602 Commits
0.1.0 ... v1.8

Author SHA1 Message Date
Jan Kundrát
b0c2acb1b5 Merge pull request #302 from Telecominfraproject/develop
Merge develop into master in preparation for the 1.8 release

Highlights for the upcoming release:

- Raman simulation
- automatic building of Docker images
- bugfixes, refactoring, CI and docs improvements
2019-09-23 16:51:28 +00:00
Jan Kundrát
a52c96ae2e Merge pull request #301 from jktjkt/develop
docs: Explain how to use Docker
2019-09-22 23:36:44 +00:00
Jan Kundrát
bf28821b5b Merge pull request #299 from jktjkt/cleanup-printing
(This replaces #261 by me and #293 by Jonas.)

##     Remove debug printing from propagate()
This is inspired by #293. The original issue was that the transponder OSNR was not accounted for. Rather than making the `propagate()` and `propagate2()` more complex, let's move the actual path printing to the demo code. There's no secret sauce in there, it's just a simple for-each-print thingy, so let's remove it from the library code.
    
fixes #262

## doc: fiber length summary in km, not meters

Reading `80000m` is a bit more complex than just `80 km`. Also let's add a space between the numebr and the unit for better readability.

## examples: color highlighting of the "most interesting output"
    
I think that this SNR value represents the most important output of this  example. There's plenty of debugging info on display already, so let's make this one more prominent.
    
I was thinking about moving the highlighting to elements' each `__str__()` function, but that felt a bit like layering violation to me. I could have also changed just the transponder's `__str__()`. In the end, I think that repeating just the final GSNR at the link-end transponder makes most sense here. This is aligned with what we talked about at yesterday's (on 2019-09-18 -- note that this is a backport from #261) demo for Microsoft, after all.
2019-09-22 23:32:36 +00:00
Jan Kundrát
328bd6ea71 docs: Explain how to use Docker 2019-09-23 00:29:59 +01:00
Jan Kundrát
ec9eb8d054 examples: commented-out path printing for Esther
I'm trying to clean up the core code while not causing too much trouble
to our users. Esther pointed out that there's an internal use case at
Orange where people are looking at the incremental results when
computing paths.

I strongly dislike commented-out debugging code, but for the sake of
progress, let's put it in here. It's roughly as good as that unused
`show` parameter, and it allowed a refactoring to make the code more
readable.
2019-09-23 00:14:56 +01:00
Jan Kundrát
f8c8526045 docs: remove duplicate cd
This whole section should be nuked, but that will have to wait until
after the next release for simplicity.

fix #283
2019-09-23 01:03:30 +02:00
Jan Kundrát
d8c236bb44 examples: do not measure time taken
This is an equivalent of 9c9e3be967 for
the other example.
2019-09-22 16:44:00 +01:00
Jan Kundrát
33ff0910b8 Remove unused function
This has been marked obsolete for 11 months. It's also one of the
callers of the propagate(), so it's being touched by that change which
removes the `show` parameter. This commit will make it easier to put
debug path printing just where it's really needed.
2019-09-22 12:20:11 +02:00
Jan Kundrát
faa69917d9 example: Use "Total SNR", not "GSNR"
Various presentations from Polito are slowly changing to use "GSNR" as a
"Generalized SNR", but it's true that our code does not use this term
anywhere, and that it is not properly explained. Let's wait a bit for
this term to become a bit more mainstream and for updated docs on our
side; then this commit can be safely reverted.

Thanks to Jonas for reporting this.
2019-09-20 17:11:42 +02:00
Jan Kundrát
d9f5ca9827 docs: Document Transceiver.mode.OSNR
I am not changing the JSON key name now because of the plan to go with a
full-blown YANG model (see #266).

fixes #298
2019-09-19 09:44:56 +02:00
Jan Kundrát
c817ef7335 examples: color highlighting of the "most interesting output"
I think that this SNR value represents the most important output of this
example. There's plenty of debugging info on display already, so let's
make this one more prominent.

I was thinking about moving the highlighting to elements' each __str__()
function, but that felt a bit like layering violation to me. I could
have also changed just the transponder's __str__(). In the end, I think
that repeating just the final GSNR at the link-end transponder makes
most sense here. This is aligned with what we talked about at
yesterday's (on 2019-09-18 -- note that this is a backport from #261)
demo for Microsoft, after all.
2019-09-19 09:25:31 +02:00
Jan Kundrát
07de489d6b doc: fiber length summary in km, not meters
reading "80000m" is a bit more complex than just "80 km". Also let's add
a space between the numebr and the unit for better readability.
2019-09-19 09:25:31 +02:00
Jan Kundrát
acafc78456 Remove debug printing from propagate()
This is inspired by #293. The original issue was that the transponder
OSNR was not accounted for. Rather than making the propagate() and
propagate2() more complex, let's move the actual path printing to the
demo code. There's no secret sauce in there, it's just a simple
for-each-print thingy, so let's remove it from the library code.

fixes #262
2019-09-19 09:25:31 +02:00
Jan Kundrát
325721545e Docker: array for CMD is more idiomatic
Co-Authored-By: Jonas Mårtensson <jonas.martensson@ri.se>
2019-09-18 13:15:20 +02:00
Jan Kundrát
dbe2bf560c Travis: Docker: Fix version numbers
This is due to travis-ci/travis-ci@7422.
2019-09-17 21:03:58 +02:00
Jan Kundrát
7872cc2203 Merge pull request #295 from jktjkt/docker
Automatic building of Docker images
2019-09-17 18:44:50 +00:00
Jan Kundrát
25b4d0e755 Automatic building of Docker images
A third, independent job in Travis CI just for building a container
image (and testing it a little bit). Here's how to use it once it is
built and published and pulled:

  $ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy

One can also pass commands to it directly. Note that the *relative* path
specifier given as `./` is required. One could possibly get around it by
$PATH manipulation, but hey, I have to stop somewhere.

  $ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy ./transmission_main_example.py

Thanks to Jonas for the --volume option trick and for that early
non-overwriting copying for the example directory.

The `install` phase in Travis CI is apparently common for all jobs in
the build matrix (it's rather confusing what they call a "stage" and
what is a "job" for them, and what their mutual relation is). Because
there's no point in doing any kind of installation in case when we're
building for Docker, let's just move the old `install` block into
`script`. With just that, however, Travis adds an implicit `pip install
-r requirements.txt` in an attempt at being helpful. In short, having
completely different "stuff to be done as a check" is very painful with
Travis.

The individual "script lines" in a job's `script` section are always
executed, all of them, even if a previous one failed. That's why I moved
the actual Docker invocation into an external shell script. When they
were not in a shell script and the script lines contained `set -e`, then
a failure of a particular command would cause the build to be marked as
"errored" instead of "failed" within Travis. Also, the multiline if
conditionals were rather painful to write.

One commit might end up in different branches. If that happens, the
second build would overwrite the image tag in the docker registry, which
is rather suboptimal. Let's try to fetch that image first, and only
update the latest/stable tags if the image was already available
beforehand.

fixes #260
2019-09-17 20:37:45 +02:00
Jan Kundrát
9af1c90664 Merge pull request #249 from jktjkt/bug-243
Do not mix THz and Hz
2019-09-04 08:18:49 +00:00
Jan Kundrát
6b4d44a3f1 Merge pull request #292 from ojnas/fix-snr-per-channel
Fix per-channel SNR output
2019-09-03 08:23:28 +00:00
Jonas Mårtensson
2faf8d2cdd - Fix output per-channel SNR to include contribution from add_drop_sonr and tx_osnr
- Avoid recalculating SNRs in transmission main example since they are already calculated and stored in the Transceiver class
- Also include per channel power (useful for checking tilt) and OSNR ASE in the output
2019-09-03 09:25:09 +02:00
Jan Kundrát
676c94ddf2 Merge pull request #289 from jktjkt/raman-nli-interpolation 2019-09-02 21:02:58 +00:00
Jan Kundrát
6f93b64f84 Simplify logic for showing per-channel results
As Jonas pointed out, the code used to contain a check for non-nan
values, effectively skipping channels where the Raman gain was not
explicitly computed.

Now that we do not introduce NaNs into some channels anymore, this
shortcut no longer works. We could either add explicit filtering for
only showing those channels which are covered by the Raman engine, but
then the result would be rather confusing in the non-Raman case. One
could also add another column with the simulated vs. approximated NLI,
but when I tried this, the output looked a bit cluttered.

I think that the best course of action for now is to just show info
about all channels (if asked by the user). So this is just a cleanup for
a condition which is now always on.
2019-09-02 21:10:20 +02:00
Jan Kundrát
54bf426472 Raman: linear interpolation of channel NLI
The Raman engine computes NLI just for a subset of channels; this is an
important speed optimization because the computation is rather CPU
heavy. However, the code just left NaNs in place for NLI of those
channels which were not explicitly simulated.

This is wrong because these NaNs propagate all the way to the total
input/output powers per the whole spectrum, etc, leading to NaNs being
shown to the user.

This patch uses a very simple linear approximation just in order to
prevent these NaNs.

fixes #288
2019-09-02 21:10:20 +02:00
Jan Kundrát
1862ce9104 Merge pull request #263 from aleFerrari/raman_feature
Raman feature

I've added some very basic documentation (really, just usage instructions). What is still missing:

- more specific docs
- test coverage (right now, there's none!)

We've agreed to merge this sooner rather than later so that more people can reasonably test it. There's a bunch of things that I'm not happy with, such as the default example showing NaNs as the OSNR to the user at the end transponders, etc (I suspect this is due to simulating just some channels and no approximation, right?), but let's solve these based on feedback from testing.

As proposed in my earlier comments, I went ahead and merged the wrapper example code into the `transmission_main_example.py`. So here's what needs to be done in order to "use Raman amplifiers" in a basic example, with no autodesign:

- replace some `Fiber` elements with a `RamanFiber` in the network topology JSON
- invoke the example with a `--sim examples/sim_params.json` which activates the Raman engine
- pass the `--show-channels` flag so that the actual results are visible

This is more or less covered by the docs skeleton.
2019-08-08 12:05:53 +00:00
Jan Kundrát
3771c13d32 docs: basic usage instructions for Raman 2019-08-08 13:38:23 +02:00
Jan Kundrát
f1d0230dad docs: skeleton of Raman-specific properties
What I'm including here are comments from Vittorio (thanks!). It seems
that the majority of actual numeric parameters which drive the
simulation are undocumented, so this one will have to wait for Alessio
or someone else from the Polito team to fill the blanks.
2019-08-08 13:38:23 +02:00
Jan Kundrát
182929cc96 Unify transmission_main_example and the Raman wrapper
There were just these substantial differences:

- the Raman code showed a per-channel SNR summary, this is now
  controlled via the `--show-channels` option

- when a Raman fiber is used the `--sim` option for specifying input
  simulation parameters is now mandatory

I'm therefore merging these two files even though we've rpeviously
decided not to do this -- consult the review comment at
https://github.com/Telecominfraproject/oopt-gnpy/pull/263#discussion_r310506082
and the discussion during this Tuesday's coders call). If this turns out
to be a problem for autodesign, we can always revert this.

One possible catch is that the final "SNR total" shows NaN for the
default Raman example. That's just the way the simulation engine works
right now, I'm afraid. The `--show-channels` options helps a lot.
2019-08-08 13:38:23 +02:00
Jan Kundrát
81585c5a86 Unify implementations of psi computation
Both of these places referred to "eq. 123 from arXiv:1209.0394", the
only difference (apart from the source of the input parameters, beta2
and asymptotic_length) was calling the two branches "SCI" and "XCI" vs.
"SPM" and "XPM".

In this commit I've only moved the code to a single implementation. The
input data are still being read from the same parameters, of course.
2019-08-08 13:38:23 +02:00
Jan Kundrát
2f52c11589 More intuitive name for list of channels where Raman gain is computed 2019-08-08 11:34:33 +02:00
Jan Kundrát
0f4d8573cf Move Raman parameter propagation to gnpy.core.network
Conceptually, this is just about propagating the input parameters (which
drive the simulation) into all RamanFiber instances. The network module
already contains similar functions, let's move it there.
2019-08-08 11:19:25 +02:00
Jan Kundrát
660b8b3c6e Use lin2db() when we have it 2019-08-08 11:16:26 +02:00
Jan Kundrát
71d6a1138c Fix a typo in my e-mail address
This has been around since before 1a104956, but I haven't noticed the
missing `.com`.
2019-08-08 10:53:52 +02:00
Jan Kundrát
a6e741d8fe Do not copy the whole Fiber class 2019-08-08 09:55:23 +02:00
Jan Kundrát
58bcf65cf6 Raman: do not introduce a new copy of the equipment library
Compared to `eqpt_config.json`, the only extra content in the new copy
was the `RamanFiber` block. There's no disadvantage in just using one
equipment library; the traditional code can easily ignore the RamanFiber
stanza.
2019-08-07 23:45:44 +02:00
Jan Kundrát
27ce55de38 diagnostics: Correctly report all spans, not just the Raman ones
It's just a harmless message, the path traversal was still using all
connections as defined in the topology JSON.
2019-08-07 23:41:30 +02:00
Jan Kundrát
36ca22db9b Raman: use logging instead of debugging print()s 2019-08-07 23:31:20 +02:00
Jan Kundrát
33a8de9b39 Raman: stricter validation of input parameters
The goal here is to try to prevent typos in configuration from slipping
in undetected.
2019-08-07 13:36:21 +02:00
Jan Kundrát
22b76e36db Fix typos in Raman's frequency offset
This is a typo, the parameters were clearly supposed to be uniformly
spaced. It doesn't affect the results (much), because the remaining
values are "close enough" for a reasonable interpolation.

Using the existing Raman example, the difference in OSNR ASE at the
signal bandwidth is 0.01 dB (31.46 -> 31.47 dB).

Perhaps it would make sense to enforce that these offsets are a
monotonic sequence.
2019-08-07 13:19:17 +02:00
Jan Kundrát
528ff31590 CI: Run the Raman example as well 2019-08-06 11:56:01 +02:00
Jan Kundrát
4d6966cbd3 Remove unused imports 2019-08-06 11:51:25 +02:00
Jan Kundrát
9c9e3be967 Do not measure time from the example directly
Let users wrap this with the Unix `time` command if they are interested
in the time spent.
2019-08-06 11:49:32 +02:00
Jan Kundrát
2dd4745ef7 Merge pull request #281 from jktjkt/no-convenience-access
Remove property aliases
2019-08-06 09:46:36 +00:00
Jan Kundrát
4e786a32b5 Merge branch 'no-convenience-access' into raman
This required some adaptations in the new Raman code now that the
property aliases are gone.
2019-08-06 11:43:16 +02:00
Jan Kundrát
6ecb2c85e2 Merge remote-tracking branch 'origin/develop' into raman
Required fix-ups:
- ROADM restrictions
2019-08-06 11:34:39 +02:00
Jan Kundrát
cd234a909b Remove unimplemented and unused code 2019-08-06 11:22:56 +02:00
Jan Kundrát
c249f44ea1 Remove property aliases
For some reason, the code allowed using "convenience names" for
accessing properties since commit 58ac717f. To me, this looks like an
obvious anti-pattern because accessing a single property via three
different names only makes the code less readable. Let's kill this
"feature".

In case of the `Power` class, the code used "ase" and "nli" on the
majority of places, so let's use these abbreviations instead of their
spelt-out variants.

SpectralInformation was "clean" already, but there were calls to the
`update()` wrapper around the `namedtuple._replace`.  Given that there
were no property aliases, it's safe to just call `_replace()` directly.

In case of the `Pref` class, once again always use `p_span0`, `p_spani`
instead of `p0` and `pi` -- it's a trivial change.
2019-08-06 11:14:28 +02:00
Alessio Ferrari
ed1f51393a method name for computing NLI updated in sim_params.json 2019-08-01 14:54:33 +02:00
Alessio Ferrari
8bd43130ab modified Raman pumps in the example raman_edfa_example_network.json to make Raman effect more evident 2019-08-01 14:48:16 +02:00
Alessio Ferrari
6c975a53a1 minor fix to eqpt_with_raman_config.json 2019-08-01 14:45:17 +02:00
Alessio Ferrari
8a1001cd40 dynamic evaluation of threshold frequency between near XPM and far XPM 2019-08-01 14:42:47 +02:00
Alessio Ferrari
beb2b576aa changed output of propagate_raman_fiber to return a list 2019-08-01 14:41:40 +02:00
Alessio Ferrari
8f3923046b alpha0 computation moved from NLI solver to Fiber Params 2019-08-01 11:36:32 +02:00
Alessio Ferrari
88c68d2065 introduced classes for the parameters 2019-08-01 11:32:07 +02:00
Alessio Ferrari
8bcde72a10 changes on variable names to be more clear 2019-08-01 10:49:25 +02:00
Alessio Ferrari
4653dbcf4b introduced a faster computation for XPM 2019-08-01 10:48:02 +02:00
Alessio Ferrari
cde08b32a4 output fixes on transmission_with_raman_main_example.py 2019-08-01 10:45:20 +02:00
Alessio Ferrari
2eed891f8d new variable names for SPM and XPM 2019-07-31 11:29:25 +02:00
Alessio Ferrari
c0b84e84c8 double underscore replaced with single one for some attributes 2019-07-31 11:24:16 +02:00
Alessio Ferrari
2c20fd3f9f strings 'XPM' and 'SPM' removed while computing NLI, now it is implicit 2019-07-31 11:20:34 +02:00
Alessio Ferrari
f4db56ca29 minor fix to comments 2019-07-31 11:18:46 +02:00
Alessio Ferrari
5b6d58ac7d minor fix to printed text 2019-07-29 14:45:32 +02:00
Alessio Ferrari
ecb8bd9fbe new print of final propagation 2019-07-29 14:17:27 +02:00
Alessio Ferrari
2f9385451f removed old printing of spectral information 2019-07-29 14:16:49 +02:00
Alessio Ferrari
1a1346461b self.pch_out_db in RamanFiber now takes into account Raman gain 2019-07-29 12:33:05 +02:00
Jan Kundrát
27dcd29074 CI: Attempt to builds docs during regular CI, too
Since ReadTheDocs does not support [1] running as a CI check on GitHub
yet, let's make sure that we at least run sphinx. This would have caught
a recent docs breakage (see parent commit).

[1] https://github.com/readthedocs/readthedocs.org/issues/1340
2019-07-04 00:37:58 +02:00
Jan Kundrát
93986f36c3 docs: Fix docs building
Docs building started failing after our dependency update. The reason is
that the updated sphinx bibtex extension started being a bit stricter in
their interpretation of bibliography files:

  parsing bibtex file /home/jkt/work/TIP/oopt-gnpy/docs/biblio.bib...
  Exception occurred:
    File "/home/jkt/work/TIP/_py/lib64/python3.6/site-packages/pybtex/errors.py", line 78, in report_error
      raise exception
  pybtex.database.input.bibtex.DuplicatePersonField: entry with key bononi_modeling_2012 has a duplicate year field

Fix this by using `date` as field name when a full date is given.
2019-07-04 00:37:23 +02:00
Jan Kundrát
a6ab8055b1 CI: do not attempt to cd twice
I misunderstood how Travis CI works; it's not a subshell, it's something
which affects the other commands. Let's just run everything from the
top-level directory.
2019-07-04 00:28:33 +02:00
Jan Kundrát
31ea479d7f Merge pull request #268 from jktjkt/prune-dependencies
Update and rework dependency handling

fixes #269
2019-06-25 15:25:48 +02:00
Jan Kundrát
89fb2e047b Update dependencies
Pinning dependencies to a specific version is safe in terms of
preventing accidental breakage, but it has a cost of possibly using
outdated dependencies.

Let's see if we can rely on the semantic versioning of our dependencies
here.

I'm doing this instead of other approaches (such as splitting the
top-level deps from "the rest of the dep chain" [1][2]) because I require
additional tools in my venv, such as the python-lnaguage-server. There
would be little point in injecting these into requirements to be used by
other people.

[1] https://www.kennethreitz.org/essays/a-better-pip-workflow
[2] 59eb51c026
2019-06-21 12:13:38 +02:00
Jan Kundrát
8f705e6173 requirements: only list what we really need
Listing all transitive dependencies, including their respective versions
(as done by `pip freeze`, for example) is something which effectively
leads to installing outdated and possibly vulnerable software.

Let's get rid of the transitive dependencies.

Thanks to Esther for noticing.
2019-06-21 11:46:17 +02:00
Jan Kundrát
8f735316f5 Merge pull request #264 from Telecominfraproject/master
Merge master into develop

...so that the docs are updated and synced.
2019-06-19 14:28:45 +02:00
Jan Kundrát
0d7a1871a1 Merge pull request #259 from jktjkt/docs
docs: Show a pretty picture of GNPy in action

Thanks to Esther for suggesting this, and to Gert and Esther for their reviews.
2019-06-19 11:57:55 +02:00
Jan Kundrát
33832b3d25 docs: Animated invocation of transmission_main_example.py
Tools used:
- [asciinema](https://asciinema.org/) for recording the session
- `$EDITOR` for a few simple fix-ups
- [termtosvg](https://github.com/nbedos/termtosvg) for creating the
resulting SVG so that it's fully self-contained
- pushing the results to the `gh-pages` so that it's available and not
subject to [random filtering and
breakage](https://stackoverflow.com/questions/13808020/include-an-svg-hosted-on-github-in-markdown),
such as the animated SVG not actually animating

I'm still linking to asciinema.org because that site offers nice
cut-and-oaste capabilities, playback control, etc.

Co-Authored-By: Gert Grammel <ggrammel@juniper.net>
2019-06-19 11:54:44 +02:00
Alessio Ferrari
4da7f0cc38 added evaluation of the SNR at the end of the line 2019-06-18 13:31:50 +02:00
Alessio Ferrari
e29f8485ea integration of the GGN-model with spectral separation 2019-06-18 13:31:01 +02:00
Alessio Ferrari
2da344a563 sim_params now include GGN model 2019-06-18 13:27:02 +02:00
Alessio Ferrari
2a0cb8e14f raman pump powers reduced in raman_edfa_example_network.json 2019-06-18 13:21:05 +02:00
Jan Kundrát
e1dc3dc357 docs: no need to cd examples first
The code determines these paths relative to the actual example .py file
already. Given that `pytest` and other bits expect to run from the
top-levle directory, let's remove this misleading instruction from the
docs.
2019-06-17 20:01:36 +02:00
Jan Kundrát
8259124f73 docs: Show a pretty picture of GNPy in action
I do not have a vector image of this one, unfortunately. The data
apparently comes from "someone at TIP", perhaps a hired graphic
designer. It was passed to me by Diego Landa when I asked for the
original dataset.
2019-06-17 19:55:00 +02:00
Alessio Ferrari
0422956ac6 RamanFiber propagate method now call the propagate_raman_fiber in the science_utils module 2019-06-11 13:40:42 +02:00
Alessio Ferrari
ff82c5171b propagate_raman_fiber function introduced 2019-06-11 13:39:41 +02:00
Alessio Ferrari
f9bd6310f1 introcude NLI solver 2019-06-11 13:38:39 +02:00
Alessio Ferrari
471eab126e fix raman solver parameters 2019-06-11 13:38:05 +02:00
Alessio Ferrari
6ad011d12d raman_efficiency included in RamanFiber equipment 2019-06-11 13:28:39 +02:00
Alessio Ferrari
561c8aff85 modified sim_params for transmission_with_raman_main_example.py 2019-06-11 13:27:40 +02:00
Alessio Ferrari
5cf5dd2234 add temperature parameter in fiber 2019-06-11 13:24:12 +02:00
Alessio Ferrari
fb9915d301 add raman efficiency in SSMF equipment 2019-06-11 13:23:38 +02:00
Jan Kundrát
7ab67194d6 Merge a3778dfe8b into 603ac9d8c5 2019-06-11 08:47:09 +00:00
Jan Kundrát
603ac9d8c5 Merge pull request #257 from jktjkt/fixes
Python: do not use a mutable default value
2019-06-11 10:46:25 +02:00
Jan Kundrát
a3c7811e9d Merge pull request #256 from jktjkt/docs
Documentation fixes (plus an equipment.Fiber.beta2 change)
2019-06-11 10:45:23 +02:00
Jan Kundrát
a3778dfe8b Merge pull request #255 from jktjkt/weekly-calls
Encourage people to join us and to join the VCs
2019-06-11 10:45:00 +02:00
Jan Kundrát
2dff934612 CI: run the examples as well
We are not checking their results or anything, but it is nice to be able
to say "hey, these still work".
2019-06-07 00:02:53 +02:00
Jan Kundrát
89d666948e Fiber: beta2: use a default value directly
Rather than do the None-dance and document the default value within a
docstring, let's use the default value directly. This is safe because
numbers are immutable.
2019-06-06 23:55:16 +02:00
Jan Kundrát
c3499142b0 doc: hyperlinks++ 2019-06-06 23:47:52 +02:00
Jan Kundrát
d8feccc715 Python: do not use a mutable default value
Because default arguments are evaluated *once*, not every time they are
called, a mutable default value is not "reset", and this happens:

>>> from gnpy.core.node import Node
>>> x=Node('123')
>>> y=Node('456')
>>> print(x.metadata)
{'location': Location(latitude=0, longitude=0, city=None, region=None)}
>>> print(y.metadata)
{'location': Location(latitude=0, longitude=0, city=None, region=None)}
>>> y.metadata['foo']=123
>>> print(x.metadata)
{'location': Location(latitude=0, longitude=0, city=None, region=None), 'foo': 123}

This is easily fixable by using an immutable value as a placeholder
here.
2019-06-06 23:29:07 +02:00
Jan Kundrát
16173355f3 docs: random improvements and Sphinxiation 2019-06-06 23:26:12 +02:00
Jan Kundrát
f46134fda5 docs: document the _private methods
This is a reference documentation, so it makes sense for it to be
reasonably complete.
2019-06-06 23:05:42 +02:00
Jan Kundrát
bfecff0412 docs: use a default preset here to prevent extra repetitions 2019-06-06 23:04:34 +02:00
Jan Kundrát
168f1891cf docs: ensure that all modules are documented 2019-06-06 22:55:56 +02:00
Jan Kundrát
862845b4ac docs: minor grammar fixes 2019-06-06 21:51:48 +02:00
Jan Kundrát
b7a5dbff49 Encourage people to join us and to join the VCs
This was suggested by Esther on today's PSE group call.
2019-06-06 18:39:21 +02:00
Jan Kundrát
5be30d89a7 Merge pull request #230 from Orange-OpenSource/build_no_amp_in_roadm
ROADMs can now specify which amplifiers can be used as their preamps and boosters.
2019-06-06 12:47:06 +02:00
Esther Le Rouzic
d94dc51d88 Restrictions on auto-adding amplifiers into ROADMs
This feature is intended to support designs such as OpenROADM where the
line degree integrates a specific preamp/booster pair. In that case, it
does not make sense for our autodesign to "pick an amplifier". The
restrictions can be activated by:

- Listing them in `eqpt_config.json`, so that they are effective for all
ROADM instances.
- On a per-ROADM basis within the Excel sheet or the JSON definitions.

Restrictions apply to an entire ROADM as a whole, not to the individual
degrees.

If a per-degree exception is needed, the amplifier of this degree can be
defined in the equipment sheet or in the network definition.

If no booster amplifier should be placed on a degree, use the `Fused`
node in place of an amplifier.

Signed-off-by: Esther Le Rouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2019-06-06 11:58:45 +02:00
Jan Kundrát
22acd88d44 Utility functions for pruning and merging
Co-authored-by: Esther Le Rouzic <esther.lerouzic@orange.com>
2019-06-06 11:42:05 +02:00
Alessio Ferrari
fd406c106b gn model introduced in the science utils module 2019-06-03 16:33:26 +02:00
Alessio Ferrari
16134b5caf +1 and -1 replaced with coporop and counterprop strings for Raman pumps description 2019-06-03 16:27:58 +02:00
Jan Kundrát
2c485efced Merge pull request #252 from Orange-OpenSource/bug_fixes_create_eqpt_sheet
Refactoring and bug fixes in an auxiliary transformation tool.
2019-05-31 16:26:10 +02:00
EstherLerouzic
279d08a0e8 Correct testTopology file
testTopology listed corlay twice in Eqpt although it is a ILA.
should appear only once in node A column

update expected parser results for this change in tests/data

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-05-31 11:31:46 +01:00
EstherLerouzic
1d4a8998e1 Bug fix on create_eqpt_sheet.py
program was not correctly listing nodes when links duplicate EDFA entries.
I refactored it to make it simpler to understand.

I added coordinates on ../tests/data/testTopology.xls for plot purpose

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-05-31 11:31:46 +01:00
Jan Kundrát
47a41e7980 Merge pull request #251 from jktjkt/json-parsing-exceptions
Use exceptions instead of `sys.exit()` when reporting configuration errors
2019-05-31 11:24:55 +02:00
Jan Kundrát
ecfc4a8cb2 One fewer exit() in a library scope 2019-05-30 13:58:33 +02:00
Jan Kundrát
2d66b6266b Add a missing FIXME for direct-printing of diagnostics 2019-05-30 12:39:42 +02:00
Jan Kundrát
b7afb5f9d2 Exceptions for errors in network topologies 2019-05-30 12:39:10 +02:00
Jan Kundrát
58c16a59ac Distinguish between "equipment library errors" and other "config errors"
And because no code for these "other config errors" has been merged yet,
this is just a placeholder for future work.
2019-05-30 12:28:47 +02:00
Jan Kundrát
f09789f5ef Refactor color temrinal escaping into a common module
I have no idea which one of the existing pypi modules is best for these,
and given that we're using just two escape codes, I think it makes sense
not to bother with a more capable third-party module just for two magic
strings.
2019-05-30 12:25:53 +02:00
Jan Kundrát
b2e12cd3e0 Use exceptions instead of direct-exit when parsing equipment JSON 2019-05-30 12:06:54 +02:00
Jan Kundrát
71b157a8ba Infrastructure for reporting configuration errors via exceptions
Once the actual config-parsing code start raising these exceptions
instead of directly calling sys.exit(), the user experience would
deteriorate due to raw exception traces. There's little value in the
trace itself, so just wrap the whole config loading with pretty error
formatting.

We still do not point to a specific place where that error is defined
(such as a line/column in a given JSON file) because that information is
already lost by the time we perform these checks.

Also, these checks are largely open-coded ad-hoc stuff. Some required
items are not covered, raising KeyError instead. We should get a formal
schema for these...
2019-05-30 12:06:54 +02:00
Alessio Ferrari
cb8affe9b2 transmission with raman integrated with sim_params configuration 2019-05-28 12:19:01 +02:00
Alessio Ferrari
3f7180c706 configure_network function created to configure the RamanFiber.sim_params in a network 2019-05-28 11:35:42 +02:00
Alessio Ferrari
f0bc2dc62f attribute sim_params added to RamanFiber 2019-05-28 11:11:40 +02:00
Jan Kundrát
9c95fd6b69 Do not mix THz and Hz
While the `itufl()` function uses THz by default, its values depend on
the frequency range that is passed via arguments. In this context, the
f_min and f_max come from the default SpectralInformation which is in
Hz.

Thanks to @ojnas for reporting this.

fixes #243
2019-05-27 18:35:14 +02:00
Alessio Ferrari
c0fda8c3a2 fix to Raman solver 2019-05-27 17:09:34 +02:00
Alessio Ferrari
bac20af381 eqpt_with_raman_config.json copied from eqpt_config.json and RamanFiber added into it 2019-05-27 17:08:36 +02:00
Alessio Ferrari
626211a320 Introduce RamanFiber in equipment 2019-05-27 17:04:33 +02:00
Jan Kundrát
783aaa8cb4 Merge remote-tracking branch 'origin/master' into develop 2019-05-27 12:27:23 +02:00
Jan Kundrát
768bd8af19 Merge pull request #247 from jktjkt/rst-fixes
docs: fix RST formatting and introduce CI coverage
2019-05-27 12:26:42 +02:00
Jan Kundrát
3894f52194 CI: test the RST files for validity
fixes #245
2019-05-27 12:08:02 +02:00
Jan Kundrát
dcfa9edb1c docs: Fix JSON syntax 2019-05-27 11:36:02 +02:00
Jan Kundrát
4ebdb5629c docs: specify code-block highlighter 2019-05-27 11:35:56 +02:00
Jan Kundrát
75b0668fc2 docs: Fix JSON syntax -- standard ASCII quotes 2019-05-27 11:35:52 +02:00
Jan Kundrát
5fe94ed463 docs: specify a correct markup language for JSON snippets
Some of these are "pseudo-JSON" with `...` etc, so one has to use `none`
for these.
2019-05-27 11:35:49 +02:00
Jan Kundrát
db21b97603 docs: fix table markup syntax
Oh boy, this is annoying.
2019-05-27 11:35:47 +02:00
Jan Kundrát
8074d0c548 docs: fix code markup
- use a correct highlighter
- ensure that the code is not parsed as RST code-block options
2019-05-27 11:07:53 +02:00
Jan Kundrát
2d611afbb0 Merge pull request #241 from Telecominfraproject/master
Merge master into develop
2019-05-24 11:36:46 +02:00
Jan Kundrát
bc42507724 Merge pull request #239 from jktjkt/spectrial-info-fixes
docs: Fix rendering of the SpectralInformation docs
2019-05-24 11:24:00 +02:00
Jan Kundrát
ff82ab5718 docs: Fix rendering of the SpectralInformation docs
Due to a misaligned |, the table was not rendered at all in the GitHub
overview.

Thanks to Gert for catching this in his brownfield doc.
2019-05-24 11:00:14 +02:00
Alessio Ferrari
62fe374e15 modified fiber type in raman_edfa_example_network.json to use new class RamanFiber 2019-05-24 10:38:24 +02:00
Alessio Ferrari
e519a3bc39 add class RamanFiber 2019-05-24 10:36:29 +02:00
Jan Kundrát
4f146d12ee Merge branch 'pytest-warnings' into develop 2019-05-24 01:45:53 +02:00
Jan Kundrát
46d6074ad5 Merge branch 'trivial-bugfixes' into develop 2019-05-24 01:40:07 +02:00
Jan Kundrát
cbb61f1240 tests: consult the doctests as well
There are no doctests right now, but they will (might?) be added (see
PR #230).
2019-05-24 01:38:12 +02:00
Jan Kundrát
0e9f3c3576 tests: re-enable warnings
For some reason, warnings were disabled in commit 07de78c, but it is not
clear to me what the purpose was back then. It passes without warnings
locally, and I think that warnings are useful in general, so let's give
the CI a try.
2019-05-24 01:37:49 +02:00
Alessio Ferrari
92f11dc075 add an example of json including Raman pumps in fiber 2019-05-23 15:05:08 +02:00
Jan Kundrát
3aa0a0999b Update networkx and xlrd
...in an attempt to kill some deprecation warnings under Python 3.7.
2019-05-22 17:46:41 +02:00
Jan Kundrát
e86fbcfa5b CI: Disable Codecov comments
The results are still perfectly visible within the *Checks* tab, so
let's cut the comment spam a little bit.

I've already done the same for lgtm.com; for that app, it's done in
their service's configuration within the web app.
2019-05-22 17:33:13 +02:00
Alessio Ferrari
0b2ee6fdaf add Raman solver 2019-05-22 12:05:51 +02:00
Alessio Ferrari
35f3866882 load_sim_params used to parse sim_params.json and new default filename 2019-05-22 11:06:58 +02:00
Alessio Ferrari
d86bea80d3 fix load_sim_params 2019-05-22 11:00:02 +02:00
Alessio Ferrari
13b4b5072f fix sim params 2019-05-22 10:59:00 +02:00
Alessio Ferrari
efae43f122 utility to load sim params from json 2019-05-22 10:26:24 +02:00
Alessio Ferrari
45e8c8692b add science utils module 2019-05-22 10:09:27 +02:00
Alessio Ferrari
f8fc2a5050 simparams enriched with Raman and NLI parameters 2019-05-22 10:02:45 +02:00
Jan Kundrát
3c20d57cc4 Be sure that both nf_min and nf_max are removed
If `nf_min` was not present, then `nf_max` would be left remaining
because an attempt to nuke `nf_min` raised an exception.

Thanks to codecov.io for making it easy to spot this on the coverage
page.
2019-05-21 16:29:09 +02:00
Jan Kundrát
2cb3858330 Exceptions must be raised, not just instantiated
Found by lgtm.com code scanner, thanks!
2019-05-21 16:20:26 +02:00
Jan Kundrát
925d36a561 CI: do not require sudo
...which might give us a faster, container-based build environment as
long as some legacy, several-years-old docs are still correct. Let's
give it a try.
2019-05-21 13:04:44 +02:00
Jan Kundrát
0ffaca91cc CI: Test on Python 3.7 as well
According to the Travis-CI docs, this requires switching to a newer base
OS image. It might not require an explicit pin like this in near future
as the default is, apparently, being migrated at this very time, but I
do not feel like working with a random rolling-update process of a
third-party service, thank you.
2019-05-21 12:27:41 +02:00
Jan Kundrát
d3a0f1d969 CI: remove unused section 2019-05-21 12:17:33 +02:00
Jan Kundrát
37704db583 CI: Report test code coverage to codecov.io 2019-05-21 12:09:24 +02:00
Alessio Ferrari
aadd038bbe transmission w Raman gets sim params 2019-05-20 17:17:34 +02:00
diegolaunch
6d601b4267 Merge pull request #232 from jktjkt/unify-authors-list
Add all missing authors and sync the two lists of contributors
2019-05-20 08:10:24 -07:00
Jan Kundrát
194798d881 Add all missing authors and sync the two lists of contributors
These two lists were not synced with each other, and some contributors
whose commits have been merged in git were missing. The resulting list
is a bit longer because not everybody who contributes does that strictly
via commits pushed to GitHub.
2019-05-20 12:31:07 +02:00
Jan Kundrát
1a10495645 Replace James with myself as a maintainer
The credits/attributions have not been touched of course.
2019-05-20 12:31:04 +02:00
Alessio Ferrari
0e2316513e add raman transmission 2019-05-18 15:41:59 +02:00
Alessio Ferrari
72ce4e2fad add json sim_params 2019-05-18 15:39:48 +02:00
Jan Kundrát
4ad7311e18 Merge branch 'develop' 2019-05-17 21:25:08 +02:00
Jan Kundrát
fa2b0e8fad docs: use github for release management
Teh changelog is available over GitHub (and also within the git tags,
now that I added the missing v1.2 tag), so let's cut the verbosity a bit
by just linking to a dedicated page for this trivia.
2019-05-17 20:57:38 +02:00
Jan Kundrát
78eb926693 docs: prune the list of branches
The README is way too long already. Welcoming potential users and
contributors with an overview of the project's history does not help,
IMHO.
2019-05-17 20:46:37 +02:00
Jan Kundrát
3613efbaab docs: there's the --power argument for launch power config 2019-05-17 20:31:50 +02:00
Jan Kundrát
2e732854b3 docs: Improve typography and fix typos in the README
It's quite common to use a ``monospace font`` for referring to
identifiers, so let's use that for GitHub's rendering of the main
project's README.
2019-05-17 20:29:14 +02:00
Jan Kundrát
f9560d6b1d Merge branch 'master' into develop
This is mainly to resolve one conflict in README and to have CI run its
tasks.
2019-05-16 13:09:42 +02:00
Jan Kundrát
51b0826398 Merge pull request #226 from Orange-OpenSource/bugs_correction
correction of 2 bugs
2019-05-16 13:06:09 +02:00
Jan Kundrát
af0adb454d Fix RST syntax in the ROADM table
The table was completely hidden from the HTML rendering at GitHub. The
space between the "left edge" of the table and the text content appears
to be substantial.
2019-05-16 12:41:01 +02:00
EstherLerouzic
cdd4c571b0 correction of bugs
exception KeyError type in service sheet not correctly catched
print Request.mode instead of Requestmode (not defined at this point)

selection of modes did not respect min spacing criterium:
constraint added

transmission_main did not give SNR in 0.1 nm: added in std out

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-05-07 12:28:28 +01:00
James
9c440764c7 Merge pull request #224 from Orange-OpenSource/auto_design3
Auto design3
2019-04-18 11:42:09 -04:00
James
6e94834033 Merge pull request #223 from Orange-OpenSource/addWeightEdge
Add weight edge
2019-04-18 11:41:46 -04:00
EstherLerouzic
1720ed23c9 Sort all simple paths using length instead of hop
when constraints such as include noe or disjuntion is applied
the candidates are sorted with shortest path in length first

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-18 11:16:07 +01:00
EstherLerouzic
137fab1d92 Adding weights on edges to have shortest path in length instead of hops
add weight = length of fiber nodes on connections wher from_node is a fiber
add weight = 0.01 km on other edges

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-18 11:16:07 +01:00
Jean-Luc Auge
0fee63fa81 manage empty edfa requirement list in auto_design
code exit if no edfa are available and raman do not fill min gain
requirement

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
d5f0d80eed clean up auto_design code
replace lambdas, filter and map functions with comprehension list

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
b7d4d43f56 improve auto_design selection of raman
-separate edfa and raman_list of acceptable amplifiers to better
customize criteria between edfa and raman amplifiers
for example min gian requirement: no extended min gain range for raman
amplifiers because there is always an edfa solution, which is better for
small gains.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
c0379a1981 verbose possibility for paht_request_run
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
e5db8e42d1 Display warning when Raman is used above max fiber lineic loss
- in auto-design, Raman is already not used if lineic fiber loss >
eqpt_config.json [Span][max_fiber_lineic_loss_for_raman]
- this commit ensures that a warning is displayed even when auto-desing
is not used (when the network equipment configuration is imported from
json or xls topology)

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
27cf9806f0 bug fix in mixed auto/imported design with output voa
non zero voa values were transferd to the following node

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
5dbb5cd112 bug fix with FUSED spans and EOL
EOL span ageing was added for each connector "to be fused" span
=> now, EOL ageing is only added to the last span of the fused spans
section.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
Jean-Luc Auge
af75569eb8 clarify code on connector and EOL default loss
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-18 12:02:57 +02:00
James
aebf2ff270 Merge pull request #216 from Orange-OpenSource/automatic_design_test
Automatic design test
2019-04-16 12:21:29 -04:00
EstherLerouzic
3bcdeda3e9 Small fix
Coordinates in files changed during the autodesign compared
to previous autodesign version: autodesign_expeted test
files updated

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:55:19 +01:00
EstherLerouzic
7433667243 Update of README.rst wrt Roadm equalization feature and addresses issue #210
TODO update README with dual stage Edfa type_def
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
d7c009167f add units on the stdout answer given by transmission_main_example.py (issue 201)
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
79f198d6fe reduce the number of test files
- use the same file to test different configuration: with and without Eqpt sheet defined,
   add the abcdfgh topo for disjunction tests in the same file
 - change the name of files to avoid mixing with examples/meshTopologyExampleV2.xxx

TODO: test if examples/ files pass for both path_requests_run and trasmission_main_example

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
315a12b9df Update parser test files in order wrt novel road_equalization branch
- update eqpt_config.json to power-mode : false to take into account gain target
    of the eqpt sheet
  - correct eqpt-config.json with new parameters
  - add gain target in meshTopolgyExampleV2Eqpt.xls
  - correct test_parser.py test function names
  - suppress Exceltestfile
  - change power_mode in test_parser to True in eqpt_config.json for all tests
    except for parser: changed in the function to False to enable
    Eqpt files gain target reading

Next: reduce the number of test files and include examples/ files in the tests

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:40 +01:00
EstherLerouzic
e14d145f2c Adding a test on autodesign self consistency
tests it the autodesign applied on an autodesigned file gives exactly the same result

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:29 +01:00
EstherLerouzic
f839da39f0 adding a test on autodesign verfication
- tests if networ autodesign does not change some reference files
- changed the meshTopologyExampleV2 files to account for newest features:
  empty columns in mode, power, nb channels, disjuntion examples ...
- added a tsp type with more modes for diversification of tests

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-04-09 17:13:29 +01:00
James
45ca7a63ed Merge pull request #222 from Orange-OpenSource/edfa_model_doc
Edfa model doc
2019-04-09 11:01:42 -04:00
James
5d187255ae Merge pull request #215 from Orange-OpenSource/roadm_equalization
Roadm equalization
2019-04-09 11:00:48 -04:00
Jean-Luc Auge
7adf6aed59 doc file description of all amplifier models!!
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-08 15:03:30 +02:00
Jean-Luc Auge
b22a7a0234 refactor amplifier build build_OA_json.py
update the advanced json model generator

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-05 16:06:08 +02:00
Jean-Luc Auge
8805723114 clean edfa_model repo
remove unused obsolete files

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-05 10:59:03 +02:00
Jean-Luc Auge
88db4358f5 import Juniper amp model example
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-04 17:25:53 +02:00
Jean-Luc Auge
a5d9685caf modify std_medium_gain_advanced_config.json
reflect interpolation code changes

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-04 17:17:47 +02:00
Jean-Luc Auge
94ff8e6beb Advanced amplifier model improvement
-add f_min & f_max frequency definition in amplifier json
-improve interpolation algorithm to support length differences between the spectrum information and the amplifier ripple and dgt frequency definition

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-04 17:14:25 +02:00
Jean-Luc Auge
f3400d9bc1 update eqpt_config.json
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:51:12 +02:00
Jean-Luc Auge
6a6591e41d Add a warning message when attributes are missing in eqpt_config.json
new code provides default values when attribute is missing in the
eqpt_config.json, which can cause unexpected beahaviour
=> provide a warning message when a missing attribute is set to a
default value.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:51:12 +02:00
Jean-Luc Auge
a3a53f3b06 info message in gain mode
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:51:12 +02:00
Jean-Luc Auge
2f39abfdb8 power reduction warning message in auto-design
warning message when extended gain range or power requirements cannot be met
and power is reduced

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:09:45 +02:00
Jean-Luc Auge
92239d66fc pass tests
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:09:45 +02:00
Jean-Luc Auge
178813806f update eqpt_config and example files
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:09:45 +02:00
Jean-Luc Auge
265dbffc53 Roadm channels power equalization
set individual channel powers wrto the target reference power
tilt and ripple is eliminated after the Roadm

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
a67a08a4d0 Power reference tracking to roadm target power
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
6d15f55304 bug fix : Roadms & Spans vs Roadm & Span
discrepancy between topology and eqpt_config json descriptions

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
0dbcd1f265 manage operational vs calculated values
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
a0f6380f90 improve power mode and gain mode
power mode no longer reads operational_gain:
	now reads operational.dp_db
	or calculate optimum dp_db from next span loss
gain_mode:
	reads operational.gain_target
	or use gain_from_dp

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

squash to dp

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
ab69cf5bf4 improve Edfa class element
manage default values

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

squash to improve edfa element

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
3e55a5526a improve power saturation handling
fix issue with low power level (after very long spans) where signal gian
was depleted

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
b6216bb701 operational amplifier delta P target power support
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
fa3ea3aaa7 convert headers restriction management
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
7b56e3a6c3 bug fix in dual stage NF calculation
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
00ad542a11 auto-design: relax min_gain restriction
tolerate 3dB below min gain in amplifier selection
this is to allow selection of high power amps even if they are below min
gain

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
c3e00eea2c manage inter-stage padding for dual stage typedef
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
5c8dd911e3 reduce power when the extended_gain_range limit is reached
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
407fd62da5 improve auto_design algorithm for amplifier selection
remove gain_max limit and use gain+power limit selection instead

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
c92f7ca0d8 parametrization of amplifier extended_gain_range
used for amplifier selection in auto-design
but it is possible to manually use and set an amplifier beyond its
extended_gain_range

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
676901e113 remove hybrid type_def implementation
replaced by dual_stage type_def

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
c099b53a03 parametrization of the max_fiber_lineic_loss_for_raman
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
fd065e4e7c raman tag in eqpt description
manage raman restrictions

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
fd97527561 raman restrictions
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
7b9647a063 dual stage
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
bf943f1347 insert a raman hybrid example in eqpt_config.json
auto_design over meshTopologyToy.xls will show raman use
run:
python transmission_main.py meshTopologyToy.xls

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:08:34 +02:00
Jean-Luc Auge
dbff610d77 Improve auto-design amplifier selection algorithm
support min gain for raman auto-design:
raman amplification is only considered for a span if its gain > specified
min gain of the raman hybrid in eqpt_config

auto-design was checked succesfully when enabling a mix of 6 possible different
amplifiers: low gain, medium gain, hybrid ramans, high power and high
gain amplifiers. They were picked as expected.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
Jean-Luc Auge
46aae9486e update raman model to work in auto-design
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
Jean-Luc Auge
70066de390 remove namedtuple class structure for network elements
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
Jean-Luc Auge
106af9d444 hybrid raman/edfa model
quick & dirty 1st implementation:
-fixed raman nf and gain,
-no tilt, no ripple,
-no nonlinear contribution,
-no pump power reduction from egress con loss

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-04-03 14:05:45 +02:00
James Powell
f0be267f9f Merge branch 'develop' 2019-03-05 19:31:28 -05:00
James Powell
edbaec7265 small fixes 2019-03-05 19:11:17 -05:00
James Powell
f4537a538b interpolate fiber positions 2019-03-05 01:07:05 -05:00
James Powell
d6eb6f33d2 fixed ordering, display of SI details 2019-03-04 17:05:56 -05:00
James Powell
7a139c261a removed redundant files 2019-03-04 17:01:34 -05:00
James Powell
2e7aa213ed add units to OSNR 2019-03-04 17:00:41 -05:00
James Powell
d9344287e4 tweaks for OFC 2019-03-04 13:58:09 -05:00
James Powell
b9768a81e9 update README for v1.2 2019-03-04 12:50:35 -05:00
James Powell
3418c07512 changes for OFC demo 2019-03-04 12:35:12 -05:00
James Powell
5f8621c224 changes for OFC demo 2019-03-04 12:32:26 -05:00
James
c05f3555a3 Merge pull request #213 from Orange-OpenSource/features-description
more precise description on README for v1.1
2019-03-04 11:18:08 -05:00
EstherLerouzic
f21827395b update of the descriptioon json structure
- adding the different types of amplifiers

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-02-27 10:26:15 +00:00
EstherLerouzic
894c7bb17a update Excel_userguide.rst wrt convert-service_sheet issue #214
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-02-26 14:33:39 +00:00
Esther LE ROUZIC
2028cfae4d more precise description on README for v1.
Signed-off-by: Esther LE ROUZIC <esther.lerouzic@orange.com>
2019-02-04 09:59:58 +01:00
James Powell
2064f65c04 Merge branch 'develop' 2019-01-30 16:00:38 -05:00
James Powell
1de4a4eaa2 README table fix 2019-01-30 15:59:27 -05:00
James
06ff45d0c2 Merge pull request #208 from Telecominfraproject/develop
Merge Develop to Master for v1.1 Release
2019-01-30 15:52:50 -05:00
James
81474e252e Merge branch 'master' into develop 2019-01-30 15:47:50 -05:00
James
0069265905 Merge pull request #207 from Telecominfraproject/dutc-patch-1
Update README.rst
2019-01-30 15:45:36 -05:00
James
dec15f6797 Update README.rst 2019-01-30 15:40:38 -05:00
Gert Grammel
f6041cd844 Update Contributors
Adding Contributors to the list
2019-01-30 19:35:42 +00:00
James
ec20d3981b Merge pull request #200 from ojnas/fix-readme-coronet
Correct README
2019-01-28 10:39:38 -05:00
James
08a867ef5a Merge pull request #199 from Orange-OpenSource/sys_margins
Sys margins
2019-01-28 10:39:19 -05:00
Jean-Luc Auge
76c8296a5d remove osnr_nli update when adding add_drop_osnr or tx_osnr
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-23 14:52:02 +01:00
jonas
f65059dd7f correct README 2019-01-23 14:16:43 +01:00
Jean-Luc Auge
e23fef3f64 update and pass tests
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-23 10:31:42 +01:00
Jean-Luc Auge
30234f913c system margins implementation
-read sys_margins in equipment['SI']
-add sys_margins to all Transceivers OSNR for path feasibility check
(path_request_run only)

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-23 10:31:42 +01:00
Jean-Luc Auge
2dd017bddc code speed improvement (-30% computation time)
remove path propagation for each mode
path propogation is only done for each baud rate

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-23 10:31:42 +01:00
Jean-Luc Auge
b25a298087 NEW add_drop OSNR in Roadms model
add_drop_osnr contribution is added at the end of the transmission
propagation, at the same time as Tx_osnr

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-23 10:31:31 +01:00
Jean-Luc Auge
8635a7c182 Code fix: non cumulative osnr penalties
add Tx_osnr or add_drop_osnr on raw snr values to avoid cumulated adding

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

bug fix: forgot to add add_drop_osnr with tx_osnr

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-23 10:29:30 +01:00
Jean-Luc Auge
46d25df241 add Tx_osnr at the end of the transmission
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-22 18:05:19 +01:00
Jean-Luc Auge
0338ccb08f restore SI basic parameters f_min f_max & spacing
remove unnecessary SI parameters in eqpt config.json:
-rx osnr
-bit rate
-min spacing
-cost
remove nb_channel parameter when calling SI

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-22 18:05:19 +01:00
James
8899a575b8 Merge pull request #144 from ojnas/fix-crash-source-dest
Change source and destination logic in transmission_main_example.py
2019-01-22 10:12:58 -05:00
James
b4407b1ff3 Merge branch 'develop' into fix-crash-source-dest 2019-01-22 10:12:18 -05:00
James
75f0aebe8f Merge pull request #193 from Orange-OpenSource/carrier_probe
Carrier probe
2019-01-22 10:09:47 -05:00
James
5a2dd53636 Merge pull request #195 from Orange-OpenSource/name_matching
Name matching dictionary
2019-01-22 10:09:16 -05:00
James
3555154c3e Merge pull request #194 from Orange-OpenSource/xls_parser_enhance
Xls parser enhance
2019-01-22 10:08:51 -05:00
James
6c92c282e7 Merge pull request #192 from Orange-OpenSource/roadms_openroadm
openroadm noise models and ROADM improvement
2019-01-22 10:07:21 -05:00
James
bd1847e5ba Merge branch 'develop' into roadms_openroadm 2019-01-22 10:04:45 -05:00
James
38727d6203 Merge pull request #188 from Orange-OpenSource/tsp_min_spacing
Tsp min spacing
2019-01-22 10:04:03 -05:00
James
7e6d557d01 Merge pull request #187 from Orange-OpenSource/fourth_correction
Fourth correction
2019-01-22 10:03:25 -05:00
James
5d3ce91839 Merge branch 'develop' into fourth_correction 2019-01-22 10:00:54 -05:00
James
1f34e3005e Merge pull request #186 from Orange-OpenSource/tx_osnr_bug_correction
bug fix due to tx_osnr add
2019-01-22 09:59:57 -05:00
James
8e27437086 Merge branch 'develop' into tx_osnr_bug_correction 2019-01-22 09:56:19 -05:00
James
b4cbe8029e Merge pull request #191 from davidBoertjes/davidBoertjes-node-coord-fix
fix for issue #190
2019-01-15 11:33:35 -05:00
James
92f3fd2063 Update node.py 2019-01-15 11:33:17 -05:00
James
1112b331ef Merge pull request #183 from Orange-OpenSource/second_corrections
Fixes concerning service sheet reading
2019-01-15 11:32:32 -05:00
James
ec34e84a3a Merge pull request #182 from Orange-OpenSource/corrections
Corrections
2019-01-15 11:31:48 -05:00
Jean-Luc Auge
bc9eee326a parametrization of the name matching dictionary
-names argument

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 17:17:58 +01:00
Jean-Luc Auge
c9106c3a6f enhance name matching dictionary
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 17:17:45 +01:00
Jean-Luc Auge
fa949f977a add name find closest match in xls parser convert.py
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

output node name gestalt matching to a json

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 17:17:33 +01:00
Jean-Luc Auge
4c2d61bb9b update test files
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 17:14:17 +01:00
Jean-Luc Auge
ec7b14da8c convert.py xls to json parser class enhancement
improve default values handling
update xls examples with east/west headers

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 17:11:07 +01:00
Jean-Luc Auge
771af4991c carrier probe point for Edfa and Fiber elements
save and be able to retrieve the carrier information processed by Edfa
and Fiber elements:
@ input & output of the element
- channel power: ase, nli, signal and total

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 12:20:45 +01:00
Jean-Luc Auge
a08ce9ecb7 gain mode fix
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 12:16:16 +01:00
Jean-Luc Auge
4d84a4f528 replace egress/ingress by east/west denomination
xls parser

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 12:16:16 +01:00
Jean-Luc Auge
5d92baf35e Add link duplication check for the xls parser
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

Check and remove duplicate links

a warning is issued when a duplicate link is dicovered
the execution is paused for the user ot see the warning
the duplicate link is removed and the execution resumed

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 12:16:16 +01:00
Jean-Luc Auge
ac5171e95e Improve Excel Node parser
-read headers in any order
-possible hierarchical implementation

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 12:16:16 +01:00
Jean-Luc Auge
697ac311fe Improve excel link sheet parser
-implement hierarchical headers
-can read headers in any order

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 12:16:16 +01:00
Jean-Luc Auge
c22d1173af update test eqpt_config
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-11 12:28:39 +01:00
Jean-Luc Auge
c0cc5fa9fd Improve ROADM loss calculation in power mode
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-11 12:28:39 +01:00
Jean-Luc Auge
4bd9a9cdda final openroadm models implementation
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-11 12:26:48 +01:00
EstherLerouzic
63f8139dbc Adding min_spacing parameter in transponder mode library
with this feature, spacing is checked with respect to eqpt library
instead of hard coded values in equipment +
mode selection is based on the minspacing instead of a coef or margin on baudrate value
some sanity check are introduced:
 - request spacing must be greater than min spacing
 - tsp baudrate must be smaller than min spacing

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-01-11 11:11:56 +00:00
EstherLerouzic
be731a5977 cosmetic changes
add colors on messages to highlight them
add messages explaining program steps
update readme and excel user guide with latest fetures

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-01-11 11:09:19 +00:00
EstherLerouzic
dd4ce4cea4 small fixes on stdout
- indicate when a mode is selected if the selected path does not pass
  + some reformatting of columns

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-01-11 11:09:19 +00:00
EstherLerouzic
2548a2eee8 small fix on test eqpt_config file
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-01-11 11:09:19 +00:00
EstherLerouzic
03948d6785 Fixes concerning service sheet reading
- indicate which request has incorrect tsp type or mode
- correct wrong reading from excel : if string values contain only a number
  xlrd interprets as a float eg 1 -> 1.0  . A function is used to correct this
  when filling the Request class

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-01-11 10:41:16 +00:00
EstherLerouzic
4c1c17eea6 adding some exception handling to help user debugging
exception handling add some info on which element (uid) is causing a problem
this can help the user to identify where he must correct the input files

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-01-11 10:41:16 +00:00
EstherLerouzic
b258d22d25 add a limit cutoff for path search
all_simple_path search leads to a very long time process in case of large network
a cutoff parameters has been added to avoid this. Value needs to be parametrized:
right now correspond to my experience

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-01-11 10:41:16 +00:00
EstherLerouzic
aef43e6bca Corrections of some bugs
- output file of -o option in path_requests_run.py was not correctly
  handled in case of path indirection eg ../../bar.foo
- fiber constraint is not correctly handled in case of several parrallel directions
  of same fiber name. remove if from the set of constraint till problem is not solved
- loose_list was not correctly indexed in request.py. assume the first element attribute (except
  of the transceiver) applies for the whole list. This will need further corrections
- handle the case when path.snr is none in the optimization of mode process
2019-01-11 10:41:11 +00:00
David Boertjes
3d7362743d Update node.py
Fix return value error in *coords* property which was intended to build a tuple from two values for latitude and longitude.
2019-01-10 13:15:59 -05:00
EstherLerouzic
96f3d5a805 Adding min_spacing parameter in transponder mode library
with this feature, spacing is checked with respect to eqpt library
instead of hard coded values in equipment +
mode selection is based on the minspacing instead of a coef or margin on baudrate value
some sanity check are introduced:
 - request spacing must be greater than min spacing
 - tsp baudrate must be smaller than min spacing

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-21 16:57:08 +00:00
EstherLerouzic
2df500e027 cosmetic changes
add colors on messages to highlight them
add messages explaining program steps
update readme and excel user guide with latest fetures

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-19 18:24:22 +00:00
EstherLerouzic
346f24022a small fixes on stdout
- indicate when a mode is selected if the selected path does not pass
  + some reformatting of columns

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-19 18:21:51 +00:00
EstherLerouzic
cb45c7ef16 new test to check all combination of service specifications
add combination of [mode, pow, nb channel] filled or empty
leading to feasible path or not, and check the propagate and propagate_and_optimize_mode
functions work as expected on a reference toy example

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-19 18:17:29 +00:00
EstherLerouzic
9cfb57dc4b bug fix due to tx_osnr add
tx_osnr was impacting automatic mode selection feature : this commit solves the error
+ add a novel version of the excel example with an empty mode cases

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-19 16:32:54 +00:00
EstherLerouzic
020d852758 adding some exception handling to help user debugging
exception handling add some info on which element (uid) is causing a problem
this can help the user to identify where he must correct the input files

