {output_filename} successfully created with Node A - Node Z ' +
' entries for Eqpt sheet in excel file.')
' entries for Eqpt sheet in excel file.')
if __name__ == '__main__':
args = parser.parse_args()
input_filename = args.workbook
links,nodes,links_by_src, links_by_dest = read_excel(input_filename)
create_eqt_template(links,nodes, links_by_src , links_by_dest , input_filename)
ARGS = PARSER.parse_args()
create_eqt_template(read_excel(ARGS.workbook), ARGS.workbook)

View File

@@ -1,5 +1,6 @@
{
"nf_ripple": "NFR0_96.txt",
"gain_ripple": "DFG0_96.txt",
"dgt": "DGT_96.txt"
"nf_ripple": "NFR_96.txt",
"gain_ripple": "DFG_96.txt",
"dgt": "DGT_96.txt",
"nf_fit_coeff": "pNFfit3.txt"
}

View File

@@ -1,8 +0,0 @@
-1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01
-2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02
-1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01
-2.0500000000000000e+01 -2.0489473680000000e+01 -2.0478947370000000e+01 -2.0468421050000000e+01 -2.0457894740000000e+01 -2.0447368420000000e+01 -2.0436842110000001e+01 -2.0426315790000000e+01 -2.0415789470000000e+01 -2.0405263160000001e+01 -2.0394736840000000e+01 -2.0384210530000001e+01 -2.0373684210000000e+01 -2.0363157890000000e+01 -2.0352631580000001e+01 -2.0342105260000000e+01 -2.0331578950000001e+01 -2.0321052630000001e+01 -2.0310526320000001e+01 -2.0300000000000001e+01 -2.0289473680000000e+01 -2.0278947370000001e+01 -2.0268421050000001e+01 -2.0257894740000001e+01 -2.0247368420000001e+01 -2.0236842110000001e+01 -2.0226315790000001e+01 -2.0215789470000001e+01 -2.0205263160000001e+01 -2.0194736840000001e+01 -2.0184210530000001e+01 -2.0173684210000001e+01 -2.0163157890000001e+01 -2.0152631580000001e+01 -2.0142105260000001e+01 -2.0131578950000002e+01 -2.0121052630000001e+01 -2.0110526320000002e+01 -2.0100000000000001e+01 -2.0089473680000001e+01 -2.0078947370000002e+01 -2.0068421050000001e+01 -2.0057894739999998e+01 -2.0047368420000002e+01 -2.0036842109999998e+01 -2.0026315790000002e+01 -2.0015789470000001e+01 -2.0005263159999998e+01 -1.9994736840000002e+01 -1.9984210529999999e+01 -1.9973684209999998e+01 -1.9963157890000002e+01 -1.9952631579999998e+01 -1.9942105260000002e+01 -1.9931578949999999e+01 -1.9921052629999998e+01 -1.9910526319999999e+01 -1.9899999999999999e+01 -1.9889473679999998e+01 -1.9878947369999999e+01 -1.9868421049999998e+01 -1.9857894739999999e+01 -1.9847368419999999e+01 -1.9836842109999999e+01 -1.9826315789999999e+01 -1.9815789469999999e+01 -1.9805263159999999e+01 -1.9794736839999999e+01 -1.9784210529999999e+01 -1.9773684209999999e+01 -1.9763157889999999e+01 -1.9752631579999999e+01 -1.9742105259999999e+01 -1.9731578949999999e+01 -1.9721052629999999e+01 -1.9710526320000000e+01 -1.9699999999999999e+01 -1.9689473679999999e+01 -1.9678947369999999e+01 -1.9668421049999999e+01 -1.9657894740000000e+01 -1.9647368419999999e+01 -1.9636842110000000e+01 -1.9626315790000000e+01 -1.9615789469999999e+01 -1.9605263160000000e+01 -1.9594736839999999e+01 -1.9584210530000000e+01 -1.9573684210000000e+01 -1.9563157889999999e+01 -1.9552631580000000e+01 -1.9542105260000000e+01 -1.9531578950000000e+01 -1.9521052630000000e+01 -1.9510526320000000e+01 -1.9500000000000000e+01
-2.0500000000000000e+01 -2.0489473680000000e+01 -2.0478947370000000e+01 -2.0468421050000000e+01 -2.0457894740000000e+01 -2.0447368420000000e+01 -2.0436842110000001e+01 -2.0426315790000000e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.9573684210000000e+01 -1.9563157889999999e+01 -1.9552631580000000e+01 -1.9542105260000000e+01 -1.9531578950000000e+01 -1.9521052630000000e+01 -1.9510526320000000e+01 -1.9500000000000000e+01
-1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01
-1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01
-1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02

View File

@@ -1,8 +0,0 @@
7.0000000000000000e+01 1.1700000000000000e+02 1.0800000000000000e+02 1.0800000000000000e+02 3.2000000000000000e+01 7.0000000000000000e+01 1.0800000000000000e+02 9.7000000000000000e+01 1.1600000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
7.9000000000000000e+01 1.1000000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 7.1000000000000000e+01 1.1400000000000000e+02 1.1100000000000000e+02 1.1700000000000000e+02 1.1200000000000000e+02 3.2000000000000000e+01 6.6000000000000000e+01 1.0800000000000000e+02 1.1700000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01
7.9000000000000000e+01 1.1000000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 7.1000000000000000e+01 1.1400000000000000e+02 1.1100000000000000e+02 1.1700000000000000e+02 1.1200000000000000e+02 3.2000000000000000e+01 8.2000000000000000e+01 1.0100000000000000e+02 1.0000000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01
7.0000000000000000e+01 1.1700000000000000e+02 1.0800000000000000e+02 1.0800000000000000e+02 3.2000000000000000e+01 1.1900000000000000e+02 3.2000000000000000e+01 8.3000000000000000e+01 8.2000000000000000e+01 8.3000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
6.6000000000000000e+01 1.1100000000000000e+02 1.1600000000000000e+02 1.0400000000000000e+02 3.2000000000000000e+01 6.9000000000000000e+01 1.1000000000000000e+02 1.0000000000000000e+02 1.1500000000000000e+02 3.2000000000000000e+01 1.1900000000000000e+02 3.2000000000000000e+01 8.3000000000000000e+01 8.2000000000000000e+01 8.3000000000000000e+01
1.0400000000000000e+02 1.0100000000000000e+02 9.7000000000000000e+01 1.1800000000000000e+02 1.2100000000000000e+02 3.2000000000000000e+01 9.8000000000000000e+01 1.0800000000000000e+02 1.1700000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
1.0400000000000000e+02 1.0100000000000000e+02 9.7000000000000000e+01 1.1800000000000000e+02 1.2100000000000000e+02 3.2000000000000000e+01 1.1400000000000000e+02 1.0100000000000000e+02 1.0000000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
1.1900000000000000e+02 1.1100000000000000e+02 1.1400000000000000e+02 1.1500000000000000e+02 1.1600000000000000e+02 3.2000000000000000e+01 9.9000000000000000e+01 9.7000000000000000e+01 1.1500000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01

View File

@@ -1,301 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 27 12:32:04 2017
@author: briantaylor
"""
import numpy as np
from numpy import polyfit, polyval, mean
from utilities import lin2db, db2lin, itufs, freq2wavelength
import matplotlib.pyplot as plt
from scipy.constants import h
def noise_profile(nf, gain, ffs, df):
""" noise_profile(nf, gain, ffs, df) computes amplifier ase
:param nf: Noise figure in dB
:param gain: Actual gain calculated for the EDFA in dB units
:param ffs: A numpy array of frequencies
:param df: the reference bw in THz
:type nf: numpy.ndarray
:type gain: numpy.ndarray
:type ffs: numpy.ndarray
:type df: float
:return: the asepower in dBm
:rtype: numpy.ndarray
ASE POWER USING PER CHANNEL GAIN PROFILE
INPUTS:
NF_dB - Noise figure in dB, vector of length number of channels or
spectral slices
G_dB - Actual gain calculated for the EDFA, vector of length number of
channels or spectral slices
ffs - Center frequency grid of the channels or spectral slices in THz,
vector of length number of channels or spectral slices
dF - width of each channel or spectral slice in THz,
vector of length number of channels or spectral slices
OUTPUT:
ase_dBm - ase in dBm per channel or spectral slice
NOTE: the output is the total ASE in the channel or spectral slice. For
50GHz channels the ASE BW is effectively 0.4nm. To get to noise power in
0.1nm, subtract 6dB.
ONSR is usually quoted as channel power divided by
the ASE power in 0.1nm RBW, regardless of the width of the actual
channel. This is a historical convention from the days when optical
signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
resolution of the OSAs that were used to measure spectral power which
were set to 0.1nm resolution for convenience. Moving forward into
flexible grid and high baud rate signals, it may be convenient to begin
quoting power spectral density in the same BW for both signal and ASE,
e.g. 12.5GHz."""
h_mWThz = 1e-3 * h * (1e14)**2
nf_lin = db2lin(nf)
g_lin = db2lin(gain)
ase = h_mWThz * df * ffs * (nf_lin * g_lin - 1)
asedb = lin2db(ase)
return asedb
def gain_profile(dfg, dgt, Pin, gp, gtp):
"""
:param dfg: design flat gain
:param dgt: design gain tilt
:param Pin: channing input power profile
:param gp: Average gain setpoint in dB units
:param gtp: gain tilt setting
:type dfg: numpy.ndarray
:type dgt: numpy.ndarray
:type Pin: numpy.ndarray
:type gp: float
:type gtp: float
:return: gain profile in dBm
:rtype: numpy.ndarray
AMPLIFICATION USING INPUT PROFILE
INPUTS:
DFG - vector of length number of channels or spectral slices
DGT - vector of length number of channels or spectral slices
Pin - input powers vector of length number of channels or
spectral slices
Gp - provisioned gain length 1
GTp - provisioned tilt length 1
OUTPUT:
amp gain per channel or spectral slice
NOTE: there is no checking done for violations of the total output power
capability of the amp.
Ported from Matlab version written by David Boerges at Ciena.
Based on:
R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
gain
tilt technique", Journal of Lightwave Technology, Vol. 18, Iss. 3,
Pp. 343-347, 2000.
"""
err_tolerance = 1.0e-11
simple_opt = True
# TODO make all values linear unit and convert to dB units as needed within
# this function.
nchan = list(range(len(Pin)))
# TODO find a way to use these or lose them. Primarily we should have a
# way to determine if exceeding the gain or output power of the amp
tot_in_power_db = lin2db(np.sum(db2lin(Pin)))
avg_gain_db = lin2db(mean(db2lin(dfg)))
# Linear fit to get the
p = polyfit(nchan, dgt, 1)
dgt_slope = p[0]
# Calculate the target slope- Currently assumes equal spaced channels
# TODO make it so that supports arbitrary channel spacing.
targ_slope = gtp / (len(nchan) - 1)
# 1st estimate of DGT scaling
dgts1 = targ_slope / dgt_slope
# when simple_opt is true code makes 2 attempts to compute gain and
# the internal voa value. This is currently here to provide direct
# comparison with original Matlab code. Will be removed.
# TODO replace with loop
if simple_opt:
# 1st estimate of Er gain & voa loss
g1st = dfg + dgt * dgts1
voa = lin2db(mean(db2lin(g1st))) - gp
# 2nd estimate of Amp ch gain using the channel input profile
g2nd = g1st - voa
pout_db = lin2db(np.sum(db2lin(Pin + g2nd)))
dgts2 = gp - (pout_db - tot_in_power_db)
# Center estimate of amp ch gain
xcent = dgts2
gcent = g1st - voa + dgt * xcent
pout_db = lin2db(np.sum(db2lin(Pin + gcent)))
gavg_cent = pout_db - tot_in_power_db
# Lower estimate of Amp ch gain
deltax = np.max(g1st) - np.min(g1st)
xlow = dgts2 - deltax
glow = g1st - voa + xlow * dgt
pout_db = lin2db(np.sum(db2lin(Pin + glow)))
gavg_low = pout_db - tot_in_power_db
# Upper gain estimate
xhigh = dgts2 + deltax
ghigh = g1st - voa + xhigh * dgt
pout_db = lin2db(np.sum(db2lin(Pin + ghigh)))
gavg_high = pout_db - tot_in_power_db
# compute slope
slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
if np.abs(gp - gavg_cent) <= err_tolerance:
dgts3 = xcent
elif gp < gavg_cent:
dgts3 = xcent - (gavg_cent - gp) / slope1
else:
dgts3 = xcent + (-gavg_cent + gp) / slope2
gprofile = g1st - voa + dgt * dgts3
else:
gprofile = None
return gprofile
if __name__ == '__main__':
plt.close('all')
fc = itufs(0.05)
lc = freq2wavelength(fc) / 1000
nchan = list(range(len(lc)))
df = np.array([0.05] * (nchan[-1] + 1))
# TODO remove path dependence
path = ''
"""
DFG_96: Design flat gain at each wavelength in the 96 channel 50GHz ITU
grid in dB. This can be experimentally determined by measuring the gain
at each wavelength using a full, flat channel (or ASE) load at the input.
The amplifier should be set to its maximum flat gain (tilt = 0dB). This
measurement captures the ripple of the amplifier. If the amplifier was
designed to be mimimum ripple at some other tilt value, then the ripple
reflected in this measurement will not be that minimum. However, when
the DGT gets applied through the provisioning of tilt, the model should
accurately reproduce the expected ripple at that tilt value. One could
also do the measurement at some expected tilt value and back-calculate
this vector using the DGT method. Alternatively, one could re-write the
algorithm to accept a nominal tilt and a tiled version of this vector.
"""
dfg_96 = np.loadtxt(path + 'DFG_96.txt')
"""maximum gain for flat operation - the amp in the data file was designed
for 25dB gain and has an internal VOA for setting the external gain
"""
avg_dfg = dfg_96.mean()
"""
DGT_96: This is the so-called Dynamic Gain Tilt of the EDFA in dB/dB. It
is the change in gain at each wavelength corresponding to a 1dB change at
the longest wavelength supported. The value can be obtained
experimentally or through analysis of the cross sections or Giles
parameters of the Er fibre. This is experimentally measured by changing
the gain of the amplifier above the maximum flat gain while not changing
the internal VOA (i.e. the mid-stage VOA is set to minimum and does not
change during the measurement). Note that the measurement can change the
gain by an arbitrary amount and divide by the gain change (in dB) which
is measured at the reference wavelength (the red end of the band).
"""
dgt_96 = np.loadtxt(path + 'DGT_96.txt')
"""
pNFfit3: Cubic polynomial fit coefficients to noise figure in dB
averaged across wavelength as a function of gain change from design flat:
NFavg = pNFfit3(1)*dG^3 + pNFfit3(2)*dG^2 pNFfit3(3)*dG + pNFfit3(4)
where
dG = GainTarget - average(DFG_96)
note that dG will normally be a negative value.
"""
nf_fitco = np.loadtxt(path + 'pNFfit3.txt')
"""NFR_96: Noise figure ripple in dB away from the average noise figure
across the band. This captures the wavelength dependence of the NF. To
calculate the NF across channels, one uses the cubic fit coefficients
with the external gain target to get the average nosie figure, NFavg and
then adds this to NFR_96:
NF_96 = NFR_96 + NFavg
"""
nf_ripple = np.loadtxt(path + 'NFR_96.txt')
# This is an example to set the provisionable gain and gain-tilt values
# Tilt is in units of dB/THz
gain_target = 20.0
tilt_target = -0.7
# calculate the NF for the EDFA at this gain setting
dg = gain_target - avg_dfg
nf_avg = polyval(nf_fitco, dg)
nf_96 = nf_ripple + nf_avg
# get the input power profiles to show
pch2d = np.loadtxt(path + 'Pchan2D.txt')
# Load legend and assemble legend text
pch2d_legend_data = np.loadtxt(path + 'Pchan2DLegend.txt')
pch2d_legend = []
for ea in pch2d_legend_data:
s = ''.join([chr(xx) for xx in ea.astype(dtype=int)]).strip()
pch2d_legend.append(s)
# assemble plot
axis_font = {'fontname': 'Arial', 'size': '16', 'fontweight': 'bold'}
title_font = {'fontname': 'Arial', 'size': '17', 'fontweight': 'bold'}
tic_font = {'fontname': 'Arial', 'size': '12'}
plt.rcParams["font.family"] = "Arial"
plt.figure()
plt.plot(nchan, pch2d.T, '.-', lw=2)
plt.xlabel('Channel Number', **axis_font)
plt.ylabel('Channel Power [dBm]', **axis_font)
plt.title('Input Power Profiles for Different Channel Loading',
**title_font)
plt.legend(pch2d_legend, loc=5)
plt.grid()
plt.ylim((-100, -10))
plt.xlim((0, 110))
plt.xticks(np.arange(0, 100, 10), **tic_font)
plt.yticks(np.arange(-110, -10, 10), **tic_font)
plt.figure()
ea = pch2d[1, :]
for ea in pch2d:
chgain = gain_profile(dfg_96, dgt_96, ea, gain_target, tilt_target)
pase = noise_profile(nf_96, chgain, fc, df)
pout = lin2db(db2lin(ea + chgain) + db2lin(pase))
plt.plot(nchan, pout, '.-', lw=2)
plt.title('Output Power with ASE for Different Channel Loading',
**title_font)
plt.xlabel('Channel Number', **axis_font)
plt.ylabel('Channel Power [dBm]', **axis_font)
plt.grid()
plt.ylim((-50, 10))
plt.xlim((0, 100))
plt.xticks(np.arange(0, 100, 10), **tic_font)
plt.yticks(np.arange(-50, 10, 10), **tic_font)
plt.legend(pch2d_legend, loc=5)
plt.show()

View File

@@ -0,0 +1,300 @@
*********************************************
Amplifier models and configuration
*********************************************
1. Equipment configuration description
#######################################
Equipment description defines equipment types and parameters.
It takes place in the default **eqpt_config.json** file.
By default **transmission_main_example.py** uses **eqpt_config.json** file and that
can be changed with **-e** or **--equipment** command line parameter.
2. Amplifier parameters and subtypes
#######################################
Several amplifiers can be used by GNpy, so they are defined as an array of equipment parameters in **eqpt_config.json** file.
- *"type_variety"*:
Each amplifier is identified by its unique *"type_variety"*, which is used in the topology files input to reference a specific amplifier. It is a user free defined id.
For each amplifier *type_variety*, specific parameters are describing its attributes and performance:
- *"type_def"*:
Sets the amplifier model that the simulation will use to calculate the ase noise contribution. 5 models are defined with reserved words:
- *"advanced_model"*
- *"variable_gain"*
- *"fixed_gain"*
- *"dual_stage"*
- *"openroadm"*
*see next section for a full description of these models*
- *"advanced_config_from_json"*:
**This parameter is only applicable to the _"advanced_model"_ model**
json file name describing:
- nf_fit_coeff
- f_min/max
- gain_ripple
- nf_ripple
- dgt
*see next section for a full description*
- *"gain_flatmax"*:
amplifier maximum gain in dB before its extended gain range: flat or nominal tilt output.
If gain > gain_flatmax, the amplifier will tilt, based on its dgt function
If gain > gain_flatmax + target_extended_gain, the amplifier output power is reduced to not exceed the extended gain range.
- *"gain_min"*:
amplifier minimum gain in dB.
If gain < gain_min, the amplifier input is automatically padded, which results in
NF += gain_min - gain
- *"p_max"*:
amplifier max output power, full load
Total signal output power will not be allowed beyond this value
- *"nf_min/max"*:
**These parameters are only applicable to the _"variable_gain"_ model**
min & max NF values in dB
NF_min is the amplifier NF @ gain_max
NF_max is the amplifier NF @ gain_min
- *"nf_coef"*:
**This parameter is only applicable to the *"openroadm"* model**
[a, b, c, d] 3rd order polynomial coefficients list to define the incremental OSNR vs Pin
Incremental OSNR is the amplifier OSNR contribution
Pin is the amplifier channel input power defined in a 50GHz bandwidth
Incremental OSNR = a*Pin³ + b*Pin² + c*Pin + d
- *"preamp_variety"*:
**This parameter is only applicable to the _"dual_stage"_ model**
1st stage type_variety
- *"booster_variety"*:
**This parameter is only applicable to the *"dual_stage"* model**
2nd stage type_variety
- *"out_voa_auto"*: true/false
**power_mode only**
**This parameter is only applicable to the *"advanced_model"* and *"variable_gain"* models**
If "out_voa_auto": true, auto_design will chose the output_VOA value that maximizes the amplifier gain within its power capability and therefore minimizes its NF.
- *"allowed_for_design"*: true/false
**auto_design only**
Tells auto_design if this amplifier can be picked for the design (deactivates unwanted amplifiers)
It does not prevent the use of an amplifier if it is placed in the topology input.
.. code-block:: json
{"Edfa": [{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}
]}
3. Amplifier models
#######################################
In an opensource and multi-vendor environnement, it is needed to support different use cases and context. Therefore several models are supported for amplifiers.
5 types of EDFA definition are possible and referenced by the *"type_def"* parameter with the following reserved words:
- *"advanced_model"*
This model is refered as a whitebox model because of the detailed level of knowledge that is required. The amplifier NF model and ripple definition are described by a json file referenced with *"advanced_config_from_json"*: json filename. This json file contains:
- nf_fit_coeff: [a,b,c,d]
3rd order polynomial NF = f(-dg) coeficients list
dg = gain - gain_max
- f_min/max: amplifier frequency range in Hz
- gain_ripple : [...]
amplifier gain ripple excursion comb list in dB across the frequency range.
- nf_ripple : [...]
amplifier nf ripple excursion comb list in dB across the frequency range.
- dgt : [...]
amplifier dynamic gain tilt comb list across the frequency range.
*See next section for the generation of this json file*
.. code-block:: json-object
"Edfa":[{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}
]
- *"variable_gain"*
This model is refered as an operator model because a lower level of knowledge is required. A full polynomial description of the NF cross the gain range is not required. Instead, NF_min and NF_max values are required and used by the code to model a dual stage amplifier with an internal mid stage VOA. NF_min and NF_max values are typically available from equipment suppliers data-sheet.
There is a default JSON file ”default_edfa_config.json”* to enforce 0 tilt and ripple values because GNpy core algorithm is a multi-carrier propogation.
- gain_ripple =[0,...,0]
- nf_ripple = [0,...,0]
- dgt = [...] generic dgt comb
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}
]
- *"fixed_gain"*
This model is also an operator model with a single NF value that emulates basic single coil amplifiers without internal VOA.
if gain_min < gain < gain_max, NF == nf0
if gain < gain_min, the amplifier input is automatically padded, which results in
NF += gain_min - gain
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
}
]
- *"openroadm"*
This model is a black box model replicating OpenRoadm MSA spec for ILA.
.. code-block:: json-object
"Edfa":[{
"type_variety": "low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 12,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
}
]
- *"dual_stage"*
This model allows the cascade (pre-defined combination) of any 2 amplifiers already described in the eqpt_config.json library.
- preamp_variety defines the 1st stge type variety
- booster variety defines the 2nd stage type variety
Both preamp and booster variety must exist in the eqpt libray
The resulting NF is the sum of the 2 amplifiers
The preamp is operated to its maximum gain
- gain_min indicates to auto_design when this dual_stage should be used
But unlike other models the 1st stage input will not be padded: it is always operated to its maximu gain and min NF. Therefore if gain adaptation and padding is needed it will be performed by the 2nd stage.
.. code-block:: json
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
}
4. advanced_config_from_json
#######################################
The build_oa_json.py library in gnpy/examples/edfa_model can be used to build the json file required for the amplifier advanced_model type_def:
Update an existing json file with all the 96ch txt files for a given amplifier type
amplifier type 'OA_type1' is hard coded but can be modified and other types added
returns an updated amplifier json file: output_json_file_name = 'edfa_config.json'
amplifier file names
Convert a set of amplifier files + input json definiton file into a valid edfa_json_file:
nf_fit_coeff: NF 3rd order polynomial coefficients txt file
nf = f(dg) with dg = gain_operational - gain_max
nf_ripple: NF ripple excursion txt file
gain_ripple: gain ripple txt file
dgt: dynamic gain txt file
input json file in argument (defult = 'OA.json')
the json input file should have the following fields:
.. code-block:: json
{
"nf_fit_coeff": "nf_filename.txt",
"nf_ripple": "nf_ripple_filename.txt",
"gain_ripple": "DFG_filename.txt",
"dgt": "DGT_filename.txt"
}

View File

@@ -4,7 +4,6 @@
Created on Tue Jan 30 12:32:00 2018
@author: jeanluc-auge
@comments about amplifier input files from Brian Taylor & Dave Boertjes
update an existing json file with all the 96ch txt files for a given amplifier type
amplifier type 'OA_type1' is hard coded but can be modified and other types added
@@ -18,46 +17,29 @@ from gnpy.core.utils import lin2db, db2lin
"""amplifier file names
convert a set of amplifier files + input json definiton file into a valid edfa_json_file:
nf_fit_coeff: NF polynomial coefficients txt file (optional)
nf_fit_coeff: NF 3rd order polynomial coefficients txt file
nf = f(dg)
with dg = gain_operational - gain_max
nf_ripple: NF ripple excursion txt file
dfg: gain txt file
gain_ripple: gain ripple txt file
dgt: dynamic gain txt file
input json file in argument (defult = 'OA.json')
the json input file should have the following fields:
{
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_fit_coeff": "pNFfit3.txt",
"nf_ripple": "NFR_96.txt",
"dfg": "DFG_96.txt",
"dgt": "DGT_96.txt",
"nf_model":
{
"enabled": true,
"nf_min": 5.8,
"nf_max": 10
}
"nf_fit_coeff": "nf_filename.txt",
"nf_ripple": "nf_ripple_filename.txt",
"gain_ripple": "DFG_filename.txt",
"dgt": "DGT_filename.txt",
}
gain_flat = max flat gain (dB)
gain_min = min gain (dB) : will consider an input VOA if below (TBD vs throwing an exception)
p_max = max power (dBm)
nf_fit = boolean (True, False) :
if False nf_fit_coeff are ignored and nf_model fields are used
"""
input_json_file_name = "OA.json" #default path
output_json_file_name = "default_edfa_config.json"
param_field ="params"
gain_min_field = "gain_min"
gain_max_field = "gain_flatmax"
gain_ripple_field = "dfg"
gain_ripple_field = "gain_ripple"
nf_ripple_field = "nf_ripple"
nf_fit_coeff = "nf_fit_coeff"
nf_model_field = "nf_model"
nf_model_enabled_field = "enabled"
nf_min_field ="nf_min"
nf_max_field = "nf_max"
def read_file(field, file_name):
"""read and format the 96 channels txt files describing the amplifier NF and ripple
@@ -76,6 +58,7 @@ def read_file(field, file_name):
#consider ripple excursion only to avoid redundant information
#because the max flat_gain is already given by the 'gain_flat' field in json
#remove the mean component
print(file_name, ', mean value =', data.mean(), ' is substracted')
data = data - data.mean()
data = data.tolist()
return data

View File

@@ -1,313 +0,0 @@
{
"params": {
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"nf_ripple": [
-0.3110761646066259,
-0.3110761646066259,
-0.31110274831665313,
-0.31419329378173544,
-0.3172854168606314,
-0.32037911876162584,
-0.3233255190215882,
-0.31624321721895354,
-0.30915729645781326,
-0.30206775396360075,
-0.2949045115165272,
-0.26632156113294336,
-0.23772399031437283,
-0.20911178784023846,
-0.18048410390821285,
-0.14379944379052215,
-0.10709599992470213,
-0.07037375788020579,
-0.03372858157230583,
-0.015660302006048,
0.0024172385953583004,
0.020504047353947653,
0.03860013139908377,
0.05670549786742816,
0.07482015390297145,
0.0838762040768461,
0.09284481475528361,
0.1018180306253394,
0.11079585523492333,
0.1020395478432815,
0.09310160456603413,
0.08415906712621996,
0.07521193198077789,
0.0676340601339394,
0.06005437964543287,
0.052470799141237305,
0.044883315610536455,
0.037679759069084225,
0.03047647598902483,
0.02326948274513522,
0.01605877647020772,
0.021248462316134083,
0.02657315875107553,
0.03190060058247842,
0.03723078993416436,
0.04256372893215024,
0.047899419704645264,
0.03915515813685565,
0.030289222542492025,
0.021418708618354456,
0.012573926129294415,
0.006240488799898697,
-9.622162373026585e-05,
-0.006436207679519103,
-0.012779471908040341,
-0.02038153550619876,
-0.027999803010447587,
-0.035622012697103154,
-0.043236398934156144,
-0.04493583574805963,
-0.04663615264317309,
-0.048337350303318156,
-0.050039429413028365,
-0.051742390657545205,
-0.05342028484370278,
-0.05254242298580185,
-0.05166410580536087,
-0.05078533294804249,
-0.04990610405914272,
-0.05409792133358102,
-0.05832916277634124,
-0.06256260169582961,
-0.06660356886269536,
-0.04779792991567815,
-0.028982516728038848,
-0.010157321677553965,
0.00861320615127981,
0.01913736978785662,
0.029667009055877668,
0.04020212822983975,
0.050742731588695494,
0.061288823415841555,
0.07184040799914815,
0.1043252636301016,
0.13687829834471027,
0.1694483010211072,
0.202035284929368,
0.23624619427167134,
0.27048596623174515,
0.30474360397422756,
0.3390191214858807,
0.36358851509924695,
0.38814205928193013,
0.41270842850729195,
0.4372876328262819,
0.4372876328262819
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.017807767853702,
1.0
],
"nf_model": {
"enabled": true,
"nf1": 5.727887800964238,
"nf2": 7.727887800964238,
"delta_p": 5.238350271545567
},
"gain_ripple": [
0.1359703369791596,
0.11822862697916037,
0.09542181697916163,
0.06245819697916133,
0.02602813697916062,
-0.0036199830208403228,
-0.018326963020840026,
-0.0246928330208398,
-0.016792253020838643,
-0.0028138630208403015,
0.017572956979162058,
0.038328296979159404,
0.054956336979159914,
0.0670723869791594,
0.07091459697916136,
0.07094413697916124,
0.07114372697916238,
0.07533675697916209,
0.08731066697916035,
0.10313984697916112,
0.12276252697916235,
0.14239527697916188,
0.15945681697916214,
0.1739275269791598,
0.1767381569791624,
0.17037189697916233,
0.15216302697916007,
0.13114358697916018,
0.10802383697916085,
0.08548825697916129,
0.06916723697916183,
0.05848224697916038,
0.05447361697916264,
0.05154489697916276,
0.04946107697915991,
0.04717897697916129,
0.04551704697916037,
0.04467697697916151,
0.04072968697916224,
0.03285456697916089,
0.023488786979161347,
0.01659282697915998,
0.013321846979160057,
0.011234826979162449,
0.01030063697916006,
0.00936596697916059,
0.00874012697916271,
0.00842583697916055,
0.006965146979162284,
0.0040435869791615175,
0.0007104669791608842,
-0.0015763130208377163,
-0.006936193020838033,
-0.016475303020840215,
-0.028748483020837767,
-0.039618433020837784,
-0.051112303020840244,
-0.06468462302083822,
-0.07868024302083754,
-0.09101254302083817,
-0.10103437302083762,
-0.11041488302083735,
-0.11916081302083725,
-0.12789859302083784,
-0.1353792530208402,
-0.14160178302083892,
-0.1455411330208385,
-0.1484450830208388,
-0.14823350302084037,
-0.14591937302083835,
-0.1409032730208395,
-0.13525493302083902,
-0.1279646530208396,
-0.11963431302083904,
-0.11089282302084058,
-0.1027863830208382,
-0.09717347302083823,
-0.09343261302083761,
-0.0913487130208388,
-0.08906007302083907,
-0.0865687230208394,
-0.08407607302083875,
-0.07844600302084004,
-0.06968090302083851,
-0.05947139302083926,
-0.05095282302083959,
-0.042428283020839785,
-0.03218106302083967,
-0.01819858302084043,
-0.0021726530208390216,
0.01393231697916164,
0.028098946979159933,
0.040326236979161934,
0.05257029697916238,
0.06479749697916048,
0.07704745697916238
]
}
}

View File

@@ -1,12 +1,22 @@
{ "Edfa":[{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
},
}, {
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
@@ -37,6 +47,17 @@
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
@@ -59,6 +80,17 @@
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
@@ -66,7 +98,50 @@
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
}
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
],
"Fiber":[{
"type_variety": "SSMF",
@@ -84,9 +159,41 @@
"gamma": 0.000843
}
],
"Spans":[{
"RamanFiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"raman_efficiency": {
"cr":[
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
2E-07, 1E-07
],
"frequency_offset":[
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
41.5e12, 42e12
]
}
}
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"delta_power_range_db": [-2,3,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
@@ -96,10 +203,13 @@
"con_out": 0
}
],
"Roadms":[{
"gain_mode_default_loss": 20,
"power_mode_pout_target": -20,
"add_drop_osnr": 38
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
@@ -107,10 +217,10 @@
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,0.5],
"power_range_db": [0,0,1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 0
"sys_margins": 2
}],
"Transceiver":[
{

View File

@@ -623,31 +623,469 @@
"con_in": null,
"con_out": null
}
},
{
"uid": "east edfa in Lannion_CAS to Corlay",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Corlay to Loudeac",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 2.0,
"longitude": 1.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Loudeac to Lorient_KMA",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 2.0,
"longitude": 2.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Lannion_CAS to Stbrieuc",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Stbrieuc to Rennes_STA",
"metadata": {
"location": {
"city": "Stbrieuc",
"region": "RLD",
"latitude": 1.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Lannion_CAS to Morlaix",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Lorient_KMA to Loudeac",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Vannes_KBE to Lorient_KMA",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 2.0,
"longitude": 4.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Rennes_STA to Stbrieuc",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Brest_KLA to Morlaix",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 4.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Lannion_CAS to Corlay",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Corlay to Loudeac",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 2.0,
"longitude": 1.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Loudeac to Lorient_KMA",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 2.0,
"longitude": 2.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Lorient_KMA to Vannes_KBE",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Lannion_CAS to Stbrieuc",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Stbrieuc to Rennes_STA",
"metadata": {
"location": {
"city": "Stbrieuc",
"region": "RLD",
"latitude": 1.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Lannion_CAS to Morlaix",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Lorient_KMA to Loudeac",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Vannes_KBE to Lorient_KMA",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 2.0,
"longitude": 4.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Rennes_STA to Stbrieuc",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "west edfa in Brest_KLA to Morlaix",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 4.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": null,
"delta_p": 1.0,
"tilt_target": 0,
"out_voa": null
}
},
{
"uid": "east edfa in Lorient_KMA to Vannes_KBE",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Fused",
"params": {
"loss": 0
}
}
],
"connections": [
{
"from_node": "roadm Lannion_CAS",
"to_node": "east edfa in Lannion_CAS to Corlay"
},
{
"from_node": "east edfa in Lannion_CAS to Corlay",
"to_node": "fiber (Lannion_CAS → Corlay)-F061"
},
{
"from_node": "fiber (Corlay → Lannion_CAS)-F061",
"to_node": "west edfa in Lannion_CAS to Corlay"
},
{
"from_node": "west edfa in Lannion_CAS to Corlay",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "east edfa in Lannion_CAS to Stbrieuc"
},
{
"from_node": "east edfa in Lannion_CAS to Stbrieuc",
"to_node": "fiber (Lannion_CAS → Stbrieuc)-F056"
},
{
"from_node": "fiber (Stbrieuc → Lannion_CAS)-F056",
"to_node": "west edfa in Lannion_CAS to Stbrieuc"
},
{
"from_node": "west edfa in Lannion_CAS to Stbrieuc",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "east edfa in Lannion_CAS to Morlaix"
},
{
"from_node": "east edfa in Lannion_CAS to Morlaix",
"to_node": "fiber (Lannion_CAS → Morlaix)-F059"
},
{
"from_node": "fiber (Morlaix → Lannion_CAS)-F059",
"to_node": "west edfa in Lannion_CAS to Morlaix"
},
{
"from_node": "west edfa in Lannion_CAS to Morlaix",
"to_node": "roadm Lannion_CAS"
},
{
@@ -684,18 +1122,34 @@
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "east edfa in Lorient_KMA to Loudeac"
},
{
"from_node": "east edfa in Lorient_KMA to Loudeac",
"to_node": "fiber (Lorient_KMA → Loudeac)-F054"
},
{
"from_node": "fiber (Loudeac → Lorient_KMA)-F054",
"to_node": "west edfa in Lorient_KMA to Loudeac"
},
{
"from_node": "west edfa in Lorient_KMA to Loudeac",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "east edfa in Lorient_KMA to Vannes_KBE"
},
{
"from_node": "east edfa in Lorient_KMA to Vannes_KBE",
"to_node": "fiber (Lorient_KMA → Vannes_KBE)-F055"
},
{
"from_node": "fiber (Vannes_KBE → Lorient_KMA)-F055",
"to_node": "west edfa in Lorient_KMA to Vannes_KBE"
},
{
"from_node": "west edfa in Lorient_KMA to Vannes_KBE",
"to_node": "roadm Lorient_KMA"
},
{
@@ -708,10 +1162,18 @@
},
{
"from_node": "roadm Vannes_KBE",
"to_node": "east edfa in Vannes_KBE to Lorient_KMA"
},
{
"from_node": "east edfa in Vannes_KBE to Lorient_KMA",
"to_node": "fiber (Vannes_KBE → Lorient_KMA)-F055"
},
{
"from_node": "fiber (Lorient_KMA → Vannes_KBE)-F055",
"to_node": "west edfa in Vannes_KBE to Lorient_KMA"
},
{
"from_node": "west edfa in Vannes_KBE to Lorient_KMA",
"to_node": "roadm Vannes_KBE"
},
{
@@ -724,18 +1186,34 @@
},
{
"from_node": "fiber (Lannion_CAS → Stbrieuc)-F056",
"to_node": "east edfa in Stbrieuc to Rennes_STA"
},
{
"from_node": "east edfa in Stbrieuc to Rennes_STA",
"to_node": "fiber (Stbrieuc → Rennes_STA)-F057"
},
{
"from_node": "fiber (Rennes_STA → Stbrieuc)-F057",
"to_node": "west edfa in Stbrieuc to Rennes_STA"
},
{
"from_node": "west edfa in Stbrieuc to Rennes_STA",
"to_node": "fiber (Stbrieuc → Lannion_CAS)-F056"
},
{
"from_node": "roadm Rennes_STA",
"to_node": "east edfa in Rennes_STA to Stbrieuc"
},
{
"from_node": "east edfa in Rennes_STA to Stbrieuc",
"to_node": "fiber (Rennes_STA → Stbrieuc)-F057"
},
{
"from_node": "fiber (Stbrieuc → Rennes_STA)-F057",
"to_node": "west edfa in Rennes_STA to Stbrieuc"
},
{
"from_node": "west edfa in Rennes_STA to Stbrieuc",
"to_node": "roadm Rennes_STA"
},
{
@@ -764,10 +1242,18 @@
},
{
"from_node": "roadm Brest_KLA",
"to_node": "east edfa in Brest_KLA to Morlaix"
},
{
"from_node": "east edfa in Brest_KLA to Morlaix",
"to_node": "fiber (Brest_KLA → Morlaix)-F060"
},
{
"from_node": "fiber (Morlaix → Brest_KLA)-F060",
"to_node": "west edfa in Brest_KLA to Morlaix"
},
{
"from_node": "west edfa in Brest_KLA to Morlaix",
"to_node": "roadm Brest_KLA"
},
{

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -23,17 +23,18 @@ from networkx import (draw_networkx_nodes, draw_networkx_edges,
from numpy import mean
from gnpy.core.service_sheet import convert_service_sheet, Request_element, Element
from gnpy.core.utils import load_json
from gnpy.core.network import load_network, build_network, set_roadm_loss, save_network
from gnpy.core.network import load_network, build_network, save_network
from gnpy.core.equipment import load_equipment, trx_mode_params, automatic_nch, automatic_spacing
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fused, Fiber
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.request import (Path_request, Result_element, compute_constrained_path,
propagate, jsontocsv, Disjunction, compute_path_dsjctn, requests_aggregation,
propagate_and_optimize_mode)
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError
import gnpy.core.ansi_escapes as ansi_escapes
from copy import copy, deepcopy
from textwrap import dedent
from math import ceil
import time
#EQPT_LIBRARY_FILENAME = Path(__file__).parent / 'eqpt_config.json'
@@ -142,44 +143,6 @@ def load_requests(filename,eqpt_filename):
json_data = loads(f.read())
return json_data
def compute_path(network, equipment, pathreqlist):
# This function is obsolete and not relevant with respect to network building: suggest either to correct
# or to suppress it
path_res_list = []
for pathreq in pathreqlist:
#need to rebuid the network for each path because the total power
#can be different and the choice of amplifiers in autodesign is power dependant
#but the design is the same if the total power is the same
#TODO parametrize the total spectrum power so the same design can be shared
p_db = lin2db(pathreq.power*1e3)
p_total_db = p_db + lin2db(pathreq.nb_channel)
build_network(network, equipment, p_db, p_total_db)
pathreq.nodes_list.append(pathreq.destination)
#we assume that the destination is a strict constraint
pathreq.loose_list.append('strict')
print(f'Computing path from {pathreq.source} to {pathreq.destination}')
print(f'with path constraint: {[pathreq.source]+pathreq.nodes_list}') #adding first node to be clearer on the output
total_path = compute_constrained_path(network, pathreq)
print(f'Computed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}\n')
if total_path :
total_path = propagate(total_path,pathreq,equipment, show=False)
else:
total_path = []
# we record the last tranceiver object in order to have th whole
# information about spectrum. Important Note: since transceivers
# attached to roadms are actually logical elements to simulate
# performance, several demands having the same destination may use
# the same transponder for the performance simaulation. This is why
# we use deepcopy: to ensure each propagation is recorded and not
# overwritten
path_res_list.append(deepcopy(total_path))
return path_res_list
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# use a list but a dictionnary might be helpful to find path bathsed on request_id
@@ -203,7 +166,8 @@ def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# print(f'{pathreq.baud_rate} {pathreq.power} {pathreq.spacing} {pathreq.nb_channel}')
if total_path :
if pathreq.baud_rate is not None:
total_path = propagate(total_path,pathreq,equipment, show=False)
total_path = propagate(total_path,pathreq,equipment)
# for el in total_path: print(el)
temp_snr01nm = round(mean(total_path[-1].snr+lin2db(pathreq.baud_rate/(12.5e9))),2)
if temp_snr01nm < pathreq.OSNR :
msg = f'\tWarning! Request {pathreq.request_id} computed path from {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}\n' +\
@@ -299,22 +263,31 @@ def path_result_json(pathresult):
if __name__ == '__main__':
start = time.time()
args = parser.parse_args()
basicConfig(level={2: DEBUG, 1: INFO, 0: CRITICAL}.get(args.verbose, DEBUG))
logger.info(f'Computing path requests {args.service_filename} into JSON format')
print('\x1b[1;34;40m'+f'Computing path requests {args.service_filename} into JSON format'+ '\x1b[0m')
# for debug
# print( args.eqpt_filename)
data = load_requests(args.service_filename,args.eqpt_filename)
equipment = load_equipment(args.eqpt_filename)
network = load_network(args.network_filename,equipment)
try:
data = load_requests(args.service_filename,args.eqpt_filename)
equipment = load_equipment(args.eqpt_filename)
network = load_network(args.network_filename,equipment)
except EquipmentConfigError as e:
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
exit(1)
except NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
exit(1)
except ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
exit(1)
# Build the network once using the default power defined in SI in eqpt config
# TODO power density : db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,\
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
build_network(network, equipment, p_db, p_total_db)
@@ -322,7 +295,7 @@ if __name__ == '__main__':
rqs = requests_from_json(data, equipment)
# check that request ids are unique. Non unique ids, may
# check that request ids are unique. Non unique ids, may
# mess the computation : better to stop the computation
all_ids = [r.request_id for r in rqs]
if len(all_ids) != len(set(all_ids)):
@@ -341,7 +314,7 @@ if __name__ == '__main__':
# need to warn or correct in case of wrong disjunction form
# disjunction must not be repeated with same or different ids
dsjn = correct_disjn(dsjn)
# Aggregate demands with same exact constraints
print('\x1b[1;34;40m'+f'Aggregating similar requests'+ '\x1b[0m')
@@ -350,17 +323,15 @@ if __name__ == '__main__':
print('\x1b[1;34;40m'+'The following services have been requested:'+ '\x1b[0m')
print(rqs)
print('\x1b[1;34;40m'+f'Computing all paths with constraints'+ '\x1b[0m')
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
print('\x1b[1;34;40m'+f'Propagating on selected path'+ '\x1b[0m')
propagatedpths = compute_path_with_disjunction(network, equipment, rqs, pths)
end = time.time()
print(f'computation time {end-start}')
print('\x1b[1;34;40m'+f'Result summary'+ '\x1b[0m')
header = ['req id', ' demand',' snr@bandwidth',' snr@0.1nm',' Receiver minOSNR', ' mode', ' Gbit/s' , ' nb of tsp pairs']
data = []
data.append(header)
@@ -377,7 +348,7 @@ if __name__ == '__main__':
firstcol_width = max(len(row[0]) for row in data ) # padding
secondcol_width = max(len(row[1]) for row in data ) # padding
for row in data:
firstcol = ''.join(row[0].ljust(firstcol_width))
firstcol = ''.join(row[0].ljust(firstcol_width))
secondcol = ''.join(row[1].ljust(secondcol_width))
remainingcols = ''.join(word.center(col_width,' ') for word in row[2:])
print(f'{firstcol} {secondcol} {remainingcols}')
@@ -396,4 +367,3 @@ if __name__ == '__main__':
with open(fnamecsv,"w", encoding='utf-8') as fcsv :
jsontocsv(temp,equipment,fcsv)
print('\x1b[1;34;40m'+f'saving in {args.output} and {fnamecsv}'+ '\x1b[0m')

View File

@@ -0,0 +1,98 @@
{
"elements": [
{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"latitude": 0,
"longitude": 0,
"city": "Site A",
"region": ""
}
}
},
{
"uid": "Span1",
"type": "RamanFiber",
"type_variety": "SSMF",
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 200e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 206e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"params": {
"type_variety": "SSMF",
"length": 80.0,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 15.0,
"delta_p": -2,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"latitude": 2,
"longitude": 0,
"city": null,
"region": ""
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"latitude": 2,
"longitude": 0,
"city": "Site B",
"region": ""
}
}
}
],
"connections": [
{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
]
}

14
examples/sim_params.json Normal file
View File

@@ -0,0 +1,14 @@
{
"raman_computed_channels": [1, 18, 37, 56, 75],
"raman_parameters": {
"flag_raman": true,
"space_resolution": 10e3,
"tolerance": 1e-8
},
"nli_parameters": {
"nli_method_name": "ggn_spectrally_separated",
"wdm_grid_size": 50e9,
"dispersion_tolerance": 1,
"phase_shift_tollerance": 0.1
}
}

View File

@@ -4,6 +4,8 @@
0.0359549,
5.82851
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
-0.3110761646066259,
-0.3110761646066259,

View File

@@ -18,20 +18,21 @@ from pathlib import Path
from json import loads
from collections import Counter
from logging import getLogger, basicConfig, INFO, ERROR, DEBUG
from numpy import linspace, mean
from matplotlib.pyplot import show, axis, figure, title
from numpy import linspace, mean, log10
from matplotlib.pyplot import show, axis, figure, title, text
from networkx import (draw_networkx_nodes, draw_networkx_edges,
draw_networkx_labels, dijkstra_path)
from gnpy.core.network import load_network, build_network, save_network
from gnpy.core.elements import Transceiver, Fiber, Edfa, Roadm
from gnpy.core.network import load_network, build_network, save_network, load_sim_params, configure_network
from gnpy.core.elements import Transceiver, Fiber, RamanFiber, Edfa, Roadm
from gnpy.core.info import create_input_spectral_information, SpectralInformation, Channel, Power, Pref
from gnpy.core.request import Path_request, RequestParams, compute_constrained_path, propagate
from gnpy.core.request import Path_request, RequestParams, compute_constrained_path, propagate2
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError
import gnpy.core.ansi_escapes as ansi_escapes
logger = getLogger(__name__)
def plot_results(network, path, source, destination):
path_edges = set(zip(path[:-1], path[1:]))
edges = set(network.edges()) - path_edges
def plot_baseline(network):
edges = set(network.edges())
pos = {n: (n.lng, n.lat) for n in network.nodes()}
labels = {n: n.location.city for n in network.nodes() if isinstance(n, Transceiver)}
city_labels = set(labels.values())
@@ -44,16 +45,61 @@ def plot_results(network, path, source, destination):
fig = figure()
kwargs = {'figure': fig, 'pos': pos}
plot = draw_networkx_nodes(network, nodelist=network.nodes(), node_color='#ababab', **kwargs)
draw_networkx_nodes(network, nodelist=path, node_color='#ff0000', **kwargs)
draw_networkx_edges(network, edgelist=edges, edge_color='#ababab', **kwargs)
draw_networkx_labels(network, labels=labels, font_size=14, **{**kwargs, 'pos': label_pos})
axis('off')
show()
def plot_results(network, path, source, destination, infos):
path_edges = set(zip(path[:-1], path[1:]))
edges = set(network.edges()) - path_edges
pos = {n: (n.lng, n.lat) for n in network.nodes()}
nodes = {}
for k, (x, y) in pos.items():
nodes.setdefault((round(x, 1), round(y, 1)), []).append(k)
labels = {n: n.location.city for n in network.nodes() if isinstance(n, Transceiver)}
city_labels = set(labels.values())
for n in network.nodes():
if n.location.city and n.location.city not in city_labels:
labels[n] = n.location.city
city_labels.add(n.location.city)
label_pos = pos
fig = figure()
kwargs = {'figure': fig, 'pos': pos}
all_nodes = [n for n in network.nodes() if n not in path]
plot = draw_networkx_nodes(network, nodelist=all_nodes, node_color='#ababab', node_size=50, **kwargs)
draw_networkx_nodes(network, nodelist=path, node_color='#ff0000', node_size=55, **kwargs)
draw_networkx_edges(network, edgelist=edges, edge_color='#ababab', **kwargs)
draw_networkx_edges(network, edgelist=path_edges, edge_color='#ff0000', **kwargs)
draw_networkx_labels(network, labels=labels, font_size=14, **{**kwargs, 'pos': label_pos})
title(f'Propagating from {source.loc.city} to {destination.loc.city}')
axis('off')
heading = 'Spectral Information\n\n'
textbox = text(0.85, 0.20, heading, fontsize=14, fontname='Ubuntu Mono',
verticalalignment='top', transform=fig.axes[0].transAxes,
bbox={'boxstyle': 'round', 'facecolor': 'wheat', 'alpha': 0.5})
msgs = {(x, y): heading + '\n\n'.join(str(n) for n in ns if n in path)
for (x, y), ns in nodes.items()}
def hover(event):
if event.xdata is None or event.ydata is None:
return
if fig.contains(event):
x, y = round(event.xdata, 1), round(event.ydata, 1)
if (x, y) in msgs:
textbox.set_text(msgs[x, y])
else:
textbox.set_text(heading)
fig.canvas.draw_idle()
fig.canvas.mpl_connect('motion_notify_event', hover)
show()
def main(network, equipment, source, destination, req = None):
def main(network, equipment, source, destination, sim_params, req=None):
result_dicts = {}
network_data = [{
'network_name' : str(args.filename),
@@ -62,8 +108,8 @@ def main(network, equipment, source, destination, req = None):
}]
result_dicts.update({'network': network_data})
design_data = [{
'power_mode' : equipment['Spans']['default'].power_mode,
'span_power_range' : equipment['Spans']['default'].delta_power_range_db,
'power_mode' : equipment['Span']['default'].power_mode,
'span_power_range' : equipment['Span']['default'].delta_power_range_db,
'design_pch' : equipment['SI']['default'].power_dbm,
'baud_rate' : equipment['SI']['default'].baud_rate
}]
@@ -71,17 +117,23 @@ def main(network, equipment, source, destination, req = None):
simulation_data = []
result_dicts.update({'simulation results': simulation_data})
power_mode = equipment['Spans']['default'].power_mode
power_mode = equipment['Span']['default'].power_mode
print('\n'.join([f'Power mode is set to {power_mode}',
f'=> it can be modified in eqpt_config.json - Spans']))
f'=> it can be modified in eqpt_config.json - Span']))
pref_ch_db = lin2db(req.power*1e3) #reference channel power / span (SL=20dB)
pref_total_db = pref_ch_db + lin2db(req.nb_channel) #reference total power / span (SL=20dB)
build_network(network, equipment, pref_ch_db, pref_total_db)
path = compute_constrained_path(network, req)
spans = [s.length for s in path if isinstance(s, Fiber)]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans):.0f}m between {source.uid} and {destination.uid}')
if len([s.length for s in path if isinstance(s, RamanFiber)]):
if sim_params is None:
print(f'{ansi_escapes.red}Invocation error:{ansi_escapes.reset} RamanFiber requires passing simulation params via --sim-params')
exit(1)
configure_network(network, sim_params)
spans = [s.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} and {destination.uid}')
print(f'\nNow propagating between {source.uid} and {destination.uid}:')
try:
@@ -92,39 +144,60 @@ def main(network, equipment, source, destination, req = None):
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
power_range = [0]
if not power_mode:
#power cannot be changed in gain mode
power_range = [0]
for dp_db in power_range:
req.power = db2lin(pref_ch_db + dp_db)*1e-3
print(f'\nPropagating with input power = {lin2db(req.power*1e3):.2f}dBm :')
propagate(path, req, equipment, show=len(power_range)==1)
print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f}dBm :')
print(destination)
if power_mode:
print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:')
else:
print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
infos = propagate2(path, req, equipment)
if len(power_range) == 1:
for elem in path:
print(elem)
if power_mode:
print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f} dBm:')
else:
print(f'\nTransmission results:')
print(f' Final SNR total (signal bw): {ansi_escapes.cyan}{mean(destination.snr):.02f} dB{ansi_escapes.reset}')
#print(f'\n !!!!!!!!!!!!!!!!! TEST POINT !!!!!!!!!!!!!!!!!!!!!')
#print(f'carriers ase output of {path[1]} =\n {list(path[1].carriers("out", "nli"))}')
# => use "in" or "out" parameter
# => use "nli" or "ase" or "signal" or "total" parameter
simulation_data.append({
'Pch_dBm' : pref_ch_db + dp_db,
'OSNR_ASE_0.1nm' : round(mean(destination.osnr_ase_01nm),2),
'OSNR_ASE_signal_bw' : round(mean(destination.osnr_ase),2),
'SNR_nli_signal_bw' : round(mean(destination.osnr_nli),2),
'SNR_total_signal_bw' : round(mean(destination.snr),2)
})
# => use "nli" or "ase" or "signal" or "total" parameter
if power_mode:
simulation_data.append({
'Pch_dBm' : pref_ch_db + dp_db,
'OSNR_ASE_0.1nm' : round(mean(destination.osnr_ase_01nm),2),
'OSNR_ASE_signal_bw' : round(mean(destination.osnr_ase),2),
'SNR_nli_signal_bw' : round(mean(destination.osnr_nli),2),
'SNR_total_signal_bw' : round(mean(destination.snr),2)
})
else:
simulation_data.append({
'gain_mode' : 'power canot be set',
'OSNR_ASE_0.1nm' : round(mean(destination.osnr_ase_01nm),2),
'OSNR_ASE_signal_bw' : round(mean(destination.osnr_ase),2),
'SNR_nli_signal_bw' : round(mean(destination.osnr_nli),2),
'SNR_total_signal_bw' : round(mean(destination.snr),2)
})
write_csv(result_dicts, 'simulation_result.csv')
return path
return path, infos
parser = ArgumentParser()
parser.add_argument('-e', '--equipment', type=Path,
default=Path(__file__).parent / 'eqpt_config.json')
parser.add_argument('--sim-params', type=Path,
default=None, help='Path to the JSON containing simulation parameters (required for Raman)')
parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR summary')
parser.add_argument('-pl', '--plot', action='store_true')
parser.add_argument('-v', '--verbose', action='count', default=0, help='increases verbosity for each occurence')
parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes')
parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm')
parser.add_argument('-names', '--names-matching', action='store_true', help='display network names that are closed matches')
#parser.add_argument('-plb', '--power-lower-bound', default=0, help='power sweep lower bound')
#parser.add_argument('-pub', '--power-upper-bound', default=1, help='power sweep upper bound')
parser.add_argument('filename', nargs='?', type=Path,
default=Path(__file__).parent / 'edfa_example_network.json')
parser.add_argument('source', nargs='?', help='source node')
@@ -135,11 +208,22 @@ if __name__ == '__main__':
args = parser.parse_args()
basicConfig(level={0: ERROR, 1: INFO, 2: DEBUG}.get(args.verbose, DEBUG))
equipment = load_equipment(args.equipment)
# logger.info(equipment)
# print(args.filename)
network = load_network(args.filename, equipment, args.names_matching)
# print(network)
try:
equipment = load_equipment(args.equipment)
network = load_network(args.filename, equipment, args.names_matching)
sim_params = load_sim_params(args.sim_params) if args.sim_params is not None else None
except EquipmentConfigError as e:
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
exit(1)
except NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
exit(1)
except ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
exit(1)
if args.plot:
plot_baseline(network)
transceivers = {n.uid: n for n in network.nodes() if isinstance(n, Transceiver)}
@@ -152,7 +236,7 @@ if __name__ == '__main__':
for uid in transceivers:
print(uid)
exit()
#First try to find exact match if source/destination provided
if args.source:
source = transceivers.pop(args.source, None)
@@ -160,30 +244,30 @@ if __name__ == '__main__':
else:
source = None
logger.info('No source node specified: picking random transceiver')
if args.destination:
destination = transceivers.pop(args.destination, None)
valid_destination = True if destination else False
else:
destination = None
logger.info('No destination node specified: picking random transceiver')
#If no exact match try to find partial match
if args.source and not source:
#TODO code a more advanced regex to find nodes match
source = next((transceivers.pop(uid) for uid in transceivers \
if args.source.lower() in uid.lower()), None)
if args.destination and not destination:
#TODO code a more advanced regex to find nodes match
destination = next((transceivers.pop(uid) for uid in transceivers \
if args.destination.lower() in uid.lower()), None)
#If no partial match or no source/destination provided pick random
if not source:
source = list(transceivers.values())[0]
del transceivers[source.uid]
if not destination:
destination = list(transceivers.values())[0]
@@ -205,18 +289,28 @@ if __name__ == '__main__':
trx_params['power'] = db2lin(float(args.power))*1e-3
params.update(trx_params)
req = Path_request(**params)
path = main(network, equipment, source, destination, req)
path, infos = main(network, equipment, source, destination, sim_params, req)
save_network(args.filename, network)
if args.show_channels:
print('\nThe total SNR per channel at the end of the line is:')
print('{:>5}{:>26}{:>26}{:>28}{:>28}{:>28}' \
.format('Ch. #', 'Channel frequency (THz)', 'Channel power (dBm)', 'OSNR ASE (signal bw, dB)', 'SNR NLI (signal bw, dB)', 'SNR total (signal bw, dB)'))
for final_carrier, ch_osnr, ch_snr_nl, ch_snr in zip(infos[path[-1]][1].carriers, path[-1].osnr_ase, path[-1].osnr_nli, path[-1].snr):
ch_freq = final_carrier.frequency * 1e-12
ch_power = lin2db(final_carrier.power.signal*1e3)
print('{:5}{:26.2f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' \
.format(final_carrier.channel_number, round(ch_freq, 2), round(ch_power, 2), round(ch_osnr, 2), round(ch_snr_nl, 2), round(ch_snr, 2)))
if not args.source:
print(f'\n(No source node specified: picked {source.uid})')
elif not valid_source:
print(f'\n(Invalid source node {args.source!r} replaced with {source.uid})')
if not args.destination:
print(f'\n(No destination node specified: picked {destination.uid})')
elif not valid_destination:
print(f'\n(Invalid destination node {args.destination!r} replaced with {destination.uid})')
if args.plot:
plot_results(network, path, source, destination)
plot_results(network, path, source, destination, infos)