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-19 10:49:31 +00:00
James
8d97fcd735 Merge pull request #177 from ojnas/add-tx-osnr
Add Tx OSNR
2018-12-18 11:57:35 -05:00
James
097fe3114e Merge pull request #156 from ojnas/power-range
improve power range handling - revised version
2018-12-18 11:56:47 -05:00
James
5e0fd265ff Merge pull request #180 from ojnas/fix-osnr-calculation
Fix OSNR calculation when ASE or NLI is zero
2018-12-18 11:55:43 -05:00
EstherLerouzic
6af137a085 Fixes concerning service sheet reading
- indicate which request has incorrect tsp type or mode
- correct wrong reading from excel : if string values contain only a number
  xlrd interprets as a float eg 1 -> 1.0  . A function is used to correct this
  when filling the Request class

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-17 09:27:05 +00:00
EstherLerouzic
3cdc8511a8 add a limit cutoff for path search
all_simple_path search leads to a very long time process in case of large network
a cutoff parameters has been added to avoid this. Value needs to be parametrized:
right now correspond to my experience

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-12-13 11:37:26 +00:00
EstherLerouzic
2d515eea4c Corrections of some bugs
- output file of -o option in path_requests_run.py was not correctly
  handled in case of path indirection eg ../../bar.foo
- fiber constraint is not correctly handled in case of several parrallel directions
  of same fiber name. remove if from the set of constraint till problem is not solved
- loose_list was not correctly indexed in request.py. assume the first element attribute (except
  of the transceiver) applies for the whole list. This will need further corrections
- handle the case when path.snr is none in the optimization of mode process
2018-12-13 11:28:42 +00:00
Jonas Mårtensson
61289119cb fix OSNR calculation when ASE or NLI is zero 2018-12-13 11:07:16 +01:00
Jonas Mårtensson
b6bc995e40 fix OSNR test 2018-12-11 21:29:17 +01:00
Jonas Mårtensson
b0bb41bac6 fix eqpt_config test file 2018-12-11 20:48:53 +01:00
Jonas Mårtensson
0927a92652 fix amplifier test 2018-12-11 17:25:26 +01:00
Jonas Mårtensson
f51061d650 Add support for Tx OSNR. 2018-12-11 16:59:05 +01:00
James
74314f00ca Merge pull request #175 from MiquelGA/develop
Few minor details and typos in README
2018-12-11 10:07:09 -05:00
miquelgarr
81c5ef4a23 Adding "transmission_main_example.py -h" 2018-11-30 12:16:22 +01:00
miquelgarr
72e329b08e Now applying corrections to the README 2018-11-30 10:28:41 +01:00
miquelgarr
50f884663f Minor typo changes in README 2018-11-30 10:25:17 +01:00
miquelgarr
0d81eb4b29 Minor typos solved in README 2018-11-30 09:59:51 +01:00
James
978a9407fa Merge pull request #171 from szhu3210/patch-1
Fix a typo of log message in transmission_main_example.py
2018-11-27 12:22:01 -05:00
James
2c3b74cdc1 Merge pull request #168 from Orange-OpenSource/service_aggregation_clean_rebased
Service aggregation clean rebased
2018-11-27 11:31:41 -05:00
Shengxiang Zhu (Troy)
448e0f54be Update transmission_main_example.py
Seems a typo.
2018-11-23 17:32:58 -07:00
EstherLerouzic
17f638e991 New mesh example with correct inputs + small fix
small fix: correct wrong numbering of request in json and csv
           output when -o is used ; correct example files

signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:56:00 +00:00
EstherLerouzic
b78d3d8eda small fixes
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:20:25 +00:00
EstherLerouzic
02a7e467e2 Major correction on mode optimization behaviour + small fixes
- this version handles special cases: if no baudrate satisfies the spacing
  , if no mode satisfies the OSNR threshold from transponders
- template of service corrected wih the novel path_bandwidth
- some ideas TODO added for testing

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:20:25 +00:00
EstherLerouzic
15304890f5 Corrections related to tests and cost feature
- adding cost in every config files including tests files,
- correcting wrong usage reactions (if value is not correct)
- correction of orthograph

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:20:19 +00:00
EstherLerouzic
9ea96e431c Test disjunction file corrected to include novel path_bandwidth parameter
Correction of data file for test_parser.py + adding a test on path non looping

- service json files now include path_nadwidth value
- previous constrained routing did not ensure loop free path. This has been
  corrected in A test has been added to avoid loosing this feature in future
  versions.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:16:23 +00:00
EstherLerouzic
7b3bfea614 correction on aggregation to support disjunction feature
- correction of json to csv function
- small correction on disjunction format to avoid double (double crash the program)
- adding time stamp to measure perf
- demands with all the same disjunction can be aggregated
- a new set of disjunction list is created to avoid inconsistancy
  with the aggregated request-ids

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:16:17 +00:00
Jean-Luc Auge
d68637c2c8 clean eqpt_config.json, add low noise openroadm amp
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-11-21 09:14:17 +00:00
Jean-Luc Auge
f009306030 small fix
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-11-21 09:12:58 +00:00
Jean-Luc Auge
ca97cba18b display channel count information when running transmission_main
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-11-21 09:12:58 +00:00
Jean-Luc Auge
a46c8c5398 OpenRoadm amplifier model!
nf = f(Pin)

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-11-21 09:12:58 +00:00
EstherLerouzic
88c2e2bd70 adding the example file used for disjunction testing
adding the counting feature on standard output
adding tsp nb in csv + small bug fixes
small fixes to improve stdout and csv printing
small bug fixes on service aggregation and automatic correction of names

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:12:52 +00:00
EstherLerouzic
1bbcee8715 First version of mode optimization
if mode is not given, the program automatically choses the first mode of the tsp
that has the highest bitrate and baudrate
- propagation for each loop on baudrate, no proppag in the loop on the mode
  (same propoagation applies for identical baudrate)
- starts with the highest baudrate
- Make power and nb-channel optional fields
  - power uses defaulf power in SI
  - nb channel computed based on min max frequency and spacing

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:06:38 +00:00
EstherLerouzic
39a8fa3335 Adding aggregation feature
- add bitrate in the json service file and enable to support both with and without bitrate
- change mode to optional
- add an aggregation function that groups identical demands (except for id and bitrate)
  TODO : check which mode can satisfy the request or how many transponders  -> going towards
  dimensionning
- Correcting some bug on loose parameter: hop-type attribute was forced to be always 'loose'
  -> now reads the excel entry
- service sheets checks on header if field names are corrects, but any order is
  now feasible.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-21 09:06:32 +00:00
James
fe067e5367 Merge pull request #167 from ojnas/verbosity
handling of --verbose
2018-11-20 09:57:26 -05:00
Jonas Mårtensson
5efbd17829 add help text 2018-11-20 15:27:54 +01:00
Jonas Mårtensson
fa3e54a747 change handling of verbosity argument 2018-11-20 14:57:28 +01:00
James
603beccb01 Merge pull request #151 from ojnas/gain-mode-fix
gain-mode fix
2018-11-19 18:18:35 -05:00
James
4b20afd599 Merge pull request #165 from ojnas/fix-broken-links
fix broken links in readme
2018-11-19 18:16:46 -05:00
Jonas Mårtensson
adbe283c83 fix broken links in readme 2018-11-19 13:03:32 +01:00
James
1908d7e29a Merge pull request #161 from Orange-OpenSource/correcting_example
correcting example file
2018-11-16 11:08:38 -05:00
James
7c6e16cfbc Merge pull request #164 from ojnas/fix-encoding
fix utf-8 encoding
2018-11-16 11:07:27 -05:00
Jonas Mårtensson
1480d23088 fix utf-8 encoding 2018-11-16 13:38:07 +01:00
EstherLerouzic
4be3522209 change for meshTopologyToy.xls
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-16 11:14:37 +00:00
EstherLerouzic
5381e0300f correcting example file
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-11-16 11:04:52 +00:00
James
cde822ebf8 Merge pull request #157 from ojnas/missing-imports
add a couple of missing imports
2018-11-15 12:39:31 -05:00
Jonas Mårtensson
72d3525da1 add a couple of missing imports 2018-11-14 15:24:25 +01:00
Jonas Mårtensson
dc867fa051 improve power range handling 2018-11-14 09:08:14 +01:00
James
eaf3fcade8 Merge pull request #153 from dutc/develop
fix changed spelling & misspellings in meshTopolgyExampleV2_Services.json for "synchronize/synchronization"
2018-11-13 11:49:01 -05:00
James Powell
3df270e4ac fix changed spelling & misspellings in meshTopolgyExampleV2_Services.json for "synchronize/synchronization" 2018-11-13 10:24:15 -05:00
Jonas Mårtensson
7937392dfc fix bug in gain mode 2018-11-13 13:33:21 +01:00
James
9c1c0f8d1f Merge pull request #137 from Orange-OpenSource/path_disjunction
Path disjunction
2018-11-12 10:11:08 -05:00
James
ad2ab0d164 Merge pull request #143 from ojnas/coronet-all-nodes-roadm
Explicitly set all nodes in CORONET example to ROADM
2018-11-12 10:10:45 -05:00
James
c4bed94eb0 Merge branch 'develop' into coronet-all-nodes-roadm 2018-11-12 10:10:23 -05:00
James
edc8eb55de Merge pull request #145 from ojnas/split-fiber
Some modifications in split_fiber function
2018-11-12 10:09:15 -05:00
Jonas Mårtensson
f4f9868381 Change span numbering in split_fiber. 2018-11-05 17:43:14 +01:00
Jonas Mårtensson
f103bebe05 Some modifications in split_fiber function. 2018-11-05 17:13:03 +01:00
Jonas Mårtensson
c168af46bc Update transmission_main_example.py 2018-10-30 17:37:50 +01:00
EstherLerouzic
7d82248903 Small fix
obsolete text not removed in the message made an error: I removed them

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-30 16:36:44 +00:00
James Powell
e6cb269754 Merge branch 'master' into develop 2018-10-30 12:05:44 -04:00
James
ac8a96398a Update issue templates 2018-10-30 12:03:36 -04:00
EstherLerouzic
86c79c7c60 Merge branch 'develop' into path_disjunction solving conflict
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-30 16:01:06 +00:00
James Powell
0c47b3f3ea small fix in case spacing_list is not sorted 2018-10-30 12:00:47 -04:00
James
b2b500c5dc Merge pull request #141 from ojnas/automatic-spacing
Simplify automatic spacing
2018-10-30 11:59:20 -04:00
ojnas
efc8468268 Set type of all nodes to ROADM in CORONET Glabal. 2018-10-30 09:48:59 +01:00
ojnas
205baebd48 Merge remote-tracking branch 'upstream/develop' into develop 2018-10-30 09:37:27 +01:00
James
af9ba2750d Update examples/path_requests_run.py
Co-Authored-By: EstherLerouzic <EstherLerouzic@users.noreply.github.com>
2018-10-30 09:27:52 +01:00
James
e04afdbe4c Update examples/path_requests_run.py
Co-Authored-By: EstherLerouzic <EstherLerouzic@users.noreply.github.com>
2018-10-30 09:27:12 +01:00
James
e94fd9590e Merge pull request #142 from dutc/develop
Fix encoding issues
2018-10-29 20:02:28 -04:00
James Powell
4f4f05abdf allow JSON to encode UTF-8 2018-10-29 11:17:13 -04:00
James Powell
bcf93e1d9f enforce utf-8 encoding for reading/writing JSON 2018-10-29 11:14:31 -04:00
ojnas
48198bdd89 Simplify automatic spacing. 2018-10-28 08:11:22 +01:00
EstherLerouzic
fbb4f3e5dd small fixes to comply with test files
- re-changing to to \u2192 in convert.py to comply with test files
- changing route constraint in data file : the constraint had a too ambiguous
  naming in the service file
- test on None was incorrect in convert_sheet

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-26 10:43:27 +01:00
James
cefd1cf030 Merge pull request #136 from ojnas/main-source-dest
source and destination handling i transmission main example
2018-10-25 10:47:00 -04:00
James
f8fa544e31 Merge pull request #135 from ojnas/add-fiber-types
Update eqpt_config.json
2018-10-25 10:46:02 -04:00
EstherLerouzic
27885a4cbc Correction of route constraint to support any type of node
correct loose or strict constraint in the new function correct_route_list
correct test to find the name with existing uids
remove the \u2192 char that was not well supported with excel reading

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-25 15:42:09 +01:00
EstherLerouzic
185a62958f adding safe check on baudrate and spacing
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-25 15:42:02 +01:00
EstherLerouzic
1ba748f2a4 Changing optical power and nb channels as optional input for requests
- normal way is usually to apply the design optical power for all channels.
  This change uses the default power (same power as used for design) but enables to
  force an arbitrary power if needed. TODO : introduce spectral power density
  to apply power depending on baudrate.
- definition of min max frequency and spacing define the nb of channels:
  uses min max frequencies and spacing to determine nb-channels. It is possible
  to force a different spacing for the request. TODO: check that the value is
  consistant with baudrate and min max values.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-25 15:36:53 +01:00
EstherLerouzic
90a75a9b3d Removing the duplicate convert_service_sheet.py in examples directory
service_sheet.py contains exactly the same function: I suggest to remove this file
to clean the examples directory

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-25 15:36:36 +01:00
ojnas
215295efb1 changed source and destination handling 2018-10-25 15:25:28 +02:00
Jonas Mårtensson
2413bd9e0d Update eqpt_config.json
Add fiber types.
2018-10-25 11:31:39 +02:00
James
356ae650fd Update issue templates 2018-10-23 17:09:56 -04:00
James
2444c24545 Update issue templates 2018-10-23 17:09:10 -04:00
James
7727708a3a Merge pull request #131 from ojnas/equipment-refactoring
Equipment refactoring
2018-10-23 14:15:39 -04:00
Jonas Mårtensson
0bfacd84f4 Update equipment.py 2018-10-23 17:16:51 +02:00
Jonas Mårtensson
b271c1ca3c Update equipment.py 2018-10-23 17:13:08 +02:00
EstherLerouzic
75660febc1 Create test_disjunction
- create some test to check that produced paths are really disjoint
- add some TODOs on optical power for requests computation

First check of disjunction feature added to tests

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-23 11:53:57 +01:00
EstherLerouzic
13aaa174e1 Adding this toy example network for disjunction testing
1     1
     a----b-------c
     |    |       |
     |1   |0.5    |1
     |    |       |
     e----f---h---g
       1   0.5 0.5

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-23 09:30:20 +01:00
EstherLerouzic
d112c728fc Moving the disjunction function into core functions
and minor corrections

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-23 09:25:07 +01:00
EstherLerouzic
826af4a9fd Minor corrections of tests due to orthograph change
- "synchronisation" replaced with synchronization
- "synchonzation" replaced with synchronization

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-22 16:41:56 +01:00
EstherLerouzic
c9693d355f some cleaning and renaming
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-22 16:26:58 +01:00
EstherLerouzic
9f37cb8ce6 Corrections, cleanup and debugging
Added (partly):
- relax one constraint when no more path are available

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-22 16:25:52 +01:00
EstherLerouzic
d99e8ca565 routing constraint added on top of disjunction feature : step 4
select disjoint routes that satisfy route constraint

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-22 16:25:52 +01:00
EstherLerouzic
44312125ab Disjunction feature step 3
- select the first path that is satisfying disjunction
not finished:
- constraints on nodes not taken into account
- modification on the build network not added
- not clean, need some refactoring

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-22 16:25:49 +01:00
EstherLerouzic
7558721642 Disjunction feature step 2
- selection of disjoint path set for each synchronization vector

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-22 16:23:11 +01:00
EstherLerouzic
fb49f7fb5d Implementing disjunction in path_requests_run.py
- Implementing a conflict table for path disjoint choices
 - adding disjunction in the parser and json (read and write)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-10-22 16:23:00 +01:00
James
ee7f2c2f47 Merge pull request #129 from ojnas/minor-readme-fixes
Update README.rst
2018-10-22 10:19:04 -04:00
Jonas Mårtensson
833fe006af Update README.rst 2018-10-22 14:19:52 +02:00
James Powell
9be0607b2e add authors 2018-10-17 09:25:14 -04:00
James Powell
6dc3f2ffa6 small updates 2018-10-16 05:58:42 -04:00
James Powell
df7cbf0b76 small README fix 2018-10-16 05:50:26 -04:00
James
19b6378b1a Merge pull request #126 from dutc/develop
add tagged version table
2018-10-16 05:46:12 -04:00
James
29cb2b50a8 Merge pull request #125 from ojnas/ojnas-minor-fixes-edfa
Update elements.py
2018-10-16 05:43:36 -04:00
James Powell
5932c014a0 add tagged version table 2018-10-16 05:42:31 -04:00
Jonas Mårtensson
a3f75e9af0 Update elements.py
Minor fixes to Edfa class
2018-10-16 11:05:34 +02:00
James
9ed31e2c4e Merge pull request #124 from dutc/develop
small fixes
2018-10-16 04:51:50 -04:00
James Powell
8599f63fbf remove redundant directory 2018-10-16 04:51:14 -04:00
James Powell
07de78cb05 small fixes 2018-10-16 04:50:33 -04:00
James Powell
f764bbe080 small changes 2018-10-16 04:48:22 -04:00
James Powell
7aa343b767 small fixes 2018-10-16 04:43:25 -04:00
James Powell
69198779a7 Merge branch 'develop' 2018-10-15 22:44:39 -04:00
James
3088032ad8 Merge pull request #123 from dutc/develop
Readme fixes
2018-10-15 22:37:22 -04:00
James
dfaa12598d Merge pull request #121 from dutc/master
Fixes
2018-10-14 20:59:05 -04:00
James Powell
1c724cdc6c Merge branch 'master' into develop 2018-10-14 20:58:42 -04:00
James
b59423fb01 Merge pull request #120 from dutc/develop
Develop
2018-10-14 20:58:02 -04:00
James
96bceed102 Merge pull request #119 from dutc/fixes
Fixes
2018-10-14 20:55:15 -04:00
James Powell
f8e146b9b9 duplicate service sheet to simplify structure 2018-10-14 20:55:25 -04:00
James Powell
c54ddb644a fix headers 2018-10-14 20:55:12 -04:00
James Powell
2be616411f fix headers 2018-10-14 20:55:00 -04:00
James Powell
7415744807 small formatting 2018-10-14 20:54:48 -04:00
James Powell
23905a90f4 strip whitespace 2018-10-14 20:54:35 -04:00
James Powell
83444b329e strip whitespace 2018-10-14 20:54:22 -04:00
James Powell
9898dc85a9 remove notebook and binder 2018-10-14 20:54:10 -04:00
James Powell
661287f600 perms 2018-10-14 20:53:56 -04:00
James Powell
353c6a77e9 make package 2018-10-14 20:53:41 -04:00
James Powell
8c006fec3f README fixes 2018-10-10 13:37:49 -04:00
James Powell
5896b7ce6a README fixes 2018-10-10 13:25:56 -04:00
James Powell
f831f6cb2c README fixes 2018-10-10 13:25:12 -04:00
James Powell
b505a1ae01 README fixes 2018-10-10 13:23:47 -04:00
James
a0fac17c0e Merge pull request #110 from dutc/master
v0.9 release
2018-09-24 12:56:49 -07:00
James Powell
851f606fc0 Merge branch 'develop' 2018-09-24 15:55:09 -04:00
James
8940430ee0 Merge pull request #108 from Orange-OpenSource/develop
auto_design saving to json and README update
2018-09-24 12:51:38 -07:00
James
06d3927275 Merge branch 'develop' into develop 2018-09-24 12:49:45 -07:00
James
7cea13e90d Merge pull request #104 from Orange-OpenSource/path_resquest_rundemo
Path resquest rundemo
2018-09-24 12:47:12 -07:00
Jean-Luc Auge
de2a504078 README.rst update
Add auto_design and equipment library description!

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-09-18 17:41:54 +02:00
Jean-Luc Auge
df14b441a3 improve code clarity of auto_design power setting
>network>target_power

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-09-18 17:12:58 +02:00
Jean-Luc Auge
ab1391440f Fix bug in padding and EOL and Roadm power
take into account manual padding input, i.e. att_in defined in fiber params
add EOL even if con_out is not None
Force Roadm input power to 0 in power_mode even if the ingress amplifier
gain is not null

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-09-17 13:16:38 +02:00
Jean-Luc Auge
310d32dcea Generic write_csv in utils to save simulation results
tranmsission_main simulation results are saved to simulation_result.csv

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-09-13 14:30:33 +02:00
EstherLerouzic
f8cd822c92 update of test files with respect to the use of string id instead of integer id
update Excel_userguide.rst for the services uid: now accepts strings

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-09-12 11:24:55 +01:00
EstherLerouzic
3ade885e41 improving path_request_run robustness to wrong excel input
- adding a test to check that transponder types and modes are part of the eqpt library
- adding a formating on numeical value input for path request ids
- automatically printing the results into a csv file in addition to the json file
  and with the saime name+.csv
- printing results in a more pretty way for demo

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-09-11 11:09:28 +01:00
EstherLerouzic
008a88192c small update of toy topology file + comment of a proont in network.py
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-09-10 13:44:56 +01:00
EstherLerouzic
639e7f012c some improvement of std out printing, to ease user understanding
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-09-06 11:04:42 +01:00
James
c8ecc16648 Merge pull request #102 from Orange-OpenSource/userGuideImprovement
User guide improvement
2018-09-04 09:06:16 -07:00
Jean-Luc Auge
225fb1ec0c Save network to json after build (auto design)
-Promote incremental and iterative network design
-Automatic saving of a "network-name_auto_design.json" file
-Results of the autodesign (additional amplifiers, configuration) are
saved to this ..._auto_design.json file
-This file can then be used to run a new simulation just like a normal
json input file

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-09-04 09:34:57 +02:00
EstherLerouzic
c943e0e9b4 writing json results from path_requests_run.py into csv
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-09-03 15:10:32 +01:00
EstherLerouzic
3d8ac83fcc - Reference to path_requests_run.py added in README.rst file
- adding a program to convert json result file into a CSV file
- adding some more metrics in the results

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-08-31 17:16:48 +01:00
EstherLerouzic
06399ca8af Excel user guide modifications according to issue 95
- typos corrections
- explanations on cable id, create_eqt_sheet.py, dimensionning
- adding updates in user guide
- harmonisation of naming _eqpt instead of eqt in create_eqt_sheet.py
- improving standard output, removing pi ref power print on standard output

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-08-31 09:41:42 +01:00
James
8f8fc13ded Merge pull request #101 from Orange-OpenSource/auto_design
Auto design features
2018-08-30 08:27:57 -07:00
James
2b018cb9a5 Merge pull request #96 from Orange-OpenSource/develop
fixed gain amplifier model and default values implementation from eqpt_config json
2018-08-23 07:05:02 -07:00
James
9577f4c9a3 Update README.rst 2018-08-21 11:47:49 -04:00
James
771d98cc10 Update README.rst 2018-08-21 11:31:28 -04:00
Jean-Luc Auge
91e875d54c Update untary test_amplifier
test_amplifier.py now works in power mode, which is the reommended mode
for auto-design

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-10 11:36:33 +02:00
Jean-Luc Auge
da39f1489f power range fix for power sweep
align the behaviour of
	eqpt_config[SI].power_range_db
with
	eqpt_config[Spans].delta_power_range_db
so that the min and max excursions are taken into account (which was not the case
when using range or arange for the SI power excursion)

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

power range sweep fix

fix behaviour when power range length = 0
update eqpt_config json default values

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

restore verbose off for power sweep

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-10 11:36:29 +02:00
Jean-Luc Auge
2940576681 Output VOA in EDFA implementation
new field 'out_voa_auto': true/false in eqpt_config json for elligible
amplifiers
if the field is set to true and the power_mode (in
eqpt_config[Spans]) is also set to true, a VOA value is calculated based
on available gain and power margins (EOL) to maximize amplifier gain and
improve its NF

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-08 17:52:53 +02:00
Jean-Luc Auge
a49c137b78 Improve Select_edfa algorithm
can pick up the best NF amplifier among several amplifiers
sharing the same gain and/or power requirements when these requirements
are not satisfied (used to take the highest gain or the highest power)

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-08 15:11:59 +02:00
Jean-Luc Auge
87e748cd83 Remove nf calculation duplication
align edfa_nf calculation in equipment.py to _calc_nf in elements.py

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-08 14:56:19 +02:00
Jean-Luc Auge
94c2e332bb update amplifier tests
readd CORONET xls

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-08 14:29:01 +02:00
Jean-Luc Auge
1437b6010e Small fixes
code cleanning
	consistency wiht path request
	generator bug fix
	select_edfa readibility enhancement
	set roadm_loss before design in power mode

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-08 14:24:12 +02:00
Jean-Luc Auge
5fc203482d Amplifier selection with power constraints
amplifier selection in autodesign now takes into account
-required design gain
-required design power
-lowest NF among amplifiers satisfying the requirements

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-07 17:03:18 +02:00
Jean-Luc Auge
ff6d81b749 Power setting refactor
separate in the code:
	* add egress amplifier
	* vs setting the amplifier parameters
=> prepare improvments in select_edfa and target_power code
regroup all network optimization operations in network.py (remove from
transmission_main)

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-07 13:39:08 +02:00
Jean-Luc Auge
167e644bd0 Amplifier disable field
* toggle true/false in eqpt_config json file to allow the use of a given amplifier type in automatic design: eqpt_config[Edfa][allowed_for_design] : true/false
* automatic design is picking the best amplifier (gain, NF constraints)
among the available ones: if toggle to false, the type is deemed non
available. Only alternative before this feature was to remove the
amplifier from eqpt_config library.
* if set to false, the amplifier type can still be input in the network
topology file: it will be recongized.

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-02 12:57:09 +02:00
Jean-Luc Auge
d1c7489768 Automatic design Delta power / span
* automatic design (when amplifiers are missing from network topology
input) finds the optimum power difference between spans
* The range of this optimum power difference is defined in
eqpt_config[Spans][delta_power_range_db] = [min, max, step]

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-02 12:30:05 +02:00
Jean-Luc Auge
a783e165dd Add fixed gain amplifier unitary test
update pytest test_amplifier.py test file
correct test_network.json

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 15:01:10 +02:00
Jean-Luc Auge
45bdd82864 Add padding support for Fused spans
=>small span padding now looks at the total loss of all spans spliced
together instead of individual span losses
=>the att_in padding attenuator is placed at the input of the 1st span
(the 1st of the serie of spans spliced together with Fused ne)

squashed with the fix to implement att_in attenuation in Fiber.propagate

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

intermediate bug fix to be squashed

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 14:44:03 +02:00
Jean-Luc Auge
79c5cb6b78 PADDING of small spans
read [Spans][padding] in eqpt_config json file
    * add input attenuator on all fibers in the network with loss < padding
    * create new Fiber attribute: att_in, which is a fixed attenuator for
    padding purposes
    * define "padding" : 0 in eqpt_config will disable the feature
    effectively

    improve fiber splitting to take into account the padding target in the
    min fiber length and the target length is set accordingly to this min
    length

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 12:15:36 +02:00
Jean-Luc Auge
63ade5fdef Fix bug when splitting fiber in calculated length
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 12:13:08 +02:00
Jean-Luc Auge
853b8c7aa3 Code improvement: catch eqpt errors/remove outdated files
* Fiber or Edfa type_variety in the the network topology that are not
    defined in the eqpt_config json (for example Fiber ELEAF) no longer
    crash the code: instead there is a clear error message and the code exit
    gracioulsy
    * remove outdated network topology json files

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 11:26:51 +02:00
Jean-Luc Auge
0655fb60de read fiber con_in, con_out, EOL & max_length default values
read fiber spans default values from eqpt_config.json[Spans]
	=>if con_in/con_out is None or not defined in params
Rename connector_loss_in/out to con_in/out for consistency
update parser tests to accept the new con_in/out syntax and the new default
values

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 11:24:28 +02:00
Jean-Luc Auge
69b28e3508 Update and pass amplifier tests
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 11:18:50 +02:00
Jean-Luc Auge
5c16d9539f new fixed gain amp in nf_model
new type_def attribute for nf_model amplifiers
variable gain: requires nf_min & nf_max input
fixed_gain: requires nf0 input
	=> NF=nf0 in the [gain_min, gain_flatmax] range
	=> NF=nf0+pad if gain < gain_min: automatic input padding

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 11:18:39 +02:00
Jean-Luc Auge
e3acf02bde Error message handling and code exit
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 11:18:21 +02:00
Jean-Luc Auge
10268e82d4 Power sweep parametrization
=>  read power range [lower, upper, step] in eqpt_config.json
            do not display intermediate NE info if range > 1
=>  update eqpt_config.json data

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 11:02:57 +02:00
Jean-Luc Auge
bc44bf726a Fix bug in setting the Roadm egress reference power
* apply to power_mode only
* bug caused by the previous merge

restore default connector loss in excel to json parser (convert.py) to
0dB

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-08-01 10:59:00 +02:00
James
9839681bc0 Merge pull request #92 from Orange-OpenSource/fix-tests
Fix tests
2018-07-17 07:24:38 -07:00
James
beb292cb07 Merge pull request #91 from berahtlv/docs
network and equipment JSON descriptions added
2018-07-17 06:55:52 -07:00
EstherLerouzic
29c4134f60 Add roll of factor in transponders library
roll_off is a characteristic of a given mode of a transponder: it is now
integrated in the Transceiver library in eqpt_config.json. Default value is
provided in the SI field if no specific transponder type is input

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-16 18:11:02 +01:00
EstherLerouzic
a6157f328d Work contnued on fixing dutc merge with power feature of jla
- adding relevant call in path_request_run
- unifying variable name: baudrat -> baud_rate
- correcting test with the new power features
- unifying naming of variables n_ch-> nb_channel, sink -> destination (this
  follows the usual naming in yang path computation models)
- bug fix in novel trx_mode_params function , use of the function in
  path_requests_un
- TODO : place roll-off in the tsp lib instead of SI

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-16 17:43:56 +01:00
Jean-Luc Auge
c6432e2c28 restore power management in transmission main
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-13 18:15:21 +02:00
Jean-Luc Auge
4a756bf2a9 Read trx parameters and find channel spacing&count
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-13 13:45:05 +02:00
Roberts Miculens
b77cc5cd40 file extension changed 2018-07-10 21:53:14 +03:00
James Powell
9f94af6ff7 add test_propagation 2018-07-10 10:47:27 -04:00
James Powell
7aba40cd5b fixed merge conflicts; added default pref value for SI 2018-07-10 10:35:42 -04:00
James Powell
fb6c17c5ff fixed merge conflict 2018-07-10 10:27:24 -04:00
James Powell
4504d80c80 fixed merge conflict 2018-07-10 10:16:13 -04:00
James
8a8c8989cb Merge pull request #85 from dutc/improve-tests
Test Cleanup
2018-07-10 06:47:09 -07:00
Roberts Miculens
20731dbe4b network and equipment JSON descriptions added 2018-07-09 17:46:15 +03:00
EstherLerouzic
55393ca9eb implement the use of TSP f_min
- tsp fmin is used instead of default SI value

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-09 10:24:34 +01:00
EstherLerouzic
e9aa4d5601 Integration of Path_request_run functionalities into transmisson_main_example
creation of modular functions to be called
use of the same propagate function in both examples

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-06 17:32:56 +01:00
EstherLerouzic
6d49769df9 Refactor path_request_run and integration of functions to transmission
- use load_equipment instead of load_SI
- integrate the pathrequest class into transmission main

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-05 18:33:04 +01:00
Jean-Luc Auge
0333e9d094 update amplifier test
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-05 19:21:48 +02:00
Jean-Luc Auge
53bedca50a parametrize and format power mode
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-05 17:07:59 +02:00
EstherLerouzic
b9518ca987 Starting: adding path_requests_run functions to the "core" package
- Path_request class is updated to be more generic and reuseable
  in transmission main example. json processing linked to the yang
  modelling is kept in the pat_request_run, while path_request class
  only contains useful attributes
- adding functions in info and request python files in core directory

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-05 15:48:11 +01:00
Jean-Luc Auge
794e713d6d small fix source & node input in transmission main
enhance default value support
run global coronet network in the same US region

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-05 12:51:39 +02:00
Jean-Luc Auge
5e1fd7501e bug fix in amplifier extended gain range
NF_calc gain clamping to max gain in extended gain range

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-05 12:51:22 +02:00
Jean-Luc Auge
c86ea206d9 bug fix CORONET_GLOBAL_Topology example
bugs from the last refactor merge
- fix #1: update fiber length after split
- fix #2: add egress amp after fiber split

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-05 12:50:48 +02:00
Jean-Luc Auge
b810cf84c2 Power mode implementation
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-07-05 12:50:23 +02:00
EstherLerouzic
15bc5db2ed adding test on the propagation on a link example
test verifies that OSNR and SNR computed values are consistant
including connector loss and input power variation
onto 2 example links: 1 and 5 spans

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-04 16:45:28 +01:00
EstherLerouzic
4845d9005e Update tests after having inserted connector losses in json
previous json did not have connector losses input:
this commits updates the json expected files with the additional
connector losse in parameters .

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-03 12:52:50 +01:00
James Powell
bed4e9f1e1 clean up JSON comparator & remove redundant files 2018-07-02 17:48:57 -04:00
James Powell
7b20db10cc remove duplicate CORONET file 2018-07-02 16:38:43 -04:00
James Powell
d59b3e8c46 small test fixes 2018-07-02 16:36:10 -04:00
James Powell
8fccbb0ac2 rename test files 2018-07-02 16:28:06 -04:00
EstherLerouzic
f36a610e52 adding connector loss on the "loss" property of fiber class
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-02 18:30:40 +01:00
James Powell
479a2f358e clean-up test files/locations 2018-07-02 12:37:13 -04:00
EstherLerouzic
8795c357ae Implementation of connector losses in the propagation function
- connector losses can be part of the json description or not
  in any case a connector loss in and out is now part of the fiber class.
  if not present the default value is 0.0 dB

- propagate function in Fiber class now has a first attenuation
  propagation step. output conn loos is integrated in the
  initial loop function.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-07-02 17:23:58 +01:00
James Powell
d8cb7526bb remove redundant import 2018-07-02 12:10:14 -04:00
James
6ead8e391b Merge pull request #83 from berahtlv/losses
parameterized ROADM and FUSED losses
2018-06-27 17:19:00 -04:00
Roberts Miculens
362f45083d parametrized ROADM and FUSED losses 2018-06-27 18:16:18 +03:00
James Powell
36218037ec fix link 2018-06-22 19:06:10 -04:00
James
584b56bc83 Merge pull request #82 from dutc/fix-tests
small test fixes
2018-06-22 19:01:25 -04:00
James Powell
d33602e131 small test fixes 2018-06-22 18:55:26 -04:00
James
4304b49bf0 Merge pull request #81 from Orange-OpenSource/test_update
Test update
2018-06-22 11:24:44 -04:00
Jean-Luc Auge
4f5325acac small fixes
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-06-21 16:14:25 +02:00
EstherLerouzic
f8a40bfaf0 correct path
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-19 17:34:28 +01:00
EstherLerouzic
52dfb20a2b try with .travis.yml to set the path to examples
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-19 17:27:17 +01:00
EstherLerouzic
34b20cdfe0 adding exaples directory as a place to find programs
to test with travis CI

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-19 16:57:34 +01:00
EstherLerouzic
f462201499 Update of test for automatic testing
- Separating test python files for different purposes
      convert_file and convert_service_sheet now tested in a dedicated
      file testing parsers_test.py
- Correction of tests due to previous major refactor (especially introducing
      load_network)
- adding test files and references (expected json files)
- adding a test on service json file
- adapting the compare module to generated files

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-19 16:38:56 +01:00
EstherLerouzic
5106bdf634 Excel_userguide update + bugfixes
Excel_userguide has been updated with a description of how to use the service sheet
documentation on convert_service_sheet has been added

bugfix on convert_service_sheet to avoid multiple file writing

bugfix on create_eqpt_sheet.py to avoid the creation of a line when site is FUSED type

Completing README and adding templates for json files

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-15 13:54:06 +01:00
EstherLerouzic
b93c6dbcbd Merge: merge completed
Path_requests_run and convert_service_sheet.py now use funtions from transmission main

ISSUE from develop refactor : the json generation of the topology is missing all amplifiers !
- ILA are not included
- some edfa appear in the json topo when Eqpt sheet is used, but not all of them (only for
the requested path when running transmission_main_example)

TODO : identify if this is a new behaviour or if this is a regression

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-13 16:42:10 +01:00
EstherLerouzic
2ca141baba Merge work : Transceiver type added in equipment library
Transceiver type added to include this equipment in the building of the
library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-13 15:52:55 +01:00
EstherLerouzic
01fe5d2147 path_requests_run now generates a json file if -o is used
the format of path results follows the yang model of ietf

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-13 11:39:28 +01:00
EstherLerouzic
74830cede4 path_requests_run.py now can use the route constraint
convert_services_sheet. py reads all columns and creat adhoc attributes.
Route constraint is saved in the "optimisation" field of the json format.
it is used as strict constraint for path computation. automatic decision
on node type is made based on the name.

Spacing, nb of channel and input power have been set in the requests json,
however this may not be inline with the ietf way: they should instead be
link attributes. However the objective of the program currently diverges
from this control oriented description , since requests explore whatif
scenarios for each request with its specific transponder type.

Introduction of loose case for the route constraint , input power,
spacing, nb of channel, per service entry

If no path exist to a loose node it is skipped. else a critical error is raised

Minor corrections on convert and path request
- convert: remove source and destination from intermediate list of nodes if
they are listed
- correction on the header of the sheet (column names)
- path-request: removing debug printings for a nice demo :)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-13 11:36:45 +01:00
EstherLerouzic
2f21cc29f7 Adding a verification on the trx_type entry of service sheet
verify that the trx_type is in the eqpt library
+ correction on the convert_service_sheet (use a list instead of multiple classes initialization)

Parametrisation of networkfile and spectril information in path_requests_run.py
addition of a second input file so that input can be with 2 excel files,
or with 2 json files , or a mix
utilisation of SI attribute in Eqpt_config.json for the input of spectral
information.

Implementation of transceiver_variety and parametrisation of eqpt_config.json
each request now reads the tranceiver type and convert it into
baudrate (assuming a mode).
eqpt_config file is now an argument of the path_requests_run.py

Adding additionnal columns in service sheet for mode, system and route

Transponder selection now includes the tsp modin the eqpt sheet now
also relies on mode name.
additional columns have been defined to input system values such as
channel spacing, input power, nb of channels. TODO :  This enables to compute
the spectral information vector according to the transponder features
for each service in the list...
2 optional columns to define the path as input (with a loose attribute):
if present the path must contain the ordered list of nodes to be crossed
TODO : use path input instead of the internal path computed

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-13 11:34:01 +01:00
EstherLerouzic
05f8d97d68 module convert_service_sheet.py and path_requests_run.py
Modules converts the service sheet into json file:
initial definition of classes.
Completing the json template of path computation request
Adding sync vector : but not in the correct form
should avoid multiple sync entries with same info

Treating multiple requests:
path_request_run.py allows computing snr from a list of requests
TODO: integrate into transmission_main_example and enable
feasiblility computation without path computation

Using transceiver class structure to export path computation feasibility
the output of the function now exports a list of tranceiver element,
each containing the result from spectral information propagation.

Adding transceiver type in eqpt library + correct form of xls sevice sheet
eqt library includes information abour transceivers and their modes
(baudrate, bitrate, OSNR threshold, and short name)
service sheet must not have annotation or comments outside of the useful row/column

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-06-13 11:30:23 +01:00
James
04c4795192 Merge pull request #77 from Orange-OpenSource/refactor_merge_2
Refactor merge 2
2018-06-07 11:56:57 -04:00
Jean-Luc Auge
ff6e379b6f Use load_json utility
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-06-07 11:56:20 +02:00
Jean-Luc Auge
25cfc375bc Amplifier selection
network design when no amplifiers are input in the json file
select_edfa chose the best amplifier in equipment list _from
eqpt_config.json_ wiht the following criteria in order:
1-amplifier wih sufficient gain
2-amplifier wiht sufficient power TODO
3-best NF amplifier staisfying 1 & 2

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-06-07 11:39:09 +02:00
Jean-Luc Auge
627184ef2d restore transmission main power sweep and format
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-06-07 10:59:33 +02:00
Jean-Luc Auge
180e1178ef restore xls to json file parser-execute from json
xls topology is parsed automatically to json
transmission_main reads from the json generated topology
transmission_main should not read from convert.py data output
This way there is consistency between json and xls inputs

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-06-07 09:36:07 +02:00
James
1c33454ce3 Merge pull request #76 from dutc/develop
Develop
2018-06-05 09:52:55 -04:00
James Powell
c7abe11dd8 Merge branch 'refactor_merge' into develop 2018-06-05 09:52:13 -04:00
James
7a6feccc8b Merge pull request #74 from Orange-OpenSource/refactor_merge
Refactor merge
2018-06-05 09:50:00 -04:00
James Powell
f05e578f51 small fixes 2018-06-05 09:46:48 -04:00
James
277ebea2b5 Merge pull request #75 from berahtlv/readme_links
fixed README broken hyperlinks
2018-06-05 09:35:24 -04:00
Roberts Miculens
4982c5e147 fixed README broken hyperlinks 2018-05-30 20:47:55 +03:00
Jean-Luc Auge
726e217205 merge debug
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-05-24 16:06:15 +02:00
James Powell
695c538ee5 merge of major refactor
cherry pick of the major refactor commit
many conflicts resolved and code re-written
2018-05-24 12:35:39 +02:00
James Powell
e9b287ceac small readme fix 2018-05-22 11:20:13 -04:00
James Powell
ecdae68b62 small readme fix 2018-05-22 11:10:06 -04:00
James Powell
e737564b32 add lat-long
jla cherry-picked in develop
2018-05-18 10:38:18 +02:00
James Powell
75c4a8d96d gnpy JSON comparison tool 2018-05-18 10:27:15 +02:00
James Powell
28dc1b050f remove redundant imports
jla cherry picked to merge with develop
2018-05-18 10:21:33 +02:00
James
4a9a7e31ba Merge pull request #71 from Orange-OpenSource/useability_improvement_3
Useability improvement 3
2018-05-03 11:33:48 -04:00
EstherLerouzic
92da31f905 file testing correction
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-05-03 15:25:45 +01:00
EstherLerouzic
afd264c816 new test files added
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-05-03 15:23:10 +01:00
EstherLerouzic
d676e3e217 removing a last config file
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-05-03 13:24:25 +01:00
EstherLerouzic
4af117aacf Simplification of tests
removing multiple excel files
adding a test amplifier in eqpt_library

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-05-03 13:20:40 +01:00
EstherLerouzic
b27e567a5e adding tests on excel parsint in amplifier_test.py
6 files are tested: if the converted json file constructed
based on the excel files provided in the test folder are not
identical to expected result, the test fails.
For future creation of test files:
excel name file should start with excelTest.
reference json file should be identical to the excelTest
eg excelTestFilefoo.xls -> testFilefoo.json

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-05-02 17:35:04 +01:00
EstherLerouzic
8ec9a5bf99 putting correct Path for input files in amplfier_test.py
json files paths should be indicated from gnpy/

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-05-02 14:50:30 +01:00
EstherLerouzic
f129f92cfd Enabling input files indirection for excel and json parser + pytest update
replacing bare string reading with Path object and split nam based on
Path structure in convert.py and in transmission_main_example.py

Update of pytest tests

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-05-02 14:28:49 +01:00
James
ef87373d4b Merge pull request #70 from Orange-OpenSource/useability_improvements_2
Useability improvements 2
2018-05-02 08:55:57 -04:00
James
ff938d4ced Merge pull request #66 from Orange-OpenSource/fused_spans
Fused spans, source/sink nodes suggestion, eqpt sheet support in xls parser
2018-05-02 08:55:38 -04:00
EstherLerouzic
ae555e0ce1 Formating Excel_userguide.rst and adding a section for the optional Eqpt sheet
Typos correction
Explanations added on how to fill in the excel Eqpt sheet
Removing verbose printing for debug of create_eqpt_sheet.py
Bug correction : blank removed when copying city names with creat_eqpt_sheet.py
Typos correction on README and Excel_userguide

adding some line for the export PYTHONPATH in the readme
typos corrections

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-04-30 15:37:46 +01:00
EstherLerouzic
44db6093f5 Adding a user guide to explain the excel input format
The README now points to a user guide file explaining the sheets and column format
the guide is not finished

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-04-30 15:04:01 +01:00
EstherLerouzic
d4bf6ce201 Program that creates the list of entries for the Eqpt xls sheet
The program reads the xls Nodes and Links Sheet and create the
mandatory city column as a text file.
If not present in Nodes the Type column is implicitely derived
from node degree (degree 2 means ILA, other means ROADM)

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>

Text file path and name copied from excel input file for create_eqpt_sheet.py

input file name is used for the txt file creation
file is saved at the same place as the input file

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2018-04-30 15:02:08 +01:00
Jean-Luc Auge
0b1c7bfa30 Merge branch 'fused_spans-fixes' of https://github.com/dutc/gnpy into dutc-fused_spans
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-27 12:17:41 +02:00
Jean-Luc Auge
80f8a345b5 Sanity checks and small code fix
xls convert:
	 sanity check Nodes vs Links sheets
	 column parsing limitation so user can add non code related
fields/information
code fix and eqpt_exists to check if an equipment is defined in the eqpt_config.json library

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-27 11:36:25 +02:00
James
c929ce0257 Merge pull request #69 from dutc/develop
quick demo section & command-line parameter for plotting in transmission_main_example.py
2018-04-26 12:20:25 -04:00
James Powell
7d3ab357d0 command-line parameter for plotting 2018-04-26 12:05:22 -04:00
James Powell
84d87602b8 quick demo section 2018-04-26 12:04:59 -04:00
James Powell
14938ea7dd small fixes 2018-04-25 02:42:08 -04:00
Jean-Luc Auge
be0c052e5e source/destination nodes suggestion
fix bug in Fused span: adding ingress and egress directions
=> do not share the same NE between 2 directions

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-24 15:16:20 +02:00
Jean-Luc Auge
af90a6658e Fused spans class and edfa gain adaptation
*new Fused spans class to support the connection between 2 fibers
without amplification
*add_egress_amplifier adjust the edfa gain to compensate the loss
of n fused spans
*eqpt not found in eqpt library is caught and stop the code

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

code fix for the eqpt sheet reading in xls parser

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

amplifier design and eqpt parser code fix

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-24 15:15:59 +02:00
James
9720c979b3 fix sys.path for notebook (when running from repo or Binder) (#65) 2018-04-22 20:23:21 -04:00
James
7c86186416 Merge pull request #64 from dutc/develop
notebook version of transmission main example with Binder link
2018-04-22 20:12:24 -04:00
James Powell
404dbfe725 notebook version of transmission main example with Binder link 2018-04-22 20:10:09 -04:00
James Powell
02eac208dd Merge branch 'develop' 2018-04-22 19:11:42 -04:00
James Powell
bc9a0432cd update readme 2018-04-22 19:06:35 -04:00
James Powell
dba7846d6c equipment json paths use relative directories 2018-04-22 19:06:35 -04:00
Jean-Luc Auge
238d7723bb Read eqpt sheet in (convert.py) xls parser
*eqpt sheet is optional: no error message if missing
*All nodes description is not needed
  => only read the node eqpt config when amp_type is input
  => if amp_type = '', the node ingress or egress eqpt is ignored
  => the network.py add_egress_amplifier will fill in missing edfa

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-22 19:06:35 -04:00
Jean-Luc Auge
d2724bb1a5 Code improvement in convert.py
improve code reading and clarity of topology parser:
*modify the connections binding
=>def fiber_dest_from_source to find all dest_city connected to a source_city
=>def fiber_link to return the fiber link from source_city to dest_city
*makes the parser algorithm more understandable
*prepare for the equipment parser

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-22 19:06:35 -04:00
Jean-Luc Auge
8e046a9b50 Implement default values in xls parser for empty cells
*namedtuple default values are only applied if the cell is not read
*if the cell is read but is empty '', there is a need to provide default
values: which is what this fix does
*sanity checks are reinforced :
	-node_type is replaced by ROADM if degree <> 2: notify user
(print)
	-check that node type is in ('ILA','ROADM','FUSED')

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-22 19:06:35 -04:00
Jean-Luc Auge
1b808afd5d Advanced xls input support: Nodes & Links reading
Parse advanced fiber parameters from xls into json format:
accept a .xls or a .json input parameter
creates the corresponding .json file
read east/west directions for fiber parameters (fber type, distance...)
read node type (ILA or ROADM)
provide default values if fields are missing
    => full backward compatibility to read the original CORONET xls

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-22 19:06:35 -04:00
Jean-Luc Auge
8d6f69eb05 Equipment library implementation
-read eqpt_config.json with various EDFA and fiber type definitions
-std low gain and medium gain EDFA available
-clearer differentiation between the 2 edfa models:
	is the advanced_config_from_json field present or not?

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-22 19:06:35 -04:00
Jean-Luc Auge
c4562df955 Add source sink arguments, restore convert.py
demonstrate mesh routing capability with source & sink options
readd CORONET xls and convert.py parser from xls to json

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2018-04-22 19:06:35 -04:00
James Powell
8e1e8a8be3 re-add coronet files 2018-04-10 00:10:54 -04:00
Mattia Cantono
363e92e072 change RTD python version (#47) 2018-03-28 15:34:01 -04:00
James Powell
c5a52fdb6d small setup.py fixes 2018-03-22 13:17:06 -04:00
James Powell
2dd096cfab bump version to v0.1.2 2018-03-22 13:07:58 -04:00
James Powell
80e1ce12ce bump version to v0.1.1 2018-03-22 13:04:00 -04:00
James Powell
2777d957e4 add long_description_content_type 2018-03-22 13:00:47 -04:00
James Powell
898aa4f41a space align __str__ output 2018-03-20 22:44:32 -04:00
James Powell
c9ece6ad7c use scipy.constants 2018-03-20 22:44:17 -04:00
James Powell
a6265c1b8d document modules 2018-03-20 21:32:02 -04:00
James Powell
5646714c13 small setup.py fixes 2018-03-16 16:45:18 -04:00
James Powell
8ab13537a9 prettier printing 2018-03-15 19:09:29 -04:00
James Powell
25e14e4846 fixed __repr__
__repr__ "should look like a valid Python expression that could be used
to recreate an object with the same value" - https://docs.python.org/3/reference/datamodel.html#object.__repr__
2018-03-15 18:29:26 -04:00
James Powell
55d67f890d clean up examples/ directory 2018-03-15 15:52:39 -04:00
James Powell
9b3d7614f5 remove unused network files 2018-03-15 15:50:17 -04:00
James Powell
a3273d24b5 doc fixes 2018-03-15 14:46:24 -04:00
James Powell
ffd7bec485 docs fix 2018-03-15 14:42:36 -04:00
James Powell
0aef76407d small documentation fixes 2018-03-15 14:35:34 -04:00
James Powell
f2ad236863 fix authors 2018-03-15 14:26:16 -04:00
James Powell
487237638e Merge branch 'develop' 2018-03-15 14:25:26 -04:00
James Powell
3a78ccafce add AUTHORS.rst 2018-03-15 14:18:34 -04:00
113 changed files with 241876 additions and 12209 deletions

1
.codecov.yml Normal file
View File

@@ -0,0 +1 @@
comment: off

3
.docker-entry.sh Executable file
View File

@@ -0,0 +1,3 @@
#!/bin/bash
cp -nr /oopt-gnpy/examples /shared
exec "$@"

47
.docker-travis.sh Executable file
View File

@@ -0,0 +1,47 @@
#!/bin/bash
set -e
IMAGE_NAME=telecominfraproject/oopt-gnpy
IMAGE_TAG=$(git describe --tags)
ALREADY_FOUND=0
docker pull ${IMAGE_NAME}:${IMAGE_TAG} && ALREADY_FOUND=1
if [[ $ALREADY_FOUND == 0 ]]; then
docker build . -t ${IMAGE_NAME}
docker tag ${IMAGE_NAME} ${IMAGE_NAME}:${IMAGE_TAG}
# shared directory setup: do not clobber the real data
mkdir trash
cd trash
docker run -it --rm --volume $(pwd):/shared ${IMAGE_NAME} ./transmission_main_example.py
else
echo "Image ${IMAGE_NAME}:${IMAGE_TAG} already available, will just update the other tags"
fi
docker images
do_docker_login() {
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
}
if [[ "${TRAVIS_PULL_REQUEST}" == "false" ]]; then
if [[ "${TRAVIS_BRANCH}" == "develop" || "${TRAVIS_BRANCH}" == "docker" ]]; then
echo "Publishing latest"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:latest
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:latest
elif [[ "${TRAVIS_BRANCH}" == "master" ]]; then
echo "Publishing stable"
docker tag ${IMAGE_NAME}:${IMAGE_TAG} ${IMAGE_NAME}:stable
do_docker_login
if [[ $ALREADY_FOUND == 0 ]]; then
docker push ${IMAGE_NAME}:${IMAGE_TAG}
fi
docker push ${IMAGE_NAME}:stable
fi
fi

29
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,29 @@
---
name: Bug report
about: Create a report to help us improve
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Environment:**
- OS: [e.g. Windows]
- Python Version [e.g, 3.7]
- Anaconda Version [e.g. 3.7]
**Additional context**
Add any other context about the problem here.