13
gnpy/core/ansi_escapes.py Normal file
View File

@@ -0,0 +1,13 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.ansi_escapes
======================
A random subset of ANSI terminal escape codes for colored messages
'''
red = '\x1b[1;31;40m'
cyan = '\x1b[1;36;40m'
reset = '\x1b[0m'

View File

@@ -31,6 +31,7 @@ from itertools import chain
from json import dumps
from pathlib import Path
from difflib import get_close_matches
from gnpy.core.utils import silent_remove
import time
all_rows = lambda sh, start=0: (sh.row(x) for x in range(start, sh.nrows))
@@ -41,11 +42,11 @@ class Node(object):
self.update_attr(kwargs)
def update_attr(self, kwargs):
clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
for k,v in self.default_values.items():
v = clean_kwargs.get(k,v)
setattr(self, k, v)
default_values = \
{
'city': '',
@@ -54,7 +55,9 @@ class Node(object):
'region': '',
'latitude': 0,
'longitude': 0,
'node_type': 'ILA'
'node_type': 'ILA',
'booster_restriction' : '',
'preamp_restriction' : ''
}
class Link(object):
@@ -111,11 +114,12 @@ class Eqpt(object):
{
'from_city': '',
'to_city': '',
'east_amp_type': '',
'east_att_in': 0,
'east_amp_gain': 0,
'east_tilt': 0,
'east_att_out': 0
'east_amp_type': '',
'east_att_in': 0,
'east_amp_gain': None,
'east_amp_dp': None,
'east_tilt': 0,
'east_att_out': None
}
@@ -128,7 +132,7 @@ def read_header(my_sheet, line, slice_):
try:
header = [x.value.strip() for x in my_sheet.row_slice(line, slice_[0], slice_[1])]
header_i = [Param_header(header,i+slice_[0]) for i, header in enumerate(header) if header != '']
except:
except Exception:
header_i = []
if header_i != [] and header_i[-1].colindex != slice_[1]:
header_i.append(Param_header('',slice_[1]))
@@ -143,9 +147,9 @@ def read_slice(my_sheet, line, slice_, header):
try:
slice_range = next((h.colindex,header_i[i+1].colindex) \
for i,h in enumerate(header_i) if header in h.header)
except:
except Exception:
pass
return slice_range
return slice_range
def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
@@ -163,8 +167,8 @@ def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
slice_out = read_slice(my_sheet, start_line+iteration, slice_in, h0)
iteration += 1
if slice_out == (-1, -1):
if h0 == 'east':
print(f'\x1b[1;31;40m'+f'CRITICAL: missing _east_ header above other headers (hierarchical) _ ABORT'+ '\x1b[0m')
if h0 in ('east', 'Node A', 'Node Z', 'City') :
print(f'\x1b[1;31;40m'+f'CRITICAL: missing _{h0}_ header: EXECUTION ENDS'+ '\x1b[0m')
exit()
else:
print(f'missing header {h0}')
@@ -234,7 +238,6 @@ def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
def convert_file(input_filename, names_matching=False, filter_region=[]):
nodes, links, eqpts = parse_excel(input_filename)
if filter_region:
nodes = [n for n in nodes if n.region.lower() in filter_region]
cities = {n.city for n in nodes}
@@ -243,10 +246,8 @@ def convert_file(input_filename, names_matching=False, filter_region=[]):
cities = {lnk.from_city for lnk in links} | {lnk.to_city for lnk in links}
nodes = [n for n in nodes if n.city in cities]
global nodes_by_city
nodes_by_city = {n.city: n for n in nodes}
#create matching dictionary for node name mismatch analysis
cities = {''.join(c.strip() for c in n.city.split('C+L')).lower(): n.city for n in nodes}
@@ -265,9 +266,9 @@ def convert_file(input_filename, names_matching=False, filter_region=[]):
city_match_dic[city].append(match_city)
if names_matching:
print('\ncity match dictionary:',city_match_dic)
print('\ncity match dictionary:',city_match_dic)
with open('name_match_dictionary.json', 'w', encoding='utf-8') as city_match_dic_file:
city_match_dic_file.write(dumps(city_match_dic, indent=2, ensure_ascii=False))
city_match_dic_file.write(dumps(city_match_dic, indent=2, ensure_ascii=False))
global links_by_city
links_by_city = defaultdict(list)
@@ -297,7 +298,22 @@ def convert_file(input_filename, names_matching=False, filter_region=[]):
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Roadm'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'] +
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm' \
and x.booster_restriction == '' and x.preamp_restriction == ''] +
[{'uid': f'roadm {x.city}',
'params' : {
'restrictions': {
'preamp_variety_list': silent_remove(x.preamp_restriction.split(' | '),''),
'booster_variety_list': silent_remove(x.booster_restriction.split(' | '),'')
}
},
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Roadm'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm' and \
(x.booster_restriction != '' or x.preamp_restriction != '')] +
[{'uid': f'west fused spans in {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
@@ -344,10 +360,12 @@ def convert_file(input_filename, names_matching=False, filter_region=[]):
'type': 'Edfa',
'type_variety': e.east_amp_type,
'operational': {'gain_target': e.east_amp_gain,
'delta_p': e.east_amp_dp,
'tilt_target': e.east_tilt,
'out_voa' : e.east_att_out}
}
for e in eqpts if e.east_amp_type.lower() != ''] +
}
for e in eqpts if (e.east_amp_type.lower() != '' and \
e.east_amp_type.lower() != 'fused')] +
[{'uid': f'west edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
@@ -356,10 +374,34 @@ def convert_file(input_filename, names_matching=False, filter_region=[]):
'type': 'Edfa',
'type_variety': e.west_amp_type,
'operational': {'gain_target': e.west_amp_gain,
'delta_p': e.west_amp_dp,
'tilt_target': e.west_tilt,
'out_voa' : e.west_att_out}
}
for e in eqpts if e.west_amp_type.lower() != ''],
}
for e in eqpts if (e.west_amp_type.lower() != '' and \
e.west_amp_type.lower() != 'fused')] +
# fused edfa variety is a hack to indicate that there should not be
# booster amplifier out the roadm.
# If user specifies ILA in Nodes sheet and fused in Eqpt sheet, then assumes that
# this is a fused nodes.
[{'uid': f'east edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Fused',
'params': {'loss': 0}
}
for e in eqpts if e.east_amp_type.lower() == 'fused'] +
[{'uid': f'west edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Fused',
'params': {'loss': 0}
}
for e in eqpts if e.west_amp_type.lower() == 'fused'],
'connections':
list(chain.from_iterable([eqpt_connection_by_city(n.city)
for n in nodes]))
@@ -411,7 +453,9 @@ def parse_excel(input_filename):
'Region': 'region',
'Latitude': 'latitude',
'Longitude': 'longitude',
'Type': 'node_type'
'Type': 'node_type',
'Booster_restriction': 'booster_restriction',
'Preamp_restriction': 'preamp_restriction'
}
eqpt_headers = \
{ 'Node A': 'from_city',
@@ -420,6 +464,7 @@ def parse_excel(input_filename):
'amp type': 'east_amp_type',
'att_in': 'east_att_in',
'amp gain': 'east_amp_gain',
'delta p': 'east_amp_dp',
'tilt': 'east_tilt',
'att_out': 'east_att_out'
},
@@ -427,9 +472,10 @@ def parse_excel(input_filename):
'amp type': 'west_amp_type',
'att_in': 'west_att_in',
'amp gain': 'west_amp_gain',
'delta p': 'west_amp_dp',
'tilt': 'west_tilt',
'att_out': 'west_att_out'
}
'att_out': 'west_att_out'
}
}
with open_workbook(input_filename) as wb:
@@ -437,17 +483,17 @@ def parse_excel(input_filename):
links_sheet = wb.sheet_by_name('Links')
try:
eqpt_sheet = wb.sheet_by_name('Eqpt')
except:
except Exception:
#eqpt_sheet is optional
eqpt_sheet = None
nodes = []
for node in parse_sheet(nodes_sheet, node_headers, NODES_LINE, NODES_LINE+1, NODES_COLUMN):
nodes.append(Node(**node))
expected_node_types = ('ROADM', 'ILA', 'FUSED')
expected_node_types = {'ROADM', 'ILA', 'FUSED'}
for n in nodes:
if not (n.node_type in expected_node_types):
n.node_type='ILA'
if n.node_type not in expected_node_types:
n.node_type = 'ILA'
links = []
for link in parse_sheet(links_sheet, link_headers, LINKS_LINE, LINKS_LINE+2, LINKS_COLUMN):
@@ -455,17 +501,17 @@ def parse_excel(input_filename):
#print('\n', [l.__dict__ for l in links])
eqpts = []
if eqpt_sheet != None:
if eqpt_sheet != None:
for eqpt in parse_sheet(eqpt_sheet, eqpt_headers, EQPTS_LINE, EQPTS_LINE+2, EQPTS_COLUMN):
eqpts.append(Eqpt(**eqpt))
# sanity check
all_cities = Counter(n.city for n in nodes)
if len(all_cities) != len(nodes):
ValueError(f'Duplicate city: {all_cities}')
raise ValueError(f'Duplicate city: {all_cities}')
if any(ln.from_city not in all_cities or
ln.to_city not in all_cities for ln in links):
ValueError(f'Bad link.')
raise ValueError(f'Bad link.')
return nodes, links, eqpts
@@ -473,7 +519,7 @@ def parse_excel(input_filename):
def eqpt_connection_by_city(city_name):
other_cities = fiber_dest_from_source(city_name)
subdata = []
if nodes_by_city[city_name].node_type.lower() in ('ila', 'fused'):
if nodes_by_city[city_name].node_type.lower() in {'ila', 'fused'}:
# Then len(other_cities) == 2
direction = ['west', 'east']
for i in range(2):
@@ -566,12 +612,12 @@ def midpoint(city_a, city_b):
#output_json_file_name = 'coronet_conus_example.json'
#TODO get column size automatically from tupple size
NODES_COLUMN = 7
NODES_COLUMN = 10
NODES_LINE = 4
LINKS_COLUMN = 16
LINKS_LINE = 3
EQPTS_LINE = 3
EQPTS_COLUMN = 12
EQPTS_COLUMN = 14
parser = ArgumentParser()
parser.add_argument('workbook', nargs='?', type=Path , default='meshTopologyExampleV2.xls')
parser.add_argument('-f', '--filter-region', action='append', default=[])

View File

@@ -7,25 +7,26 @@ gnpy.core.elements
This module contains standard network elements.
A network element is a Python callable. It takes a .info.SpectralInformation
A network element is a Python callable. It takes a :class:`.info.SpectralInformation`
object and returns a copy with appropriate fields affected. This structure
represents spectral information that is "propogated" by this network element.
Network elements must have only a local "view" of the network and propogate
SpectralInformation using only this information. They should be independent and
:class:`.info.SpectralInformation` using only this information. They should be independent and
self-contained.
Network elements MUST implement two attributes .uid and .name representing a
unique identifier and a printable name.
'''
from numpy import abs, arange, arcsinh, array, exp, divide, errstate
from numpy import abs, arange, array, exp, divide, errstate
from numpy import interp, log10, mean, pi, polyfit, polyval, sum
from scipy.constants import c, h
from collections import namedtuple
from gnpy.core.node import Node
from gnpy.core.units import UNITS
from gnpy.core.utils import lin2db, db2lin, itufs, snr_sum
from gnpy.core.utils import lin2db, db2lin, itufs, itufl, snr_sum
from gnpy.core.science_utils import propagate_raman_fiber, _psi
class Transceiver(Node):
def __init__(self, *args, **kwargs):
@@ -41,7 +42,6 @@ class Transceiver(Node):
with errstate(divide='ignore'):
self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
ratio_01nm = [lin2db(12.5e9/b_rate) for b_rate in self.baud_rate]
#set raw values to record original calculation, before update_snr()
self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
for c in spectral_info.carriers]
@@ -51,11 +51,14 @@ class Transceiver(Node):
for c in spectral_info.carriers]
self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli+c.power.ase))
for c in spectral_info.carriers]
self.raw_snr_01nm = [snr - ratio for snr, ratio
in zip(self.raw_snr, ratio_01nm)]
self.osnr_ase = self.raw_osnr_ase
self.osnr_ase_01nm = self.raw_osnr_ase_01nm
self.osnr_nli = self.raw_osnr_nli
self.snr = self.raw_snr
self.snr_01nm = self.raw_snr_01nm
def update_snr(self, *args):
"""
@@ -75,6 +78,8 @@ class Transceiver(Node):
self.raw_snr, self.baud_rate))
self.osnr_ase_01nm = list(map(lambda x:snr_sum(x,12.5e9,snr_added),
self.raw_osnr_ase_01nm))
self.snr_01nm = list(map(lambda x:snr_sum(x,12.5e9,snr_added),
self.raw_snr_01nm))
@property
def to_json(self):
@@ -100,40 +105,41 @@ class Transceiver(Node):
snr = round(mean(self.snr),2)
osnr_ase = round(mean(self.osnr_ase),2)
osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
snr_01nm = round(mean(self.snr_01nm),2)
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' OSNR ASE (0.1nm): {osnr_ase_01nm:.2f}',
f' OSNR ASE (signal bw): {osnr_ase:.2f}',
f' SNR total (signal bw): {snr:.2f}'])
f' OSNR ASE (0.1nm, dB): {osnr_ase_01nm:.2f}',
f' OSNR ASE (signal bw, dB): {osnr_ase:.2f}',
f' SNR total (signal bw, dB): {snr:.2f}',
f' SNR total (0.1nm, dB): {snr_01nm:.2f}'])
def __call__(self, spectral_info):
self._calc_snr(spectral_info)
return spectral_info
RoadmParams = namedtuple('RoadmParams', 'loss')
RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr restrictions')
class Roadm(Node):
def __init__(self, *args, params=None, **kwargs):
if params is None:
# default loss value if not mentioned in loaded network json
params = {'loss':None}
def __init__(self, *args, params, **kwargs):
super().__init__(*args, params=RoadmParams(**params), **kwargs)
self.loss = self.params.loss
self.target_pch_out_db = None #set in Networks.py by def set_roadm_loss
self.effective_pch_out_db = None
self.effective_loss = None #set in self.propagate
self.loss = 0 #auto-design interest
self.effective_loss = None
self.effective_pch_out_db = self.params.target_pch_out_db
self.passive = True
self.restrictions = self.params.restrictions
@property
def to_json(self):
return {'uid' : self.uid,
'type' : type(self).__name__,
'params' : {'loss' : self.loss},
'params' : {
'target_pch_out_db' : self.effective_pch_out_db,
'restrictions' : self.restrictions
},
'metadata' : {
'location': self.metadata['location']._asdict()
}
}
}
def __repr__(self):
@@ -141,35 +147,34 @@ class Roadm(Node):
def __str__(self):
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' loss (dB): {self.effective_loss:.2f}',
f' pch out (dBm): {self.effective_pch_out_db!r}'])
f' effective loss (dB): {self.effective_loss:.2f}',
f' pch out (dBm): {self.effective_pch_out_db!r}'])
def propagate(self, pref, *carriers):
#pin_target and loss are read from eqpt_config.json['Roadm']
#all ingress channels in xpress are set to this power level
#but add channels are not, so we define an effective loss
#in the case of add channels
if self.target_pch_out_db:
self.effective_loss = pref.pi - self.target_pch_out_db
else:
self.effective_loss = self.loss
self.effective_pch_out_db = pref.pi - self.effective_loss
attenuation = db2lin(self.effective_loss)
for carrier in carriers:
self.effective_pch_out_db = min(pref.p_spani, self.params.target_pch_out_db)
self.effective_loss = pref.p_spani - self.effective_pch_out_db
carriers_power = array([c.power.signal +c.power.nli+c.power.ase for c in carriers])
carriers_att = list(map(lambda x : lin2db(x*1e3)-self.params.target_pch_out_db, carriers_power))
exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default = 0)
carriers_att = list(map(lambda x: db2lin(x+exceeding_att), carriers_att))
for carrier_att, carrier in zip(carriers_att, carriers) :
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal/attenuation,
nonlinear_interference=pwr.nli/attenuation,
amplified_spontaneous_emission=pwr.ase/attenuation)
pwr = pwr._replace( signal = pwr.signal/carrier_att,
nli = pwr.nli/carrier_att,
ase = pwr.ase/carrier_att)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p0, p_spani=self.effective_pch_out_db)
return pref._replace(p_span0=pref.p_span0, p_spani=self.effective_pch_out_db)
def __call__(self, spectral_info):
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
return spectral_info.update(carriers=carriers, pref=pref)
return spectral_info._replace(carriers=carriers, pref=pref)
FusedParams = namedtuple('FusedParams', 'loss')
@@ -186,6 +191,9 @@ class Fused(Node):
def to_json(self):
return {'uid' : self.uid,
'type' : type(self).__name__,
'params' :{
'loss': self.loss
},
'metadata' : {
'location': self.metadata['location']._asdict()
}
@@ -204,17 +212,17 @@ class Fused(Node):
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal/attenuation,
nonlinear_interference=pwr.nli/attenuation,
amplified_spontaneous_emission=pwr.ase/attenuation)
nli=pwr.nli/attenuation,
ase=pwr.ase/attenuation)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p0, p_spani=pref.pi - self.loss)
return pref._replace(p_span0=pref.p_span0, p_spani=pref.p_spani - self.loss)
def __call__(self, spectral_info):
carriers = tuple(self.propagate(*spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
return spectral_info.update(carriers=carriers, pref=pref)
return spectral_info._replace(carriers=carriers, pref=pref)
FiberParams = namedtuple('FiberParams', 'type_variety length loss_coef length_units \
att_in con_in con_out dispersion gamma')
@@ -283,12 +291,12 @@ class Fiber(Node):
@property
def fiber_loss(self):
# dB fiber loss, not including padding attenuator
"""Fiber loss in dB, not including padding attenuator"""
return self.loss_coef * self.length + self.con_in + self.con_out
@property
def loss(self):
#total loss incluiding padding att_in: useful for polymorphism with roadm loss
"""total loss including padding att_in: useful for polymorphism with roadm loss"""
return self.loss_coef * self.length + self.con_in + self.con_out + self.att_in
@property
@@ -313,16 +321,13 @@ class Fiber(Node):
def carriers(self, loc, attr):
"""retrieve carriers information
loc = (in, out) of the class element
attr = (ase, nli, signal, total) power information"""
:param loc: (in, out) of the class element
:param attr: (ase, nli, signal, total) power information
"""
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
yield None
return
power_dict = {
'nli': 'nonlinear_interference',
'ase': 'amplified_spontaneous_emission'
}
attr = power_dict.get(attr, attr)
loc_attr = 'carriers_'+loc
for c in getattr(self, loc_attr) :
if attr == 'total':
@@ -330,46 +335,30 @@ class Fiber(Node):
else:
yield c.power._asdict().get(attr, None)
def beta2(self, ref_wavelength=None):
""" Returns beta2 from dispersion parameter.
def beta2(self, ref_wavelength=1550e-9):
"""Returns beta2 from dispersion parameter.
Dispersion is entered in ps/nm/km.
Disperion can be a numpy array or a single value. If a
value ref_wavelength is not entered 1550e-9m will be assumed.
ref_wavelength can be a numpy array.
Disperion can be a numpy array or a single value.
:param ref_wavelength: can be a numpy array; default: 1550nm
"""
# TODO|jla: discuss beta2 as method or attribute
wl = 1550e-9 if ref_wavelength is None else ref_wavelength
D = abs(self.dispersion)
b2 = (wl ** 2) * D / (2 * pi * c) # 10^21 scales [ps^2/km]
b2 = (ref_wavelength ** 2) * D / (2 * pi * c) # 10^21 scales [ps^2/km]
return b2 # s/Hz/m
def dbkm_2_lin(self):
""" calculates the linear loss coefficient
"""
# alpha_pcoef is linear loss coefficient in dB/km^-1
# alpha_acoef is linear loss field amplitude coefficient in m^-1
"""calculates the linear loss coefficient"""
# linear loss coefficient in dB/km^-1
alpha_pcoef = self.loss_coef
# linear loss field amplitude coefficient in m^-1
alpha_acoef = alpha_pcoef / (2 * 10 * log10(exp(1)))
return alpha_pcoef, alpha_acoef
def _psi(self, carrier, interfering_carrier):
""" Calculates eq. 123 from arXiv:1209.0394.
"""
if carrier.num_chan == interfering_carrier.num_chan: # SCI
psi = arcsinh(0.5 * pi**2 * self.asymptotic_length
* abs(self.beta2()) * carrier.baud_rate**2)
else: # XCI
delta_f = carrier.freq - interfering_carrier.freq
psi = arcsinh(pi**2 * self.asymptotic_length * abs(self.beta2())
* carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
psi -= arcsinh(pi**2 * self.asymptotic_length * abs(self.beta2())
* carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
return psi
def _gn_analytic(self, carrier, *carriers):
""" Computes the nonlinear interference power on a single carrier.
The method uses eq. 120 from arXiv:1209.0394.
"""Computes the nonlinear interference power on a single carrier.
The method uses eq. 120 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__.
:param carrier: the signal under analysis
:param carriers: the full WDM comb
:return: carrier_nli: the amount of nonlinear interference in W on the under analysis
@@ -377,7 +366,7 @@ class Fiber(Node):
g_nli = 0
for interfering_carrier in carriers:
psi = self._psi(carrier, interfering_carrier)
psi = _psi(carrier, interfering_carrier, beta2=self.beta2(), asymptotic_length=self.asymptotic_length)
g_nli += (interfering_carrier.power.signal/interfering_carrier.baud_rate)**2 \
* (carrier.power.signal/carrier.baud_rate) * psi
@@ -396,8 +385,8 @@ class Fiber(Node):
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal/attenuation,
nonlinear_interference=pwr.nli/attenuation,
amplified_spontaneous_emission=pwr.ase/attenuation)
nli=pwr.nli/attenuation,
ase=pwr.ase/attenuation)
carrier = carrier._replace(power=pwr)
chan.append(carrier)
@@ -409,20 +398,77 @@ class Fiber(Node):
pwr = carrier.power
carrier_nli = self._gn_analytic(carrier, *carriers)
pwr = pwr._replace(signal=pwr.signal/self.lin_attenuation/attenuation,
nonlinear_interference=(pwr.nli+carrier_nli)/self.lin_attenuation/attenuation,
amplified_spontaneous_emission=pwr.ase/self.lin_attenuation/attenuation)
nli=(pwr.nli+carrier_nli)/self.lin_attenuation/attenuation,
ase=pwr.ase/self.lin_attenuation/attenuation)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
self.pch_out_db = round(pref.pi - self.loss, 2)
return pref._replace(p_span0=pref.p0, p_spani=self.pch_out_db)
self.pch_out_db = round(pref.p_spani - self.loss, 2)
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
def __call__(self, spectral_info):
self.carriers_in = spectral_info.carriers
carriers = tuple(self.propagate(*spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
self.carriers_out = carriers
return spectral_info.update(carriers=carriers, pref=pref)
return spectral_info._replace(carriers=carriers, pref=pref)
RamanFiberParams = namedtuple('RamanFiberParams', 'type_variety length loss_coef length_units \
att_in con_in con_out dispersion gamma raman_efficiency')
class RamanFiber(Fiber):
def __init__(self, *args, params=None, **kwargs):
if params is None:
params = {}
if 'con_in' not in params:
# if not defined in the network json connector loss in/out
# the None value will be updated in network.py[build_network]
# with default values from eqpt_config.json[Spans]
params['con_in'] = None
params['con_out'] = None
if 'att_in' not in params:
#fixed attenuator for padding
params['att_in'] = 0
# TODO: can we re-use the Fiber constructor in a better way?
Node.__init__(self, *args, params=RamanFiberParams(**params), **kwargs)
self.type_variety = self.params.type_variety
self.length = self.params.length * UNITS[self.params.length_units] # in m
self.loss_coef = self.params.loss_coef * 1e-3 # lineic loss dB/m
self.lin_loss_coef = self.params.loss_coef / (20 * log10(exp(1)))
self.att_in = self.params.att_in
self.con_in = self.params.con_in
self.con_out = self.params.con_out
self.dispersion = self.params.dispersion # s/m/m
self.gamma = self.params.gamma # 1/W/m
self.pch_out_db = None
self.carriers_in = None
self.carriers_out = None
# TODO|jla: discuss factor 2 in the linear lineic attenuation
@property
def sim_params(self):
return self._sim_params
@sim_params.setter
def sim_params(self, sim_params=None):
self._sim_params = sim_params
def update_pref(self, pref, *carriers):
pch_out_db = lin2db(mean([carrier.power.signal for carrier in carriers])) + 30
self.pch_out_db = round(pch_out_db, 2)
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
def __call__(self, spectral_info):
self.carriers_in = spectral_info.carriers
carriers = tuple(self.propagate(*spectral_info.carriers))
pref = self.update_pref(spectral_info.pref, *carriers)
self.carriers_out = carriers
return spectral_info._replace(carriers=carriers, pref=pref)
def propagate(self, *carriers):
for propagated_carrier in propagate_raman_fiber(self, *carriers):
yield propagated_carrier
class EdfaParams:
def __init__(self, **params):
@@ -430,16 +476,16 @@ class EdfaParams:
if params == {}:
self.type_variety = ''
self.type_def = ''
self.gain_flatmax = 0
self.gain_min = 0
self.p_max = 0
self.nf_model = None
self.nf_fit_coeff = None
self.nf_ripple = None
self.dgt = None
self.gain_ripple = None
self.out_voa_auto = False
self.allowed_for_design = None
# self.gain_flatmax = 0
# self.gain_min = 0
# self.p_max = 0
# self.nf_model = None
# self.nf_fit_coeff = None
# self.nf_ripple = None
# self.dgt = None
# self.gain_ripple = None
# self.out_voa_auto = False
# self.allowed_for_design = None
def update_params(self, kwargs):
for k,v in kwargs.items() :
@@ -447,22 +493,33 @@ class EdfaParams:
if isinstance(v, dict) else v)
class EdfaOperational:
def __init__(self, gain_target, tilt_target, out_voa=None):
self.gain_target = gain_target
self.tilt_target = tilt_target
self.out_voa = out_voa
default_values = \
{
'gain_target': None,
'delta_p': None,
'out_voa': None,
'tilt_target': 0
}
def __init__(self, **operational):
self.update_attr(operational)
def update_attr(self, kwargs):
clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
for k,v in self.default_values.items():
setattr(self, k, clean_kwargs.get(k,v))
def __repr__(self):
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')
class Edfa(Node):
def __init__(self, *args, params={}, operational={}, **kwargs):
#TBC is this useful? put in comment for now:
#if params is None:
# params = {}
#if operational is None:
# operational = {}
def __init__(self, *args, params=None, operational=None, **kwargs):
if params is None:
params = {}
if operational is None:
operational = {}
super().__init__(
*args,
params=EdfaParams(**params),
@@ -479,14 +536,16 @@ class Edfa(Node):
self.pin_db = None
self.nch = None
self.pout_db = None
self.dp_db = None #delta P with Pref (power swwep) in power mode
self.target_pch_out_db = None
self.effective_pch_out_db = None
self.passive = False
self.effective_gain = self.operational.gain_target
self.att_in = None
self.carriers_in = None
self.carriers_out = None
self.effective_gain = self.operational.gain_target
self.delta_p = self.operational.delta_p #delta P with Pref (power swwep) in power mode
self.tilt_target = self.operational.tilt_target
self.out_voa = self.operational.out_voa
@property
def to_json(self):
@@ -494,9 +553,10 @@ class Edfa(Node):
'type' : type(self).__name__,
'type_variety' : self.params.type_variety,
'operational' : {
'gain_target' : self.operational.gain_target,
'tilt_target' : self.operational.tilt_target,
'out_voa' : self.operational.out_voa
'gain_target' : self.effective_gain,
'delta_p' : self.delta_p,
'tilt_target' : self.tilt_target,
'out_voa' : self.out_voa
},
'metadata' : {
'location': self.metadata['location']._asdict()
@@ -505,7 +565,7 @@ class Edfa(Node):
def __repr__(self):
return (f'{type(self).__name__}(uid={self.uid!r}, '
f'type_variety={self.params.type_variety!r}'
f'type_variety={self.params.type_variety!r}, '
f'interpol_dgt={self.interpol_dgt!r}, '
f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
@@ -528,23 +588,20 @@ class Edfa(Node):
f' pad att_in (dB): {self.att_in:.2f}',
f' Power In (dBm): {self.pin_db:.2f}',
f' Power Out (dBm): {self.pout_db:.2f}',
f' Delta_P (dB): {self.dp_db!r}',
f' Delta_P (dB): {self.delta_p!r}',
f' target pch (dBm): {self.target_pch_out_db!r}',
f' effective pch (dBm): {self.effective_pch_out_db!r}',
f' output VOA (dB): {self.operational.out_voa:.2f}'])
f' output VOA (dB): {self.out_voa:.2f}'])
def carriers(self, loc, attr):
"""retrieve carriers information
loc = (in, out) of the class element
attr = (ase, nli, signal, total) power information"""
:param loc: (in, out) of the class element
:param attr: (ase, nli, signal, total) power information
"""
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
yield None
return
power_dict = {
'nli': 'nonlinear_interference',
'ase': 'amplified_spontaneous_emission'
}
attr = power_dict.get(attr, attr)
loc_attr = 'carriers_'+loc
for c in getattr(self, loc_attr) :
if attr == 'total':
@@ -553,69 +610,106 @@ class Edfa(Node):
yield c.power._asdict().get(attr, None)
def interpol_params(self, frequencies, pin, baud_rates, pref):
"""interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from json
"""interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
set the edfa class __init__ None parameters :
self.channel_freq, self.nf, self.interpol_dgt and self.interpol_gain_ripple
"""
# TODO|jla: read amplifier actual frequencies from additional params in json
amplifier_freq = itufs(0.05) * 1e12 # Hz
amplifier_freq = itufl(len(self.params.dgt), self.params.f_min, self.params.f_max) # Hz
self.channel_freq = frequencies
self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
self.interpol_nf_ripple =interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
self.nch = frequencies.size
self.pin_db = lin2db(sum(pin*1e3))
"""in power mode: dp_db is defined and can be used to calculate the power target
"""in power mode: delta_p is defined and can be used to calculate the power target
This power target is used calculate the amplifier gain"""
if self.dp_db is not None:
self.target_pch_out_db = round(self.dp_db + pref.p0, 2)
self.effective_gain = self.target_pch_out_db - pref.pi
else:
self.effective_gain = self.operational.gain_target
"""check power saturation and correct target_gain accordingly:"""
self.effective_gain = min(self.effective_gain, self.params.p_max - self.pin_db)
self.effective_pch_out_db = round(pref.pi + self.effective_gain, 2)
if self.delta_p is not None:
self.target_pch_out_db = round(self.delta_p + pref.p_span0, 2)
self.effective_gain = self.target_pch_out_db - pref.p_spani
"""check power saturation and correct effective gain & power accordingly:"""
self.effective_gain = min(
self.effective_gain,
self.params.p_max - (pref.p_spani + pref.neq_ch)
)
#print(self.uid, self.effective_gain, self.operational.gain_target)
self.effective_pch_out_db = round(pref.p_spani + self.effective_gain, 2)
"""check power saturation and correct target_gain accordingly:"""
#print(self.uid, self.effective_gain, self.pin_db, pref.p_spani)
self.nf = self._calc_nf()
self.gprofile = self._gain_profile(pin)
pout = (pin + self.noise_profile(baud_rates))*db2lin(self.gprofile)
self.pout_db = lin2db(sum(pout*1e3))
self.operational.gain_target = self.effective_gain
# ase & nli are only calculated in signal bandwidth
# pout_db is not the absolute full output power (negligible if sufficient channels)
def _nf(self, type_def, nf_model, nf_fit_coeff, gain_min, gain_flatmax, gain_target):
#if hybrid raman, use edfa_gain_flatmax attribute, else use gain_flatmax
#gain_flatmax = getattr(params, 'edfa_gain_flatmax', params.gain_flatmax)
pad = max(gain_min - gain_target, 0)
gain_target += pad
dg = max(gain_flatmax - gain_target, 0)
if type_def == 'variable_gain':
g1a = gain_target - nf_model.delta_p - dg
nf_avg = lin2db(db2lin(nf_model.nf1) + db2lin(nf_model.nf2)/db2lin(g1a))
elif type_def == 'fixed_gain':
nf_avg = nf_model.nf0
elif type_def == 'openroadm':
pin_ch = self.pin_db - lin2db(self.nch)
# model OSNR = f(Pin)
nf_avg = pin_ch - polyval(nf_model.nf_coef, pin_ch) + 58
elif type_def == 'advanced_model':
nf_avg = polyval(nf_fit_coeff, -dg)
else:
assert False, "Unrecognized amplifier type, this should have been checked by the JSON loader"
return nf_avg+pad, pad
def _calc_nf(self, avg = False):
"""nf calculation based on 2 models: self.params.nf_model.enabled from json import:
True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
False => polynomial fit based on self.params.nf_fit_coeff"""
# TODO|jla: TBD alarm rising or input VOA padding in case
# gain_min > gain_target TBD:
pad = max(self.params.gain_min - self.effective_gain, 0)
self.att_in = pad
gain_target = self.effective_gain + pad
dg = max(self.params.gain_flatmax - gain_target, 0)
if self.params.type_def == 'variable_gain':
g1a = gain_target - self.params.nf_model.delta_p - dg
nf_avg = lin2db(db2lin(self.params.nf_model.nf1) + db2lin(self.params.nf_model.nf2)/db2lin(g1a))
elif self.params.type_def == 'fixed_gain':
nf_avg = self.params.nf_model.nf0
elif self.params.type_def == 'openroadm':
pin_ch = self.pin_db - lin2db(self.nch)
# model OSNR = f(Pin)
nf_avg = pin_ch - polyval(self.params.nf_model.nf_coef, pin_ch) + 58
else:
nf_avg = polyval(self.params.nf_fit_coeff, -dg)
if self.params.type_def == 'dual_stage':
g1 = self.params.preamp_gain_flatmax
g2 = self.effective_gain - g1
nf1_avg, pad = self._nf( self.params.preamp_type_def,
self.params.preamp_nf_model,
self.params.preamp_nf_fit_coeff,
self.params.preamp_gain_min,
self.params.preamp_gain_flatmax,
g1)
#no padding expected for the 1stage because g1 = gain_max
nf2_avg, pad = self._nf( self.params.booster_type_def,
self.params.booster_nf_model,
self.params.booster_nf_fit_coeff,
self.params.booster_gain_min,
self.params.booster_gain_flatmax,
g2)
nf_avg = lin2db(db2lin(nf1_avg) + db2lin(nf2_avg-g1))
#no padding expected for the 1stage because g1 = gain_max
pad = 0
else:
nf_avg, pad = self._nf( self.params.type_def,
self.params.nf_model,
self.params.nf_fit_coeff,
self.params.gain_min,
self.params.gain_flatmax,
self.effective_gain)
self.att_in = pad # not used to attenuate carriers, only used in _repr_ and _str_
if avg:
return nf_avg + pad
return nf_avg
else:
return self.interpol_nf_ripple + nf_avg + pad # input VOA = 1 for 1 NF degradation
return self.interpol_nf_ripple + nf_avg # input VOA = 1 for 1 NF degradation
def noise_profile(self, df):
""" noise_profile(bw) computes amplifier ase (W) in signal bw (Hz)
"""noise_profile(bw) computes amplifier ase (W) in signal bw (Hz)
noise is calculated at amplifier input
:bw: signal bandwidth = baud rate in Hz
@@ -705,7 +799,7 @@ class Edfa(Node):
# Calculate the target slope - currently assumes equal spaced channels
# TODO|jla: support arbitrary channel spacing
targ_slope = self.operational.tilt_target / (len(nb_channel) - 1)
targ_slope = self.tilt_target / (len(nb_channel) - 1)
# first estimate of DGT scaling
if abs(dgt_slope) > 0.001: # check for zero value due to flat dgt
@@ -770,7 +864,7 @@ class Edfa(Node):
return g1st - voa + array(self.interpol_dgt) * dgts3
def propagate(self, pref, *carriers):
"""add ase noise to the propagating carriers of SpectralInformation"""
"""add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
pin = array([c.power.signal+c.power.nli+c.power.ase for c in carriers]) # pin in W
freq = array([c.frequency for c in carriers])
brate = array([c.baud_rate for c in carriers])
@@ -779,22 +873,22 @@ class Edfa(Node):
gains = db2lin(self.gprofile)
carrier_ases = self.noise_profile(brate)
att = db2lin(self.operational.out_voa)
att = db2lin(self.out_voa)
for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal*gain/att,
nonlinear_interference=pwr.nli*gain/att,
amplified_spontaneous_emission=(pwr.ase+carrier_ase)*gain/att)
nli=pwr.nli*gain/att,
ase=(pwr.ase+carrier_ase)*gain/att)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p0,
p_spani=pref.pi + self.effective_gain - self.operational.out_voa)
return pref._replace(p_span0=pref.p_span0,
p_spani=pref.p_spani + self.effective_gain - self.out_voa)
def __call__(self, spectral_info):
self.carriers_in = spectral_info.carriers
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
self.carriers_out = carriers
return spectral_info.update(carriers=carriers, pref=pref)
return spectral_info._replace(carriers=carriers, pref=pref)

View File

@@ -9,7 +9,6 @@ This module contains functionality for specifying equipment.
'''
from numpy import clip, polyval
from sys import exit
from operator import itemgetter
from math import isclose
from pathlib import Path
@@ -17,64 +16,169 @@ from json import load
from gnpy.core.utils import lin2db, db2lin, load_json
from collections import namedtuple
from gnpy.core.elements import Edfa
from gnpy.core.exceptions import EquipmentConfigError
import time
Model_vg = namedtuple('Model_vg', 'nf1 nf2 delta_p')
Model_fg = namedtuple('Model_fg', 'nf0')
Model_openroadm = namedtuple('Model_openroadm', 'nf_coef')
Fiber = namedtuple('Fiber', 'type_variety dispersion gamma')
Spans = namedtuple('Spans', 'power_mode delta_power_range_db max_length length_units \
max_loss padding EOL con_in con_out')
Transceiver = namedtuple('Transceiver', 'type_variety frequency mode')
Roadms = namedtuple('Roadms', 'gain_mode_default_loss power_mode_pout_target add_drop_osnr')
SI = namedtuple('SI', 'f_min f_max baud_rate spacing roll_off \
power_dbm power_range_db tx_osnr sys_margins')
AmpBase = namedtuple(
'AmpBase',
'type_variety type_def gain_flatmax gain_min p_max'
' nf_model nf_fit_coeff nf_ripple dgt gain_ripple out_voa_auto allowed_for_design')
class Amp(AmpBase):
def __new__(cls,
type_variety, type_def, gain_flatmax, gain_min, p_max, nf_model=None,
nf_fit_coeff=None, nf_ripple=None, dgt=None, gain_ripple=None,
out_voa_auto=False, allowed_for_design=True):
return super().__new__(cls,
type_variety, type_def, gain_flatmax, gain_min, p_max,
nf_model, nf_fit_coeff, nf_ripple, dgt, gain_ripple,
out_voa_auto, allowed_for_design)
Model_hybrid = namedtuple('Model_hybrid', 'nf_ram gain_ram edfa_variety')
Model_dual_stage = namedtuple('Model_dual_stage', 'preamp_variety booster_variety')
class common:
def update_attr(self, default_values, kwargs, name):
clean_kwargs = {k:v for k, v in kwargs.items() if v != ''}
for k, v in default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
if k not in clean_kwargs and name != 'Amp':
print(f'\x1b[1;31;40m'+
f'\n WARNING missing {k} attribute in eqpt_config.json[{name}]'+
f'\n default value is {k} = {v}'+
f'\x1b[0m')
time.sleep(1)
class SI(common):
default_values =\
{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 45,
"sys_margins": 0
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'SI')
class Span(common):
default_values = \
{
'power_mode': True,
'delta_power_range_db': None,
'max_fiber_lineic_loss_for_raman': 0.25,
'target_extended_gain': 2.5,
'max_length': 150,
'length_units': 'km',
'max_loss': None,
'padding': 10,
'EOL': 0,
'con_in': 0,
'con_out': 0
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Span')
class Roadm(common):
default_values = \
{
'target_pch_out_db': -17,
'add_drop_osnr': 100,
'restrictions': {
'preamp_variety_list':[],
'booster_variety_list':[]
}
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Roadm')
class Transceiver(common):
default_values = \
{
'type_variety': None,
'frequency': None,
'mode': {}
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Transceiver')
class Fiber(common):
default_values = \
{
'type_variety': '',
'dispersion': None,
'gamma': 0
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Fiber')
class RamanFiber(common):
default_values = \
{
'type_variety': '',
'dispersion': None,
'gamma': 0,
'raman_efficiency': None
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'RamanFiber')
for param in ('cr', 'frequency_offset'):
if param not in self.raman_efficiency:
raise EquipmentConfigError(f'RamanFiber.raman_efficiency: missing "{param}" parameter')
if self.raman_efficiency['frequency_offset'] != sorted(self.raman_efficiency['frequency_offset']):
raise EquipmentConfigError(f'RamanFiber.raman_efficiency.frequency_offset is not sorted')
class Amp(common):
default_values = \
{
'f_min': 191.35e12,
'f_max': 196.1e12,
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'nf_fit_coeff': None,
'nf_ripple': None,
'dgt': None,
'gain_ripple': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Amp')
@classmethod
def from_advanced_json(cls, filename, **kwargs):
with open(filename, encoding='utf-8') as f:
json_data = load(f)
return cls(**{**kwargs, **json_data, 'type_def':None, 'nf_model':None})
def from_json(cls, filename, **kwargs):
config = Path(filename).parent / 'default_edfa_config.json'
@classmethod
def from_default_json(cls, filename, **kwargs):
with open(filename, encoding='utf-8') as f:
json_data = load(f)
type_variety = kwargs['type_variety']
type_def = kwargs.get('type_def', 'variable_gain') #default compatibility with older json eqpt files
type_def = kwargs.get('type_def', 'variable_gain') # default compatibility with older json eqpt files
nf_def = None
dual_stage_def = None
if type_def == 'fixed_gain':
try:
nf0 = kwargs.pop('nf0')
except KeyError: #nf0 is expected for a fixed gain amp
print(f'missing nf0 value input for amplifier: {type_variety} in eqpt_config.json')
exit()
try: #remove all remaining nf inputs
del kwargs['nf_min']
del kwargs['nf_max']
except KeyError: pass #nf_min and nf_max are not needed for fixed gain amp
raise EquipmentConfigError(f'missing nf0 value input for amplifier: {type_variety} in equipment config')
for k in ('nf_min', 'nf_max'):
try:
del kwargs[k]
except KeyError:
pass
nf_def = Model_fg(nf0)
elif type_def == 'advanced_model':
config = Path(filename).parent / kwargs.pop('advanced_config_from_json')
elif type_def == 'variable_gain':
gain_min, gain_max = kwargs['gain_min'], kwargs['gain_flatmax']
try: #nf_min and nf_max are expected for a variable gain amp
nf_min = kwargs.pop('nf_min')
nf_max = kwargs.pop('nf_max')
except KeyError:
print(f'missing nf_min/max value input for amplifier: {type_variety} in eqpt_config.json')
exit()
raise EquipmentConfigError(f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config')
try: #remove all remaining nf inputs
del kwargs['nf0']
except KeyError: pass #nf0 is not needed for variable gain amp
@@ -84,19 +188,28 @@ class Amp(AmpBase):
try:
nf_coef = kwargs.pop('nf_coef')
except KeyError: #nf_coef is expected for openroadm amp
print(f'missing nf_coef input for amplifier: {type_variety} in eqpt_config.json')
exit()
raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config')
nf_def = Model_openroadm(nf_coef)
return cls(**{**kwargs, **json_data, 'nf_model': nf_def})
elif type_def == 'dual_stage':
try: #nf_ram and gain_ram are expected for a hybrid amp
preamp_variety = kwargs.pop('preamp_variety')
booster_variety = kwargs.pop('booster_variety')
except KeyError:
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config')
dual_stage_def = Model_dual_stage(preamp_variety, booster_variety)
with open(config, encoding='utf-8') as f:
json_data = load(f)
return cls(**{**kwargs, **json_data,
'nf_model': nf_def, 'dual_stage_model': dual_stage_def})
def nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
if nf_min < -10:
print(f'Invalid nf_min value {nf_min!r} for amplifier {type_variety}')
exit()
raise EquipmentConfigError(f'Invalid nf_min value {nf_min!r} for amplifier {type_variety}')
if nf_max < -10:
print(f'Invalid nf_max value {nf_max!r} for amplifier {type_variety}')
exit()
raise EquipmentConfigError(f'Invalid nf_max value {nf_max!r} for amplifier {type_variety}')
# NF estimation model based on nf_min and nf_max
# delta_p: max power dB difference between first and second stage coils
@@ -111,8 +224,7 @@ def nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
nf1 = lin2db(db2lin(nf_min) - db2lin(nf2)/db2lin(g1a_max))
if nf1 < 4:
print(f'First coil value too low {nf1} for amplifier {type_variety}')
exit()
raise EquipmentConfigError(f'First coil value too low {nf1} for amplifier {type_variety}')
# Check 1 dB < delta_p < 6 dB to ensure nf_min and nf_max values make sense.
# There shouldn't be high nf differences between the two coils:
@@ -123,21 +235,18 @@ def nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
g1a_max = lin2db(db2lin(nf2) / (db2lin(nf_min) - db2lin(nf1)))
delta_p = gain_max - g1a_max
g1a_min = gain_min - (gain_max-gain_min) - delta_p
if not 1 < delta_p < 6:
print(f'Computed \N{greek capital letter delta}P invalid \
if not 1 < delta_p < 11:
raise EquipmentConfigError(f'Computed \N{greek capital letter delta}P invalid \
\n 1st coil vs 2nd coil calculated DeltaP {delta_p:.2f} for \
\n amplifier {type_variety} is not valid: revise inputs \
\n calculated 1st coil NF = {nf1:.2f}, 2nd coil NF = {nf2:.2f}')
exit()
# Check calculated values for nf1 and nf2
calc_nf_min = lin2db(db2lin(nf1) + db2lin(nf2)/db2lin(g1a_max))
if not isclose(nf_min, calc_nf_min, abs_tol=0.01):
print(f'nf_min does not match calc_nf_min, {nf_min} vs {calc_nf_min} for amp {type_variety}')
exit()
raise EquipmentConfigError(f'nf_min does not match calc_nf_min, {nf_min} vs {calc_nf_min} for amp {type_variety}')
calc_nf_max = lin2db(db2lin(nf1) + db2lin(nf2)/db2lin(g1a_min))
if not isclose(nf_max, calc_nf_max, abs_tol=0.01):
print(f'nf_max does not match calc_nf_max, {nf_max} vs {calc_nf_max} for amp {type_variety}')
exit()
raise EquipmentConfigError(f'nf_max does not match calc_nf_max, {nf_max} vs {calc_nf_max} for amp {type_variety}')
return nf1, nf2, delta_p
@@ -145,7 +254,7 @@ def edfa_nf(gain_target, variety_type, equipment):
amp_params = equipment['Edfa'][variety_type]
amp = Edfa(
uid = f'calc_NF',
params = amp_params._asdict(),
params = amp_params.__dict__,
operational = {
'gain_target': gain_target,
'tilt_target': 0
@@ -159,7 +268,7 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)"""
trx_params = {}
default_si_data = equipment['SI']['default']
try:
trxs = equipment['Transceiver']
#if called from path_requests_run.py, trx_mode is filled with None when not specified by user
@@ -172,20 +281,18 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
trx_params = {**mode_params}
# sanity check: spacing baudrate must be smaller than min spacing
if trx_params['baud_rate'] > trx_params['min_spacing'] :
msg = f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" '+\
f'has baud rate: {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.'
print(msg)
exit()
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" '+\
f'has baud rate: {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
else:
mode_params = {"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr":None,
"min_spacing":None,
"cost":None}
trx_params = {**mode_params}
"baud_rate": None,
"OSNR": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr":None,
"min_spacing":None,
"cost":None}
trx_params = {**mode_params}
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
@@ -195,9 +302,7 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
# print(f'spacing {temp}')
except StopIteration :
if error_message:
print(f'could not find tsp : {trx_type_variety} with mode: {trx_mode} in eqpt library')
print('Computation stopped.')
exit()
raise EquipmentConfigError(f'Computation stoped: could not find tsp : {trx_type_variety} with mode: {trx_mode} in eqpt library')
else:
# default transponder charcteristics
# mainly used with transmission_main_example.py
@@ -214,7 +319,7 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
nch = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
trx_params['nb_channel'] = nch
print(f'There are {nch} channels propagating')
trx_params['power'] = db2lin(default_si_data.power_dbm)*1e-3
return trx_params
@@ -222,8 +327,8 @@ def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=F
def automatic_spacing(baud_rate):
"""return the min possible channel spacing for a given baud rate"""
# TODO : this should parametrized in a cfg file
spacing_list = [(33e9,37.5e9), (38e9,50e9), (50e9,62.5e9), (67e9,75e9), (92e9,100e9)] #list of possible tuples
#[(max_baud_rate, spacing_for_this_baud_rate)]
# list of possible tuples [(max_baud_rate, spacing_for_this_baud_rate)]
spacing_list = [(33e9, 37.5e9), (38e9, 50e9), (50e9, 62.5e9), (67e9, 75e9), (92e9, 100e9)]
return min((s[1] for s in spacing_list if s[0] > baud_rate), default=baud_rate*1.2)
def automatic_nch(f_min, f_max, spacing):
@@ -243,6 +348,34 @@ def update_trx_osnr(equipment):
m['OSNR'] = m['OSNR'] + equipment['SI']['default'].sys_margins
return equipment
def update_dual_stage(equipment):
edfa_dict = equipment['Edfa']
for edfa in edfa_dict.values():
if edfa.type_def == 'dual_stage':
edfa_preamp = edfa_dict[edfa.dual_stage_model.preamp_variety]
edfa_booster = edfa_dict[edfa.dual_stage_model.booster_variety]
for key, value in edfa_preamp.__dict__.items():
attr_k = 'preamp_' + key
setattr(edfa, attr_k, value)
for key, value in edfa_booster.__dict__.items():
attr_k = 'booster_' + key
setattr(edfa, attr_k, value)
edfa.p_max = edfa_booster.p_max
edfa.gain_flatmax = edfa_booster.gain_flatmax + edfa_preamp.gain_flatmax
if edfa.gain_min < edfa_preamp.gain_min:
raise EquipmentConfigError(f'Dual stage {edfa.type_variety} min gain is lower than its preamp min gain')
return equipment
def roadm_restrictions_sanity_check(equipment):
""" verifies that booster and preamp restrictions specified in roadm equipment are listed
in the edfa.
"""
restrictions = equipment['Roadm']['default'].restrictions['booster_variety_list'] + \
equipment['Roadm']['default'].restrictions['preamp_variety_list']
for amp_name in restrictions:
if amp_name not in equipment['Edfa']:
raise EquipmentConfigError(f'ROADM restriction {amp_name} does not refer to a defined EDFA name')
def equipment_from_json(json_data, filename):
"""build global dictionnary eqpt_library that stores all eqpt characteristics:
edfa type type_variety, fiber type_variety
@@ -257,15 +390,12 @@ def equipment_from_json(json_data, filename):
equipment[key] = {}
typ = globals()[key]
for entry in entries:
subkey = entry.get('type_variety', 'default')
subkey = entry.get('type_variety', 'default')
if key == 'Edfa':
if 'advanced_config_from_json' in entry:
config = Path(filename).parent / entry.pop('advanced_config_from_json')
equipment[key][subkey] = Amp.from_advanced_json(config, **entry)
else:
config = Path(filename).parent / 'default_edfa_config.json'
equipment[key][subkey] = Amp.from_default_json(config, **entry)
else:
equipment[key][subkey] = Amp.from_json(filename, **entry)
else:
equipment[key][subkey] = typ(**entry)
equipment = update_trx_osnr(equipment)
equipment = update_dual_stage(equipment)
roadm_restrictions_sanity_check(equipment)
return equipment

19
gnpy/core/exceptions.py Normal file
View File

@@ -0,0 +1,19 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.exceptions
====================
Exceptions thrown by other gnpy modules
'''
class ConfigurationError(Exception):
'''User-provided configuration contains an error'''
class EquipmentConfigError(ConfigurationError):
'''Incomplete or wrong configuration within the equipment library'''
class NetworkTopologyError(ConfigurationError):
'''Topology of user-provided network is wrong'''

View File

@@ -5,7 +5,7 @@
gnpy.core.info
==============
This module contains classes for modelling SpectralInformation.
This module contains classes for modelling :class:`SpectralInformation`.
'''
@@ -16,53 +16,34 @@ from json import loads
from gnpy.core.utils import load_json
from gnpy.core.equipment import automatic_nch, automatic_spacing
class ConvenienceAccess:
def __init_subclass__(cls):
for abbrev, field in getattr(cls, '_ABBREVS', {}).items():
setattr(cls, abbrev, property(lambda self, f=field: getattr(self, f)))
def update(self, **kwargs):
for abbrev, field in getattr(self, '_ABBREVS', {}).items():
if abbrev in kwargs:
kwargs[field] = kwargs.pop(abbrev)
return self._replace(**kwargs)
class Power(namedtuple('Power', 'signal nli ase')):
"""carriers power in W"""
class Power(namedtuple('Power', 'signal nonlinear_interference amplified_spontaneous_emission'), ConvenienceAccess):
_ABBREVS = {'nli': 'nonlinear_interference',
'ase': 'amplified_spontaneous_emission',}
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power')):
pass
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power'), ConvenienceAccess):
class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
"""noiseless reference power in dBm:
p_span0: inital target carrier power
p_spani: carrier power after element i
neq_ch: equivalent channel count in dB"""
_ABBREVS = {'channel': 'channel_number',
'num_chan': 'channel_number',
'ffs': 'frequency',
'freq': 'frequency',}
class Pref(namedtuple('Pref', 'p_span0, p_spani'), ConvenienceAccess):
class SpectralInformation(namedtuple('SpectralInformation', 'pref carriers')):
_ABBREVS = {'p0' : 'p_span0',
'pi' : 'p_spani'}
class SpectralInformation(namedtuple('SpectralInformation', 'pref carriers'), ConvenienceAccess):
def __new__(cls, pref=Pref(0, 0), *carriers):
def __new__(cls, pref, carriers):
return super().__new__(cls, pref, carriers)
def merge_input_spectral_information(*si):
"""mix channel combs of different baud rates and power"""
#TODO
pass
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
# pref in dB : convert power lin into power in dB
pref = lin2db(power * 1e3)
si = SpectralInformation(pref=Pref(pref, pref))
nb_channel = automatic_nch(f_min, f_max, spacing)
si = si.update(carriers=[
si = SpectralInformation(
pref=Pref(pref, pref, lin2db(nb_channel)),
carriers=[
Channel(f, (f_min+spacing*f),
baud_rate, roll_off, Power(power, 0, 0)) for f in range(1,nb_channel+1)
])
@@ -81,11 +62,11 @@ if __name__ == '__main__':
si = SpectralInformation()
spacing = 0.05 # THz
si = si.update(carriers=tuple(Channel(f+1, 191.3+spacing*(f+1), 32e9, 0.15, Power(1e-3, f, 1)) for f in range(96)))
si = si._replace(carriers=tuple(Channel(f+1, 191.3+spacing*(f+1), 32e9, 0.15, Power(1e-3, f, 1)) for f in range(96)))
print(f'si = {si}')
print(f'si = {si.carriers[0].power.nli}')
print(f'si = {si.carriers[20].power.nli}')
si2 = si.update(carriers=tuple(c.update(power = c.power.update(nli = c.power.nli * 1e5))
si2 = si._replace(carriers=tuple(c._replace(power = c.power._replace(nli = c.power.nli * 1e5))
for c in si.carriers))
print(f'si2 = {si2}')