View File

@@ -0,0 +1,17 @@
---
name: Feature request
about: Suggest an idea for this project
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

1
.gitignore vendored
View File

@@ -2,6 +2,7 @@
__pycache__/
*.py[cod]
*$py.class
.ipynb_checkpoints
# C extensions
*.so

4
.readthedocs.yml Normal file
View File

@@ -0,0 +1,4 @@
build:
image: latest
python:
version: 3.6

View File

@@ -1,9 +1,27 @@
dist: xenial
sudo: false
language: python
services: docker
python:
- "3.6"
# command to install dependencies
install:
- pip install -r requirements.txt
# command to run tests
- "3.7"
install: skip
script:
- pytest
- python setup.py install
- pip install pytest-cov rstcheck
- pytest --cov-report=xml --cov=gnpy
- rstcheck --ignore-roles cite --ignore-directives automodule --recursive --ignore-messages '(Duplicate explicit target name.*)' .
- ./examples/transmission_main_example.py
- ./examples/path_requests_run.py
- ./examples/transmission_main_example.py examples/raman_edfa_example_network.json --sim examples/sim_params.json --show-channels
- sphinx-build docs/ x-throwaway-location
after_success:
- bash <(curl -s https://codecov.io/bash)
jobs:
include:
- stage: test
name: Docker image
script:
- git fetch --unshallow
- ./.docker-travis.sh
- docker images

29
AUTHORS.rst Normal file
View File

@@ -0,0 +1,29 @@
gnpy is written and maintained by the Telecom Infra Project with work
contributed by the following TIP members.
To learn how to contribute, please see CONTRIBUTING.md
(*in alphabetical order*)
- Alessio Ferrari (Politecnico di Torino) <alessio.ferrari@polito.it>
- Anders Lindgren (Telia Company) <Anders.X.Lindgren@teliacompany.com>
- Andrea d'Amico (Politecnico di Torino) <andrea.damico@polito.it>
- Brian Taylor (Facebook) <briantaylor@fb.com>
- David Boertjes (Ciena) <dboertje@ciena.com>
- Diego Landa (Facebook) <dlanda@fb.com>
- Esther Le Rouzic (Orange) <esther.lerouzic@orange.com>
- Gabriele Galimberti (Cisco) <ggalimbe@cisco.com>
- Gert Grammel (Juniper Networks) <ggrammel@juniper.net>
- Gilad Goldfarb (Facebook) <giladg@fb.com>
- James Powell (Telecom Infra Project) <james.powell@telecominfraproject.com>
- Jan Kundrát (Telecom Infra Project) <jan.kundrat@telecominfraproject.com>
- Jeanluc Augé (Orange) <jeanluc.auge@orange.com>
- Jonas Mårtensson (RISE) <jonas.martensson@ri.se>
- Mattia Cantono (Politecnico di Torino) <mattia.cantono@polito.it>
- Miguel Garrich (University Catalunya) <miquel.garrich@upct.es>
- Raj Nagarajan (Lumentum) <raj.nagarajan@lumentum.com>
- Roberts Miculens (Lattelecom) <roberts.miculens@lattelecom.lv>
- Shengxiang Zhu (University of Arizona) <szhu@email.arizona.edu>
- Stefan Melin (Telia Company) <Stefan.Melin@teliacompany.com>
- Vittorio Curri (Politecnico di Torino) <vittorio.curri@polito.it>
- Xufeng Liu (Jabil) <xufeng_liu@jabil.com>

View File

@@ -1,17 +0,0 @@
Contributors in alphabetical order
==================================
Name | Surname | Affiliation | Contact
-----|---------|-------------|--------
Alessio | Ferrari | Politecnico di Torino | alessio.ferrari@polito.it
Brian | Taylor | Facebook | briantaylor@fb.com
David | Boertjes | Ciena | dboertje@ciena.com
Esther | Le Rouzic | Orange | esther.lerouzic@orange.com
Gabriele | Galimberti | Cisco | ggalimbe@cisco.com
Gert | Grammel | Juniper Networks | ggrammel@juniper.net
Gilad | Goldfarb | Facebook | giladg@fb.com
James | Powell | Consultant | james@dontusethiscode.com
Jeanluc | Auge | Orange | jeanluc.auge@orange.com
Liu | Xufeng | Jabil | Xufeng_Liu@jabil.com
Mattia | Cantono | Politecnico di Torino | mattia.cantono@polito.it
Vittorio | Curri | Politecnico di Torino | vittorio.curri@polito.it

7
Dockerfile Normal file
View File

@@ -0,0 +1,7 @@
FROM python:3.7-slim
COPY . /oopt-gnpy
WORKDIR /oopt-gnpy
RUN python setup.py install
WORKDIR /shared/examples
ENTRYPOINT ["/oopt-gnpy/.docker-entry.sh"]
CMD ["/bin/bash"]

251
Excel_userguide.rst Normal file
View File

@@ -0,0 +1,251 @@
How to prepare the Excel input file
-----------------------------------
`examples/transmission_main_example.py <examples/transmission_main_example.py>`_ gives the possibility to use an excel input file instead of a json file. The program then will generate the corresponding json file for you.
The file named 'meshTopologyExampleV2.xls' is an example.
In order to work the excel file MUST contain at least 2 sheets:
- Nodes
- Links
(In progress) The File MAY contain an additional sheet:
- Eqt
- Service
Nodes sheet
-----------
Nodes sheet contains nine columns.
Each line represents a 'node' (ROADM site or an in line amplifier site ILA or a Fused)::
City (Mandatory) ; State ; Country ; Region ; Latitude ; Longitude ; Type
- **City** is used for the name of a node of the graph. It accepts letters, numbers,underscore,dash, blank... (not exhaustive). The user may want to avoid commas for future CSV exports.
**City name MUST be unique**
- **Type** is not mandatory.
- If not filled, it will be interpreted as an 'ILA' site if node degree is 2 and as a ROADM otherwise.
- If filled, it can take "ROADM", "FUSED" or "ILA" values. If another string is used, it will be considered as not filled. FUSED means that ingress and egress spans will be fused together.
- *State*, *Country*, *Region* are not mandatory.
"Region" is a holdover from the CORONET topology reference file `CORONET_Global_Topology.xls <examples/CORONET_Global_Topology.xls>`_. CORONET separates its network into geographical regions (Europe, Asia, Continental US.) This information is not used by gnpy.
- *Longitude*, *Latitude* are not mandatory. If filled they should contain numbers.
- **Booster_restriction** and **Preamp_restriction** are not mandatory.
If used, they must contain one or several amplifier type_variety names separated by ' | '. This information is used to restrict types of amplifiers used in a ROADM node during autodesign. If a ROADM booster or preamp is already specified in the Eqpt sheet , the field is ignored. The field is also ignored if the node is not a ROADM node.
**There MUST NOT be empty line(s) between two nodes lines**
Links sheet
-----------
Links sheet must contain sixteen columns::
<-- east cable from a to z --> <-- west from z to -->
NodeA ; NodeZ ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ; Cable Id ; Distance km ; Fiber type ; Lineic att ; Con_in ; Con_out ; PMD ; Cable Id
Links sheets MUST contain all links between nodes defined in Nodes sheet.
Each line represents a 'bidir link' between two nodes. The two directions are represented on a single line with "east cable from a to z" fields and "west from z to a" fields. Values for 'a to z' may be different from values from 'z to a'.
Since both direction of a bidir 'a-z' link are described on the same line (east and west), 'z to a' direction MUST NOT be repeated in a different line. If repeated, it will generate another parrallel bidir link between the same end nodes.
Parameters for "east cable from a to z" and "west from z to a" are detailed in 2x7 columns. If not filled, "west from z to a" is copied from "east cable from a to z".
For example, a line filled with::
node6 ; node3 ; 80 ; SSMF ; 0.2 ; 0.5 ; 0.5 ; 0.1 ; cableB ; ; ; 0.21 ; 0.2 ; ; ;
will generate a unidir fiber span from node6 to node3 with::
[node6 node3 80 SSMF 0.2 0.5 0.5 0.1 cableB]
and a fiber span from node3 to node6::
[node6 node3 80 SSMF 0.21 0.2 0.5 0.1 cableB] attributes.
- **NodeA** and **NodeZ** are Mandatory.
They are the two endpoints of the link. They MUST contain a node name from the **City** names listed in Nodes sheet.
- **Distance km** is not mandatory.
It is the link length.
- If filled it MUST contain numbers. If empty it is replaced by a default "80" km value.
- If value is below 150 km, it is considered as a single (bidirectional) fiber span.
- If value is over 150 km the `transmission_main_example.py <examples/transmission_main_example.py>`_ program will automatically suppose that intermediate span description are required and will generate fiber spans elements with "_1","_2", ... trailing strings which are not visible in the json output. The reason for the splitting is that current edfa usually do not support large span loss. The current assumption is that links larger than 150km will require intermediate amplification. This value will be revisited when Raman amplification is added”
- **Fiber type** is not mandatory.
If filled it must contain types listed in `eqpt_config.json <examples/eqpt_config.json>`_ in "Fiber" list "type_variety".
If not filled it takes "SSMF" as default value.
- **Lineic att** is not mandatory.
It is the lineic attenuation expressed in dB/km.
If filled it must contain positive numbers.
If not filled it takes "0.2" dB/km value
- *Con_in*, *Con_out* are not mandatory.
They are the connector loss in dB at ingress and egress of the fiber spans.
If filled they must contain positive numbers.
If not filled they take "0.5" dB default value.
- *PMD* is not mandatory and and is not used yet.
It is the PMD value of the link in ps.
If filled they must contain positive numbers.
If not filled, it takes "0.1" ps value.
- *Cable Id* is not mandatory.
If filled they must contain strings with the same constraint as "City" names. Its value is used to differenate links having the same end points. In this case different Id should be used. Cable Ids are not meant to be unique in general.
(in progress)
Eqpt sheet
----------
Eqt sheet is optional. It lists the amplifiers types and characteristics on each degree of the *Node A* line.
Eqpt sheet must contain twelve columns::
<-- east cable from a to z --> <-- west from z to a -->
Node A ; Node Z ; amp type ; att_in ; amp gain ; tilt ; att_out ; amp type ; att_in ; amp gain ; tilt ; att_out
If the sheet is present, it MUST have as many lines as egress directions of ROADMs defined in Links Sheet.
For example, consider the following list of links (A,B and C being a ROADM and amp# ILAs)
::
A - amp1
amp1 - amp2
Amp2 - B
A - amp3
amp3 - C
then Eqpt sheet should contain:
- one line for each ILAs: amp1, amp2, amp3
- one line for each degree 1 ROADMs B and C
- two lines for ROADM A which is a degree 2 ROADM
::
A - amp1
amp1 - amp2
Amp2 - B
A - amp3
amp3 - C
B - amp2
C - amp3
In case you already have filled Nodes and Links sheets `create_eqpt_sheet.py <examples/create_eqpt_sheet.py>`_ can be used to automatically create a template for the mandatory entries of the list.
.. code-block:: shell
$ cd examples
$ python create_eqpt_sheet.py meshTopologyExampleV2.xls
This generates a text file meshTopologyExampleV2_eqt_sheet.txt whose content can be directly copied into the Eqt sheet of the excel file. The user then can fill the values in the rest of the columns.
- **Node A** is mandatory. It is the name of the node (as listed in Nodes sheet).
If Node A is a 'ROADM' (Type attribute in sheet Node), its number of occurence must be equal to its degree.
If Node A is an 'ILA' it should appear only once.
- **Node Z** is mandatory. It is the egress direction from the *Node A* site. Multiple Links between the same Node A and NodeZ is not supported.
- **amp type** is not mandatory.
If filled it must contain types listed in `eqpt_config.json <examples/eqpt_config.json>`_ in "Edfa" list "type_variety".
If not filled it takes "std_medium_gain" as default value.
If filled with fused, a fused element with 0.0 dB loss will be placed instead of an amplifier. This might be used to avoid booster amplifier on a ROADM direction.
- **amp_gain** is not mandatory. It is the value to be set on the amplifier (in dB).
If not filled, it will be determined with design rules in the convert.py file.
If filled, it must contain positive numbers.
- *att_in* and *att_out* are not mandatory and are not used yet. They are the value of the attenautor at input and output of amplifier (in dB).
If filled they must contain positive numbers.
- *tilt* --TODO--
# to be completed #
(in progress)
Service sheet
-------------
Service sheet is optional. It lists the services for which path and feasibility must be computed with path_requests_run.py.
Service sheet must contain 11 columns::
route id ; Source ; Destination ; TRX type ; Mode ; System: spacing ; System: input power (dBm) ; System: nb of channels ; routing: disjoint from ; routing: path ; routing: is loose?
- **route id** is mandatory. It must be unique. It is the identifier of the request. It can be an integer or a string (do not use blank or dash or coma)
- **Source** is mandatory. It is the name of the source node (as listed in Nodes sheet). Source MUST be a ROADM node. (TODO: relax this and accept trx entries)
- **Destination** is mandatory. It is the name of the destination node (as listed in Nodes sheet). Source MUST be a ROADM node. (TODO: relax this and accept trx entries)
- **TRX type** is mandatory. They are the variety type and selected mode of the transceiver to be used for the propagation simulation. These modes MUST be defined in the equipment library. The format of the mode is used as the name of the mode. (TODO: maybe add another mode id on Transceiver library ?). In particular the mode selection defines the channel baudrate to be used for the propagation simulation.
- **mode** is optional. If not specified, the program will search for the mode of the defined transponder with the highest baudrate fitting within the spacing value.
- **System: spacing** is mandatory. Spacing is the channel spacing defined in GHz difined for the feasibility propagation simulation, assuming system full load.
- **System: input power (dBm) ; System: nb of channels** are optional input defining the system parameters for the propagation simulation.
- input power is the channel optical input power in dBm
- nb of channels is the number of channels to be used for the simulation.
- **routing: disjoint from ; routing: path ; routing: is loose?** are optional.
- disjoint from: identifies the requests from which this request must be disjoint. If filled it must contain request ids separated by ' | '
- path: is the set of ROADM nodes that must be used by the path. It must contain the list of ROADM names that the path must cross. TODO : only ROADM nodes are accepted in this release. Relax this with any type of nodes. If filled it must contain ROADM ids separated by ' | '. Exact names are required.
- is loose? 'no' value means that the list of nodes should be strictly followed, while any other value means that the constraint may be relaxed if the node is not reachable.
- ** path bandwidth** is optional. It is the amount of capacity required between source and destination in Gbit/s. Default value is 0.0 Gbit/s.
path_requests_run.py
------------------------
**Usage**: path_requests_run.py [-h] [-v] [-o OUTPUT]
[network_filename xls or json] [service_filename xls or json] [eqpt_filename json]
.. code-block:: shell
$ cd examples
$ python path_requests_run.py meshTopologyExampleV2.xls service_file.json eqpt_file -o output_file.json
A function that computes performances for a list of services provided in the service file (accepts json or excel format.
if the service <file.xls> is in xls format, path_requests_run.py converts it to a json file <file_services.json> following the Yang model for requesting Path Computation defined in `draft-ietf-teas-yang-path-computation-01.txt <https://www.ietf.org/id/draft-ietf-teas-yang-path-computation-01.pdf>`_. For PSE use, additional fields with trx type and mode have been added to the te-bandwidth field.
A template for the json file can be found here: `service_template.json <service_template.json>`_
If no output file is given, the computation is shown on standard output for demo.
If a file is specified with the optional -o argument, the result of the computation is converted into a json format following the Yang model for requesting Path Computation defined in `draft-ietf-teas-yang-path-computation-01.txt <https://www.ietf.org/id/draft-ietf-teas-yang-path-computation-01.pdf>`_. TODO: verify that this implementation is correct + give feedback to ietf on what is missing for our specific application.
A template for the result of computation json file can be found here: `path_result_template.json <path_result_template.json>`_
Important note: path_requests_run.py is not a network dimensionning tool : each service does not reserve spectrum, or occupy ressources such as transponders. It only computes path feasibility assuming the spectrum (between defined frequencies) is loaded with "nb of channels" spaced by "spacing" values as specified in the system parameters input in the service file, each cannel having the same characteristics in terms of baudrate, format, ... as the service transponder. The transceiver element acts as a "logical starting/stopping point" for the spectral information propagation. At that point it is not meant to represent the capacity of add drop ports
As a result transponder type is not part of the network info. it is related to the list of services requests.
In a next step we plan to provide required features to enable dimensionning : alocation of ressources, counting channels, limitation of the number of channels, ...
(in progress)