View File

@@ -11,15 +11,18 @@ This module contains functions for constructing networks of network elements.
from gnpy.core.convert import convert_file
from networkx import DiGraph
from numpy import arange
from scipy.interpolate import interp1d
from logging import getLogger
from os import path
from operator import itemgetter
from operator import itemgetter, attrgetter
from gnpy.core import elements
from gnpy.core.elements import Fiber, Edfa, Transceiver, Roadm, Fused
from gnpy.core.elements import Fiber, Edfa, Transceiver, Roadm, Fused, RamanFiber
from gnpy.core.equipment import edfa_nf
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
from gnpy.core.units import UNITS
from gnpy.core.utils import load_json, save_json, round2float, db2lin, lin2db
from sys import exit
from gnpy.core.utils import (load_json, save_json, round2float, db2lin,
merge_amplifier_restrictions)
from gnpy.core.science_utils import SimParams
from collections import namedtuple
logger = getLogger(__name__)
@@ -51,11 +54,12 @@ def network_from_json(json_data, equipment):
variety = el_config.pop('type_variety', 'default')
if typ in equipment and variety in equipment[typ]:
extra_params = equipment[typ][variety]
el_config.setdefault('params', {}).update(extra_params._asdict())
elif typ in ['Edfa', 'Fiber']: #catch it now because the code will crash later!
print( f'The {typ} of variety type {variety} was not recognized:'
temp = el_config.setdefault('params', {})
temp = merge_amplifier_restrictions(temp, extra_params.__dict__)
el_config['params'] = temp
elif typ in ['Edfa', 'Fiber']: # catch it now because the code will crash later!
raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
exit()
cls = getattr(elements, typ)
el = cls(**el_config)
g.add_node(el)
@@ -65,11 +69,13 @@ def network_from_json(json_data, equipment):
for cx in json_data['connections']:
from_node, to_node = cx['from_node'], cx['to_node']
try:
g.add_edge(nodes[from_node], nodes[to_node])
if isinstance(nodes[from_node], Fiber):
edge_length = nodes[from_node].params.length
else:
edge_length = 0.01
g.add_edge(nodes[from_node], nodes[to_node], weight = edge_length)
except KeyError:
msg = f'In {__name__} network_from_json function:\n\tcan not find {from_node} or {to_node} defined in {cx}'
print(msg)
exit(1)
raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}')
return g
@@ -86,16 +92,27 @@ def network_to_json(network):
data.update(connections)
return data
def select_edfa(gain_target, power_target, equipment):
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
"""amplifer selection algorithm
@Orange Jean-Luc Augé
"""
Edfa_list = namedtuple('Edfa_list', 'variety power gain nf')
TARGET_EXTENDED_GAIN = 2.1
#MAX_EXTENDED_GAIN = 5
edfa_dict = equipment['Edfa']
Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf')
TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain
# for roadm restriction only: create a dict including not allowed for design amps
# because main use case is to have specific radm amp which are not allowed for ILA
# with the auto design
edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items()
if restrictions is None or name in restrictions}
pin = power_target - gain_target
# create 2 list of available amplifiers with relevant attributes for their selection
# edfa list with:
# extended gain min allowance of 3dB: could be parametrized, but a bit complex
# extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json
# power attribut include power AND gain limitations
edfa_list = [Edfa_list(
variety=edfa_variety,
power=min(
@@ -105,86 +122,116 @@ def select_edfa(gain_target, power_target, equipment):
edfa.p_max
)
-power_target,
gain=edfa.gain_flatmax-gain_target,
gain_min=
gain_target+3
-edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment)) \
for edfa_variety, edfa in edfa_dict.items()
if edfa.allowed_for_design]
if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
acceptable_gain_list = \
list(filter(lambda x : x.gain>-TARGET_EXTENDED_GAIN, edfa_list))
if len(acceptable_gain_list) < 1:
#no amplifier satisfies the required gain, so pick the highest gain:
gain_max = max(edfa_list, key=itemgetter(2)).gain
#pick up all amplifiers that share this max gain:
acceptable_gain_list = \
list(filter(lambda x : x.gain-gain_max>-0.1, edfa_list))
acceptable_power_list = \
list(filter(lambda x : x.power>=0, acceptable_gain_list))
#consider a Raman list because of different gain_min requirement:
#do not allow extended gain min for Raman
raman_list = [Edfa_list(
variety=edfa_variety,
power=min(
pin
+edfa.gain_flatmax
+TARGET_EXTENDED_GAIN,
edfa.p_max
)
-power_target,
gain_min=
gain_target
-edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment))
for edfa_variety, edfa in edfa_dict.items()
if (edfa.allowed_for_design and edfa.raman)] \
if raman_allowed else []
#merge raman and edfa lists
amp_list = edfa_list + raman_list
#filter on min gain limitation:
acceptable_gain_min_list = [x for x in amp_list if x.gain_min>0]
if len(acceptable_gain_min_list) < 1:
#do not take this empty list into account for the rest of the code
#but issue a warning to the user and do not consider Raman
#Raman below min gain should not be allowed because i is meant to be a design requirement
#and raman padding at the amplifier input is impossible!
if len(edfa_list) < 1:
raise ConfigurationError(f'auto_design could not find any amplifier \
to satisfy min gain requirement in node {uid} \
please increase span fiber padding')
else:
# TODO: convert to logging
print(
f'\x1b[1;31;40m'\
+ f'WARNING: target gain in node {uid} is below all available amplifiers min gain: \
amplifier input padding will be assumed, consider increase span fiber padding instead'\
+ '\x1b[0m'
)
acceptable_gain_min_list = edfa_list
#filter on gain+power limitation:
#this list checks both the gain and the power requirement
#because of the way .power is calculated in the list
acceptable_power_list = [x for x in acceptable_gain_min_list if x.power>0]
if len(acceptable_power_list) < 1:
#no amplifier satisfies the required power, so pick the highest power:
power_max = \
max(acceptable_gain_list, key=itemgetter(1)).power
#pick up all amplifiers that share this max gain:
acceptable_power_list = \
list(filter(lambda x : x.power-power_max>-0.1, acceptable_gain_list))
#no amplifier satisfies the required power, so pick the highest power(s):
power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power
#check and pick if other amplifiers may have a similar gain/power
#allow a 0.3dB power range
#this allows to chose an amplifier with a better NF subsequentely
acceptable_power_list = [x for x in acceptable_gain_min_list
if x.power-power_max>-0.3]
# gain and power requirements are resolved,
# =>chose the amp with the best NF among the acceptable ones:
return min(acceptable_power_list, key=itemgetter(3)).variety #filter on NF
selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) #filter on NF
#check what are the gain and power limitations of this amp
power_reduction = round(min(selected_edfa.power, 0),2)
if power_reduction < -0.5:
print(
f'\x1b[1;31;40m'\
+ f'WARNING: target gain and power in node {uid}\n \
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
a power reduction of {power_reduction} is applied\n'\
+ '\x1b[0m'
)
def set_roadm_loss(network, equipment, pref_ch_db):
roadms = [roadm for roadm in network if isinstance(roadm, Roadm)]
power_mode = equipment['Spans']['default'].power_mode
default_roadm_loss = equipment['Roadms']['default'].gain_mode_default_loss
pout_target = equipment['Roadms']['default'].power_mode_pout_target
roadm_loss = pref_ch_db - pout_target
return selected_edfa.variety, power_reduction
for roadm in roadms:
if power_mode:
roadm.loss = roadm_loss
roadm.target_pch_out_db = pout_target
elif roadm.loss == None:
roadm.loss = default_roadm_loss
def target_power(dp_from_gain, network, node, equipment): #get_fiber_dp
def target_power(network, node, equipment): #get_fiber_dp
SPAN_LOSS_REF = 20
POWER_SLOPE = 0.3
power_mode = equipment['Spans']['default'].power_mode
dp_range = list(equipment['Spans']['default'].delta_power_range_db)
power_mode = equipment['Span']['default'].power_mode
dp_range = list(equipment['Span']['default'].delta_power_range_db)
node_loss = span_loss(network, node)
dp_gain_mode = 0
try:
dp_power_mode = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
dp_power_mode = max(dp_range[0], dp_power_mode)
dp_power_mode = min(dp_range[1], dp_power_mode)
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
dp = max(dp_range[0], dp)
dp = min(dp_range[1], dp)
except KeyError:
print(f'invalid delta_power_range_db definition in eqpt_config[Spans]'
raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
f'delta_power_range_db: [lower_bound, upper_bound, step]')
exit()
if dp_from_gain:
dp_power_mode = dp_from_gain
dp_gain_mode = dp_from_gain
if isinstance(node, Roadm):
dp_power_mode = 0
dp = dp_power_mode if power_mode else dp_gain_mode
#print(f'{repr(node)} delta power in:\n{dp}dB')
dp = 0
return dp
def prev_node_generator(network, node):
"""fused spans interest:
iterate over all predecessors while they are Fused or Fiber type"""
try:
prev_node = next(n for n in network.predecessors(node))
except StopIteration:
msg = f'In {__name__} prev_node_generator function:\n\t{node.uid} is not properly connected, please check network topology'
print(msg)
logger.critical(msg)
exit(1)
raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
# yield and re-iterate
if isinstance(prev_node, Fused) or isinstance(node, Fused):
yield prev_node
@@ -198,8 +245,7 @@ def next_node_generator(network, node):
try:
next_node = next(n for n in network.successors(node))
except StopIteration:
print(f'In {__name__} next_node_generator function:\n\t{node.uid} is not properly connected, please check network topology')
exit(1)
raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology')
# yield and re-iterate
if isinstance(next_node, Fused) or isinstance(node, Fused):
yield next_node
@@ -243,23 +289,22 @@ def find_last_node(network, node):
pass
return this_node
def set_amplifier_voa(amp, pref_total_db, power_mode):
VOA_MARGIN = 0
if amp.operational.out_voa is None:
def set_amplifier_voa(amp, power_target, power_mode):
VOA_MARGIN = 1 #do not maximize the VOA optimization
if amp.out_voa is None:
if power_mode:
gain_target = amp.operational.gain_target
pout = pref_total_db + amp.dp_db
voa = min(amp.params.p_max-pout,
amp.params.gain_flatmax-amp.operational.gain_target)
voa = round2float(max(voa, 0), 0.5) - VOA_MARGIN if amp.params.out_voa_auto else 0
amp.dp_db = amp.dp_db + voa
amp.operational.gain_target = amp.operational.gain_target + voa
gain_target = amp.effective_gain
voa = min(amp.params.p_max-power_target,
amp.params.gain_flatmax-amp.effective_gain)
voa = max(round2float(max(voa, 0), 0.5) - VOA_MARGIN, 0) if amp.params.out_voa_auto else 0
amp.delta_p = amp.delta_p + voa
amp.effective_gain = amp.effective_gain + voa
else:
voa = 0 # no output voa optimization in gain mode
amp.operational.out_voa = voa
amp.out_voa = voa
def set_egress_amplifier(network, roadm, equipment, pref_total_db):
power_mode = equipment['Spans']['default'].power_mode
power_mode = equipment['Span']['default'].power_mode
next_oms = (n for n in network.successors(roadm) if not isinstance(n, Transceiver))
for oms in next_oms:
#go through all the OMS departing from the Roadm
@@ -270,30 +315,71 @@ def set_egress_amplifier(network, roadm, equipment, pref_total_db):
# node = find_last_node(next_node)
# next_node = next(n for n in network.successors(node))
# next_node = find_last_node(next_node)
prev_dp = 0
dp = 0
prev_dp = getattr(node.params, 'target_pch_out_db', 0)
dp = prev_dp
prev_voa = 0
voa = 0
while True:
#go through all nodes in the OMS (loop until next Roadm instance)
if isinstance(node, Edfa):
node_loss = span_loss(network, prev_node)
dp_from_gain = prev_dp + node.operational.gain_target - node_loss \
if node.operational.gain_target > 0 else None
dp = target_power(dp_from_gain, network, next_node, equipment)
gain_target = node_loss + dp - prev_dp
voa = node.out_voa if node.out_voa else 0
if node.delta_p is None:
dp = target_power(network, next_node, equipment)
else:
dp = node.delta_p
gain_from_dp = node_loss + dp - prev_dp + prev_voa
if node.effective_gain is None or power_mode:
gain_target = gain_from_dp
else: #gain mode with effective_gain
gain_target = node.effective_gain
dp = prev_dp - node_loss + gain_target
if power_mode:
node.dp_db = dp
node.operational.gain_target = gain_target
power_target = pref_total_db + dp
if node.params.type_variety == '':
power_target = pref_total_db + dp
edfa_variety = select_edfa(gain_target, power_target, equipment)
raman_allowed = False
if isinstance(prev_node, Fiber):
max_fiber_lineic_loss_for_raman = \
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
# implementation of restrictions on roadm boosters
if isinstance(prev_node,Roadm):
if prev_node.restrictions['booster_variety_list']:
restrictions = prev_node.restrictions['booster_variety_list']
else:
restrictions = None
elif isinstance(next_node,Roadm):
# implementation of restrictions on roadm preamp
if next_node.restrictions['preamp_variety_list']:
restrictions = next_node.restrictions['preamp_variety_list']
else:
restrictions = None
else:
restrictions = None
if node.params.type_variety == '':
edfa_variety, power_reduction = select_edfa(raman_allowed,
gain_target, power_target, equipment, node.uid, restrictions)
extra_params = equipment['Edfa'][edfa_variety]
node.params.update_params(extra_params._asdict())
set_amplifier_voa(node, pref_total_db, power_mode)
node.params.update_params(extra_params.__dict__)
dp += power_reduction
gain_target += power_reduction
elif node.params.raman and not raman_allowed:
print(
f'\x1b[1;31;40m'\
+ f'WARNING: raman is used in node {node.uid}\n \
but fiber lineic loss is above threshold\n'\
+ '\x1b[0m'
)
node.delta_p = dp if power_mode else None
node.effective_gain = gain_target
set_amplifier_voa(node, power_target, power_mode)
if isinstance(next_node, Roadm) or isinstance(next_node, Transceiver):
break
prev_dp = dp
prev_voa = voa
prev_node = node
node = next_node
# print(f'{node.uid}')
@@ -309,13 +395,25 @@ def add_egress_amplifier(network, node):
amp = Edfa(
uid = f'Edfa{i}_{node.uid}',
params = {},
metadata = {
'location': {
'latitude': (node.lat * 2 + next_node.lat * 2) / 4,
'longitude': (node.lng * 2 + next_node.lng * 2) / 4,
'city': node.loc.city,
'region': node.loc.region,
}
},
operational = {
'gain_target': 0,
'gain_target': None,
'tilt_target': 0,
})
network.add_node(amp)
network.add_edge(node, amp)
network.add_edge(amp, next_node)
if isinstance(node,Fiber):
edgeweight = node.params.length
else:
edgeweight = 0.01
network.add_edge(node, amp, weight = edgeweight)
network.add_edge(amp, next_node, weight = 0.01)
def calculate_new_length(fiber_length, bounds, target_length):
@@ -351,9 +449,7 @@ def split_fiber(network, fiber, bounds, target_length, equipment):
next_node = next(network.successors(fiber))
prev_node = next(network.predecessors(fiber))
except StopIteration:
print(f'In {__name__} split_fiber function:\n\t{fiber.uid} is not properly connected, please check network topology')
exit()
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
network.remove_node(fiber)
@@ -361,22 +457,40 @@ def split_fiber(network, fiber, bounds, target_length, equipment):
fiber_params['length'] = new_length / UNITS[fiber.params.length_units]
fiber_params['con_in'] = fiber.con_in
fiber_params['con_out'] = fiber.con_out
for span in range(n_spans):
new_span = Fiber(uid = f'{fiber.uid}_({span+1}/{n_spans})',
metadata = fiber.metadata,
params = fiber_params)
network.add_edge(prev_node, new_span)
prev_node = new_span
network.add_edge(prev_node, next_node)
def add_connector_loss(fibers, con_in, con_out, EOL):
for fiber in fibers:
if fiber.con_in is None: fiber.con_in = con_in
if fiber.con_out is None:
fiber.con_out = con_out #con_out includes EOL
f = interp1d([prev_node.lng, next_node.lng], [prev_node.lat, next_node.lat])
xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n+1)/(n_spans+1) for n in range(n_spans)]
ypos = f(xpos)
for span, lng, lat in zip(range(n_spans), xpos, ypos):
new_span = Fiber(uid = f'{fiber.uid}_({span+1}/{n_spans})',
metadata = {
'location': {
'latitude': lat,
'longitude': lng,
'city': fiber.loc.city,
'region': fiber.loc.region,
}
},
params = fiber_params)
if isinstance(prev_node,Fiber):
edgeweight = prev_node.params.length
else:
fiber.con_out = fiber.con_out+EOL
edgeweight = 0.01
network.add_edge(prev_node, new_span, weight = edgeweight)
prev_node = new_span
if isinstance(prev_node,Fiber):
edgeweight = prev_node.params.length
else:
edgeweight = 0.01
network.add_edge(prev_node, next_node, weight = edgeweight)
def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
for fiber in fibers:
if fiber.con_in is None: fiber.con_in = default_con_in
if fiber.con_out is None: fiber.con_out = default_con_out
next_node = next(n for n in network.successors(fiber))
if not isinstance(next_node, Fused):
fiber.con_out += EOL
def add_fiber_padding(network, fibers, padding):
"""last_fibers = (fiber for n in network.nodes()
@@ -388,33 +502,32 @@ def add_fiber_padding(network, fibers, padding):
try:
next_node = next(network.successors(fiber))
except StopIteration:
msg = f'In {__name__} add_fiber_padding function:\n\t{fiber.uid} is not properly connected, please check network topology'
print(msg)
logger.critical(msg)
exit(1)
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
if this_span_loss < padding and not (isinstance(next_node, Fused)):
#add a padding att_in at the input of the 1st fiber:
#address the case when several fibers are spliced together
first_fiber = find_first_node(network, fiber)
if first_fiber.att_in is None:
first_fiber.att_in = padding - this_span_loss
else :
first_fiber.att_in = first_fiber.att_in + padding - this_span_loss
# in order to support no booster , fused might be placed
# just after a roadm: need to check that first_fiber is really a fiber
if isinstance(first_fiber,Fiber):
if first_fiber.att_in is None:
first_fiber.att_in = padding - this_span_loss
else:
first_fiber.att_in = first_fiber.att_in + padding - this_span_loss
def build_network(network, equipment, pref_ch_db, pref_total_db):
default_span_data = equipment['Spans']['default']
default_span_data = equipment['Span']['default']
max_length = int(default_span_data.max_length * UNITS[default_span_data.length_units])
min_length = max(int(default_span_data.padding/0.2*1e3),50_000)
bounds = range(min_length, max_length)
target_length = max(min_length, 90_000)
con_in = default_span_data.con_in
con_out = default_span_data.con_out + default_span_data.EOL
default_con_in = default_span_data.con_in
default_con_out = default_span_data.con_out
padding = default_span_data.padding
#set raodm loss for gain_mode before to build network
set_roadm_loss(network, equipment, pref_ch_db)
#set roadm loss for gain_mode before to build network
fibers = [f for f in network.nodes() if isinstance(f, Fiber)]
add_connector_loss(fibers, con_in, con_out, default_span_data.EOL)
add_connector_loss(network, fibers, default_con_in, default_con_out, default_span_data.EOL)
add_fiber_padding(network, fibers, padding)
# don't group split fiber and add amp in the same loop
# =>for code clarity (at the expense of speed):
@@ -423,6 +536,7 @@ def build_network(network, equipment, pref_ch_db, pref_total_db):
amplified_nodes = [n for n in network.nodes()
if isinstance(n, Fiber) or isinstance(n, Roadm)]
for node in amplified_nodes:
add_egress_amplifier(network, node)
@@ -436,3 +550,11 @@ def build_network(network, equipment, pref_ch_db, pref_total_db):
for t in trx:
set_egress_amplifier(network, t, equipment, pref_total_db)
def load_sim_params(filename):
sim_params = load_json(filename)
return SimParams(params=sim_params)
def configure_network(network, sim_params):
for node in network.nodes:
if isinstance(node, RamanFiber):
node.sim_params = sim_params

View File

@@ -8,13 +8,13 @@ gnpy.core.node
This module contains the base class for a network element.
Strictly, a network element is any callable which accepts an immutable
.info.SpectralInformation object and returns a .info.SpectralInformation object
(a copy.)
:class:`.info.SpectralInformation` object and returns an :class:`.info.SpectralInformation` object
(a copy).
Network elements MUST implement two attributes .uid and .name representing a
unique identifier and a printable name.
This base class provides a mode convenient way to define a network element
This base class provides a more convenient way to define a network element
via subclassing.
'''
@@ -26,10 +26,12 @@ class Location(namedtuple('Location', 'latitude longitude city region')):
return super().__new__(cls, latitude, longitude, city, region)
class Node:
def __init__(self, uid, name=None, params=None, metadata={'location':{}}, operational=None):
def __init__(self, uid, name=None, params=None, metadata=None, operational=None):
if name is None:
name = uid
self.uid, self.name = uid, name
if metadata is None:
metadata = {'location': {}}
if metadata and not isinstance(metadata.get('location'), Location):
metadata['location'] = Location(**metadata.pop('location', {}))
self.params, self.metadata, self.operational = params, metadata, operational

View File

@@ -18,12 +18,11 @@ See: draft-ietf-teas-yang-path-computation-01.txt
from sys import exit
from collections import namedtuple
from logging import getLogger, basicConfig, CRITICAL, DEBUG, INFO
from networkx import (dijkstra_path, NetworkXNoPath, all_simple_paths)
from networkx import (dijkstra_path, NetworkXNoPath, all_simple_paths,shortest_path_length)
from networkx.utils import pairwise
from numpy import mean
from gnpy.core.service_sheet import convert_service_sheet, Request_element, Element
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fused
from gnpy.core.network import set_roadm_loss
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.info import create_input_spectral_information, SpectralInformation, Channel, Power
from copy import copy, deepcopy
@@ -292,7 +291,15 @@ def compute_constrained_path(network, req):
if len(nodes_list) == 1 :
try :
total_path = dijkstra_path(network, source, destination)
total_path = dijkstra_path(network, source, destination, weight = 'weight')
# print('checking edges length is correct')
# print(shortest_path_length(network,source,destination))
# print(shortest_path_length(network,source,destination,weight ='weight'))
# s = total_path[0]
# for e in total_path[1:]:
# print(s.uid)
# print(network.get_edge_data(s,e))
# s = e
except NetworkXNoPath:
msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path from {source.uid} to node : {destination.uid} in network topology'+ '\x1b[0m'
logger.critical(msg)
@@ -306,15 +313,16 @@ def compute_constrained_path(network, req):
if ispart(nodes_list, p) :
# print(f'selection{[el.uid for el in p if el in roadm]}')
candidate.append(p)
# select the shortest path (in nb of hops)
# select the shortest path (in nb of hops) -> changed to shortest path in km length
if len(candidate)>0 :
candidate.sort(key=lambda x: len(x))
# candidate.sort(key=lambda x: len(x))
candidate.sort(key=lambda x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
total_path = candidate[0]
else:
if req.loose_list[req.nodes_list.index(n)] == 'loose':
print(f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list} in network topology'+ '\x1b[0m')
print(f'constraint ignored')
total_path = dijkstra_path(network, source, destination)
total_path = dijkstra_path(network, source, destination, weight = 'weight')
else:
msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list}.\nNo path computed'+ '\x1b[0m'
logger.critical(msg)
@@ -385,22 +393,28 @@ def compute_constrained_path(network, req):
return total_path
def propagate(path, req, equipment, show=False):
#update roadm loss in case of power sweep (power mode only)
set_roadm_loss(path, equipment, lin2db(req.power*1e3))
def propagate(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
for el in path:
si = el(si)
if show :
print(el)
path[-1].update_snr(req.tx_osnr, equipment['Roadms']['default'].add_drop_osnr)
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
return path
def propagate2(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
infos = {}
for el in path:
before_si = si
after_si = si = el(si)
infos[el] = before_si, after_si
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
return infos
def propagate_and_optimize_mode(path, req, equipment):
#update roadm loss in case of power sweep (power mode only)
set_roadm_loss(path, equipment, lin2db(req.power*1e3))
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
# step 1: create an ordered list of modes based on baudrate
baudrate_to_explore = list(set([m['baud_rate'] for m in equipment['Transceiver'][req.tsp].mode
@@ -411,7 +425,7 @@ def propagate_and_optimize_mode(path, req, equipment):
# at least 1 baudrate can be tested wrt spacing
for b in baudrate_to_explore :
modes_to_explore = [m for m in equipment['Transceiver'][req.tsp].mode
if m['baud_rate'] == b]
if m['baud_rate'] == b and float(m['min_spacing'])<= req.spacing]
modes_to_explore = sorted(modes_to_explore,
key = lambda x: x['bit_rate'], reverse=True)
# print(modes_to_explore)
@@ -426,7 +440,7 @@ def propagate_and_optimize_mode(path, req, equipment):
si = el(si)
for m in modes_to_explore :
if path[-1].snr is not None:
path[-1].update_snr(m['tx_osnr'], equipment['Roadms']['default'].add_drop_osnr)
path[-1].update_snr(m['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
if round(min(path[-1].snr+lin2db(b/(12.5e9))),2) > m['OSNR'] :
found_a_feasible_mode = True
return path, m
@@ -595,8 +609,10 @@ def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
source=next(el for el in network.nodes() if el.uid == pathreq.source),\
target=next(el for el in network.nodes() if el.uid == pathreq.destination),\
cutoff=80))
# sort them
all_simp_pths = sorted(all_simp_pths, key=lambda path: len(path))
# sort them in km length instead of hop
# all_simp_pths = sorted(all_simp_pths, key=lambda path: len(path))
all_simp_pths = sorted(all_simp_pths, key=lambda \
x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
# reversed direction paths required to check disjunction on both direction
all_simp_pths_reversed = []
for pth in all_simp_pths:
@@ -809,7 +825,7 @@ def find_reversed_path(p,network) :
destination = p[0]
total_path = [source]
for node in reversed_roadm_path :
total_path.extend(dijkstra_path(network, source, node)[1:])
total_path.extend(dijkstra_path(network, source, node, weight = 'weight')[1:])
source = node
total_path.append(destination)
return total_path

820
gnpy/core/science_utils.py Normal file
View File

@@ -0,0 +1,820 @@
import numpy as np
from operator import attrgetter
from collections import namedtuple
from logging import getLogger
import scipy.constants as ph
from scipy.integrate import solve_bvp
from scipy.integrate import cumtrapz
from scipy.interpolate import interp1d
from scipy.optimize import OptimizeResult
from gnpy.core.utils import db2lin
logger = getLogger(__name__)
class RamanParams():
def __init__(self, params):
self._flag_raman = params['flag_raman']
self._space_resolution = params['space_resolution']
self._tolerance = params['tolerance']
@property
def flag_raman(self):
return self._flag_raman
@property
def space_resolution(self):
return self._space_resolution
@property
def tolerance(self):
return self._tolerance
class NLIParams():
def __init__(self, params):
self._nli_method_name = params['nli_method_name']
self._wdm_grid_size = params['wdm_grid_size']
self._dispersion_tolerance = params['dispersion_tolerance']
self._phase_shift_tollerance = params['phase_shift_tollerance']
self._f_cut_resolution = None
self._f_pump_resolution = None
@property
def nli_method_name(self):
return self._nli_method_name
@property
def wdm_grid_size(self):
return self._wdm_grid_size
@property
def dispersion_tolerance(self):
return self._dispersion_tolerance
@property
def phase_shift_tollerance(self):
return self._phase_shift_tollerance
@property
def f_cut_resolution(self):
return self._f_cut_resolution
@f_cut_resolution.setter
def f_cut_resolution(self, f_cut_resolution):
self._f_cut_resolution = f_cut_resolution
@property
def f_pump_resolution(self):
return self._f_pump_resolution
@f_pump_resolution.setter
def f_pump_resolution(self, f_pump_resolution):
self._f_pump_resolution = f_pump_resolution
class SimParams():
def __init__(self, params):
self._raman_computed_channels = params['raman_computed_channels']
self._raman_params = RamanParams(params=params['raman_parameters'])
self._nli_params = NLIParams(params=params['nli_parameters'])
@property
def raman_computed_channels(self):
return self._raman_computed_channels
@property
def raman_params(self):
return self._raman_params
@property
def nli_params(self):
return self._nli_params
class FiberParams():
def __init__(self, fiber):
self._loss_coef = 2 * fiber.dbkm_2_lin()[1]
self._length = fiber.length
self._gamma = fiber.gamma
self._beta2 = fiber.beta2()
self._beta3 = fiber.beta3 if hasattr(fiber, 'beta3') else 0
self._f_ref_beta = fiber.f_ref_beta if hasattr(fiber, 'f_ref_beta') else 0
self._raman_efficiency = fiber.params.raman_efficiency
self._temperature = fiber.operational['temperature']
@property
def loss_coef(self):
return self._loss_coef
@property
def length(self):
return self._length
@property
def gamma(self):
return self._gamma
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def f_ref_beta(self):
return self._f_ref_beta
@property
def raman_efficiency(self):
return self._raman_efficiency
@property
def temperature(self):
return self._temperature
def alpha0(self, f_ref=193.5e12):
""" It returns the zero element of the series expansion of attenuation coefficient alpha(f) in the
reference frequency f_ref
:param f_ref: reference frequency of series expansion [Hz]
:return: alpha0: power attenuation coefficient in f_ref [Neper/m]
"""
if not hasattr(self.loss_coef, 'alpha_power'):
alpha0 = self.loss_coef
else:
alpha_interp = interp1d(self.loss_coef['frequency'],
self.loss_coef['alpha_power'])
alpha0 = alpha_interp(f_ref)
return alpha0
pump = namedtuple('RamanPump', 'power frequency propagation_direction')
def propagate_raman_fiber(fiber, *carriers):
sim_params = fiber.sim_params
raman_params = fiber.sim_params.raman_params
nli_params = fiber.sim_params.nli_params
# apply input attenuation to carriers
attenuation_in = db2lin(fiber.con_in + fiber.att_in)
chan = []
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / attenuation_in,
nli=pwr.nli / attenuation_in,
ase=pwr.ase / attenuation_in)
carrier = carrier._replace(power=pwr)
chan.append(carrier)
carriers = tuple(f for f in chan)
fiber_params = FiberParams(fiber)
# evaluate fiber attenuation involving also SRS if required by sim_params
if 'raman_pumps' in fiber.operational:
raman_pumps = tuple(pump(p['power'], p['frequency'], p['propagation_direction'])
for p in fiber.operational['raman_pumps'])
else:
raman_pumps = None
raman_solver = RamanSolver(raman_params=raman_params, fiber_params=fiber_params)
stimulated_raman_scattering = raman_solver.stimulated_raman_scattering(carriers=carriers,
raman_pumps=raman_pumps)
fiber_attenuation = (stimulated_raman_scattering.rho[:, -1])**-2
if not raman_params.flag_raman:
fiber_attenuation = tuple(fiber.lin_attenuation for _ in carriers)
# evaluate Raman ASE noise if required by sim_params and if raman pumps are present
if raman_params.flag_raman and raman_pumps:
raman_ase = raman_solver.spontaneous_raman_scattering.power[:, -1]
else:
raman_ase = tuple(0 for _ in carriers)
# evaluate nli and propagate in fiber
attenuation_out = db2lin(fiber.con_out)
nli_solver = NliSolver(nli_params=nli_params, fiber_params=fiber_params)
nli_solver.stimulated_raman_scattering = stimulated_raman_scattering
nli_frequencies = []
computed_nli = []
for carrier in (c for c in carriers if c.channel_number in sim_params.raman_computed_channels):
resolution_param = frequency_resolution(carrier, carriers, sim_params, fiber_params)
f_cut_resolution, f_pump_resolution, _, _ = resolution_param
nli_params.f_cut_resolution = f_cut_resolution
nli_params.f_pump_resolution = f_pump_resolution
nli_frequencies.append(carrier.frequency)
computed_nli.append(nli_solver.compute_nli(carrier, *carriers))
new_carriers = []
for carrier, attenuation, rmn_ase in zip(carriers, fiber_attenuation, raman_ase):
carrier_nli = np.interp(carrier.frequency, nli_frequencies, computed_nli)
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal/attenuation/attenuation_out,
nli=(pwr.nli+carrier_nli)/attenuation/attenuation_out,
ase=((pwr.ase/attenuation)+rmn_ase)/attenuation_out)
new_carriers.append(carrier._replace(power=pwr))
return new_carriers
def frequency_resolution(carrier, carriers, sim_params, fiber_params):
def _get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol):
res_phi = _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol)
res_k = _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol)
res_dict = {'res_phi': res_phi, 'res_k': res_k}
method = min(res_dict, key=res_dict.get)
return res_dict[method], method, res_dict
def _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol):
return k_tol * abs(alpha0) / abs(beta2) / (1 + delta_count) / (4 * np.pi ** 2 * grid_size)
def _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol):
return phi_tol / abs(beta2) / (1 + delta_count) / delta_z / (4 * np.pi ** 2 * grid_size)
grid_size = sim_params.nli_params.wdm_grid_size
delta_z = sim_params.raman_params.space_resolution
alpha0 = fiber_params.alpha0()
beta2 = fiber_params.beta2
k_tol = sim_params.nli_params.dispersion_tolerance
phi_tol = sim_params.nli_params.phase_shift_tollerance
f_pump_resolution, method_f_pump, res_dict_pump = \
_get_freq_res_k_phi(0, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
f_cut_resolution = {}
method_f_cut = {}
res_dict_cut = {}
for cut_carrier in carriers:
delta_number = cut_carrier.channel_number - carrier.channel_number
delta_count = abs(delta_number)
f_res, method, res_dict = \
_get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
f_cut_resolution[f'delta_{delta_number}'] = f_res
method_f_cut[delta_number] = method
res_dict_cut[delta_number] = res_dict
return [f_cut_resolution, f_pump_resolution, (method_f_cut, method_f_pump), (res_dict_cut, res_dict_pump)]
def raised_cosine_comb(f, *carriers):
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
channels at the input frequencies defined in array f
:param f: numpy array of frequencies in Hz
:param carriers: namedtuple describing the WDM comb
:return: PSD of the WDM comb evaluated over f
"""
psd = np.zeros(np.shape(f))
for carrier in carriers:
f_nch = carrier.frequency
g_ch = carrier.power.signal / carrier.baud_rate
ts = 1 / carrier.baud_rate
passband = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
stopband = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
ff = np.abs(f - f_nch)
tf = ff - passband
if carrier.roll_off == 0:
psd = np.where(tf <= 0, g_ch, 0.) + psd
else:
psd = g_ch * (np.where(tf <= 0, 1., 0.) + 1 / 2 * (1 + np.cos(np.pi * ts / carrier.roll_off * tf)) *
np.where(tf > 0, 1., 0.) * np.where(np.abs(ff) <= stopband, 1., 0.)) + psd
return psd
class RamanSolver:
def __init__(self, raman_params=None, fiber_params=None):
""" Initialize the fiber object with its physical parameters
:param length: fiber length in m.
:param alphap: fiber power attenuation coefficient vs frequency in 1/m. numpy array
:param freq_alpha: frequency axis of alphap in Hz. numpy array
:param cr_raman: Raman efficiency vs frequency offset in 1/W/m. numpy array
:param freq_cr: reference frequency offset axis for cr_raman. numpy array
:param raman_params: namedtuple containing the solver parameters (optional).
"""
self.fiber_params = fiber_params
self.raman_params = raman_params
self._carriers = None
self._stimulated_raman_scattering = None
self._spontaneous_raman_scattering = None
@property
def fiber_params(self):
return self._fiber_params
@fiber_params.setter
def fiber_params(self, fiber_params):
self._stimulated_raman_scattering = None
self._fiber_params = fiber_params
@property
def carriers(self):
return self._carriers
@carriers.setter
def carriers(self, carriers):
"""
:param carriers: tuple of namedtuples containing information about carriers
:return:
"""
self._carriers = carriers
self._stimulated_raman_scattering = None
@property
def raman_pumps(self):
return self._raman_pumps
@raman_pumps.setter
def raman_pumps(self, raman_pumps):
self._raman_pumps = raman_pumps
self._stimulated_raman_scattering = None
@property
def raman_params(self):
return self._raman_params
@raman_params.setter
def raman_params(self, raman_params):
"""
:param raman_params: namedtuple containing the solver parameters (optional).
:return:
"""
self._raman_params = raman_params
self._stimulated_raman_scattering = None
self._spontaneous_raman_scattering = None
@property
def spontaneous_raman_scattering(self):
if self._spontaneous_raman_scattering is None:
# SET STUFF
loss_coef = self.fiber_params.loss_coef
raman_efficiency = self.fiber_params.raman_efficiency
temperature = self.fiber_params.temperature
carriers = self.carriers
raman_pumps = self.raman_pumps
logger.debug('Start computing fiber Spontaneous Raman Scattering')
power_spectrum, freq_array, prop_direct, bn_array = self._compute_power_spectrum(carriers, raman_pumps)
if not hasattr(loss_coef, 'alpha_power'):
alphap_fiber = loss_coef * np.ones(freq_array.shape)
else:
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
alphap_fiber = interp_alphap(freq_array)
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
cr = interp_cr(freq_diff)
# z propagation axis
z_array = self._stimulated_raman_scattering.z
ase_bc = np.zeros(freq_array.shape)
# calculate ase power
spontaneous_raman_scattering = self._int_spontaneous_raman(z_array, self._stimulated_raman_scattering.power,
alphap_fiber, freq_array, cr, freq_diff, ase_bc,
bn_array, temperature)
setattr(spontaneous_raman_scattering, 'frequency', freq_array)
setattr(spontaneous_raman_scattering, 'z', z_array)
setattr(spontaneous_raman_scattering, 'power', spontaneous_raman_scattering.x)
delattr(spontaneous_raman_scattering, 'x')
logger.debug(spontaneous_raman_scattering.message)
self._spontaneous_raman_scattering = spontaneous_raman_scattering
return self._spontaneous_raman_scattering
@staticmethod
def _compute_power_spectrum(carriers, raman_pumps=None):
"""
Rearrangement of spectral and Raman pump information to make them compatible with Raman solver
:param carriers: a tuple of namedtuples describing the transmitted channels
:param raman_pumps: a namedtuple describing the Raman pumps
:return:
"""
# Signal power spectrum
pow_array = np.array([])
f_array = np.array([])
noise_bandwidth_array = np.array([])
for carrier in sorted(carriers, key=attrgetter('frequency')):
f_array = np.append(f_array, carrier.frequency)
pow_array = np.append(pow_array, carrier.power.signal)
ref_bw = carrier.baud_rate
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
propagation_direction = np.ones(len(f_array))
# Raman pump power spectrum
if raman_pumps:
for pump in raman_pumps:
pow_array = np.append(pow_array, pump.power)
f_array = np.append(f_array, pump.frequency)
direction = +1 if pump.propagation_direction.lower() == 'coprop' else -1
propagation_direction = np.append(propagation_direction, direction)
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
# Final sorting
ind = np.argsort(f_array)
f_array = f_array[ind]
pow_array = pow_array[ind]
propagation_direction = propagation_direction[ind]
return pow_array, f_array, propagation_direction, noise_bandwidth_array
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array, cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
spontaneous_raman_scattering = OptimizeResult()
dx = self.raman_params.space_resolution
h = ph.value('Planck constant')
kb = ph.value('Boltzmann constant')
power_ase = np.nan * np.ones(raman_matrix.shape)
int_pump = cumtrapz(raman_matrix, z_array, dx=dx, axis=1, initial=0)
for f_ind, f_ase in enumerate(freq_array):
cr_raman = cr_raman_matrix[f_ind, :]
vibrational_loss = f_ase / freq_array[:f_ind]
eta = 1/(np.exp((h*freq_diff[f_ind, f_ind+1:])/(kb*temperature)) - 1)
int_fiber_loss = -alphap_fiber[f_ind] * z_array
int_raman_loss = np.sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(), axis=0)
int_raman_gain = np.sum((cr_raman[f_ind + 1:] * int_pump[f_ind + 1:, :].transpose()).transpose(), axis=0)
int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss
new_ase = np.sum((cr_raman[f_ind+1:] * (1 + eta) * raman_matrix[f_ind+1:, :].transpose()).transpose() * h * f_ase * bn_array[f_ind], axis=0)
bc_evolution = ase_bc[f_ind] * np.exp(int_gain_loss)
ase_evolution = np.exp(int_gain_loss) * cumtrapz(new_ase*np.exp(-int_gain_loss), z_array, dx=dx, initial=0)
power_ase[f_ind, :] = bc_evolution + ase_evolution
spontaneous_raman_scattering.x = 2 * power_ase
spontaneous_raman_scattering.success = True
spontaneous_raman_scattering.message = "Spontaneous Raman Scattering evaluated successfully"
return spontaneous_raman_scattering
def stimulated_raman_scattering(self, carriers, raman_pumps=None):
""" Returns stimulated Raman scattering solution including
fiber gain/loss profile.
:return: self._stimulated_raman_scattering: the SRS problem solution.
scipy.interpolate.PPoly instance
"""
if self._stimulated_raman_scattering is None:
# fiber parameters
fiber_length = self.fiber_params.length
loss_coef = self.fiber_params.loss_coef
if self.raman_params.flag_raman:
raman_efficiency = self.fiber_params.raman_efficiency
else:
raman_efficiency = self.fiber_params.raman_efficiency
raman_efficiency['cr'] = np.array(raman_efficiency['cr']) * 0
# raman solver parameters
z_resolution = self.raman_params.space_resolution
tolerance = self.raman_params.tolerance
logger.debug('Start computing fiber Stimulated Raman Scattering')
power_spectrum, freq_array, prop_direct, _ = self._compute_power_spectrum(carriers, raman_pumps)
if not hasattr(loss_coef, 'alpha_power'):
alphap_fiber = loss_coef * np.ones(freq_array.shape)
else:
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
alphap_fiber = interp_alphap(freq_array)
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
cr = interp_cr(freq_diff)
# z propagation axis
z = np.arange(0, fiber_length+1, z_resolution)
ode_function = lambda z, p: self._ode_stimulated_raman(z, p, alphap_fiber, freq_array, cr, prop_direct)
boundary_residual = lambda ya, yb: self._residuals_stimulated_raman(ya, yb, power_spectrum, prop_direct)
initial_guess_conditions = self._initial_guess_stimulated_raman(z, power_spectrum, alphap_fiber, prop_direct)
# ODE SOLVER
stimulated_raman_scattering = solve_bvp(ode_function, boundary_residual, z, initial_guess_conditions, tol=tolerance)
rho = (stimulated_raman_scattering.y.transpose() / power_spectrum).transpose()
rho = np.sqrt(rho) # From power attenuation to field attenuation
setattr(stimulated_raman_scattering, 'frequency', freq_array)
setattr(stimulated_raman_scattering, 'z', stimulated_raman_scattering.x)
setattr(stimulated_raman_scattering, 'rho', rho)
setattr(stimulated_raman_scattering, 'power', stimulated_raman_scattering.y)
delattr(stimulated_raman_scattering, 'x')
delattr(stimulated_raman_scattering, 'y')
self.carriers = carriers
self.raman_pumps = raman_pumps
self._stimulated_raman_scattering = stimulated_raman_scattering
return self._stimulated_raman_scattering
def _residuals_stimulated_raman(self, ya, yb, power_spectrum, prop_direct):
computed_boundary_value = np.zeros(ya.size)
for index, direction in enumerate(prop_direct):
if direction == +1:
computed_boundary_value[index] = ya[index]
else:
computed_boundary_value[index] = yb[index]
return power_spectrum - computed_boundary_value
def _initial_guess_stimulated_raman(self, z, power_spectrum, alphap_fiber, prop_direct):
""" Computes the initial guess knowing the boundary conditions
:param z: patial axis [m]. numpy array
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array
:return: power_guess: guess on the initial conditions [W]. The first ndarray index identifies the frequency slice,
the second ndarray index identifies the step in z. ndarray
"""
power_guess = np.empty((power_spectrum.size, z.size))
for f_index, power_slice in enumerate(power_spectrum):
if prop_direct[f_index] == +1:
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z) * power_slice
else:
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z[::-1]) * power_slice
return power_guess
def _ode_stimulated_raman(self, z, power_spectrum, alphap_fiber, freq_array, cr_raman_matrix, prop_direct):
""" Aim of ode_raman is to implement the set of ordinary differential equations (ODEs) describing the Raman effect.
:param z: spatial axis (unused).
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array. Size n
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array. Size n
:param freq_array: reference frequency axis [Hz]. numpy array. Size n
:param cr_raman: Cr(f) Raman gain efficiency variation in frequency [1/W/m]. Frequency defined by freq_array. numpy ndarray. Size nxn
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array. Size n
:return: dP/dz: the power variation in dz [W/m]. numpy array. Size n
"""
dpdz = np.nan * np.ones(power_spectrum.shape)
for f_ind, power in enumerate(power_spectrum):
cr_raman = cr_raman_matrix[f_ind, :]
vibrational_loss = freq_array[f_ind] / freq_array[:f_ind]
for z_ind, power_sample in enumerate(power):
raman_gain = np.sum(cr_raman[f_ind+1:] * power_spectrum[f_ind+1:, z_ind])
raman_loss = np.sum(vibrational_loss * cr_raman[:f_ind] * power_spectrum[:f_ind, z_ind])
dpdz_element = prop_direct[f_ind] * (-alphap_fiber[f_ind] + raman_gain - raman_loss) * power_sample
dpdz[f_ind][z_ind] = dpdz_element
return np.vstack(dpdz)
class NliSolver:
""" This class implements the NLI models.
Model and method can be specified in `self.nli_params.method`.
List of implemented methods:
'gn_model_analytic': brute force triple integral solution
'ggn_spectrally_separated_xpm_spm': XPM plus SPM
"""
def __init__(self, nli_params=None, fiber_params=None):
""" Initialize the fiber object with its physical parameters
"""
self.fiber_params = fiber_params
self.nli_params = nli_params
self.stimulated_raman_scattering = None
@property
def fiber_params(self):
return self._fiber_params
@fiber_params.setter
def fiber_params(self, fiber_params):
self._fiber_params = fiber_params
@property
def stimulated_raman_scattering(self):
return self._stimulated_raman_scattering
@stimulated_raman_scattering.setter
def stimulated_raman_scattering(self, stimulated_raman_scattering):
self._stimulated_raman_scattering = stimulated_raman_scattering
@property
def nli_params(self):
return self._nli_params
@nli_params.setter
def nli_params(self, nli_params):
"""
:param model_params: namedtuple containing the parameters used to compute the NLI.
"""
self._nli_params = nli_params
def compute_nli(self, carrier, *carriers):
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
at the end of the fiber span.
"""
if 'gn_model_analytic' == self.nli_params.nli_method_name.lower():
carrier_nli = self._gn_analytic(carrier, *carriers)
elif 'ggn_spectrally_separated' in self.nli_params.nli_method_name.lower():
eta_matrix = self._compute_eta_matrix(carrier, *carriers)
carrier_nli = self._carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers)
else:
raise ValueError(f'Method {self.nli_params.method_nli} not implemented.')
return carrier_nli
@staticmethod
def _carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers):
carrier_nli = 0
for pump_carrier_1 in carriers:
for pump_carrier_2 in carriers:
carrier_nli += eta_matrix[pump_carrier_1.channel_number-1, pump_carrier_2.channel_number-1] * \
pump_carrier_1.power.signal * pump_carrier_2.power.signal
carrier_nli *= carrier.power.signal
return carrier_nli
def _compute_eta_matrix(self, carrier_cut, *carriers):
cut_index = carrier_cut.channel_number - 1
# Matrix initialization
matrix_size = max(carriers, key=lambda x: getattr(x, 'channel_number')).channel_number
eta_matrix = np.zeros(shape=(matrix_size, matrix_size))
# SPM
logger.debug(f'Start computing SPM on channel #{carrier_cut.channel_number}')
# SPM GGN
if 'ggn' in self.nli_params.nli_method_name.lower():
partial_nli = self._generalized_spectrally_separated_spm(carrier_cut)
# SPM GN
elif 'gn' in self.nli_params.nli_method_name.lower():
partial_nli = self._gn_analytic(carrier_cut, *[carrier_cut])
eta_matrix[cut_index, cut_index] = partial_nli / (carrier_cut.power.signal**3)
# XPM
for pump_carrier in carriers:
pump_index = pump_carrier.channel_number - 1
if not (cut_index == pump_index):
logger.debug(f'Start computing XPM on channel #{carrier_cut.channel_number} '
f'from channel #{pump_carrier.channel_number}')
# XPM GGN
if 'ggn' in self.nli_params.nli_method_name.lower():
partial_nli = self._generalized_spectrally_separated_xpm(carrier_cut, pump_carrier)
# XPM GGN
elif 'gn' in self.nli_params.nli_method_name.lower():
partial_nli = self._gn_analytic(carrier_cut, *[pump_carrier])
eta_matrix[pump_index, pump_index] = partial_nli /\
(carrier_cut.power.signal * pump_carrier.power.signal**2)
return eta_matrix
# Methods for computing GN-model
def _gn_analytic(self, carrier, *carriers):
""" Computes the nonlinear interference power on a single carrier.
The method uses eq. 120 from arXiv:1209.0394.
:param carrier: the signal under analysis
:param carriers: the full WDM comb
:return: carrier_nli: the amount of nonlinear interference in W on the carrier under analysis
"""
alpha = self.fiber_params.alpha0() / 2
beta2 = self.fiber_params.beta2
gamma = self.fiber_params.gamma
length = self.fiber_params.length
effective_length = (1 - np.exp(-2 * alpha * length)) / (2 * alpha)
asymptotic_length = 1 / (2 * alpha)
g_nli = 0
for interfering_carrier in carriers:
g_interfearing = interfering_carrier.power.signal / interfering_carrier.baud_rate
g_signal = carrier.power.signal / carrier.baud_rate
g_nli += g_interfearing**2 * g_signal \
* _psi(carrier, interfering_carrier, beta2=self.fiber_params.beta2, asymptotic_length=1/self.fiber_params.alpha0())
g_nli *= (16.0 / 27.0) * (gamma * effective_length)**2 /\
(2 * np.pi * abs(beta2) * asymptotic_length)
carrier_nli = carrier.baud_rate * g_nli
return carrier_nli
# Methods for computing the GGN-model
def _generalized_spectrally_separated_spm(self, carrier):
f_cut_resolution = self.nli_params.f_cut_resolution['delta_0']
f_eval = carrier.frequency
g_cut = (carrier.power.signal / carrier.baud_rate)
spm_nli = carrier.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_cut**3 * \
self._generalized_psi(carrier, carrier, f_eval, f_cut_resolution, f_cut_resolution)
return spm_nli
def _generalized_spectrally_separated_xpm(self, carrier_cut, pump_carrier):
delta_index = pump_carrier.channel_number - carrier_cut.channel_number
f_cut_resolution = self.nli_params.f_cut_resolution[f'delta_{delta_index}']
f_pump_resolution = self.nli_params.f_pump_resolution
f_eval = carrier_cut.frequency
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
g_cut = (carrier_cut.power.signal / carrier_cut.baud_rate)
frequency_offset_threshold = self._frequency_offset_threshold(pump_carrier.baud_rate)
if abs(carrier_cut.frequency - pump_carrier.frequency) <= frequency_offset_threshold:
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_pump**2 * g_cut * \
2 * self._generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution)
else:
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_pump**2 * g_cut * \
2 * self._fast_generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution)
return xpm_nli
def _fast_generalized_psi(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution):
""" It computes the generalized psi function similarly to the one used in the GN model
:return: generalized_psi
"""
# Fiber parameters
alpha0 = self.fiber_params.alpha0(f_eval)
beta2 = self.fiber_params.beta2
beta3 = self.fiber_params.beta3
f_ref_beta = self.fiber_params.f_ref_beta
z = self.stimulated_raman_scattering.z
frequency_rho = self.stimulated_raman_scattering.frequency
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
if len(frequency_rho) == 1:
rho_function = lambda f: rho_norm[0, :]
else:
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
rho_norm_pump = rho_function(pump_carrier.frequency)
f1_array = np.array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)])
f2_array = np.arange(carrier_cut.frequency,
carrier_cut.frequency + (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = np.zeros(len(f1_array))
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * np.pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + np.pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
integrand_f1[f1_index] = 2 * np.trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate
return generalized_psi
def _generalized_psi(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution):
""" It computes the generalized psi function similarly to the one used in the GN model
:return: generalized_psi
"""
# Fiber parameters
alpha0 = self.fiber_params.alpha0(f_eval)
beta2 = self.fiber_params.beta2
beta3 = self.fiber_params.beta3
f_ref_beta = self.fiber_params.f_ref_beta
z = self.stimulated_raman_scattering.z
frequency_rho = self.stimulated_raman_scattering.frequency
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
if len(frequency_rho) == 1:
rho_function = lambda f: rho_norm[0, :]
else:
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
rho_norm_pump = rho_function(pump_carrier.frequency)
f1_array = np.arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
f_pump_resolution)
f2_array = np.arange(carrier_cut.frequency - (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
carrier_cut.frequency + (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
f_cut_resolution)
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
integrand_f1 = np.zeros(len(f1_array))
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
f3_array = f1 + f2_array - f_eval
psd2 = raised_cosine_comb(f2_array, carrier_cut) * (carrier_cut.baud_rate / carrier_cut.power.signal)
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
ggg = psd1_sample * psd2 * psd3
delta_beta = 4 * np.pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + np.pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = ggg * self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
integrand_f1[f1_index] = np.trapz(integrand_f2, f2_array)
generalized_psi = np.trapz(integrand_f1, f1_array)
return generalized_psi
@staticmethod
def _generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0):
w = 1j * delta_beta - alpha0
generalized_rho_nli = (rho_norm_pump[-1]**2 * np.exp(w * z[-1]) - rho_norm_pump[0]**2 * np.exp(w * z[0])) / w
for z_ind in range(0, len(z) - 1):
derivative_rho = (rho_norm_pump[z_ind + 1]**2 - rho_norm_pump[z_ind]**2) / (z[z_ind + 1] - z[z_ind])
generalized_rho_nli -= derivative_rho * (np.exp(w * z[z_ind + 1]) - np.exp(w * z[z_ind])) / (w**2)
generalized_rho_nli = np.abs(generalized_rho_nli)**2
return generalized_rho_nli
def _frequency_offset_threshold(self, symbol_rate):
k_ref = 5
beta2_ref = 21.3e-27
delta_f_ref = 50e9
rs_ref = 32e9
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (self.fiber_params.beta2 * symbol_rate)
return freq_offset_th
def _psi(carrier, interfering_carrier, beta2, asymptotic_length):
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
if carrier.channel_number == interfering_carrier.channel_number: # SCI, SPM
psi = np.arcsinh(0.5 * np.pi**2 * asymptotic_length * abs(beta2) * carrier.baud_rate**2)
else: # XCI, XPM
delta_f = carrier.frequency - interfering_carrier.frequency
psi = np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
psi -= np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
return psi

View File

@@ -73,7 +73,7 @@ class Request_element(Element):
Requestmode = None
self.mode = Request.mode
except KeyError:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
#print(msg)
logger.critical(msg)
exit()

View File

@@ -11,8 +11,8 @@ This module contains utility functions that are used with gnpy.
import json
import numpy as np
from csv import writer
import numpy as np
from numpy import pi, cos, sqrt, log10
from scipy import constants
@@ -88,6 +88,20 @@ def itufs(spacing, startf=191.35, stopf=196.10):
"""
return np.arange(startf, stopf + spacing / 2, spacing)
def itufl(length, startf=191.35, stopf=196.10):
"""Creates an array of frequencies whose default range is
191.35-196.10 THz
:param length: number of elements
:param starf: Start frequency in THz
:param stopf: Stop frequency in THz
:type length: integer
:type startf: float
:type stopf: float
:return an array of frequnecies determined by the spacing parameter
:rtype: numpy.ndarray
"""
return np.linspace(startf, stopf, length)
def h():
"""
@@ -185,3 +199,43 @@ def rrc(ffs, baud_rate, alpha):
p_inds = np.where(np.logical_and(np.abs(ffs) > 0, np.abs(ffs) < l_lim))
hf[p_inds] = 1
return sqrt(hf)
def merge_amplifier_restrictions(dict1, dict2):
"""Updates contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
>>> merge_amplifier_restrictions(d1, d2)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}, 'target_pch_out_db': -20}}
>>> d3 = {'params': {'restrictions': {'preamp_variety_list': ['foo'], 'booster_variety_list': ['bar']}}}
>>> merge_amplifier_restrictions(d1, d3)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
"""
copy_dict1 = dict1.copy()
for key in dict2:
if key in dict1:
if isinstance(dict1[key], dict):
copy_dict1[key] = merge_amplifier_restrictions(copy_dict1[key], dict2[key])
else:
copy_dict1[key] = dict2[key]
return copy_dict1
def silent_remove(this_list, elem):
"""Remove matching elements from a list without raising ValueError
>>> li = [0, 1]
>>> li = silent_remove(li, 1)
>>> li
[0]
>>> li = silent_remove(li, 1)
>>> li
[0]
"""
try:
this_list.remove(elem)
except ValueError:
pass
return this_list

View File

@@ -23,7 +23,7 @@ type][subtype]=object**
Every equipment type is defined in JSON root with according name and
array of parameters as value.
.. code-block::
.. code-block:: none
{"Edfa": [...],
"Fiber": [...]
@@ -40,26 +40,33 @@ object contains **"type_variety":”type name”** name:value combination,
if only one subtype exists **"type_variety"** name is not mandatory and
it will be marked with **”default”** value.
.. code-block::
.. code-block:: json
{"Edfa": [{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"p_max": 23,
"nf_min": 6,
"nf_max": 10
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127
}
@@ -74,66 +81,167 @@ it will be marked with **”default”** value.
1.2.1. EDFA element
*******************
Two types of EDFA definition are possible. Description JSON file
Four types of EDFA definition are possible. Description JSON file
location is in **transmission_main_example.py** folder:
- Advanced with JSON file describing gain/noise figure tilt and
gain/noise figure ripple. **"advanced_config_from_json"** value
contains filename.
.. code-block::
.. code-block:: json-object
"Edfa":[{
"type_variety": "high_detail_model_example",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json"
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}
]
- Default with JSON file describing gain figure tilt and gain/noise
- Variable gain with JSON file describing gain figure tilt and gain/noise
figure ripple. **”default_edfa_config.json”** as source file.
.. code-block::
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"p_max": 23,
"nf_min": 6,
"nf_max": 10
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}
]
- Fixed gain with JSON file describing gain figure tilt and gain/noise
figure ripple. **”default_edfa_config.json”** as source file.
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
}
]
- openroadm with JSON file describing gain figure tilt and gain/noise
figure ripple. **”default_edfa_config.json”** as source file.
.. code-block:: json-object
"Edfa":[{
"type_variety": "low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 12,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
}
]
1.2.2. Fiber element
********************
Fiber element with its parameters:
.. code-block::
.. code-block:: json-object
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127
}
]
RamanFiber element
******************
A special variant of the regular ``Fiber`` where the simulation engine accounts for the Raman effect.
The newly added parameters are nested in the ``raman_efficiency`` dictionary.
Its shape corresponds to typical properties of silica.
More details are available from :cite:`curri_merit_2016`.
The ``cr`` property is the normailzed Raman efficiency, so it is is (almost) independent of the fiber type, while the coefficient actually giving Raman gain is g_R=C_R/Aeff.
The ``frequency_offset`` represents the spectral difference between the pumping photon and the one receiving energy.
.. code-block:: json-object
"RamanFiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"raman_efficiency": {
"cr":[
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
2E-07, 1E-07
],
"frequency_offset":[
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
41.5e12, 42e12
]
}
}
]
1.2.3 Roadm element
*******************
Roadm element with its parameters:
.. code-block:: json-object
"Roadms":[{
"gain_mode_default_loss": 20,
"power_mode_pout_target": -20,
"add_drop_osnr": 38
}
]
1.2.3. Spans element
********************
Spans element with its parameters:
.. code-block::
.. code-block:: json-object
"Spans":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 1,
"con_loss": 0.5
"EOL": 0,
"con_in": 0,
"con_out": 0
}
]
@@ -143,15 +251,18 @@ Spans element with its parameters:
Spectral information with its parameters:
.. code-block::
.. code-block:: json-object
"SI":[{
"f_min": 191.3e12,
"Nch": 80,
"baud_rate": 32e9,
"spacing": 75e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,0.5],
"roll_off": 0.15,
"power": 1.2589e-3
"tx_osnr": 40,
"sys_margins": 0
}
]
@@ -162,7 +273,9 @@ Spectral information with its parameters:
Transceiver element with its parameters. **”mode”** can contain multiple
Transceiver operation formats.
.. code-block::
Note that ``OSNR`` parameter refers to the receiver's minimal OSNR threshold for a given mode.
.. code-block:: json-object
"Transceiver":[{
"frequency":{
@@ -171,16 +284,24 @@ Transceiver operation formats.
},
"mode":[
{
"format": "PS_SP64_1",
"baudrate": 32e9,
"OSNR": 9,
"bit_rate": 100e9
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "PS_SP64_2",
"baudrate": 66e9,
"OSNR": 10,
"bit_rate": 200e9
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
}
@@ -215,7 +336,7 @@ Network description JSON file root consist of three unordered parts:
- connections contains array of unidirectional connection objects
.. code-block::
.. code-block:: none
{"network_name": "Example Network",
"elements": [{...},
@@ -244,10 +365,10 @@ obligatory.
Transceiver element with its parameters.
.. code-block::
.. code-block:: json
{"uid": "trx Site_A",
metadata": {
"metadata": {
"location": {
"city": "Site_A",
"region": "",
@@ -266,7 +387,7 @@ Transceiver element with its parameters.
ROADM element with its parameters. **“params”** is optional, if not used
default loss value of 20dB is used.
.. code-block::
.. code-block:: json
{"uid": "roadm Site_A",
"metadata": {
@@ -290,12 +411,12 @@ default loss value of 20dB is used.
Fused element with its parameters. **“params”** is optional, if not used
default loss value of 1dB is used.
.. code-block::
.. code-block:: json
{"uid": "ingress fused spans in Site_B",
"metadata": {
"location": {
city": "Site_B",
"city": "Site_B",
"region": "",
"latitude": 0,
"longitude": 0
@@ -313,7 +434,7 @@ default loss value of 1dB is used.
Fiber element with its parameters.
.. code-block::
.. code-block:: json
{"uid": "fiber (Site_A \\u2192 Site_B)",
"metadata": {
@@ -333,13 +454,56 @@ Fiber element with its parameters.
}
}
2.2.5. RamanFiber element
*************************
2.2.5. EDFA element
.. code-block:: json
{
"uid": "Span1",
"type": "RamanFiber",
"type_variety": "SSMF",
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 200e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 206e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"params": {
"type_variety": "SSMF",
"length": 80.0,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}
2.2.6. EDFA element
********************
EDFA element with its parameters.
.. code-block::
.. code-block:: json
{"uid": "Edfa1",
"type": "Edfa",
@@ -365,8 +529,31 @@ Each unidirectional connection object in connections array consist of
two unordered **”from_node”** and **”to_node”** name pair with values
corresponding to element **”uid”**
.. code-block::
.. code-block:: json
{"from_node": "roadm Site_C",
"to_node": "trx Site_C"
}
************************
3. Simulation Parameters
************************
Additional details of the simulation are controlled via ``sim_params.json``:
.. code-block:: json
{
"raman_computed_channels": [1, 18, 37, 56, 75],
"raman_parameters": {
"flag_raman": true,
"space_resolution": 10e3,
"tolerance": 1e-8
},
"nli_parameters": {
"nli_method_name": "ggn_spectrally_separated",
"wdm_grid_size": 50e9,
"dispersion_tolerance": 1,
"phase_shift_tollerance": 0.1
}
}