View File

@@ -1,15 +1,21 @@
====
.. image:: docs/images/GNPy-banner.png
:width: 100%
:align: left
:alt: GNPy with an OLS system
====================================================================
`gnpy`: mesh optical network route planning and optimization library
====
====================================================================
|docs| |build|
**gnpy is an open-source, community-developed library for building route planning
and optimization tools in real-world mesh optical networks.**
**`gnpy` is an open-source, community-developed library for building route
planning and optimization tools in real-world mesh optical networks.**
`gnpy <http://github.com/telecominfraproject/gnpy>`_ is:
`gnpy <http://github.com/telecominfraproject/oopt-gnpy>`__ is:
--------------------------------------------------------------
- a sponsored project of the `OOPT/PSE <http://telecominfraproject.com/project-groups-2/backhaul-projects/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_.
- a sponsored project of the `OOPT/PSE <https://telecominfraproject.com/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_
- fully community-driven, fully open source library
- driven by a consortium of operators, vendors, and academic researchers
- intended for rapid development of production-grade route planning tools
@@ -18,63 +24,159 @@ and optimization tools in real-world mesh optical networks.**
Documentation: https://gnpy.readthedocs.io
Installation
------------
Get In Touch
~~~~~~~~~~~~
``gnpy`` is hosted in the `Python Package Index <http://pypi.org/>`_ (`gnpy <https://pypi.org/project/gnpy/>`_). It can be installed via:
There are `weekly calls <https://telecominfraproject.workplace.com/events/458339931322799/>`__ about our progress.
Newcomers, users and telecom operators are especially welcome there.
We encourage all interested people outside the TIP to `join the project <https://telecominfraproject.com/apply-for-membership/>`__.
Branches and Tagged Releases
----------------------------
- all releases are `available via GitHub <https://github.com/Telecominfraproject/oopt-gnpy/releases>`_
- the `master <https://github.com/Telecominfraproject/oopt-gnpy/tree/master>`_ branch contains stable, `validated code <https://github.com/Telecominfraproject/oopt-gnpy/wiki/Testing-for-Quality>`_. It is updated from develop on a release schedule determined by the OOPT-PSE Working Group.
- the `develop <https://github.com/Telecominfraproject/oopt-gnpy/tree/develop>`_ branch contains the latest code under active development, which may not be fully validated and tested.
How to Install
--------------
Using prebuilt Docker images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Our `Docker images <https://hub.docker.com/r/telecominfraproject/oopt-gnpy>`_ contain everything needed to run all examples from this guide.
Docker transparently fetches the image over the network upon first use.
On Linux and Mac, run:
.. code-block:: shell-session
$ docker run -it --rm --volume $(pwd):/shared telecominfraproject/oopt-gnpy
root@bea050f186f7:/shared/examples#
On Windows, launch from Powershell as:
.. code-block:: powershell
PS C:\> docker run -it --rm --volume ${PWD}:/shared telecominfraproject/oopt-gnpy
root@89784e577d44:/shared/examples#
In both cases, a directory named ``examples/`` will appear in your current working directory.
GNPy automaticallly populates it with example files from the current release.
Remove that directory if you want to start from scratch.
Using Python on your computer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note**: `gnpy` supports Python 3 only. Python 2 is not supported.
`gnpy` requires Python ≥3.6
**Note**: the `gnpy` maintainers strongly recommend the use of Anaconda for
managing dependencies.
It is recommended that you use a "virtual environment" when installing `gnpy`.
Do not install `gnpy` on your system Python.
We recommend the use of the `Anaconda Python distribution <https://www.anaconda.com/download>`_ which comes with many scientific computing
dependencies pre-installed. Anaconda creates a base "virtual environment" for
you automatically. You can also create and manage your ``conda`` "virtual
environments" yourself (see:
https://conda.io/docs/user-guide/tasks/manage-environments.html)
To activate your Anaconda virtual environment, you may need to do the
following:
.. code-block:: shell
$ pip install gnpy
$ source /path/to/anaconda/bin/activate # activate Anaconda base environment
(base) $ # note the change to the prompt
It can also be installed directly from the repo.
You can check which Anaconda environment you are using with:
.. code-block:: shell
$ git clone https://github.com/telecominfraproject/gnpy
$ cd gnpy
$ python setup.py install
(base) $ conda env list # list all environments
# conda environments:
#
base * /src/install/anaconda3
Both approaches above will handle installing any additional software dependencies.
(base) $ echo $CONDA_DEFAULT_ENV # show default environment
base
**Note**: *We recommend the use of the Anaconda Python distribution
(https://www.anaconda.com/download) which comes with many scientific
computing dependencies pre-installed.*
You can check your version of Python with the following. If you are using
Anaconda's Python 3, you should see similar output as below. Your results may
be slightly different depending on your Anaconda installation path and the
exact version of Python you are using.
Instructions for Use
--------------------
.. code-block:: shell
$ which python # check which Python executable is used
/path/to/anaconda/bin/python
$ python -V # check your Python version
Python 3.6.5 :: Anaconda, Inc.
From within your Anaconda Python 3 environment, you can clone the master branch
of the `gnpy` repo and install it with:
.. code-block:: shell
$ git clone https://github.com/Telecominfraproject/oopt-gnpy # clone the repo
$ cd oopt-gnpy
$ python setup.py install # install
To test that `gnpy` was successfully installed, you can run this command. If it
executes without a ``ModuleNotFoundError``, you have successfully installed
`gnpy`.
.. code-block:: shell
$ python -c 'import gnpy' # attempt to import gnpy
$ pytest # run tests
Instructions for First Use
--------------------------
``gnpy`` is a library for building route planning and optimization tools.
It ships with a number of example programs. Release versions will ship with
fully-functional programs.
**Note**: *If you are a network operator or involved in route planning and
optimization for your organization, please contact project maintainer James
Powell <james.powell@telecominfraproject>. gnpy is looking for users with
optimization for your organization, please contact project maintainer Jan
Kundrát <jan.kundrat@telecominfraproject.com>. gnpy is looking for users with
specific, delineated use cases to drive requirements for future
development.*
This example demonstrates how GNPy can be used to check the expected SNR at the end of the line by varying the channel input power:
**To get started, run the transmission example:**
.. image:: https://telecominfraproject.github.io/oopt-gnpy/docs/images/transmission_main_example.svg
:width: 100%
:align: left
:alt: Running a simple simulation example
:target: https://asciinema.org/a/252295
.. code-block:: shell
$ python examples/transmission_main_example.py
By default, this script operates on a single span network defined in `examples/edfa/edfa_example_network.json <examples/edfa/edfa_example_network.json>`_
By default, this script operates on a single span network defined in
`examples/edfa_example_network.json <examples/edfa_example_network.json>`_
You can specify a different network at the command line as follows. For
example, to use the CORONET Continental US (CONUS) network defined in `examples/coronet_conus_example.json <examples/coronet_conus_example.json>`_:
example, to use the CORONET Global network defined in
`examples/CORONET_Global_Topology.json <examples/CORONET_Global_Topology.json>`_:
.. code-block:: shell
.. code-block:: shell-session
$ python examples/transmission_main_example.py examples/coronet_conus_example.json
$ ./examples/transmission_main_example.py examples/CORONET_Global_Topology.json
This script will calculate the average signal osnr and snr across 93 network
elements (transceiver, ROADMs, fibers, and amplifiers) between Abilene, Texas
and Albany, New York.
It is also possible to use an Excel file input (for example
`examples/CORONET_Global_Topology.xls <examples/CORONET_Global_Topology.xls>`_).
The Excel file will be processed into a JSON file with the same prefix. For
further instructions on how to prepare the Excel input file, see
`Excel_userguide.rst <Excel_userguide.rst>`_.
The main transmission example will calculate the average signal OSNR and SNR
across network elements (transceiver, ROADMs, fibers, and amplifiers)
between two transceivers selected by the user. Additional details are provided by doing ``transmission_main_example.py -h``. (By default, for the CORONET Global
network, it will show the transmission of spectral information between Abilene and Albany)
This script calculates the average signal OSNR = |OSNR| and SNR = |SNR|.
@@ -87,16 +189,352 @@ interference noise.
.. |Pase| replace:: P\ :sub:`ase`
.. |Pnli| replace:: P\ :sub:`nli`
The `transmission_main_example.py <examples/transmission_main_example.py>`_
script propagates a specrum of 96 channels at 32 Gbaud, 50 GHz spacing and 0
dBm/channel. These are not yet parametrized but can be modified directly in the
script (via the SpectralInformation tuple) to accomodate any baud rate,
spacing, power or channel count demand.
Further Instructions for Use (`transmission_main_example.py`, `path_requests_run.py`)
-------------------------------------------------------------------------------------
The amplifier's gain is set to exactly compsenate for the loss in each network
element. The amplifier is currently defined with gain range of 15 dB to 25 dB
and 21 dBm max output power. Ripple and NF models are defined in
`examples/edfa_config.json <examples/edfa_config.json>`_
Design and transmission parameters are defined in a dedicated json file. By
default, this information is read from `examples/eqpt_config.json
<examples/eqpt_config.json>`_. This file defines the equipment libraries that
can be customized (EDFAs, fibers, and transceivers).
It also defines the simulation parameters (spans, ROADMs, and the spectral
information to transmit.)
The EDFA equipment library is a list of supported amplifiers. New amplifiers
can be added and existing ones removed. Three different noise models are available:
1. ``'type_def': 'variable_gain'`` is a simplified model simulating a 2-coil EDFA with internal, input and output VOAs. The NF vs gain response is calculated accordingly based on the input parameters: ``nf_min``, ``nf_max``, and ``gain_flatmax``. It is not a simple interpolation but a 2-stage NF calculation.
2. ``'type_def': 'fixed_gain'`` is a fixed gain model. `NF == Cte == nf0` if `gain_min < gain < gain_flatmax`
3. ``'type_def': None`` is an advanced model. A detailed JSON configuration file is required (by default `examples/std_medium_gain_advanced_config.json <examples/std_medium_gain_advanced_config.json>`_). It uses a 3rd order polynomial where NF = f(gain), NF_ripple = f(frequency), gain_ripple = f(frequency), N-array dgt = f(frequency). Compared to the previous models, NF ripple and gain ripple are modelled.
For all amplifier models:
+------------------------+-----------+-----------------------------------------+
| field | type | description |
+========================+===========+=========================================+
| ``type_variety`` | (string) | a unique name to ID the amplifier in the|
| | | JSON/Excel template topology input file |
+------------------------+-----------+-----------------------------------------+
| ``out_voa_auto`` | (boolean) | auto_design feature to optimize the |
| | | amplifier output VOA. If true, output |
| | | VOA is present and will be used to push |
| | | amplifier gain to its maximum, within |
| | | EOL power margins. |
+------------------------+-----------+-----------------------------------------+
| ``allowed_for_design`` | (boolean) | If false, the amplifier will not be |
| | | picked by auto-design but it can still |
| | | be used as a manual input (from JSON or |
| | | Excel template topology files.) |
+------------------------+-----------+-----------------------------------------+
The fiber library currently describes SSMF and NZDF but additional fiber types can be entered by the user following the same model:
+----------------------+-----------+-----------------------------------------+
| field | type | description |
+======================+===========+=========================================+
| ``type_variety`` | (string) | a unique name to ID the fiber in the |
| | | JSON or Excel template topology input |
| | | file |
+----------------------+-----------+-----------------------------------------+
| ``dispersion`` | (number) | (s.m-1.m-1) |
+----------------------+-----------+-----------------------------------------+
| ``gamma`` | (number) | 2pi.n2/(lambda*Aeff) (w-2.m-1) |
+----------------------+-----------+-----------------------------------------+
The transceiver equipment library is a list of supported transceivers. New
transceivers can be added and existing ones removed at will by the user. It is
used to determine the service list path feasibility when running the
`path_request_run.py routine <examples/path_request_run.py>`_.
+----------------------+-----------+-----------------------------------------+
| field | type | description |
+======================+===========+=========================================+
| ``type_variety`` | (string) | A unique name to ID the transceiver in |
| | | the JSON or Excel template topology |
| | | input file |
+----------------------+-----------+-----------------------------------------+
| ``frequency`` | (number) | Min/max as below. |
+----------------------+-----------+-----------------------------------------+
| ``mode`` | (number) | A list of modes supported by the |
| | | transponder. New modes can be added at |
| | | will by the user. The modes are specific|
| | | to each transponder type_variety. |
| | | Each mode is described as below. |
+----------------------+-----------+-----------------------------------------+
The modes are defined as follows:
+----------------------+-----------+-----------------------------------------+
| field | type | description |
+======================+===========+=========================================+
| ``format`` | (string) | a unique name to ID the mode |
+----------------------+-----------+-----------------------------------------+
| ``baud_rate`` | (number) | in Hz |
+----------------------+-----------+-----------------------------------------+
| ``OSNR`` | (number) | min required OSNR in 0.1nm (dB) |
+----------------------+-----------+-----------------------------------------+
| ``bit_rate`` | (number) | in bit/s |
+----------------------+-----------+-----------------------------------------+
| ``roll_off`` | (number) | Not used. |
+----------------------+-----------+-----------------------------------------+
| ``tx_osnr`` | (number) | In dB. OSNR out from transponder. |
+----------------------+-----------+-----------------------------------------+
| ``cost`` | (number) | Arbitrary unit |
+----------------------+-----------+-----------------------------------------+
Simulation parameters are defined as follows.
Auto-design automatically creates EDFA amplifier network elements when they are
missing, after a fiber, or between a ROADM and a fiber. This auto-design
functionality can be manually and locally deactivated by introducing a ``Fused``
network element after a ``Fiber`` or a ``Roadm`` that doesn't need amplification.
The amplifier is chosen in the EDFA list of the equipment library based on
gain, power, and NF criteria. Only the EDFA that are marked
``'allowed_for_design': true`` are considered.
For amplifiers defined in the topology JSON input but whose ``gain = 0``
(placeholder), auto-design will set its gain automatically: see ``power_mode`` in
the ``Spans`` library to find out how the gain is calculated.
Span configuration is performed as follows. It is not a list (which may change
in later releases) and the user can only modify the value of existing
parameters:
+-------------------------------------+-----------+---------------------------------------------+
| field | type | description |
+=====================================+===========+=============================================+
| ``power_mode`` | (boolean) | If false, gain mode. Auto-design sets |
| | | amplifier gain = preceding span loss, |
| | | unless the amplifier exists and its |
| | | gain > 0 in the topology input JSON. |
| | | If true, power mode (recommended for |
| | | auto-design and power sweep.) |
| | | Auto-design sets amplifier power |
| | | according to delta_power_range. If the |
| | | amplifier exists with gain > 0 in the |
| | | topology JSON input, then its gain is |
| | | translated into a power target/channel. |
| | | Moreover, when performing a power sweep |
| | | (see ``power_range_db`` in the SI |
| | | configuration library) the power sweep |
| | | is performed w/r/t this power target, |
| | | regardless of preceding amplifiers |
| | | power saturation/limitations. |
+-------------------------------------+-----------+---------------------------------------------+
| ``delta_power_range_db`` | (number) | Auto-design only, power-mode |
| | | only. Specifies the [min, max, step] |
| | | power excursion/span. It is a relative |
| | | power excursion w/r/t the |
| | | power_dbm + power_range_db |
| | | (power sweep if applicable) defined in |
| | | the SI configuration library. This |
| | | relative power excursion is = 1/3 of |
| | | the span loss difference with the |
| | | reference 20 dB span. The 1/3 slope is |
| | | derived from the GN model equations. |
| | | For example, a 23 dB span loss will be |
| | | set to 1 dB more power than a 20 dB |
| | | span loss. The 20 dB reference spans |
| | | will *always* be set to |
| | | power = power_dbm + power_range_db. |
| | | To configure the same power in all |
| | | spans, use `[0, 0, 0]`. All spans will |
| | | be set to |
| | | power = power_dbm + power_range_db. |
| | | To configure the same power in all spans |
| | | and 3 dB more power just for the longest |
| | | spans: `[0, 3, 3]`. The longest spans are |
| | | set to |
| | | power = power_dbm + power_range_db + 3. |
| | | To configure a 4 dB power range across |
| | | all spans in 0.5 dB steps: `[-2, 2, 0.5]`. |
| | | A 17 dB span is set to |
| | | power = power_dbm + power_range_db - 1, |
| | | a 20 dB span to |
| | | power = power_dbm + power_range_db and |
| | | a 23 dB span to |
| | | power = power_dbm + power_range_db + 1 |
+-------------------------------------+-----------+---------------------------------------------+
| ``max_fiber_lineic_loss_for_raman`` | (number) | Maximum linear fiber loss for Raman |
| | | amplification use. |
+-------------------------------------+-----------+---------------------------------------------+
| ``max_length`` | (number) | Split fiber lengths > max_length. |
| | | Interest to support high level |
| | | topologies that do not specify in line |
| | | amplification sites. For example the |
| | | CORONET_Global_Topology.xls defines |
| | | links > 1000km between 2 sites: it |
| | | couldn't be simulated if these links |
| | | were not split in shorter span lengths. |
+-------------------------------------+-----------+---------------------------------------------+
| ``length_unit`` | "m"/"km" | Unit for ``max_length``. |
+-------------------------------------+-----------+---------------------------------------------+
| ``max_loss`` | (number) | Not used in the current code |
| | | implementation. |
+-------------------------------------+-----------+---------------------------------------------+
| ``padding`` | (number) | In dB. Min span loss before putting an |
| | | attenuator before fiber. Attenuator |
| | | value |
| | | Fiber.att_in = max(0, padding - span_loss). |
| | | Padding can be set manually to reach a |
| | | higher padding value for a given fiber |
| | | by filling in the Fiber/params/att_in |
| | | field in the topology json input [1] |
| | | but if span_loss = length * loss_coef |
| | | + att_in + con_in + con_out < padding, |
| | | the specified att_in value will be |
| | | completed to have span_loss = padding. |
| | | Therefore it is not possible to set |
| | | span_loss < padding. |
+-------------------------------------+-----------+---------------------------------------------+
| ``EOL`` | (number) | All fiber span loss ageing. The value |
| | | is added to the con_out (fiber output |
| | | connector). So the design and the path |
| | | feasibility are performed with |
| | | span_loss + EOL. EOL cannot be set |
| | | manually for a given fiber span |
| | | (workaround is to specify higher |
| | | ``con_out`` loss for this fiber). |
+-------------------------------------+-----------+---------------------------------------------+
| ``con_in``, | (number) | Default values if Fiber/params/con_in/out |
| ``con_out`` | | is None in the topology input |
| | | description. This default value is |
| | | ignored if a Fiber/params/con_in/out |
| | | value is input in the topology for a |
| | | given Fiber. |
+-------------------------------------+-----------+---------------------------------------------+
.. code-block:: json
{
"uid": "fiber (A1->A2)",
"type": "Fiber",
"type_variety": "SSMF",
"params":
{
"type_variety": "SSMF",
"length": 120.0,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0,
"con_out": 0
}
}
ROADMs can be configured as follows. The user can only modify the value of
existing parameters:
+--------------------------+-----------+---------------------------------------------+
| field | type | description |
+==========================+===========+=============================================+
| ``target_pch_out_db`` | (number) | Auto-design sets the ROADM egress channel |
| | | power. This reflects typical control loop |
| | | algorithms that adjust ROADM losses to |
| | | equalize channels (eg coming from different |
| | | ingress direction or add ports) |
| | | This is the default value |
| | | Roadm/params/target_pch_out_db if no value |
| | | is given in the ``Roadm`` element in the |
| | | topology input description. |
| | | This default value is ignored if a |
| | | params/target_pch_out_db value is input in |
| | | the topology for a given ROADM. |
+--------------------------+-----------+---------------------------------------------+
| ``add_drop_osnr`` | (number) | OSNR contribution from the add/drop ports |
+--------------------------+-----------+---------------------------------------------+
| ``restrictions`` | (dict of | If non-empty, keys ``preamp_variety_list`` |
| | strings) | and ``booster_variety_list`` represent |
| | | list of ``type_variety`` amplifiers which |
| | | are allowed for auto-design within ROADM's |
| | | line degrees. |
| | | |
| | | If no booster should be placed on a degree, |
| | | insert a ``Fused`` node on the degree |
| | | output. |
+--------------------------+-----------+---------------------------------------------+
The ``SpectralInformation`` object can be configured as follows. The user can
only modify the value of existing parameters. It defines a spectrum of N
identical carriers. While the code libraries allow for different carriers and
power levels, the current user parametrization only allows one carrier type and
one power/channel definition.
+----------------------+-----------+-------------------------------------------+
| field | type | description |
+======================+===========+===========================================+
| ``f_min``, | (number) | In Hz. Carrier min max excursion. |
| ``f_max`` | | |
+----------------------+-----------+-------------------------------------------+
| ``baud_rate`` | (number) | In Hz. Simulated baud rate. |
+----------------------+-----------+-------------------------------------------+
| ``spacing`` | (number) | In Hz. Carrier spacing. |
+----------------------+-----------+-------------------------------------------+
| ``roll_off`` | (number) | Not used. |
+----------------------+-----------+-------------------------------------------+
| ``tx_osnr`` | (number) | In dB. OSNR out from transponder. |
+----------------------+-----------+-------------------------------------------+
| ``power_dbm`` | (number) | Reference channel power. In gain mode |
| | | (see spans/power_mode = false), all gain |
| | | settings are offset w/r/t this reference |
| | | power. In power mode, it is the |
| | | reference power for |
| | | Spans/delta_power_range_db. For example, |
| | | if delta_power_range_db = `[0,0,0]`, the |
| | | same power=power_dbm is launched in every |
| | | spans. The network design is performed |
| | | with the power_dbm value: even if a |
| | | power sweep is defined (see after) the |
| | | design is not repeated. |
+----------------------+-----------+-------------------------------------------+
| ``power_range_db`` | (number) | Power sweep excursion around power_dbm. |
| | | It is not the min and max channel power |
| | | values! The reference power becomes: |
| | | power_range_db + power_dbm. |
+----------------------+-----------+-------------------------------------------+
| ``sys_margins`` | (number) | In dB. Added margin on min required |
| | | transceiver OSNR. |
+----------------------+-----------+-------------------------------------------+
The `transmission_main_example.py <examples/transmission_main_example.py>`_ script propagates a spectrum of channels at 32 Gbaud, 50 GHz spacing and 0 dBm/channel.
Launch power can be overridden by using the ``--power`` argument.
Spectrum information is not yet parametrized but can be modified directly in the ``eqpt_config.json`` (via the ``SpectralInformation`` -SI- structure) to accommodate any baud rate or spacing.
The number of channel is computed based on ``spacing`` and ``f_min``, ``f_max`` values.
An experimental support for Raman amplification is available:
.. code-block:: shell
$ ./examples/transmission_main_example.py \
examples/raman_edfa_example_network.json \
--sim examples/sim_params.json --show-channels
Configuration of Raman pumps (their frequencies, power and pumping direction) is done via the `RamanFiber element in the network topology <examples/raman_edfa_example_network.json>`_.
General numeric parameters for simulaiton control are provided in the `examples/sim_params.json <examples/sim_params.json>`_.
Use `examples/path_requests_run.py <examples/path_requests_run.py>`_ to run multiple optimizations as follows:
.. code-block:: shell
$ python path_requests_run.py -h
Usage: path_requests_run.py [-h] [-v] [-o OUTPUT] [network_filename] [service_filename] [eqpt_filename]
The ``network_filename`` and ``service_filename`` can be an XLS or JSON file. The ``eqpt_filename`` must be a JSON file.
To see an example of it, run:
.. code-block:: shell
$ cd examples
$ python path_requests_run.py meshTopologyExampleV2.xls meshTopologyExampleV2_services.json eqpt_config.json -o output_file.json
This program requires a list of connections to be estimated and the equipment
library. The program computes performances for the list of services (accepts
JSON or Excel format) using the same spectrum propagation modules as
``transmission_main_example.py``. Explanation on the Excel template is provided in
the `Excel_userguide.rst <Excel_userguide.rst#service-sheet>`_. Template for
the JSON format can be found here: `service-template.json
<service-template.json>`_.
Contributing
------------
@@ -104,17 +542,17 @@ Contributing
``gnpy`` is looking for additional contributors, especially those with experience
planning and maintaining large-scale, real-world mesh optical networks.
To get involved, please contact James Powell
<james.powell@telecominfraproject.com> or Gert Grammel <ggrammel@juniper.net>.
To get involved, please contact Jan Kundrát
<jan.kundrat@telecominfraproject.com> or Gert Grammel <ggrammel@juniper.net>.
``gnpy`` contributions are currently limited to members of `TIP
<http://telecominfraproject.com>`_. Membership is free and open to all.
See the `Onboarding Guide
<https://github.com/Telecominfraproject/gnpy/wiki/Onboarding-Guide>`_ for
specific details on code contribtions.
specific details on code contributions.
See `AUTHORS.Md <AUTHORS.Md>`_ for past and present contributors.
See `AUTHORS.rst <AUTHORS.rst>`_ for past and present contributors.
Project Background
------------------
@@ -122,7 +560,7 @@ Project Background
Data Centers are built upon interchangeable, highly standardized node and
network architectures rather than a sum of isolated solutions. This also
translates to optical networking. It leads to a push in enabling multi-vendor
optical network by disaggregating HW and SW functions and focussing on
optical network by disaggregating HW and SW functions and focusing on
interoperability. In this paradigm, the burden of responsibility for ensuring
the performance of such disaggregated open optical systems falls on the
operators. Consequently, operators and vendors are collaborating in defining
@@ -158,8 +596,8 @@ implementations.
:alt: Documentation Status
:scale: 100%
.. |build| image:: https://travis-ci.org/mcantono/gnpy.svg?branch=develop
:target: https://travis-ci.org/mcantono/gnpy
.. |build| image:: https://travis-ci.com/Telecominfraproject/oopt-gnpy.svg?branch=develop
:target: https://travis-ci.com/Telecominfraproject/oopt-gnpy
:alt: Build Status
:scale: 100%
@@ -187,5 +625,4 @@ License
``gnpy`` is distributed under a standard BSD 3-Clause License.
See `LICENSE <LICENSE>`_ for more details.
See `LICENSE <LICENSE>`__ for more details.

View File

@@ -1,17 +0,0 @@
Contributors in alphabetical order
==================================
Name | Surname | Affiliation | Contact
-----|---------|-------------|--------
Alessio | Ferrari | Politecnico di Torino | alessio.ferrari@polito.it
Brian | Taylor | Facebook | briantaylor@fb.com
David | Boertjes | Ciena | dboertje@ciena.com
Esther | Le Rouzic | Orange | esther.lerouzic@orange.com
Gabriele | Galimberti | Cisco | ggalimbe@cisco.com
Gert | Grammel | Juniper Networks | ggrammel@juniper.net
Gilad | Goldfarb | Facebook | giladg@fb.com
James | Powell | Consultant | james@dontusethiscode.com
Jeanluc | Auge | Orange | jeanluc.auge@orange.com
Liu | Xufeng | Jabil | Xufeng_Liu@jabil.com
Mattia | Cantono | Politecnico di Torino | mattia.cantono@polito.it
Vittorio | Curri | Politecnico di Torino | vittorio.curri@polito.it

View File

@@ -874,7 +874,7 @@ month={Sept},}
number = {7},
journal = {Optics Express},
urlyear = {2017-11-14},
year = {2012-03-26},
date = {2012-03-26},
year = {2012},
pages = {7777},
author = {Bononi, A. and Serena, P. and Rossi, N. and Grellier, E. and Vacondio, F.}
@@ -1114,7 +1114,7 @@ month={Sept},}
number = {26},
journal = {Optics Express},
urlyear = {2017-11-16},
year = {2013-12-30},
date = {2013-12-30},
year = {2013},
pages = {32254},
author = {Bononi, Alberto and Beucher, Ottmar and Serena, Paolo}

View File

@@ -1,7 +1,7 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# GNpy documentation build configuration file, created by
# gnpy documentation build configuration file, created by
# sphinx-quickstart on Mon Dec 18 14:41:01 2017.
#
# This file is execfile()d with the current directory set to its
@@ -47,8 +47,8 @@ source_suffix = ['.rst', '.md']
master_doc = 'index'
# General information about the project.
project = 'GNpy'
copyright = '2017, Telecom InfraProject - OOPT PSE Group'
project = 'gnpy'
copyright = '2018, Telecom InfraProject - OOPT PSE Group'
author = 'Telecom InfraProject - OOPT PSE Group'
# The version info for the project you're documenting, acts as replacement for
@@ -120,7 +120,7 @@ html_sidebars = {
# -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = 'GNpydoc'
htmlhelp_basename = 'gnpydoc'
# -- Options for LaTeX output ---------------------------------------------
@@ -147,7 +147,7 @@ latex_elements = {
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, 'GNpy.tex', 'GNpy Documentation',
(master_doc, 'gnpy.tex', 'gnpy Documentation',
'Telecom InfraProject - OOPT PSE Group', 'manual'),
]
@@ -157,7 +157,7 @@ latex_documents = [
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
(master_doc, 'gnpy', 'GNpy Documentation',
(master_doc, 'gnpy', 'gnpy Documentation',
[author], 1)
]
@@ -168,10 +168,9 @@ man_pages = [
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(master_doc, 'GNpy', 'GNpy Documentation',
author, 'GNpy', 'One line description of project.',
(master_doc, 'gnpy', 'gnpy Documentation',
author, 'gnpy', 'One line description of project.',
'Miscellaneous'),
]
autodoc_default_flags = ['members', 'undoc-members', 'private-members', 'show-inheritance']

BIN
docs/images/GNPy-banner.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 518 KiB

View File

@@ -1,37 +1,33 @@
.. GNpy documentation master file, created by
.. gnpy documentation master file, created by
sphinx-quickstart on Mon Dec 18 14:41:01 2017.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to GNpy's documentation!
Welcome to gnpy's documentation!
================================
Gaussian Noise (GN) based modeling library for physical layer impairment evaluation in optical networks.
**gnpy is an open-source, community-developed library for building route planning
and optimization tools in real-world mesh optical networks.**
Summary
--------
We believe that openly sharing ideas, specifications, and other intellectual property is the key to maximizing innovation and reducing complexity
PSE WG Charter
--------------
- Goal is to build an end-to-end simulation environment which defines the network models of the optical device transfer functions and their parameters. This environment will provide validation of the optical performance requirements for the TIP OLS building blocks.
- The model may be approximate or complete depending on the network complexity. Each model shall be validated against the proposed network scenario.
- The environment must be able to process network models from multiple vendors, and also allow users to pick any implementation in an open source framework.
- The PSE will influence and benefit from the innovation of the DTC, API, and OLS working groups.
- The PSE represents a step along the journey towards multi-layer optimization.
`gnpy <http://github.com/telecominfraproject/gnpy>`_ is:
- a sponsored project of the `OOPT/PSE <http://telecominfraproject.com/project-groups-2/backhaul-projects/open-optical-packet-transport/>`_ working group of the `Telecom Infra Project <http://telecominfraproject.com>`_.
- fully community-driven, fully open source library
- driven by a consortium of operators, vendors, and academic researchers
- intended for rapid development of production-grade route planning tools
- easily extensible to include custom network elements
- performant to the scale of real-world mesh optical networks
Documentation
=============
The following pages are meant to describe specific implementation details and modeling assumptions behind GNpy.
The following pages are meant to describe specific implementation details and
modeling assumptions behind gnpy.
.. toctree::
:maxdepth: 2
gn_model
model
Indices and tables
==================
@@ -42,29 +38,65 @@ Indices and tables
Contributors in alphabetical order
==================================
+----------+------------+-----------------------+----------------------------+
| Name | Surname | Affiliation | Contact |
+==========+============+=======================+============================+
| Alessio | Ferrari | Politecnico di Torino | alessio.ferrari@polito.it |
+----------+------------+-----------------------+----------------------------+
| Brian | Taylor | Facebook | briantaylor@fb.com |
+----------+------------+-----------------------+----------------------------+
| David | Boertjes | Ciena | dboertje@ciena.com |
+----------+------------+-----------------------+----------------------------+
| Esther | Le Rouzic | Orange | esther.lerouzic@orange.com |
+----------+------------+-----------------------+----------------------------+
| Gabriele | Galimberti | Cisco | ggalimbe@cisco.com |
+----------+------------+-----------------------+----------------------------+
| Gert | Grammel | Juniper Networks | ggrammel@juniper.net |
+----------+------------+-----------------------+----------------------------+
| Gilad | Goldfarb | Facebook | giladg@fb.com |
+----------+------------+-----------------------+----------------------------+
| James | Powell | Consultant | james@dontusethiscode.com |
+----------+------------+-----------------------+----------------------------+
| Jeanluc | Auge | Orange | jeanluc.auge@orange.com |
+----------+------------+-----------------------+----------------------------+
| Mattia | Cantono | Politecnico di Torino | mattia.cantono@polito.it |
+----------+------------+-----------------------+----------------------------+
| Vittorio | Curri | Politecnico di Torino | vittorio.curri@polito.it |
+----------+------------+-----------------------+----------------------------+
+----------+------------+-----------------------+--------------------------------------+
| Name | Surname | Affiliation | Contact |
+==========+============+=======================+======================================+
| Alessio | Ferrari | Politecnico di Torino | alessio.ferrari@polito.it |
+----------+------------+-----------------------+--------------------------------------+
| Anders | Lindgren | Telia Company | Anders.X.Lindgren@teliacompany.com |
+----------+------------+-----------------------+--------------------------------------+
| Andrea | d'Amico | Politecnico di Torino | andrea.damico@polito.it |
+----------+------------+-----------------------+--------------------------------------+
| Brian | Taylor | Facebook | briantaylor@fb.com |
+----------+------------+-----------------------+--------------------------------------+
| David | Boertjes | Ciena | dboertje@ciena.com |
+----------+------------+-----------------------+--------------------------------------+
| Diego | Landa | Facebook | dlanda@fb.com |
+----------+------------+-----------------------+--------------------------------------+
| Esther | Le Rouzic | Orange | esther.lerouzic@orange.com |
+----------+------------+-----------------------+--------------------------------------+
| Gabriele | Galimberti | Cisco | ggalimbe@cisco.com |
+----------+------------+-----------------------+--------------------------------------+
| Gert | Grammel | Juniper Networks | ggrammel@juniper.net |
+----------+------------+-----------------------+--------------------------------------+
| Gilad | Goldfarb | Facebook | giladg@fb.com |
+----------+------------+-----------------------+--------------------------------------+
| James | Powell | Telecom Infra Project | james.powell@telecominfraproject.com |
+----------+------------+-----------------------+--------------------------------------+
| Jan | Kundrát | Telecom Infra Project | jan.kundrat@telecominfraproject.com |
+----------+------------+-----------------------+--------------------------------------+
| Jeanluc | Augé | Orange | jeanluc.auge@orange.com |
+----------+------------+-----------------------+--------------------------------------+
| Jonas | Mårtensson | RISE Research Sweden | jonas.martensson@ri.se |
+----------+------------+-----------------------+--------------------------------------+
| Mattia | Cantono | Politecnico di Torino | mattia.cantono@polito.it |
+----------+------------+-----------------------+--------------------------------------+
| Miguel | Garrich | University Catalunya | miquel.garrich@upct.es |
+----------+------------+-----------------------+--------------------------------------+
| Raj | Nagarajan | Lumentum | raj.nagarajan@lumentum.com |
+----------+------------+-----------------------+--------------------------------------+
| Roberts | Miculens | Lattelecom | roberts.miculens@lattelecom.lv |
+----------+------------+-----------------------+--------------------------------------+
| Shengxiang | Zhu | University of Arizona | szhu@email.arizona.edu |
+----------+------------+-----------------------+--------------------------------------+
| Stefan | Melin | Telia Company | Stefan.Melin@teliacompany.com |
+----------+------------+-----------------------+--------------------------------------+
| Vittorio | Curri | Politecnico di Torino | vittorio.curri@polito.it |
+----------+------------+-----------------------+--------------------------------------+
| Xufeng | Liu | Jabil | xufeng_liu@jabil.com |
+----------+------------+-----------------------+--------------------------------------+
--------------
- Goal is to build an end-to-end simulation environment which defines the
network models of the optical device transfer functions and their parameters.
This environment will provide validation of the optical performance
requirements for the TIP OLS building blocks.
- The model may be approximate or complete depending on the network complexity.
Each model shall be validated against the proposed network scenario.
- The environment must be able to process network models from multiple vendors,
and also allow users to pick any implementation in an open source framework.
- The PSE will influence and benefit from the innovation of the DTC, API, and
OLS working groups.
- The PSE represents a step along the journey towards multi-layer optimization.

View File

@@ -4,15 +4,15 @@ The QoT estimation in the PSE framework of TIP-OOPT
QoT-E including ASE noise and NLI accumulation
----------------------------------------------
The operations of PSE simulative framework are based on the capability to estimate the QoT of one
or more channels operating lightpaths over a given network route. For
backbone transport networks, we can suppose that transceivers are
operating polarization-division-multiplexed multilevel modulation
formats with DSP-based coherent receivers, including equalization. For
the optical links, we focus on state-of-the-art amplified and
uncompensated fiber links, connecting network nodes including ROADMs,
where add and drop operations on data traffic are performed. In such a
transmission scenario, it is well accepted
The operations of PSE simulative framework are based on the capability to
estimate the QoT of one or more channels operating lightpaths over a given
network route. For backbone transport networks, we can suppose that
transceivers are operating polarization-division-multiplexed multilevel
modulation formats with DSP-based coherent receivers, including equalization.
For the optical links, we focus on state-of-the-art amplified and uncompensated
fiber links, connecting network nodes including ROADMs, where add and drop
operations on data traffic are performed. In such a transmission scenario, it
is well accepted
:cite:`vacondio_nonlinear_2012,bononi_modeling_2012,carena_modeling_2012,mecozzi_nonlinear_2012,secondini_analytical_2012,johannisson_perturbation_2013,dar_properties_2013,serena_alternative_2013,secondini_achievable_2013,poggiolini_gn-model_2014,dar_accumulation_2014,poggiolini_analytical_2011,savory_approximations_2013,bononi_single-_2013,johannisson_modeling_2014`
to assume that transmission performances are limited by the amplified
spontaneous emission (ASE) noise generated by optical amplifiers and and
@@ -49,7 +49,6 @@ filtering effects. Note that for state-of-the art equipment, filtering
effects can be typically neglected over routes with few hops
:cite:`rahman_mitigation_2014,foggi_overcoming_2015`.
To properly estimate :math:`P_{\text{ch}}` and :math:`P_{\text{ASE}}`
the transmitted power at the beginning of the considered route must be
known, and losses and amplifiers gain and noise figure, including their
@@ -62,8 +61,10 @@ models have been proposed and validated in the technical literature
The decision about which model to test within the PSE activities was
driven by requirements of the entire PSE framework:
i. the model must be *local*, i.e., related individually to each network element (i.e. fiber span) generating NLI, independently of preceding and subsequent elements; and
ii. the related computational time must be compatible with interactive operations.
i. the model must be *local*, i.e., related individually to each network
element (i.e. fiber span) generating NLI, independently of preceding and
subsequent elements; and ii. the related computational time must be compatible
with interactive operations.
So, the choice fell on the Gaussian Noise
(GN) model with incoherent accumulation of NLI over fiber spans
@@ -79,46 +80,67 @@ for fiber types with chromatic dispersion roughly larger than 4
ps/nm/km, the analytical approximation ensures an excellent accuracy
with a computational time compatible with real-time operations.
The Gaussian Noise Model to evaluate the NLI
--------------------------------------------
As previously stated, fiber propagation of multilevel modulation formats relying on the polarization-division-multiplexing
generates impairments that can be summarized as a disturbance called nonlinear interference (NLI),
when exploiting a DSP-based coherent receiver, as in all state-of-the-art equipment.
From a practical point of view, the NLI can be modeled as an additive
Gaussian random process added by each fiber span, and whose strength depends on the cube of the input power spectral density and
on the fiber-span parameters.
Since the introduction in the market in 2007 of the first transponder based on such a transmission technique, the scientific
community has intensively worked to define the propagation behavior of such a trasnmission technique.
First, the role of in-line chromatic dispersion compensation has been investigated, deducing that besides being
not essential, it is indeed detrimental for performances :cite:`curri_dispersion_2008`.
Then, it has been observed that the fiber propagation impairments are practically summarized by the sole NLI, being all the other
phenomena compensated for by the blind equalizer implemented in the receiver DSP :cite:`carena_statistical_2010`.
Once these assessments have been accepted by the community, several prestigious research groups have started to work
on deriving analytical models able to estimating the NLI accumulation, and consequentially the generalized SNR that sets the BER,
according to the transponder BER vs. SNR performance.
Many models delivering different levels of accuracy have been developed and validated. As previously clarified, for the purposes
of the PSE framework, the GN-model with incoherent accumulation of NLI over fiber spans has been selected as adequate.
The reason for such a choice is first such a model being a "local" model, so related to each fiber spans, independently of
the preceding and succeeding network elements. The other model characteristic driving the choice is
the availability of a closed form for the model, so permitting a real-time evaluation, as required by the PSE framework.
For a detailed derivation of the model, please refer to :cite:`poggiolini_analytical_2011`, while a qualitative description
can be summarized as in the following.
The GN-model assumes that the channel comb propagating in the fiber is well approximated by unpolarized spectrally shaped
Gaussian noise. In such a scenario, supposing to rely - as in state-of-the-art equipment - on a receiver entirely compensating for linear propagation effects, propagation in the fiber only excites the four-wave mixing (FWM) process among the continuity of
the tones occupying the bandwidth. Such a FWM generates an unpolarized complex Gaussian disturbance in each spectral slot
that can be easily evaluated extending the FWM theory from a set of discrete tones - the standard FWM theory introduced back in the 90s by Inoue :cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
Signals propagating in the fiber are not equivalent to Gaussian noise, but thanks to the absence of in-line compensation for choromatic dispersion,
the become so, over short distances.
So, the Gaussian noise model with incoherent accumulation of NLI has estensively proved to be a quick yet accurate and conservative tool
to estimate propagation impairments of fiber propagation.
Note that the GN-model has not been derived with the aim of an *exact* performance estimation, but to pursue a conservative performance prediction. So, considering these characteristics, and the fact that the NLI is always a secondary effect with respect to the ASE noise accumulation, and - most importantly - that typically linear propagation parameters (losses, gains and noise figures) are known within
a variation range, a QoT estimator based on the GN model is adequate to deliver performance predictions in terms of a reasonable SNR range, rather than an exact value.
As final remark, it must be clarified that the GN-model is adequate to be used when relying on a relatively narrow bandwidth up to few THz. When exceeding such a bandwidth occupation, the GN-model must be generalized introducing the interaction with the Stimulated
Raman Scattering in order to give a proper estimation for all channels :cite:`cantono2018modeling`.
This will be the main upgrade required within the PSE framework.
As previously stated, fiber propagation of multilevel modulation formats
relying on the polarization-division-multiplexing generates impairments that
can be summarized as a disturbance called nonlinear interference (NLI), when
exploiting a DSP-based coherent receiver, as in all state-of-the-art equipment.
From a practical point of view, the NLI can be modeled as an additive Gaussian
random process added by each fiber span, and whose strength depends on the cube
of the input power spectral density and on the fiber-span parameters.
Since the introduction in the market in 2007 of the first transponder based on
such a transmission technique, the scientific community has intensively worked
to define the propagation behavior of such a trasnmission technique. First,
the role of in-line chromatic dispersion compensation has been investigated,
deducing that besides being not essential, it is indeed detrimental for
performances :cite:`curri_dispersion_2008`. Then, it has been observed that
the fiber propagation impairments are practically summarized by the sole NLI,
being all the other phenomena compensated for by the blind equalizer
implemented in the receiver DSP :cite:`carena_statistical_2010`. Once these
assessments have been accepted by the community, several prestigious research
groups have started to work on deriving analytical models able to estimating
the NLI accumulation, and consequentially the generalized SNR that sets the
BER, according to the transponder BER vs. SNR performance. Many models
delivering different levels of accuracy have been developed and validated. As
previously clarified, for the purposes of the PSE framework, the GN-model with
incoherent accumulation of NLI over fiber spans has been selected as adequate.
The reason for such a choice is first such a model being a "local" model, so
related to each fiber spans, independently of the preceding and succeeding
network elements. The other model characteristic driving the choice is the
availability of a closed form for the model, so permitting a real-time
evaluation, as required by the PSE framework. For a detailed derivation of the
model, please refer to :cite:`poggiolini_analytical_2011`, while a qualitative
description can be summarized as in the following. The GN-model assumes that
the channel comb propagating in the fiber is well approximated by unpolarized
spectrally shaped Gaussian noise. In such a scenario, supposing to rely - as in
state-of-the-art equipment - on a receiver entirely compensating for linear
propagation effects, propagation in the fiber only excites the four-wave mixing
(FWM) process among the continuity of the tones occupying the bandwidth. Such a
FWM generates an unpolarized complex Gaussian disturbance in each spectral slot
that can be easily evaluated extending the FWM theory from a set of discrete
tones - the standard FWM theory introduced back in the 90s by Inoue
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
Signals propagating in the fiber are not equivalent to Gaussian noise, but
thanks to the absence of in-line compensation for choromatic dispersion, the
become so, over short distances. So, the Gaussian noise model with incoherent
accumulation of NLI has estensively proved to be a quick yet accurate and
conservative tool to estimate propagation impairments of fiber propagation.
Note that the GN-model has not been derived with the aim of an *exact*
performance estimation, but to pursue a conservative performance prediction.
So, considering these characteristics, and the fact that the NLI is always a
secondary effect with respect to the ASE noise accumulation, and - most
importantly - that typically linear propagation parameters (losses, gains and
noise figures) are known within a variation range, a QoT estimator based on the
GN model is adequate to deliver performance predictions in terms of a
reasonable SNR range, rather than an exact value. As final remark, it must be
clarified that the GN-model is adequate to be used when relying on a relatively
narrow bandwidth up to few THz. When exceeding such a bandwidth occupation, the
GN-model must be generalized introducing the interaction with the Stimulated
Raman Scattering in order to give a proper estimation for all channels
:cite:`cantono2018modeling`. This will be the main upgrade required within the
PSE framework.
.. bibliography:: biblio.bib
.. bibliography:: biblio.bib

View File

@@ -4,10 +4,39 @@ gnpy\.core package
Submodules
----------
gnpy\.core\.ansi_escapes module
-------------------------------
.. automodule:: gnpy.core.ansi_escapes
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.convert module
--------------------------
.. automodule:: gnpy.core.convert
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.elements module
---------------------------
.. automodule:: gnpy.core.elements
gnpy\.core\.equipment module
----------------------------
.. automodule:: gnpy.core.equipment
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.exceptions module
-----------------------------
.. automodule:: gnpy.core.exceptions
:members:
:undoc-members:
:show-inheritance:
@@ -16,30 +45,34 @@ gnpy\.core\.execute module
--------------------------
.. automodule:: gnpy.core.execute
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.info module
-----------------------
.. automodule:: gnpy.core.info
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.network module
--------------------------
.. automodule:: gnpy.core.network
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.node module
-----------------------
.. automodule:: gnpy.core.node
gnpy\.core\.request module
--------------------------
.. automodule:: gnpy.core.request
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.service_sheet module
--------------------------------
.. automodule:: gnpy.core.service_sheet
:members:
:undoc-members:
:show-inheritance:
@@ -48,23 +81,14 @@ gnpy\.core\.units module
------------------------
.. automodule:: gnpy.core.units
:members:
:undoc-members:
:show-inheritance:
gnpy\.core\.utils module
------------------------
.. automodule:: gnpy.core.utils
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: gnpy.core
:members:
:undoc-members:
:show-inheritance:

View File

@@ -12,6 +12,3 @@ Module contents
---------------
.. automodule:: gnpy
:members:
:undoc-members:
:show-inheritance:

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -0,0 +1,160 @@
{
"nf_fit_coeff": [
0.0008,
0.0272,
-0.2249,
6.4902
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
0.15017064489112,
0.14157768006701,
0.00223094639866,
-0.06701528475711,
-0.05982935510889,
-0.01028161641541,
0.02740682579566,
0.02795958961474,
0.00107516750419,
-0.02199015912898,
-0.00877407872698,
0.0453465242881,
0.1204721524288,
0.18936662479061,
0.23826109715241,
0.26956762981574,
0.27836159966498,
0.26941687604691,
0.23579878559464,
0.18147717755444,
0.1191656197655,
0.05921587102177,
0.01509526800668,
-0.01053287269681,
-0.02475397822447,
-0.01847257118928,
-0.00420121440538,
0.01584903685091,
0.0399193886097,
0.04494451423784,
0.04961788107202,
0.03378873534338,
0.01027114740367,
-0.01319618927973,
-0.04962835008375,
-0.0765630234506,
-0.10606051088777,
-0.13550774706866,
-0.15460322445561,
-0.17113588777219,
-0.18053287269681,
-0.18324644053602,
-0.19440221943049,
-0.20897508375209,
-0.23575900335007,
-0.25188965661642,
-0.22244242043552,
-0.15656302345061
],
"dgt": [
2.4553191172498,
2.44342862248888,
2.41879254989742,
2.38192717604575,
2.33147727493671,
2.26678136721453,
2.19013043016015,
2.10336369905543,
2.01414465424155,
1.92915262384742,
1.85543800978691,
1.79748596476494,
1.75428006928365,
1.72461030013125,
1.70379790088896,
1.68845480656382,
1.6761448370895,
1.66286684904577,
1.64799163036252,
1.63068023161292,
1.61073904908309,
1.58973304612691,
1.56750088631614,
1.54578500307573,
1.5242627235492,
1.50335352244996,
1.48420288841848,
1.46637521309853,
1.44977369463316,
1.43476940680732,
1.42089447397912,
1.40864903907609,
1.3966294751726,
1.38430337205545,
1.3710092503689,
1.35690844654118,
1.3405812000038,
1.32210817897091,
1.30069883494415,
1.27657903892303,
1.24931318255134,
1.21911100318577,
1.18632744096844,
1.15209185089701,
1.11575888725852,
1.07773189112355,
1.03941448941778,
1.0
]
}

View File

@@ -1,11 +0,0 @@
REGIONS = europe asia conus
TARGETS = $(foreach region,$(REGIONS),coronet.$(region).json)
all: $(TARGETS)
$(TARGETS): convert.py CORONET_Global_Topology.xls
python $< -f $(subst .json,,$(subst coronet.,,$@)) > $@
.PHONY: clean
clean:
-rm $(TARGETS) -f

View File

@@ -1,143 +0,0 @@
{
"networks": {
"network": [
{
"network-types": {
"tip-oopt-pse": {}
},
"network-id": "pt-to-pt",
"node": [
{
"node-id": "M_KMA",
"type":"roadm",
"termination-point": [
{
"tp-id": "1-2-1"
}
]
},
{
"node-id": "T_CAS",
"type":"roadm",
"termination-point": [
{
"tp-id": "2-1-1"
},
{
"tp-id": "2-3-1"
}
]
},
{
"node-id": "LA",
"type":"ila",
"termination-point": [
{
"tp-id": "3-2-1"
},
{
"tp-id": "3-4-1"
}
]
},
{
"node-id": "SR",
"type":"fused",
"termination-point": [
{
"tp-id": "4-3-1"
}
]
},
{
"node-id": "C",
"type":"ila",
"termination-point": [
{
"tp-id": "5-6-1"
}
]
},
{
"node-id": "N_KBE",
"type":"roadm",
"termination-point": [
{
"tp-id": "6-5-1"
},
{
"tp-id": "6-7-1"
}
]
},
{
"node-id": "N_KBA",
"type":"roadm",
"termination-point": [
{
"tp-id": "7-6-1"
}
]
}
],
"link": [
{
"link-id": "M_KMA,1-2-1,T_CAS,2-1-1",
"source": {
"source-node": "M_KMA",
"source-tp": "1-2-1"
}
"destination": {
"dest-node": "T_CAS",
"dest-tp": "2-1-1"
}
},
{
"link-id": "T_CAS,2-3-1,LA,3-2-1",
"source": {
"source-node": "T_CAS",
"source-tp": "2-3-1"
}
"destination": {
"dest-node": "LA",
"dest-tp": "3-2-1"
}
},
{
"link-id": "LA,3-4-1,SR,4-3-1",
"source": {
"source-node": "LA",
"source-tp": "3-4-1"
}
"destination": {
"dest-node": "SR",
"dest-tp": "4-3-1"
}
},
{
"link-id": "C,5-6-1,N_KBE,6-5-1",
"source": {
"source-node": "C",
"source-tp": "5-6-1"
}
"destination": {
"dest-node": "N_KBE",
"dest-tp": "6-5-1"
}
},
{
"link-id": "N_KBE,6-7-1,N_KBA,7-6-1",
"source": {
"source-node": "N_KBE",
"source-tp": "6-7-1"
}
"destination": {
"dest-node": "N_KBA",
"dest-tp": "7-6-1"
}
}
]
}
]
}
}

View File

@@ -1,157 +0,0 @@
{
"network_name": "pt to pt",
"nodes_elements":
[
{
"id":"M_KMA",
"type":"ROADM",
"metadata": {
"city":"M",
"region":"RLD",
"latitude":0,
"longitude":0
}
},
{
"id":"T_CAS",
"type":"ROADM",
"metadata": {
"city":"T",
"region":"RLD",
"latitude":0,
"longitude":0
}
},
{
"id":"LA",
"type":"ILA",
"metadata": {
"city":"LA",
"region":"RLD",
"latitude":0,
"longitude":0
}
},
{
"id":"SR",
"type":"fused",
"metadata": {
"city":"SR",
"region":"RLD",
"latitude":0,
"longitude":0
}
},
{
"id":"C",
"type":"ILA",
"metadata": {
"city":"C",
"region":"RLD",
"latitude":0,
"longitude":0
}
},
{
"id":"N_KBE",
"type":"ROADM",
"metadata": {
"city":"N",
"region":"RLD",
"latitude":0,
"longitude":0
}
},
{
"id":"N_KBA",
"type":"ROADM",
"metadata": {
"city":"N",
"region":"RLD",
"latitude":0,
"longitude":0
}
},
],
"OTS_elements":[
{
"id":1,
"source_id":"M_KMA",
"dest_id":"T_CAS",
"parameters_cable":{
"units":"km",
"length":60,
"id":"F060",
"type":"G652"
},
"parameters_east":{
"con_in":0.5,
"con_out":0.5,
"loss":16,
"pmd":2,
"fo_id":5
},
"parameters_west":{
"con_in":0.5,
"con_out":0.5,
"loss":15,
"pmd":2,
"fo_id":6
}
},
{
"id":2,
"source_id":"T_CAS",
"dest_id":"LA",
"parameters_cable":{
},
"parameters_east":{
},
"parameters_west":{
}
},
{
"id":3,
"source_id":"LA",
"dest_id":"SR",
"parameters_cable":{
},
"parameters_east":{
},
"parameters_west":{
}
},
{
"id":3,
"source_id":"SR",
"dest_id":"C",
"parameters_cable":{
},
"parameters_east":{
},
"parameters_west":{
}
},
{
"id":5,
"source_id":"C",
"dest_id":"N_KBE",
"parameters_cable":{
},
"parameters_east":{
},
"parameters_west":{
}
},
{
"id":6,
"source_id":"N_KBE",
"dest_id":"N_KBA",
"parameters_cable":{
},
"parameters_east":{
},
"parameters_west":{
}
},
]}

0
examples/__init__.py Normal file
View File

View File

@@ -1,162 +0,0 @@
#!/usr/bin/env python3
from sys import exit
try:
from xlrd import open_workbook
except ModuleNotFoundError:
exit('Required: `pip install xlrd`')
from argparse import ArgumentParser
from collections import namedtuple, Counter
from itertools import chain
from json import dumps
from uuid import uuid4
import math
import numpy as np
output_json_file_name = 'coronet_conus_example.json'
Node = namedtuple('Node', 'city state country region latitude longitude')
class Link(namedtuple('Link', 'from_city to_city distance distance_units')):
def __new__(cls, from_city, to_city, distance, distance_units='km'):
return super().__new__(cls, from_city, to_city, distance, distance_units)
def define_span_range(min_span, max_span, nspans):
srange = (max_span - min_span) + min_span*np.random.rand(nspans)
return srange
def amp_spacings(min_span,max_span,length):
nspans = math.ceil(length/100)
spans = define_span_range(min_span, max_span, nspans)
tot = spans.sum()
delta = length -tot
if delta > 0 and delta < 25:
ind = np.where(np.min(spans))
spans[ind] = spans[ind] + delta
elif delta >= 25 and delta < 40:
spans = spans + delta/float(nspans)
elif delta > 40 and delta < 100:
spans = np.append(spans,delta)
elif delta > 100:
spans = np.append(spans, [delta/2, delta/2])
elif delta < 0:
spans = spans + delta/float(nspans)
return list(spans)
def parse_excel(args):
with open_workbook(args.workbook) as wb:
nodes_sheet = wb.sheet_by_name('Nodes')
links_sheet = wb.sheet_by_name('Links')
# sanity check
header = [x.value.strip() for x in nodes_sheet.row(4)]
expected = ['City', 'State', 'Country', 'Region', 'Latitude', 'Longitude']
if header != expected:
raise ValueError(f'Malformed header on Nodes sheet: {header} != {expected}')
nodes = []
for row in all_rows(nodes_sheet, start=5):
nodes.append(Node(*(x.value for x in row)))
# sanity check
header = [x.value.strip() for x in links_sheet.row(4)]
expected = ['Node A', 'Node Z', 'Distance (km)']
if header != expected:
raise ValueError(f'Malformed header on Nodes sheet: {header} != {expected}')
links = []
for row in all_rows(links_sheet, start=5):
links.append(Link(*(x.value for x in row)))
# sanity check
all_cities = Counter(n.city for n in nodes)
if len(all_cities) != len(nodes):
ValueError(f'Duplicate city: {all_cities}')
if any(ln.from_city not in all_cities or
ln.to_city not in all_cities for ln in links):
ValueError(f'Bad link.')
return nodes, links
parser = ArgumentParser()
parser.add_argument('workbook', nargs='?', default='CORONET_Global_Topology.xls')
parser.add_argument('-f', '--filter-region', action='append', default=[])
all_rows = lambda sh, start=0: (sh.row(x) for x in range(start, sh.nrows))
def midpoint(city_a, city_b):
lats = city_a.latitude, city_b.latitude
longs = city_a.longitude, city_b.longitude
return {
'latitude': sum(lats) / 2,
'longitude': sum(longs) / 2,
}
if __name__ == '__main__':
args = parser.parse_args()
nodes, links = parse_excel(args)
if args.filter_region:
nodes = [n for n in nodes if n.region.lower() in args.filter_region]
cities = {n.city for n in nodes}
links = [lnk for lnk in links if lnk.from_city in cities and
lnk.to_city in cities]
cities = {lnk.from_city for lnk in links} | {lnk.to_city for lnk in links}
nodes = [n for n in nodes if n.city in cities]
nodes_by_city = {n.city: n for n in nodes}
data = {
'elements':
[{'uid': f'trx {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Transceiver'}
for x in nodes] +
[{'uid': f'roadm {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Roadm'}
for x in nodes] +
[{'uid': f'fiber ({x.from_city}{x.to_city})',
'metadata': {'location': midpoint(nodes_by_city[x.from_city],
nodes_by_city[x.to_city])},
'type': 'Fiber',
'params': {'length': round(x.distance, 3),
'length_units': x.distance_units,
'loss_coef': 0.2,
'dispersion': 16.7E-6,
'gamma': 1.27E-3}
}
for x in links],
'connections':
list(chain.from_iterable(zip( # put bidi next to each other
[{'from_node': f'roadm {x.from_city}',
'to_node': f'fiber ({x.from_city}{x.to_city})'}
for x in links],
[{'from_node': f'fiber ({x.from_city}{x.to_city})',
'to_node': f'roadm {x.from_city}'}
for x in links])))
+
list(chain.from_iterable(zip(
[{'from_node': f'fiber ({x.from_city}{x.to_city})',
'to_node': f'roadm {x.to_city}'}
for x in links],
[{'from_node': f'roadm {x.to_city}',
'to_node': f'fiber ({x.from_city}{x.to_city})'}
for x in links])))
+
list(chain.from_iterable(zip(
[{'from_node': f'trx {x.city}',
'to_node': f'roadm {x.city}'}
for x in nodes],
[{'from_node': f'roadm {x.city}',
'to_node': f'trx {x.city}'}
for x in nodes])))
}
print(dumps(data, indent=2))
with open(output_json_file_name,'w') as edfa_json_file:
edfa_json_file.write(dumps(data, indent=2))

View File

@@ -1,542 +0,0 @@
{
"elements": [
{
"uid": "Bangkok",
"metadata": {
"location": {
"city": "Bangkok",
"region": "Asia",
"latitude": 13.73,
"longitude": 100.5
}
},
"type": "Transceiver"
},
{
"uid": "Beijing",
"metadata": {
"location": {
"city": "Beijing",
"region": "Asia",
"latitude": 39.92999979,
"longitude": 116.4000013
}
},
"type": "Transceiver"
},
{
"uid": "Delhi",
"metadata": {
"location": {
"city": "Delhi",
"region": "Asia",
"latitude": 28.6700003,
"longitude": 77.2099989
}
},
"type": "Transceiver"
},
{
"uid": "Hong_Kong",
"metadata": {
"location": {
"city": "Hong_Kong",
"region": "Asia",
"latitude": 22.267,
"longitude": 114.14
}
},
"type": "Transceiver"
},
{
"uid": "Honolulu",
"metadata": {
"location": {
"city": "Honolulu",
"region": "Asia",
"latitude": 21.3199996,
"longitude": -157.800003
}
},
"type": "Transceiver"
},
{
"uid": "Mumbai",
"metadata": {
"location": {
"city": "Mumbai",
"region": "Asia",
"latitude": 18.9599987,
"longitude": 72.8199999
}
},
"type": "Transceiver"
},
{
"uid": "Seoul",
"metadata": {
"location": {
"city": "Seoul",
"region": "Asia",
"latitude": 37.56000108,
"longitude": 126.9899988
}
},
"type": "Transceiver"
},
{
"uid": "Shanghai",
"metadata": {
"location": {
"city": "Shanghai",
"region": "Asia",
"latitude": 31.23,
"longitude": 121.47
}
},
"type": "Transceiver"
},
{
"uid": "Singapore",
"metadata": {
"location": {
"city": "Singapore",
"region": "Asia",
"latitude": 1.299999907,
"longitude": 103.8499992
}
},
"type": "Transceiver"
},
{
"uid": "Sydney",
"metadata": {
"location": {
"city": "Sydney",
"region": "Asia",
"latitude": -33.86999896,
"longitude": 151.2100066
}
},
"type": "Transceiver"
},
{
"uid": "Taipei",
"metadata": {
"location": {
"city": "Taipei",
"region": "Asia",
"latitude": 25.0200005,
"longitude": 121.449997
}
},
"type": "Transceiver"
},
{
"uid": "Tokyo",
"metadata": {
"location": {
"city": "Tokyo",
"region": "Asia",
"latitude": 35.6699986,
"longitude": 139.770004
}
},
"type": "Transceiver"
},
{
"uid": "fiber (Bangkok \u2192 Delhi)",
"metadata": {
"length": 3505.95,
"units": "km",
"location": {
"latitude": 21.20000015,
"longitude": 88.85499945000001
}
},
"type": "Fiber"
},
{
"uid": "fiber (Bangkok \u2192 Hong_Kong)",
"metadata": {
"length": 2070.724,
"units": "km",
"location": {
"latitude": 17.9985,
"longitude": 107.32
}
},
"type": "Fiber"
},
{
"uid": "fiber (Beijing \u2192 Seoul)",
"metadata": {
"length": 1146.124,
"units": "km",
"location": {
"latitude": 38.745000434999994,
"longitude": 121.69500005
}
},
"type": "Fiber"
},
{
"uid": "fiber (Beijing \u2192 Shanghai)",
"metadata": {
"length": 1284.465,
"units": "km",
"location": {
"latitude": 35.579999895,
"longitude": 118.93500065
}
},
"type": "Fiber"
},
{
"uid": "fiber (Delhi \u2192 Mumbai)",
"metadata": {
"length": 1402.141,
"units": "km",
"location": {
"latitude": 23.8149995,
"longitude": 75.0149994
}
},
"type": "Fiber"
},
{
"uid": "fiber (Hong_Kong \u2192 Shanghai)",
"metadata": {
"length": 1480.406,
"units": "km",
"location": {
"latitude": 26.7485,
"longitude": 117.805
}
},
"type": "Fiber"
},
{
"uid": "fiber (Hong_Kong \u2192 Sydney)",
"metadata": {
"length": 8856.6,
"units": "km",
"location": {
"latitude": -5.801499479999999,
"longitude": 132.67500330000001
}
},
"type": "Fiber"
},
{
"uid": "fiber (Hong_Kong \u2192 Taipei)",
"metadata": {
"length": 966.177,
"units": "km",
"location": {
"latitude": 23.64350025,
"longitude": 117.79499849999999
}
},
"type": "Fiber"
},
{
"uid": "fiber (Honolulu \u2192 Sydney)",
"metadata": {
"length": 9808.616,
"units": "km",
"location": {
"latitude": -6.274999679999999,
"longitude": -3.294998199999995
}
},
"type": "Fiber"
},
{
"uid": "fiber (Honolulu \u2192 Taipei)",
"metadata": {
"length": 9767.013,
"units": "km",
"location": {
"latitude": 23.17000005,
"longitude": -18.175003000000004
}
},
"type": "Fiber"
},
{
"uid": "fiber (Mumbai \u2192 Singapore)",
"metadata": {
"length": 4692.708,
"units": "km",
"location": {
"latitude": 10.1299993035,
"longitude": 88.33499954999999
}
},
"type": "Fiber"
},
{
"uid": "fiber (Seoul \u2192 Tokyo)",
"metadata": {
"length": 1391.085,
"units": "km",
"location": {
"latitude": 36.614999839999996,
"longitude": 133.3800014
}
},
"type": "Fiber"
},
{
"uid": "fiber (Singapore \u2192 Sydney)",
"metadata": {
"length": 7562.331,
"units": "km",
"location": {
"latitude": -16.2849995265,
"longitude": 127.5300029
}
},
"type": "Fiber"
},
{
"uid": "fiber (Taipei \u2192 Tokyo)",
"metadata": {
"length": 2537.345,
"units": "km",
"location": {
"latitude": 30.344999549999997,
"longitude": 130.6100005
}
},
"type": "Fiber"
}
],
"connections": [
{
"from_node": "Bangkok",
"to_node": "fiber (Bangkok \u2192 Delhi)"
},
{
"from_node": "fiber (Bangkok \u2192 Delhi)",
"to_node": "Bangkok"
},
{
"from_node": "Bangkok",
"to_node": "fiber (Bangkok \u2192 Hong_Kong)"
},
{
"from_node": "fiber (Bangkok \u2192 Hong_Kong)",
"to_node": "Bangkok"
},
{
"from_node": "Beijing",
"to_node": "fiber (Beijing \u2192 Seoul)"
},
{
"from_node": "fiber (Beijing \u2192 Seoul)",
"to_node": "Beijing"
},
{
"from_node": "Beijing",
"to_node": "fiber (Beijing \u2192 Shanghai)"
},
{
"from_node": "fiber (Beijing \u2192 Shanghai)",
"to_node": "Beijing"
},
{
"from_node": "Delhi",
"to_node": "fiber (Delhi \u2192 Mumbai)"
},
{
"from_node": "fiber (Delhi \u2192 Mumbai)",
"to_node": "Delhi"
},
{
"from_node": "Hong_Kong",
"to_node": "fiber (Hong_Kong \u2192 Shanghai)"
},
{
"from_node": "fiber (Hong_Kong \u2192 Shanghai)",
"to_node": "Hong_Kong"
},
{
"from_node": "Hong_Kong",
"to_node": "fiber (Hong_Kong \u2192 Sydney)"
},
{
"from_node": "fiber (Hong_Kong \u2192 Sydney)",
"to_node": "Hong_Kong"
},
{
"from_node": "Hong_Kong",
"to_node": "fiber (Hong_Kong \u2192 Taipei)"
},
{
"from_node": "fiber (Hong_Kong \u2192 Taipei)",
"to_node": "Hong_Kong"
},
{
"from_node": "Honolulu",
"to_node": "fiber (Honolulu \u2192 Sydney)"
},
{
"from_node": "fiber (Honolulu \u2192 Sydney)",
"to_node": "Honolulu"
},
{
"from_node": "Honolulu",
"to_node": "fiber (Honolulu \u2192 Taipei)"
},
{
"from_node": "fiber (Honolulu \u2192 Taipei)",
"to_node": "Honolulu"
},
{
"from_node": "Mumbai",
"to_node": "fiber (Mumbai \u2192 Singapore)"
},
{
"from_node": "fiber (Mumbai \u2192 Singapore)",
"to_node": "Mumbai"
},
{
"from_node": "Seoul",
"to_node": "fiber (Seoul \u2192 Tokyo)"
},
{
"from_node": "fiber (Seoul \u2192 Tokyo)",
"to_node": "Seoul"
},
{
"from_node": "Singapore",
"to_node": "fiber (Singapore \u2192 Sydney)"
},
{
"from_node": "fiber (Singapore \u2192 Sydney)",
"to_node": "Singapore"
},
{
"from_node": "Taipei",
"to_node": "fiber (Taipei \u2192 Tokyo)"
},
{
"from_node": "fiber (Taipei \u2192 Tokyo)",
"to_node": "Taipei"
},
{
"from_node": "fiber (Bangkok \u2192 Delhi)",
"to_node": "Delhi"
},
{
"from_node": "Delhi",
"to_node": "fiber (Bangkok \u2192 Delhi)"
},
{
"from_node": "fiber (Bangkok \u2192 Hong_Kong)",
"to_node": "Hong_Kong"
},
{
"from_node": "Hong_Kong",
"to_node": "fiber (Bangkok \u2192 Hong_Kong)"
},
{
"from_node": "fiber (Beijing \u2192 Seoul)",
"to_node": "Seoul"
},
{
"from_node": "Seoul",
"to_node": "fiber (Beijing \u2192 Seoul)"
},
{
"from_node": "fiber (Beijing \u2192 Shanghai)",
"to_node": "Shanghai"
},
{
"from_node": "Shanghai",
"to_node": "fiber (Beijing \u2192 Shanghai)"
},
{
"from_node": "fiber (Delhi \u2192 Mumbai)",
"to_node": "Mumbai"
},
{
"from_node": "Mumbai",
"to_node": "fiber (Delhi \u2192 Mumbai)"
},
{
"from_node": "fiber (Hong_Kong \u2192 Shanghai)",
"to_node": "Shanghai"
},
{
"from_node": "Shanghai",
"to_node": "fiber (Hong_Kong \u2192 Shanghai)"
},
{
"from_node": "fiber (Hong_Kong \u2192 Sydney)",
"to_node": "Sydney"
},
{
"from_node": "Sydney",
"to_node": "fiber (Hong_Kong \u2192 Sydney)"
},
{
"from_node": "fiber (Hong_Kong \u2192 Taipei)",
"to_node": "Taipei"
},
{
"from_node": "Taipei",
"to_node": "fiber (Hong_Kong \u2192 Taipei)"
},
{
"from_node": "fiber (Honolulu \u2192 Sydney)",
"to_node": "Sydney"
},
{
"from_node": "Sydney",
"to_node": "fiber (Honolulu \u2192 Sydney)"
},
{
"from_node": "fiber (Honolulu \u2192 Taipei)",
"to_node": "Taipei"
},
{
"from_node": "Taipei",
"to_node": "fiber (Honolulu \u2192 Taipei)"
},
{
"from_node": "fiber (Mumbai \u2192 Singapore)",
"to_node": "Singapore"
},
{
"from_node": "Singapore",
"to_node": "fiber (Mumbai \u2192 Singapore)"
},
{
"from_node": "fiber (Seoul \u2192 Tokyo)",
"to_node": "Tokyo"
},
{
"from_node": "Tokyo",
"to_node": "fiber (Seoul \u2192 Tokyo)"
},
{
"from_node": "fiber (Singapore \u2192 Sydney)",
"to_node": "Sydney"
},
{
"from_node": "Sydney",
"to_node": "fiber (Singapore \u2192 Sydney)"
},
{
"from_node": "fiber (Taipei \u2192 Tokyo)",
"to_node": "Tokyo"
},
{
"from_node": "Tokyo",
"to_node": "fiber (Taipei \u2192 Tokyo)"
}
]
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,582 +0,0 @@
{
"elements": [
{
"uid": "Amsterdam",
"metadata": {
"location": {
"city": "Amsterdam",
"region": "Europe",
"latitude": 52.3699996,
"longitude": 4.88999915
}
},
"type": "Transceiver"
},
{
"uid": "Berlin",
"metadata": {
"location": {
"city": "Berlin",
"region": "Europe",
"latitude": 52.520002,
"longitude": 13.379995
}
},
"type": "Transceiver"
},
{
"uid": "Brussels",
"metadata": {
"location": {
"city": "Brussels",
"region": "Europe",
"latitude": 50.830002,
"longitude": 4.330002
}
},
"type": "Transceiver"
},
{
"uid": "Bucharest",
"metadata": {
"location": {
"city": "Bucharest",
"region": "Europe",
"latitude": 44.44,
"longitude": 26.1
}
},
"type": "Transceiver"
},
{
"uid": "Frankfurt",
"metadata": {
"location": {
"city": "Frankfurt",
"region": "Europe",
"latitude": 50.1199992,
"longitude": 8.68000104
}
},
"type": "Transceiver"
},
{
"uid": "Istanbul",
"metadata": {
"location": {
"city": "Istanbul",
"region": "Europe",
"latitude": 41.1,
"longitude": 29.0
}
},
"type": "Transceiver"
},
{
"uid": "London",
"metadata": {
"location": {
"city": "London",
"region": "Europe",
"latitude": 51.5200005,
"longitude": -0.100000296
}
},
"type": "Transceiver"
},
{
"uid": "Madrid",
"metadata": {
"location": {
"city": "Madrid",
"region": "Europe",
"latitude": 40.419998,
"longitude": -3.7100002
}
},
"type": "Transceiver"
},
{
"uid": "Paris",
"metadata": {
"location": {
"city": "Paris",
"region": "Europe",
"latitude": 48.86,
"longitude": 2.3399995
}
},
"type": "Transceiver"
},
{
"uid": "Rome",
"metadata": {
"location": {
"city": "Rome",
"region": "Europe",
"latitude": 41.8899996,
"longitude": 12.5000004
}
},
"type": "Transceiver"
},
{
"uid": "Vienna",
"metadata": {
"location": {
"city": "Vienna",
"region": "Europe",
"latitude": 48.2200024,
"longitude": 16.3700005
}
},
"type": "Transceiver"
},
{
"uid": "Warsaw",
"metadata": {
"location": {
"city": "Warsaw",
"region": "Europe",
"latitude": 52.2599987,
"longitude": 21.0200005
}
},
"type": "Transceiver"
},
{
"uid": "Zurich",
"metadata": {
"location": {
"city": "Zurich",
"region": "Europe",
"latitude": 47.3800015,
"longitude": 8.5399996
}
},
"type": "Transceiver"
},
{
"uid": "fiber (Amsterdam \u2192 Berlin)",
"metadata": {
"length": 690.608,
"units": "km",
"location": {
"latitude": 52.4450008,
"longitude": 9.134997075
}
},
"type": "Fiber"
},
{
"uid": "fiber (Amsterdam \u2192 Brussels)",
"metadata": {
"length": 210.729,
"units": "km",
"location": {
"latitude": 51.600000800000004,
"longitude": 4.610000575000001
}
},
"type": "Fiber"
},
{
"uid": "fiber (Amsterdam \u2192 Frankfurt)",
"metadata": {
"length": 436.324,
"units": "km",
"location": {
"latitude": 51.2449994,
"longitude": 6.785000095000001
}
},
"type": "Fiber"
},
{
"uid": "fiber (Berlin \u2192 Warsaw)",
"metadata": {
"length": 623.015,
"units": "km",
"location": {
"latitude": 52.390000349999994,
"longitude": 17.199997749999998
}
},
"type": "Fiber"
},
{
"uid": "fiber (Brussels \u2192 London)",
"metadata": {
"length": 381.913,
"units": "km",
"location": {
"latitude": 51.17500125,
"longitude": 2.115000852
}
},
"type": "Fiber"
},
{
"uid": "fiber (Bucharest \u2192 Istanbul)",
"metadata": {
"length": 528.58,
"units": "km",
"location": {
"latitude": 42.769999999999996,
"longitude": 27.55
}
},
"type": "Fiber"
},
{
"uid": "fiber (Bucharest \u2192 Warsaw)",
"metadata": {
"length": 1136.2,
"units": "km",
"location": {
"latitude": 48.34999935,
"longitude": 23.56000025
}
},
"type": "Fiber"
},
{
"uid": "fiber (Frankfurt \u2192 Vienna)",
"metadata": {
"length": 717.001,
"units": "km",
"location": {
"latitude": 49.1700008,
"longitude": 12.52500077
}
},
"type": "Fiber"
},
{
"uid": "fiber (Istanbul \u2192 Rome)",
"metadata": {
"length": 1650.406,
"units": "km",
"location": {
"latitude": 41.4949998,
"longitude": 20.7500002
}
},
"type": "Fiber"
},
{
"uid": "fiber (London \u2192 Paris)",
"metadata": {
"length": 411.692,
"units": "km",
"location": {
"latitude": 50.19000025,
"longitude": 1.1199996019999998
}
},
"type": "Fiber"
},
{
"uid": "fiber (Madrid \u2192 Paris)",
"metadata": {
"length": 1263.619,
"units": "km",
"location": {
"latitude": 44.639999,
"longitude": -0.6850003500000001
}
},
"type": "Fiber"
},
{
"uid": "fiber (Madrid \u2192 Zurich)",
"metadata": {
"length": 1497.358,
"units": "km",
"location": {
"latitude": 43.89999975,
"longitude": 2.4149997
}
},
"type": "Fiber"
},
{
"uid": "fiber (Rome \u2192 Vienna)",
"metadata": {
"length": 920.026,
"units": "km",
"location": {
"latitude": 45.055001000000004,
"longitude": 14.43500045
}
},
"type": "Fiber"
},
{
"uid": "fiber (Rome \u2192 Zurich)",
"metadata": {
"length": 823.4,
"units": "km",
"location": {
"latitude": 44.63500055,
"longitude": 10.52
}
},
"type": "Fiber"
},
{
"uid": "fiber (Vienna \u2192 Warsaw)",
"metadata": {
"length": 669.297,
"units": "km",
"location": {
"latitude": 50.24000055,
"longitude": 18.6950005
}
},
"type": "Fiber"
}
],
"connections": [
{
"from_node": "Amsterdam",
"to_node": "fiber (Amsterdam \u2192 Berlin)"
},
{
"from_node": "fiber (Amsterdam \u2192 Berlin)",
"to_node": "Amsterdam"
},
{
"from_node": "Amsterdam",
"to_node": "fiber (Amsterdam \u2192 Brussels)"
},
{
"from_node": "fiber (Amsterdam \u2192 Brussels)",
"to_node": "Amsterdam"
},
{
"from_node": "Amsterdam",
"to_node": "fiber (Amsterdam \u2192 Frankfurt)"
},
{
"from_node": "fiber (Amsterdam \u2192 Frankfurt)",
"to_node": "Amsterdam"
},
{
"from_node": "Berlin",
"to_node": "fiber (Berlin \u2192 Warsaw)"
},
{
"from_node": "fiber (Berlin \u2192 Warsaw)",
"to_node": "Berlin"
},
{
"from_node": "Brussels",
"to_node": "fiber (Brussels \u2192 London)"
},
{
"from_node": "fiber (Brussels \u2192 London)",
"to_node": "Brussels"
},
{
"from_node": "Bucharest",
"to_node": "fiber (Bucharest \u2192 Istanbul)"
},
{
"from_node": "fiber (Bucharest \u2192 Istanbul)",
"to_node": "Bucharest"
},
{
"from_node": "Bucharest",
"to_node": "fiber (Bucharest \u2192 Warsaw)"
},
{
"from_node": "fiber (Bucharest \u2192 Warsaw)",
"to_node": "Bucharest"
},
{
"from_node": "Frankfurt",
"to_node": "fiber (Frankfurt \u2192 Vienna)"
},
{
"from_node": "fiber (Frankfurt \u2192 Vienna)",
"to_node": "Frankfurt"
},
{
"from_node": "Istanbul",
"to_node": "fiber (Istanbul \u2192 Rome)"
},
{
"from_node": "fiber (Istanbul \u2192 Rome)",
"to_node": "Istanbul"
},
{
"from_node": "London",
"to_node": "fiber (London \u2192 Paris)"
},
{
"from_node": "fiber (London \u2192 Paris)",
"to_node": "London"
},
{
"from_node": "Madrid",
"to_node": "fiber (Madrid \u2192 Paris)"
},
{
"from_node": "fiber (Madrid \u2192 Paris)",
"to_node": "Madrid"
},
{
"from_node": "Madrid",
"to_node": "fiber (Madrid \u2192 Zurich)"
},
{
"from_node": "fiber (Madrid \u2192 Zurich)",
"to_node": "Madrid"
},
{
"from_node": "Rome",
"to_node": "fiber (Rome \u2192 Vienna)"
},
{
"from_node": "fiber (Rome \u2192 Vienna)",
"to_node": "Rome"
},
{
"from_node": "Rome",
"to_node": "fiber (Rome \u2192 Zurich)"
},
{
"from_node": "fiber (Rome \u2192 Zurich)",
"to_node": "Rome"
},
{
"from_node": "Vienna",
"to_node": "fiber (Vienna \u2192 Warsaw)"
},
{
"from_node": "fiber (Vienna \u2192 Warsaw)",
"to_node": "Vienna"
},
{
"from_node": "fiber (Amsterdam \u2192 Berlin)",
"to_node": "Berlin"
},
{
"from_node": "Berlin",
"to_node": "fiber (Amsterdam \u2192 Berlin)"
},
{
"from_node": "fiber (Amsterdam \u2192 Brussels)",
"to_node": "Brussels"
},
{
"from_node": "Brussels",
"to_node": "fiber (Amsterdam \u2192 Brussels)"
},
{
"from_node": "fiber (Amsterdam \u2192 Frankfurt)",
"to_node": "Frankfurt"
},
{
"from_node": "Frankfurt",
"to_node": "fiber (Amsterdam \u2192 Frankfurt)"
},
{
"from_node": "fiber (Berlin \u2192 Warsaw)",
"to_node": "Warsaw"
},
{
"from_node": "Warsaw",
"to_node": "fiber (Berlin \u2192 Warsaw)"
},
{
"from_node": "fiber (Brussels \u2192 London)",
"to_node": "London"
},
{
"from_node": "London",
"to_node": "fiber (Brussels \u2192 London)"
},
{
"from_node": "fiber (Bucharest \u2192 Istanbul)",
"to_node": "Istanbul"
},
{
"from_node": "Istanbul",
"to_node": "fiber (Bucharest \u2192 Istanbul)"
},
{
"from_node": "fiber (Bucharest \u2192 Warsaw)",
"to_node": "Warsaw"
},
{
"from_node": "Warsaw",
"to_node": "fiber (Bucharest \u2192 Warsaw)"
},
{
"from_node": "fiber (Frankfurt \u2192 Vienna)",
"to_node": "Vienna"
},
{
"from_node": "Vienna",
"to_node": "fiber (Frankfurt \u2192 Vienna)"
},
{
"from_node": "fiber (Istanbul \u2192 Rome)",
"to_node": "Rome"
},
{
"from_node": "Rome",
"to_node": "fiber (Istanbul \u2192 Rome)"
},
{
"from_node": "fiber (London \u2192 Paris)",
"to_node": "Paris"
},
{
"from_node": "Paris",
"to_node": "fiber (London \u2192 Paris)"
},
{
"from_node": "fiber (Madrid \u2192 Paris)",
"to_node": "Paris"
},
{
"from_node": "Paris",
"to_node": "fiber (Madrid \u2192 Paris)"
},
{
"from_node": "fiber (Madrid \u2192 Zurich)",
"to_node": "Zurich"
},
{
"from_node": "Zurich",
"to_node": "fiber (Madrid \u2192 Zurich)"
},
{
"from_node": "fiber (Rome \u2192 Vienna)",
"to_node": "Vienna"
},
{
"from_node": "Vienna",
"to_node": "fiber (Rome \u2192 Vienna)"
},
{
"from_node": "fiber (Rome \u2192 Zurich)",
"to_node": "Zurich"
},
{
"from_node": "Zurich",
"to_node": "fiber (Rome \u2192 Zurich)"
},
{
"from_node": "fiber (Vienna \u2192 Warsaw)",
"to_node": "Warsaw"
},
{
"from_node": "Warsaw",
"to_node": "fiber (Vienna \u2192 Warsaw)"
}
]
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,101 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
create_eqpt_sheet.py
====================
XLS parser that can be called to create a "City" column in the "Eqpt" sheet.
If not present in the "Nodes" sheet, the "Type" column will be implicitly
determined based on the topology.
"""
try:
from xlrd import open_workbook
except ModuleNotFoundError:
exit('Required: `pip install xlrd`')
from argparse import ArgumentParser
PARSER = ArgumentParser()
PARSER.add_argument('workbook', nargs='?', default='meshTopologyExampleV2.xls',
help='create the mandatory columns in Eqpt sheet')
ALL_ROWS = lambda sh, start=0: (sh.row(x) for x in range(start, sh.nrows))
class Node:
""" Node element contains uid, list of connected nodes and eqpt type
"""
def __init__(self, uid, to_node):
self.uid = uid
self.to_node = to_node
self.eqpt = None
def __repr__(self):
return f'uid {self.uid} \nto_node {[node for node in self.to_node]}\neqpt {self.eqpt}\n'
def __str__(self):
return f'uid {self.uid} \nto_node {[node for node in self.to_node]}\neqpt {self.eqpt}\n'
def read_excel(input_filename):
""" read excel Nodes and Links sheets and create a dict of nodes with
their to_nodes and type of eqpt
"""
with open_workbook(input_filename) as wobo:
# reading Links sheet
links_sheet = wobo.sheet_by_name('Links')
nodes = {}
for row in ALL_ROWS(links_sheet, start=5):
try:
nodes[row[0].value].to_node.append(row[1].value)
except KeyError:
nodes[row[0].value] = Node(row[0].value, [row[1].value])
try:
nodes[row[1].value].to_node.append(row[0].value)
except KeyError:
nodes[row[1].value] = Node(row[1].value, [row[0].value])
nodes_sheet = wobo.sheet_by_name('Nodes')
for row in ALL_ROWS(nodes_sheet, start=5):
node = row[0].value
eqpt = row[6].value
try:
if eqpt == 'ILA' and len(nodes[node].to_node) != 2:
print(f'Inconsistancy ILA node with degree > 2: {node} ')
exit()
if eqpt == '' and len(nodes[node].to_node) == 2:
nodes[node].eqpt = 'ILA'
elif eqpt == '' and len(nodes[node].to_node) != 2:
nodes[node].eqpt = 'ROADM'
else:
nodes[node].eqpt = eqpt
except KeyError:
print(f'inconsistancy between nodes and links sheet: {node} is not listed in links')
exit()
return nodes
def create_eqt_template(nodes, input_filename):
""" writes list of node A node Z corresponding to Nodes and Links sheets in order
to help user populating Eqpt
"""
output_filename = f'{input_filename[:-4]}_eqpt_sheet.txt'
with open(output_filename, 'w', encoding='utf-8') as my_file:
# print header similar to excel
my_file.write('OPTIONAL\n\n\n\
\t\tNode a egress amp (from a to z)\t\t\t\t\tNode a ingress amp (from z to a) \
\nNode A \tNode Z \tamp type \tatt_in \tamp gain \ttilt \tatt_out\
amp type \tatt_in \tamp gain \ttilt \tatt_out\n')
for node in nodes.values():
if node.eqpt == 'ILA':
my_file.write(f'{node.uid}\t{node.to_node[0]}\n')
if node.eqpt == 'ROADM':
for to_node in node.to_node:
my_file.write(f'{node.uid}\t{to_node}\n')
print(f'File {output_filename} successfully created with Node A - Node Z ' +
' entries for Eqpt sheet in excel file.')
if __name__ == '__main__':
ARGS = PARSER.parse_args()
create_eqt_template(read_excel(ARGS.workbook), ARGS.workbook)

View File

@@ -0,0 +1,296 @@
{
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.017807767853702,
1.0
]
}

View File

@@ -1,8 +0,0 @@
-1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01
-2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02
-1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01
-2.0500000000000000e+01 -2.0489473680000000e+01 -2.0478947370000000e+01 -2.0468421050000000e+01 -2.0457894740000000e+01 -2.0447368420000000e+01 -2.0436842110000001e+01 -2.0426315790000000e+01 -2.0415789470000000e+01 -2.0405263160000001e+01 -2.0394736840000000e+01 -2.0384210530000001e+01 -2.0373684210000000e+01 -2.0363157890000000e+01 -2.0352631580000001e+01 -2.0342105260000000e+01 -2.0331578950000001e+01 -2.0321052630000001e+01 -2.0310526320000001e+01 -2.0300000000000001e+01 -2.0289473680000000e+01 -2.0278947370000001e+01 -2.0268421050000001e+01 -2.0257894740000001e+01 -2.0247368420000001e+01 -2.0236842110000001e+01 -2.0226315790000001e+01 -2.0215789470000001e+01 -2.0205263160000001e+01 -2.0194736840000001e+01 -2.0184210530000001e+01 -2.0173684210000001e+01 -2.0163157890000001e+01 -2.0152631580000001e+01 -2.0142105260000001e+01 -2.0131578950000002e+01 -2.0121052630000001e+01 -2.0110526320000002e+01 -2.0100000000000001e+01 -2.0089473680000001e+01 -2.0078947370000002e+01 -2.0068421050000001e+01 -2.0057894739999998e+01 -2.0047368420000002e+01 -2.0036842109999998e+01 -2.0026315790000002e+01 -2.0015789470000001e+01 -2.0005263159999998e+01 -1.9994736840000002e+01 -1.9984210529999999e+01 -1.9973684209999998e+01 -1.9963157890000002e+01 -1.9952631579999998e+01 -1.9942105260000002e+01 -1.9931578949999999e+01 -1.9921052629999998e+01 -1.9910526319999999e+01 -1.9899999999999999e+01 -1.9889473679999998e+01 -1.9878947369999999e+01 -1.9868421049999998e+01 -1.9857894739999999e+01 -1.9847368419999999e+01 -1.9836842109999999e+01 -1.9826315789999999e+01 -1.9815789469999999e+01 -1.9805263159999999e+01 -1.9794736839999999e+01 -1.9784210529999999e+01 -1.9773684209999999e+01 -1.9763157889999999e+01 -1.9752631579999999e+01 -1.9742105259999999e+01 -1.9731578949999999e+01 -1.9721052629999999e+01 -1.9710526320000000e+01 -1.9699999999999999e+01 -1.9689473679999999e+01 -1.9678947369999999e+01 -1.9668421049999999e+01 -1.9657894740000000e+01 -1.9647368419999999e+01 -1.9636842110000000e+01 -1.9626315790000000e+01 -1.9615789469999999e+01 -1.9605263160000000e+01 -1.9594736839999999e+01 -1.9584210530000000e+01 -1.9573684210000000e+01 -1.9563157889999999e+01 -1.9552631580000000e+01 -1.9542105260000000e+01 -1.9531578950000000e+01 -1.9521052630000000e+01 -1.9510526320000000e+01 -1.9500000000000000e+01
-2.0500000000000000e+01 -2.0489473680000000e+01 -2.0478947370000000e+01 -2.0468421050000000e+01 -2.0457894740000000e+01 -2.0447368420000000e+01 -2.0436842110000001e+01 -2.0426315790000000e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.9573684210000000e+01 -1.9563157889999999e+01 -1.9552631580000000e+01 -1.9542105260000000e+01 -1.9531578950000000e+01 -1.9521052630000000e+01 -1.9510526320000000e+01 -1.9500000000000000e+01
-1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01
-1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01
-1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02

View File

@@ -1,8 +0,0 @@
7.0000000000000000e+01 1.1700000000000000e+02 1.0800000000000000e+02 1.0800000000000000e+02 3.2000000000000000e+01 7.0000000000000000e+01 1.0800000000000000e+02 9.7000000000000000e+01 1.1600000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
7.9000000000000000e+01 1.1000000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 7.1000000000000000e+01 1.1400000000000000e+02 1.1100000000000000e+02 1.1700000000000000e+02 1.1200000000000000e+02 3.2000000000000000e+01 6.6000000000000000e+01 1.0800000000000000e+02 1.1700000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01
7.9000000000000000e+01 1.1000000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 7.1000000000000000e+01 1.1400000000000000e+02 1.1100000000000000e+02 1.1700000000000000e+02 1.1200000000000000e+02 3.2000000000000000e+01 8.2000000000000000e+01 1.0100000000000000e+02 1.0000000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01
7.0000000000000000e+01 1.1700000000000000e+02 1.0800000000000000e+02 1.0800000000000000e+02 3.2000000000000000e+01 1.1900000000000000e+02 3.2000000000000000e+01 8.3000000000000000e+01 8.2000000000000000e+01 8.3000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
6.6000000000000000e+01 1.1100000000000000e+02 1.1600000000000000e+02 1.0400000000000000e+02 3.2000000000000000e+01 6.9000000000000000e+01 1.1000000000000000e+02 1.0000000000000000e+02 1.1500000000000000e+02 3.2000000000000000e+01 1.1900000000000000e+02 3.2000000000000000e+01 8.3000000000000000e+01 8.2000000000000000e+01 8.3000000000000000e+01
1.0400000000000000e+02 1.0100000000000000e+02 9.7000000000000000e+01 1.1800000000000000e+02 1.2100000000000000e+02 3.2000000000000000e+01 9.8000000000000000e+01 1.0800000000000000e+02 1.1700000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
1.0400000000000000e+02 1.0100000000000000e+02 9.7000000000000000e+01 1.1800000000000000e+02 1.2100000000000000e+02 3.2000000000000000e+01 1.1400000000000000e+02 1.0100000000000000e+02 1.0000000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
1.1900000000000000e+02 1.1100000000000000e+02 1.1400000000000000e+02 1.1500000000000000e+02 1.1600000000000000e+02 3.2000000000000000e+01 9.9000000000000000e+01 9.7000000000000000e+01 1.1500000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01

View File

@@ -1,9 +0,0 @@
{
"params": {
"dfg": [25.13596985, 25.11822814, 25.09542133, 25.06245771, 25.02602765, 24.99637953, 24.98167255, 24.97530668, 24.98320726, 24.99718565, 25.01757247, 25.03832781, 25.05495585, 25.0670719, 25.07091411, 25.07094365, 25.07114324, 25.07533627, 25.08731018, 25.10313936, 25.12276204, 25.14239479, 25.15945633, 25.17392704, 25.17673767, 25.17037141, 25.15216254, 25.1311431, 25.10802335, 25.08548777, 25.06916675, 25.05848176, 25.05447313, 25.05154441, 25.04946059, 25.04717849, 25.04551656, 25.04467649, 25.0407292, 25.03285408, 25.0234883, 25.01659234, 25.01332136, 25.01123434, 25.01030015, 25.00936548, 25.00873964, 25.00842535, 25.00696466, 25.0040431, 25.00070998, 24.9984232, 24.99306332, 24.98352421, 24.97125103, 24.96038108, 24.94888721, 24.93531489, 24.92131927, 24.90898697, 24.89896514, 24.88958463, 24.8808387, 24.87210092, 24.86462026, 24.85839773, 24.85445838, 24.85155443, 24.85176601, 24.85408014, 24.85909624, 24.86474458, 24.87203486, 24.8803652, 24.88910669, 24.89721313, 24.90282604, 24.9065669, 24.9086508, 24.91093944, 24.91343079, 24.91592344, 24.92155351, 24.93031861, 24.94052812, 24.94904669, 24.95757123, 24.96781845, 24.98180093, 24.99782686, 25.01393183, 25.02809846, 25.04032575, 25.05256981, 25.06479701, 25.07704697],
"dgt": [2.714526681131686, 2.705443819238505, 2.6947834587664494, 2.6841217449620203, 2.6681935771243177, 2.6521732021128046, 2.630396440815385, 2.602860350286428, 2.5696460593920065, 2.5364027376452056, 2.499446286796604, 2.4587748041127506, 2.414398437185221, 2.3699990328716107, 2.322373696229342, 2.271520771371253, 2.2174389328192197, 2.16337565384239, 2.1183028432496016, 2.082225099873648, 2.055100772005235, 2.0279625371819305, 2.0008103857988204, 1.9736443063300082, 1.9482128147680253, 1.9245345552113182, 1.9026104247588487, 1.8806927939516411, 1.862235672444246, 1.847275503201129, 1.835814081380705, 1.824381436842932, 1.8139629377087627, 1.8045606557581335, 1.7961751115773796, 1.7877868031023945, 1.7793941781790852, 1.7709972329654864, 1.7625959636196327, 1.7541903672600494, 1.7459181197626403, 1.737780757913635, 1.7297783508684146, 1.7217732861435076, 1.7137640932265894, 1.7057507692361864, 1.6918150918099673, 1.6719047669939942, 1.6460167077689267, 1.6201194134191075, 1.5986915141218316, 1.5817353179379183, 1.569199764184379, 1.5566577309558969, 1.545374152761467, 1.5353620432989845, 1.5266220576235803, 1.5178910621476225, 1.5097346239790443, 1.502153039909686, 1.495145456062699, 1.488134243479226, 1.48111939735681, 1.474100442252211, 1.4670307626366115, 1.4599103316162523, 1.45273959485914, 1.445565137158368, 1.4340878115214444, 1.418273806730323, 1.3981208704326855, 1.3779439775587023, 1.3598972673004606, 1.3439818461440451, 1.3301807335621048, 1.316383926863083, 1.3040618749785347, 1.2932153453410835, 1.2838336236692311, 1.2744470198196236, 1.2650555289898042, 1.2556591482982988, 1.2428104897182262, 1.2264996957264114, 1.2067249615595257, 1.1869318618366975, 1.1672278304018044, 1.1476135933863398, 1.1280891949729075, 1.108555289615659, 1.0895983485572227, 1.0712204022764056, 1.0534217504465226, 1.0356155337864215, 1.017807767853702, 1.0],
"nf_fit_coeff": [0.000168241, 0.0469961, 0.0359549, 5.82851],
"nf_ripple": [-0.315374332, -0.315374332, -0.3154009157100272, -0.3184914611751095, -0.32158358425400546, -0.3246772861549999, -0.32762368641496226, -0.3205413846123276, -0.31345546385118733, -0.3063659213569748, -0.29920267890990127, -0.27061972852631744, -0.24202215770774693, -0.21340995523361256, -0.18478227130158695, -0.14809761118389625, -0.11139416731807622, -0.07467192527357988, -0.038026748965679924, -0.019958469399422092, -0.0018809287980157928, 0.01620587996057356, 0.03430196400570967, 0.05240733047405406, 0.07052198650959736, 0.079578036683472, 0.08854664736190952, 0.0975198632319653, 0.10649768784154924, 0.0977413804499074, 0.08880343717266004, 0.07986089973284587, 0.0709137645874038, 0.06333589274056531, 0.055756212252058776, 0.04817263174786321, 0.04058514821716236, 0.03338159167571013, 0.026178308595650738, 0.018971315351761126, 0.011760609076833628, 0.01695029492275999, 0.02227499135770144, 0.02760243318910433, 0.03293262254079026, 0.038265561538776145, 0.04360125231127117, 0.03485699074348155, 0.025991055149117932, 0.017120541224980364, 0.008275758735920322, 0.0019423214065246042, -0.004394389017104359, -0.010734375072893196, -0.017077639301414434, -0.02467970289957285, -0.03229797040382168, -0.03992018009047725, -0.04753456632753024, -0.049234003141433724, -0.05093432003654719, -0.05263551769669225, -0.05433759680640246, -0.0560405580509193, -0.057718452237076875, -0.056840590379175944, -0.055962273198734966, -0.05508350034141658, -0.054204271452516814, -0.05839608872695511, -0.06262733016971533, -0.0668607690892037, -0.07090173625606945, -0.05209609730905224, -0.03328068412141294, -0.014455489070928059, 0.004315038757905716, 0.014839202394482527, 0.025368841662503576, 0.03590396083646565, 0.0464445641953214, 0.05699065602246746, 0.06754224060577406, 0.10002709623672751, 0.13258013095133617, 0.1651501336277331, 0.1977371175359939, 0.23194802687829724, 0.26618779883837107, 0.3004454365808535, 0.33472095409250663, 0.35929034770587287, 0.38384389188855605, 0.40841026111391787, 0.43298946543290784, 0.43298946543290784],
"frequencies": []
}
}

View File

@@ -1,72 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
from gnpy.core.utils import (load_json,
itufs,
freq2wavelength,
lin2db,
db2lin)
from gnpy.core import network
topology = load_json('edfa_example_network.json')
nw = network.network_from_json(topology)
pch2d_legend_data = np.loadtxt('Pchan2DLegend.txt')
pch2d = np.loadtxt('Pchan2D.txt')
ch_spacing = 0.05
fc = itufs(ch_spacing)
lc = freq2wavelength(fc) / 1000
nchan = np.arange(len(lc))
df = np.ones(len(lc)) * ch_spacing
edfa1 = [n for n in nw.nodes() if n.uid == 'Edfa1'][0]
edfa1.gain_target = 20.0
edfa1.tilt_target = -0.7
edfa1.calc_nf()
results = []
for Pin in pch2d:
chgain = edfa1.gain_profile(Pin)
pase = edfa1.noise_profile(chgain, fc, df)
pout = lin2db(db2lin(Pin + chgain) + db2lin(pase))
results.append(pout)
# Generate legend text
pch2d_legend = []
for ea in pch2d_legend_data:
s = ''.join([chr(xx) for xx in ea.astype(dtype=int)]).strip()
pch2d_legend.append(s)
# Plot
axis_font = {'fontname': 'Arial', 'size': '16', 'fontweight': 'bold'}
title_font = {'fontname': 'Arial', 'size': '17', 'fontweight': 'bold'}
tic_font = {'fontname': 'Arial', 'size': '12'}
plt.rcParams["font.family"] = "Arial"
plt.figure()
plt.plot(nchan, pch2d.T, '.-', lw=2)
plt.xlabel('Channel Number', **axis_font)
plt.ylabel('Channel Power [dBm]', **axis_font)
plt.title('Input Power Profiles for Different Channel Loading', **title_font)
plt.legend(pch2d_legend, loc=5)
plt.grid()
plt.ylim((-100, -10))
plt.xlim((0, 110))
plt.xticks(np.arange(0, 100, 10), **tic_font)
plt.yticks(np.arange(-110, -10, 10), **tic_font)
plt.figure()
for result in results:
plt.plot(nchan, result, '.-', lw=2)
plt.title('Output Power w/ ASE for Different Channel Loading', **title_font)
plt.xlabel('Channel Number', **axis_font)
plt.ylabel('Channel Power [dBm]', **axis_font)
plt.grid()
plt.ylim((-50, 10))
plt.xlim((0, 100))
plt.xticks(np.arange(0, 100, 10), **tic_font)
plt.yticks(np.arange(-50, 10, 10), **tic_font)
plt.legend(pch2d_legend, loc=5)
plt.show()

View File

@@ -1,7 +1,7 @@
{
"network_name": "EDFA Example Network - P2P",
"elements": [{
"uid": "Site A",
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
@@ -15,13 +15,15 @@
{
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80,
"loss_coef": 0.2,
"length_units": "km",
"dispersion": 16.7E-6,
"gamma": 1.27E-3
},
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"region": "",
@@ -33,11 +35,12 @@
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
"gain_target": 17,
"tilt_target": 0,
"out_voa": 0
},
"config_from_json": "edfa_config.json",
"metadata": {
"location": {
"region": "",
@@ -47,13 +50,13 @@
}
},
{
"uid": "Site B",
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"city": "Site B",
"region": "",
"latitude": 3,
"latitude": 2,
"longitude": 0
}
}
@@ -61,7 +64,7 @@
],
"connections": [{
"from_node": "Site A",
"from_node": "Site_A",
"to_node": "Span1"
},
{
@@ -70,7 +73,7 @@
},
{
"from_node": "Edfa1",
"to_node": "Site B"
"to_node": "Site_B"
}
]

0
examples/edfa_model/DFG_96.txt Executable file → Normal file
View File

0
examples/edfa_model/DGT_96.txt Executable file → Normal file
View File

0
examples/edfa_model/NFR_96.txt Executable file → Normal file
View File

View File

@@ -1,15 +1,6 @@
{
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_fit_coeff": "pNFfit3.txt",
"nf_ripple": "NFR_96.txt",
"dfg": "DFG_96.txt",
"gain_ripple": "DFG_96.txt",
"dgt": "DGT_96.txt",
"nf_model":
{
"enabled": true,
"nf_min": 5.8,
"nf_max": 10
}
"nf_fit_coeff": "pNFfit3.txt"
}

View File

@@ -1,8 +0,0 @@
-1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01
-2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02
-1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01 -2.0000000000000000e+01
-2.0500000000000000e+01 -2.0489473680000000e+01 -2.0478947370000000e+01 -2.0468421050000000e+01 -2.0457894740000000e+01 -2.0447368420000000e+01 -2.0436842110000001e+01 -2.0426315790000000e+01 -2.0415789470000000e+01 -2.0405263160000001e+01 -2.0394736840000000e+01 -2.0384210530000001e+01 -2.0373684210000000e+01 -2.0363157890000000e+01 -2.0352631580000001e+01 -2.0342105260000000e+01 -2.0331578950000001e+01 -2.0321052630000001e+01 -2.0310526320000001e+01 -2.0300000000000001e+01 -2.0289473680000000e+01 -2.0278947370000001e+01 -2.0268421050000001e+01 -2.0257894740000001e+01 -2.0247368420000001e+01 -2.0236842110000001e+01 -2.0226315790000001e+01 -2.0215789470000001e+01 -2.0205263160000001e+01 -2.0194736840000001e+01 -2.0184210530000001e+01 -2.0173684210000001e+01 -2.0163157890000001e+01 -2.0152631580000001e+01 -2.0142105260000001e+01 -2.0131578950000002e+01 -2.0121052630000001e+01 -2.0110526320000002e+01 -2.0100000000000001e+01 -2.0089473680000001e+01 -2.0078947370000002e+01 -2.0068421050000001e+01 -2.0057894739999998e+01 -2.0047368420000002e+01 -2.0036842109999998e+01 -2.0026315790000002e+01 -2.0015789470000001e+01 -2.0005263159999998e+01 -1.9994736840000002e+01 -1.9984210529999999e+01 -1.9973684209999998e+01 -1.9963157890000002e+01 -1.9952631579999998e+01 -1.9942105260000002e+01 -1.9931578949999999e+01 -1.9921052629999998e+01 -1.9910526319999999e+01 -1.9899999999999999e+01 -1.9889473679999998e+01 -1.9878947369999999e+01 -1.9868421049999998e+01 -1.9857894739999999e+01 -1.9847368419999999e+01 -1.9836842109999999e+01 -1.9826315789999999e+01 -1.9815789469999999e+01 -1.9805263159999999e+01 -1.9794736839999999e+01 -1.9784210529999999e+01 -1.9773684209999999e+01 -1.9763157889999999e+01 -1.9752631579999999e+01 -1.9742105259999999e+01 -1.9731578949999999e+01 -1.9721052629999999e+01 -1.9710526320000000e+01 -1.9699999999999999e+01 -1.9689473679999999e+01 -1.9678947369999999e+01 -1.9668421049999999e+01 -1.9657894740000000e+01 -1.9647368419999999e+01 -1.9636842110000000e+01 -1.9626315790000000e+01 -1.9615789469999999e+01 -1.9605263160000000e+01 -1.9594736839999999e+01 -1.9584210530000000e+01 -1.9573684210000000e+01 -1.9563157889999999e+01 -1.9552631580000000e+01 -1.9542105260000000e+01 -1.9531578950000000e+01 -1.9521052630000000e+01 -1.9510526320000000e+01 -1.9500000000000000e+01
-2.0500000000000000e+01 -2.0489473680000000e+01 -2.0478947370000000e+01 -2.0468421050000000e+01 -2.0457894740000000e+01 -2.0447368420000000e+01 -2.0436842110000001e+01 -2.0426315790000000e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.9573684210000000e+01 -1.9563157889999999e+01 -1.9552631580000000e+01 -1.9542105260000000e+01 -1.9531578950000000e+01 -1.9521052630000000e+01 -1.9510526320000000e+01 -1.9500000000000000e+01
-1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01
-1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01 -1.4460000000000001e+01
-1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.4460000000000001e+01 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02 -1.0000000000000000e+02

View File

@@ -1,8 +0,0 @@
7.0000000000000000e+01 1.1700000000000000e+02 1.0800000000000000e+02 1.0800000000000000e+02 3.2000000000000000e+01 7.0000000000000000e+01 1.0800000000000000e+02 9.7000000000000000e+01 1.1600000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
7.9000000000000000e+01 1.1000000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 7.1000000000000000e+01 1.1400000000000000e+02 1.1100000000000000e+02 1.1700000000000000e+02 1.1200000000000000e+02 3.2000000000000000e+01 6.6000000000000000e+01 1.0800000000000000e+02 1.1700000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01
7.9000000000000000e+01 1.1000000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 7.1000000000000000e+01 1.1400000000000000e+02 1.1100000000000000e+02 1.1700000000000000e+02 1.1200000000000000e+02 3.2000000000000000e+01 8.2000000000000000e+01 1.0100000000000000e+02 1.0000000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01
7.0000000000000000e+01 1.1700000000000000e+02 1.0800000000000000e+02 1.0800000000000000e+02 3.2000000000000000e+01 1.1900000000000000e+02 3.2000000000000000e+01 8.3000000000000000e+01 8.2000000000000000e+01 8.3000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
6.6000000000000000e+01 1.1100000000000000e+02 1.1600000000000000e+02 1.0400000000000000e+02 3.2000000000000000e+01 6.9000000000000000e+01 1.1000000000000000e+02 1.0000000000000000e+02 1.1500000000000000e+02 3.2000000000000000e+01 1.1900000000000000e+02 3.2000000000000000e+01 8.3000000000000000e+01 8.2000000000000000e+01 8.3000000000000000e+01
1.0400000000000000e+02 1.0100000000000000e+02 9.7000000000000000e+01 1.1800000000000000e+02 1.2100000000000000e+02 3.2000000000000000e+01 9.8000000000000000e+01 1.0800000000000000e+02 1.1700000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
1.0400000000000000e+02 1.0100000000000000e+02 9.7000000000000000e+01 1.1800000000000000e+02 1.2100000000000000e+02 3.2000000000000000e+01 1.1400000000000000e+02 1.0100000000000000e+02 1.0000000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01
1.1900000000000000e+02 1.1100000000000000e+02 1.1400000000000000e+02 1.1500000000000000e+02 1.1600000000000000e+02 3.2000000000000000e+01 9.9000000000000000e+01 9.7000000000000000e+01 1.1500000000000000e+02 1.0100000000000000e+02 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01 3.2000000000000000e+01

View File

@@ -1,301 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 27 12:32:04 2017
@author: briantaylor
"""
import numpy as np
from numpy import polyfit, polyval, mean
from utilities import lin2db, db2lin, itufs, freq2wavelength
import matplotlib.pyplot as plt
from scipy.constants import h
def noise_profile(nf, gain, ffs, df):
""" noise_profile(nf, gain, ffs, df) computes amplifier ase
:param nf: Noise figure in dB
:param gain: Actual gain calculated for the EDFA in dB units
:param ffs: A numpy array of frequencies
:param df: the reference bw in THz
:type nf: numpy.ndarray
:type gain: numpy.ndarray
:type ffs: numpy.ndarray
:type df: float
:return: the asepower in dBm
:rtype: numpy.ndarray
ASE POWER USING PER CHANNEL GAIN PROFILE
INPUTS:
NF_dB - Noise figure in dB, vector of length number of channels or
spectral slices
G_dB - Actual gain calculated for the EDFA, vector of length number of
channels or spectral slices
ffs - Center frequency grid of the channels or spectral slices in THz,
vector of length number of channels or spectral slices
dF - width of each channel or spectral slice in THz,
vector of length number of channels or spectral slices
OUTPUT:
ase_dBm - ase in dBm per channel or spectral slice
NOTE: the output is the total ASE in the channel or spectral slice. For
50GHz channels the ASE BW is effectively 0.4nm. To get to noise power in
0.1nm, subtract 6dB.
ONSR is usually quoted as channel power divided by
the ASE power in 0.1nm RBW, regardless of the width of the actual
channel. This is a historical convention from the days when optical
signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
resolution of the OSAs that were used to measure spectral power which
were set to 0.1nm resolution for convenience. Moving forward into
flexible grid and high baud rate signals, it may be convenient to begin
quoting power spectral density in the same BW for both signal and ASE,
e.g. 12.5GHz."""
h_mWThz = 1e-3 * h * (1e14)**2
nf_lin = db2lin(nf)
g_lin = db2lin(gain)
ase = h_mWThz * df * ffs * (nf_lin * g_lin - 1)
asedb = lin2db(ase)
return asedb
def gain_profile(dfg, dgt, Pin, gp, gtp):
"""
:param dfg: design flat gain
:param dgt: design gain tilt
:param Pin: channing input power profile
:param gp: Average gain setpoint in dB units
:param gtp: gain tilt setting
:type dfg: numpy.ndarray
:type dgt: numpy.ndarray
:type Pin: numpy.ndarray
:type gp: float
:type gtp: float
:return: gain profile in dBm
:rtype: numpy.ndarray
AMPLIFICATION USING INPUT PROFILE
INPUTS:
DFG - vector of length number of channels or spectral slices
DGT - vector of length number of channels or spectral slices
Pin - input powers vector of length number of channels or
spectral slices
Gp - provisioned gain length 1
GTp - provisioned tilt length 1
OUTPUT:
amp gain per channel or spectral slice
NOTE: there is no checking done for violations of the total output power
capability of the amp.
Ported from Matlab version written by David Boerges at Ciena.
Based on:
R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
gain
tilt technique", Journal of Lightwave Technology, Vol. 18, Iss. 3,
Pp. 343-347, 2000.
"""
err_tolerance = 1.0e-11
simple_opt = True
# TODO make all values linear unit and convert to dB units as needed within
# this function.
nchan = list(range(len(Pin)))
# TODO find a way to use these or lose them. Primarily we should have a
# way to determine if exceeding the gain or output power of the amp
tot_in_power_db = lin2db(np.sum(db2lin(Pin)))
avg_gain_db = lin2db(mean(db2lin(dfg)))
# Linear fit to get the
p = polyfit(nchan, dgt, 1)
dgt_slope = p[0]
# Calculate the target slope- Currently assumes equal spaced channels
# TODO make it so that supports arbitrary channel spacing.
targ_slope = gtp / (len(nchan) - 1)
# 1st estimate of DGT scaling
dgts1 = targ_slope / dgt_slope
# when simple_opt is true code makes 2 attempts to compute gain and
# the internal voa value. This is currently here to provide direct
# comparison with original Matlab code. Will be removed.
# TODO replace with loop
if simple_opt:
# 1st estimate of Er gain & voa loss
g1st = dfg + dgt * dgts1
voa = lin2db(mean(db2lin(g1st))) - gp
# 2nd estimate of Amp ch gain using the channel input profile
g2nd = g1st - voa
pout_db = lin2db(np.sum(db2lin(Pin + g2nd)))
dgts2 = gp - (pout_db - tot_in_power_db)
# Center estimate of amp ch gain
xcent = dgts2
gcent = g1st - voa + dgt * xcent
pout_db = lin2db(np.sum(db2lin(Pin + gcent)))
gavg_cent = pout_db - tot_in_power_db
# Lower estimate of Amp ch gain
deltax = np.max(g1st) - np.min(g1st)
xlow = dgts2 - deltax
glow = g1st - voa + xlow * dgt
pout_db = lin2db(np.sum(db2lin(Pin + glow)))
gavg_low = pout_db - tot_in_power_db
# Upper gain estimate
xhigh = dgts2 + deltax
ghigh = g1st - voa + xhigh * dgt
pout_db = lin2db(np.sum(db2lin(Pin + ghigh)))
gavg_high = pout_db - tot_in_power_db
# compute slope
slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
if np.abs(gp - gavg_cent) <= err_tolerance:
dgts3 = xcent
elif gp < gavg_cent:
dgts3 = xcent - (gavg_cent - gp) / slope1
else:
dgts3 = xcent + (-gavg_cent + gp) / slope2
gprofile = g1st - voa + dgt * dgts3
else:
gprofile = None
return gprofile
if __name__ == '__main__':
plt.close('all')
fc = itufs(0.05)
lc = freq2wavelength(fc) / 1000
nchan = list(range(len(lc)))
df = np.array([0.05] * (nchan[-1] + 1))
# TODO remove path dependence
path = ''
"""
DFG_96: Design flat gain at each wavelength in the 96 channel 50GHz ITU
grid in dB. This can be experimentally determined by measuring the gain
at each wavelength using a full, flat channel (or ASE) load at the input.
The amplifier should be set to its maximum flat gain (tilt = 0dB). This
measurement captures the ripple of the amplifier. If the amplifier was
designed to be mimimum ripple at some other tilt value, then the ripple
reflected in this measurement will not be that minimum. However, when
the DGT gets applied through the provisioning of tilt, the model should
accurately reproduce the expected ripple at that tilt value. One could
also do the measurement at some expected tilt value and back-calculate
this vector using the DGT method. Alternatively, one could re-write the
algorithm to accept a nominal tilt and a tiled version of this vector.
"""
dfg_96 = np.loadtxt(path + 'DFG_96.txt')
"""maximum gain for flat operation - the amp in the data file was designed
for 25dB gain and has an internal VOA for setting the external gain
"""
avg_dfg = dfg_96.mean()
"""
DGT_96: This is the so-called Dynamic Gain Tilt of the EDFA in dB/dB. It
is the change in gain at each wavelength corresponding to a 1dB change at
the longest wavelength supported. The value can be obtained
experimentally or through analysis of the cross sections or Giles
parameters of the Er fibre. This is experimentally measured by changing
the gain of the amplifier above the maximum flat gain while not changing
the internal VOA (i.e. the mid-stage VOA is set to minimum and does not
change during the measurement). Note that the measurement can change the
gain by an arbitrary amount and divide by the gain change (in dB) which
is measured at the reference wavelength (the red end of the band).
"""
dgt_96 = np.loadtxt(path + 'DGT_96.txt')
"""
pNFfit3: Cubic polynomial fit coefficients to noise figure in dB
averaged across wavelength as a function of gain change from design flat:
NFavg = pNFfit3(1)*dG^3 + pNFfit3(2)*dG^2 pNFfit3(3)*dG + pNFfit3(4)
where
dG = GainTarget - average(DFG_96)
note that dG will normally be a negative value.
"""
nf_fitco = np.loadtxt(path + 'pNFfit3.txt')
"""NFR_96: Noise figure ripple in dB away from the average noise figure
across the band. This captures the wavelength dependence of the NF. To
calculate the NF across channels, one uses the cubic fit coefficients
with the external gain target to get the average nosie figure, NFavg and
then adds this to NFR_96:
NF_96 = NFR_96 + NFavg
"""
nf_ripple = np.loadtxt(path + 'NFR_96.txt')
# This is an example to set the provisionable gain and gain-tilt values
# Tilt is in units of dB/THz
gain_target = 20.0
tilt_target = -0.7
# calculate the NF for the EDFA at this gain setting
dg = gain_target - avg_dfg
nf_avg = polyval(nf_fitco, dg)
nf_96 = nf_ripple + nf_avg
# get the input power profiles to show
pch2d = np.loadtxt(path + 'Pchan2D.txt')
# Load legend and assemble legend text
pch2d_legend_data = np.loadtxt(path + 'Pchan2DLegend.txt')
pch2d_legend = []
for ea in pch2d_legend_data:
s = ''.join([chr(xx) for xx in ea.astype(dtype=int)]).strip()
pch2d_legend.append(s)
# assemble plot
axis_font = {'fontname': 'Arial', 'size': '16', 'fontweight': 'bold'}
title_font = {'fontname': 'Arial', 'size': '17', 'fontweight': 'bold'}
tic_font = {'fontname': 'Arial', 'size': '12'}
plt.rcParams["font.family"] = "Arial"
plt.figure()
plt.plot(nchan, pch2d.T, '.-', lw=2)
plt.xlabel('Channel Number', **axis_font)
plt.ylabel('Channel Power [dBm]', **axis_font)
plt.title('Input Power Profiles for Different Channel Loading',
**title_font)
plt.legend(pch2d_legend, loc=5)
plt.grid()
plt.ylim((-100, -10))
plt.xlim((0, 110))
plt.xticks(np.arange(0, 100, 10), **tic_font)
plt.yticks(np.arange(-110, -10, 10), **tic_font)
plt.figure()
ea = pch2d[1, :]
for ea in pch2d:
chgain = gain_profile(dfg_96, dgt_96, ea, gain_target, tilt_target)
pase = noise_profile(nf_96, chgain, fc, df)
pout = lin2db(db2lin(ea + chgain) + db2lin(pase))
plt.plot(nchan, pout, '.-', lw=2)
plt.title('Output Power with ASE for Different Channel Loading',
**title_font)
plt.xlabel('Channel Number', **axis_font)
plt.ylabel('Channel Power [dBm]', **axis_font)
plt.grid()
plt.ylim((-50, 10))
plt.xlim((0, 100))
plt.xticks(np.arange(0, 100, 10), **tic_font)
plt.yticks(np.arange(-50, 10, 10), **tic_font)
plt.legend(pch2d_legend, loc=5)
plt.show()

View File

@@ -0,0 +1,300 @@
*********************************************
Amplifier models and configuration
*********************************************
1. Equipment configuration description
#######################################
Equipment description defines equipment types and parameters.
It takes place in the default **eqpt_config.json** file.
By default **transmission_main_example.py** uses **eqpt_config.json** file and that
can be changed with **-e** or **--equipment** command line parameter.
2. Amplifier parameters and subtypes
#######################################
Several amplifiers can be used by GNpy, so they are defined as an array of equipment parameters in **eqpt_config.json** file.
- *"type_variety"*:
Each amplifier is identified by its unique *"type_variety"*, which is used in the topology files input to reference a specific amplifier. It is a user free defined id.
For each amplifier *type_variety*, specific parameters are describing its attributes and performance:
- *"type_def"*:
Sets the amplifier model that the simulation will use to calculate the ase noise contribution. 5 models are defined with reserved words:
- *"advanced_model"*
- *"variable_gain"*
- *"fixed_gain"*
- *"dual_stage"*
- *"openroadm"*
*see next section for a full description of these models*
- *"advanced_config_from_json"*:
**This parameter is only applicable to the _"advanced_model"_ model**
json file name describing:
- nf_fit_coeff
- f_min/max
- gain_ripple
- nf_ripple
- dgt
*see next section for a full description*
- *"gain_flatmax"*:
amplifier maximum gain in dB before its extended gain range: flat or nominal tilt output.
If gain > gain_flatmax, the amplifier will tilt, based on its dgt function
If gain > gain_flatmax + target_extended_gain, the amplifier output power is reduced to not exceed the extended gain range.
- *"gain_min"*:
amplifier minimum gain in dB.
If gain < gain_min, the amplifier input is automatically padded, which results in
NF += gain_min - gain
- *"p_max"*:
amplifier max output power, full load
Total signal output power will not be allowed beyond this value
- *"nf_min/max"*:
**These parameters are only applicable to the _"variable_gain"_ model**
min & max NF values in dB
NF_min is the amplifier NF @ gain_max
NF_max is the amplifier NF @ gain_min
- *"nf_coef"*:
**This parameter is only applicable to the *"openroadm"* model**
[a, b, c, d] 3rd order polynomial coefficients list to define the incremental OSNR vs Pin
Incremental OSNR is the amplifier OSNR contribution
Pin is the amplifier channel input power defined in a 50GHz bandwidth
Incremental OSNR = a*Pin³ + b*Pin² + c*Pin + d
- *"preamp_variety"*:
**This parameter is only applicable to the _"dual_stage"_ model**
1st stage type_variety
- *"booster_variety"*:
**This parameter is only applicable to the *"dual_stage"* model**
2nd stage type_variety
- *"out_voa_auto"*: true/false
**power_mode only**
**This parameter is only applicable to the *"advanced_model"* and *"variable_gain"* models**
If "out_voa_auto": true, auto_design will chose the output_VOA value that maximizes the amplifier gain within its power capability and therefore minimizes its NF.
- *"allowed_for_design"*: true/false
**auto_design only**
Tells auto_design if this amplifier can be picked for the design (deactivates unwanted amplifiers)
It does not prevent the use of an amplifier if it is placed in the topology input.
.. code-block:: json
{"Edfa": [{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}
]}
3. Amplifier models
#######################################
In an opensource and multi-vendor environnement, it is needed to support different use cases and context. Therefore several models are supported for amplifiers.
5 types of EDFA definition are possible and referenced by the *"type_def"* parameter with the following reserved words:
- *"advanced_model"*
This model is refered as a whitebox model because of the detailed level of knowledge that is required. The amplifier NF model and ripple definition are described by a json file referenced with *"advanced_config_from_json"*: json filename. This json file contains:
- nf_fit_coeff: [a,b,c,d]
3rd order polynomial NF = f(-dg) coeficients list
dg = gain - gain_max
- f_min/max: amplifier frequency range in Hz
- gain_ripple : [...]
amplifier gain ripple excursion comb list in dB across the frequency range.
- nf_ripple : [...]
amplifier nf ripple excursion comb list in dB across the frequency range.
- dgt : [...]
amplifier dynamic gain tilt comb list across the frequency range.
*See next section for the generation of this json file*
.. code-block:: json-object
"Edfa":[{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}
]
- *"variable_gain"*
This model is refered as an operator model because a lower level of knowledge is required. A full polynomial description of the NF cross the gain range is not required. Instead, NF_min and NF_max values are required and used by the code to model a dual stage amplifier with an internal mid stage VOA. NF_min and NF_max values are typically available from equipment suppliers data-sheet.
There is a default JSON file ”default_edfa_config.json”* to enforce 0 tilt and ripple values because GNpy core algorithm is a multi-carrier propogation.
- gain_ripple =[0,...,0]
- nf_ripple = [0,...,0]
- dgt = [...] generic dgt comb
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}
]
- *"fixed_gain"*
This model is also an operator model with a single NF value that emulates basic single coil amplifiers without internal VOA.
if gain_min < gain < gain_max, NF == nf0
if gain < gain_min, the amplifier input is automatically padded, which results in
NF += gain_min - gain
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
}
]
- *"openroadm"*
This model is a black box model replicating OpenRoadm MSA spec for ILA.
.. code-block:: json-object
"Edfa":[{
"type_variety": "low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 12,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
}
]
- *"dual_stage"*
This model allows the cascade (pre-defined combination) of any 2 amplifiers already described in the eqpt_config.json library.
- preamp_variety defines the 1st stge type variety
- booster variety defines the 2nd stage type variety
Both preamp and booster variety must exist in the eqpt libray
The resulting NF is the sum of the 2 amplifiers
The preamp is operated to its maximum gain
- gain_min indicates to auto_design when this dual_stage should be used
But unlike other models the 1st stage input will not be padded: it is always operated to its maximu gain and min NF. Therefore if gain adaptation and padding is needed it will be performed by the 2nd stage.
.. code-block:: json
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
}
4. advanced_config_from_json
#######################################
The build_oa_json.py library in gnpy/examples/edfa_model can be used to build the json file required for the amplifier advanced_model type_def:
Update an existing json file with all the 96ch txt files for a given amplifier type
amplifier type 'OA_type1' is hard coded but can be modified and other types added
returns an updated amplifier json file: output_json_file_name = 'edfa_config.json'
amplifier file names
Convert a set of amplifier files + input json definiton file into a valid edfa_json_file:
nf_fit_coeff: NF 3rd order polynomial coefficients txt file
nf = f(dg) with dg = gain_operational - gain_max
nf_ripple: NF ripple excursion txt file
gain_ripple: gain ripple txt file
dgt: dynamic gain txt file
input json file in argument (defult = 'OA.json')
the json input file should have the following fields:
.. code-block:: json
{
"nf_fit_coeff": "nf_filename.txt",
"nf_ripple": "nf_ripple_filename.txt",
"gain_ripple": "DFG_filename.txt",
"dgt": "DGT_filename.txt"
}

View File

@@ -4,7 +4,6 @@
Created on Tue Jan 30 12:32:00 2018
@author: jeanluc-auge
@comments about amplifier input files from Brian Taylor & Dave Boertjes
update an existing json file with all the 96ch txt files for a given amplifier type
amplifier type 'OA_type1' is hard coded but can be modified and other types added
@@ -18,46 +17,29 @@ from gnpy.core.utils import lin2db, db2lin
"""amplifier file names
convert a set of amplifier files + input json definiton file into a valid edfa_json_file:
nf_fit_coeff: NF polynomial coefficients txt file (optional)
nf_fit_coeff: NF 3rd order polynomial coefficients txt file
nf = f(dg)
with dg = gain_operational - gain_max
nf_ripple: NF ripple excursion txt file
dfg: gain txt file
gain_ripple: gain ripple txt file
dgt: dynamic gain txt file
input json file in argument (defult = 'OA.json')
the json input file should have the following fields:
{
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_fit_coeff": "pNFfit3.txt",
"nf_ripple": "NFR_96.txt",
"dfg": "DFG_96.txt",
"dgt": "DGT_96.txt",
"nf_model":
{
"enabled": true,
"nf_min": 5.8,
"nf_max": 10
}
"nf_fit_coeff": "nf_filename.txt",
"nf_ripple": "nf_ripple_filename.txt",
"gain_ripple": "DFG_filename.txt",
"dgt": "DGT_filename.txt",
}
gain_flat = max flat gain (dB)
gain_min = min gain (dB) : will consider an input VOA if below (TBD vs throwing an exception)
p_max = max power (dBm)
nf_fit = boolean (True, False) :
if False nf_fit_coeff are ignored and nf_model fields are used
"""
input_json_file_name = "OA.json" #default path
output_json_file_name = "edfa_config.json"
param_field ="params"
gain_min_field = "gain_min"
gain_max_field = "gain_flatmax"
gain_ripple_field = "dfg"
output_json_file_name = "default_edfa_config.json"
gain_ripple_field = "gain_ripple"
nf_ripple_field = "nf_ripple"
nf_fit_coeff = "nf_fit_coeff"
nf_model_field = "nf_model"
nf_model_enabled_field = "enabled"
nf_min_field ="nf_min"
nf_max_field = "nf_max"
def read_file(field, file_name):
"""read and format the 96 channels txt files describing the amplifier NF and ripple
@@ -71,62 +53,16 @@ def read_file(field, file_name):
#data = list(data.split(","))
#data = [float(x) for x in data]
data = np.loadtxt(file_name)
print(len(data), file_name)
if field == gain_ripple_field or field == nf_ripple_field:
#consider ripple excursion only to avoid redundant information
#because the max flat_gain is already given by the 'gain_flat' field in json
#remove the mean component
print(file_name, ', mean value =', data.mean(), ' is substracted')
data = data - data.mean()
data = data.tolist()
return data
def nf_model(amp_dict):
if amp_dict[nf_model_field][nf_model_enabled_field] == True:
gain_min = amp_dict[gain_min_field]
gain_max = amp_dict[gain_max_field]
nf_min = amp_dict[nf_model_field][nf_min_field]
nf_max = amp_dict[nf_model_field][nf_max_field]
#use NF estimation model based on NFmin and NFmax in json OA file
delta_p = 5 #max power dB difference between 1st and 2nd stage coils
#dB g1a = (1st stage gain) - (internal voa attenuation)
g1a_min = gain_min - (gain_max-gain_min) - delta_p
g1a_max = gain_max - delta_p
#nf1 and nf2 are the nf of the 1st and 2nd stage coils
#calculate nf1 and nf2 values that solve nf_[min/max] = nf1 + nf2 / g1a[min/max]
nf2 = lin2db((db2lin(nf_min) - db2lin(nf_max)) / (1/db2lin(g1a_max)-1/db2lin(g1a_min)))
nf1 = lin2db(db2lin(nf_min)- db2lin(nf2)/db2lin(g1a_max)) #expression (1)
""" now checking and recalculating the results:
recalculate delta_p to check it is within [1-6] boundaries
This is to check that the nf_min and nf_max values from the json file
make sense. If not a warning is printed """
if nf1 < 4:
print('1st coil nf calculated value {} is too low: revise inputs'.format(nf1))
if nf2 < nf1 + 0.3 or nf2 > nf1 + 2:
"""nf2 should be with [nf1+0.5 - nf1 +2] boundaries
there shouldn't be very high nf differences between 2 coils
=> recalculate delta_p
"""
nf2 = max(nf2, nf1+0.3)
nf2 = min(nf2, nf1+2)
g1a_max = lin2db(db2lin(nf2) / (db2lin(nf_min) - db2lin(nf1))) #use expression (1)
delta_p = gain_max - g1a_max
g1a_min = gain_min - (gain_max-gain_min) - delta_p
if delta_p < 1 or delta_p > 6:
#delta_p should be > 1dB and < 6dB => consider user warning if not
print('1st coil vs 2nd coil calculated DeltaP {} is not valid: revise inputs'
.format(delta_p))
#check the calculated values for nf1 & nf2:
nf_min_calc = lin2db(db2lin(nf1) + db2lin(nf2)/db2lin(g1a_max))
nf_max_calc = lin2db(db2lin(nf1) + db2lin(nf2)/db2lin(g1a_min))
if (abs(nf_min_calc-nf_min) > 0.01) or (abs(nf_max_calc-nf_max) > 0.01):
print('nf model calculation failed with nf_min {} and nf_max {} calculated'
.format(nf_min_calc, nf_max_calc))
print('do not use the generated edfa_config.json file')
else :
(nf1, nf2, delta_p) = (0, 0, 0)
return (nf1, nf2, delta_p)
def input_json(path):
"""read the json input file and add all the 96 channels txt files
create the output json file with output_json_file_name"""
@@ -138,20 +74,7 @@ def input_json(path):
if re.search(r'.txt$',str(v)) :
amp_dict[k] = read_file(k, v)
#calculate nf of 1st and 2nd coil for the nf_model if 'enabled'==true
(nf1, nf2, delta_p) = nf_model(amp_dict)
#rename nf_min and nf_max in nf1 and nf2 after the nf model calculation:
del amp_dict[nf_model_field][nf_min_field]
del amp_dict[nf_model_field][nf_max_field]
amp_dict[nf_model_field]['nf1'] = nf1
amp_dict[nf_model_field]['nf2'] = nf2
amp_dict[nf_model_field]['delta_p'] = delta_p
#rename dfg into gain_ripple after removing the average part:
amp_dict['gain_ripple'] = amp_dict.pop(gain_ripple_field)
new_amp_dict = {}
new_amp_dict[param_field] = amp_dict
amp_text = json.dumps(new_amp_dict, indent=4)
amp_text = json.dumps(amp_dict, indent=4)
#print(amp_text)
with open(output_json_file_name,'w') as edfa_json_file:
edfa_json_file.write(amp_text)

View File

@@ -1,313 +0,0 @@
{
"params": {
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"nf_ripple": [
-0.3110761646066259,
-0.3110761646066259,
-0.31110274831665313,
-0.31419329378173544,
-0.3172854168606314,
-0.32037911876162584,
-0.3233255190215882,
-0.31624321721895354,
-0.30915729645781326,
-0.30206775396360075,
-0.2949045115165272,
-0.26632156113294336,
-0.23772399031437283,
-0.20911178784023846,
-0.18048410390821285,
-0.14379944379052215,
-0.10709599992470213,
-0.07037375788020579,
-0.03372858157230583,
-0.015660302006048,
0.0024172385953583004,
0.020504047353947653,
0.03860013139908377,
0.05670549786742816,
0.07482015390297145,
0.0838762040768461,
0.09284481475528361,
0.1018180306253394,
0.11079585523492333,
0.1020395478432815,
0.09310160456603413,
0.08415906712621996,
0.07521193198077789,
0.0676340601339394,
0.06005437964543287,
0.052470799141237305,
0.044883315610536455,
0.037679759069084225,
0.03047647598902483,
0.02326948274513522,
0.01605877647020772,
0.021248462316134083,
0.02657315875107553,
0.03190060058247842,
0.03723078993416436,
0.04256372893215024,
0.047899419704645264,
0.03915515813685565,
0.030289222542492025,
0.021418708618354456,
0.012573926129294415,
0.006240488799898697,
-9.622162373026585e-05,
-0.006436207679519103,
-0.012779471908040341,
-0.02038153550619876,
-0.027999803010447587,
-0.035622012697103154,
-0.043236398934156144,
-0.04493583574805963,
-0.04663615264317309,
-0.048337350303318156,
-0.050039429413028365,
-0.051742390657545205,
-0.05342028484370278,
-0.05254242298580185,
-0.05166410580536087,
-0.05078533294804249,
-0.04990610405914272,
-0.05409792133358102,
-0.05832916277634124,
-0.06256260169582961,
-0.06660356886269536,
-0.04779792991567815,
-0.028982516728038848,
-0.010157321677553965,
0.00861320615127981,
0.01913736978785662,
0.029667009055877668,
0.04020212822983975,
0.050742731588695494,
0.061288823415841555,
0.07184040799914815,
0.1043252636301016,
0.13687829834471027,
0.1694483010211072,
0.202035284929368,
0.23624619427167134,
0.27048596623174515,
0.30474360397422756,
0.3390191214858807,
0.36358851509924695,
0.38814205928193013,
0.41270842850729195,
0.4372876328262819,
0.4372876328262819
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.017807767853702,
1.0
],
"nf_model": {
"enabled": true,
"nf1": 5.727887800964238,
"nf2": 7.727887800964238,
"delta_p": 5.238350271545567
},
"gain_ripple": [
0.1359703369791596,
0.11822862697916037,
0.09542181697916163,
0.06245819697916133,
0.02602813697916062,
-0.0036199830208403228,
-0.018326963020840026,
-0.0246928330208398,
-0.016792253020838643,
-0.0028138630208403015,
0.017572956979162058,
0.038328296979159404,
0.054956336979159914,
0.0670723869791594,
0.07091459697916136,
0.07094413697916124,
0.07114372697916238,
0.07533675697916209,
0.08731066697916035,
0.10313984697916112,
0.12276252697916235,
0.14239527697916188,
0.15945681697916214,
0.1739275269791598,
0.1767381569791624,
0.17037189697916233,
0.15216302697916007,
0.13114358697916018,
0.10802383697916085,
0.08548825697916129,
0.06916723697916183,
0.05848224697916038,
0.05447361697916264,
0.05154489697916276,
0.04946107697915991,
0.04717897697916129,
0.04551704697916037,
0.04467697697916151,
0.04072968697916224,
0.03285456697916089,
0.023488786979161347,
0.01659282697915998,
0.013321846979160057,
0.011234826979162449,
0.01030063697916006,
0.00936596697916059,
0.00874012697916271,
0.00842583697916055,
0.006965146979162284,
0.0040435869791615175,
0.0007104669791608842,
-0.0015763130208377163,
-0.006936193020838033,
-0.016475303020840215,
-0.028748483020837767,
-0.039618433020837784,
-0.051112303020840244,
-0.06468462302083822,
-0.07868024302083754,
-0.09101254302083817,
-0.10103437302083762,
-0.11041488302083735,
-0.11916081302083725,
-0.12789859302083784,
-0.1353792530208402,
-0.14160178302083892,
-0.1455411330208385,
-0.1484450830208388,
-0.14823350302084037,
-0.14591937302083835,
-0.1409032730208395,
-0.13525493302083902,
-0.1279646530208396,
-0.11963431302083904,
-0.11089282302084058,
-0.1027863830208382,
-0.09717347302083823,
-0.09343261302083761,
-0.0913487130208388,
-0.08906007302083907,
-0.0865687230208394,
-0.08407607302083875,
-0.07844600302084004,
-0.06968090302083851,
-0.05947139302083926,
-0.05095282302083959,
-0.042428283020839785,
-0.03218106302083967,
-0.01819858302084043,
-0.0021726530208390216,
0.01393231697916164,
0.028098946979159933,
0.040326236979161934,
0.05257029697916238,
0.06479749697916048,
0.07704745697916238
]
}
}

0
examples/edfa_model/pNFfit3.txt Executable file → Normal file
View File

307
examples/eqpt_config.json Normal file
View File

@@ -0,0 +1,307 @@
{ "Edfa":[{
"type_variety": "high_detail_model_example",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}, {
"type_variety": "Juniper_BoosterHG",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 10,
"p_max": 21,
"advanced_config_from_json": "Juniper-BoosterHG.json",
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "operator_model_example",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 12,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
},
{
"type_variety": "standard",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 12,
"p_max": 22,
"nf_coef": [-5.952e-4,-6.250e-2,-1.071,28.99],
"allowed_for_design": false
},
{
"type_variety": "std_high_gain",
"type_def": "variable_gain",
"gain_flatmax": 35,
"gain_min": 25,
"p_max": 21,
"nf_min": 5.5,
"nf_max": 7,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "high_power",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 25,
"nf_min": 9,
"nf_max": 15,
"out_voa_auto": false,
"allowed_for_design": false
},
{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
},
{
"type_variety": "4pumps_raman",
"type_def": "fixed_gain",
"gain_flatmax": 12,
"gain_min": 12,
"p_max": 21,
"nf0": -1,
"allowed_for_design": false
},
{
"type_variety": "hybrid_4pumps_lowgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "hybrid_4pumps_mediumgain",
"type_def": "dual_stage",
"raman": true,
"gain_min": 25,
"preamp_variety": "4pumps_raman",
"booster_variety": "std_medium_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+low_gain",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "std_low_gain",
"allowed_for_design": true
},
{
"type_variety": "medium+high_power",
"type_def": "dual_stage",
"gain_min": 25,
"preamp_variety": "std_medium_gain",
"booster_variety": "high_power",
"allowed_for_design": false
}
],
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127
},
{
"type_variety": "NZDF",
"dispersion": 0.5e-05,
"gamma": 0.00146
},
{
"type_variety": "LOF",
"dispersion": 2.2e-05,
"gamma": 0.000843
}
],
"RamanFiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"raman_efficiency": {
"cr":[
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
2E-07, 1E-07
],
"frequency_offset":[
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
41.5e12, 42e12
]
}
}
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [-2,3,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}],
"Transceiver":[
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
},
{
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
}
]
}

View File

@@ -0,0 +1,196 @@
{
"elements": [
{
"uid": "trx Site_A",
"metadata": {
"location": {
"city": "Site_A",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx Site_C",
"metadata": {
"location": {
"city": "Site_C",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "roadm Site_A",
"metadata": {
"location": {
"city": "Site_A",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm",
"params": {
"loss": 17
}
},
{
"uid": "roadm Site_C",
"metadata": {
"location": {
"city": "Site_C",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm"
},
{
"uid": "ingress fused spans in Site_B",
"metadata": {
"location": {
"city": "Site_B",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Fused",
"params": {
"loss": 0.5
}
},
{
"uid": "egress fused spans in Site_B",
"metadata": {
"location": {
"city": "Site_B",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Fused"
},
{
"uid": "fiber (Site_A \u2192 Site_B)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2
}
},
{
"uid": "fiber (Site_B \u2192 Site_C)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2
}
},
{