View File

@@ -1,2 +1,2 @@
[pytest]
addopts = -p no:warnings
addopts = --doctest-modules

View File

@@ -1,40 +1,10 @@
alabaster==0.7.12
atomicwrites==1.2.1
attrs==18.2.0
Babel==2.6.0
certifi==2018.10.15
chardet==3.0.4
cycler==0.10.0
decorator==4.3.0
docutils==0.14
idna==2.7
imagesize==1.1.0
Jinja2==2.10
kiwisolver==1.0.1
latexcodec==1.0.5
MarkupSafe==1.0
matplotlib==3.0.0
more-itertools==4.3.0
networkx==2.2
numpy==1.15.2
oset==0.1.3
packaging==18.0
pluggy==0.7.1
py==1.7.0
pybtex==0.21
pybtex-docutils==0.2.1
Pygments==2.2.0
pyparsing==2.2.2
pytest==3.8.2
python-dateutil==2.7.3
pytz==2018.5
PyYAML==3.13
requests==2.19.1
scipy==1.1.0
six==1.11.0
snowballstemmer==1.2.1
Sphinx==1.8.1
sphinxcontrib-bibtex==0.4.0
sphinxcontrib-websupport==1.1.0
urllib3==1.23
xlrd==1.1.0
alabaster>=0.7.12,<1
matplotlib>=3.1.0,<4
networkx>=2.3,<3
numpy>=1.16.1,<2
Pygments>=2.4.2,<3
pytest>=4.0.0,<5
scipy>=1.3.0,<2
Sphinx>=2.1.1,<3
sphinxcontrib-bibtex>=0.4.2,<1
xlrd>=1.2.0,<2

View File

@@ -11,13 +11,13 @@ with open(path.join(here, 'README.rst'), encoding='utf-8') as f:
setup(
name='gnpy',
version='0.1.3',
version='1.2.0',
description='route planning and optimization tool for mesh optical networks',
long_description=long_description,
long_description_content_type='text/x-rst; charset=UTF-8',
url='https://github.com/Telecominfraproject/gnpy',
author='Telecom Infra Project',
author_email='james.powell@telecominfraproject.com',
author_email='jan.kundrat@telecominfraproject.com',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',

View File

@@ -205,6 +205,36 @@
"longitude": 0
}
}
},
{
"uid": "Att_B",
"type": "Fused",
"params":{
"loss":16
},
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.0,
"city": "Corlay",
"region": "RLD"
}
}
},
{
"uid": "Att_F",
"type": "Fused",
"params":{
"loss":16
},
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.0,
"city": "Corlay",
"region": "RLD"
}
}
}
],
@@ -247,6 +277,10 @@
},
{
"from_node": "Edfa5",
"to_node": "Att_F"
},
{
"from_node": "Att_F",
"to_node": "trx F"
},
{
@@ -255,6 +289,10 @@
},
{
"from_node": "Edfa1",
"to_node": "Att_B"
},
{
"from_node": "Att_B",
"to_node": "trx B"
}
]

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +1,11 @@
{ "Edfa":[{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
},
{
@@ -14,6 +16,7 @@
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
@@ -24,6 +27,7 @@
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
@@ -34,6 +38,7 @@
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
@@ -44,7 +49,16 @@
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
}
},
{
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber":[{
"type_variety": "SSMF",
@@ -52,9 +66,11 @@
"gamma": 0.00127
}
],
"Spans":[{
"power_mode": true,
"delta_power_range_db": [0,0,1],
"Span":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
@@ -64,10 +80,13 @@
"con_out": 0
}
],
"Roadms":[{
"gain_mode_default_loss": 20,
"power_mode_pout_target": -20,
"add_drop_osnr": 100
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
@@ -75,7 +94,7 @@
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0.5,0.5],
"power_range_db": [0,0,0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0

Binary file not shown.

View File

@@ -1,698 +0,0 @@
{
"elements": [
{
"uid": "trx Lannion_CAS",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx Lorient_KMA",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx Vannes_KBE",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx Rennes_STA",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx Brest_KLA",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "roadm Lannion_CAS",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm Lorient_KMA",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm Vannes_KBE",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm Rennes_STA",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm Brest_KLA",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "west fused spans in Corlay",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Fused"
},
{
"uid": "west fused spans in Loudeac",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Corlay",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Loudeac",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Fused"
},
{
"uid": "fiber (Lannion_CAS → Corlay)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 20.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Corlay → Loudeac)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Loudeac → Lorient_KMA)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lorient_KMA → Vannes_KBE)-F01",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 10.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lannion_CAS → Stbrieuc)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Stbrieuc → Rennes_STA)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 65.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lannion_CAS → Morlaix)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Morlaix → Brest_KLA)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 35.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Corlay → Lannion_CAS)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 20.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Loudeac → Corlay)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lorient_KMA → Loudeac)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Vannes_KBE → Lorient_KMA)-F01",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 10.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Stbrieuc → Lannion_CAS)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Rennes_STA → Stbrieuc)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 65.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Morlaix → Lannion_CAS)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Brest_KLA → Morlaix)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 35.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "east edfa in Lannion_CAS to Morlaix",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 0,
"tilt_target": 0,
"out_voa": 0
}
},
{
"uid": "east edfa in Lannion_CAS to Corlay",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 0,
"tilt_target": 0,
"out_voa": 0
}
},
{
"uid": "east edfa in Lannion_CAS to Stbrieuc",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 0,
"tilt_target": 0,
"out_voa": 0
}
},
{
"uid": "east edfa in Corlay to Loudeac",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 0,
"longitude": 0
}
},
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 0,
"tilt_target": 0,
"out_voa": 0
}
}
],
"connections": [
{
"from_node": "roadm Lannion_CAS",
"to_node": "east edfa in Lannion_CAS to Corlay"
},
{
"from_node": "east edfa in Lannion_CAS to Corlay",
"to_node": "fiber (Lannion_CAS → Corlay)-"
},
{
"from_node": "fiber (Corlay → Lannion_CAS)-",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "east edfa in Lannion_CAS to Stbrieuc"
},
{
"from_node": "east edfa in Lannion_CAS to Stbrieuc",
"to_node": "fiber (Lannion_CAS → Stbrieuc)-"
},
{
"from_node": "fiber (Stbrieuc → Lannion_CAS)-",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "east edfa in Lannion_CAS to Morlaix"
},
{
"from_node": "east edfa in Lannion_CAS to Morlaix",
"to_node": "fiber (Lannion_CAS → Morlaix)-"
},
{
"from_node": "fiber (Morlaix → Lannion_CAS)-",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "fiber (Lannion_CAS → Corlay)-",
"to_node": "west fused spans in Corlay"
},
{
"from_node": "west fused spans in Corlay",
"to_node": "fiber (Corlay → Loudeac)-"
},
{
"from_node": "fiber (Loudeac → Corlay)-",
"to_node": "east fused spans in Corlay"
},
{
"from_node": "east fused spans in Corlay",
"to_node": "fiber (Corlay → Lannion_CAS)-"
},
{
"from_node": "fiber (Corlay → Loudeac)-",
"to_node": "west fused spans in Loudeac"
},
{
"from_node": "west fused spans in Loudeac",
"to_node": "fiber (Loudeac → Lorient_KMA)-"
},
{
"from_node": "fiber (Lorient_KMA → Loudeac)-",
"to_node": "east fused spans in Loudeac"
},
{
"from_node": "east fused spans in Loudeac",
"to_node": "fiber (Loudeac → Corlay)-"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "fiber (Lorient_KMA → Loudeac)-"
},
{
"from_node": "fiber (Loudeac → Lorient_KMA)-",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "fiber (Lorient_KMA → Vannes_KBE)-F01"
},
{
"from_node": "fiber (Vannes_KBE → Lorient_KMA)-F01",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Vannes_KBE",
"to_node": "fiber (Vannes_KBE → Lorient_KMA)-F01"
},
{
"from_node": "fiber (Lorient_KMA → Vannes_KBE)-F01",
"to_node": "roadm Vannes_KBE"
},
{
"from_node": "fiber (Lannion_CAS → Stbrieuc)-",
"to_node": "fiber (Stbrieuc → Rennes_STA)-"
},
{
"from_node": "fiber (Rennes_STA → Stbrieuc)-",
"to_node": "fiber (Stbrieuc → Lannion_CAS)-"
},
{
"from_node": "roadm Rennes_STA",
"to_node": "fiber (Rennes_STA → Stbrieuc)-"
},
{
"from_node": "fiber (Stbrieuc → Rennes_STA)-",
"to_node": "roadm Rennes_STA"
},
{
"from_node": "fiber (Lannion_CAS → Morlaix)-",
"to_node": "fiber (Morlaix → Brest_KLA)-"
},
{
"from_node": "fiber (Brest_KLA → Morlaix)-",
"to_node": "fiber (Morlaix → Lannion_CAS)-"
},
{
"from_node": "roadm Brest_KLA",
"to_node": "fiber (Brest_KLA → Morlaix)-"
},
{
"from_node": "fiber (Morlaix → Brest_KLA)-",
"to_node": "roadm Brest_KLA"
},
{
"from_node": "trx Lannion_CAS",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "trx Lannion_CAS"
},
{
"from_node": "trx Lorient_KMA",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "trx Lorient_KMA"
},
{
"from_node": "trx Vannes_KBE",
"to_node": "roadm Vannes_KBE"
},
{
"from_node": "roadm Vannes_KBE",
"to_node": "trx Vannes_KBE"
},
{
"from_node": "trx Rennes_STA",
"to_node": "roadm Rennes_STA"
},
{
"from_node": "roadm Rennes_STA",
"to_node": "trx Rennes_STA"
},
{
"from_node": "trx Brest_KLA",
"to_node": "roadm Brest_KLA"
},
{
"from_node": "roadm Brest_KLA",
"to_node": "trx Brest_KLA"
}
]
}

View File

@@ -1,84 +0,0 @@
{
"path-request": [
{
"request-id": "0",
"source": "BREST_KLA",
"destination": "Vannes_KBE",
"src-tp-id": "trx BREST_KLA",
"dst-tp-id": "trx Vannes_KBE",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
"path_bandwidth": 0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "1",
"source": "Lorient_KMA",
"destination": "Vannes_KBE",
"src-tp-id": "trx Lorient_KMA",
"dst-tp-id": "trx Vannes_KBE",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.001,
"path_bandwidth": 0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
}
],
"synchronization": [
{
"synchronization-id": "0",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"0",
"1"
]
}
},
{
"synchronization-id": "1",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"1",
"0"
]
}
}
]
}

Binary file not shown.

View File

@@ -1,806 +0,0 @@
{
"elements": [
{
"uid": "trx Lannion_CAS",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Lorient_KMA",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Vannes_KBE",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 2.0,
"longitude": 4.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Rennes_STA",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Brest_KLA",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 4.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx toto",
"metadata": {
"location": {
"city": "toto",
"region": "",
"latitude": 6.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx tata",
"metadata": {
"location": {
"city": "tata",
"region": "",
"latitude": 7.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "roadm Lannion_CAS",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Lorient_KMA",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Vannes_KBE",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 2.0,
"longitude": 4.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Rennes_STA",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Brest_KLA",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 4.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm toto",
"metadata": {
"location": {
"city": "toto",
"region": "",
"latitude": 6.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm tata",
"metadata": {
"location": {
"city": "tata",
"region": "",
"latitude": 7.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "west fused spans in Corlay",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 2.0,
"longitude": 1.0
}
},
"type": "Fused"
},
{
"uid": "west fused spans in Loudeac",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 2.0,
"longitude": 2.0
}
},
"type": "Fused"
},
{
"uid": "west fused spans in Morlaix",
"metadata": {
"location": {
"city": "Morlaix",
"region": "RLD",
"latitude": 3.0,
"longitude": 0.0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Corlay",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 2.0,
"longitude": 1.0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Loudeac",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 2.0,
"longitude": 2.0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Morlaix",
"metadata": {
"location": {
"city": "Morlaix",
"region": "RLD",
"latitude": 3.0,
"longitude": 0.0
}
},
"type": "Fused"
},
{
"uid": "fiber (Lannion_CAS → Corlay)-F061",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 0.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 20.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Corlay → Loudeac)-F010",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Loudeac → Lorient_KMA)-F054",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 2.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lorient_KMA → Vannes_KBE)-F055",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 3.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 10.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lannion_CAS → Stbrieuc)-F056",
"metadata": {
"location": {
"latitude": 1.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Stbrieuc → Rennes_STA)-F057",
"metadata": {
"location": {
"latitude": 0.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 65.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lannion_CAS → Morlaix)-F059",
"metadata": {
"location": {
"latitude": 2.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Morlaix → Brest_KLA)-F060",
"metadata": {
"location": {
"latitude": 3.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 35.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (toto → tata)-",
"metadata": {
"location": {
"latitude": 6.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Corlay → Lannion_CAS)-F061",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 0.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 20.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Loudeac → Corlay)-F010",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lorient_KMA → Loudeac)-F054",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 2.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Vannes_KBE → Lorient_KMA)-F055",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 3.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 10.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Stbrieuc → Lannion_CAS)-F056",
"metadata": {
"location": {
"latitude": 1.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Rennes_STA → Stbrieuc)-F057",
"metadata": {
"location": {
"latitude": 0.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 65.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Morlaix → Lannion_CAS)-F059",
"metadata": {
"location": {
"latitude": 2.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Brest_KLA → Morlaix)-F060",
"metadata": {
"location": {
"latitude": 3.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 35.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (tata → toto)-",
"metadata": {
"location": {
"latitude": 6.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "east edfa in Lannion_CAS to Corlay",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 0,
"tilt_target": 0,
"out_voa": 0
}
},
{
"uid": "east edfa in Lorient_KMA to Loudeac",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Edfa",
"type_variety": "test",
"operational": {
"gain_target": 0,
"tilt_target": 0,
"out_voa": 0
}
}
],
"connections": [
{
"from_node": "roadm Lannion_CAS",
"to_node": "east edfa in Lannion_CAS to Corlay"
},
{
"from_node": "east edfa in Lannion_CAS to Corlay",
"to_node": "fiber (Lannion_CAS → Corlay)-F061"
},
{
"from_node": "fiber (Corlay → Lannion_CAS)-F061",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "fiber (Lannion_CAS → Stbrieuc)-F056"
},
{
"from_node": "fiber (Stbrieuc → Lannion_CAS)-F056",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "fiber (Lannion_CAS → Morlaix)-F059"
},
{
"from_node": "fiber (Morlaix → Lannion_CAS)-F059",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "fiber (Lannion_CAS → Corlay)-F061",
"to_node": "west fused spans in Corlay"
},
{
"from_node": "west fused spans in Corlay",
"to_node": "fiber (Corlay → Loudeac)-F010"
},
{
"from_node": "fiber (Loudeac → Corlay)-F010",
"to_node": "east fused spans in Corlay"
},
{
"from_node": "east fused spans in Corlay",
"to_node": "fiber (Corlay → Lannion_CAS)-F061"
},
{
"from_node": "fiber (Corlay → Loudeac)-F010",
"to_node": "west fused spans in Loudeac"
},
{
"from_node": "west fused spans in Loudeac",
"to_node": "fiber (Loudeac → Lorient_KMA)-F054"
},
{
"from_node": "fiber (Lorient_KMA → Loudeac)-F054",
"to_node": "east fused spans in Loudeac"
},
{
"from_node": "east fused spans in Loudeac",
"to_node": "fiber (Loudeac → Corlay)-F010"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "east edfa in Lorient_KMA to Loudeac"
},
{
"from_node": "east edfa in Lorient_KMA to Loudeac",
"to_node": "fiber (Lorient_KMA → Loudeac)-F054"
},
{
"from_node": "fiber (Loudeac → Lorient_KMA)-F054",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "fiber (Lorient_KMA → Vannes_KBE)-F055"
},
{
"from_node": "fiber (Vannes_KBE → Lorient_KMA)-F055",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Vannes_KBE",
"to_node": "fiber (Vannes_KBE → Lorient_KMA)-F055"
},
{
"from_node": "fiber (Lorient_KMA → Vannes_KBE)-F055",
"to_node": "roadm Vannes_KBE"
},
{
"from_node": "fiber (Lannion_CAS → Stbrieuc)-F056",
"to_node": "fiber (Stbrieuc → Rennes_STA)-F057"
},
{
"from_node": "fiber (Rennes_STA → Stbrieuc)-F057",
"to_node": "fiber (Stbrieuc → Lannion_CAS)-F056"
},
{
"from_node": "roadm Rennes_STA",
"to_node": "fiber (Rennes_STA → Stbrieuc)-F057"
},
{
"from_node": "fiber (Stbrieuc → Rennes_STA)-F057",
"to_node": "roadm Rennes_STA"
},
{
"from_node": "fiber (Lannion_CAS → Morlaix)-F059",
"to_node": "west fused spans in Morlaix"
},
{
"from_node": "west fused spans in Morlaix",
"to_node": "fiber (Morlaix → Brest_KLA)-F060"
},
{
"from_node": "fiber (Brest_KLA → Morlaix)-F060",
"to_node": "east fused spans in Morlaix"
},
{
"from_node": "east fused spans in Morlaix",
"to_node": "fiber (Morlaix → Lannion_CAS)-F059"
},
{
"from_node": "roadm Brest_KLA",
"to_node": "fiber (Brest_KLA → Morlaix)-F060"
},
{
"from_node": "fiber (Morlaix → Brest_KLA)-F060",
"to_node": "roadm Brest_KLA"
},
{
"from_node": "roadm toto",
"to_node": "fiber (toto → tata)-"
},
{
"from_node": "fiber (tata → toto)-",
"to_node": "roadm toto"
},
{
"from_node": "roadm tata",
"to_node": "fiber (tata → toto)-"
},
{
"from_node": "fiber (toto → tata)-",
"to_node": "roadm tata"
},
{
"from_node": "trx Lannion_CAS",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "trx Lannion_CAS"
},
{
"from_node": "trx Lorient_KMA",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "trx Lorient_KMA"
},
{
"from_node": "trx Vannes_KBE",
"to_node": "roadm Vannes_KBE"
},
{
"from_node": "roadm Vannes_KBE",
"to_node": "trx Vannes_KBE"
},
{
"from_node": "trx Rennes_STA",
"to_node": "roadm Rennes_STA"
},
{
"from_node": "roadm Rennes_STA",
"to_node": "trx Rennes_STA"
},
{
"from_node": "trx Brest_KLA",
"to_node": "roadm Brest_KLA"
},
{
"from_node": "roadm Brest_KLA",
"to_node": "trx Brest_KLA"
},
{
"from_node": "trx toto",
"to_node": "roadm toto"
},
{
"from_node": "roadm toto",
"to_node": "trx toto"
},
{
"from_node": "trx tata",
"to_node": "roadm tata"
},
{
"from_node": "roadm tata",
"to_node": "trx tata"
}
]
}

View File

@@ -1,762 +0,0 @@
{
"elements": [
{
"uid": "trx Lannion_CAS",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Lorient_KMA",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Vannes_KBE",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 2.0,
"longitude": 4.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Rennes_STA",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx Brest_KLA",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 4.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx toto",
"metadata": {
"location": {
"city": "toto",
"region": "",
"latitude": 6.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "trx tata",
"metadata": {
"location": {
"city": "tata",
"region": "",
"latitude": 7.0,
"longitude": 0.0
}
},
"type": "Transceiver"
},
{
"uid": "roadm Lannion_CAS",
"metadata": {
"location": {
"city": "Lannion_CAS",
"region": "RLD",
"latitude": 2.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Lorient_KMA",
"metadata": {
"location": {
"city": "Lorient_KMA",
"region": "RLD",
"latitude": 2.0,
"longitude": 3.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Vannes_KBE",
"metadata": {
"location": {
"city": "Vannes_KBE",
"region": "RLD",
"latitude": 2.0,
"longitude": 4.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Rennes_STA",
"metadata": {
"location": {
"city": "Rennes_STA",
"region": "RLD",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm Brest_KLA",
"metadata": {
"location": {
"city": "Brest_KLA",
"region": "RLD",
"latitude": 4.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm toto",
"metadata": {
"location": {
"city": "toto",
"region": "",
"latitude": 6.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "roadm tata",
"metadata": {
"location": {
"city": "tata",
"region": "",
"latitude": 7.0,
"longitude": 0.0
}
},
"type": "Roadm"
},
{
"uid": "west fused spans in Corlay",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 2.0,
"longitude": 1.0
}
},
"type": "Fused"
},
{
"uid": "west fused spans in Loudeac",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 2.0,
"longitude": 2.0
}
},
"type": "Fused"
},
{
"uid": "west fused spans in Morlaix",
"metadata": {
"location": {
"city": "Morlaix",
"region": "RLD",
"latitude": 3.0,
"longitude": 0.0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Corlay",
"metadata": {
"location": {
"city": "Corlay",
"region": "RLD",
"latitude": 2.0,
"longitude": 1.0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Loudeac",
"metadata": {
"location": {
"city": "Loudeac",
"region": "RLD",
"latitude": 2.0,
"longitude": 2.0
}
},
"type": "Fused"
},
{
"uid": "east fused spans in Morlaix",
"metadata": {
"location": {
"city": "Morlaix",
"region": "RLD",
"latitude": 3.0,
"longitude": 0.0
}
},
"type": "Fused"
},
{
"uid": "fiber (Lannion_CAS → Corlay)-F061",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 0.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 20.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Corlay → Loudeac)-F010",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Loudeac → Lorient_KMA)-F054",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 2.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lorient_KMA → Vannes_KBE)-F055",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 3.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 10.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lannion_CAS → Stbrieuc)-F056",
"metadata": {
"location": {
"latitude": 1.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Stbrieuc → Rennes_STA)-F057",
"metadata": {
"location": {
"latitude": 0.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 65.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lannion_CAS → Morlaix)-F059",
"metadata": {
"location": {
"latitude": 2.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Morlaix → Brest_KLA)-F060",
"metadata": {
"location": {
"latitude": 3.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 35.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (toto → tata)-",
"metadata": {
"location": {
"latitude": 6.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Corlay → Lannion_CAS)-F061",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 0.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 20.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Loudeac → Corlay)-F010",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Lorient_KMA → Loudeac)-F054",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 2.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Vannes_KBE → Lorient_KMA)-F055",
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 3.5
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 10.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Stbrieuc → Lannion_CAS)-F056",
"metadata": {
"location": {
"latitude": 1.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Rennes_STA → Stbrieuc)-F057",
"metadata": {
"location": {
"latitude": 0.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 65.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Morlaix → Lannion_CAS)-F059",
"metadata": {
"location": {
"latitude": 2.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (Brest_KLA → Morlaix)-F060",
"metadata": {
"location": {
"latitude": 3.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 35.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (tata → toto)-",
"metadata": {
"location": {
"latitude": 6.5,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
}
],
"connections": [
{
"from_node": "roadm Lannion_CAS",
"to_node": "fiber (Lannion_CAS → Corlay)-F061"
},
{
"from_node": "fiber (Corlay → Lannion_CAS)-F061",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "fiber (Lannion_CAS → Stbrieuc)-F056"
},
{
"from_node": "fiber (Stbrieuc → Lannion_CAS)-F056",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "fiber (Lannion_CAS → Morlaix)-F059"
},
{
"from_node": "fiber (Morlaix → Lannion_CAS)-F059",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "fiber (Lannion_CAS → Corlay)-F061",
"to_node": "west fused spans in Corlay"
},
{
"from_node": "west fused spans in Corlay",
"to_node": "fiber (Corlay → Loudeac)-F010"
},
{
"from_node": "fiber (Loudeac → Corlay)-F010",
"to_node": "east fused spans in Corlay"
},
{
"from_node": "east fused spans in Corlay",
"to_node": "fiber (Corlay → Lannion_CAS)-F061"
},
{
"from_node": "fiber (Corlay → Loudeac)-F010",
"to_node": "west fused spans in Loudeac"
},
{
"from_node": "west fused spans in Loudeac",
"to_node": "fiber (Loudeac → Lorient_KMA)-F054"
},
{
"from_node": "fiber (Lorient_KMA → Loudeac)-F054",
"to_node": "east fused spans in Loudeac"
},
{
"from_node": "east fused spans in Loudeac",
"to_node": "fiber (Loudeac → Corlay)-F010"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "fiber (Lorient_KMA → Loudeac)-F054"
},
{
"from_node": "fiber (Loudeac → Lorient_KMA)-F054",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "fiber (Lorient_KMA → Vannes_KBE)-F055"
},
{
"from_node": "fiber (Vannes_KBE → Lorient_KMA)-F055",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Vannes_KBE",
"to_node": "fiber (Vannes_KBE → Lorient_KMA)-F055"
},
{
"from_node": "fiber (Lorient_KMA → Vannes_KBE)-F055",
"to_node": "roadm Vannes_KBE"
},
{
"from_node": "fiber (Lannion_CAS → Stbrieuc)-F056",
"to_node": "fiber (Stbrieuc → Rennes_STA)-F057"
},
{
"from_node": "fiber (Rennes_STA → Stbrieuc)-F057",
"to_node": "fiber (Stbrieuc → Lannion_CAS)-F056"
},
{
"from_node": "roadm Rennes_STA",
"to_node": "fiber (Rennes_STA → Stbrieuc)-F057"
},
{
"from_node": "fiber (Stbrieuc → Rennes_STA)-F057",
"to_node": "roadm Rennes_STA"
},
{
"from_node": "fiber (Lannion_CAS → Morlaix)-F059",
"to_node": "west fused spans in Morlaix"
},
{
"from_node": "west fused spans in Morlaix",
"to_node": "fiber (Morlaix → Brest_KLA)-F060"
},
{
"from_node": "fiber (Brest_KLA → Morlaix)-F060",
"to_node": "east fused spans in Morlaix"
},
{
"from_node": "east fused spans in Morlaix",
"to_node": "fiber (Morlaix → Lannion_CAS)-F059"
},
{
"from_node": "roadm Brest_KLA",
"to_node": "fiber (Brest_KLA → Morlaix)-F060"
},
{
"from_node": "fiber (Morlaix → Brest_KLA)-F060",
"to_node": "roadm Brest_KLA"
},
{
"from_node": "roadm toto",
"to_node": "fiber (toto → tata)-"
},
{
"from_node": "fiber (tata → toto)-",
"to_node": "roadm toto"
},
{
"from_node": "roadm tata",
"to_node": "fiber (tata → toto)-"
},
{
"from_node": "fiber (toto → tata)-",
"to_node": "roadm tata"
},
{
"from_node": "trx Lannion_CAS",
"to_node": "roadm Lannion_CAS"
},
{
"from_node": "roadm Lannion_CAS",
"to_node": "trx Lannion_CAS"
},
{
"from_node": "trx Lorient_KMA",
"to_node": "roadm Lorient_KMA"
},
{
"from_node": "roadm Lorient_KMA",
"to_node": "trx Lorient_KMA"
},
{
"from_node": "trx Vannes_KBE",
"to_node": "roadm Vannes_KBE"
},
{
"from_node": "roadm Vannes_KBE",
"to_node": "trx Vannes_KBE"
},
{
"from_node": "trx Rennes_STA",
"to_node": "roadm Rennes_STA"
},
{
"from_node": "roadm Rennes_STA",
"to_node": "trx Rennes_STA"
},
{
"from_node": "trx Brest_KLA",
"to_node": "roadm Brest_KLA"
},
{
"from_node": "roadm Brest_KLA",
"to_node": "trx Brest_KLA"
},
{
"from_node": "trx toto",
"to_node": "roadm toto"
},
{
"from_node": "roadm toto",
"to_node": "trx toto"
},
{
"from_node": "trx tata",
"to_node": "roadm tata"
},
{
"from_node": "roadm tata",
"to_node": "trx tata"
}
]
}