"uid": "fiber (Site_B \u2192 Site_A)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2
}
},
{
"uid": "fiber (Site_C \u2192 Site_B)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 50.0,
"length_units": "km",
"loss_coef": 0.2
}
}
],
"connections": [
{
"from_node": "roadm Site_A",
"to_node": "fiber (Site_A \u2192 Site_B)-"
},
{
"from_node": "fiber (Site_B \u2192 Site_A)-",
"to_node": "roadm Site_A"
},
{
"from_node": "fiber (Site_A \u2192 Site_B)-",
"to_node": "ingress fused spans in Site_B"
},
{
"from_node": "ingress fused spans in Site_B",
"to_node": "fiber (Site_B \u2192 Site_C)-"
},
{
"from_node": "fiber (Site_C \u2192 Site_B)-",
"to_node": "egress fused spans in Site_B"
},
{
"from_node": "egress fused spans in Site_B",
"to_node": "fiber (Site_B \u2192 Site_A)-"
},
{
"from_node": "roadm Site_C",
"to_node": "fiber (Site_C \u2192 Site_B)-"
},
{
"from_node": "fiber (Site_B \u2192 Site_C)-",
"to_node": "roadm Site_C"
},
{
"from_node": "trx Site_A",
"to_node": "roadm Site_A"
},
{
"from_node": "roadm Site_A",
"to_node": "trx Site_A"
},
{
"from_node": "trx Site_C",
"to_node": "roadm Site_C"
},
{
"from_node": "roadm Site_C",
"to_node": "trx Site_C"
}
]
}

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -0,0 +1,307 @@
{
"path-request": [
{
"request-id": "0",
"source": "Lorient_KMA",
"destination": "Vannes_KBE",
"src-tp-id": "trx Lorient_KMA",
"dst-tp-id": "trx Vannes_KBE",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 80,
"output-power": 0.0012589254117941673,
"path_bandwidth": 100000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "1",
"source": "Brest_KLA",
"destination": "Vannes_KBE",
"src-tp-id": "trx Brest_KLA",
"dst-tp-id": "trx Vannes_KBE",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": null,
"output-power": 0.0012589254117941673,
"path_bandwidth": 200000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": [
{
"index": 0,
"unnumbered-hop": {
"node-id": "roadm Brest_KLA",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
},
{
"index": 1,
"unnumbered-hop": {
"node-id": "roadm Lannion_CAS",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
},
{
"index": 2,
"unnumbered-hop": {
"node-id": "roadm Lorient_KMA",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
},
{
"index": 3,
"unnumbered-hop": {
"node-id": "roadm Vannes_KBE",
"link-tp-id": "link-tp-id is not used",
"hop-type": "loose",
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
}
]
}
},
{
"request-id": "3",
"source": "Lannion_CAS",
"destination": "Rennes_STA",
"src-tp-id": "trx Lannion_CAS",
"dst-tp-id": "trx Rennes_STA",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": null,
"output-power": null,
"path_bandwidth": 60000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "4",
"source": "Rennes_STA",
"destination": "Lannion_CAS",
"src-tp-id": "trx Rennes_STA",
"dst-tp-id": "trx Lannion_CAS",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": null,
"output-power": 0.0019952623149688794,
"path_bandwidth": 150000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "5",
"source": "Rennes_STA",
"destination": "Lannion_CAS",
"src-tp-id": "trx Rennes_STA",
"dst-tp-id": "trx Lannion_CAS",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "vendorA_trx-type1",
"trx_mode": "mode 2",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": 63,
"output-power": 0.0019952623149688794,
"path_bandwidth": 20000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "6",
"source": "Lannion_CAS",
"destination": "Lorient_KMA",
"src-tp-id": "trx Lannion_CAS",
"dst-tp-id": "trx Lorient_KMA",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 76,
"output-power": 0.001,
"path_bandwidth": 300000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "7",
"source": "Lannion_CAS",
"destination": "Lorient_KMA",
"src-tp-id": "trx Lannion_CAS",
"dst-tp-id": "trx Lorient_KMA",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 50000000000.0,
"max-nb-of-channel": 76,
"output-power": 0.001,
"path_bandwidth": 400000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
},
{
"request-id": "7b",
"source": "Lannion_CAS",
"destination": "Lorient_KMA",
"src-tp-id": "trx Lannion_CAS",
"dst-tp-id": "trx Lorient_KMA",
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": "Voyager",
"trx_mode": "mode 1",
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": 75000000000.0,
"max-nb-of-channel": 50,
"output-power": 0.001,
"path_bandwidth": 400000000000.0
}
},
"optimizations": {
"explicit-route-include-objects": []
}
}
],
"synchronization": [
{
"synchronization-id": "3",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"3",
"1"
]
}
},
{
"synchronization-id": "4",
"svec": {
"relaxable": "False",
"link-diverse": "True",
"node-diverse": "True",
"request-id-number": [
"4",
"5"
]
}
}
]
}

369
examples/path_requests_run.py Executable file
View File

@@ -0,0 +1,369 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
path_requests_run.py
====================
Reads a JSON request file in accordance with the Yang model
for requesting path computation and returns path results in terms
of path and feasibilty.
See: draft-ietf-teas-yang-path-computation-01.txt
"""
from sys import exit
from argparse import ArgumentParser
from pathlib import Path
from collections import namedtuple
from logging import getLogger, basicConfig, CRITICAL, DEBUG, INFO
from json import dumps, loads
from networkx import (draw_networkx_nodes, draw_networkx_edges,
draw_networkx_labels)
from numpy import mean
from gnpy.core.service_sheet import convert_service_sheet, Request_element, Element
from gnpy.core.utils import load_json
from gnpy.core.network import load_network, build_network, save_network
from gnpy.core.equipment import load_equipment, trx_mode_params, automatic_nch, automatic_spacing
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fused, Fiber
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.request import (Path_request, Result_element, compute_constrained_path,
propagate, jsontocsv, Disjunction, compute_path_dsjctn, requests_aggregation,
propagate_and_optimize_mode)
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError
import gnpy.core.ansi_escapes as ansi_escapes
from copy import copy, deepcopy
from textwrap import dedent
from math import ceil
#EQPT_LIBRARY_FILENAME = Path(__file__).parent / 'eqpt_config.json'
logger = getLogger(__name__)
parser = ArgumentParser(description = 'A function that computes performances for a list of services provided in a json file or an excel sheet.')
parser.add_argument('network_filename', nargs='?', type = Path, default= Path(__file__).parent / 'meshTopologyExampleV2.xls')
parser.add_argument('service_filename', nargs='?', type = Path, default= Path(__file__).parent / 'meshTopologyExampleV2.xls')
parser.add_argument('eqpt_filename', nargs='?', type = Path, default=Path(__file__).parent / 'eqpt_config.json')
parser.add_argument('-v', '--verbose', action='count', default=0, help='increases verbosity for each occurence')
parser.add_argument('-o', '--output', type = Path)
def requests_from_json(json_data,equipment):
requests_list = []
for req in json_data['path-request']:
# init all params from request
params = {}
params['request_id'] = req['request-id']
params['source'] = req['src-tp-id']
params['destination'] = req['dst-tp-id']
params['trx_type'] = req['path-constraints']['te-bandwidth']['trx_type']
params['trx_mode'] = req['path-constraints']['te-bandwidth']['trx_mode']
params['format'] = params['trx_mode']
nd_list = req['optimizations']['explicit-route-include-objects']
params['nodes_list'] = [n['unnumbered-hop']['node-id'] for n in nd_list]
params['loose_list'] = [n['unnumbered-hop']['hop-type'] for n in nd_list]
params['spacing'] = req['path-constraints']['te-bandwidth']['spacing']
# recover trx physical param (baudrate, ...) from type and mode
# in trx_mode_params optical power is read from equipment['SI']['default'] and
# nb_channel is computed based on min max frequency and spacing
trx_params = trx_mode_params(equipment,params['trx_type'],params['trx_mode'],True)
params.update(trx_params)
# print(trx_params['min_spacing'])
# optical power might be set differently in the request. if it is indicated then the
# params['power'] is updated
if req['path-constraints']['te-bandwidth']['output-power']:
params['power'] = req['path-constraints']['te-bandwidth']['output-power']
# same process for nb-channel
f_min = params['f_min']
f_max_from_si = params['f_max']
if req['path-constraints']['te-bandwidth']['max-nb-of-channel'] is not None :
nch = req['path-constraints']['te-bandwidth']['max-nb-of-channel']
params['nb_channel'] = nch
spacing = params['spacing']
params['f_max'] = f_min + nch*spacing
else :
params['nb_channel'] = automatic_nch(f_min,f_max_from_si,params['spacing'])
consistency_check(params, f_max_from_si)
try :
params['path_bandwidth'] = req['path-constraints']['te-bandwidth']['path_bandwidth']
except KeyError:
pass
requests_list.append(Path_request(**params))
return requests_list
def consistency_check(params, f_max_from_si):
f_min = params['f_min']
f_max = params['f_max']
max_recommanded_nb_channels = automatic_nch(f_min,f_max,
params['spacing'])
if params['baud_rate'] is not None:
#implicitely means that a mode is defined with min_spacing
if params['min_spacing']>params['spacing'] :
msg = f'Request {params["request_id"]} has spacing below transponder {params["trx_type"]}'+\
f' {params["trx_mode"]} min spacing value {params["min_spacing"]*1e-9}GHz.\n'+\
'Computation stopped'
print(msg)
logger.critical(msg)
exit()
if f_max>f_max_from_si:
msg = dedent(f'''
Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"]} GHz and requested spacing {params["spacing"]*1e-9}GHz
is not consistent with frequency range {f_min*1e-12} THz, {f_max*1e-12} THz, min recommanded spacing {params["min_spacing"]*1e-9}GHz.
max recommanded nb of channels is {max_recommanded_nb_channels}
Computation stopped.''')
logger.critical(msg)
exit()
def disjunctions_from_json(json_data):
disjunctions_list = []
for snc in json_data['synchronization']:
params = {}
params['disjunction_id'] = snc['synchronization-id']
params['relaxable'] = snc['svec']['relaxable']
params['link_diverse'] = snc['svec']['link-diverse']
params['node_diverse'] = snc['svec']['node-diverse']
params['disjunctions_req'] = snc['svec']['request-id-number']
disjunctions_list.append(Disjunction(**params))
return disjunctions_list
def load_requests(filename,eqpt_filename):
if filename.suffix.lower() == '.xls':
logger.info('Automatically converting requests from XLS to JSON')
json_data = convert_service_sheet(filename,eqpt_filename)
else:
with open(filename, encoding='utf-8') as f:
json_data = loads(f.read())
return json_data
def compute_path_with_disjunction(network, equipment, pathreqlist, pathlist):
# use a list but a dictionnary might be helpful to find path bathsed on request_id
# TODO change all these req, dsjct, res lists into dict !
path_res_list = []
for i,pathreq in enumerate(pathreqlist):
# use the power specified in requests but might be different from the one specified for design
# the power is an optional parameter for requests definition
# if optional, use the one defines in eqt_config.json
p_db = lin2db(pathreq.power*1e3)
p_total_db = p_db + lin2db(pathreq.nb_channel)
print(f'request {pathreq.request_id}')
print(f'Computing path from {pathreq.source} to {pathreq.destination}')
print(f'with path constraint: {[pathreq.source]+pathreq.nodes_list}') #adding first node to be clearer on the output
total_path = pathlist[i]
print(f'Computed path (roadms):{[e.uid for e in total_path if isinstance(e, Roadm)]}\n')
# for debug
# print(f'{pathreq.baud_rate} {pathreq.power} {pathreq.spacing} {pathreq.nb_channel}')
if total_path :
if pathreq.baud_rate is not None:
total_path = propagate(total_path,pathreq,equipment)
# for el in total_path: print(el)
temp_snr01nm = round(mean(total_path[-1].snr+lin2db(pathreq.baud_rate/(12.5e9))),2)
if temp_snr01nm < pathreq.OSNR :
msg = f'\tWarning! Request {pathreq.request_id} computed path from {pathreq.source} to {pathreq.destination} does not pass with {pathreq.tsp_mode}\n' +\
f'\tcomputedSNR in 0.1nm = {temp_snr01nm} - required osnr {pathreq.OSNR}\n'
print(msg)
logger.warning(msg)
total_path = []
else:
total_path,mode = propagate_and_optimize_mode(total_path,pathreq,equipment)
# if no baudrate satisfies spacing, no mode is returned and an empty path is returned
# a warning is shown in the propagate_and_optimize_mode
if mode is not None :
# propagate_and_optimize_mode function returns the mode with the highest bitrate
# that passes. if no mode passes, then it returns an empty path
pathreq.baud_rate = mode['baud_rate']
pathreq.tsp_mode = mode['format']
pathreq.format = mode['format']
pathreq.OSNR = mode['OSNR']
pathreq.tx_osnr = mode['tx_osnr']
pathreq.bit_rate = mode['bit_rate']
else :
total_path = []
# we record the last tranceiver object in order to have th whole
# information about spectrum. Important Note: since transceivers
# attached to roadms are actually logical elements to simulate
# performance, several demands having the same destination may use
# the same transponder for the performance simaulation. This is why
# we use deepcopy: to ensure each propagation is recorded and not
# overwritten
path_res_list.append(deepcopy(total_path))
return path_res_list
def correct_route_list(network, pathreqlist):
# prepares the format of route list of nodes to be consistant
# remove wrong names, remove endpoints
# also correct source and destination
anytype = [n.uid for n in network.nodes() if not isinstance(n, Transceiver) and not isinstance(n, Fiber)]
# TODO there is a problem of identification of fibers in case of parallel fibers bitween two adjacent roadms
# so fiber constraint is not supported
transponders = [n.uid for n in network.nodes() if isinstance(n, Transceiver)]
for pathreq in pathreqlist:
for i,n_id in enumerate(pathreq.nodes_list):
# replace possibly wrong name with a formated roadm name
# print(n_id)
if n_id not in anytype :
nodes_suggestion = [uid for uid in anytype \
if n_id.lower() in uid.lower()]
if pathreq.loose_list[i] == 'loose':
if len(nodes_suggestion)>0 :
new_n = nodes_suggestion[0]
print(f'invalid route node specified:\
\n\'{n_id}\', replaced with \'{new_n}\'')
pathreq.nodes_list[i] = new_n
else:
print(f'\x1b[1;33;40m'+f'invalid route node specified \'{n_id}\', could not use it as constraint, skipped!'+'\x1b[0m')
pathreq.nodes_list.remove(n_id)
pathreq.loose_list.pop(i)
else:
msg = f'\x1b[1;33;40m'+f'could not find node : {n_id} in network topology. Strict constraint can not be applied.'+'\x1b[0m'
logger.critical(msg)
raise ValueError(msg)
if pathreq.source not in transponders:
msg = f'\x1b[1;31;40m'+f'Request: {pathreq.request_id}: could not find transponder source : {pathreq.source}.'+'\x1b[0m'
logger.critical(msg)
print(f'{msg}\nComputation stopped.')
exit()
if pathreq.destination not in transponders:
msg = f'\x1b[1;31;40m'+f'Request: {pathreq.request_id}: could not find transponder destination : {pathreq.destination}.'+'\x1b[0m'
logger.critical(msg)
print(f'{msg}\nComputation stopped.')
exit()
# TODO remove endpoints from this list in case they were added by the user in the xls or json files
return pathreqlist
def correct_disjn(disjn):
local_disjn = disjn.copy()
for el in local_disjn:
for d in local_disjn:
if set(el.disjunctions_req) == set(d.disjunctions_req) and\
el.disjunction_id != d.disjunction_id:
local_disjn.remove(d)
return local_disjn
def path_result_json(pathresult):
data = {
'path': [n.json for n in pathresult]
}
return data
if __name__ == '__main__':
args = parser.parse_args()
basicConfig(level={2: DEBUG, 1: INFO, 0: CRITICAL}.get(args.verbose, DEBUG))
logger.info(f'Computing path requests {args.service_filename} into JSON format')
print('\x1b[1;34;40m'+f'Computing path requests {args.service_filename} into JSON format'+ '\x1b[0m')
# for debug
# print( args.eqpt_filename)
try:
data = load_requests(args.service_filename,args.eqpt_filename)
equipment = load_equipment(args.eqpt_filename)
network = load_network(args.network_filename,equipment)
except EquipmentConfigError as e:
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
exit(1)
except NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
exit(1)
except ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
exit(1)
# Build the network once using the default power defined in SI in eqpt config
# TODO power density : db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
# spacing, f_min and f_max
p_db = equipment['SI']['default'].power_dbm
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,\
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
build_network(network, equipment, p_db, p_total_db)
save_network(args.network_filename, network)
rqs = requests_from_json(data, equipment)
# check that request ids are unique. Non unique ids, may
# mess the computation : better to stop the computation
all_ids = [r.request_id for r in rqs]
if len(all_ids) != len(set(all_ids)):
for a in list(set(all_ids)):
all_ids.remove(a)
msg = f'Requests id {all_ids} are not unique'
logger.critical(msg)
exit()
rqs = correct_route_list(network, rqs)
# pths = compute_path(network, equipment, rqs)
dsjn = disjunctions_from_json(data)
print('\x1b[1;34;40m'+f'List of disjunctions'+ '\x1b[0m')
print(dsjn)
# need to warn or correct in case of wrong disjunction form
# disjunction must not be repeated with same or different ids
dsjn = correct_disjn(dsjn)
# Aggregate demands with same exact constraints
print('\x1b[1;34;40m'+f'Aggregating similar requests'+ '\x1b[0m')
rqs,dsjn = requests_aggregation(rqs,dsjn)
# TODO export novel set of aggregated demands in a json file
print('\x1b[1;34;40m'+'The following services have been requested:'+ '\x1b[0m')
print(rqs)
print('\x1b[1;34;40m'+f'Computing all paths with constraints'+ '\x1b[0m')
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
print('\x1b[1;34;40m'+f'Propagating on selected path'+ '\x1b[0m')
propagatedpths = compute_path_with_disjunction(network, equipment, rqs, pths)
print('\x1b[1;34;40m'+f'Result summary'+ '\x1b[0m')
header = ['req id', ' demand',' snr@bandwidth',' snr@0.1nm',' Receiver minOSNR', ' mode', ' Gbit/s' , ' nb of tsp pairs']
data = []
data.append(header)
for i, p in enumerate(propagatedpths):
if p:
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', f'{round(mean(p[-1].snr),2)}',\
f'{round(mean(p[-1].snr+lin2db(rqs[i].baud_rate/(12.5e9))),2)}',\
f'{rqs[i].OSNR}', f'{rqs[i].tsp_mode}' , f'{round(rqs[i].path_bandwidth * 1e-9,2)}' , f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate) }']
else:
line = [f'{rqs[i].request_id}',f' {rqs[i].source} to {rqs[i].destination} : not feasible ']
data.append(line)
col_width = max(len(word) for row in data for word in row[2:]) # padding
firstcol_width = max(len(row[0]) for row in data ) # padding
secondcol_width = max(len(row[1]) for row in data ) # padding
for row in data:
firstcol = ''.join(row[0].ljust(firstcol_width))
secondcol = ''.join(row[1].ljust(secondcol_width))
remainingcols = ''.join(word.center(col_width,' ') for word in row[2:])
print(f'{firstcol} {secondcol} {remainingcols}')
if args.output :
result = []
# assumes that list of rqs and list of propgatedpths have same order
for i,p in enumerate(propagatedpths):
result.append(Result_element(rqs[i],p))
temp = path_result_json(result)
fnamecsv = f'{str(args.output)[0:len(str(args.output))-len(str(args.output.suffix))]}.csv'
fnamejson = f'{str(args.output)[0:len(str(args.output))-len(str(args.output.suffix))]}.json'
with open(fnamejson, 'w', encoding='utf-8') as f:
f.write(dumps(path_result_json(result), indent=2, ensure_ascii=False))
with open(fnamecsv,"w", encoding='utf-8') as fcsv :
jsontocsv(temp,equipment,fcsv)
print('\x1b[1;34;40m'+f'saving in {args.output} and {fnamecsv}'+ '\x1b[0m')

View File

@@ -0,0 +1,98 @@
{
"elements": [
{
"uid": "Site_A",
"type": "Transceiver",
"metadata": {
"location": {
"latitude": 0,
"longitude": 0,
"city": "Site A",
"region": ""
}
}
},
{
"uid": "Span1",
"type": "RamanFiber",
"type_variety": "SSMF",
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 200e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 206e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"params": {
"type_variety": "SSMF",
"length": 80.0,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 15.0,
"delta_p": -2,
"tilt_target": 0,
"out_voa": 0
},
"metadata": {
"location": {
"latitude": 2,
"longitude": 0,
"city": null,
"region": ""
}
}
},
{
"uid": "Site_B",
"type": "Transceiver",
"metadata": {
"location": {
"latitude": 2,
"longitude": 0,
"city": "Site B",
"region": ""
}
}
}
],
"connections": [
{
"from_node": "Site_A",
"to_node": "Span1"
},
{
"from_node": "Span1",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "Site_B"
}
]
}

14
examples/sim_params.json Normal file
View File

@@ -0,0 +1,14 @@
{
"raman_computed_channels": [1, 18, 37, 56, 75],
"raman_parameters": {
"flag_raman": true,
"space_resolution": 10e3,
"tolerance": 1e-8
},
"nli_parameters": {
"nli_method_name": "ggn_spectrally_separated",
"wdm_grid_size": 50e9,
"dispersion_tolerance": 1,
"phase_shift_tollerance": 0.1
}
}

View File

@@ -0,0 +1,303 @@
{ "nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"f_min": 191.35e12,
"f_max": 196.1e12,
"nf_ripple": [
-0.3110761646066259,
-0.3110761646066259,
-0.31110274831665313,
-0.31419329378173544,
-0.3172854168606314,
-0.32037911876162584,
-0.3233255190215882,
-0.31624321721895354,
-0.30915729645781326,
-0.30206775396360075,
-0.2949045115165272,
-0.26632156113294336,
-0.23772399031437283,
-0.20911178784023846,
-0.18048410390821285,
-0.14379944379052215,
-0.10709599992470213,
-0.07037375788020579,
-0.03372858157230583,
-0.015660302006048,
0.0024172385953583004,
0.020504047353947653,
0.03860013139908377,
0.05670549786742816,
0.07482015390297145,
0.0838762040768461,
0.09284481475528361,
0.1018180306253394,
0.11079585523492333,
0.1020395478432815,
0.09310160456603413,
0.08415906712621996,
0.07521193198077789,
0.0676340601339394,
0.06005437964543287,
0.052470799141237305,
0.044883315610536455,
0.037679759069084225,
0.03047647598902483,
0.02326948274513522,
0.01605877647020772,
0.021248462316134083,
0.02657315875107553,
0.03190060058247842,
0.03723078993416436,
0.04256372893215024,
0.047899419704645264,
0.03915515813685565,
0.030289222542492025,
0.021418708618354456,
0.012573926129294415,
0.006240488799898697,
-9.622162373026585e-05,
-0.006436207679519103,
-0.012779471908040341,
-0.02038153550619876,
-0.027999803010447587,
-0.035622012697103154,
-0.043236398934156144,
-0.04493583574805963,
-0.04663615264317309,
-0.048337350303318156,
-0.050039429413028365,
-0.051742390657545205,
-0.05342028484370278,
-0.05254242298580185,
-0.05166410580536087,
-0.05078533294804249,
-0.04990610405914272,
-0.05409792133358102,
-0.05832916277634124,
-0.06256260169582961,
-0.06660356886269536,
-0.04779792991567815,
-0.028982516728038848,
-0.010157321677553965,
0.00861320615127981,
0.01913736978785662,
0.029667009055877668,
0.04020212822983975,
0.050742731588695494,
0.061288823415841555,
0.07184040799914815,
0.1043252636301016,
0.13687829834471027,
0.1694483010211072,
0.202035284929368,
0.23624619427167134,
0.27048596623174515,
0.30474360397422756,
0.3390191214858807,
0.36358851509924695,
0.38814205928193013,
0.41270842850729195,
0.4372876328262819,
0.4372876328262819
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.017807767853702,
1.0
],
"gain_ripple": [
0.1359703369791596,
0.11822862697916037,
0.09542181697916163,
0.06245819697916133,
0.02602813697916062,
-0.0036199830208403228,
-0.018326963020840026,
-0.0246928330208398,
-0.016792253020838643,
-0.0028138630208403015,
0.017572956979162058,
0.038328296979159404,
0.054956336979159914,
0.0670723869791594,
0.07091459697916136,
0.07094413697916124,
0.07114372697916238,
0.07533675697916209,
0.08731066697916035,
0.10313984697916112,
0.12276252697916235,
0.14239527697916188,
0.15945681697916214,
0.1739275269791598,
0.1767381569791624,
0.17037189697916233,
0.15216302697916007,
0.13114358697916018,
0.10802383697916085,
0.08548825697916129,
0.06916723697916183,
0.05848224697916038,
0.05447361697916264,
0.05154489697916276,
0.04946107697915991,
0.04717897697916129,
0.04551704697916037,
0.04467697697916151,
0.04072968697916224,
0.03285456697916089,
0.023488786979161347,
0.01659282697915998,
0.013321846979160057,
0.011234826979162449,
0.01030063697916006,
0.00936596697916059,
0.00874012697916271,
0.00842583697916055,
0.006965146979162284,
0.0040435869791615175,
0.0007104669791608842,
-0.0015763130208377163,
-0.006936193020838033,
-0.016475303020840215,
-0.028748483020837767,
-0.039618433020837784,
-0.051112303020840244,
-0.06468462302083822,
-0.07868024302083754,
-0.09101254302083817,
-0.10103437302083762,
-0.11041488302083735,
-0.11916081302083725,
-0.12789859302083784,
-0.1353792530208402,
-0.14160178302083892,
-0.1455411330208385,
-0.1484450830208388,
-0.14823350302084037,
-0.14591937302083835,
-0.1409032730208395,
-0.13525493302083902,
-0.1279646530208396,
-0.11963431302083904,
-0.11089282302084058,
-0.1027863830208382,
-0.09717347302083823,
-0.09343261302083761,
-0.0913487130208388,
-0.08906007302083907,
-0.0865687230208394,
-0.08407607302083875,
-0.07844600302084004,
-0.06968090302083851,
-0.05947139302083926,
-0.05095282302083959,
-0.042428283020839785,
-0.03218106302083967,
-0.01819858302084043,
-0.0021726530208390216,
0.01393231697916164,
0.028098946979159933,
0.040326236979161934,
0.05257029697916238,
0.06479749697916048,
0.07704745697916238
]
}

366
examples/transmission_main_example.py Normal file → Executable file
View File

@@ -1,90 +1,316 @@
#!/usr/bin/env
"""
@author: briantaylor
@author: giladgoldfarb
@author: jeanluc-auge
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Transmission setup example:
reads from network json (default = examples/edfa/edfa_example_network.json)
propagates a 96 channels comb
"""
'''
transmission_main_example.py
============================
Main example for transmission simulation.
Reads from network JSON (by default, `edfa_example_network.json`)
'''
from gnpy.core.equipment import load_equipment, trx_mode_params
from gnpy.core.utils import db2lin, lin2db, write_csv
from argparse import ArgumentParser
from json import load
from sys import exit
from pathlib import Path
from json import loads
from collections import Counter
from logging import getLogger, basicConfig, INFO, ERROR, DEBUG
from matplotlib.pyplot import show, axis, figure, title
from numpy import linspace, mean, log10
from matplotlib.pyplot import show, axis, figure, title, text
from networkx import (draw_networkx_nodes, draw_networkx_edges,
draw_networkx_labels, dijkstra_path)
from gnpy.core.network import load_network, build_network, save_network, load_sim_params, configure_network
from gnpy.core.elements import Transceiver, Fiber, RamanFiber, Edfa, Roadm
from gnpy.core.info import create_input_spectral_information, SpectralInformation, Channel, Power, Pref
from gnpy.core.request import Path_request, RequestParams, compute_constrained_path, propagate2
from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError
import gnpy.core.ansi_escapes as ansi_escapes
from gnpy.core import network_from_json, build_network
from gnpy.core.elements import Transceiver, Fiber, Edfa
from gnpy.core.info import SpectralInformation, Channel, Power
#from gnpy.core.algorithms import closed_paths
logger = getLogger(__name__)
logger = getLogger(__package__ or __file__)
def format_si(spectral_infos):
return '\n'.join([
f'#{idx} Carrier(frequency={c.frequency},\n power=Power(signal={c.power.signal}, nli={c.power.nli}, ase={c.power.ase}))'
for idx, si in sorted(set(spectral_infos))
for c in set(si.carriers)
])
logger = getLogger('gnpy.core')
def main(args):
with open(args.filename) as f:
json_data = load(f)
network = network_from_json(json_data)
build_network(network)
spacing = 0.05 #THz
si = SpectralInformation() # !! SI units W, Hz
si = si.update(carriers=tuple(Channel(f, (191.3+spacing*f)*1e12,
32e9, 0.15, Power(1e-3, 0, 0)) for f in range(1,97)))
trx = [n for n in network.nodes() if isinstance(n, Transceiver)]
source, sink = trx[0], trx[1]
path = dijkstra_path(network, source, sink)
print(f'There are {len(path)} network elements between {source} and {sink}')
for el in path:
si = el(si)
print(el)
nodelist = [n for n in network.nodes() if isinstance(n, (Transceiver, Fiber))]
pathnodes = [n for n in path if isinstance(n, (Transceiver, Fiber))]
edgelist = [(u, v) for u, v in zip(pathnodes, pathnodes[1:])]
node_color = ['#ff0000' if n is source or n is sink else
'#900000' if n in path else '#ffdfdf'
for n in nodelist]
edge_color = ['#ff9090' if u in path and v in path else '#ababab'
for u, v in edgelist]
labels = {n: n.location.city if isinstance(n, Transceiver) else ''
for n in pathnodes}
def plot_baseline(network):
edges = set(network.edges())
pos = {n: (n.lng, n.lat) for n in network.nodes()}
labels = {n: n.location.city for n in network.nodes() if isinstance(n, Transceiver)}
city_labels = set(labels.values())
for n in network.nodes():
if n.location.city and n.location.city not in city_labels:
labels[n] = n.location.city
city_labels.add(n.location.city)
label_pos = pos
fig = figure()
pos = {n: (n.lng, n.lat) for n in nodelist}
kwargs = {'figure': fig, 'pos': pos}
plot = draw_networkx_nodes(network, nodelist=nodelist, node_color=node_color, **kwargs)
draw_networkx_edges(network, edgelist=edgelist, edge_color=edge_color, **kwargs)
draw_networkx_labels(network, labels=labels, font_size=14, **kwargs)
title(f'Propagating from {source.loc.city} to {sink.loc.city}')
plot = draw_networkx_nodes(network, nodelist=network.nodes(), node_color='#ababab', **kwargs)
draw_networkx_edges(network, edgelist=edges, edge_color='#ababab', **kwargs)
draw_networkx_labels(network, labels=labels, font_size=14, **{**kwargs, 'pos': label_pos})
axis('off')
show()
def plot_results(network, path, source, destination, infos):
path_edges = set(zip(path[:-1], path[1:]))
edges = set(network.edges()) - path_edges
pos = {n: (n.lng, n.lat) for n in network.nodes()}
nodes = {}
for k, (x, y) in pos.items():
nodes.setdefault((round(x, 1), round(y, 1)), []).append(k)
labels = {n: n.location.city for n in network.nodes() if isinstance(n, Transceiver)}
city_labels = set(labels.values())
for n in network.nodes():
if n.location.city and n.location.city not in city_labels:
labels[n] = n.location.city
city_labels.add(n.location.city)
label_pos = pos
fig = figure()
kwargs = {'figure': fig, 'pos': pos}
all_nodes = [n for n in network.nodes() if n not in path]
plot = draw_networkx_nodes(network, nodelist=all_nodes, node_color='#ababab', node_size=50, **kwargs)
draw_networkx_nodes(network, nodelist=path, node_color='#ff0000', node_size=55, **kwargs)
draw_networkx_edges(network, edgelist=edges, edge_color='#ababab', **kwargs)
draw_networkx_edges(network, edgelist=path_edges, edge_color='#ff0000', **kwargs)
draw_networkx_labels(network, labels=labels, font_size=14, **{**kwargs, 'pos': label_pos})
title(f'Propagating from {source.loc.city} to {destination.loc.city}')
axis('off')
heading = 'Spectral Information\n\n'
textbox = text(0.85, 0.20, heading, fontsize=14, fontname='Ubuntu Mono',
verticalalignment='top', transform=fig.axes[0].transAxes,
bbox={'boxstyle': 'round', 'facecolor': 'wheat', 'alpha': 0.5})
msgs = {(x, y): heading + '\n\n'.join(str(n) for n in ns if n in path)
for (x, y), ns in nodes.items()}
def hover(event):
if event.xdata is None or event.ydata is None:
return
if fig.contains(event):
x, y = round(event.xdata, 1), round(event.ydata, 1)
if (x, y) in msgs:
textbox.set_text(msgs[x, y])
else:
textbox.set_text(heading)
fig.canvas.draw_idle()
fig.canvas.mpl_connect('motion_notify_event', hover)
show()
def main(network, equipment, source, destination, sim_params, req=None):
result_dicts = {}
network_data = [{
'network_name' : str(args.filename),
'source' : source.uid,
'destination' : destination.uid
}]
result_dicts.update({'network': network_data})
design_data = [{
'power_mode' : equipment['Span']['default'].power_mode,
'span_power_range' : equipment['Span']['default'].delta_power_range_db,
'design_pch' : equipment['SI']['default'].power_dbm,
'baud_rate' : equipment['SI']['default'].baud_rate
}]
result_dicts.update({'design': design_data})
simulation_data = []
result_dicts.update({'simulation results': simulation_data})
power_mode = equipment['Span']['default'].power_mode
print('\n'.join([f'Power mode is set to {power_mode}',
f'=> it can be modified in eqpt_config.json - Span']))
pref_ch_db = lin2db(req.power*1e3) #reference channel power / span (SL=20dB)
pref_total_db = pref_ch_db + lin2db(req.nb_channel) #reference total power / span (SL=20dB)
build_network(network, equipment, pref_ch_db, pref_total_db)
path = compute_constrained_path(network, req)
if len([s.length for s in path if isinstance(s, RamanFiber)]):
if sim_params is None:
print(f'{ansi_escapes.red}Invocation error:{ansi_escapes.reset} RamanFiber requires passing simulation params via --sim-params')
exit(1)
configure_network(network, sim_params)
spans = [s.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} and {destination.uid}')
print(f'\nNow propagating between {source.uid} and {destination.uid}:')
try:
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
p_num = abs(int(round((p_stop - p_start)/p_step))) + 1 if p_step != 0 else 1
power_range = list(linspace(p_start, p_stop, p_num))
except TypeError:
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
power_range = [0]
if not power_mode:
#power cannot be changed in gain mode
power_range = [0]
for dp_db in power_range:
req.power = db2lin(pref_ch_db + dp_db)*1e-3
if power_mode:
print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:')
else:
print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
infos = propagate2(path, req, equipment)
if len(power_range) == 1:
for elem in path:
print(elem)
if power_mode:
print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f} dBm:')
else:
print(f'\nTransmission results:')
print(f' Final SNR total (signal bw): {ansi_escapes.cyan}{mean(destination.snr):.02f} dB{ansi_escapes.reset}')
#print(f'\n !!!!!!!!!!!!!!!!! TEST POINT !!!!!!!!!!!!!!!!!!!!!')
#print(f'carriers ase output of {path[1]} =\n {list(path[1].carriers("out", "nli"))}')
# => use "in" or "out" parameter
# => use "nli" or "ase" or "signal" or "total" parameter
if power_mode:
simulation_data.append({
'Pch_dBm' : pref_ch_db + dp_db,
'OSNR_ASE_0.1nm' : round(mean(destination.osnr_ase_01nm),2),
'OSNR_ASE_signal_bw' : round(mean(destination.osnr_ase),2),
'SNR_nli_signal_bw' : round(mean(destination.osnr_nli),2),
'SNR_total_signal_bw' : round(mean(destination.snr),2)
})
else:
simulation_data.append({
'gain_mode' : 'power canot be set',
'OSNR_ASE_0.1nm' : round(mean(destination.osnr_ase_01nm),2),
'OSNR_ASE_signal_bw' : round(mean(destination.osnr_ase),2),
'SNR_nli_signal_bw' : round(mean(destination.osnr_nli),2),
'SNR_total_signal_bw' : round(mean(destination.snr),2)
})
write_csv(result_dicts, 'simulation_result.csv')
return path, infos
parser = ArgumentParser()
parser.add_argument('-e', '--equipment', type=Path,
default=Path(__file__).parent / 'eqpt_config.json')
parser.add_argument('--sim-params', type=Path,
default=None, help='Path to the JSON containing simulation parameters (required for Raman)')
parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR summary')
parser.add_argument('-pl', '--plot', action='store_true')
parser.add_argument('-v', '--verbose', action='count', default=0, help='increases verbosity for each occurence')
parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes')
parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm')
parser.add_argument('-names', '--names-matching', action='store_true', help='display network names that are closed matches')
parser.add_argument('filename', nargs='?', type=Path,
default= Path(__file__).parent / 'edfa/edfa_example_network.json')
parser.add_argument('-v', '--verbose', action='count')
default=Path(__file__).parent / 'edfa_example_network.json')
parser.add_argument('source', nargs='?', help='source node')
parser.add_argument('destination', nargs='?', help='destination node')
if __name__ == '__main__':
args = parser.parse_args()
level = {1: INFO, 2: DEBUG}.get(args.verbose, ERROR)
logger.setLevel(level)
basicConfig()
exit(main(args))
basicConfig(level={0: ERROR, 1: INFO, 2: DEBUG}.get(args.verbose, DEBUG))
try:
equipment = load_equipment(args.equipment)
network = load_network(args.filename, equipment, args.names_matching)
sim_params = load_sim_params(args.sim_params) if args.sim_params is not None else None
except EquipmentConfigError as e:
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
exit(1)
except NetworkTopologyError as e:
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
exit(1)
except ConfigurationError as e:
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
exit(1)
if args.plot:
plot_baseline(network)
transceivers = {n.uid: n for n in network.nodes() if isinstance(n, Transceiver)}
if not transceivers:
exit('Network has no transceivers!')
if len(transceivers) < 2:
exit('Network has only one transceiver!')
if args.list_nodes:
for uid in transceivers:
print(uid)
exit()
#First try to find exact match if source/destination provided
if args.source:
source = transceivers.pop(args.source, None)
valid_source = True if source else False
else:
source = None
logger.info('No source node specified: picking random transceiver')
if args.destination:
destination = transceivers.pop(args.destination, None)
valid_destination = True if destination else False
else:
destination = None
logger.info('No destination node specified: picking random transceiver')
#If no exact match try to find partial match
if args.source and not source:
#TODO code a more advanced regex to find nodes match
source = next((transceivers.pop(uid) for uid in transceivers \
if args.source.lower() in uid.lower()), None)
if args.destination and not destination:
#TODO code a more advanced regex to find nodes match
destination = next((transceivers.pop(uid) for uid in transceivers \
if args.destination.lower() in uid.lower()), None)
#If no partial match or no source/destination provided pick random
if not source:
source = list(transceivers.values())[0]
del transceivers[source.uid]
if not destination:
destination = list(transceivers.values())[0]
logger.info(f'source = {args.source!r}')
logger.info(f'destination = {args.destination!r}')
params = {}
params['request_id'] = 0
params['trx_type'] = ''
params['trx_mode'] = ''
params['source'] = source.uid
params['destination'] = destination.uid
params['nodes_list'] = [destination.uid]
params['loose_list'] = ['strict']
params['format'] = ''
params['path_bandwidth'] = 0
trx_params = trx_mode_params(equipment)
if args.power:
trx_params['power'] = db2lin(float(args.power))*1e-3
params.update(trx_params)
req = Path_request(**params)
path, infos = main(network, equipment, source, destination, sim_params, req)
save_network(args.filename, network)
if args.show_channels:
print('\nThe total SNR per channel at the end of the line is:')
print('{:>5}{:>26}{:>26}{:>28}{:>28}{:>28}' \
.format('Ch. #', 'Channel frequency (THz)', 'Channel power (dBm)', 'OSNR ASE (signal bw, dB)', 'SNR NLI (signal bw, dB)', 'SNR total (signal bw, dB)'))
for final_carrier, ch_osnr, ch_snr_nl, ch_snr in zip(infos[path[-1]][1].carriers, path[-1].osnr_ase, path[-1].osnr_nli, path[-1].snr):
ch_freq = final_carrier.frequency * 1e-12
ch_power = lin2db(final_carrier.power.signal*1e3)
print('{:5}{:26.2f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' \
.format(final_carrier.channel_number, round(ch_freq, 2), round(ch_power, 2), round(ch_osnr, 2), round(ch_snr_nl, 2), round(ch_snr, 2)))
if not args.source:
print(f'\n(No source node specified: picked {source.uid})')
elif not valid_source:
print(f'\n(Invalid source node {args.source!r} replaced with {source.uid})')
if not args.destination:
print(f'\n(No destination node specified: picked {destination.uid})')
elif not valid_destination:
print(f'\n(Invalid destination node {args.destination!r} replaced with {destination.uid})')
if args.plot:
plot_results(network, path, source, destination, infos)

View File

@@ -0,0 +1,36 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
write_path_jsontocsv.py
========================
Reads JSON path result file in accordance with the Yang model for requesting
path computation and writes results to a CSV file.
See: draft-ietf-teas-yang-path-computation-01.txt
"""
from argparse import ArgumentParser
from pathlib import Path
from json import loads
from gnpy.core.equipment import load_equipment
from gnpy.core.request import jsontocsv
parser = ArgumentParser(description = 'A function that writes json path results in an excel sheet.')
parser.add_argument('filename', nargs='?', type = Path)
parser.add_argument('output_filename', nargs='?', type = Path)
parser.add_argument('eqpt_filename', nargs='?', type = Path, default=Path(__file__).parent / 'eqpt_config.json')
if __name__ == '__main__':
args = parser.parse_args()
with open(args.output_filename, 'w', encoding='utf-8') as file:
with open(args.filename, encoding='utf-8') as f:
print(f'Reading {args.filename}')
json_data = loads(f.read())
equipment = load_equipment(args.eqpt_filename)
print(f'Writing in {args.output_filename}')
jsontocsv(json_data,equipment,file)

View File

@@ -1,4 +1,28 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
########################################################################
# _____ ___ ____ ____ ____ _____ #
# |_ _|_ _| _ \ | _ \/ ___|| ____| #
# | | | || |_) | | |_) \___ \| _| #
# | | | || __/ | __/ ___) | |___ #
# |_| |___|_| |_| |____/|_____| #
# #
# == Physical Simulation Environment == #
# #
########################################################################
'''
gnpy route planning and optimization library
============================================
gnpy is a route planning and optimization library, written in Python, for
operators of large-scale mesh optical networks.
:copyright: © 2018, Telecom Infra Project
:license: BSD 3-Clause, see LICENSE for more details.
'''
from . import elements
from .execute import *

13
gnpy/core/ansi_escapes.py Normal file
View File

@@ -0,0 +1,13 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.ansi_escapes
======================
A random subset of ANSI terminal escape codes for colored messages
'''
red = '\x1b[1;31;40m'
cyan = '\x1b[1;36;40m'
reset = '\x1b[0m'

627
gnpy/core/convert.py Executable file
View File

@@ -0,0 +1,627 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.convert
=================
This module contains utilities for converting between XLS and JSON.
The input XLS file must contain sheets named "Nodes" and "Links".
It may optionally contain a sheet named "Eqpt".
In the "Nodes" sheet, only the "City" column is mandatory. The column "Type"
can be determined automatically given the topology (e.g., if degree 2, ILA;
otherwise, ROADM.) Incorrectly specified types (e.g., ILA for node of
degree ≠ 2) will be automatically corrected.
In the "Links" sheet, only the first three columns ("Node A", "Node Z" and
"east Distance (km)") are mandatory. Missing "west" information is copied from
the "east" information so that it is possible to input undirected data.
"""
from sys import exit
try:
from xlrd import open_workbook
except ModuleNotFoundError:
exit('Required: `pip install xlrd`')
from argparse import ArgumentParser
from collections import namedtuple, Counter, defaultdict
from itertools import chain
from json import dumps
from pathlib import Path
from difflib import get_close_matches
from gnpy.core.utils import silent_remove
import time
all_rows = lambda sh, start=0: (sh.row(x) for x in range(start, sh.nrows))
class Node(object):
def __init__(self, **kwargs):
super(Node, self).__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
for k,v in self.default_values.items():
v = clean_kwargs.get(k,v)
setattr(self, k, v)
default_values = \
{
'city': '',
'state': '',
'country': '',
'region': '',
'latitude': 0,
'longitude': 0,
'node_type': 'ILA',
'booster_restriction' : '',
'preamp_restriction' : ''
}
class Link(object):
"""attribtes from west parse_ept_headers dict
+node_a, node_z, west_fiber_con_in, east_fiber_con_in
"""
def __init__(self, **kwargs):
super(Link, self).__init__()
self.update_attr(kwargs)
self.distance_units = 'km'
def update_attr(self, kwargs):
clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
for k,v in self.default_values.items():
v = clean_kwargs.get(k,v)
setattr(self, k, v)
k = 'west' + k.split('east')[-1]
v = clean_kwargs.get(k,v)
setattr(self, k, v)
def __eq__(self, link):
return (self.from_city == link.from_city and self.to_city == link.to_city) \
or (self.from_city == link.to_city and self.to_city == link.from_city)
default_values = \
{
'from_city': '',
'to_city': '',
'east_distance': 80,
'east_fiber': 'SSMF',
'east_lineic': 0.2,
'east_con_in': None,
'east_con_out': None,
'east_pmd': 0.1,
'east_cable': ''
}
class Eqpt(object):
def __init__(self, **kwargs):
super(Eqpt, self).__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
for k,v in self.default_values.items():
v_east = clean_kwargs.get(k,v)
setattr(self, k, v_east)
k = 'west' + k.split('east')[-1]
v_west = clean_kwargs.get(k,v)
setattr(self, k, v_west)
default_values = \
{
'from_city': '',
'to_city': '',
'east_amp_type': '',
'east_att_in': 0,
'east_amp_gain': None,
'east_amp_dp': None,
'east_tilt': 0,
'east_att_out': None
}
def read_header(my_sheet, line, slice_):
""" return the list of headers !:= ''
header_i = [(header, header_column_index), ...]
in a {line, slice1_x, slice_y} range
"""
Param_header = namedtuple('Param_header', 'header colindex')
try:
header = [x.value.strip() for x in my_sheet.row_slice(line, slice_[0], slice_[1])]
header_i = [Param_header(header,i+slice_[0]) for i, header in enumerate(header) if header != '']
except Exception:
header_i = []
if header_i != [] and header_i[-1].colindex != slice_[1]:
header_i.append(Param_header('',slice_[1]))
return header_i
def read_slice(my_sheet, line, slice_, header):
"""return the slice range of a given header
in a defined range {line, slice_x, slice_y}"""
header_i = read_header(my_sheet, line, slice_)
slice_range = (-1,-1)
if header_i != []:
try:
slice_range = next((h.colindex,header_i[i+1].colindex) \
for i,h in enumerate(header_i) if header in h.header)
except Exception:
pass
return slice_range
def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
"""return a dict of header_slice
key = column index
value = header name"""
for h0 in input_headers_dict:
slice_out = read_slice(my_sheet, start_line, slice_in, h0)
iteration = 1
while slice_out == (-1,-1) and iteration < 10:
#try next lines
#print(h0, iteration)
slice_out = read_slice(my_sheet, start_line+iteration, slice_in, h0)
iteration += 1
if slice_out == (-1, -1):
if h0 in ('east', 'Node A', 'Node Z', 'City') :
print(f'\x1b[1;31;40m'+f'CRITICAL: missing _{h0}_ header: EXECUTION ENDS'+ '\x1b[0m')
exit()
else:
print(f'missing header {h0}')
elif not isinstance(input_headers_dict[h0], dict):
headers[slice_out[0]] = input_headers_dict[h0]
else:
headers = parse_headers(my_sheet, input_headers_dict[h0], headers, start_line+1, slice_out)
if headers == {}:
print(f'\x1b[1;31;40m'+f'CRITICAL ERROR: could not find any header to read _ ABORT'+ '\x1b[0m')
exit()
return headers
def parse_row(row, headers):
#print([label for label in ept.values()])
#print([i for i in ept.keys()])
#print(row[i for i in ept.keys()])
return {f: r.value for f, r in \
zip([label for label in headers.values()], [row[i] for i in headers])}
#if r.ctype != XL_CELL_EMPTY}
def parse_sheet(my_sheet, input_headers_dict, header_line, start_line, column):
headers = parse_headers(my_sheet, input_headers_dict, {}, header_line, (0,column))
for row in all_rows(my_sheet, start=start_line):
yield parse_row(row[0: column], headers)
def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
duplicate_links = []
for l1 in links:
for l2 in links:
if l1 is not l2 and l1 == l2 and l2 not in duplicate_links:
print(f'\nWARNING\n \
link {l1.from_city}-{l1.to_city} is duplicate \
\nthe 1st duplicate link will be removed but you should check Links sheet input')
duplicate_links.append(l1)
#if duplicate_links != []:
#time.sleep(3)
for l in duplicate_links:
links.remove(l)
try :
test_nodes = [n for n in nodes_by_city if not n in links_by_city]
test_links = [n for n in links_by_city if not n in nodes_by_city]
test_eqpts = [n for n in eqpts_by_city if not n in nodes_by_city]
assert (test_nodes == [] or test_nodes == [''])\
and (test_links == [] or test_links ==[''])\
and (test_eqpts == [] or test_eqpts ==[''])
except AssertionError:
print(f'CRITICAL error: \nNames in Nodes and Links sheets do no match, check:\
\n{test_nodes} in Nodes sheet\
\n{test_links} in Links sheet\
\n{test_eqpts} in Eqpt sheet')
exit(1)
for city,link in links_by_city.items():
if nodes_by_city[city].node_type.lower()=='ila' and len(link) != 2:
#wrong input: ILA sites can only be Degree 2
# => correct to make it a ROADM and remove entry in links_by_city
#TODO : put in log rather than print
print(f'invalid node type ({nodes_by_city[city].node_type})\
specified in {city}, replaced by ROADM')
nodes_by_city[city].node_type = 'ROADM'
for n in nodes:
if n.city==city:
n.node_type='ROADM'
return nodes, links
def convert_file(input_filename, names_matching=False, filter_region=[]):
nodes, links, eqpts = parse_excel(input_filename)
if filter_region:
nodes = [n for n in nodes if n.region.lower() in filter_region]
cities = {n.city for n in nodes}
links = [lnk for lnk in links if lnk.from_city in cities and
lnk.to_city in cities]
cities = {lnk.from_city for lnk in links} | {lnk.to_city for lnk in links}
nodes = [n for n in nodes if n.city in cities]
global nodes_by_city
nodes_by_city = {n.city: n for n in nodes}
#create matching dictionary for node name mismatch analysis
cities = {''.join(c.strip() for c in n.city.split('C+L')).lower(): n.city for n in nodes}
cities_to_match = [k for k in cities]
city_match_dic = defaultdict(list)
for city in cities:
if city in cities_to_match:
cities_to_match.remove(city)
matches = get_close_matches(city, cities_to_match, 4, 0.85)
for m in matches:
city_match_dic[cities[city]].append(cities[m])
#check lower case/upper case
for city in nodes_by_city:
for match_city in nodes_by_city:
if match_city.lower() == city.lower() and match_city != city:
city_match_dic[city].append(match_city)
if names_matching:
print('\ncity match dictionary:',city_match_dic)
with open('name_match_dictionary.json', 'w', encoding='utf-8') as city_match_dic_file:
city_match_dic_file.write(dumps(city_match_dic, indent=2, ensure_ascii=False))
global links_by_city
links_by_city = defaultdict(list)
for link in links:
links_by_city[link.from_city].append(link)
links_by_city[link.to_city].append(link)
global eqpts_by_city
eqpts_by_city = defaultdict(list)
for eqpt in eqpts:
eqpts_by_city[eqpt.from_city].append(eqpt)
nodes, links = sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city)
data = {
'elements':
[{'uid': f'trx {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Transceiver'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'] +
[{'uid': f'roadm {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Roadm'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm' \
and x.booster_restriction == '' and x.preamp_restriction == ''] +
[{'uid': f'roadm {x.city}',
'params' : {
'restrictions': {
'preamp_variety_list': silent_remove(x.preamp_restriction.split(' | '),''),
'booster_variety_list': silent_remove(x.booster_restriction.split(' | '),'')
}
},
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Roadm'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm' and \
(x.booster_restriction != '' or x.preamp_restriction != '')] +
[{'uid': f'west fused spans in {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Fused'}
for x in nodes_by_city.values() if x.node_type.lower() == 'fused'] +
[{'uid': f'east fused spans in {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Fused'}
for x in nodes_by_city.values() if x.node_type.lower() == 'fused'] +
[{'uid': f'fiber ({x.from_city} \u2192 {x.to_city})-{x.east_cable}',
'metadata': {'location': midpoint(nodes_by_city[x.from_city],
nodes_by_city[x.to_city])},
'type': 'Fiber',
'type_variety': x.east_fiber,
'params': {'length': round(x.east_distance, 3),
'length_units': x.distance_units,
'loss_coef': x.east_lineic,
'con_in':x.east_con_in,
'con_out':x.east_con_out}
}
for x in links] +
[{'uid': f'fiber ({x.to_city} \u2192 {x.from_city})-{x.west_cable}',
'metadata': {'location': midpoint(nodes_by_city[x.from_city],
nodes_by_city[x.to_city])},
'type': 'Fiber',
'type_variety': x.west_fiber,
'params': {'length': round(x.west_distance, 3),
'length_units': x.distance_units,
'loss_coef': x.west_lineic,
'con_in':x.west_con_in,
'con_out':x.west_con_out}
} # missing ILA construction
for x in links] +
[{'uid': f'east edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Edfa',
'type_variety': e.east_amp_type,
'operational': {'gain_target': e.east_amp_gain,
'delta_p': e.east_amp_dp,
'tilt_target': e.east_tilt,
'out_voa' : e.east_att_out}
}
for e in eqpts if (e.east_amp_type.lower() != '' and \
e.east_amp_type.lower() != 'fused')] +
[{'uid': f'west edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Edfa',
'type_variety': e.west_amp_type,
'operational': {'gain_target': e.west_amp_gain,
'delta_p': e.west_amp_dp,
'tilt_target': e.west_tilt,
'out_voa' : e.west_att_out}
}
for e in eqpts if (e.west_amp_type.lower() != '' and \
e.west_amp_type.lower() != 'fused')] +
# fused edfa variety is a hack to indicate that there should not be
# booster amplifier out the roadm.
# If user specifies ILA in Nodes sheet and fused in Eqpt sheet, then assumes that
# this is a fused nodes.
[{'uid': f'east edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Fused',
'params': {'loss': 0}
}
for e in eqpts if e.east_amp_type.lower() == 'fused'] +
[{'uid': f'west edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Fused',
'params': {'loss': 0}
}
for e in eqpts if e.west_amp_type.lower() == 'fused'],
'connections':
list(chain.from_iterable([eqpt_connection_by_city(n.city)
for n in nodes]))
+
list(chain.from_iterable(zip(
[{'from_node': f'trx {x.city}',
'to_node': f'roadm {x.city}'}
for x in nodes_by_city.values() if x.node_type.lower()=='roadm'],
[{'from_node': f'roadm {x.city}',
'to_node': f'trx {x.city}'}
for x in nodes_by_city.values() if x.node_type.lower()=='roadm'])))
}
suffix_filename = str(input_filename.suffixes[0])
full_input_filename = str(input_filename)
split_filename = [full_input_filename[0:len(full_input_filename)-len(suffix_filename)] , suffix_filename[1:]]
output_json_file_name = split_filename[0]+'.json'
with open(output_json_file_name, 'w', encoding='utf-8') as edfa_json_file:
edfa_json_file.write(dumps(data, indent=2, ensure_ascii=False))
return output_json_file_name
def parse_excel(input_filename):
link_headers = \
{ 'Node A': 'from_city',
'Node Z': 'to_city',
'east':{
'Distance (km)': 'east_distance',
'Fiber type': 'east_fiber',
'lineic att': 'east_lineic',
'Con_in': 'east_con_in',
'Con_out': 'east_con_out',
'PMD': 'east_pmd',
'Cable id': 'east_cable'
},
'west':{
'Distance (km)': 'west_distance',
'Fiber type': 'west_fiber',
'lineic att': 'west_lineic',
'Con_in': 'west_con_in',
'Con_out': 'west_con_out',
'PMD': 'west_pmd',
'Cable id': 'west_cable'
}
}
node_headers = \
{ 'City': 'city',
'State': 'state',
'Country': 'country',
'Region': 'region',
'Latitude': 'latitude',
'Longitude': 'longitude',
'Type': 'node_type',
'Booster_restriction': 'booster_restriction',
'Preamp_restriction': 'preamp_restriction'
}
eqpt_headers = \
{ 'Node A': 'from_city',
'Node Z': 'to_city',
'east':{
'amp type': 'east_amp_type',
'att_in': 'east_att_in',
'amp gain': 'east_amp_gain',
'delta p': 'east_amp_dp',
'tilt': 'east_tilt',
'att_out': 'east_att_out'
},
'west':{
'amp type': 'west_amp_type',
'att_in': 'west_att_in',
'amp gain': 'west_amp_gain',
'delta p': 'west_amp_dp',
'tilt': 'west_tilt',
'att_out': 'west_att_out'
}
}
with open_workbook(input_filename) as wb:
nodes_sheet = wb.sheet_by_name('Nodes')
links_sheet = wb.sheet_by_name('Links')
try:
eqpt_sheet = wb.sheet_by_name('Eqpt')
except Exception:
#eqpt_sheet is optional
eqpt_sheet = None
nodes = []
for node in parse_sheet(nodes_sheet, node_headers, NODES_LINE, NODES_LINE+1, NODES_COLUMN):
nodes.append(Node(**node))
expected_node_types = {'ROADM', 'ILA', 'FUSED'}
for n in nodes:
if n.node_type not in expected_node_types:
n.node_type = 'ILA'
links = []
for link in parse_sheet(links_sheet, link_headers, LINKS_LINE, LINKS_LINE+2, LINKS_COLUMN):
links.append(Link(**link))
#print('\n', [l.__dict__ for l in links])
eqpts = []
if eqpt_sheet != None:
for eqpt in parse_sheet(eqpt_sheet, eqpt_headers, EQPTS_LINE, EQPTS_LINE+2, EQPTS_COLUMN):
eqpts.append(Eqpt(**eqpt))
# sanity check
all_cities = Counter(n.city for n in nodes)
if len(all_cities) != len(nodes):
raise ValueError(f'Duplicate city: {all_cities}')
if any(ln.from_city not in all_cities or
ln.to_city not in all_cities for ln in links):
raise ValueError(f'Bad link.')
return nodes, links, eqpts
def eqpt_connection_by_city(city_name):
other_cities = fiber_dest_from_source(city_name)
subdata = []
if nodes_by_city[city_name].node_type.lower() in {'ila', 'fused'}:
# Then len(other_cities) == 2
direction = ['west', 'east']
for i in range(2):
from_ = fiber_link(other_cities[i], city_name)
in_ = eqpt_in_city_to_city(city_name, other_cities[0],direction[i])
to_ = fiber_link(city_name, other_cities[1-i])
subdata += connect_eqpt(from_, in_, to_)
elif nodes_by_city[city_name].node_type.lower() == 'roadm':
for other_city in other_cities:
from_ = f'roadm {city_name}'
in_ = eqpt_in_city_to_city(city_name, other_city)
to_ = fiber_link(city_name, other_city)
subdata += connect_eqpt(from_, in_, to_)
from_ = fiber_link(other_city, city_name)
in_ = eqpt_in_city_to_city(city_name, other_city, "west")
to_ = f'roadm {city_name}'
subdata += connect_eqpt(from_, in_, to_)
return subdata
def connect_eqpt(from_, in_, to_):
connections = []
if in_ !='':
connections = [{'from_node': from_, 'to_node': in_},
{'from_node': in_, 'to_node': to_}]
else:
connections = [{'from_node': from_, 'to_node': to_}]
return connections
def eqpt_in_city_to_city(in_city, to_city, direction='east'):
rev_direction = 'west' if direction == 'east' else 'east'
amp_direction = f'{direction}_amp_type'
amp_rev_direction = f'{rev_direction}_amp_type'
return_eqpt = ''
if in_city in eqpts_by_city:
for e in eqpts_by_city[in_city]:
if nodes_by_city[in_city].node_type.lower() == 'roadm':
if e.to_city == to_city and getattr(e, amp_direction) != '':
return_eqpt = f'{direction} edfa in {e.from_city} to {e.to_city}'
elif nodes_by_city[in_city].node_type.lower() == 'ila':
if e.to_city != to_city:
direction = rev_direction
amp_direction = amp_rev_direction
if getattr(e, amp_direction) != '':
return_eqpt = f'{direction} edfa in {e.from_city} to {e.to_city}'
if nodes_by_city[in_city].node_type.lower() == 'fused':
return_eqpt = f'{direction} fused spans in {in_city}'
return return_eqpt
def fiber_dest_from_source(city_name):
destinations = []
links_from_city = links_by_city[city_name]
for l in links_from_city:
if l.from_city == city_name:
destinations.append(l.to_city)
else:
destinations.append(l.from_city)
return destinations
def fiber_link(from_city, to_city):
source_dest = (from_city, to_city)
link = links_by_city[from_city]
l = next(l for l in link if l.from_city in source_dest and l.to_city in source_dest)
if l.from_city == from_city:
fiber = f'fiber ({l.from_city} \u2192 {l.to_city})-{l.east_cable}'
else:
fiber = f'fiber ({l.to_city} \u2192 {l.from_city})-{l.west_cable}'
return fiber
def midpoint(city_a, city_b):
lats = city_a.latitude, city_b.latitude
longs = city_a.longitude, city_b.longitude
try:
result = {
'latitude': sum(lats) / 2,
'longitude': sum(longs) / 2
}
except :
result = {
'latitude': 0,
'longitude': 0
}
return result
#output_json_file_name = 'coronet_conus_example.json'
#TODO get column size automatically from tupple size
NODES_COLUMN = 10
NODES_LINE = 4
LINKS_COLUMN = 16
LINKS_LINE = 3
EQPTS_LINE = 3
EQPTS_COLUMN = 14
parser = ArgumentParser()
parser.add_argument('workbook', nargs='?', type=Path , default='meshTopologyExampleV2.xls')
parser.add_argument('-f', '--filter-region', action='append', default=[])
if __name__ == '__main__':
args = parser.parse_args()
convert_file(args.workbook, args.filter_region)

File diff suppressed because it is too large Load Diff

401
gnpy/core/equipment.py Normal file
View File

@@ -0,0 +1,401 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.equipment
===================
This module contains functionality for specifying equipment.
'''
from numpy import clip, polyval
from operator import itemgetter
from math import isclose
from pathlib import Path
from json import load
from gnpy.core.utils import lin2db, db2lin, load_json
from collections import namedtuple
from gnpy.core.elements import Edfa
from gnpy.core.exceptions import EquipmentConfigError
import time
Model_vg = namedtuple('Model_vg', 'nf1 nf2 delta_p')
Model_fg = namedtuple('Model_fg', 'nf0')
Model_openroadm = namedtuple('Model_openroadm', 'nf_coef')
Model_hybrid = namedtuple('Model_hybrid', 'nf_ram gain_ram edfa_variety')
Model_dual_stage = namedtuple('Model_dual_stage', 'preamp_variety booster_variety')
class common:
def update_attr(self, default_values, kwargs, name):
clean_kwargs = {k:v for k, v in kwargs.items() if v != ''}
for k, v in default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
if k not in clean_kwargs and name != 'Amp':
print(f'\x1b[1;31;40m'+
f'\n WARNING missing {k} attribute in eqpt_config.json[{name}]'+
f'\n default value is {k} = {v}'+
f'\x1b[0m')
time.sleep(1)
class SI(common):
default_values =\
{
"f_min": 191.35e12,
"f_max": 196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0, 0, 0.5],
"roll_off": 0.15,
"tx_osnr": 45,
"sys_margins": 0
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'SI')
class Span(common):
default_values = \
{
'power_mode': True,
'delta_power_range_db': None,
'max_fiber_lineic_loss_for_raman': 0.25,
'target_extended_gain': 2.5,
'max_length': 150,
'length_units': 'km',
'max_loss': None,
'padding': 10,
'EOL': 0,
'con_in': 0,
'con_out': 0
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Span')
class Roadm(common):
default_values = \
{
'target_pch_out_db': -17,
'add_drop_osnr': 100,
'restrictions': {
'preamp_variety_list':[],
'booster_variety_list':[]
}
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Roadm')
class Transceiver(common):
default_values = \
{
'type_variety': None,
'frequency': None,
'mode': {}
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Transceiver')
class Fiber(common):
default_values = \
{
'type_variety': '',
'dispersion': None,
'gamma': 0
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Fiber')
class RamanFiber(common):
default_values = \
{
'type_variety': '',
'dispersion': None,
'gamma': 0,
'raman_efficiency': None
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'RamanFiber')
for param in ('cr', 'frequency_offset'):
if param not in self.raman_efficiency:
raise EquipmentConfigError(f'RamanFiber.raman_efficiency: missing "{param}" parameter')
if self.raman_efficiency['frequency_offset'] != sorted(self.raman_efficiency['frequency_offset']):
raise EquipmentConfigError(f'RamanFiber.raman_efficiency.frequency_offset is not sorted')
class Amp(common):
default_values = \
{
'f_min': 191.35e12,
'f_max': 196.1e12,
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'nf_fit_coeff': None,
'nf_ripple': None,
'dgt': None,
'gain_ripple': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False
}
def __init__(self, **kwargs):
self.update_attr(self.default_values, kwargs, 'Amp')
@classmethod
def from_json(cls, filename, **kwargs):
config = Path(filename).parent / 'default_edfa_config.json'
type_variety = kwargs['type_variety']
type_def = kwargs.get('type_def', 'variable_gain') # default compatibility with older json eqpt files
nf_def = None
dual_stage_def = None
if type_def == 'fixed_gain':
try:
nf0 = kwargs.pop('nf0')
except KeyError: #nf0 is expected for a fixed gain amp
raise EquipmentConfigError(f'missing nf0 value input for amplifier: {type_variety} in equipment config')
for k in ('nf_min', 'nf_max'):
try:
del kwargs[k]
except KeyError:
pass
nf_def = Model_fg(nf0)
elif type_def == 'advanced_model':
config = Path(filename).parent / kwargs.pop('advanced_config_from_json')
elif type_def == 'variable_gain':
gain_min, gain_max = kwargs['gain_min'], kwargs['gain_flatmax']
try: #nf_min and nf_max are expected for a variable gain amp
nf_min = kwargs.pop('nf_min')
nf_max = kwargs.pop('nf_max')
except KeyError:
raise EquipmentConfigError(f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config')
try: #remove all remaining nf inputs
del kwargs['nf0']
except KeyError: pass #nf0 is not needed for variable gain amp
nf1, nf2, delta_p = nf_model(type_variety, gain_min, gain_max, nf_min, nf_max)
nf_def = Model_vg(nf1, nf2, delta_p)
elif type_def == 'openroadm':
try:
nf_coef = kwargs.pop('nf_coef')
except KeyError: #nf_coef is expected for openroadm amp
raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config')
nf_def = Model_openroadm(nf_coef)
elif type_def == 'dual_stage':
try: #nf_ram and gain_ram are expected for a hybrid amp
preamp_variety = kwargs.pop('preamp_variety')
booster_variety = kwargs.pop('booster_variety')
except KeyError:
raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety} in equipment config')
dual_stage_def = Model_dual_stage(preamp_variety, booster_variety)
with open(config, encoding='utf-8') as f:
json_data = load(f)
return cls(**{**kwargs, **json_data,
'nf_model': nf_def, 'dual_stage_model': dual_stage_def})
def nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
if nf_min < -10:
raise EquipmentConfigError(f'Invalid nf_min value {nf_min!r} for amplifier {type_variety}')
if nf_max < -10:
raise EquipmentConfigError(f'Invalid nf_max value {nf_max!r} for amplifier {type_variety}')
# NF estimation model based on nf_min and nf_max
# delta_p: max power dB difference between first and second stage coils
# dB g1a: first stage gain - internal VOA attenuation
# nf1, nf2: first and second stage coils
# calculated by solving nf_{min,max} = nf1 + nf2 / g1a{min,max}
delta_p = 5
g1a_min = gain_min - (gain_max - gain_min) - delta_p
g1a_max = gain_max - delta_p
nf2 = lin2db((db2lin(nf_min) - db2lin(nf_max)) /
(1/db2lin(g1a_max) - 1/db2lin(g1a_min)))
nf1 = lin2db(db2lin(nf_min) - db2lin(nf2)/db2lin(g1a_max))
if nf1 < 4:
raise EquipmentConfigError(f'First coil value too low {nf1} for amplifier {type_variety}')
# Check 1 dB < delta_p < 6 dB to ensure nf_min and nf_max values make sense.
# There shouldn't be high nf differences between the two coils:
# nf2 should be nf1 + 0.3 < nf2 < nf1 + 2
# If not, recompute and check delta_p
if not nf1 + 0.3 < nf2 < nf1 + 2:
nf2 = clip(nf2, nf1 + 0.3, nf1 + 2)
g1a_max = lin2db(db2lin(nf2) / (db2lin(nf_min) - db2lin(nf1)))
delta_p = gain_max - g1a_max
g1a_min = gain_min - (gain_max-gain_min) - delta_p
if not 1 < delta_p < 11:
raise EquipmentConfigError(f'Computed \N{greek capital letter delta}P invalid \
\n 1st coil vs 2nd coil calculated DeltaP {delta_p:.2f} for \
\n amplifier {type_variety} is not valid: revise inputs \
\n calculated 1st coil NF = {nf1:.2f}, 2nd coil NF = {nf2:.2f}')
# Check calculated values for nf1 and nf2
calc_nf_min = lin2db(db2lin(nf1) + db2lin(nf2)/db2lin(g1a_max))
if not isclose(nf_min, calc_nf_min, abs_tol=0.01):
raise EquipmentConfigError(f'nf_min does not match calc_nf_min, {nf_min} vs {calc_nf_min} for amp {type_variety}')
calc_nf_max = lin2db(db2lin(nf1) + db2lin(nf2)/db2lin(g1a_min))
if not isclose(nf_max, calc_nf_max, abs_tol=0.01):
raise EquipmentConfigError(f'nf_max does not match calc_nf_max, {nf_max} vs {calc_nf_max} for amp {type_variety}')
return nf1, nf2, delta_p
def edfa_nf(gain_target, variety_type, equipment):
amp_params = equipment['Edfa'][variety_type]
amp = Edfa(
uid = f'calc_NF',
params = amp_params.__dict__,
operational = {
'gain_target': gain_target,
'tilt_target': 0
}
)
amp.pin_db = 0
amp.nch = 88
return amp._calc_nf(True)
def trx_mode_params(equipment, trx_type_variety='', trx_mode='', error_message=False):
"""return the trx and SI parameters from eqpt_config for a given type_variety and mode (ie format)"""
trx_params = {}
default_si_data = equipment['SI']['default']
try:
trxs = equipment['Transceiver']
#if called from path_requests_run.py, trx_mode is filled with None when not specified by user
#if called from transmission_main.py, trx_mode is ''
if trx_mode is not None:
mode_params = next(mode for trx in trxs \
if trx == trx_type_variety \
for mode in trxs[trx].mode \
if mode['format'] == trx_mode)
trx_params = {**mode_params}
# sanity check: spacing baudrate must be smaller than min spacing
if trx_params['baud_rate'] > trx_params['min_spacing'] :
raise EquipmentConfigError(f'Inconsistency in equipment library:\n Transpoder "{trx_type_variety}" mode "{trx_params["format"]}" '+\
f'has baud rate: {trx_params["baud_rate"]*1e-9} GHz greater than min_spacing {trx_params["min_spacing"]*1e-9}.')
else:
mode_params = {"format": "undetermined",
"baud_rate": None,
"OSNR": None,
"bit_rate": None,
"roll_off": None,
"tx_osnr":None,
"min_spacing":None,
"cost":None}
trx_params = {**mode_params}
trx_params['f_min'] = equipment['Transceiver'][trx_type_variety].frequency['min']
trx_params['f_max'] = equipment['Transceiver'][trx_type_variety].frequency['max']
# TODO: novel automatic feature maybe unwanted if spacing is specified
# trx_params['spacing'] = automatic_spacing(trx_params['baud_rate'])
# temp = trx_params['spacing']
# print(f'spacing {temp}')
except StopIteration :
if error_message:
raise EquipmentConfigError(f'Computation stoped: could not find tsp : {trx_type_variety} with mode: {trx_mode} in eqpt library')
else:
# default transponder charcteristics
# mainly used with transmission_main_example.py
trx_params['f_min'] = default_si_data.f_min
trx_params['f_max'] = default_si_data.f_max
trx_params['baud_rate'] = default_si_data.baud_rate
trx_params['spacing'] = default_si_data.spacing
trx_params['OSNR'] = None
trx_params['bit_rate'] = None
trx_params['cost'] = None
trx_params['roll_off'] = default_si_data.roll_off
trx_params['tx_osnr'] = default_si_data.tx_osnr
trx_params['min_spacing'] = None
nch = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
trx_params['nb_channel'] = nch
print(f'There are {nch} channels propagating')
trx_params['power'] = db2lin(default_si_data.power_dbm)*1e-3
return trx_params
def automatic_spacing(baud_rate):
"""return the min possible channel spacing for a given baud rate"""
# TODO : this should parametrized in a cfg file
# list of possible tuples [(max_baud_rate, spacing_for_this_baud_rate)]
spacing_list = [(33e9, 37.5e9), (38e9, 50e9), (50e9, 62.5e9), (67e9, 75e9), (92e9, 100e9)]
return min((s[1] for s in spacing_list if s[0] > baud_rate), default=baud_rate*1.2)
def automatic_nch(f_min, f_max, spacing):
return int((f_max - f_min)//spacing)
def automatic_fmax(f_min, spacing, nch):
return f_min + spacing * nch
def load_equipment(filename):
json_data = load_json(filename)
return equipment_from_json(json_data, filename)
def update_trx_osnr(equipment):
"""add sys_margins to all Transceivers OSNR values"""
for trx in equipment['Transceiver'].values():
for m in trx.mode:
m['OSNR'] = m['OSNR'] + equipment['SI']['default'].sys_margins
return equipment
def update_dual_stage(equipment):
edfa_dict = equipment['Edfa']
for edfa in edfa_dict.values():
if edfa.type_def == 'dual_stage':
edfa_preamp = edfa_dict[edfa.dual_stage_model.preamp_variety]
edfa_booster = edfa_dict[edfa.dual_stage_model.booster_variety]
for key, value in edfa_preamp.__dict__.items():
attr_k = 'preamp_' + key
setattr(edfa, attr_k, value)
for key, value in edfa_booster.__dict__.items():
attr_k = 'booster_' + key
setattr(edfa, attr_k, value)
edfa.p_max = edfa_booster.p_max
edfa.gain_flatmax = edfa_booster.gain_flatmax + edfa_preamp.gain_flatmax
if edfa.gain_min < edfa_preamp.gain_min:
raise EquipmentConfigError(f'Dual stage {edfa.type_variety} min gain is lower than its preamp min gain')
return equipment
def roadm_restrictions_sanity_check(equipment):
""" verifies that booster and preamp restrictions specified in roadm equipment are listed
in the edfa.
"""
restrictions = equipment['Roadm']['default'].restrictions['booster_variety_list'] + \
equipment['Roadm']['default'].restrictions['preamp_variety_list']
for amp_name in restrictions:
if amp_name not in equipment['Edfa']:
raise EquipmentConfigError(f'ROADM restriction {amp_name} does not refer to a defined EDFA name')
def equipment_from_json(json_data, filename):
"""build global dictionnary eqpt_library that stores all eqpt characteristics:
edfa type type_variety, fiber type_variety
from the eqpt_config.json (filename parameter)
also read advanced_config_from_json file parameters for edfa if they are available:
typically nf_ripple, dfg gain ripple, dgt and nf polynomial nf_fit_coeff
if advanced_config_from_json file parameter is not present: use nf_model:
requires nf_min and nf_max values boundaries of the edfa gain range
"""
equipment = {}
for key, entries in json_data.items():
equipment[key] = {}
typ = globals()[key]
for entry in entries:
subkey = entry.get('type_variety', 'default')
if key == 'Edfa':
equipment[key][subkey] = Amp.from_json(filename, **entry)
else:
equipment[key][subkey] = typ(**entry)
equipment = update_trx_osnr(equipment)
equipment = update_dual_stage(equipment)
roadm_restrictions_sanity_check(equipment)
return equipment

19
gnpy/core/exceptions.py Normal file
View File

@@ -0,0 +1,19 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.exceptions
====================
Exceptions thrown by other gnpy modules
'''
class ConfigurationError(Exception):
'''User-provided configuration contains an error'''
class EquipmentConfigError(ConfigurationError):
'''Incomplete or wrong configuration within the equipment library'''
class NetworkTopologyError(ConfigurationError):
'''Topology of user-provided network is wrong'''

View File

@@ -1,2 +1,10 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.execute
=================
This module contains functions for executing the propogation of
spectral information on a `gnpy` network.
'''

View File

@@ -1,34 +1,58 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.info
==============
This module contains classes for modelling :class:`SpectralInformation`.
'''
from collections import namedtuple
from numpy import array
from gnpy.core.utils import lin2db, db2lin
from json import loads
from gnpy.core.utils import load_json
from gnpy.core.equipment import automatic_nch, automatic_spacing
class ConvenienceAccess:
def __init_subclass__(cls):
for abbrev, field in getattr(cls, '_ABBREVS', {}).items():
setattr(cls, abbrev, property(lambda self, f=field: getattr(self, f)))
class Power(namedtuple('Power', 'signal nli ase')):
"""carriers power in W"""
def update(self, **kwargs):
for abbrev, field in getattr(self, '_ABBREVS', {}).items():
if abbrev in kwargs:
kwargs[field] = kwargs.pop(abbrev)
return self._replace(**kwargs)
class Power(namedtuple('Power', 'signal nonlinear_interference amplified_spontaneous_emission'), ConvenienceAccess):
_ABBREVS = {'nli': 'nonlinear_interference',
'ase': 'amplified_spontaneous_emission',}
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power')):
pass
class Channel(namedtuple('Channel', 'channel_number frequency baud_rate roll_off power'), ConvenienceAccess):
_ABBREVS = {'channel': 'channel_number',
'num_chan': 'channel_number',
'ffs': 'frequency',
'freq': 'frequency',}
class SpectralInformation(namedtuple('SpectralInformation', 'carriers'), ConvenienceAccess):
def __new__(cls, *carriers):
return super().__new__(cls, carriers)
class Pref(namedtuple('Pref', 'p_span0, p_spani, neq_ch ')):
"""noiseless reference power in dBm:
p_span0: inital target carrier power
p_spani: carrier power after element i
neq_ch: equivalent channel count in dB"""
class SpectralInformation(namedtuple('SpectralInformation', 'pref carriers')):
def __new__(cls, pref, carriers):
return super().__new__(cls, pref, carriers)
def create_input_spectral_information(f_min, f_max, roll_off, baud_rate, power, spacing):
# pref in dB : convert power lin into power in dB
pref = lin2db(power * 1e3)
nb_channel = automatic_nch(f_min, f_max, spacing)
si = SpectralInformation(
pref=Pref(pref, pref, lin2db(nb_channel)),
carriers=[
Channel(f, (f_min+spacing*f),
baud_rate, roll_off, Power(power, 0, 0)) for f in range(1,nb_channel+1)
])
return si
if __name__ == '__main__':
pref = lin2db(power * 1e3)
si = SpectralInformation(
Pref(pref, pref),
Channel(1, 193.95e12, 32e9, 0.15, # 193.95 THz, 32 Gbaud
Power(1e-3, 1e-6, 1e-6)), # 1 mW, 1uW, 1uW
Channel(1, 195.95e12, 32e9, 0.15, # 195.95 THz, 32 Gbaud
@@ -36,15 +60,13 @@ if __name__ == '__main__':
)
si = SpectralInformation()
spacing = 0.05 #THz
spacing = 0.05 # THz
si = si._replace(carriers=tuple(Channel(f+1, 191.3+spacing*(f+1), 32e9, 0.15, Power(1e-3, f, 1)) for f in range(96)))
si = si.update(carriers=tuple(Channel(f+1, 191.3+spacing*(f+1), 32e9, 0.15, Power(1e-3, f, 1)) for f in range(96)))
print(f'si = {si}')
print(f'si = {si.carriers[0].power.nli}')
print(f'si = {si.carriers[20].power.nli}')
"""
si2 = si.update(carriers=tuple(c.update(power = c.power.update(nli = c.power.nli * 1e5))
si2 = si._replace(carriers=tuple(c._replace(power = c.power._replace(nli = c.power.nli * 1e5))
for c in si.carriers))
print(f'si2 = {si2}')
"""

View File

@@ -1,114 +1,560 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.network
=================
This module contains functions for constructing networks of network elements.
'''
from gnpy.core.convert import convert_file
from networkx import DiGraph
from numpy import arange
from scipy.interpolate import interp1d
from logging import getLogger
from os import path
from operator import itemgetter, attrgetter
from gnpy.core import elements
from gnpy.core.elements import Fiber, Edfa, Transceiver, Roadm
from gnpy.core.elements import Fiber, Edfa, Transceiver, Roadm, Fused, RamanFiber
from gnpy.core.equipment import edfa_nf
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
from gnpy.core.units import UNITS
from gnpy.core.utils import (load_json, save_json, round2float, db2lin,
merge_amplifier_restrictions)
from gnpy.core.science_utils import SimParams
from collections import namedtuple
MAX_SPAN_LENGTH = 125000
TARGET_SPAN_LENGTH = 100000
MIN_SPAN_LENGTH = 75000
logger = getLogger(__name__)
def network_from_json(json_data):
def load_network(filename, equipment, name_matching = False):
json_filename = ''
if filename.suffix.lower() == '.xls':
logger.info('Automatically generating topology JSON file')
json_filename = convert_file(filename, name_matching)
elif filename.suffix.lower() == '.json':
json_filename = filename
else:
raise ValueError(f'unsuported topology filename extension {filename.suffix.lower()}')
json_data = load_json(json_filename)
return network_from_json(json_data, equipment)
def save_network(filename, network):
filename_output = path.splitext(filename)[0] + '_auto_design.json'
json_data = network_to_json(network)
save_json(json_data, filename_output)
def network_from_json(json_data, equipment):
# NOTE|dutc: we could use the following, but it would tie our data format
# too closely to the graph library
# from networkx import node_link_graph
g = DiGraph()
for el_config in json_data['elements']:
g.add_node(getattr(elements, el_config['type'])(el_config))
typ = el_config.pop('type')
variety = el_config.pop('type_variety', 'default')
if typ in equipment and variety in equipment[typ]:
extra_params = equipment[typ][variety]
temp = el_config.setdefault('params', {})
temp = merge_amplifier_restrictions(temp, extra_params.__dict__)
el_config['params'] = temp
elif typ in ['Edfa', 'Fiber']: # catch it now because the code will crash later!
raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:'
'\nplease check it is properly defined in the eqpt_config json file')
cls = getattr(elements, typ)
el = cls(**el_config)
g.add_node(el)
nodes = {k.uid: k for k in g.nodes()}
for cx in json_data['connections']:
from_node, to_node = cx['from_node'], cx['to_node']
g.add_edge(nodes[from_node], nodes[to_node])
try:
if isinstance(nodes[from_node], Fiber):
edge_length = nodes[from_node].params.length
else:
edge_length = 0.01
g.add_edge(nodes[from_node], nodes[to_node], weight = edge_length)
except KeyError:
raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}')
return g
def calculate_new_length(fiber_length):
result = (fiber_length, 1)
if fiber_length > MAX_SPAN_LENGTH:
n_spans = int(fiber_length // TARGET_SPAN_LENGTH)
length1 = fiber_length / (n_spans+1)
result1 = (length1, n_spans+1)
delta1 = TARGET_SPAN_LENGTH-length1
length2 = fiber_length / n_spans
delta2 = length2-TARGET_SPAN_LENGTH
result2 = (length2, n_spans)
if length1<MIN_SPAN_LENGTH and length2<MAX_SPAN_LENGTH:
result = result2
elif length2>MAX_SPAN_LENGTH and length1>MIN_SPAN_LENGTH:
result = result1
def network_to_json(network):
data = {
'elements': [n.to_json for n in network]
}
connections = {
'connections': [{"from_node": n.uid,
"to_node": next_n.uid}
for n in network
for next_n in network.successors(n) if next_n is not None]
}
data.update(connections)
return data
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
"""amplifer selection algorithm
@Orange Jean-Luc Augé
"""
Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf')
TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain
# for roadm restriction only: create a dict including not allowed for design amps
# because main use case is to have specific radm amp which are not allowed for ILA
# with the auto design
edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items()
if restrictions is None or name in restrictions}
pin = power_target - gain_target
# create 2 list of available amplifiers with relevant attributes for their selection
# edfa list with:
# extended gain min allowance of 3dB: could be parametrized, but a bit complex
# extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json
# power attribut include power AND gain limitations
edfa_list = [Edfa_list(
variety=edfa_variety,
power=min(
pin
+edfa.gain_flatmax
+TARGET_EXTENDED_GAIN,
edfa.p_max
)
-power_target,
gain_min=
gain_target+3
-edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment)) \
for edfa_variety, edfa in edfa_dict.items()
if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
#consider a Raman list because of different gain_min requirement:
#do not allow extended gain min for Raman
raman_list = [Edfa_list(
variety=edfa_variety,
power=min(
pin
+edfa.gain_flatmax
+TARGET_EXTENDED_GAIN,
edfa.p_max
)
-power_target,
gain_min=
gain_target
-edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment))
for edfa_variety, edfa in edfa_dict.items()
if (edfa.allowed_for_design and edfa.raman)] \
if raman_allowed else []
#merge raman and edfa lists
amp_list = edfa_list + raman_list
#filter on min gain limitation:
acceptable_gain_min_list = [x for x in amp_list if x.gain_min>0]
if len(acceptable_gain_min_list) < 1:
#do not take this empty list into account for the rest of the code
#but issue a warning to the user and do not consider Raman
#Raman below min gain should not be allowed because i is meant to be a design requirement
#and raman padding at the amplifier input is impossible!
if len(edfa_list) < 1:
raise ConfigurationError(f'auto_design could not find any amplifier \
to satisfy min gain requirement in node {uid} \
please increase span fiber padding')
else:
if delta1 < delta2:
result = result1
else:
result = result2
# TODO: convert to logging
print(
f'\x1b[1;31;40m'\
+ f'WARNING: target gain in node {uid} is below all available amplifiers min gain: \
amplifier input padding will be assumed, consider increase span fiber padding instead'\
+ '\x1b[0m'
)
acceptable_gain_min_list = edfa_list
#filter on gain+power limitation:
#this list checks both the gain and the power requirement
#because of the way .power is calculated in the list
acceptable_power_list = [x for x in acceptable_gain_min_list if x.power>0]
if len(acceptable_power_list) < 1:
#no amplifier satisfies the required power, so pick the highest power(s):
power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power
#check and pick if other amplifiers may have a similar gain/power
#allow a 0.3dB power range
#this allows to chose an amplifier with a better NF subsequentely
acceptable_power_list = [x for x in acceptable_gain_min_list
if x.power-power_max>-0.3]
# gain and power requirements are resolved,
# =>chose the amp with the best NF among the acceptable ones:
selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) #filter on NF
#check what are the gain and power limitations of this amp
power_reduction = round(min(selected_edfa.power, 0),2)
if power_reduction < -0.5:
print(
f'\x1b[1;31;40m'\
+ f'WARNING: target gain and power in node {uid}\n \
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
a power reduction of {power_reduction} is applied\n'\
+ '\x1b[0m'
)
return selected_edfa.variety, power_reduction
def target_power(network, node, equipment): #get_fiber_dp
SPAN_LOSS_REF = 20
POWER_SLOPE = 0.3
power_mode = equipment['Span']['default'].power_mode
dp_range = list(equipment['Span']['default'].delta_power_range_db)
node_loss = span_loss(network, node)
try:
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
dp = max(dp_range[0], dp)
dp = min(dp_range[1], dp)
except KeyError:
raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
f'delta_power_range_db: [lower_bound, upper_bound, step]')
if isinstance(node, Roadm):
dp = 0
return dp
def prev_node_generator(network, node):
"""fused spans interest:
iterate over all predecessors while they are Fused or Fiber type"""
try:
prev_node = next(n for n in network.predecessors(node))
except StopIteration:
raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
# yield and re-iterate
if isinstance(prev_node, Fused) or isinstance(node, Fused):
yield prev_node
yield from prev_node_generator(network, prev_node)
else:
StopIteration
def next_node_generator(network, node):
"""fused spans interest:
iterate over all successors while they are Fused or Fiber type"""
try:
next_node = next(n for n in network.successors(node))
except StopIteration:
raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology')
# yield and re-iterate
if isinstance(next_node, Fused) or isinstance(node, Fused):
yield next_node
yield from next_node_generator(network, next_node)
else:
StopIteration
def span_loss(network, node):
"""Fused span interest:
return the total span loss of all the fibers spliced by a Fused node"""
loss = node.loss if node.passive else 0
try:
prev_node = next(n for n in network.predecessors(node))
if isinstance(prev_node, Fused):
loss += sum(n.loss for n in prev_node_generator(network, node))
except StopIteration:
pass
try:
next_node = next(n for n in network.successors(node))
if isinstance(next_node, Fused):
loss += sum(n.loss for n in next_node_generator(network, node))
except StopIteration:
pass
return loss
def find_first_node(network, node):
"""Fused node interest:
returns the 1st node at the origin of a succession of fused nodes
(aka no amp in between)"""
this_node = node
for this_node in prev_node_generator(network, node):
pass
return this_node
def find_last_node(network, node):
"""Fused node interest:
returns the last node in a succession of fused nodes
(aka no amp in between)"""
this_node = node
for this_node in next_node_generator(network, node):
pass
return this_node
def set_amplifier_voa(amp, power_target, power_mode):
VOA_MARGIN = 1 #do not maximize the VOA optimization
if amp.out_voa is None:
if power_mode:
gain_target = amp.effective_gain
voa = min(amp.params.p_max-power_target,
amp.params.gain_flatmax-amp.effective_gain)
voa = max(round2float(max(voa, 0), 0.5) - VOA_MARGIN, 0) if amp.params.out_voa_auto else 0
amp.delta_p = amp.delta_p + voa
amp.effective_gain = amp.effective_gain + voa
else:
voa = 0 # no output voa optimization in gain mode
amp.out_voa = voa
def set_egress_amplifier(network, roadm, equipment, pref_total_db):
power_mode = equipment['Span']['default'].power_mode
next_oms = (n for n in network.successors(roadm) if not isinstance(n, Transceiver))
for oms in next_oms:
#go through all the OMS departing from the Roadm
node = roadm
prev_node = roadm
next_node = oms
# if isinstance(next_node, Fused): #support ROADM wo egress amp for metro applications
# node = find_last_node(next_node)
# next_node = next(n for n in network.successors(node))
# next_node = find_last_node(next_node)
prev_dp = getattr(node.params, 'target_pch_out_db', 0)
dp = prev_dp
prev_voa = 0
voa = 0
while True:
#go through all nodes in the OMS (loop until next Roadm instance)
if isinstance(node, Edfa):
node_loss = span_loss(network, prev_node)
voa = node.out_voa if node.out_voa else 0
if node.delta_p is None:
dp = target_power(network, next_node, equipment)
else:
dp = node.delta_p
gain_from_dp = node_loss + dp - prev_dp + prev_voa
if node.effective_gain is None or power_mode:
gain_target = gain_from_dp
else: #gain mode with effective_gain
gain_target = node.effective_gain
dp = prev_dp - node_loss + gain_target
power_target = pref_total_db + dp
raman_allowed = False
if isinstance(prev_node, Fiber):
max_fiber_lineic_loss_for_raman = \
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
# implementation of restrictions on roadm boosters
if isinstance(prev_node,Roadm):
if prev_node.restrictions['booster_variety_list']:
restrictions = prev_node.restrictions['booster_variety_list']
else:
restrictions = None
elif isinstance(next_node,Roadm):
# implementation of restrictions on roadm preamp
if next_node.restrictions['preamp_variety_list']:
restrictions = next_node.restrictions['preamp_variety_list']
else:
restrictions = None
else:
restrictions = None
if node.params.type_variety == '':
edfa_variety, power_reduction = select_edfa(raman_allowed,
gain_target, power_target, equipment, node.uid, restrictions)
extra_params = equipment['Edfa'][edfa_variety]
node.params.update_params(extra_params.__dict__)
dp += power_reduction
gain_target += power_reduction
elif node.params.raman and not raman_allowed:
print(
f'\x1b[1;31;40m'\
+ f'WARNING: raman is used in node {node.uid}\n \
but fiber lineic loss is above threshold\n'\
+ '\x1b[0m'
)
node.delta_p = dp if power_mode else None
node.effective_gain = gain_target
set_amplifier_voa(node, power_target, power_mode)
if isinstance(next_node, Roadm) or isinstance(next_node, Transceiver):
break
prev_dp = dp
prev_voa = voa
prev_node = node
node = next_node
# print(f'{node.uid}')
next_node = next(n for n in network.successors(node))
def add_egress_amplifier(network, node):
next_nodes = [n for n in network.successors(node)
if not (isinstance(n, Transceiver) or isinstance(n, Fused) or isinstance(n, Edfa))]
#no amplification for fused spans or TRX
for i, next_node in enumerate(next_nodes):
network.remove_edge(node, next_node)
amp = Edfa(
uid = f'Edfa{i}_{node.uid}',
params = {},
metadata = {
'location': {
'latitude': (node.lat * 2 + next_node.lat * 2) / 4,
'longitude': (node.lng * 2 + next_node.lng * 2) / 4,
'city': node.loc.city,
'region': node.loc.region,
}
},
operational = {
'gain_target': None,
'tilt_target': 0,
})
network.add_node(amp)
if isinstance(node,Fiber):
edgeweight = node.params.length
else:
edgeweight = 0.01
network.add_edge(node, amp, weight = edgeweight)
network.add_edge(amp, next_node, weight = 0.01)
def calculate_new_length(fiber_length, bounds, target_length):
if fiber_length < bounds.stop:
return fiber_length, 1
n_spans = int(fiber_length // target_length)
length1 = fiber_length / (n_spans+1)
delta1 = target_length-length1
result1 = (length1, n_spans+1)
length2 = fiber_length / n_spans
delta2 = length2-target_length
result2 = (length2, n_spans)
if (bounds.start<=length1<=bounds.stop) and not(bounds.start<=length2<=bounds.stop):
result = result1
elif (bounds.start<=length2<=bounds.stop) and not(bounds.start<=length1<=bounds.stop):
result = result2
else:
result = result1 if delta1 < delta2 else result2
return result
def split_fiber(network, fiber):
new_length, n_spans = calculate_new_length(fiber.length)
prev_node = fiber
if n_spans > 1:
next_nodes = [_ for _ in network.successors(fiber)]
for next_node in next_nodes:
network.remove_edge(fiber, next_node)
new_params_length = new_length / UNITS[fiber.params.length_units]
config = {'uid':fiber.uid, 'type': 'Fiber', 'metadata': fiber.__dict__['metadata'], \
'params': fiber.__dict__['params']}
fiber.uid = config['uid'] + '_1'
fiber.length = new_length
fiber.loss = fiber.loss_coef * fiber.length
def split_fiber(network, fiber, bounds, target_length, equipment):
new_length, n_spans = calculate_new_length(fiber.length, bounds, target_length)
if n_spans == 1:
return
for i in range(2, n_spans+1):
new_config = dict(config)
new_config['uid'] = new_config['uid'] + '_' + str(i)
new_config['params'].length = new_params_length
new_node = Fiber(new_config)
network.add_node(new_node)
network.add_edge(prev_node, new_node)
network = add_egress_amplifier(network, prev_node)
prev_node = new_node
try:
next_node = next(network.successors(fiber))
prev_node = next(network.predecessors(fiber))
except StopIteration:
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
for next_node in next_nodes:
network.add_edge(prev_node, next_node)
network = add_egress_amplifier(network, prev_node)
return network
network.remove_node(fiber)
def add_egress_amplifier(network, node):
next_nodes = [n for n in network.successors(node)
if not (isinstance(n, Edfa) or isinstance(n, Transceiver))]
i = 1
for next_node in next_nodes:
network.remove_edge(node, next_node)
uid = 'Edfa' + str(i)+ '_' + str(node.uid)
metadata = next_node.metadata
operational = {'gain_target': node.loss, 'tilt_target': 0}
edfa_config_json = 'edfa_config.json'
config = {'uid':uid, 'type': 'Edfa', 'metadata': metadata, \
'config_from_json': edfa_config_json, 'operational': operational}
new_edfa = Edfa(config)
network.add_node(new_edfa)
network.add_edge(node,new_edfa)
network.add_edge(new_edfa, next_node)
i +=1
fiber_params = fiber.params._asdict()
fiber_params['length'] = new_length / UNITS[fiber.params.length_units]
fiber_params['con_in'] = fiber.con_in
fiber_params['con_out'] = fiber.con_out
return network
f = interp1d([prev_node.lng, next_node.lng], [prev_node.lat, next_node.lat])
xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n+1)/(n_spans+1) for n in range(n_spans)]
ypos = f(xpos)
for span, lng, lat in zip(range(n_spans), xpos, ypos):
new_span = Fiber(uid = f'{fiber.uid}_({span+1}/{n_spans})',
metadata = {
'location': {
'latitude': lat,
'longitude': lng,
'city': fiber.loc.city,
'region': fiber.loc.region,
}
},
params = fiber_params)
if isinstance(prev_node,Fiber):
edgeweight = prev_node.params.length
else:
edgeweight = 0.01
network.add_edge(prev_node, new_span, weight = edgeweight)
prev_node = new_span
if isinstance(prev_node,Fiber):
edgeweight = prev_node.params.length
else:
edgeweight = 0.01
network.add_edge(prev_node, next_node, weight = edgeweight)
def build_network(network):
fibers = [f for f in network.nodes() if isinstance(f, Fiber)]
def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
for fiber in fibers:
network = split_fiber(network, fiber)
if fiber.con_in is None: fiber.con_in = default_con_in
if fiber.con_out is None: fiber.con_out = default_con_out
next_node = next(n for n in network.successors(fiber))
if not isinstance(next_node, Fused):
fiber.con_out += EOL
def add_fiber_padding(network, fibers, padding):
"""last_fibers = (fiber for n in network.nodes()
if not (isinstance(n, Fiber) or isinstance(n, Fused))
for fiber in network.predecessors(n)
if isinstance(fiber, Fiber))"""
for fiber in fibers:
this_span_loss = span_loss(network, fiber)
try:
next_node = next(network.successors(fiber))
except StopIteration:
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
if this_span_loss < padding and not (isinstance(next_node, Fused)):
#add a padding att_in at the input of the 1st fiber:
#address the case when several fibers are spliced together
first_fiber = find_first_node(network, fiber)
# in order to support no booster , fused might be placed
# just after a roadm: need to check that first_fiber is really a fiber
if isinstance(first_fiber,Fiber):
if first_fiber.att_in is None:
first_fiber.att_in = padding - this_span_loss
else:
first_fiber.att_in = first_fiber.att_in + padding - this_span_loss
def build_network(network, equipment, pref_ch_db, pref_total_db):
default_span_data = equipment['Span']['default']
max_length = int(default_span_data.max_length * UNITS[default_span_data.length_units])
min_length = max(int(default_span_data.padding/0.2*1e3),50_000)
bounds = range(min_length, max_length)
target_length = max(min_length, 90_000)
default_con_in = default_span_data.con_in
default_con_out = default_span_data.con_out
padding = default_span_data.padding
#set roadm loss for gain_mode before to build network
fibers = [f for f in network.nodes() if isinstance(f, Fiber)]
add_connector_loss(network, fibers, default_con_in, default_con_out, default_span_data.EOL)
add_fiber_padding(network, fibers, padding)
# don't group split fiber and add amp in the same loop
# =>for code clarity (at the expense of speed):
for fiber in fibers:
split_fiber(network, fiber, bounds, target_length, equipment)
amplified_nodes = [n for n in network.nodes()
if isinstance(n, Fiber) or isinstance(n, Roadm)]
for node in amplified_nodes:
add_egress_amplifier(network, node)
roadms = [r for r in network.nodes() if isinstance(r, Roadm)]
for roadm in roadms:
add_egress_amplifier(network, roadm)
set_egress_amplifier(network, roadm, equipment, pref_total_db)
#support older json input topology wo Roadms:
if len(roadms) == 0:
trx = [t for t in network.nodes() if isinstance(t, Transceiver)]
for t in trx:
set_egress_amplifier(network, t, equipment, pref_total_db)
def load_sim_params(filename):
sim_params = load_json(filename)
return SimParams(params=sim_params)
def configure_network(network, sim_params):
for node in network.nodes:
if isinstance(node, RamanFiber):
node.sim_params = sim_params

View File

@@ -1,60 +1,56 @@
#! /bin/usr/python3
# -*- coding: utf-8 -*-
'''
gnpy.core.node
==============
This module contains the base class for a network element.
Strictly, a network element is any callable which accepts an immutable
:class:`.info.SpectralInformation` object and returns an :class:`.info.SpectralInformation` object
(a copy).
Network elements MUST implement two attributes .uid and .name representing a
unique identifier and a printable name.
This base class provides a more convenient way to define a network element
via subclassing.
'''
from uuid import uuid4
from gnpy.core.utils import load_json
class ConfigStruct:
def __init__(self, **config):
if config is None:
return None
if 'config_from_json' in config:
json_config = load_json(config['config_from_json'])
self.set_config_attr(json_config)
self.set_config_attr(config)
def set_config_attr(self, config):
for k, v in config.items():
setattr(self, k, ConfigStruct(**v)
if isinstance(v, dict) else v)
def __repr__(self):
return f'{self.__dict__}'
from collections import namedtuple
class Location(namedtuple('Location', 'latitude longitude city region')):
def __new__(cls, latitude=0, longitude=0, city=None, region=None):
return super().__new__(cls, latitude, longitude, city, region)
class Node:
def __init__(self, config=None):
self.config = ConfigStruct(**config)
if self.config is None or not hasattr(self.config, 'uid'):
self.uid = uuid4()
else:
self.uid = self.config.uid
if hasattr(self.config, 'params'):
self.params = self.config.params
if hasattr(self.config, 'metadata'):
self.metadata = self.config.metadata
if hasattr(self.config, 'operational'):
self.operational = self.config.operational
def __init__(self, uid, name=None, params=None, metadata=None, operational=None):
if name is None:
name = uid
self.uid, self.name = uid, name
if metadata is None:
metadata = {'location': {}}
if metadata and not isinstance(metadata.get('location'), Location):
metadata['location'] = Location(**metadata.pop('location', {}))
self.params, self.metadata, self.operational = params, metadata, operational
@property
def coords(self):
return tuple(self.lng, self.lat)
return self.lng, self.lat
@property
def location(self):
return self.config.metadata.location
return self.metadata['location']
loc = location
@property
def loc(self): # Aliases .location
return self.location
def longitude(self):
return self.location.longitude
lng = longitude
@property
def lng(self):
return self.config.metadata.location.longitude
@property
def lat(self):
return self.config.metadata.location.latitude
def latitude(self):
return self.location.latitude
lat = latitude

923
gnpy/core/request.py Normal file
View File

@@ -0,0 +1,923 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.request
=================
This module contains path request functionality.
This functionality allows the user to provide a JSON request
file in accordance with a Yang model for requesting path
computations and returns path results in terms of path
and feasibility
See: draft-ietf-teas-yang-path-computation-01.txt
"""
from sys import exit
from collections import namedtuple
from logging import getLogger, basicConfig, CRITICAL, DEBUG, INFO
from networkx import (dijkstra_path, NetworkXNoPath, all_simple_paths,shortest_path_length)
from networkx.utils import pairwise
from numpy import mean
from gnpy.core.service_sheet import convert_service_sheet, Request_element, Element
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fused
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.info import create_input_spectral_information, SpectralInformation, Channel, Power
from copy import copy, deepcopy
from csv import writer
from math import ceil
logger = getLogger(__name__)
RequestParams = namedtuple('RequestParams','request_id source destination trx_type'+
' trx_mode nodes_list loose_list spacing power nb_channel f_min f_max format baud_rate OSNR bit_rate roll_off tx_osnr min_spacing cost path_bandwidth')
DisjunctionParams = namedtuple('DisjunctionParams','disjunction_id relaxable link_diverse node_diverse disjunctions_req')
class Path_request:
def __init__(self, *args, **params):
params = RequestParams(**params)
self.request_id = params.request_id
self.source = params.source
self.destination = params.destination
self.tsp = params.trx_type
self.tsp_mode = params.trx_mode
self.baud_rate = params.baud_rate
self.nodes_list = params.nodes_list
self.loose_list = params.loose_list
self.spacing = params.spacing
self.power = params.power
self.nb_channel = params.nb_channel
self.f_min = params.f_min
self.f_max = params.f_max
self.format = params.format
self.OSNR = params.OSNR
self.bit_rate = params.bit_rate
self.roll_off = params.roll_off
self.tx_osnr = params.tx_osnr
self.min_spacing = params.min_spacing
self.cost = params.cost
self.path_bandwidth = params.path_bandwidth
def __str__(self):
return '\n\t'.join([ f'{type(self).__name__} {self.request_id}',
f'source: {self.source}',
f'destination: {self.destination}'])
def __repr__(self):
if self.baud_rate is not None:
temp = self.baud_rate * 1e-9
temp2 = self.bit_rate * 1e-9
else:
temp = self.baud_rate
temp2 = self.bit_rate
return '\n\t'.join([ f'{type(self).__name__} {self.request_id}',
f'source: \t{self.source}',
f'destination:\t{self.destination}',
f'trx type:\t{self.tsp}',
f'trx mode:\t{self.tsp_mode}',
f'baud_rate:\t{temp} Gbaud',
f'bit_rate:\t{temp2} Gb/s',
f'spacing:\t{self.spacing * 1e-9} GHz',
f'power: \t{round(lin2db(self.power)+30,2)} dBm',
f'nb channels: \t{self.nb_channel}',
f'path_bandwidth: \t{round(self.path_bandwidth * 1e-9,2)} Gbit/s',
f'nodes-list:\t{self.nodes_list}',
f'loose-list:\t{self.loose_list}'
'\n'])
class Disjunction:
def __init__(self, *args, **params):
params = DisjunctionParams(**params)
self.disjunction_id = params.disjunction_id
self.relaxable = params.relaxable
self.link_diverse = params.link_diverse
self.node_diverse = params.node_diverse
self.disjunctions_req = params.disjunctions_req
def __str__(self):
return '\n\t'.join([f'relaxable: {self.relaxable}',
f'link-diverse: {self.link_diverse}',
f'node-diverse: {self.node_diverse}',
f'request-id-numbers: {self.disjunctions_req}']
)
def __repr__(self):
return '\n\t'.join([ f'{type(self).__name__} {self.disjunction_id}',
f'relaxable: {self.relaxable}',
f'link-diverse: {self.link_diverse}',
f'node-diverse: {self.node_diverse}',
f'request-id-numbers: {self.disjunctions_req}'
'\n'])
class Result_element(Element):
def __init__(self,path_request,computed_path):
self.path_id = path_request.request_id
self.path_request = path_request
self.computed_path = computed_path
hop_type = []
if len(computed_path)>0 :
for e in computed_path :
if isinstance(e, Transceiver) :
hop_type.append(' - '.join([path_request.tsp,path_request.tsp_mode]))
else:
hop_type.append('not recorded')
else:
# TODO differentiate empty path in case not feasible because of tsp or not feasible because
# ther is no path connecting the nodes (whatever the tsp)
mode = 'not feasible with this transponder'
hop_type = ' - '.join([path_request.tsp,mode])
self.hop_type = hop_type
uid = property(lambda self: repr(self))
@property
def pathresult(self):
if not self.computed_path:
return {
'path-id': self.path_id,
'path-properties':{
'path-metric': [
{
'metric-type': 'SNR@bandwidth',
'accumulative-value': 'None'
},
{
'metric-type': 'SNR@0.1nm',
'accumulative-value': 'None'
},
{
'metric-type': 'OSNR@bandwidth',
'accumulative-value': 'None'
},
{
'metric-type': 'OSNR@0.1nm',
'accumulative-value': 'None'
},
{
'metric-type': 'reference_power',
'accumulative-value': self.path_request.power
},
{
'metric-type': 'path_bandwidth',
'accumulative-value': self.path_request.path_bandwidth
}
],
'path-srlgs': {
'usage': 'not used yet',
'values': 'not used yet'
},
'path-route-objects': [
{
'path-route-object': {
'index': 0,
'unnumbered-hop': {
'node-id': self.path_request.source,
'link-tp-id': self.path_request.source,
'hop-type': self.hop_type,
'direction': 'not used'
},
'label-hop': {
'te-label': {
'generic': 'not used yet',
'direction': 'not used yet'
}
}
}
},
{
'path-route-object': {
'index': 1,
'unnumbered-hop': {
'node-id': self.path_request.destination,
'link-tp-id': self.path_request.destination,
'hop-type': self.hop_type,
'direction': 'not used'
},
'label-hop': {
'te-label': {
'generic': 'not used yet',
'direction': 'not used yet'
}
}
}
}
]
}
}
else:
return {
'path-id': self.path_id,
'path-properties':{
'path-metric': [
{
'metric-type': 'SNR@bandwidth',
'accumulative-value': round(mean(self.computed_path[-1].snr),2)
},
{
'metric-type': 'SNR@0.1nm',
'accumulative-value': round(mean(self.computed_path[-1].snr+lin2db(self.path_request.baud_rate/12.5e9)),2)
},
{
'metric-type': 'OSNR@bandwidth',
'accumulative-value': round(mean(self.computed_path[-1].osnr_ase),2)
},
{
'metric-type': 'OSNR@0.1nm',
'accumulative-value': round(mean(self.computed_path[-1].osnr_ase_01nm),2)
},
{
'metric-type': 'reference_power',
'accumulative-value': self.path_request.power
},
{
'metric-type': 'path_bandwidth',
'accumulative-value': self.path_request.path_bandwidth
}
],
'path-srlgs': {
'usage': 'not used yet',
'values': 'not used yet'
},
'path-route-objects': [
{
'path-route-object': {
'index': self.computed_path.index(n),
'unnumbered-hop': {
'node-id': n.uid,
'link-tp-id': n.uid,
'hop-type': self.hop_type[self.computed_path.index(n)],
'direction': 'not used'
},
'label-hop': {
'te-label': {
'generic': 'not used yet',
'direction': 'not used yet'
}
}
}
} for n in self.computed_path
]
}
}
@property
def json(self):
return self.pathresult
def compute_constrained_path(network, req):
trx = [n for n in network.nodes() if isinstance(n, Transceiver)]
roadm = [n for n in network.nodes() if isinstance(n, Roadm)]
edfa = [n for n in network.nodes() if isinstance(n, Edfa)]
anytypenode = [n for n in network.nodes()]
source = next(el for el in trx if el.uid == req.source)
# This method ensures that the constraint can be satisfied without loops
# except when it is not possible : eg if constraints makes a loop
# It requires that the source, dest and nodes are correct (no error in the names)
destination = next(el for el in trx if el.uid == req.destination)
nodes_list = []
for n in req.nodes_list :
# for debug excel print(n)
nodes_list.append(next(el for el in anytypenode if el.uid == n))
# nodes_list contains at least the destination
if nodes_list is None :
msg = f'Request {req.request_id} problem in the constitution of nodes_list: should at least include destination'
logger.critical(msg)
exit()
if req.nodes_list[-1] != req.destination:
msg = f'Request {req.request_id} malformed list of nodes: last node should be destination trx'
logger.critical(msg)
exit()
if len(nodes_list) == 1 :
try :
total_path = dijkstra_path(network, source, destination, weight = 'weight')
# print('checking edges length is correct')
# print(shortest_path_length(network,source,destination))
# print(shortest_path_length(network,source,destination,weight ='weight'))
# s = total_path[0]
# for e in total_path[1:]:
# print(s.uid)
# print(network.get_edge_data(s,e))
# s = e
except NetworkXNoPath:
msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path from {source.uid} to node : {destination.uid} in network topology'+ '\x1b[0m'
logger.critical(msg)
print(msg)
total_path = []
else :
all_simp_pths = list(all_simple_paths(network,source=source,\
target=destination, cutoff=120))
candidate = []
for p in all_simp_pths :
if ispart(nodes_list, p) :
# print(f'selection{[el.uid for el in p if el in roadm]}')
candidate.append(p)
# select the shortest path (in nb of hops) -> changed to shortest path in km length
if len(candidate)>0 :
# candidate.sort(key=lambda x: len(x))
candidate.sort(key=lambda x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
total_path = candidate[0]
else:
if req.loose_list[req.nodes_list.index(n)] == 'loose':
print(f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list} in network topology'+ '\x1b[0m')
print(f'constraint ignored')
total_path = dijkstra_path(network, source, destination, weight = 'weight')
else:
msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list}.\nNo path computed'+ '\x1b[0m'
logger.critical(msg)
print(msg)
total_path = []
# obsolete method: this does not guaranty to avoid loops or correct results
# Here is the demonstration :
# 1 1
# eg a----b-----c
# |1 |0.5 |1
# e----f--h--g
# 1 0.5 0.5
# if I have to compute a to g with constraint f-c
# result will be a concatenation of: a-b-f and f-b-c and c-g
# which means a loop.
# if to avoid loops I iteratively suppress edges of the segmenst in the topo
# segment 1 = a-b-f
# 1
# eg a b-----c
# |1 |1
# e----f--h--g
# 1 0.5 0.5
# then
# segment 2 = f-h-g-c
# 1
# eg a b-----c
# |1
# e----f h g
# 1
# then there is no more path to g destination
#
#
# total_path = [source]
# for n in req.nodes_list:
# try :
# node = next(el for el in trx if el.uid == n)
# except StopIteration:
# try:
# node = next(el for el in anytypenode if el.uid == n)
# except StopIteration:
# try:
# # TODO this test is not giving good results: full name of the
# # amp is required to avoid ambiguity on the direction
# node = next(el for el in anytypenode
# if n in el.uid)
# except StopIteration:
# msg = f'could not find node : {n} in network topology: \
# not a trx, roadm, edfa, fiber or fused element'
# logger.critical(msg)
# raise ValueError(msg)
# # extend path list without repeating source -> skip first element in the list
# try:
# # to avoid looping back: use an alternate graph were current path edges and vertex are suppressed
# total_path.extend(dijkstra_path(network, source, node)[1:])
# source = node
# except NetworkXNoPath:
# if req.loose_list[req.nodes_list.index(n)] == 'loose':
# print(f'could not find a path from {source.uid} to loose node : {n} in network topology')
# print(f'node {n} is skipped')
# else:
# msg = f'could not find a path from {source.uid} to node : {n} in network topology'
# logger.critical(msg)
# print(msg)
# total_path = []
return total_path
def propagate(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
for el in path:
si = el(si)
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
return path
def propagate2(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
infos = {}
for el in path:
before_si = si
after_si = si = el(si)
infos[el] = before_si, after_si
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
return infos
def propagate_and_optimize_mode(path, req, equipment):
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
# step 1: create an ordered list of modes based on baudrate
baudrate_to_explore = list(set([m['baud_rate'] for m in equipment['Transceiver'][req.tsp].mode
if float(m['min_spacing'])<= req.spacing]))
# TODO be carefull on limits cases if spacing very close to req spacing eg 50.001 50.000
baudrate_to_explore = sorted(baudrate_to_explore, reverse=True)
if baudrate_to_explore :
# at least 1 baudrate can be tested wrt spacing
for b in baudrate_to_explore :
modes_to_explore = [m for m in equipment['Transceiver'][req.tsp].mode
if m['baud_rate'] == b and float(m['min_spacing'])<= req.spacing]
modes_to_explore = sorted(modes_to_explore,
key = lambda x: x['bit_rate'], reverse=True)
# print(modes_to_explore)
# step2 : computes propagation for each baudrate: stop and select the first that passes
found_a_feasible_mode = False
# TODO : the case of roll of is not included: for now use SI one
# TODO : if the loop in mode optimization does not have a feasible path, then bugs
si = create_input_spectral_information(
req.f_min, req.f_max, equipment['SI']['default'].roll_off,
b, req.power, req.spacing)
for el in path:
si = el(si)
for m in modes_to_explore :
if path[-1].snr is not None:
path[-1].update_snr(m['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
if round(min(path[-1].snr+lin2db(b/(12.5e9))),2) > m['OSNR'] :
found_a_feasible_mode = True
return path, m
else:
return [], None
# only get to this point if no baudrate/mode satisfies OSNR requirement
# returns the last propagated path and mode
msg = f'\tWarning! Request {req.request_id}: no mode satisfies path SNR requirement.\n'
print(msg)
logger.info(msg)
return [],None
else :
# no baudrate satisfying spacing
msg = f'\tWarning! Request {req.request_id}: no baudrate satisfies spacing requirement.\n'
print(msg)
logger.info(msg)
return [], None
def jsontocsv(json_data,equipment,fileout):
# read json path result file in accordance with:
# Yang model for requesting Path Computation
# draft-ietf-teas-yang-path-computation-01.txt.
# and write results in an CSV file
mywriter = writer(fileout)
mywriter.writerow(('path-id','source','destination','path_bandwidth','Pass?',\
'nb of tsp pairs','total cost','transponder-type','transponder-mode',\
'OSNR@0.1nm','SNR@0.1nm','SNR@bandwidth','baud rate (Gbaud)',\
'input power (dBm)','path'))
tspjsondata = equipment['Transceiver']
#print(tspjsondata)
for p in json_data['path']:
path_id = p['path-id']
source = p['path-properties']['path-route-objects'][0]\
['path-route-object']['unnumbered-hop']['node-id']
destination = p['path-properties']['path-route-objects'][-1]\
['path-route-object']['unnumbered-hop']['node-id']
# selects only roadm nodes
pth = ' | '.join([ e['path-route-object']['unnumbered-hop']['node-id']
for e in p['path-properties']['path-route-objects']
if e['path-route-object']['unnumbered-hop']['node-id'].startswith('roadm') or e['path-route-object']['unnumbered-hop']['node-id'].startswith('Edfa')])
[tsp,mode] = p['path-properties']['path-route-objects'][0]\
['path-route-object']['unnumbered-hop']['hop-type'].split(' - ')
# find the min acceptable OSNR, baud rate from the eqpt library based on tsp (tupe) and mode (format)
# loading equipment already tests the existence of tsp type and mode:
if mode !='not feasible with this transponder' :
[minosnr, baud_rate, bit_rate, cost] = next([m['OSNR'] , m['baud_rate'] , m['bit_rate'], m['cost']]
for m in equipment['Transceiver'][tsp].mode if m['format']==mode)
# else:
# [minosnr, baud_rate, bit_rate] = ['','','','']
output_snr = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'SNR@0.1nm')
output_snrbandwidth = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'SNR@bandwidth')
output_osnr = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'OSNR@0.1nm')
output_osnrbandwidth = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'OSNR@bandwidth')
power = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'reference_power')
path_bandwidth = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'path_bandwidth')
if isinstance(output_snr, str):
isok = False
nb_tsp = 0
pthbdbw = round(path_bandwidth*1e-9,2)
rosnr = ''
rsnr = ''
rsnrb = ''
br = ''
pw = ''
total_cost = ''
else:
isok = output_snr >= minosnr
nb_tsp = ceil(path_bandwidth / bit_rate)
pthbdbw = round(path_bandwidth*1e-9,2)
rosnr = round(output_osnr,2)
rsnr = round(output_snr,2)
rsnrb = round(output_snrbandwidth,2)
br = round(baud_rate*1e-9,2)
pw = round(lin2db(power)+30,2)
total_cost = nb_tsp * cost
mywriter.writerow((path_id,
source,
destination,
pthbdbw,
isok,
nb_tsp,
total_cost,
tsp,
mode,
rosnr,
rsnr,
rsnrb,
br,
pw,
pth
))
def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# pathreqlist is a list of Path_request objects
# disjunctions_list a list of Disjunction objects
# given a network, a list of requests with the set of disjunction features between
# request, the function computes the set of path satisfying : first the disjunction
# constraint and second the routing constraint if the request include an explicit
# set of elements to pass through.
# the algorithm used allows to specify disjunction for demands not sharing source or
# destination.
# a request might be declared as disjoint from several requests
# it is a iterative process:
# first computes a list of all shortest path (this may add computation time)
# second elaborate the set of path solution for each synchronization vector
# third select only the candidates that satisfy all synchronization vectors they belong to
# fourth apply route constraints : remove candidate path that do not satisfy the constraint
# fifth select the first candidate among the set of candidates.
# the example network used in comments has been added to the set of data tests files
# define the list to be returned
path_res_list = []
# all disjctn must be computed at once together to avoid blocking
# 1 1
# eg a----b-----c
# |1 |0.5 |1
# e----f--h--g
# 1 0.5 0.5
# if I have to compute a to g and a to h
# I must not compute a-b-f-h-g, otherwise there is no disjoint path remaining for a to h
# instead I should list all most disjoint path and select the one that have the less
# number of commonalities
# \ path abfh aefh abcgh
# \___cost 2 2.5 3.5
# path| cost
# abfhg| 2.5 x x x
# abcg | 3 x x
# aefhg| 3 x x x
# from this table abcg and aefh have no common links and should be preferred
# even they are not the shortest paths
# build the list of pathreqlist elements not concerned by disjunction
global_disjunctions_list = [e for d in disjunctions_list for e in d.disjunctions_req ]
pathreqlist_simple = [e for e in pathreqlist if e.request_id not in global_disjunctions_list]
pathreqlist_disjt = [e for e in pathreqlist if e.request_id in global_disjunctions_list]
# use a mirror class to record path and the corresponding requests
class Pth:
def __init__(self, req, pth, simplepth):
self.req = req
self.pth = pth
self.simplepth = simplepth
# step 1
# for each remaining request compute a set of simple path
allpaths = {}
rqs = {}
simple_rqs = {}
simple_rqs_reversed = {}
for pathreq in pathreqlist_disjt :
all_simp_pths = list(all_simple_paths(network,\
source=next(el for el in network.nodes() if el.uid == pathreq.source),\
target=next(el for el in network.nodes() if el.uid == pathreq.destination),\
cutoff=80))
# sort them in km length instead of hop
# all_simp_pths = sorted(all_simp_pths, key=lambda path: len(path))
all_simp_pths = sorted(all_simp_pths, key=lambda \
x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
# reversed direction paths required to check disjunction on both direction
all_simp_pths_reversed = []
for pth in all_simp_pths:
all_simp_pths_reversed.append(find_reversed_path(pth,network))
rqs[pathreq.request_id] = all_simp_pths
temp =[]
for p in all_simp_pths :
# build a short list representing each roadm+direction with the first item
# start enumeration at 1 to avoid Trx in the list
s = [e.uid for i,e in enumerate(p[1:-1]) \
if (isinstance(e,Roadm) | (isinstance(p[i],Roadm) ))]
temp.append(s)
# id(s) is unique even if path is the same: two objects with same
# path have two different ids
allpaths[id(s)] = Pth(pathreq,p,s)
simple_rqs[pathreq.request_id] = temp
temp =[]
for p in all_simp_pths_reversed :
# build a short list representing each roadm+direction with the first item
# start enumeration at 1 to avoid Trx in the list
temp.append([e.uid for i,e in enumerate(p[1:-1]) \
if (isinstance(e,Roadm) | (isinstance(p[i],Roadm) ))] )
simple_rqs_reversed[pathreq.request_id] = temp
# step 2
# for each set of requests that need to be disjoint
# select the disjoint path combination
candidates = {}
for d in disjunctions_list :
dlist = d.disjunctions_req.copy()
# each line of dpath is one combination of path that satisfies disjunction
dpath = []
for i,p in enumerate(simple_rqs[dlist[0]]):
dpath.append([p])
# allpaths[id(p)].d_id = d.disjunction_id
# in each loop, dpath is updated with a path for rq that satisfies
# disjunction with each path in dpath
# for example, assume set of requests in the vector (disjunction_list) is {rq1,rq2, rq3}
# rq1 p1: abfhg
# p2: aefhg
# p3: abcg
# rq2 p8: bf
# rq3 p4: abcgh
# p6: aefh
# p7: abfh
# initiate with rq1
# dpath = [[p1]
# [p2]
# [p3]]
# after first loop:
# dpath = [[p1 p8]
# [p3 p8]]
# since p2 and p8 are not disjoint
# after second loop:
# dpath = [ p3 p8 p6 ]
# since p1 and p4 are not disjoint
# p1 and p7 are not disjoint
# p3 and p4 are not disjoint
# p3 and p7 are not disjoint
for e1 in dlist[1:] :
temp = []
for j,p1 in enumerate(simple_rqs[e1]):
# allpaths[id(p1)].d_id = d.disjunction_id
# can use index j in simple_rqs_reversed because index
# of direct and reversed paths have been kept identical
p1_reversed = simple_rqs_reversed[e1][j]
# print(p1_reversed)
# print('\n\n')
for k,c in enumerate(dpath) :
# print(f' c: \t{c}')
temp2 = c.copy()
all_disjoint = 0
for p in c :
all_disjoint += isdisjoint(p1,p)+ isdisjoint(p1_reversed,p)
if all_disjoint ==0:
temp2.append(p1)
temp.append(temp2)
# print(f' coucou {e1}: \t{temp}')
dpath = temp
# print(dpath)
candidates[d.disjunction_id] = dpath
# for i in disjunctions_list :
# print(f'\n{candidates[i.disjunction_id]}')
# step 3
# now for each request, select the path that satisfies all disjunctions
# path must be in candidates[id] for all concerned ids
# for example, assume set of sync vectors (disjunction groups) is
# s1 = {rq1 rq2} s2 = {rq1 rq3}
# candidate[s1] = [[p1 p8]
# [p3 p8]]
# candidate[s2] = [[p3 p6]]
# for rq1 p3 should be preferred
for pathreq in pathreqlist_disjt:
concerned_d_id = [d.disjunction_id for d in disjunctions_list if pathreq.request_id in d.disjunctions_req]
# for each set of solution, verify that the same path is used for the same request
candidate_paths = simple_rqs[pathreq.request_id]
# print('coucou')
# print(pathreq.request_id)
for p in candidate_paths :
iscandidate = 0
for sol in concerned_d_id :
test = 1
# for each solution test if p is part of the solution
# if yes, then p can remain a candidate
for i,m in enumerate(candidates[sol]) :
if p in m:
if allpaths[id(m[m.index(p)])].req.request_id == pathreq.request_id :
test = 0
break
iscandidate += test
if iscandidate != 0:
for l in concerned_d_id :
for m in candidates[l] :
if p in m :
candidates[l].remove(m)
# for i in disjunctions_list :
# print(i.disjunction_id)
# print(f'\n{candidates[i.disjunction_id]}')
# step 4 apply route constraints : remove candidate path that do not satisfy the constraint
# only in the case of disjounction: the simple path is processed in request.compute_constrained_path
# TODO : keep a version without the loose constraint
for d in disjunctions_list :
temp = []
for j,sol in enumerate(candidates[d.disjunction_id]) :
testispartok = True
for i,p in enumerate(sol) :
# print(f'test {allpaths[id(p)].req.request_id}')
# print(f'length of route {len(allpaths[id(p)].req.nodes_list)}')
if allpaths[id(p)].req.nodes_list :
# if p does not containt the ordered list node, remove sol from the candidate
# except if this was the last solution: then check if the constraint is loose or not
if not ispart(allpaths[id(p)].req.nodes_list, p) :
# print(f'nb of solutions {len(temp)}')
if j < len(candidates[d.disjunction_id])-1 :
msg = f'removing {sol}'
logger.info(msg)
testispartok = False
#break
else:
if 'loose' in allpaths[id(p)].req.loose_list:
logger.info(f'Could not apply route constraint'+
f'{allpaths[id(p)].req.nodes_list} on request {allpaths[id(p)].req.request_id}')
else :
logger.info(f'removing last solution from candidate paths\n{sol}')
testispartok = False
if testispartok :
temp.append(sol)
candidates[d.disjunction_id] = temp
# step 5 select the first combination that works
pathreslist_disjoint = {}
for d in disjunctions_list :
test_sol = True
while test_sol:
# print('coucou')
if candidates[d.disjunction_id] :
for p in candidates[d.disjunction_id][0]:
if allpaths[id(p)].req in pathreqlist_disjt:
# print(f'selected path :{p} for req {allpaths[id(p)].req.request_id}')
pathreslist_disjoint[allpaths[id(p)].req] = allpaths[id(p)].pth
pathreqlist_disjt.remove(allpaths[id(p)].req)
candidates = remove_candidate(candidates, allpaths, allpaths[id(p)].req, p)
test_sol = False
else:
msg = f'No disjoint path found with added constraint'
logger.critical(msg)
print(f'{msg}\nComputation stopped.')
# TODO in this case: replay step 5 with the candidate without constraints
exit()
# for i in disjunctions_list :
# print(i.disjunction_id)
# print(f'\n{candidates[i.disjunction_id]}')
# list the results in the same order as initial pathreqlist
for req in pathreqlist :
req.nodes_list.append(req.destination)
# we assume that the destination is a strict constraint
req.loose_list.append('strict')
if req in pathreqlist_simple:
path_res_list.append(compute_constrained_path(network, req))
else:
path_res_list.append(pathreslist_disjoint[req])
return path_res_list
def isdisjoint(p1,p2) :
# returns 0 if disjoint
edge1 = list(pairwise(p1))
edge2 = list(pairwise(p2))
for e in edge1 :
if e in edge2 :
return 1
return 0
def find_reversed_path(p,network) :
# select of intermediate roadms and find the path between them
# note that this function may not give an exact result in case of multiple
# links between two adjacent nodes.
# TODO add some indication on elements to indicate from which other they
# are the reversed direction
reversed_roadm_path = list(reversed([e for e in p if isinstance (e,Roadm)]))
source = p[-1]
destination = p[0]
total_path = [source]
for node in reversed_roadm_path :
total_path.extend(dijkstra_path(network, source, node, weight = 'weight')[1:])
source = node
total_path.append(destination)
return total_path
def ispart(a,b) :
# the functions takes two paths a and b and retrns True
# if all a elements are part of b and in the same order
j = 0
for i, el in enumerate(a):
if el in b :
if b.index(el) >= j :
j = b.index(el)
else:
return False
else:
return False
return True
def remove_candidate(candidates, allpaths, rq, pth) :
# print(f'coucou {rq.request_id}')
for key, candidate in candidates.items() :
temp = candidate.copy()
for i,sol in enumerate(candidate) :
for p in sol :
if allpaths[id(p)].req.request_id == rq.request_id :
if id(p) != id(pth) :
temp.remove(sol)
break
candidates[key] = temp
return candidates
def compare_reqs(req1,req2,disjlist) :
dis1 = [d for d in disjlist if req1.request_id in d.disjunctions_req]
dis2 = [d for d in disjlist if req2.request_id in d.disjunctions_req]
same_disj = False
if dis1 and dis2 :
temp1 = []
for d in dis1:
temp1.extend(d.disjunctions_req)
temp1.remove(req1.request_id)
temp2 = []
for d in dis2:
temp2.extend(d.disjunctions_req)
temp2.remove(req2.request_id)
if set(temp1) == set(temp2) :
same_disj = True
elif not dis2 and not dis1:
same_disj = True
if req1.source == req2.source and \
req1.destination == req2.destination and \
req1.tsp == req2.tsp and \
req1.tsp_mode == req2.tsp_mode and \
req1.baud_rate == req2.baud_rate and \
req1.nodes_list == req2.nodes_list and \
req1.loose_list == req2.loose_list and \
req1.spacing == req2.spacing and \
req1.power == req2.power and \
req1.nb_channel == req2.nb_channel and \
req1.f_min == req2.f_min and \
req1.f_max == req2.f_max and \
req1.format == req2.format and \
req1.OSNR == req2.OSNR and \
req1.roll_off == req2.roll_off and \
same_disj :
return True
else:
return False
def requests_aggregation(pathreqlist,disjlist) :
# this function aggregates requests so that if several requests
# exist between same source and destination and with same transponder type
# todo maybe add conditions on mode ??, spacing ...
# currently if undefined takes the default values
local_list = pathreqlist.copy()
for req in pathreqlist:
for r in local_list :
if req.request_id != r.request_id and compare_reqs(req, r, disjlist):
# aggregate
r.path_bandwidth += req.path_bandwidth
temp_r_id = r.request_id
r.request_id = ' | '.join((r.request_id,req.request_id))
# remove request from list
local_list.remove(req)
# todo change also disjunction req with new demand
for d in disjlist :
if req.request_id in d.disjunctions_req :
d.disjunctions_req.remove(req.request_id)
d.disjunctions_req.append(r.request_id)
for d in disjlist :
if temp_r_id in d.disjunctions_req :
disjlist.remove(d)
break
return local_list, disjlist

820
gnpy/core/science_utils.py Normal file
View File

@@ -0,0 +1,820 @@
import numpy as np
from operator import attrgetter
from collections import namedtuple
from logging import getLogger
import scipy.constants as ph
from scipy.integrate import solve_bvp
from scipy.integrate import cumtrapz
from scipy.interpolate import interp1d
from scipy.optimize import OptimizeResult
from gnpy.core.utils import db2lin
logger = getLogger(__name__)
class RamanParams():
def __init__(self, params):
self._flag_raman = params['flag_raman']
self._space_resolution = params['space_resolution']
self._tolerance = params['tolerance']
@property
def flag_raman(self):
return self._flag_raman
@property
def space_resolution(self):
return self._space_resolution
@property
def tolerance(self):
return self._tolerance
class NLIParams():
def __init__(self, params):
self._nli_method_name = params['nli_method_name']
self._wdm_grid_size = params['wdm_grid_size']
self._dispersion_tolerance = params['dispersion_tolerance']
self._phase_shift_tollerance = params['phase_shift_tollerance']
self._f_cut_resolution = None
self._f_pump_resolution = None
@property
def nli_method_name(self):
return self._nli_method_name
@property
def wdm_grid_size(self):
return self._wdm_grid_size
@property
def dispersion_tolerance(self):
return self._dispersion_tolerance
@property
def phase_shift_tollerance(self):
return self._phase_shift_tollerance
@property
def f_cut_resolution(self):
return self._f_cut_resolution
@f_cut_resolution.setter
def f_cut_resolution(self, f_cut_resolution):
self._f_cut_resolution = f_cut_resolution
@property
def f_pump_resolution(self):
return self._f_pump_resolution
@f_pump_resolution.setter
def f_pump_resolution(self, f_pump_resolution):
self._f_pump_resolution = f_pump_resolution
class SimParams():
def __init__(self, params):
self._raman_computed_channels = params['raman_computed_channels']
self._raman_params = RamanParams(params=params['raman_parameters'])
self._nli_params = NLIParams(params=params['nli_parameters'])
@property
def raman_computed_channels(self):
return self._raman_computed_channels
@property
def raman_params(self):
return self._raman_params
@property
def nli_params(self):
return self._nli_params
class FiberParams():
def __init__(self, fiber):
self._loss_coef = 2 * fiber.dbkm_2_lin()[1]
self._length = fiber.length
self._gamma = fiber.gamma
self._beta2 = fiber.beta2()
self._beta3 = fiber.beta3 if hasattr(fiber, 'beta3') else 0
self._f_ref_beta = fiber.f_ref_beta if hasattr(fiber, 'f_ref_beta') else 0
self._raman_efficiency = fiber.params.raman_efficiency
self._temperature = fiber.operational['temperature']
@property
def loss_coef(self):
return self._loss_coef
@property
def length(self):
return self._length
@property
def gamma(self):
return self._gamma
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def f_ref_beta(self):
return self._f_ref_beta
@property
def raman_efficiency(self):
return self._raman_efficiency
@property
def temperature(self):
return self._temperature
def alpha0(self, f_ref=193.5e12):
""" It returns the zero element of the series expansion of attenuation coefficient alpha(f) in the
reference frequency f_ref
:param f_ref: reference frequency of series expansion [Hz]
:return: alpha0: power attenuation coefficient in f_ref [Neper/m]
"""
if not hasattr(self.loss_coef, 'alpha_power'):
alpha0 = self.loss_coef
else:
alpha_interp = interp1d(self.loss_coef['frequency'],
self.loss_coef['alpha_power'])
alpha0 = alpha_interp(f_ref)
return alpha0
pump = namedtuple('RamanPump', 'power frequency propagation_direction')
def propagate_raman_fiber(fiber, *carriers):
sim_params = fiber.sim_params
raman_params = fiber.sim_params.raman_params
nli_params = fiber.sim_params.nli_params
# apply input attenuation to carriers
attenuation_in = db2lin(fiber.con_in + fiber.att_in)
chan = []
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / attenuation_in,
nli=pwr.nli / attenuation_in,
ase=pwr.ase / attenuation_in)
carrier = carrier._replace(power=pwr)
chan.append(carrier)
carriers = tuple(f for f in chan)
fiber_params = FiberParams(fiber)
# evaluate fiber attenuation involving also SRS if required by sim_params
if 'raman_pumps' in fiber.operational:
raman_pumps = tuple(pump(p['power'], p['frequency'], p['propagation_direction'])
for p in fiber.operational['raman_pumps'])
else:
raman_pumps = None
raman_solver = RamanSolver(raman_params=raman_params, fiber_params=fiber_params)
stimulated_raman_scattering = raman_solver.stimulated_raman_scattering(carriers=carriers,
raman_pumps=raman_pumps)
fiber_attenuation = (stimulated_raman_scattering.rho[:, -1])**-2
if not raman_params.flag_raman:
fiber_attenuation = tuple(fiber.lin_attenuation for _ in carriers)
# evaluate Raman ASE noise if required by sim_params and if raman pumps are present
if raman_params.flag_raman and raman_pumps:
raman_ase = raman_solver.spontaneous_raman_scattering.power[:, -1]
else:
raman_ase = tuple(0 for _ in carriers)
# evaluate nli and propagate in fiber
attenuation_out = db2lin(fiber.con_out)
nli_solver = NliSolver(nli_params=nli_params, fiber_params=fiber_params)
nli_solver.stimulated_raman_scattering = stimulated_raman_scattering
nli_frequencies = []
computed_nli = []
for carrier in (c for c in carriers if c.channel_number in sim_params.raman_computed_channels):
resolution_param = frequency_resolution(carrier, carriers, sim_params, fiber_params)
f_cut_resolution, f_pump_resolution, _, _ = resolution_param
nli_params.f_cut_resolution = f_cut_resolution
nli_params.f_pump_resolution = f_pump_resolution
nli_frequencies.append(carrier.frequency)
computed_nli.append(nli_solver.compute_nli(carrier, *carriers))
new_carriers = []
for carrier, attenuation, rmn_ase in zip(carriers, fiber_attenuation, raman_ase):
carrier_nli = np.interp(carrier.frequency, nli_frequencies, computed_nli)
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal/attenuation/attenuation_out,
nli=(pwr.nli+carrier_nli)/attenuation/attenuation_out,
ase=((pwr.ase/attenuation)+rmn_ase)/attenuation_out)
new_carriers.append(carrier._replace(power=pwr))
return new_carriers
def frequency_resolution(carrier, carriers, sim_params, fiber_params):
def _get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol):
res_phi = _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol)
res_k = _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol)
res_dict = {'res_phi': res_phi, 'res_k': res_k}
method = min(res_dict, key=res_dict.get)
return res_dict[method], method, res_dict
def _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol):
return k_tol * abs(alpha0) / abs(beta2) / (1 + delta_count) / (4 * np.pi ** 2 * grid_size)
def _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol):
return phi_tol / abs(beta2) / (1 + delta_count) / delta_z / (4 * np.pi ** 2 * grid_size)
grid_size = sim_params.nli_params.wdm_grid_size
delta_z = sim_params.raman_params.space_resolution
alpha0 = fiber_params.alpha0()
beta2 = fiber_params.beta2
k_tol = sim_params.nli_params.dispersion_tolerance
phi_tol = sim_params.nli_params.phase_shift_tollerance
f_pump_resolution, method_f_pump, res_dict_pump = \
_get_freq_res_k_phi(0, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
f_cut_resolution = {}
method_f_cut = {}
res_dict_cut = {}
for cut_carrier in carriers:
delta_number = cut_carrier.channel_number - carrier.channel_number
delta_count = abs(delta_number)
f_res, method, res_dict = \
_get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
f_cut_resolution[f'delta_{delta_number}'] = f_res
method_f_cut[delta_number] = method
res_dict_cut[delta_number] = res_dict
return [f_cut_resolution, f_pump_resolution, (method_f_cut, method_f_pump), (res_dict_cut, res_dict_pump)]
def raised_cosine_comb(f, *carriers):
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
channels at the input frequencies defined in array f
:param f: numpy array of frequencies in Hz
:param carriers: namedtuple describing the WDM comb
:return: PSD of the WDM comb evaluated over f
"""
psd = np.zeros(np.shape(f))
for carrier in carriers:
f_nch = carrier.frequency
g_ch = carrier.power.signal / carrier.baud_rate
ts = 1 / carrier.baud_rate
passband = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
stopband = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
ff = np.abs(f - f_nch)
tf = ff - passband
if carrier.roll_off == 0:
psd = np.where(tf <= 0, g_ch, 0.) + psd
else:
psd = g_ch * (np.where(tf <= 0, 1., 0.) + 1 / 2 * (1 + np.cos(np.pi * ts / carrier.roll_off * tf)) *
np.where(tf > 0, 1., 0.) * np.where(np.abs(ff) <= stopband, 1., 0.)) + psd
return psd
class RamanSolver:
def __init__(self, raman_params=None, fiber_params=None):
""" Initialize the fiber object with its physical parameters
:param length: fiber length in m.
:param alphap: fiber power attenuation coefficient vs frequency in 1/m. numpy array
:param freq_alpha: frequency axis of alphap in Hz. numpy array
:param cr_raman: Raman efficiency vs frequency offset in 1/W/m. numpy array