View File

@@ -1,224 +0,0 @@
{
"path-request": [
{
"request-id": "0",
"source": "Lorient_KMA",
"destination": "Vannes_KBE",
"src-tp-id": "trx Lorient_KMA",
"dst-tp-id": "trx Vannes_KBE",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "1",
"source": "Brest_KLA",
"destination": "Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
}
},
"optimizations": {
"explicit-route-include-objects": [
{
"index": 0,
"unnumbered-hop": {
"node-id": "Lannion_CAS",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
},
{
"index": 1,
"unnumbered-hop": {
"node-id": "Lorient_KMA",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
}
]
}
},
{
"request-id": "3",
"source": "Lannion_CAS",
"destination": "Rennes_STA",
"src-tp-id": "trx Lannion_CAS",
"dst-tp-id": "trx Rennes_STA",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "4",
"source": "Rennes_STA",
"destination": "Lannion_CAS",
"src-tp-id": "trx Rennes_STA",
"dst-tp-id": "trx Lannion_CAS",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_2",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": 64,
"output-power": 0.0019952623149688794,
"path_bandwidth": 0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "5",
"source": "Lorient_KMA",
"destination": "Lannion_CAS",
"src-tp-id": "trx Lorient_KMA",
"dst-tp-id": "trx Lannion_CAS",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
}
},
"optimizations": {
"explicit-route-include-objects": [
{
"index": 0,
"unnumbered-hop": {
"node-id": "toto",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
}
]
}
}
],
"synchronization": [
{
"synchronization-id": "0",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"0",
"0"
]
}
},
{
"synchronization-id": "3",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"3",
"4"
]
}
},
{
"synchronization-id": "5",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"5",
"0"
]
}
}
]
}

View File

@@ -1,730 +0,0 @@
{
"elements": [
{
"uid": "trx a",
"metadata": {
"location": {
"city": "a",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx b",
"metadata": {
"location": {
"city": "b",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx c",
"metadata": {
"location": {
"city": "c",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx d",
"metadata": {
"location": {
"city": "d",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx e",
"metadata": {
"location": {
"city": "e",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx f",
"metadata": {
"location": {
"city": "f",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx g",
"metadata": {
"location": {
"city": "g",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx h",
"metadata": {
"location": {
"city": "h",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "roadm a",
"metadata": {
"location": {
"city": "a",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm b",
"metadata": {
"location": {
"city": "b",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm c",
"metadata": {
"location": {
"city": "c",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm d",
"metadata": {
"location": {
"city": "d",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm e",
"metadata": {
"location": {
"city": "e",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm f",
"metadata": {
"location": {
"city": "f",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm g",
"metadata": {
"location": {
"city": "g",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "roadm h",
"metadata": {
"location": {
"city": "h",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "fiber (a \u2192 b)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 30.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (a \u2192 c)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 30.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (c \u2192 d)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (c \u2192 f)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (b \u2192 f)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 70.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (e \u2192 d)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (e \u2192 g)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 90.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (f \u2192 h)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 100.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (h \u2192 g)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 110.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (b \u2192 a)-F061",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 30.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (c \u2192 a)-F010",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 30.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (d \u2192 c)-F054",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (f \u2192 c)-F055",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 60.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (f \u2192 b)-F056",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 70.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (d \u2192 e)-F057",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (g \u2192 e)-F059",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 90.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (h \u2192 f)-F060",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 100.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
},
{
"uid": "fiber (g \u2192 h)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 110.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": null,
"con_out": null
}
}
],
"connections": [
{
"from_node": "roadm a",
"to_node": "fiber (a \u2192 b)-"
},
{
"from_node": "fiber (b \u2192 a)-F061",
"to_node": "roadm a"
},
{
"from_node": "roadm a",
"to_node": "fiber (a \u2192 c)-"
},
{
"from_node": "fiber (c \u2192 a)-F010",
"to_node": "roadm a"
},
{
"from_node": "roadm b",
"to_node": "fiber (b \u2192 a)-F061"
},
{
"from_node": "fiber (a \u2192 b)-",
"to_node": "roadm b"
},
{
"from_node": "roadm b",
"to_node": "fiber (b \u2192 f)-"
},
{
"from_node": "fiber (f \u2192 b)-F056",
"to_node": "roadm b"
},
{
"from_node": "roadm c",
"to_node": "fiber (c \u2192 a)-F010"
},
{
"from_node": "fiber (a \u2192 c)-",
"to_node": "roadm c"
},
{
"from_node": "roadm c",
"to_node": "fiber (c \u2192 d)-"
},
{
"from_node": "fiber (d \u2192 c)-F054",
"to_node": "roadm c"
},
{
"from_node": "roadm c",
"to_node": "fiber (c \u2192 f)-"
},
{
"from_node": "fiber (f \u2192 c)-F055",
"to_node": "roadm c"
},
{
"from_node": "roadm d",
"to_node": "fiber (d \u2192 c)-F054"
},
{
"from_node": "fiber (c \u2192 d)-",
"to_node": "roadm d"
},
{
"from_node": "roadm d",
"to_node": "fiber (d \u2192 e)-F057"
},
{
"from_node": "fiber (e \u2192 d)-",
"to_node": "roadm d"
},
{
"from_node": "roadm e",
"to_node": "fiber (e \u2192 d)-"
},
{
"from_node": "fiber (d \u2192 e)-F057",
"to_node": "roadm e"
},
{
"from_node": "roadm e",
"to_node": "fiber (e \u2192 g)-"
},
{
"from_node": "fiber (g \u2192 e)-F059",
"to_node": "roadm e"
},
{
"from_node": "roadm f",
"to_node": "fiber (f \u2192 c)-F055"
},
{
"from_node": "fiber (c \u2192 f)-",
"to_node": "roadm f"
},
{
"from_node": "roadm f",
"to_node": "fiber (f \u2192 b)-F056"
},
{
"from_node": "fiber (b \u2192 f)-",
"to_node": "roadm f"
},
{
"from_node": "roadm f",
"to_node": "fiber (f \u2192 h)-"
},
{
"from_node": "fiber (h \u2192 f)-F060",
"to_node": "roadm f"
},
{
"from_node": "roadm g",
"to_node": "fiber (g \u2192 e)-F059"
},
{
"from_node": "fiber (e \u2192 g)-",
"to_node": "roadm g"
},
{
"from_node": "roadm g",
"to_node": "fiber (g \u2192 h)-"
},
{
"from_node": "fiber (h \u2192 g)-",
"to_node": "roadm g"
},
{
"from_node": "roadm h",
"to_node": "fiber (h \u2192 f)-F060"
},
{
"from_node": "fiber (f \u2192 h)-",
"to_node": "roadm h"
},
{
"from_node": "roadm h",
"to_node": "fiber (h \u2192 g)-"
},
{
"from_node": "fiber (g \u2192 h)-",
"to_node": "roadm h"
},
{
"from_node": "trx a",
"to_node": "roadm a"
},
{
"from_node": "roadm a",
"to_node": "trx a"
},
{
"from_node": "trx b",
"to_node": "roadm b"
},
{
"from_node": "roadm b",
"to_node": "trx b"
},
{
"from_node": "trx c",
"to_node": "roadm c"
},
{
"from_node": "roadm c",
"to_node": "trx c"
},
{
"from_node": "trx d",
"to_node": "roadm d"
},
{
"from_node": "roadm d",
"to_node": "trx d"
},
{
"from_node": "trx e",
"to_node": "roadm e"
},
{
"from_node": "roadm e",
"to_node": "trx e"
},
{
"from_node": "trx f",
"to_node": "roadm f"
},
{
"from_node": "roadm f",
"to_node": "trx f"
},
{
"from_node": "trx g",
"to_node": "roadm g"
},
{
"from_node": "roadm g",
"to_node": "trx g"
},
{
"from_node": "trx h",
"to_node": "roadm h"
},
{
"from_node": "roadm h",
"to_node": "trx h"
}
]
}

BIN
tests/data/testTopology.xls Normal file

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -9,8 +9,8 @@
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
@@ -19,8 +19,8 @@
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
"output-power": null,
"path_bandwidth": 100000000000.0
}
},
"optimizations": {
@@ -36,8 +36,8 @@
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
@@ -45,7 +45,7 @@
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"max-nb-of-channel": null,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
}
@@ -55,7 +55,7 @@
{
"index": 0,
"unnumbered-hop": {
"node-id": "Lannion_CAS",
"node-id": "roadm Brest_KLA",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
@@ -70,7 +70,37 @@
{
"index": 1,
"unnumbered-hop": {
"node-id": "Lorient_KMA",
"node-id": "roadm Lannion_CAS",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
},
{
"index": 2,
"unnumbered-hop": {
"node-id": "roadm Lorient_KMA",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
},
{
"index": 3,
"unnumbered-hop": {
"node-id": "roadm Vannes_KBE",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
@@ -95,7 +125,7 @@
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_1",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
@@ -105,7 +135,7 @@
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
"path_bandwidth": 60000000000.0
}
},
"optimizations": {
@@ -122,7 +152,7 @@
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "PS_SP64_2",
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"n": "null",
@@ -130,9 +160,9 @@
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": 64,
"output-power": 0.0019952623149688794,
"path_bandwidth": 0
"max-nb-of-channel": null,
"output-power": null,
"path_bandwidth": 150000000000.0
}
},
"optimizations": {
@@ -141,61 +171,33 @@
},
{
"request-id": "5",
"source": "Lorient_KMA",
"source": "Rennes_STA",
"destination": "Lannion_CAS",
"src-tp-id": "trx Lorient_KMA",
"src-tp-id": "trx Rennes_STA",
"dst-tp-id": "trx Lannion_CAS",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager_16QAM",
"trx_mode": "16QAM",
"trx_type": "vendorA_trx-type1",
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 0
"spacing": 75000000000.0,
"max-nb-of-channel": 63,
"output-power": 0.0019952623149688794,
"path_bandwidth": 20000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": [
{
"index": 0,
"unnumbered-hop": {
"node-id": "toto",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
}
]
"explicit-route-include-objects": []
}
}
],
"synchronization": [
{
"synchronization-id": "0",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"0",
"0"
]
}
},
{
"synchronization-id": "3",
"svec": {
@@ -204,21 +206,21 @@
"node-diverse": "True",
"request-id-number": [
"3",
"4"
"1"
]
}
},
{
"synchronization-id": "5",
"synchronization-id": "4",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"5",
"0"
"4",
"5"
]
}
}
]
}
}

View File

@@ -77,7 +77,22 @@
"longitude": 0
}
}
},
},
{
"uid": "Att_B",
"type": "Fused",
"params":{
"loss":16
},
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.0,
"city": "Corlay",
"region": "RLD"
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
@@ -110,6 +125,10 @@
},
{
"from_node": "Edfa2",
"to_node": "Att_B"
},
{
"from_node": "Att_B",
"to_node": "Site_B"
}

View File

@@ -9,8 +9,8 @@ from json import load
from gnpy.core.elements import Transceiver, Fiber, Edfa
from gnpy.core.utils import lin2db, db2lin
from gnpy.core.info import create_input_spectral_information, SpectralInformation, Channel, Power, Pref
from gnpy.core.equipment import load_equipment, automatic_fmax
from gnpy.core.network import build_network, load_network, set_roadm_loss
from gnpy.core.equipment import load_equipment, automatic_fmax, automatic_nch
from gnpy.core.network import build_network, load_network
from pathlib import Path
import pytest
@@ -79,7 +79,7 @@ def test_variable_gain_nf(gain, nf_expected, setup_edfa_variable_gain, si):
pin = pin/db2lin(gain)
baud_rates = array([c.baud_rate for c in si.carriers])
edfa.operational.gain_target = gain
pref = Pref(0, -gain)
pref = Pref(0, -gain, lin2db(len(frequencies)))
edfa.interpol_params(frequencies, pin, baud_rates, pref)
result = edfa.nf
assert pytest.approx(nf_expected, abs=0.01) == result[0]
@@ -93,7 +93,7 @@ def test_fixed_gain_nf(gain, nf_expected, setup_edfa_fixed_gain, si):
pin = pin/db2lin(gain)
baud_rates = array([c.baud_rate for c in si.carriers])
edfa.operational.gain_target = gain
pref = Pref(0, -gain)
pref = Pref(0, -gain, lin2db(len(frequencies)))
edfa.interpol_params(frequencies, pin, baud_rates, pref)
assert pytest.approx(nf_expected, abs=0.01) == edfa.nf[0]
@@ -118,7 +118,7 @@ def test_compare_nf_models(gain, setup_edfa_variable_gain, si):
pin = pin/db2lin(gain)
baud_rates = array([c.baud_rate for c in si.carriers])
edfa.operational.gain_target = gain
pref = Pref(0, -gain)
pref = Pref(0, -gain, lin2db(len(frequencies)))
edfa.interpol_params(frequencies, pin, baud_rates, pref)
nf_model = edfa.nf[0]
edfa.interpol_params(frequencies, pin, baud_rates, pref)
@@ -137,7 +137,7 @@ def test_ase_noise(gain, si, setup_edfa_variable_gain, setup_trx, bw):
pin = array([c.power.signal+c.power.nli+c.power.ase for c in si.carriers])
baud_rates = array([c.baud_rate for c in si.carriers])
edfa.operational.gain_target = gain
pref = Pref(0, 0)
pref = Pref(0, 0, lin2db(len(frequencies)))
edfa.interpol_params(frequencies, pin, baud_rates, pref)
nf = edfa.nf
pin = lin2db(pin[0]*1e3)

View File

@@ -25,9 +25,9 @@ from gnpy.core.request import (compute_path_dsjctn, isdisjoint , find_reversed_p
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.elements import Roadm
network_file_name = Path(__file__).parent.parent / 'tests/data/meshTopologyToy.json'
service_file_name = Path(__file__).parent.parent / 'tests/data/meshTopologyToy_services.json'
result_file_name = Path(__file__).parent.parent / 'tests/data/meshTopologyToy_results.json'
network_file_name = Path(__file__).parent.parent / 'tests/data/testTopology_expected.json'
service_file_name = Path(__file__).parent.parent / 'tests/data/testTopology_testservices.json'
result_file_name = Path(__file__).parent.parent / 'tests/data/testTopology_testresults.json'
eqpt_library_name = Path(__file__).parent.parent / 'tests/data/eqpt_config.json'
@pytest.mark.parametrize("net",[network_file_name])
@@ -72,7 +72,7 @@ def test_automaticmodefeature(net,eqpt,serv,expected_mode):
if pathreq.baud_rate is not None:
print(pathreq.format)
path_res_list.append(pathreq.format)
total_path = propagate(total_path,pathreq,equipment, show=False)
total_path = propagate(total_path,pathreq,equipment)
else:
total_path,mode = propagate_and_optimize_mode(total_path,pathreq,equipment)
# if no baudrate satisfies spacing, no mode is returned and an empty path is returned

View File

@@ -20,9 +20,9 @@ from gnpy.core.request import compute_path_dsjctn, isdisjoint , find_reversed_pa
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.elements import Roadm
network_file_name = Path(__file__).parent.parent / 'tests/data/meshTopologyToy.json'
service_file_name = Path(__file__).parent.parent / 'tests/data/meshTopologyToy_services.json'
result_file_name = Path(__file__).parent.parent / 'tests/data/meshTopologyToy_results.json'
network_file_name = Path(__file__).parent.parent / 'tests/data/testTopology_expected.json'
service_file_name = Path(__file__).parent.parent / 'tests/data/testTopology_testservices.json'
result_file_name = Path(__file__).parent.parent / 'tests/data/testTopology_testresults.json'
eqpt_library_name = Path(__file__).parent.parent / 'tests/data/eqpt_config.json'
@pytest.mark.parametrize("net",[network_file_name])

View File

@@ -11,9 +11,12 @@ from gnpy.core import network_from_json
from gnpy.core.elements import Transceiver, Fiber, Edfa
from gnpy.core.utils import lin2db, db2lin
from gnpy.core.info import SpectralInformation, Channel, Power
from gnpy.core.network import save_network, build_network
from tests.compare import compare_networks, compare_services
from gnpy.core.convert import convert_file
from gnpy.core.service_sheet import convert_service_sheet
from gnpy.core.equipment import load_equipment, automatic_nch
from gnpy.core.network import load_network
from pathlib import Path
import filecmp
from os import unlink
@@ -28,10 +31,8 @@ eqpt_filename = DATA_DIR / 'eqpt_config.json'
# - ..._expected.json for the reference output
@pytest.mark.parametrize('xls_input,expected_json_output', {
DATA_DIR / 'excelTestFile.xls': DATA_DIR / 'excelTestFile_expected.json',
DATA_DIR / 'CORONET_Global_Topology.xls': DATA_DIR / 'CORONET_Global_Topology_expected.json',
DATA_DIR / 'meshTopologyExampleV2.xls': DATA_DIR / 'meshTopologyExampleV2_expected.json',
DATA_DIR / 'meshTopologyExampleV2Eqpt.xls': DATA_DIR / 'meshTopologyExampleV2Eqpt_expected.json',
DATA_DIR / 'testTopology.xls': DATA_DIR / 'testTopology_expected.json',
}.items())
def test_excel_json_generation(xls_input, expected_json_output):
convert_file(xls_input)
@@ -39,7 +40,7 @@ def test_excel_json_generation(xls_input, expected_json_output):
actual_json_output = xls_input.with_suffix('.json')
with open(actual_json_output, encoding='utf-8') as f:
actual = load(f)
#unlink(actual_json_output)
unlink(actual_json_output)
with open(expected_json_output, encoding='utf-8') as f:
expected = load(f)
@@ -52,14 +53,84 @@ def test_excel_json_generation(xls_input, expected_json_output):
assert not results.connections.extra
assert not results.connections.different
# assume json entries
# test that the build network gives correct results
# TODO !!
# assume xls entries
# test that the build network gives correct results in gain mode
#
@pytest.mark.parametrize('xls_input,expected_json_output', {
DATA_DIR / 'CORONET_Global_Topology.xls': DATA_DIR / 'CORONET_Global_Topology_auto_design_expected.json',
DATA_DIR / 'testTopology.xls': DATA_DIR / 'testTopology_auto_design_expected.json',
}.items())
def test_auto_design_generation_fromxlsgainmode(xls_input, expected_json_output):
equipment = load_equipment(eqpt_filename)
network = load_network(xls_input,equipment)
# in order to test the Eqpt sheet and load gain target, change the power-mode to False (to be in gain mode)
equipment['Span']['default'].power_mode = False
# Build the network once using the default power defined in SI in eqpt config
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,\
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
build_network(network, equipment, p_db, p_total_db)
save_network(xls_input, network)
actual_json_output = f'{str(xls_input)[0:len(str(xls_input))-4]}_auto_design.json'
with open(actual_json_output, encoding='utf-8') as f:
actual = load(f)
unlink(actual_json_output)
with open(expected_json_output, encoding='utf-8') as f:
expected = load(f)
results = compare_networks(expected, actual)
assert not results.elements.missing
assert not results.elements.extra
assert not results.elements.different
assert not results.connections.missing
assert not results.connections.extra
assert not results.connections.different
#test that autodesign creates same file as an input file already autodesigned
@pytest.mark.parametrize('json_input,expected_json_output', {
DATA_DIR / 'CORONET_Global_Topology_auto_design_expected.json': DATA_DIR / 'CORONET_Global_Topology_auto_design_expected.json',
DATA_DIR / 'testTopology_auto_design_expected.json': DATA_DIR / 'testTopology_auto_design_expected.json',
}.items())
def test_auto_design_generation_fromjson(json_input, expected_json_output):
equipment = load_equipment(eqpt_filename)
network = load_network(json_input,equipment)
# in order to test the Eqpt sheet and load gain target, change the power-mode to False (to be in gain mode)
equipment['Span']['default'].power_mode = False
# Build the network once using the default power defined in SI in eqpt config
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,\
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
build_network(network, equipment, p_db, p_total_db)
save_network(json_input, network)
actual_json_output = f'{str(json_input)[0:len(str(json_input))-5]}_auto_design.json'
with open(actual_json_output, encoding='utf-8') as f:
actual = load(f)
unlink(actual_json_output)
with open(expected_json_output, encoding='utf-8') as f:
expected = load(f)
results = compare_networks(expected, actual)
assert not results.elements.missing
assert not results.elements.extra
assert not results.elements.different
assert not results.connections.missing
assert not results.connections.extra
assert not results.connections.different
# test services creation
@pytest.mark.parametrize('xls_input,expected_json_output', {
DATA_DIR / 'excelTestFile.xls': DATA_DIR / 'excelTestFile_services_expected.json',
DATA_DIR / 'meshTopologyExampleV2.xls': DATA_DIR / 'meshTopologyExampleV2_services_expected.json',
DATA_DIR / 'meshTopologyExampleV2Eqpt.xls': DATA_DIR / 'meshTopologyExampleV2Eqpt_services_expected.json',
DATA_DIR / 'testTopology.xls': DATA_DIR / 'testTopology_services_expected.json',
}.items())
def test_excel_service_json_generation(xls_input, expected_json_output):
convert_service_sheet(xls_input, eqpt_filename)

View File

@@ -18,6 +18,8 @@ from numpy import mean
#network_file_name = 'tests/test_network.json'
network_file_name = Path(__file__).parent.parent / 'tests/LinkforTest.json'
#TODO: note that this json entries has a weird topology since EDfa1 has a possible branch on a receiver B
# this might not pass future tests/ code updates
#network_file_name = Path(__file__).parent.parent / 'examples/edfa_example_network.json'
eqpt_library_name = Path(__file__).parent.parent / 'tests/data/eqpt_config.json'
@@ -47,12 +49,8 @@ def propagation(input_power, con_in, con_out,dest):
p = input_power
p = db2lin(p) * 1e-3
spacing = 0.05 # THz
si = SpectralInformation() # SI units: W, Hz
si = si.update(carriers=[
Channel(f, (191.3 + spacing * f) * 1e12, 32e9, 0.15, Power(p, 0, 0))
for f in range(1,80)
])
spacing = 50e9 # THz
si = create_input_spectral_information(191.3e12, 191.3e12+79*spacing, 0.15, 32e9, p, spacing)
source = next(transceivers[uid] for uid in transceivers if uid == 'trx A')
sink = next(transceivers[uid] for uid in transceivers if uid == dest)
path = dijkstra_path(network, source, sink)

View File

@@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Author: Esther Le Rouzic
# @Date: 2019-05-22
"""
@author: esther.lerouzic
checks that fused placed in amp type is correctly converted to a fused element instead of an edfa
and that no additional amp is added.
checks that restrictions in roadms are correctly applied during autodesign
"""
from pathlib import Path
import pytest
from gnpy.core.utils import lin2db, load_json
from gnpy.core.elements import Fused, Roadm, Edfa
from gnpy.core.equipment import load_equipment, Amp, automatic_nch
from gnpy.core.network import network_from_json, build_network
TEST_DIR = Path(__file__).parent
EQPT_LIBRARY_NAME = TEST_DIR / 'data/eqpt_config.json'
NETWORK_FILE_NAME = TEST_DIR / 'data/testTopology_expected.json'
# adding tests to check the roadm restrictions
# mark node_uid amps as fused for testing purpose
@pytest.mark.parametrize("node_uid", ['east edfa in Lannion_CAS to Stbrieuc'])
def test_no_amp_feature(node_uid):
''' Check that booster is not placed on a roadm if fused is specified
test_parser covers partly this behaviour. This test should guaranty that the
feature is preserved even if convert is changed
'''
equipment = load_equipment(EQPT_LIBRARY_NAME)
json_network = load_json(NETWORK_FILE_NAME)
for elem in json_network['elements']:
if elem['uid'] == node_uid:
#replace edfa node by a fused node in the topology
elem['type'] = 'Fused'
elem.pop('type_variety')
elem.pop('operational')
elem['params'] = {'loss': 0}
next_node_uid = next(conn['to_node'] for conn in json_network['connections'] \
if conn['from_node'] == node_uid)
previous_node_uid = next(conn['from_node'] for conn in json_network['connections'] \
if conn['to_node'] == node_uid)
network = network_from_json(json_network, equipment)
# Build the network once using the default power defined in SI in eqpt config
# power density : db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,\
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
build_network(network, equipment, p_db, p_total_db)
node = next(nd for nd in network.nodes() if nd.uid == node_uid)
next_node = next(network.successors(node))
previous_node = next(network.predecessors(node))
if not isinstance(node, Fused):
raise AssertionError()
if not node.params.loss == 0.0:
raise AssertionError()
if not next_node_uid == next_node.uid:
raise AssertionError()
if not previous_node_uid == previous_node.uid:
raise AssertionError()
@pytest.fixture()
def equipment():
"""init transceiver class to access snr and osnr calculations"""
equipment = load_equipment(EQPT_LIBRARY_NAME)
# define some booster and preamps
restrictions_list = [
{
'type_variety': 'booster_medium_gain',
'type_def': 'variable_gain',
'gain_flatmax': 25,
'gain_min': 15,
'p_max': 21,
'nf_min': 5.8,
'nf_max': 10,
'out_voa_auto': False,
'allowed_for_design': False
},
{
'type_variety': 'preamp_medium_gain',
'type_def': 'variable_gain',
'gain_flatmax': 26,
'gain_min': 15,
'p_max': 23,
'nf_min': 6,
'nf_max': 10,
'out_voa_auto': False,
'allowed_for_design': False
},
{
'type_variety': 'preamp_high_gain',
'type_def': 'variable_gain',
'gain_flatmax': 35,
'gain_min': 25,
'p_max': 21,
'nf_min': 5.5,
'nf_max': 7,
'out_voa_auto': False,
'allowed_for_design': False
},
{
'type_variety': 'preamp_low_gain',
'type_def': 'variable_gain',
'gain_flatmax': 16,
'gain_min': 8,
'p_max': 23,
'nf_min': 6.5,
'nf_max': 11,
'out_voa_auto': False,
'allowed_for_design': False
}]
# add them to the library
for entry in restrictions_list:
equipment['Edfa'][entry['type_variety']] = Amp.from_json(EQPT_LIBRARY_NAME, **entry)
return equipment
@pytest.mark.parametrize("restrictions", [
{
'preamp_variety_list':[],
'booster_variety_list':[]
},
{
'preamp_variety_list':[],
'booster_variety_list':['booster_medium_gain']
},
{
'preamp_variety_list':['preamp_medium_gain', 'preamp_high_gain', 'preamp_low_gain'],
'booster_variety_list':[]
}])
def test_restrictions(restrictions, equipment):
''' test that restriction is correctly applied if provided in eqpt_config and if no Edfa type
were provided in the network json
'''
# add restrictions
equipment['Roadm']['default'].restrictions = restrictions
# build network
json_network = load_json(NETWORK_FILE_NAME)
network = network_from_json(json_network, equipment)
amp_nodes_nobuild_uid = [nd.uid for nd in network.nodes() \
if isinstance(nd, Edfa) and isinstance(next(network.predecessors(nd)), Roadm)]
preamp_nodes_nobuild_uid = [nd.uid for nd in network.nodes() \
if isinstance(nd, Edfa) and isinstance(next(network.successors(nd)), Roadm)]
amp_nodes_nobuild = {nd.uid : nd for nd in network.nodes() \
if isinstance(nd, Edfa) and isinstance(next(network.predecessors(nd)), Roadm)}
preamp_nodes_nobuild = {nd.uid : nd for nd in network.nodes() \
if isinstance(nd, Edfa) and isinstance(next(network.successors(nd)), Roadm)}
# roadm dict with restrictions before build
roadms = {nd.uid: nd for nd in network.nodes() if isinstance(nd, Roadm)}
# Build the network once using the default power defined in SI in eqpt config
# power density : db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,\
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
build_network(network, equipment, p_db, p_total_db)
amp_nodes = [nd for nd in network.nodes() \
if isinstance(nd, Edfa) and isinstance(next(network.predecessors(nd)), Roadm)\
and next(network.predecessors(nd)).restrictions['booster_variety_list']]
preamp_nodes = [nd for nd in network.nodes() \
if isinstance(nd, Edfa) and isinstance(next(network.successors(nd)), Roadm)\
and next(network.successors(nd)).restrictions['preamp_variety_list']]
# check that previously existing amp are not changed
for amp in amp_nodes:
if amp.uid in amp_nodes_nobuild_uid:
print(amp.uid, amp.params.type_variety)
if not amp.params.type_variety == amp_nodes_nobuild[amp.uid].params.type_variety:
raise AssertionError()
for amp in preamp_nodes:
if amp.uid in preamp_nodes_nobuild_uid:
if not amp.params.type_variety == preamp_nodes_nobuild[amp.uid].params.type_variety:
raise AssertionError()
# check that restrictions are correctly applied
for amp in amp_nodes:
if amp.uid not in amp_nodes_nobuild_uid:
# and if roadm had no restrictions before build:
if restrictions['booster_variety_list'] and \
not roadms[next(network.predecessors(amp)).uid]\
.restrictions['booster_variety_list']:
if not amp.params.type_variety in restrictions['booster_variety_list']:
raise AssertionError()
for amp in preamp_nodes:
if amp.uid not in preamp_nodes_nobuild_uid:
if restrictions['preamp_variety_list'] and\
not roadms[next(network.successors(amp)).uid].restrictions['preamp_variety_list']:
if not amp.params.type_variety in restrictions['preamp_variety_list']:
raise AssertionError()