:param freq_cr: reference frequency offset axis for cr_raman. numpy array
:param raman_params: namedtuple containing the solver parameters (optional).
"""
self.fiber_params = fiber_params
self.raman_params = raman_params
self._carriers = None
self._stimulated_raman_scattering = None
self._spontaneous_raman_scattering = None
@property
def fiber_params(self):
return self._fiber_params
@fiber_params.setter
def fiber_params(self, fiber_params):
self._stimulated_raman_scattering = None
self._fiber_params = fiber_params
@property
def carriers(self):
return self._carriers
@carriers.setter
def carriers(self, carriers):
"""
:param carriers: tuple of namedtuples containing information about carriers
:return:
"""
self._carriers = carriers
self._stimulated_raman_scattering = None
@property
def raman_pumps(self):
return self._raman_pumps
@raman_pumps.setter
def raman_pumps(self, raman_pumps):
self._raman_pumps = raman_pumps
self._stimulated_raman_scattering = None
@property
def raman_params(self):
return self._raman_params
@raman_params.setter
def raman_params(self, raman_params):
"""
:param raman_params: namedtuple containing the solver parameters (optional).
:return:
"""
self._raman_params = raman_params
self._stimulated_raman_scattering = None
self._spontaneous_raman_scattering = None
@property
def spontaneous_raman_scattering(self):
if self._spontaneous_raman_scattering is None:
# SET STUFF
loss_coef = self.fiber_params.loss_coef
raman_efficiency = self.fiber_params.raman_efficiency
temperature = self.fiber_params.temperature
carriers = self.carriers
raman_pumps = self.raman_pumps
logger.debug('Start computing fiber Spontaneous Raman Scattering')
power_spectrum, freq_array, prop_direct, bn_array = self._compute_power_spectrum(carriers, raman_pumps)
if not hasattr(loss_coef, 'alpha_power'):
alphap_fiber = loss_coef * np.ones(freq_array.shape)
else:
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
alphap_fiber = interp_alphap(freq_array)
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
cr = interp_cr(freq_diff)
# z propagation axis
z_array = self._stimulated_raman_scattering.z
ase_bc = np.zeros(freq_array.shape)
# calculate ase power
spontaneous_raman_scattering = self._int_spontaneous_raman(z_array, self._stimulated_raman_scattering.power,
alphap_fiber, freq_array, cr, freq_diff, ase_bc,
bn_array, temperature)
setattr(spontaneous_raman_scattering, 'frequency', freq_array)
setattr(spontaneous_raman_scattering, 'z', z_array)
setattr(spontaneous_raman_scattering, 'power', spontaneous_raman_scattering.x)
delattr(spontaneous_raman_scattering, 'x')
logger.debug(spontaneous_raman_scattering.message)
self._spontaneous_raman_scattering = spontaneous_raman_scattering
return self._spontaneous_raman_scattering
@staticmethod
def _compute_power_spectrum(carriers, raman_pumps=None):
"""
Rearrangement of spectral and Raman pump information to make them compatible with Raman solver
:param carriers: a tuple of namedtuples describing the transmitted channels
:param raman_pumps: a namedtuple describing the Raman pumps
:return:
"""
# Signal power spectrum
pow_array = np.array([])
f_array = np.array([])
noise_bandwidth_array = np.array([])
for carrier in sorted(carriers, key=attrgetter('frequency')):
f_array = np.append(f_array, carrier.frequency)
pow_array = np.append(pow_array, carrier.power.signal)
ref_bw = carrier.baud_rate
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
propagation_direction = np.ones(len(f_array))
# Raman pump power spectrum
if raman_pumps:
for pump in raman_pumps:
pow_array = np.append(pow_array, pump.power)
f_array = np.append(f_array, pump.frequency)
direction = +1 if pump.propagation_direction.lower() == 'coprop' else -1
propagation_direction = np.append(propagation_direction, direction)
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
# Final sorting
ind = np.argsort(f_array)
f_array = f_array[ind]
pow_array = pow_array[ind]
propagation_direction = propagation_direction[ind]
return pow_array, f_array, propagation_direction, noise_bandwidth_array
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array, cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
spontaneous_raman_scattering = OptimizeResult()
dx = self.raman_params.space_resolution
h = ph.value('Planck constant')
kb = ph.value('Boltzmann constant')
power_ase = np.nan * np.ones(raman_matrix.shape)
int_pump = cumtrapz(raman_matrix, z_array, dx=dx, axis=1, initial=0)
for f_ind, f_ase in enumerate(freq_array):
cr_raman = cr_raman_matrix[f_ind, :]
vibrational_loss = f_ase / freq_array[:f_ind]
eta = 1/(np.exp((h*freq_diff[f_ind, f_ind+1:])/(kb*temperature)) - 1)
int_fiber_loss = -alphap_fiber[f_ind] * z_array
int_raman_loss = np.sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(), axis=0)
int_raman_gain = np.sum((cr_raman[f_ind + 1:] * int_pump[f_ind + 1:, :].transpose()).transpose(), axis=0)
int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss
new_ase = np.sum((cr_raman[f_ind+1:] * (1 + eta) * raman_matrix[f_ind+1:, :].transpose()).transpose() * h * f_ase * bn_array[f_ind], axis=0)
bc_evolution = ase_bc[f_ind] * np.exp(int_gain_loss)
ase_evolution = np.exp(int_gain_loss) * cumtrapz(new_ase*np.exp(-int_gain_loss), z_array, dx=dx, initial=0)
power_ase[f_ind, :] = bc_evolution + ase_evolution
spontaneous_raman_scattering.x = 2 * power_ase
spontaneous_raman_scattering.success = True
spontaneous_raman_scattering.message = "Spontaneous Raman Scattering evaluated successfully"
return spontaneous_raman_scattering
def stimulated_raman_scattering(self, carriers, raman_pumps=None):
""" Returns stimulated Raman scattering solution including
fiber gain/loss profile.
:return: self._stimulated_raman_scattering: the SRS problem solution.
scipy.interpolate.PPoly instance
"""
if self._stimulated_raman_scattering is None:
# fiber parameters
fiber_length = self.fiber_params.length
loss_coef = self.fiber_params.loss_coef
if self.raman_params.flag_raman:
raman_efficiency = self.fiber_params.raman_efficiency
else:
raman_efficiency = self.fiber_params.raman_efficiency
raman_efficiency['cr'] = np.array(raman_efficiency['cr']) * 0
# raman solver parameters
z_resolution = self.raman_params.space_resolution
tolerance = self.raman_params.tolerance
logger.debug('Start computing fiber Stimulated Raman Scattering')
power_spectrum, freq_array, prop_direct, _ = self._compute_power_spectrum(carriers, raman_pumps)
if not hasattr(loss_coef, 'alpha_power'):
alphap_fiber = loss_coef * np.ones(freq_array.shape)
else:
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
alphap_fiber = interp_alphap(freq_array)
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
cr = interp_cr(freq_diff)
# z propagation axis
z = np.arange(0, fiber_length+1, z_resolution)
ode_function = lambda z, p: self._ode_stimulated_raman(z, p, alphap_fiber, freq_array, cr, prop_direct)
boundary_residual = lambda ya, yb: self._residuals_stimulated_raman(ya, yb, power_spectrum, prop_direct)
initial_guess_conditions = self._initial_guess_stimulated_raman(z, power_spectrum, alphap_fiber, prop_direct)
# ODE SOLVER
stimulated_raman_scattering = solve_bvp(ode_function, boundary_residual, z, initial_guess_conditions, tol=tolerance)
rho = (stimulated_raman_scattering.y.transpose() / power_spectrum).transpose()
rho = np.sqrt(rho) # From power attenuation to field attenuation
setattr(stimulated_raman_scattering, 'frequency', freq_array)
setattr(stimulated_raman_scattering, 'z', stimulated_raman_scattering.x)
setattr(stimulated_raman_scattering, 'rho', rho)
setattr(stimulated_raman_scattering, 'power', stimulated_raman_scattering.y)
delattr(stimulated_raman_scattering, 'x')
delattr(stimulated_raman_scattering, 'y')
self.carriers = carriers
self.raman_pumps = raman_pumps
self._stimulated_raman_scattering = stimulated_raman_scattering
return self._stimulated_raman_scattering
def _residuals_stimulated_raman(self, ya, yb, power_spectrum, prop_direct):
computed_boundary_value = np.zeros(ya.size)
for index, direction in enumerate(prop_direct):
if direction == +1:
computed_boundary_value[index] = ya[index]
else:
computed_boundary_value[index] = yb[index]
return power_spectrum - computed_boundary_value
def _initial_guess_stimulated_raman(self, z, power_spectrum, alphap_fiber, prop_direct):
""" Computes the initial guess knowing the boundary conditions
:param z: patial axis [m]. numpy array
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array
:return: power_guess: guess on the initial conditions [W]. The first ndarray index identifies the frequency slice,
the second ndarray index identifies the step in z. ndarray
"""
power_guess = np.empty((power_spectrum.size, z.size))
for f_index, power_slice in enumerate(power_spectrum):
if prop_direct[f_index] == +1:
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z) * power_slice
else:
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z[::-1]) * power_slice
return power_guess
def _ode_stimulated_raman(self, z, power_spectrum, alphap_fiber, freq_array, cr_raman_matrix, prop_direct):
""" Aim of ode_raman is to implement the set of ordinary differential equations (ODEs) describing the Raman effect.
:param z: spatial axis (unused).
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array. Size n
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array. Size n
:param freq_array: reference frequency axis [Hz]. numpy array. Size n
:param cr_raman: Cr(f) Raman gain efficiency variation in frequency [1/W/m]. Frequency defined by freq_array. numpy ndarray. Size nxn
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array. Size n
:return: dP/dz: the power variation in dz [W/m]. numpy array. Size n
"""
dpdz = np.nan * np.ones(power_spectrum.shape)
for f_ind, power in enumerate(power_spectrum):
cr_raman = cr_raman_matrix[f_ind, :]
vibrational_loss = freq_array[f_ind] / freq_array[:f_ind]
for z_ind, power_sample in enumerate(power):
raman_gain = np.sum(cr_raman[f_ind+1:] * power_spectrum[f_ind+1:, z_ind])
raman_loss = np.sum(vibrational_loss * cr_raman[:f_ind] * power_spectrum[:f_ind, z_ind])
dpdz_element = prop_direct[f_ind] * (-alphap_fiber[f_ind] + raman_gain - raman_loss) * power_sample
dpdz[f_ind][z_ind] = dpdz_element
return np.vstack(dpdz)
class NliSolver:
""" This class implements the NLI models.
Model and method can be specified in `self.nli_params.method`.
List of implemented methods:
'gn_model_analytic': brute force triple integral solution
'ggn_spectrally_separated_xpm_spm': XPM plus SPM
"""
def __init__(self, nli_params=None, fiber_params=None):
""" Initialize the fiber object with its physical parameters
"""
self.fiber_params = fiber_params
self.nli_params = nli_params
self.stimulated_raman_scattering = None
@property
def fiber_params(self):
return self._fiber_params
@fiber_params.setter
def fiber_params(self, fiber_params):
self._fiber_params = fiber_params
@property
def stimulated_raman_scattering(self):
return self._stimulated_raman_scattering
@stimulated_raman_scattering.setter
def stimulated_raman_scattering(self, stimulated_raman_scattering):
self._stimulated_raman_scattering = stimulated_raman_scattering
@property
def nli_params(self):
return self._nli_params
@nli_params.setter
def nli_params(self, nli_params):
"""
:param model_params: namedtuple containing the parameters used to compute the NLI.
"""
self._nli_params = nli_params
def compute_nli(self, carrier, *carriers):
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
at the end of the fiber span.
"""
if 'gn_model_analytic' == self.nli_params.nli_method_name.lower():
carrier_nli = self._gn_analytic(carrier, *carriers)
elif 'ggn_spectrally_separated' in self.nli_params.nli_method_name.lower():
eta_matrix = self._compute_eta_matrix(carrier, *carriers)
carrier_nli = self._carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers)
else:
raise ValueError(f'Method {self.nli_params.method_nli} not implemented.')
return carrier_nli
@staticmethod
def _carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers):
carrier_nli = 0
for pump_carrier_1 in carriers:
for pump_carrier_2 in carriers:
carrier_nli += eta_matrix[pump_carrier_1.channel_number-1, pump_carrier_2.channel_number-1] * \
pump_carrier_1.power.signal * pump_carrier_2.power.signal
carrier_nli *= carrier.power.signal
return carrier_nli
def _compute_eta_matrix(self, carrier_cut, *carriers):
cut_index = carrier_cut.channel_number - 1
# Matrix initialization
matrix_size = max(carriers, key=lambda x: getattr(x, 'channel_number')).channel_number
eta_matrix = np.zeros(shape=(matrix_size, matrix_size))
# SPM
logger.debug(f'Start computing SPM on channel #{carrier_cut.channel_number}')
# SPM GGN
if 'ggn' in self.nli_params.nli_method_name.lower():
partial_nli = self._generalized_spectrally_separated_spm(carrier_cut)
# SPM GN
elif 'gn' in self.nli_params.nli_method_name.lower():
partial_nli = self._gn_analytic(carrier_cut, *[carrier_cut])
eta_matrix[cut_index, cut_index] = partial_nli / (carrier_cut.power.signal**3)
# XPM
for pump_carrier in carriers:
pump_index = pump_carrier.channel_number - 1
if not (cut_index == pump_index):
logger.debug(f'Start computing XPM on channel #{carrier_cut.channel_number} '
f'from channel #{pump_carrier.channel_number}')
# XPM GGN
if 'ggn' in self.nli_params.nli_method_name.lower():
partial_nli = self._generalized_spectrally_separated_xpm(carrier_cut, pump_carrier)
# XPM GGN
elif 'gn' in self.nli_params.nli_method_name.lower():
partial_nli = self._gn_analytic(carrier_cut, *[pump_carrier])
eta_matrix[pump_index, pump_index] = partial_nli /\
(carrier_cut.power.signal * pump_carrier.power.signal**2)
return eta_matrix
# Methods for computing GN-model
def _gn_analytic(self, carrier, *carriers):
""" Computes the nonlinear interference power on a single carrier.
The method uses eq. 120 from arXiv:1209.0394.
:param carrier: the signal under analysis
:param carriers: the full WDM comb
:return: carrier_nli: the amount of nonlinear interference in W on the carrier under analysis
"""
alpha = self.fiber_params.alpha0() / 2
beta2 = self.fiber_params.beta2
gamma = self.fiber_params.gamma
length = self.fiber_params.length
effective_length = (1 - np.exp(-2 * alpha * length)) / (2 * alpha)
asymptotic_length = 1 / (2 * alpha)
g_nli = 0
for interfering_carrier in carriers:
g_interfearing = interfering_carrier.power.signal / interfering_carrier.baud_rate
g_signal = carrier.power.signal / carrier.baud_rate
g_nli += g_interfearing**2 * g_signal \
* _psi(carrier, interfering_carrier, beta2=self.fiber_params.beta2, asymptotic_length=1/self.fiber_params.alpha0())
g_nli *= (16.0 / 27.0) * (gamma * effective_length)**2 /\
(2 * np.pi * abs(beta2) * asymptotic_length)
carrier_nli = carrier.baud_rate * g_nli
return carrier_nli
# Methods for computing the GGN-model
def _generalized_spectrally_separated_spm(self, carrier):
f_cut_resolution = self.nli_params.f_cut_resolution['delta_0']
f_eval = carrier.frequency
g_cut = (carrier.power.signal / carrier.baud_rate)
spm_nli = carrier.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_cut**3 * \
self._generalized_psi(carrier, carrier, f_eval, f_cut_resolution, f_cut_resolution)
return spm_nli
def _generalized_spectrally_separated_xpm(self, carrier_cut, pump_carrier):
delta_index = pump_carrier.channel_number - carrier_cut.channel_number
f_cut_resolution = self.nli_params.f_cut_resolution[f'delta_{delta_index}']
f_pump_resolution = self.nli_params.f_pump_resolution
f_eval = carrier_cut.frequency
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
g_cut = (carrier_cut.power.signal / carrier_cut.baud_rate)
frequency_offset_threshold = self._frequency_offset_threshold(pump_carrier.baud_rate)
if abs(carrier_cut.frequency - pump_carrier.frequency) <= frequency_offset_threshold:
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_pump**2 * g_cut * \
2 * self._generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution)
else:
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_pump**2 * g_cut * \
2 * self._fast_generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution)
return xpm_nli
def _fast_generalized_psi(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution):
""" It computes the generalized psi function similarly to the one used in the GN model
:return: generalized_psi
"""
# Fiber parameters
alpha0 = self.fiber_params.alpha0(f_eval)
beta2 = self.fiber_params.beta2
beta3 = self.fiber_params.beta3
f_ref_beta = self.fiber_params.f_ref_beta
z = self.stimulated_raman_scattering.z
frequency_rho = self.stimulated_raman_scattering.frequency
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
if len(frequency_rho) == 1:
rho_function = lambda f: rho_norm[0, :]
else:
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
rho_norm_pump = rho_function(pump_carrier.frequency)
f1_array = np.array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)])
f2_array = np.arange(carrier_cut.frequency,
carrier_cut.frequency + (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
integrand_f1 = np.zeros(len(f1_array))
for f1_index, f1 in enumerate(f1_array):
delta_beta = 4 * np.pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + np.pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
integrand_f1[f1_index] = 2 * np.trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate
return generalized_psi
def _generalized_psi(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution):
""" It computes the generalized psi function similarly to the one used in the GN model
:return: generalized_psi
"""
# Fiber parameters
alpha0 = self.fiber_params.alpha0(f_eval)
beta2 = self.fiber_params.beta2
beta3 = self.fiber_params.beta3
f_ref_beta = self.fiber_params.f_ref_beta
z = self.stimulated_raman_scattering.z
frequency_rho = self.stimulated_raman_scattering.frequency
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
if len(frequency_rho) == 1:
rho_function = lambda f: rho_norm[0, :]
else:
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
rho_norm_pump = rho_function(pump_carrier.frequency)
f1_array = np.arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
f_pump_resolution)
f2_array = np.arange(carrier_cut.frequency - (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
carrier_cut.frequency + (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
f_cut_resolution)
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
integrand_f1 = np.zeros(len(f1_array))
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
f3_array = f1 + f2_array - f_eval
psd2 = raised_cosine_comb(f2_array, carrier_cut) * (carrier_cut.baud_rate / carrier_cut.power.signal)
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
ggg = psd1_sample * psd2 * psd3
delta_beta = 4 * np.pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + np.pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = ggg * self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
integrand_f1[f1_index] = np.trapz(integrand_f2, f2_array)
generalized_psi = np.trapz(integrand_f1, f1_array)
return generalized_psi
@staticmethod
def _generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0):
w = 1j * delta_beta - alpha0
generalized_rho_nli = (rho_norm_pump[-1]**2 * np.exp(w * z[-1]) - rho_norm_pump[0]**2 * np.exp(w * z[0])) / w
for z_ind in range(0, len(z) - 1):
derivative_rho = (rho_norm_pump[z_ind + 1]**2 - rho_norm_pump[z_ind]**2) / (z[z_ind + 1] - z[z_ind])
generalized_rho_nli -= derivative_rho * (np.exp(w * z[z_ind + 1]) - np.exp(w * z[z_ind])) / (w**2)
generalized_rho_nli = np.abs(generalized_rho_nli)**2
return generalized_rho_nli
def _frequency_offset_threshold(self, symbol_rate):
k_ref = 5
beta2_ref = 21.3e-27
delta_f_ref = 50e9
rs_ref = 32e9
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (self.fiber_params.beta2 * symbol_rate)
return freq_offset_th
def _psi(carrier, interfering_carrier, beta2, asymptotic_length):
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
if carrier.channel_number == interfering_carrier.channel_number: # SCI, SPM
psi = np.arcsinh(0.5 * np.pi**2 * asymptotic_length * abs(beta2) * carrier.baud_rate**2)
else: # XCI, XPM
delta_f = carrier.frequency - interfering_carrier.frequency
psi = np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
psi -= np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
return psi

256
gnpy/core/service_sheet.py Normal file
View File

@@ -0,0 +1,256 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.service_sheet
========================
XLS parser that can be called to create a JSON request file in accordance with
Yang model for requesting path computation.
See: draft-ietf-teas-yang-path-computation-01.txt
"""
from sys import exit
try:
from xlrd import open_workbook, XL_CELL_EMPTY
except ModuleNotFoundError:
exit('Required: `pip install xlrd`')
from collections import namedtuple
from logging import getLogger, basicConfig, CRITICAL, DEBUG, INFO
from json import dumps
from pathlib import Path
from gnpy.core.equipment import load_equipment
from gnpy.core.utils import db2lin, lin2db
SERVICES_COLUMN = 12
#EQPT_LIBRARY_FILENAME = Path(__file__).parent / 'eqpt_config.json'
all_rows = lambda sheet, start=0: (sheet.row(x) for x in range(start, sheet.nrows))
logger = getLogger(__name__)
# Type for input data
class Request(namedtuple('Request', 'request_id source destination trx_type mode \
spacing power nb_channel disjoint_from nodes_list is_loose path_bandwidth')):
def __new__(cls, request_id, source, destination, trx_type, mode=None , spacing= None , power = None, nb_channel = None , disjoint_from ='' , nodes_list = None, is_loose = '', path_bandwidth = None):
return super().__new__(cls, request_id, source, destination, trx_type, mode, spacing, power, nb_channel, disjoint_from, nodes_list, is_loose, path_bandwidth)
# Type for output data: // from dutc
class Element:
def __eq__(self, other):
return type(self) == type(other) and self.uid == other.uid
def __hash__(self):
return hash((type(self), self.uid))
class Request_element(Element):
def __init__(self,Request,eqpt_filename):
# request_id is str
# excel has automatic number formatting that adds .0 on integer values
# the next lines recover the pure int value, assuming this .0 is unwanted
self.request_id = correct_xlrd_int_to_str_reading(Request.request_id)
self.source = Request.source
self.destination = Request.destination
# TODO: the automatic naming generated by excel parser requires that source and dest name
# be a string starting with 'trx' : this is manually added here.
self.srctpid = f'trx {Request.source}'
self.dsttpid = f'trx {Request.destination}'
# test that trx_type belongs to eqpt_config.json
# if not replace it with a default
equipment = load_equipment(eqpt_filename)
try :
if equipment['Transceiver'][Request.trx_type]:
self.trx_type = correct_xlrd_int_to_str_reading(Request.trx_type)
if Request.mode is not None :
Requestmode = correct_xlrd_int_to_str_reading(Request.mode)
if [mode for mode in equipment['Transceiver'][Request.trx_type].mode if mode['format'] == Requestmode]:
self.mode = Requestmode
else :
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Requestmode}\' in eqpt library \nComputation stopped.'
#print(msg)
logger.critical(msg)
exit(1)
else:
Requestmode = None
self.mode = Request.mode
except KeyError:
msg = f'Request Id: {self.request_id} - could not find tsp : \'{Request.trx_type}\' with mode: \'{Request.mode}\' in eqpt library \nComputation stopped.'
#print(msg)
logger.critical(msg)
exit()
# excel input are in GHz and dBm
if Request.spacing is not None:
self.spacing = Request.spacing * 1e9
else:
msg = f'Request {self.request_id} missing spacing: spacing is mandatory.\ncomputation stopped'
logger.critical(msg)
exit()
if Request.power is not None:
self.power = db2lin(Request.power) * 1e-3
else:
self.power = None
if Request.nb_channel is not None :
self.nb_channel = int(Request.nb_channel)
else:
self.nb_channel = None
value = correct_xlrd_int_to_str_reading(Request.disjoint_from)
self.disjoint_from = [n for n in value.split(' | ') if value]
self.nodes_list = []
if Request.nodes_list :
self.nodes_list = Request.nodes_list.split(' | ')
# cleaning the list of nodes to remove source and destination
# (because the remaining of the program assumes that the nodes list are nodes
# on the path and should not include source and destination)
try :
self.nodes_list.remove(self.source)
msg = f'{self.source} removed from explicit path node-list'
logger.info(msg)
except ValueError:
msg = f'{self.source} already removed from explicit path node-list'
logger.info(msg)
try :
self.nodes_list.remove(self.destination)
msg = f'{self.destination} removed from explicit path node-list'
logger.info(msg)
except ValueError:
msg = f'{self.destination} already removed from explicit path node-list'
logger.info(msg)
# the excel parser applies the same hop-type to all nodes in the route nodes_list.
# user can change this per node in the generated json
self.loose = 'loose'
if Request.is_loose == 'no' :
self.loose = 'strict'
self.path_bandwidth = None
if Request.path_bandwidth is not None:
self.path_bandwidth = Request.path_bandwidth * 1e9
else:
self.path_bandwidth = 0
uid = property(lambda self: repr(self))
@property
def pathrequest(self):
req_dictionnary = {
'request-id':self.request_id,
'source': self.source,
'destination': self.destination,
'src-tp-id': self.srctpid,
'dst-tp-id': self.dsttpid,
'path-constraints':{
'te-bandwidth': {
'technology': 'flexi-grid',
'trx_type' : self.trx_type,
'trx_mode' : self.mode,
'effective-freq-slot':[{'n': 'null','m': 'null'}] ,
'spacing' : self.spacing,
'max-nb-of-channel' : self.nb_channel,
'output-power' : self.power
# 'path_bandwidth' : self.path_bandwidth
}
},
'optimizations': {
'explicit-route-include-objects': [
{
'index': self.nodes_list.index(node),
'unnumbered-hop':{
'node-id': f'{node}',
'link-tp-id': 'link-tp-id is not used',
'hop-type': f'{self.loose}',
'direction': 'direction is not used'
},
'label-hop':{
'te-label': {
'generic': 'generic is not used',
'direction': 'direction is not used'
}
}
}
for node in self.nodes_list
]
}
}
if self.path_bandwidth is not None:
req_dictionnary['path-constraints']['te-bandwidth']['path_bandwidth'] = self.path_bandwidth
return req_dictionnary
@property
def pathsync(self):
if self.disjoint_from :
return {'synchronization-id':self.request_id,
'svec': {
'relaxable' : 'False',
'link-diverse': 'True',
'node-diverse': 'True',
'request-id-number': [self.request_id]+ [n for n in self.disjoint_from]
}
}
# TO-DO: avoid multiple entries with same synchronisation vectors
@property
def json(self):
return self.pathrequest , self.pathsync
def convert_service_sheet(input_filename, eqpt_filename, output_filename='', filter_region=[]):
service = parse_excel(input_filename)
req = [Request_element(n,eqpt_filename) for n in service]
# dumps the output into a json file with name
# split_filename = [input_filename[0:len(input_filename)-len(suffix_filename)] , suffix_filename[1:]]
if output_filename=='':
output_filename = f'{str(input_filename)[0:len(str(input_filename))-len(str(input_filename.suffixes[0]))]}_services.json'
# for debug
# print(json_filename)
data = {
'path-request': [n.json[0] for n in req],
'synchronization': [n.json[1] for n in req
if n.json[1] is not None]
}
with open(output_filename, 'w', encoding='utf-8') as f:
f.write(dumps(data, indent=2, ensure_ascii=False))
return data
def correct_xlrd_int_to_str_reading(v) :
if not isinstance(v,str):
value = str(int(v))
if value.endswith('.0'):
value = value[:-2]
else:
value = v
return value
# to be used from dutc
def parse_row(row, fieldnames):
return {f: r.value for f, r in zip(fieldnames, row[0:SERVICES_COLUMN])
if r.ctype != XL_CELL_EMPTY}
#
def parse_excel(input_filename):
with open_workbook(input_filename) as wb:
service_sheet = wb.sheet_by_name('Service')
services = list(parse_service_sheet(service_sheet))
return services
def parse_service_sheet(service_sheet):
logger.info(f'Validating headers on {service_sheet.name!r}')
# add a test on field to enable the '' field case that arises when columns on the
# right hand side are used as comments or drawing in the excel sheet
header = [x.value.strip() for x in service_sheet.row(4)[0:SERVICES_COLUMN] if len(x.value.strip())>0]
# create a service_fieldname independant from the excel column order
# to be compatible with any version of the sheet
# the following dictionnary records the excel field names and the corresponding parameter's name
authorized_fieldnames = {'route id':'request_id', 'Source':'source', 'Destination':'destination', \
'TRX type':'trx_type', 'Mode' : 'mode', 'System: spacing':'spacing', \
'System: input power (dBm)':'power', 'System: nb of channels':'nb_channel',\
'routing: disjoint from': 'disjoint_from', 'routing: path':'nodes_list',\
'routing: is loose?':'is_loose', 'path bandwidth':'path_bandwidth'}
try :
service_fieldnames = [authorized_fieldnames[e] for e in header]
except KeyError:
msg = f'Malformed header on Service sheet: {header} field not in {authorized_fieldnames}'
logger.critical(msg)
raise ValueError(msg)
for row in all_rows(service_sheet, start=5):
yield Request(**parse_row(row[0:SERVICES_COLUMN], service_fieldnames))

View File

@@ -1,2 +1,5 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
UNITS = {'m': 1,
'km': 1E3}

View File

@@ -1,28 +1,76 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.utils
===============
This module contains utility functions that are used with gnpy.
'''
import json
from csv import writer
import numpy as np
from numpy import pi, cos, sqrt, log10
from scipy import constants
def load_json(filename):
with open(filename, 'r') as f:
with open(filename, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def save_json(obj, filename):
with open(filename, 'w') as f:
json.dump(obj, f)
with open(filename, 'w', encoding='utf-8') as f:
json.dump(obj, f, indent=2, ensure_ascii=False)
def write_csv(obj, filename):
"""
convert dictionary items to a csv file
the dictionary format :
{'result category 1':
[
# 1st line of results
{'header 1' : value_xxx,
'header 2' : value_yyy},
# 2nd line of results: same headers, different results
{'header 1' : value_www,
'header 2' : value_zzz}
],
'result_category 2':
[
{},{}
]
}
the generated csv file will be:
result_category 1
header 1 header 2
value_xxx value_yyy
value_www value_zzz
result_category 2
...
"""
with open(filename, 'w', encoding='utf-8') as f:
w = writer(f)
for data_key, data_list in obj.items():
#main header
w.writerow([data_key])
#sub headers:
headers = [_ for _ in data_list[0].keys()]
w.writerow(headers)
for data_dict in data_list:
w.writerow([_ for _ in data_dict.values()])
def c():
"""
Returns the speed of light in meters per second
"""
return 299792458.0
return constants.c
def itufs(spacing, startf=191.35, stopf=196.10):
@@ -40,12 +88,26 @@ def itufs(spacing, startf=191.35, stopf=196.10):
"""
return np.arange(startf, stopf + spacing / 2, spacing)
def itufl(length, startf=191.35, stopf=196.10):
"""Creates an array of frequencies whose default range is
191.35-196.10 THz
:param length: number of elements
:param starf: Start frequency in THz
:param stopf: Stop frequency in THz
:type length: integer
:type startf: float
:type stopf: float
:return an array of frequnecies determined by the spacing parameter
:rtype: numpy.ndarray
"""
return np.linspace(startf, stopf, length)
def h():
"""
Returns plank's constant in J*s
"""
return 6.62607004e-34
return constants.h
def lin2db(value):
@@ -55,18 +117,27 @@ def lin2db(value):
def db2lin(value):
return 10**(value / 10)
def round2float(number, step):
step = round(step, 1)
if step >= 0.01:
number = round(number / step, 0)
number = round(number * step, 1)
else:
number = round(number, 2)
return number
def wavelength2freq(value):
""" Converts wavelength units to frequeuncy units.
"""
return c() / value
wavelength2freq = constants.lambda2nu
freq2wavelength = constants.nu2lambda
def freq2wavelength(value):
""" Converts frequency units to wavelength units.
"""
return c() / value
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
snr_added = snr_added - lin2db(bw/bw_added)
snr = -lin2db(db2lin(-snr)+db2lin(-snr_added))
return snr
def deltawl2deltaf(delta_wl, wavelength):
""" deltawl2deltaf(delta_wl, wavelength):
@@ -128,3 +199,43 @@ def rrc(ffs, baud_rate, alpha):
p_inds = np.where(np.logical_and(np.abs(ffs) > 0, np.abs(ffs) < l_lim))
hf[p_inds] = 1
return sqrt(hf)
def merge_amplifier_restrictions(dict1, dict2):
"""Updates contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
>>> merge_amplifier_restrictions(d1, d2)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}, 'target_pch_out_db': -20}}
>>> d3 = {'params': {'restrictions': {'preamp_variety_list': ['foo'], 'booster_variety_list': ['bar']}}}
>>> merge_amplifier_restrictions(d1, d3)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
"""
copy_dict1 = dict1.copy()
for key in dict2:
if key in dict1:
if isinstance(dict1[key], dict):
copy_dict1[key] = merge_amplifier_restrictions(copy_dict1[key], dict2[key])
else:
copy_dict1[key] = dict2[key]
return copy_dict1
def silent_remove(this_list, elem):
"""Remove matching elements from a list without raising ValueError
>>> li = [0, 1]
>>> li = silent_remove(li, 1)
>>> li
[0]
>>> li = silent_remove(li, 1)
>>> li
[0]
"""
try:
this_list.remove(elem)
except ValueError:
pass
return this_list

3
hooks/pre-commit Executable file
View File

@@ -0,0 +1,3 @@
#!/bin/sh
exec pytest

View File

@@ -0,0 +1,559 @@
*********************************************
Equipment and Network description definitions
*********************************************
1. Equipment description
########################
Equipment description defines equipment types and those parameters.
Description is made in JSON file with predefined structure. By default
**transmission_main_example.py** uses **eqpt_config.json** file and that
can be changed with **-e** or **--equipment** command line parameter.
Parsing of JSON file is made with
**gnpy.core.equipment.load_equipment(equipment_description)** and return
value is a dictionary of format **dict[equipment
type][subtype]=object**
1.1. Structure definition
*************************
1.1.1. Equipment types
*************************
Every equipment type is defined in JSON root with according name and
array of parameters as value.
.. code-block:: none
{"Edfa": [...],
"Fiber": [...]
}
1.1.2. Equipment parameters and subtypes
*****************************************
Array of parameters is a list of objects with unordered parameter name
and its value definition. In case of multiple equipment subtypes each
object contains **"type_variety":”type name”** name:value combination,
if only one subtype exists **"type_variety"** name is not mandatory and
it will be marked with **”default”** value.
.. code-block:: json
{"Edfa": [{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 23,
"nf_min": 6.5,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
}
],
"Fiber": [{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127
}
]
}
1.2. Equipment parameters by type
*********************************
1.2.1. EDFA element
*******************
Four types of EDFA definition are possible. Description JSON file
location is in **transmission_main_example.py** folder:
- Advanced with JSON file describing gain/noise figure tilt and
gain/noise figure ripple. **"advanced_config_from_json"** value
contains filename.
.. code-block:: json-object
"Edfa":[{
"type_variety": "high_detail_model_example",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": false
}
]
- Variable gain with JSON file describing gain figure tilt and gain/noise
figure ripple. **”default_edfa_config.json”** as source file.
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 23,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
}
]
- Fixed gain with JSON file describing gain figure tilt and gain/noise
figure ripple. **”default_edfa_config.json”** as source file.
.. code-block:: json-object
"Edfa":[{
"type_variety": "std_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5.5,
"allowed_for_design": false
}
]
- openroadm with JSON file describing gain figure tilt and gain/noise
figure ripple. **”default_edfa_config.json”** as source file.
.. code-block:: json-object
"Edfa":[{
"type_variety": "low_noise",
"type_def": "openroadm",
"gain_flatmax": 27,
"gain_min": 12,
"p_max": 22,
"nf_coef": [-8.104e-4,-6.221e-2,-5.889e-1,37.62],
"allowed_for_design": false
}
]
1.2.2. Fiber element
********************
Fiber element with its parameters:
.. code-block:: json-object
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127
}
]
RamanFiber element
******************
A special variant of the regular ``Fiber`` where the simulation engine accounts for the Raman effect.
The newly added parameters are nested in the ``raman_efficiency`` dictionary.
Its shape corresponds to typical properties of silica.
More details are available from :cite:`curri_merit_2016`.
The ``cr`` property is the normailzed Raman efficiency, so it is is (almost) independent of the fiber type, while the coefficient actually giving Raman gain is g_R=C_R/Aeff.
The ``frequency_offset`` represents the spectral difference between the pumping photon and the one receiving energy.
.. code-block:: json-object
"RamanFiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127,
"raman_efficiency": {
"cr":[
0, 9.4E-06, 2.92E-05, 4.88E-05, 6.82E-05, 8.31E-05, 9.4E-05, 0.0001014, 0.0001069, 0.0001119,
0.0001217, 0.0001268, 0.0001365, 0.000149, 0.000165, 0.000181, 0.0001977, 0.0002192, 0.0002469,
0.0002749, 0.0002999, 0.0003206, 0.0003405, 0.0003592, 0.000374, 0.0003826, 0.0003841, 0.0003826,
0.0003802, 0.0003756, 0.0003549, 0.0003795, 0.000344, 0.0002933, 0.0002024, 0.0001158, 8.46E-05,
7.14E-05, 6.86E-05, 8.5E-05, 8.93E-05, 9.01E-05, 8.15E-05, 6.67E-05, 4.37E-05, 3.28E-05, 2.96E-05,
2.65E-05, 2.57E-05, 2.81E-05, 3.08E-05, 3.67E-05, 5.85E-05, 6.63E-05, 6.36E-05, 5.5E-05, 4.06E-05,
2.77E-05, 2.42E-05, 1.87E-05, 1.6E-05, 1.4E-05, 1.13E-05, 1.05E-05, 9.8E-06, 9.8E-06, 1.13E-05,
1.64E-05, 1.95E-05, 2.38E-05, 2.26E-05, 2.03E-05, 1.48E-05, 1.09E-05, 9.8E-06, 1.05E-05, 1.17E-05,
1.25E-05, 1.21E-05, 1.09E-05, 9.8E-06, 8.2E-06, 6.6E-06, 4.7E-06, 2.7E-06, 1.9E-06, 1.2E-06, 4E-07,
2E-07, 1E-07
],
"frequency_offset":[
0, 0.5e12, 1e12, 1.5e12, 2e12, 2.5e12, 3e12, 3.5e12, 4e12, 4.5e12, 5e12, 5.5e12, 6e12, 6.5e12, 7e12,
7.5e12, 8e12, 8.5e12, 9e12, 9.5e12, 10e12, 10.5e12, 11e12, 11.5e12, 12e12, 12.5e12, 12.75e12,
13e12, 13.25e12, 13.5e12, 14e12, 14.5e12, 14.75e12, 15e12, 15.5e12, 16e12, 16.5e12, 17e12,
17.5e12, 18e12, 18.25e12, 18.5e12, 18.75e12, 19e12, 19.5e12, 20e12, 20.5e12, 21e12, 21.5e12,
22e12, 22.5e12, 23e12, 23.5e12, 24e12, 24.5e12, 25e12, 25.5e12, 26e12, 26.5e12, 27e12, 27.5e12, 28e12,
28.5e12, 29e12, 29.5e12, 30e12, 30.5e12, 31e12, 31.5e12, 32e12, 32.5e12, 33e12, 33.5e12, 34e12, 34.5e12,
35e12, 35.5e12, 36e12, 36.5e12, 37e12, 37.5e12, 38e12, 38.5e12, 39e12, 39.5e12, 40e12, 40.5e12, 41e12,
41.5e12, 42e12
]
}
}
]
1.2.3 Roadm element
*******************
Roadm element with its parameters:
.. code-block:: json-object
"Roadms":[{
"gain_mode_default_loss": 20,
"power_mode_pout_target": -20,
"add_drop_osnr": 38
}
]
1.2.3. Spans element
********************
Spans element with its parameters:
.. code-block:: json-object
"Spans":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
]
1.2.4. Spectral Information
***************************
Spectral information with its parameters:
.. code-block:: json-object
"SI":[{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,0.5],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 0
}
]
1.2.5. Transceiver element
**************************
Transceiver element with its parameters. **”mode”** can contain multiple
Transceiver operation formats.
Note that ``OSNR`` parameter refers to the receiver's minimal OSNR threshold for a given mode.
.. code-block:: json-object
"Transceiver":[{
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 37.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 40,
"min_spacing": 75e9,
"cost":1
}
]
}
]
***********************
2. Network description
***********************
Network description defines network elements with additional to
equipment description parameters, metadata and elements interconnection.
Description is made in JSON file with predefined structure. By default
**transmission_main_example.py** uses **edfa_example_network.json** file
and can be changed from command line. Parsing of JSON file is made with
**gnpy.core.network.load_network(network_description,
equipment_description)** and return value is **DiGraph** object which
mimics network description.
2.1. Structure definition
##########################
2.1.1. File root structure
***************************
Network description JSON file root consist of three unordered parts:
- network_name name of described network or service, is not used as
of now
- elements - contains array of network element objects with their
respective parameters
- connections contains array of unidirectional connection objects
.. code-block:: none
{"network_name": "Example Network",
"elements": [{...},
{...}
],
"connections": [{...},
{...}
]
}
2.1.2. Elements parameters and subtypes
****************************************
Array of network element objects consist of unordered parameter names
and those values. In case of **"type_variety"** absence
**"type_variety":”default”** name:value combination is used. As of the
moment, existence of used **"type_variety"** in equipment description is
obligatory.
2.2. Element parameters by type
*********************************
2.2.1. Transceiver element
***************************
Transceiver element with its parameters.
.. code-block:: json
{"uid": "trx Site_A",
"metadata": {
"location": {
"city": "Site_A",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
}
2.2.2. ROADM element
*********************
ROADM element with its parameters. **“params”** is optional, if not used
default loss value of 20dB is used.
.. code-block:: json
{"uid": "roadm Site_A",
"metadata": {
"location": {
"city": "Site_A",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Roadm",
"params": {
"loss": 17
}
}
2.2.3. Fused element
*********************
Fused element with its parameters. **“params”** is optional, if not used
default loss value of 1dB is used.
.. code-block:: json
{"uid": "ingress fused spans in Site_B",
"metadata": {
"location": {
"city": "Site_B",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Fused",
"params": {
"loss": 0.5
}
}
2.2.4. Fiber element
*********************
Fiber element with its parameters.
.. code-block:: json
{"uid": "fiber (Site_A \\u2192 Site_B)",
"metadata": {
"location": {
"city": "",
"region": "",
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 40.0,
"length_units": "km",
"loss_coef": 0.2
}
}
2.2.5. RamanFiber element
*************************
.. code-block:: json
{
"uid": "Span1",
"type": "RamanFiber",
"type_variety": "SSMF",
"operational": {
"temperature": 283,
"raman_pumps": [
{
"power": 200e-3,
"frequency": 205e12,
"propagation_direction": "counterprop"
},
{
"power": 206e-3,
"frequency": 201e12,
"propagation_direction": "counterprop"
}
]
},
"params": {
"type_variety": "SSMF",
"length": 80.0,
"loss_coef": 0.2,
"length_units": "km",
"att_in": 0,
"con_in": 0.5,
"con_out": 0.5
},
"metadata": {
"location": {
"latitude": 1,
"longitude": 0,
"city": null,
"region": ""
}
}
}
2.2.6. EDFA element
********************
EDFA element with its parameters.
.. code-block:: json
{"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_low_gain",
"operational": {
"gain_target": 16,
"tilt_target": 0
},
"metadata": {
"location": {
"city": "Site_A",
"region": "",
"latitude": 2,
"longitude": 0
}
}
}
2.3. Connections objects
*************************
Each unidirectional connection object in connections array consist of
two unordered **”from_node”** and **”to_node”** name pair with values
corresponding to element **”uid”**
.. code-block:: json
{"from_node": "roadm Site_C",
"to_node": "trx Site_C"
}
************************
3. Simulation Parameters
************************
Additional details of the simulation are controlled via ``sim_params.json``:
.. code-block:: json
{
"raman_computed_channels": [1, 18, 37, 56, 75],
"raman_parameters": {
"flag_raman": true,
"space_resolution": 10e3,
"tolerance": 1e-8
},
"nli_parameters": {
"nli_method_name": "ggn_spectrally_separated",
"wdm_grid_size": 50e9,
"dispersion_tolerance": 1,
"phase_shift_tollerance": 0.1
}
}

40
path_result_template.json Normal file
View File

@@ -0,0 +1,40 @@
{
"paths": [
{
"path": {
"path-id": null,
"path-properties": {
"path-metric": [
{
"metric-type": null,
"accumulative-value": null
}
],
"path-srlgs": {
"usage": "not used yet",
"values": ["not used yet"]
},
"path-route-objects": [
{
"path-route-object": {
"index": null,
"unnumbered-hop": {
"node-id": null,
"link-tp-id": null,
"hop-type": null,
"direction": "not used"
},
"label-hop": {
"te-label": {
"generic": "not used yet",
"direction": "not used yet"
}
}
}
}
]
}
}
}
]
}

2
pytest.ini Normal file
View File

@@ -0,0 +1,2 @@
[pytest]
addopts = --doctest-modules

View File

@@ -1,36 +1,10 @@
alabaster==0.7.10
attrs==17.4.0
Babel==2.5.3
certifi==2017.11.5
chardet==3.0.4
cycler==0.10.0
decorator==4.1.2
docutils==0.14
idna==2.6
imagesize==0.7.1
Jinja2==2.10
latexcodec==1.0.5
MarkupSafe==1.0
matplotlib==2.1.0
networkx==2.0
numpy==1.13.3
oset==0.1.3
pluggy==0.6.0
py==1.5.2
pybtex==0.21
pybtex-docutils==0.2.1
Pygments==2.2.0
pyparsing==2.2.0
pytest==3.3.2
python-dateutil==2.6.1
pytz==2017.3
PyYAML==3.12
requests==2.18.4
scipy==1.0.0
six==1.11.0
snowballstemmer==1.2.1
Sphinx==1.6.6
sphinxcontrib-bibtex==0.3.6
sphinxcontrib-websupport==1.0.1
urllib3==1.22
xlrd==1.1.0
alabaster>=0.7.12,<1
matplotlib>=3.1.0,<4
networkx>=2.3,<3
numpy>=1.16.1,<2
Pygments>=2.4.2,<3
pytest>=4.0.0,<5
scipy>=1.3.0,<2
Sphinx>=2.1.1,<3
sphinxcontrib-bibtex>=0.4.2,<1
xlrd>=1.2.0,<2

60
service-template.json Normal file
View File

@@ -0,0 +1,60 @@
{
"path-request": [
{
"request-id": null,
"source": null,
"destination": null,
"src-tp-id": null,
"dst-tp-id": null,
"path-constraints": {
"te-bandwidth": {
"technology": "flexi-grid",
"trx_type": null,
"trx_mode": null,
"effective-freq-slot": [
{
"n": "null",
"m": "null"
}
],
"spacing": null,
"max-nb-of-channel": null,
"output-power": null,
"path_bandwidth": null
}
},
"optimizations": {
"explicit-route-include-objects": {
"route-object-include-object": [
{
"index": null,
"unnumbered-hop": {
"node-id": null,
"link-tp-id": "link-tp-id is not used",
"hop-type": null,
"direction": "direction is not used"
},
"label-hop": {
"te-label": {
"generic": "generic is not used",
"direction": "direction is not used"
}
}
}
]
}
}
}],
"synchronization": [
{
"synchronization-id": null,
"svec": {
"relaxable": "True",
"link-diverse": "False",
"node-diverse": "False",
"request-id-number": [
null ]
},
}
]
}

View File

@@ -11,29 +11,29 @@ with open(path.join(here, 'README.rst'), encoding='utf-8') as f:
setup(
name='gnpy',
version='0.0.1',
description='TIP optical network modeling library',
version='1.2.0',
description='route planning and optimization tool for mesh optical networks',
long_description=long_description,
long_description_content_type='text/x-rst; charset=UTF-8',
url='https://github.com/Telecominfraproject/gnpy',
author='Telecom Infra Project',
author_email='jan.kundrat@telecominfraproject.com',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Intended Audience :: Science/Research',
'Intended Audience :: Telecommunications Industry',
'License :: OSI Approved :: BSD License',
'Natural Language :: English',
'Programming Language :: Python',
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: Implementation :: CPython',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Physics',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 3.6',
],
keywords='optics network fiber communication',
packages=find_packages(exclude=['examples', 'docs', 'tests']), # Required
install_requires=['cycler',
'decorator',
'matplotlib',
'networkx',
'numpy',
'scipy',
'pyparsing',
'python-dateutil',
'pytz',
'six',
'xlrd']
keywords='optics network fiber communication route planning optimization',
#packages=find_packages(exclude=['examples', 'docs', 'tests']), # Required
packages=find_packages(exclude=['docs', 'tests']), # Required
install_requires=list(open('requirements.txt'))
)

299
tests/LinkforTest.json Normal file
View File

@@ -0,0 +1,299 @@
{
"elements": [
{
"uid": "trx A",
"metadata": {
"location": {
"city": "A",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx B",
"metadata": {
"location": {
"city": "B",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "trx F",
"metadata": {
"location": {
"city": "F",
"region": "",
"latitude": 0,
"longitude": 0
}
},
"type": "Transceiver"
},
{
"uid": "fiber (A \u2192 B)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": 1.00,
"con_out": 1.00
}
},
{
"uid": "fiber (B \u2192 C)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": 1.00,
"con_out": 1.00
}
},
{
"uid": "fiber (C \u2192 D)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": 1.00,
"con_out": 1.00
}
},
{
"uid": "fiber (D \u2192 E)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": 1.00,
"con_out": 1.00
}
},
{
"uid": "fiber (E \u2192 F)-",
"metadata": {
"location": {
"latitude": 0.0,
"longitude": 0.0
}
},
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 80.0,
"length_units": "km",
"loss_coef": 0.2,
"con_in": 1.00,
"con_out": 1.00
}
},
{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 18,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Edfa2",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 18,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Edfa3",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 18,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Edfa4",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 18,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Edfa5",
"type": "Edfa",
"type_variety": "std_medium_gain",
"operational": {
"gain_target": 18,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
},
{
"uid": "Att_B",
"type": "Fused",
"params":{
"loss":16
},
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.0,
"city": "Corlay",
"region": "RLD"
}
}
},
{
"uid": "Att_F",
"type": "Fused",
"params":{
"loss":16
},
"metadata": {
"location": {
"latitude": 2.0,
"longitude": 1.0,
"city": "Corlay",
"region": "RLD"
}
}
}
],
"connections": [
{
"from_node": "fiber (A \u2192 B)-",
"to_node": "Edfa1"
},
{
"from_node": "Edfa1",
"to_node": "fiber (B \u2192 C)-"
},
{
"from_node": "fiber (B \u2192 C)-",
"to_node": "Edfa2"
},
{
"from_node": "Edfa2",
"to_node": "fiber (C \u2192 D)-"
},
{
"from_node": "fiber (C \u2192 D)-",
"to_node": "Edfa3"
},
{
"from_node": "Edfa3",
"to_node": "fiber (D \u2192 E)-"
},
{
"from_node": "fiber (D \u2192 E)-",
"to_node": "Edfa4"
},
{
"from_node": "Edfa4",
"to_node": "fiber (E \u2192 F)-"
},
{
"from_node": "fiber (E \u2192 F)-",
"to_node": "Edfa5"
},
{
"from_node": "Edfa5",
"to_node": "Att_F"
},
{
"from_node": "Att_F",
"to_node": "trx F"
},
{
"from_node": "trx A",
"to_node": "fiber (A \u2192 B)-"
},
{
"from_node": "Edfa1",
"to_node": "Att_B"
},
{
"from_node": "Att_B",
"to_node": "trx B"
}
]
}

View File

@@ -1,3 +1 @@
#!/usr/bin/env python
from .test_utilities import *

View File

@@ -1,139 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Author: Jean-Luc Auge
# @Date: 2018-02-02 14:06:55
from gnpy.core.elements import Edfa
import numpy as np
from json import load
import pytest
from gnpy.core import network_from_json
from gnpy.core.elements import Transceiver, Fiber, Edfa
from gnpy.core.utils import lin2db, db2lin
from gnpy.core.info import SpectralInformation, Channel, Power
network_file_name = 'tests/test_network.json'
@pytest.fixture(params=[(96, 0.05e12), (60, 0.075e12), (45, 0.1e12), (2, 0.1e12)],
ids=['50GHz spacing', '75GHz spacing', '100GHz spacing', '2 channels'])
# TODO in elements.py code: pytests doesn't pass with 1 channel: interpolate fail
def nch_and_spacing(request):
"""parametrize channel count vs channel spacing (Hz)"""
yield request.param
@pytest.fixture()
def bw():
"""parametrize signal bandwidth (Hz)"""
return 45e9
@pytest.fixture()
def setup_edfa():
"""init edfa class by reading test_network.json file
remove all gain and nf ripple"""
with open(network_file_name) as network_file:
network_json = load(network_file)
network = network_from_json(network_json)
edfa = [n for n in network.nodes() if isinstance(n, Edfa)][0]
#edfa.params.dgt = np.zeros(96)
edfa.params.gain_ripple = np.zeros(96)
edfa.params.nf_ripple = np.zeros(96)
yield edfa
@pytest.fixture()
def setup_trx():
"""init transceiver class to access snr and osnr calculations"""
with open(network_file_name) as network_file:
network_json = load(network_file)
network = network_from_json(network_json)
trx = [n for n in network.nodes() if isinstance(n, Transceiver)][0]
return trx
@pytest.fixture()
def si(nch_and_spacing, bw):
"""parametrize a channel comb with nch, spacing and signal bw"""
nch, spacing = nch_and_spacing
si = SpectralInformation()
si = si.update(carriers=tuple(Channel(f, 191.3e12+spacing*f,
bw, 0.15, Power(1e-6, 0, 0)) for f in range(1,nch+1)))
return si
@pytest.mark.parametrize("enabled", [True, False])
@pytest.mark.parametrize("gain, nf_expected", [(10, 15), (15, 10), (25, 5.8)])
def test_nf_calc(gain, nf_expected, enabled, setup_edfa, si):
""" compare the 2 amplifier models (polynomial and estimated from nf_min and max)
=> nf_model vs nf_poly_fit for boundary gain values: gain_min (and below) & gain_flatmax
same values are expected between the 2 models
=> unitary test for Edfa._calc_nf() (and Edfa.interpol_params)"""
edfa = setup_edfa
frequencies = np.array([c.frequency for c in si.carriers])
pin = np.array([c.power.signal+c.power.nli+c.power.ase for c in si.carriers])
baud_rates = np.array([c.baud_rate for c in si.carriers])
edfa.operational.gain_target = gain
edfa.params.nf_model_enabled = enabled
edfa.interpol_params(frequencies, pin, baud_rates)
nf = edfa.nf
dif = abs(nf[0] - nf_expected)
assert dif < 0.01
@pytest.mark.parametrize("gain", [17, 19, 21, 23])
def test_compare_nf_models(gain, setup_edfa, si):
""" compare the 2 amplifier models (polynomial and estimated from nf_min and max)
=> nf_model vs nf_poly_fit for intermediate gain values:
between gain_min and gain_flatmax some discrepancy is expected but target < 0.5dB
=> unitary test for Edfa._calc_nf (and Edfa.interpol_params)"""
edfa = setup_edfa
frequencies = np.array([c.frequency for c in si.carriers])
pin = np.array([c.power.signal+c.power.nli+c.power.ase for c in si.carriers])
baud_rates = np.array([c.baud_rate for c in si.carriers])
edfa.operational.gain_target = gain
edfa.params.nf_model_enabled = True
edfa.interpol_params(frequencies, pin, baud_rates)
nf_model = edfa.nf[0]
edfa.params.nf_model_enabled = False
edfa.interpol_params(frequencies, pin, baud_rates)
nf_poly = edfa.nf[0]
dif = abs(nf_model - nf_poly)
assert dif < 0.5
def test_si(si, nch_and_spacing):
"""basic total power check of the channel comb generation"""
nch = nch_and_spacing[0]
pin = np.array([c.power.signal+c.power.nli+c.power.ase for c in si.carriers])
p_tot = np.sum(pin)
expected_p_tot = si.carriers[0].power.signal * nch
dif = abs(lin2db(p_tot/expected_p_tot))
assert dif < 0.01
@pytest.mark.parametrize("gain", [13, 15, 17, 19, 21, 23, 25, 27])
def test_ase_noise(gain, si, setup_edfa, setup_trx, bw):
"""testing 3 different ways of calculating osnr:
1-pin-edfa.nf+58 vs
2-pout/pase afet propagate
3-Transceiver osnr_ase_01nm
=> unitary test for Edfa.noise_profile (Edfa.interpol_params, Edfa.propagate)"""
edfa = setup_edfa
frequencies = np.array([c.frequency for c in si.carriers])
pin = np.array([c.power.signal+c.power.nli+c.power.ase for c in si.carriers])
baud_rates = np.array([c.baud_rate for c in si.carriers])
edfa.operational.gain_target = gain
edfa.params.nf_model_enabled = False
edfa.interpol_params(frequencies, pin, baud_rates)
nf = edfa.nf
pin = lin2db(pin[0]*1e3)
osnr_expected = pin - nf[0] + 58
si = edfa(si)
pout = np.array([c.power.signal for c in si.carriers])
pase = np.array([c.power.ase for c in si.carriers])
osnr = lin2db(pout[0] / pase[0]) - lin2db(12.5e9/bw)
dif = abs(osnr - osnr_expected)
trx = setup_trx
si = trx(si)
osnr = trx.osnr_ase_01nm[0]
dif = dif + abs(osnr - osnr_expected)
assert dif < 0.01

120
tests/compare.py Normal file
View File

@@ -0,0 +1,120 @@
#!/usr/bin/env python3
from json import load, dump
from pathlib import Path
from argparse import ArgumentParser
from collections import namedtuple
class Results(namedtuple('Results', 'missing extra different expected actual')):
def _asdict(self):
return {'missing': self.missing,
'extra': self.extra,
'different': self.different}
def __str__(self):
rv = []
if self.missing:
rv.append('Missing: {len(self.missing)}/{len(self.expected)}')
rv.extend(f'\t{x}' for x in sorted(self.missing))
if self.extra:
rv.append('Extra: {len(self.extra)}/{len(self.expected)}')
rv.extend(f'\t{x}' for x in sorted(self.extra))
if self.different:
rv.append('Different: {len(self.different)}/{len(self.expected)}')
rv.extend(f'\tExpected: {x}\n\tActual: {y}' for x, y in self.different)
if not self.missing and not self.extra and not self.different:
rv.append('All match!')
return '\n'.join(rv)
class NetworksResults(namedtuple('NetworksResult', 'elements connections')):
def _asdict(self):
return {'elements': self.elements._asdict(),
'connections': self.connections._asdict()}
def __str__(self):
return '\n'.join([
'Elements'.center(40, '='),
str(self.elements),
'Connections'.center(40, '='),
str(self.connections),
])
class ServicesResults(namedtuple('ServicesResult', 'requests synchronizations')):
def _asdict(self):
return {'requests': self.requests.asdict(),
'synchronizations': self.synchronizations.asdict()}
def __str__(self):
return '\n'.join([
'Requests'.center(40, '='),
str(self.requests),
'Synchronizations'.center(40, '='),
str(self.synchronizations),
])
class PathsResults(namedtuple('PathsResults', 'paths')):
def _asdict(self):
return {'paths': self.paths.asdict()}
def __str__(self):
return '\n'.join([
'Paths'.center(40, '='),
str(self.paths),
])
def compare(expected, actual, key=lambda x: x):
expected = {key(el): el for el in expected}
actual = {key(el): el for el in actual}
missing = set(expected) - set(actual)
extra = set(actual) - set(expected)
different = [(expected[x], actual[x]) for
x in set(expected) & set(actual)
if expected[x] != actual[x]]
return Results(missing, extra, different, expected, actual)
def compare_networks(expected, actual):
elements = compare(expected['elements'], actual['elements'],
key=lambda el: el['uid'])
connections = compare(expected['connections'], actual['connections'],
key=lambda el: (el['from_node'], el['to_node']))
return NetworksResults(elements, connections)
def compare_services(expected, actual):
requests = compare(expected['path-request'], actual['path-request'],
key=lambda el: el['request-id'])
synchronizations = compare(expected['synchronization'], actual['synchronization'],
key=lambda el: el['synchronization-id'])
return ServicesResults(requests, synchronizations)
def compare_paths(expected_output, actual_output):
paths = compare(expected['path'], actual['path'], key=lambda el: el['path-id'])
return PathsResults(paths)
COMPARISONS = {
'networks': compare_networks,
'services': compare_services,
'paths': compare_paths,
}
parser = ArgumentParser()
parser.add_argument('expected_output', type=Path, metavar='FILE')
parser.add_argument('actual_output', type=Path, metavar='FILE')
parser.add_argument('-o', '--output', default=None)
parser.add_argument('-c', '--comparison', choices=COMPARISONS, default='networks')
def encode_sets(obj):
if isinstance(obj, set):
return list(obj)
raise TypeError(f'{obj!r} is not JSON serializable!')
if __name__ == '__main__':
args = parser.parse_args()
with open(args.expected_output, encoding='utf-8') as f:
expected = load(f)
with open(args.actual_output, encoding='utf-8') as f:
actual = load(f)
result = COMPARISONS[args.comparison](expected, actual)
if args.output:
with open(args.output, 'w', encoding='utf-8') as f:
dump(result, f, default=encode_sets, indent=2, ensure_ascii=False)
else:
print(str(result))

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,296 @@
{
"nf_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"gain_ripple": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.017807767853702,
1.0
]
}

232
tests/data/eqpt_config.json Normal file
View File

@@ -0,0 +1,232 @@
{ "Edfa":[{
"type_variety": "CienaDB_medium_gain",
"type_def": "advanced_model",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"advanced_config_from_json": "std_medium_gain_advanced_config.json",
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_medium_gain",
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "std_low_gain",
"type_def": "variable_gain",
"gain_flatmax": 16,
"gain_min": 8,
"p_max": 21,
"nf_min": 7,
"nf_max": 11,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 5.8,
"nf_max": 10,
"out_voa_auto": false,
"allowed_for_design": true
},
{
"type_variety": "test_fixed_gain",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": true
},
{
"type_variety": "std_booster",
"type_def": "fixed_gain",
"gain_flatmax": 21,
"gain_min": 20,
"p_max": 21,
"nf0": 5,
"allowed_for_design": false
}
],
"Fiber":[{
"type_variety": "SSMF",
"dispersion": 1.67e-05,
"gamma": 0.00127
}
],
"Span":[{
"power_mode":true,
"delta_power_range_db": [0,0,0.5],
"max_fiber_lineic_loss_for_raman": 0.25,
"target_extended_gain": 2.5,
"max_length": 150,
"length_units": "km",
"max_loss": 28,
"padding": 10,
"EOL": 0,
"con_in": 0,
"con_out": 0
}
],
"Roadm":[{
"target_pch_out_db": -20,
"add_drop_osnr": 38,
"restrictions": {
"preamp_variety_list":[],
"booster_variety_list":[]
}
}],
"SI":[{
"f_min": 191.3e12,
"f_max":196.1e12,
"baud_rate": 32e9,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [0,0,0.5],
"roll_off": 0.15,
"tx_osnr": 100,
"sys_margins": 0
}],
"Transceiver":[
{
"type_variety": "vendorA_trx-type1",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "PS_SP64_1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "PS_SP64_2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 11,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 64e9,
"OSNR": 15,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 75e9,
"cost":1
}
]
},
{
"type_variety": "Voyager_16QAM",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "16QAM",
"baud_rate": 32e9,
"OSNR": 19,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 100,
"min_spacing": 50e9,
"cost":1
}
]
},
{
"type_variety": "Voyager",
"frequency":{
"min": 191.35e12,
"max": 196.1e12
},
"mode":[
{
"format": "mode 1",
"baud_rate": 32e9,
"OSNR": 12,
"bit_rate": 100e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 50e9,
"cost":1
},
{
"format": "mode 3",
"baud_rate": 44e9,
"OSNR": 18,
"bit_rate": 300e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 62.5e9,
"cost":1
},
{
"format": "mode 2",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 2 - fake",
"baud_rate": 66e9,
"OSNR": 21,
"bit_rate": 400e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
},
{
"format": "mode 4",
"baud_rate": 66e9,
"OSNR": 16,
"bit_rate": 200e9,
"roll_off": 0.15,
"tx_osnr": 45,
"min_spacing": 75e9,
"cost":1
}
]
}
]
}

View File

@@ -0,0 +1,301 @@
{ "nf_fit_coeff": [
0.000168241,
0.0469961,
0.0359549,
5.82851
],
"nf_ripple": [
-0.3110761646066259,
-0.3110761646066259,
-0.31110274831665313,
-0.31419329378173544,
-0.3172854168606314,
-0.32037911876162584,
-0.3233255190215882,
-0.31624321721895354,
-0.30915729645781326,
-0.30206775396360075,
-0.2949045115165272,
-0.26632156113294336,
-0.23772399031437283,
-0.20911178784023846,
-0.18048410390821285,
-0.14379944379052215,
-0.10709599992470213,
-0.07037375788020579,
-0.03372858157230583,
-0.015660302006048,
0.0024172385953583004,
0.020504047353947653,
0.03860013139908377,
0.05670549786742816,
0.07482015390297145,
0.0838762040768461,
0.09284481475528361,
0.1018180306253394,
0.11079585523492333,
0.1020395478432815,
0.09310160456603413,
0.08415906712621996,
0.07521193198077789,
0.0676340601339394,
0.06005437964543287,
0.052470799141237305,
0.044883315610536455,
0.037679759069084225,
0.03047647598902483,
0.02326948274513522,
0.01605877647020772,
0.021248462316134083,
0.02657315875107553,
0.03190060058247842,
0.03723078993416436,
0.04256372893215024,
0.047899419704645264,
0.03915515813685565,
0.030289222542492025,
0.021418708618354456,
0.012573926129294415,
0.006240488799898697,
-9.622162373026585e-05,
-0.006436207679519103,
-0.012779471908040341,
-0.02038153550619876,
-0.027999803010447587,
-0.035622012697103154,
-0.043236398934156144,
-0.04493583574805963,
-0.04663615264317309,
-0.048337350303318156,
-0.050039429413028365,
-0.051742390657545205,
-0.05342028484370278,
-0.05254242298580185,
-0.05166410580536087,
-0.05078533294804249,
-0.04990610405914272,
-0.05409792133358102,
-0.05832916277634124,
-0.06256260169582961,
-0.06660356886269536,
-0.04779792991567815,
-0.028982516728038848,
-0.010157321677553965,
0.00861320615127981,
0.01913736978785662,
0.029667009055877668,
0.04020212822983975,
0.050742731588695494,
0.061288823415841555,
0.07184040799914815,
0.1043252636301016,
0.13687829834471027,
0.1694483010211072,
0.202035284929368,
0.23624619427167134,
0.27048596623174515,
0.30474360397422756,
0.3390191214858807,
0.36358851509924695,
0.38814205928193013,
0.41270842850729195,
0.4372876328262819,
0.4372876328262819
],
"dgt": [
2.714526681131686,
2.705443819238505,
2.6947834587664494,
2.6841217449620203,
2.6681935771243177,
2.6521732021128046,
2.630396440815385,
2.602860350286428,
2.5696460593920065,
2.5364027376452056,
2.499446286796604,
2.4587748041127506,
2.414398437185221,
2.3699990328716107,
2.322373696229342,
2.271520771371253,
2.2174389328192197,
2.16337565384239,
2.1183028432496016,
2.082225099873648,
2.055100772005235,
2.0279625371819305,
2.0008103857988204,
1.9736443063300082,
1.9482128147680253,
1.9245345552113182,
1.9026104247588487,
1.8806927939516411,
1.862235672444246,
1.847275503201129,
1.835814081380705,
1.824381436842932,
1.8139629377087627,
1.8045606557581335,
1.7961751115773796,
1.7877868031023945,
1.7793941781790852,
1.7709972329654864,
1.7625959636196327,
1.7541903672600494,
1.7459181197626403,
1.737780757913635,
1.7297783508684146,
1.7217732861435076,
1.7137640932265894,
1.7057507692361864,
1.6918150918099673,
1.6719047669939942,
1.6460167077689267,
1.6201194134191075,
1.5986915141218316,
1.5817353179379183,
1.569199764184379,
1.5566577309558969,
1.545374152761467,
1.5353620432989845,
1.5266220576235803,
1.5178910621476225,
1.5097346239790443,
1.502153039909686,
1.495145456062699,
1.488134243479226,
1.48111939735681,
1.474100442252211,
1.4670307626366115,
1.4599103316162523,
1.45273959485914,
1.445565137158368,
1.4340878115214444,
1.418273806730323,
1.3981208704326855,
1.3779439775587023,
1.3598972673004606,
1.3439818461440451,
1.3301807335621048,
1.316383926863083,
1.3040618749785347,
1.2932153453410835,
1.2838336236692311,
1.2744470198196236,
1.2650555289898042,
1.2556591482982988,
1.2428104897182262,
1.2264996957264114,
1.2067249615595257,
1.1869318618366975,
1.1672278304018044,
1.1476135933863398,
1.1280891949729075,
1.108555289615659,
1.0895983485572227,
1.0712204022764056,
1.0534217504465226,
1.0356155337864215,
1.017807767853702,
1.0
],
"gain_ripple": [
0.1359703369791596,
0.11822862697916037,
0.09542181697916163,
0.06245819697916133,
0.02602813697916062,
-0.0036199830208403228,
-0.018326963020840026,
-0.0246928330208398,
-0.016792253020838643,
-0.0028138630208403015,
0.017572956979162058,
0.038328296979159404,
0.054956336979159914,
0.0670723869791594,
0.07091459697916136,
0.07094413697916124,
0.07114372697916238,
0.07533675697916209,
0.08731066697916035,
0.10313984697916112,
0.12276252697916235,
0.14239527697916188,
0.15945681697916214,
0.1739275269791598,
0.1767381569791624,
0.17037189697916233,
0.15216302697916007,
0.13114358697916018,
0.10802383697916085,
0.08548825697916129,
0.06916723697916183,
0.05848224697916038,
0.05447361697916264,
0.05154489697916276,
0.04946107697915991,
0.04717897697916129,
0.04551704697916037,
0.04467697697916151,
0.04072968697916224,
0.03285456697916089,
0.023488786979161347,
0.01659282697915998,
0.013321846979160057,
0.011234826979162449,
0.01030063697916006,
0.00936596697916059,
0.00874012697916271,
0.00842583697916055,
0.006965146979162284,
0.0040435869791615175,
0.0007104669791608842,
-0.0015763130208377163,
-0.006936193020838033,
-0.016475303020840215,
-0.028748483020837767,
-0.039618433020837784,
-0.051112303020840244,
-0.06468462302083822,
-0.07868024302083754,
-0.09101254302083817,
-0.10103437302083762,
-0.11041488302083735,
-0.11916081302083725,
-0.12789859302083784,
-0.1353792530208402,
-0.14160178302083892,
-0.1455411330208385,
-0.1484450830208388,
-0.14823350302084037,
-0.14591937302083835,
-0.1409032730208395,
-0.13525493302083902,
-0.1279646530208396,
-0.11963431302083904,
-0.11089282302084058,
-0.1027863830208382,
-0.09717347302083823,
-0.09343261302083761,
-0.0913487130208388,
-0.08906007302083907,
-0.0865687230208394,
-0.08407607302083875,
-0.07844600302084004,
-0.06968090302083851,
-0.05947139302083926,
-0.05095282302083959,
-0.042428283020839785,
-0.03218106302083967,
-0.01819858302084043,
-0.0021726530208390216,
0.01393231697916164,
0.028098946979159933,
0.040326236979161934,
0.05257029697916238,
0.06479749697916048,
0.07704745697916238
]
}

BIN
tests/data/testTopology.xls Normal file

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More